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Data on lipids, carbohydrates and proteins of the most expressive black shale (s.l.) intervals of the Early–Late
Pliensbachian (Early Jurassic, ~187 Ma) organicrich hemipelagic series of the Lusitanian Basin (Portugal) were deter
mined using a method that has been successfully applied over the last two decades in the characterization of biomass and
very immature sediments. The goal of this paper is to test the applicability of these techniques to the ancient geological
record. To our knowledge, this is the first time that this type of biogeochemical data from sedimentary series older than
Oligocene is reported and tentatively used for palaeoenvironmental/diagenetic inferences. Carbohydrates and proteins
are present in low concentrations, reaching up to 385.13 and 451.13 µg/g rock, respectively. The main variations are ob
served in the lipid contents, ranging from 197.67 to 8446.36 µg/g rock. The samples with the highest amounts of lipids
seem to correlate with low [O2] time intervals determined by independent data, such as organic petrography,
micropalaeontology and sedimentology. This was probably related with selective lipid preservation under oxygen and
hydrogen sulfiderich depleted environments. The good overall match between the determined lipid contents and spe
cific depositional/early diagenetical conditions seem to favor the idea that the easy to perform and inexpensive method
applied here has the potential to add useful information to the study of ancient organicrich carbonate sedimentary series.
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The preservation of organic matter (OM) in the marine envi
ronment results from the interplay between a series of condi
tionals, mechanisms, triggers and feedbacks whose present
knowledge, in spite of recent advances, is still incomplete
(e.g. Keil & Hedges 1993, Parrish 1995, Tyson 1995, Peters
et al. 2005, Vandenbroucke & Largeau 2007, Versteegh et

al. 2010, Zonneveld et al. 2010, Balzano et al. 2011, Mood
ley et al. 2011, Ozaki et al. 2011, Pantoja et al. 2011). In ad

dition, it is widely acknowledged that the fate of OM in the
water column and during early diagenesis is of paramount
importance in governing several of the global elemental cyc
les (Capone et al. 2008, Emerson & Hedges 2008).

The use of biochemical methods (i.e. the determination
of lipid, protein and carbohydrate relative contents) is
emerging as an important and valuable tool for the discrim
ination of several oceanographic parameters, for example,
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as an indicator of trophic levels or in the distinction be
tween autochthonous and allochthonous OM inputs
(Dell’Anno et al. 2002, Pusceddu et al. 2010). However,
this technique has been seldom applied to such research
goals in the study of the geological record (Mendonça
Filho et al. 2010a). On the other hand, lipid related bio
markers have been extensively used in the characterization
of past depositional systems and palaeoenvironmental and
diagenetic conditions (e.g. Breger 1966, Peters et al. 2005).

In the Jurassic sedimentary record of the Lusitanian Ba
sin (LB, western central Portugal; Figs 1 and 2), several or
ganicrich intervals are recognized (Azerêdo et al. 2002,
Duarte et al. 2010, Silva et al. 2011a). One of the oldest in
tervals is represented by the Marly limestones with or
ganicrich facies member (MLOF mb) of the Vale das
Fontes Formation (Lower Jurassic; Fig. 2), which was
proven to have a high potential for hydrocarbon generation
(Oliveira et al. 2006, Ferreira et al. 2010) and includes nu
merous black shales (s.l.) (Duarte & Soares 2002, Duarte et

al. 2010, Silva et al. 2011a). It has been suggested that part
of this unit corresponds to a time interval characterized by
a widespread organic matter preservation phase (Late
Pliensbachian OMPI), which would had affected the global
carbon cycle and was probably related to the complex
chain of events that ultimately led to the Toarcian Oceanic
Anoxic Event (e.g. Silva et al. 2011b). The aim of this
work is to present the biogeochemical characterization
(lipids, carbohydrates and proteins) of the main black shale
intervals (s.l.) of the MLOF mb at a basinal scale, based
on the detailed specific study of the blackshale levels
supported by the integration of other data, namely from
sedimentology, organic petrography, geochemistry and
thermal maturation. To our knowledge, this is a novel

approach to the study of this type of sedimentary series and
we hope that this work stimulates other research groups to
develop this line of investigation and to present their re
sults.

Geological background

The studied hemipelagic series of Early–Late Pliensba
chian [top of Ibex (Lurindum subzone)Margaritatus zo
nes] age corresponds to the Marlylimestones with
organicrich facies member (MLOF mb) of the Vale das
Fontes Formation and is included in the Pliensbachian
TransgressiveRegressive facies cycle, the first 2ndorder
flooding event recognized at a basinal scale (Duarte et al.
2010). It consists of organicrich marl–limestone hemipe
lagic alternations with abundant benthic and nektonic mac
rofauna (e.g. Mouterde et al. 2007, Duarte et al. 2010). Du
ring this time interval, deposition in the Lusitanian Basin
took place on a northwesterly dipping, lowenergy marine
carbonate ramp (e.g. Duarte 2007), where the maximum
depth of the water column should not have exceeded 200 m
(N’ZabaMakaya et al. 2003). The MLOF mb, when com
pared with the units under and overlying, is characterized
by an increase of the marly character of the series and by
the occurrence of several organicrich facies, which are
particularly well developed in the western, distal hemipela
gic sectors.

Based on sedimentological criteria, it is possible to dis
tinguish three sedimentation domains in the LB during the
Early–Late Pliensbachian interval (Figs 1 and 2). West
wards, corresponding to the Peniche, S. Pedro de Moel and
Brenha (Figueira da Foz) sections, the MLOF mb main fea
ture is the organicmatter richness, including several black
shales (s.l.). Ammonites and belemnites are abundant and
benthic macrofauna, mainly brachiopods and bivalves, are
recorded. The centraleastern domain, corresponding to the
Rabaçal sector, is distinguished by the significant increase
of more proximal macrofauna and by a slight increase in
the carbonate input. Locally, the organicrich facies are ob
served, although these are not that relevant when compared
with the western domain. The Tomar sector, in the south
eastern domain, represents the shallowest of the environ
ments observable nowadays in the LB for this interval. It
contrasts with the other two domains by the lack of or
ganicrich facies, the increased limestone and bioclastic
character of the series and benthic macrofauna (brachio
pods and bivalves) richness.

Macroscopically, the organicrich facies correspond to
grey and dark marls, locally showing marked lamination.
The highest total organic carbon (TOC) values are re
corded in the distal areas (western, at Peniche and S. Pedro
de Moel), and gradually decrease towards the proximal lo
cations of the basin (eastern, Rabaçal) (Duarte et al. 2010;

374

Bulletin of Geosciences � Vol. 87, 2, 2012

Figure 1. Simplified geological map of the Lusitanian Basin and loca
tion of the studied sections.



Silva et al. 2011a, 2011b; Fig. 1). The palynofacies and
sourcerelated biomarkers from the Rabaçal, Peniche and
São Pedro de Moel sections show that the organic content
of this unit consists of a complex mixture of marine and
continental components, preserved in a marine deposi
tional environment and under variable redox conditions
(Ferreira et al. 2010, Silva et al. 2010b).

Materials and methods

Since our goal was to study the relation between relative
contents of lipid, carbohydrate and protein and black shale
paleodepositional/diagenetic conditions, the main organic
rich intervals with well defined black shales (s.l.), which can
be traced at a basinal scale in the Rabaçal, Peniche and
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Figure 2. Synthetic stratigraphic logs of the Rabaçal, Peniche and S. Pedro de Moel outcrop sections, where are highlighted the main organicrich inter
vals with black shales (s.l.) and its lateral extension. The S. Pedro de Moel section is incomplete due to intense tectonic disturbance, but ammonite data al
low a confident correlation with the remaining sections.



S. Pedro de Moel outcrop sections were chosen. The selec
ted intervals correspond to four time intervals: Ibex/Davoei
zones boundary interval (Lower Pliensbachian) and upper
Stokesi, Subnodosus and base of Gibbosus subzones of the
Margaritatus Zone (Upper Pliensbachian; see Table 1 and
Fig. 2). From these intervals, ten black shale levels (s.l.) were
selected for organic petrography, palynofacies, TOC, sulphur
(S), biomarkers and biochemical analysis (proteins, carbo
hydrates and lipids). These samples are black in colour and
present a marked lamination to the submillimetric scale, ma
king them easily recognizable at outcrop by the contrast with
the framing lithofacies. Often, these levels present a sharp
base and a gradational and bioturbated upper boundary into a
more calcareous bed. Some of the selected samples have a
significant amount of diagenetic pyrite nodules.

The TOC, S, organic petrography, palynofacies and
biomarker analysis were made in the Palynofacies and Or
ganic Facies Laboratory (LAFO) of the Rio de Janeiro Fed
eral University (Rio de Janeiro, Brazil). The TOC and
S contents were determined using a SC144DR LECO
analyzer, with an analytical precision of ± 0.1 wt.%. The
organic petrography and palynofacies were performed by
optic microscopy using transmitted white light and fluores
cence mode and following the classification scheme for the
organic matter groups and subgroups proposed by Tyson
(1995) and later modified by Mendonça Filho (1999),
Menezes et al. (2008) and Mendonça Filho et al. (2002,
2010c, 2011). The biomarkers analysis, namely the
pristane/phytane ratio (Pr/Ph), were carried on the saturate
fraction (after Soxhlet extraction with dichloromethane
and liquid chromatography in a silica column using hex
ane) by gas chromatographymass spectrometry (GCMS)
using Agilent Technologies instruments which includes
one 7890 model gas chromatograph equipped with one

7673 auto sampler and coupled to one quadrupole 5973
MSD spectrometer. The injector temperature was 280 °C
and the oven was programmed to 170 °C at 20 °C/min, then
to 300 °C at 2 °C/min and held for 15 min at 300 °C.

The biochemical analyses were conducted at the Marine
Microbiology Laboratory of the Fluminense Federal Uni
versity (Niterói, Brazil). The analytical procedure, applied
over the last two decades in the characterization of biomass
and very immature sediments, is the same as previously used
in modern (e.g. Fabiano & Danovaro 1994, Dell’Anno et al.

2002, S. Silva et al. 2010) and older sediments (Oligocene,
Mendonça Filho et al. 2010a), thus providing a common
platform between analyses from different geological ages.
In addition, these techniques are easy to perform by a trained
laboratory technician and do not need expensive
equipments. The standard methodology is as follows:

– Protein analysis: extraction by dilute alkaline hydro
lysis (NaOH, 0.5 M) and the protein content determined
following the Lowry method (Hartree 1972) later modified
by Rice (1982) to compensate for phenol interference.
Concentrations are reported as albumin equivalents.

– Carbohydrate analysis: extraction by phenolsulfuric
acid, following Gerchakov & Hatcher (1972). Concentra
tions are expressed as glucose equivalents.

– Lipid analysis: extraction by direct elution with chlo
roform and methanol and analyzed according to Marsh &
Wenstein (1966) for nonspecific lipids by simple charring.
Concentrations are reported as tripalmitine equivalents.

For each biochemical analysis, blanks were made with
the same sediment samples which were previously treated in
a muffle furnace (450 °C for 2 h). All analyses were carried
out in 3–5 replicates following Fabiano & Danovaro (1994).
Analytical precision is better than 6% for protein and carbo
hydrate determinations and 8% for the lipid determination.
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Table 1. Temporal location, TOC, S, biogeochemistry and Pr/Ph results of the analyzed samples from the Rabaçal, Peniche and S. Pedro de Moel out
crop sections of the Lusitanian Basin (Portugal). (a) Total organic carbon. (b) Sulphur. (c) Lipids. (d) Carbohydrates. (e) Proteins. (f) Pristane/Phytane.

Samples Time interval TOC(a)

(wt.%)
S(b)

(wt.%)

Biogeochemistry (µg/g rock)

LIP(c) CHO(d) PTN(e) Total Pr/Ph(f)

Rabaçal

ALR 3 base Gibbosus Subzone 2.00 0.11 236.45 385.13 333.92 955.50 1.93

ALR 2 Subnodosus? Subzone 1.71 0.03 197.67 268.67 63.49 529.83 1.69

ALR 1 Ibex/Davoei zones interval 22.30 1.49 2609.55 300.96 87.15 2997.65 1.19

Peniche

PER 4 base Gibbosus Subzone 9.33 1.10 8446.36 63.88 394.14 8904.38 1.24

PER 3 Subnodosus Subzone 9.10 1.08 739.85 332.63 29.09 1101.56 1.95

PER 2 upper Stokesi Subzone 4.60 0.86 1651.97 302.63 58.12 2012.71 1.49

PER 1 Ibex/Davoei zones interval 26.30 3.40 5752.42 35.13 162.96 5950.51 1.97

S. Pedro de Moel

POR 3 base Gibbosus Subzone 18.12 3.27 5513.03 40.13 451.13 6004.28 0.50

POR 2 Subnodosus Subzone 6.42 0.82 2115.61 285.13 93.06 2493.80 0.50

POR 1 upper Stokesi Subzone 20.70 12.50 5000.91 287.83 158.12 5446.86 0.74
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Results and discussion

TOC, sulphur
and organic petrography characterization

TOC and S data from the studied sections vary between
1.71 to 26.30 wt.% and 0.03 to 12.50 wt.%, respectively
(Table 1). The highest TOC and S values from the Rabaçal
and Peniche sections are observed in the Ibex/Davoei
zones boundary interval samples ALR1 and PER 1; at
S. Pedro de Moel the highest values are found in the sample
from the upper Stokesi Subzone sample POR 1 (see Duarte
et al. 2010 for more details about TOC basinal variation of
the MLOF mb).

The organic petrography observations show that
kerogen assemblages of the studied samples are composed
of phytoclasts, marine and continental palynomorphs and
Amorphous Organic Matter (AOM). The latter is the domi
nant group, ranging from 44% to more than 80%.

The AOM corresponds to two main types. The type I
AOM (AOM s.s. in Mendonça Filho et al. 2011) presents a

variable fluorescence and a highly heterogeneous “clotted”
fabric (Fig. 3A, B, D). This AOM corresponds to mucilagi
nous aggregates (Decho & Herndl 1995, Tyson 1995),
build up by the interaction of abiotic (e.g. transparent
exopolymer particles, TEP) and biotic (e.g. microbial or al
gal exopolymeric substances, EPS) gels (e.g. Alldredge et

al. 1993, Verdugo et al. 2004). Modern examples show that
the biological composition of these aggregates is highly di
verse. They include phytoplankton (s.l.), bacteria, viruses,
organic and inorganic debris embedded in an organic ma
trix formed by four major structural constituents: polysac
charides; aliphatic components; organic molecules bearing
functional groups, such as esters and amides; and organo
elemental compounds (e.g. Kovac et al. 2002, Simon et al.

2002). During transit through the water column, deposition
and burial by sediments, these organic aggregates can be
modified, for example by heterotrophic microbial rework
ing (Tissot & Welte 1978; Mendonça Filho et al. 2010a,
2010c). The type II AOM (amorphous products of bacteria
and microbial mats subgroups of Mendonça Filho et al.

2011) occurs as a highly fluorescent homogenous AOM
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Figure 3. Organic petrography aspects of the kerogen assemblages from the studied sections. A – PER 3; B – POR 2; C – ALR 1; D – PER 4. All photos
were taken in fluorescence mode. Abbreviations: Py – phytoclasts; Pa – palynomorphs.
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(pelicular AOM sensu Combaz 1980, Fig. 3C, D) and it is
suggested that it corresponds to microbial biofilms. How
ever, whether they were produced in the water column or
correspond to an established benthic community is yet to
be determined. In some samples, especially those from the
Ibex/Davoei zones boundary interval, these biofilms ap
pear to have been intensively reworked by heterotrophic
bacteria, resulting in a dense, moderate fluorescent AOM
with a more regular outline (see Mendonça Filho et al.

2010a, 2010c, 2011).

Biogeochemistry: high lipid content
as indicative of oxygen depleted marine
palaeoenvironments/early diagenesis

Since our samples are from outcrops we have to assume that
thermal and exposure related degradation have taken place.
This hampers the use of absolute concentrations to palaeo
environmental/depositional interpretations (e.g. Dell’Anno
et al. 2002). Another possible source of concern is contami
nation by modern organisms. In living organisms carbohyd
rates are dominant so, the very low contents of this parame
ter in the analyzed samples allow discarding contamination.
In the following discussion we assume that the observed
relationship between the contents of lipids, proteins and car
bohydrates reflects an interplay of several processes during
sedimentation and diagenesis and may be indicative of pala
eoenvironmental/diagenetical conditions.

Lipids are dominant in most of the studied samples,
with only small amounts of carbohydrates and proteins
(Table 1). This suggests that lipids were selectively pre
served (relative to proteins and carbohydrates) since this
relative proportion is not observed in modern marine envi
ronments. For example, marine plankton is roughly charac
terized by 65 ± 9, 19 ± 4 and 16 ± 6 wt.% of proteins, carbo
hydrates and lipids, respectively (Hedges et al. 2002).

In the upper layers of the oceans, the chemistry of the
organic matter is relatively well characterized; after early
diagenesis, carbohydrates, proteins and lipids usually con
tribute with less than 10% to the total organic carbon in
sediments. Two main mechanisms are accepted for OM
transformation and preservation during diagenesis,
catagenesis and metagenesis: degradation/recondensation
(Tissot & Welte 1978) and selective preservation (Tegelaar
et al. 1989) (the discussion on the merits of each one is be
yond the purpose of this work; see Largeau & Derenne
1993, Tyson 1995 for a discussion about this subject). Car
bohydrates and proteins are regarded as components with
low diagenetic preservation potential (although a fraction
of these macromolecules can be preserved in sediments,
see Nguyen & Harvey 2001, Jensen et al. 2005 and refer
ences therein). Lipids, on the other hand, are thought to be
more resistant. Several mechanisms and properties have

been suggested to explain the selective preservation of
lipids in sediments (e.g. Kohnen et al. 1990, Schouten et

al. 1994, Harvey et al. 1995, Sinninghe Damsté et al. 1995,
Sun et al. 2002, Farrimond et al. 2003, Lee et al. 2004,
Farrimond et al. 2003, Bowden et al. 2006, Lü et al. 2010)
but it has been shown that it mainly depends on O2 avail
ability and its variation over time controlling, for example,
grazing pressure, bacterial remineralization and OM reac
tivity efficiency. The most efficient environments are those
characterized by low and stable O2 contents (Kohnen et al.

1990, 1992; Harvey et al. 1995; Sun et al. 2002; Ding &
Sun 2005; Zonneveld et al. 2010).

For the case under study, an independent checking of
the likely environmental oxygen levels may be made using
data from Brunel et al. (1998), based on foraminifera, and
N’ZabaMakaya et al. (2003), based on ostracoda. These
studies show that the O2 content of bottom waters during
the Late Pliensbachian decreases from the proximal to the
most distal sectors, i.e. from Rabaçal to S. Pedro de Moel
(the Peniche section was not considered in these studies).
When a lateralequivalence comparison is made for each
time interval, it is possible to conclude that lipid contents
increase from the proximal (Rabaçal) to the distal (Peniche
and S. Pedro de Moel) sections (Table 1 and Figs 2 and 4),
following the referred microfossil trend and defining a re
gional pattern. However, it is observed that the lipid con
tent of the sample PER 4 (Peniche) is distinctively higher
than the time equivalent sample POR 3 (S. Pedro de Moel),
even though the latter has much higher TOC and S contents
(Table 1). The organic petrography observations of these
samples show that AOM mostly corresponds to hetero
trophically reworked type II AOM in sample POR 3
whereas in sample PER 4 is made up of a mixture of type I
and type II AOM, with some evidences of heterotrophic re
working. The Lower Pliensbachian samples from Rabaçal
and Peniche (Ibex/Davoei zones interval) also tend to pres
ent the lipid enrichment pattern, but micropalaeontological
data are not available for this time interval. Pr/Ph ratios
(see Peters et al. 2005 for a discussion about this ratio) also
tend to show the same regional trend outlined by the micro
palaeontological data. Although the Pr/Ph ratio from Raba
çal and Peniche shows a reversed trend for the Ibex/Davoei
zones boundary interval and the Subnodosus Zone sam
ples, they are always higher than the values from S. Pedro
de Moel, suggesting more reducing conditions in the latter
location (Table 1 and Fig. 4).

Brunel et al. (1998) and N’ZabaMakaya et al. (2003)
also demonstrate the existence of a major temporal trend
of increasing hypoxia in the section representing the distal
areas of the basin (namely S. Pedro de Moel), with the
highest oxygen depletion conditions inferred to have oc
curred at the base of the Gibbosus Subzone. At Peniche and
S. Pedro de Moel, and solely regarding the three analyzed
Upper Pliensbachian organicrich intervals (Fig. 2), the
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samples from the Gibbosus Subzone present the highest
lipid contents, whereas those from the Subnodosus Sub
zone present the lowest ones (Fig. 4). The fact that the
highest lipid contents are determined in samples from the
Gibbosus Subzone is in good agreement with the micro
palaeontological data given by Brunel et al (1998) and by
N’ZabaMakaya et al. (2003) from S. Pedro de Moel and
the interpretation that this interval corresponds to the maxi
mum flooding interval of the 2ndorder Pliensbachian trans
gressiveregressive facies cycle (Duarte et al. 2010). Also,
comparing the samples PER 3 (Subnodosus Subzone) and
4 (Gibbosus subzone) from the Peniche section it is ob
served that they have virtually the same TOC, S (Table 1)
and AOM contents (80% and 84%, respectively) but are
markedly different with respect to AOM typology (Ta
ble 1). While AOM from sample PER 3 mostly corre
sponds to the type I (mucilaginous aggregates, Fig. 3A), in
sample PER 4 it is composed of both types (mucilaginous
aggregates and microbial biofilms, Fig. 3D). The presence
of microbial biofilms suggests low sedimentation rates
and/or environmental restriction linked to the maximum
flooding interval of the 2ndorder Pliensbachian trans
gressiveregressive facies cycle (Duarte et al. 2010). The
latter kerogen association and its impact on lipids preserva
tion is not yet fully understood, although it has been sug
gested that biofilm EPS may play an important role in OM
preservation (Pacton et al. 2007).

The lowest lipid contents were found in samples from
the Subnodosus Subzone. However, following the afore
mentioned temporal trend it would be expected that the low
est lipid contents were observed in samples from the Stokesi
Subzone. Taking into account all the available information
(e.g. N’ZabaMakaya et al. 2003, Ferreira et al. 2010, Silva
et al. 2010a, in preparation), it is likely that this discrepancy
is linked to lower order/higher frequency palaeoceano
graphic changes that control, for example, OM dilution by
sediments, kerogen composition and O2 levels of the oceans.

At Rabaçal, the lipid contents of the Upper Pliens
bachian samples is extremely low, suggesting the lack of
lipid preservation. The sedimentological and micro
palaeontological data (see references above) suggest that
sedimentation rates in this part of the basin were greatly re
duced during the Late Pliensbachian, hence, prolonged ex
posure of OM on the ocean floor or to molecular oxygen in
sediment pore waters and its depletion by benthic con
sumption is expected to have occurred. This inference is
supported by low TOC and S contents, high Pr/Ph (Table 1)
and lack of visual evidence of strong benthic heterotrophic
reworking, which is known to largely depend on the
amount of metabolizable OM incorporated into sediments
(see Tyson 1995 and references therein).

The generic agreement between sedimentological,
micropalaeontological and biomarker information, coupled
with the lateral and temporal variation of our data, favour the

idea that the lipid content of the studied material can be used
as a proxy to bottom water/early diagenesis O2 availability
during the Late Pliensbachian in the LB. However, studies
from other sedimentary basins and time series following the
same approach are necessary to validate our findings.

Diagenetic bias

In the studied samples, incorporation into kerogen and clay
mineral adsorption may affect the observed lipid contents,
as they can be released and migrate later in the diagenetic
history. For example, it is well known that lipids may be in
corporated into kerogen via sulphurbounds during early
diagenesis (Sinninghe Damsté et al. 1995 and references
therein) and can be released during late diagenesis/early
catagenesis due to cleavage of carbonsulphur bounds
(Sinninghe Damsté et al. 1995, Pan et al. 2008). For the
Kimmeridge clays, Murray et al. (1998) observed that the
ratio of free to kerogenbound aliphatic biomarkers extrac
ted after hydropyrolysis markedly increase at approxima
tely 0.45–0.50% of vitrinite reflectance, although the total
concentration of these components only start to decrease at
vitrinite reflectance values around 0.55%. In the case under
study, the available thermalmaturity related data (Spore
Coloration Index, Vitrinite Reflectance, thermal matura
tion related biomarkers and RockEval pyrolysis) indicate
that the studied successions are immature; the MLOF mb in
Peniche, for example, presents vitrinite reflectance values
of % Ro = 0.47 and Tmax (Rock Eval) always below 440 °C
(Oliveira et al. 2006, Ferreira et al. 2010, Mendonça Filho
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Figure 4. Lateral and temporal variation of the lipids content and the
Pr/Ph ratio in the Rabaçal, Peniche and S. Pedro de Moel outcrop sections.
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et al. 2010b). It is suggested that in these thermally imma
ture sediments, hydrocarbon migration may not be a major
factor in controlling the determined lipid contents within a
given section. However, the possibility that it may play a
role in the regional variations cannot be discarded.

Conclusions

In the organicrich Pliensbachian hemipelagic series of the
LB protein, carbohydrate and lipid relative contents were
determined and correlated with organic petrography, mic
ropalaeontological and sedimentological data. The preser
vation of lipids, relatively to carbohydrates and proteins,
seems to be related to palaeoenvironments/early diagenesis
where O2 concentrations are low. It has been demonstrated
that [O2] vary as a response to depositional, palaeoceanog
raphic and palaeoenvironmental changes, favouring the
idea that determination of relative contents of proteins, car
bohydrates and lipids may be a viable work tool in the cha
racterization of ancient sedimentary environments. We
hope that this work stimulates other research groups to de
velop this line of investigation and to present their results.
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