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ABSTRACT 

 

Brightness stability is a very important property of beached cellulosic pulps. The impact 
of the final bleaching stage is assessed in this study for the purpose of understanding the 
fundamental reasons behind the improved brightness stability of bleached eucalypt pulp 
when the conventional chlorine dioxide stage (D) is replaced by an alkaline hydrogen 
peroxide stage (P). Particular emphasis was devoted to the role of xylan because within 
the fibrous structure this component has higher accessibility to brightening agents. 

Isolated xylans from partially (DED) and fully (DEDD/DEDP) bleached eucalypt kraft 
pulps were characterized using 1H NMR, UV-Vis in cadoxen solutions, size exclusion 
chromatography and UV-Resonance Raman spectroscopy @ 325 nm. Comparative 
analysis was done for xylan isolated from partially bleached pulp (DED) and subjected 
to treatment either with chlorine dioxide or alkaline hydrogen peroxide under the same 
final bleaching conditions. Chlorine dioxide final stage induced new unsaturated 
moieties in xylan structure, while hydrogen peroxide was very effective in the removal 
of xylan-related chromophores. The role of xylan to the delay of brightness 
development in the final chlorine dioxide stage was highlighted. 

UV-vis Diffuse Reflectance and UV Resonance Raman micro-spectroscopy were 
employed to evaluate the differences on chromophores formation/degradation in fully 
bleached eucalypt kraft pulp upon both final bleaching stages. Spectroscopic data were 
coupled to wet chemistry and mass spectrometry analyses of degradation products 
arisen during hydrothermal ageing of bleached pulps. The complementary analyses have 
revealed the important role of partially oxidized carbohydrates and of the residual lignin 
structurally associated to xylan in ageing reactions. A part of the new formed 
chromophores was the result of iron complexes with ageing products. The leaching of 
degradation products from pulp in the alkaline peroxide stage was suggested to be a 
crucial factor that predetermined its lower brightness reversion over the pulp bleached 
under the weakly acidic chlorine dioxide stage. 

 

 



 

 

RESUMO 

 

A estabilidade da brancura é uma propriedade muito importante das pastas celulósicas 
branqueadas. O impacte do estágio final de branqueamento foi avaliado com o objectivo 
de entender as razões do ponto de vista fundamental que expliquem a superior 
estabilidade de brancura de pastas de eucalipto branqueadas quando o estágio 
convencional com dióxido de cloro (D) é substituído por um estágio alcalino de 
peróxido de hidrogénio (P). Foi dado um ênfase particular ao papel da xilana pois, 
inserida na estrutura fibrosa, é o componente com maior acessibilidade aos agentes de 
branqueamento. 

Xilanas isoladas de pastas kraft de eucalipto parcialmente (DED) e totalmente 
branqueadas (DEDD/DEDP) foram caracterizadas por espectroscopia 1H NMR, UV-vis 
em soluções de cadoxeno, cromatografia de exclusão molecular e espectroscopia de 
Raman no UV com efeito ressonante aos 325 nm. Uma análise comparativa foi 
realizada entre a xilana isolada da pasta parcialmente branqueada (DED) e 
posteriormente branqueada com dióxido de cloro ou com peróxido de hidrogénio 
alcalino com as mesmas condições utilizadas no branqueamento final das pastas. O 
dióxido de cloro como estágio final introduziu novas estruturas insaturadas na xilana, 
enquanto o peróxido de hidrogénio foi eficiente na remoção de estruturas cromóforas da 
xilana. O papel da xilana no retardamento do desenvolvimento de brancura no 
branqueamento final com dióxido de cloro foi evidenciado. 

Espectroscopia UV-vis de reflectância difusa e de Raman no UV com efeito ressonante 
foram aplicadas na avaliação das diferenças na formação/degradação de cromóforos em 
pastas de eucalipto branqueadas após ambos os estágios finais. Estes dados foram 
complementados com análises de química húmida e de espectrometria de massa dos 
produtos de degradação obtidos durante o envelhecimento hidro-térmico das pastas 
branqueadas. Estas análises revelaram o papel importante dos hidratos de carbono e da 
lenhina residual associada estruturalmente à xilana nas reacções de envelhecimento. 
Parte dos novos cromóforos formados resultam da complexação de ferro com os 
produtos de degradação provenientes do envelhecimento. A lixiviação de produtos de 
degradação da pasta durante o estágio de peróxido de hidrogénio alcalino foi sugerida 
como um factor crucial que predeterminou a menor reversão de brancura 
comparativamente à pasta branqueada com dióxido de cloro. 
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I. INTRODUCTION 

 

The International Pulp Bleaching Conference (IPBC) held since 1955 can be considered as a 

mirror of the progress in pulp bleaching technology[1]. The latest IPBC was held on October 

5-7, 2011, in Portland, OR, USA, succeeding to the joint TAPPI PEERS (Pulping, 

Engineering, Environmental, Recycling and Sustainability) Conference (October 2-5)[2]. In 

general, the presented studies confirmed that the advances in the pulp bleaching field have 

been more incremental than radically new over the last years. This steady-state scenario 

reflects the sound environmental performance of the prevailing elemental chlorine free (ECF) 

bleaching technology mainly based on chlorine dioxide[3]. In fact, the environmental 

regulations that served in the past (1985-1995) has the key driving forces to breakthrough 

innovations in the pulp bleaching process are no longer dictating research trends[3]. Besides 

the minimization of environmental impacts, new mills are also focused into the maximization 

of energy efficiency, improvement of product quality and optimization of capital and 

operating costs[4]. 

Although the pulp bleaching process is presently considered a mature technology, many 

unresolved questions remain. More in depth studies towards the use of much fewer stages 

and/or new designs and concepts along with less energy, water and chemicals consumption 

are still needed as remaining challenges[3]. In fact, the mainstream topic in pulp and paper 

research has been directed into the biorefinery concept and hence a considerable amount of 

effort was displaced from more conventional research areas as pulp bleaching. However, like 

most developments in pulp and paper production, the introduction of the biorefinery concept 

should be conceived in an integrated way. Not surprisingly, one new topic in the last IPBC 

program was dedicated to “Bleaching and the Biorefinery”[2]. Nonetheless, the published 

results comprising this integrated biorefinery-pulping/bleaching perspective have rendered 

new opportunities in pulp bleaching research. 

One recognized finding in this new research context was that the pre-hydrolysed chips were 

easier to delignify and to bleach by chorine dioxide[5-7]. This positive impact on pulp 

bleachability of the fully bleached pulp was linked to the extraction of hemicelluloses prior to 

the pulping process, within the so-called pre-hydrolysis step. The improvement in the 

bleachability of pre-hydrolysed pulps was proposed to be due to a lower molecular weight of 

lignin and/or to a lesser amount of lignin-carbohydrate linkages as a result of the extensive 
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removal of hemicelluloses during pre-hydrolysis and subsequent pulping[7]. In the case of 

eucalypt pulps similar results were attained with the additional finding of a decrease in 

brightness reversion[5,6]. 

One topic that is commonly recognized to be poorly understood is the role of lignin-

carbohydrate complexes (LCCs). This is a remaining issue to be better investigated towards 

technical advances in different stages of bleached pulp production. These knowledge gaps 

entail problems with the separation/fractionation of pulp components not only within these 

new biorefining processes[8] but also considering the existing pulping and bleaching 

technologies[9,10]. In fact, almost all lignin was shown to be covalently linked either to 

glucomannan or to xylan in wood[9] and kraft pulp[11,12]. In the case of eucalypt pulps, which 

are presently the most important source of bleached market pulp in the world[13], the main 

hemicellulose is xylan and therefore special attention should be devoted to this component 

and its association with lignin[14]. In fact, these xylan-lignin condensed structures can survive 

the whole bleaching process thereby contributing to the delay of brightness development 

(chromophores removal) and also to a decreased brightness stability of the bleached pulp[14,15]. 

Besides the known alkaline stability of benzyl ether bonds between lignin and carbohydrates, 

there is the additional formation of lignin-carbohydrate linkages during the alkaline pulping 

process[10,16]. 

The aforementioned pre-hydrolysis step is similar to the inclusion of an acidolytic stage in 

chemical pulp bleaching as proposed very recently[17]. This acidolytic treatment at 110 ºC was 

suggested to cleave benzyl sugar ethers thus enabling a boost in final brightness[17]. On the 

other hand, this is in good agreement with the previously identified role of xylan as a source 

of chromophores at the final stages of eucalypt pulp bleaching[14]. Using UV-Resonance 

Raman (UV-RR) spectroscopy, these remaining chromophore structures were specifically 

identified as polyunsaturated structures belonging to the xylan-lignin complex[14,15]. 

Conversely, although using a milder temperature of 95 ºC in a more extended (180 min) 

acidic washing stage (A), D0(EOP)D1AP bleached eucalypt pulps possessed a remarkable 

brightness stability[18]. This was assigned to the probable hydrolysis of the remaining 

hexeneuronic acid (HexA) residues in xylan and mostly other unsaturated chromogen 

structures present in pulps of low degradation rate[18]. 

In this study it is grasped this opened opportunity to further understand the role of xylan in the 

final bleaching of Portuguese Eucalyptus globulus kraft pulps. At the final stages of the 

bleaching process cellulose and hemicelluloses are especially vulnerable to oxidation with 

bleaching reagents. Therefore, the brightness gain and reversion are also expected to be 
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sensitive to the oxidation patterns of carbohydrates with these chemicals. Owing to the 

conspicuous differences in brightness reversion between D0(EOP)D1D2 and D0(EOP)D1P 

bleached pulps, without correlating to their HexA content[14], these eucalypt pulps were 

selected as a final bleaching case-study. 

This thesis is divided into one introduction section covering a short description of bleaching 

nomenclature and final bleaching trends which is then followed by some fundamentals on the 

wood chemical composition and focusing on the chemistry of polysaccharides and lignin-

carbohydrate complexes. The subsequent chapter is devoted to the description of all 

experimental procedures that were utilized. The third chapter gathers all results obtained with 

their ensuing discussion. Finally, the main conclusions are given in the last chapter before the 

list of references that support this work. 

Part of the results presented in this thesis has been published in the journal Carbohydrate 

Polymers: 

- Loureiro PEG, Domingues MRM, Fernandes AJS, Carvalho MGVS, Evtuguin DV. 

Discriminating the brightness stability of cellulosic pulp in relation to the final bleaching 

stage. Carbohydrate Polymers 88(2): 726-733 (2012); doi:10.1016/j.carbpol.2012.01.024. 
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II. EUCALYPT PULP BLEACHING AND CHEMISTRY 

 

The pulp bleaching process is a multi-stage technology for the purpose of increasing the 

reflectance of visible light from the wood pulp. Following the wood pulping process (mainly 

kraft cooking) and using more selective chemicals, it promotes the removal of residual lignin 

in the first stages (delignifying stages) and then continues with the degradation of the residual 

chromophores at the final stages (brightening stages)[19,20]. 

Each stage of the pulp bleaching process has an assigned notation in accordance with a 

standard protocol such as the TAPPI Technical Information Sheet (TIPS) TIP 0606-21 

“Recommended pulp bleaching stage designation method”[19]. In Table I it is presented the 

description of the main reagents utilized in wood pulp bleaching along with their stage-

designations. 

 

Table I. Description of typical pulp bleaching reagents and their corresponding stage-designations 

(adapted from[19-21]). 

CHLORINE CONTAINING CHLORINE FREE 
BLEACHING 

REAGENT Chlorine 
Cl2 

Chlorine 
dioxide 

ClO2 

Hypochlorite
NaOCl 

Hydrogen 
peroxide 

H2O2 

Peracetic 
acid 

CH3COOOH 

Oxygen 
O2 

Ozone 
O3 

Stage 
designation C D H P Paa O Z 

Type of 
reaction electrophilic nucleophilic electrophilic 

pH acid alkaline acid alkaline acid 

No. of e- 
transferred 

(e- mol-1) 
2 5 2 2 2 4 6 

reaction 
sites 

olefinic; 
aromatic; 

HexA 

free 
phenolic; 
double 
bonds; 
HexA 

carbonyl groups; 
conjugated double bonds 

olefinic; 
aromatic; 

HexA 

free 
phenolic; 
double 
bonds 

olefinic; 
aromatic; 

HexA 
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II.1. Final bleaching 

 

Although the chemistry and technology of the final bleaching stages is of paramount 

importance for the quality standards of the bleached pulp (e.g., strength and optical 

properties), it is one of the less investigated areas in bleached pulp production. This can be 

explained by the difficulties in the assessment of the nature of the remaining chromophores at 

the last stages of the bleaching process and thus the absence of a clear and defined strategy to 

get rid of the residual chromophores. Considering the widespread utilization of ECF 

bleaching, chlorine dioxide is very often the only available solution. However, in spite of the 

extraordinary performance of this chemical in terms of bleaching selectivity, it may not be the 

best final bleaching option[22]. Only recently, the importance of optimizing the final D-stage 

regarding the relationship between bleaching pH and brightness gain has been 

recognized[23,24]. The near-neutral final chlorine dioxide brightening process, under buffered 

conditions, was claimed to be most effective than the more conventional acidic D-stage[23,25]. 

As a different alternative to chlorine based chemicals, the utilization of alkaline hydrogen 

peroxide bleaching (P stage) is now established as an efficient final bleaching option mainly 

in terms of chromophores removal[14,26]. In particular, eucalypt kraft pulps ECF bleached with 

a final P stage exhibit much higher brightness stability, when compared to pulps bleached 

with a conventional D stage[14,26-29]. Moreover, the bleached pulp has improved refinability 

and higher tensile strength[28,29]. Consequently, sequences as A/D(EOP)DP and DHT(EOP)DP 

are now established in eucalyptus pulp bleaching being the A(EOP)DP sequence the best from 

the standpoint of chlorine dioxide consumption[30]. 

Besides DD and DP, other final bleaching strategies recently studied comprise PaaP, ZP[31,32], 

D/Paa[33,34] and (PO)Paa[33] stages. In the bleaching of a softwood kraft pulp Z/P final stages 

produced the best results regarding high brightness with low reversion followed by D/P and 

then Paa/P[32]. In general the final Paa stage in the ECF bleaching of eucalypt pulps exhibited 

a boost in final brightness with no significant effect on brightness reversion and a slight 

viscosity drop[33]. 
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II.2. Cellulose and Xylan 

 

The woods used in the industrial production of cellulosic pulp can be classified as hardwoods 

or softwoods, either derived from gymnosperm or angiosperm trees, respectively[35]. Among 

hardwoods, the Eucalyptus globulus is the main wood utilized in the Iberian Peninsula for the 

production of pulp and paper products. Compared to other hardwood species, including within 

the genus Eucalyptus, the E. globulus wood is recognized to possess a superior technical 

performance during kraft pulping[36,37] and in pulp bleaching[36] processes. These differences 

in response among species are known to be affected by morphology, density and chemical 

composition of the wood[38] and thus are intimately related to the structural features of the 

biopolymers that compose this raw material[36,39]. 

The proportions of the main chemical constituents of softwoods and hardwoods vary in the 

approximate ranges presented in Table I, where it is also shown the corresponding values for 

E. globulus[35]. In fact, it is observed that the latter has a relative low content of lignin and a 

high content of cellulose compared to most species, though chemical composition within the 

same species is also variable. 

 

Table II. Approximate ranges of the contents of the main chemical constituents of softwoods and 

hardwoods and of Eucalyptus globulus (values as % of the dry wood weight)[35]. 

Wood 
species Lignin Cellulose Glucomannan Glucuronoxylan

Other 
polysaccharides 

Extractives

Softwood 27-32 33-42 14-20 5-11 3-9 2-5 

Hardwood 21-31 38-51 1-4 14-30 2-4 1-5 

E. globulus 21.9 51.3 1.4 19.9 3.9 1.3 

 

The main structural component of the wood is cellulose (Fig. 1), a linear homopolysacharide 

composed of D-glucopyranose units linked together by β-(1→4) glycosidic bonds. 

Hemicelluloses are the second most abundant polysaccharide and, in general, are branched 

heteropolysacharides. Their monomer constituents may consist of hexoses, such as D-glucose, 

D-mannose and D-galactose and/or pentoses, such as D-xylose and L-arabinose, in addition to 

acidic residues, such as 4-O-methyl-D-glucuronic acid and D-galacturonic acid, and small 



On the role of xylan in the final bleaching of Eucalyptus globulus kraft pulps                                                                 Loureiro, P.E.G. 

 7

amounts of deoxyhexoses (L-rhamnose and L-fucose)[35,40]. 

 

Figure 1. Structure of cellulose. The repetition unit (cellobiose) is composed of two β-D-

glucopyranose (Glcp) units with the corresponding abbreviated formula below. 

 

As D-xylose is the main sugar residue of hardwood hemicelluloses, they are named xylans. 

Xylans possess a (1→4)-linked β-D-xylopyranosyl backbone usually substituted with sugar 

residues and O-acetyl groups. Hardwood xylans are composed of (1→4)-linked β-D-

xylopyranosyl backbone with the main side group being 4-O-methyl-D-glucuronic acid 

(glucuronic acid). Although there are structural differences in terms of type and proportions of 

side groups, the main component is the O-acetyl-4-O-methylglucurono-β-D-xylan and hence 

hardwood xylan is classified as glucuronoxylan (Fig. 2)[35,41]. 

 

 

 

 

 

 

Figure 2. Principal structure of glucuronoxylan bearing the main units: β-D-xylopyranose (Xylp); 4-

O-methyl-α-D-glucopyranosyluronic acid (GlcpA); Ac is the acetyl group (CH3CO). 

 

The typical proportion of O-acetyl groups at C-2 or C-3 positions of the xylopyranosyl ring is 

of 70% of the xylosyl residues[35,42]. However, these groups are easily cleaved under alkaline 
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conditions[35,43]. As for the (1→2)-linked 4-O-methyl-α-D-glucuronic acid residues the 

average value is of 10% side groups along the xylopyranosyl backbone. The 1,2 linkage 

between the uronic acid side group and the xylose unit is very resistant whereas the xylosidic 

ether linkages are easily hydrolyzed under acidic conditions[35]. 

The heteroxylan of Eucalyptus globulus grown in Portugal reveals a peculiar chemical 

composition (Fig. 3). This hemicellulose is a (2-O-α-D-galactopyranosyl-4-O-methyl-α-D-

glucurono)-D-xylan. The (1→4)-linked β-D-xylopyranosyl backbone is branched by (1→2)-

linked side chains composed of 4-O-methyl-α-D-glucuronic acid, either terminal or 

substituted at O-2 with α-D-galactose. About 30% of the 4-O-methyl-α-D-

glucuronopyranosyl residues exhibit this substitution[44]. Practically 50% of the β-D-

xylopyranosyl residues are acetylated at O-3 (34%), O-2 (15%) or O-2,3 (6%). The 10% β-D-

xylopyranosyl residues with terminal (1→2)-linked 4-O-methyl-α-D-glucuronic acid were 

acetylated at O-3[43].  

In addition, the more intact E. globulus xylan, isolated with Me2SO (DMSO), contained about 

70% of the D-glucopyranosyluronic residues substituted by (1→2)-linked galatopyranosyl 

(Galp) units and about 30% by glucopyranosyl (Glcp) units. It was also revealed a terminal 

structural fragment, in the same proportion as the non-reducing end-groups, composed of 

[→3)-α-L-Rhap-(1→2)-α-D-GalpA-(1→4)-β-D-Xylp][43], similar to previous findings in birch 

xylan[35]. 

Figure 3. Abbreviated formula of the glucuronoxylan from E. globulus wood[43]. 

 

 

 

→4)-[β-D-Xylp]6-(1→4)-[β-D-Xylp]15-(1→3)-[α-LRhap]-(1→2)-[ α-D-GalpA]-(1→4)-[β-D-Xylp] 

2 

Ac Ac 

β-D-Xylp]-(1→4)-[β-D-Xylp]7-(1→4)-[β-D-Xylp]42-(1→4)-[β-D-Xylp]2-(1→4)-[β-D-Xylp]24-(1→4)-[β-D-Xylp]-(1→ 
3     2 

1 
4-O-Me-α-D-GlcpA 

3     2 

1 
4-O-Me-α-D-GlcpA 

1 
Rhamnoarabinogalactan-α-D-Galp 

Ac 

3 

Ac 

3 

2 

1 
4-O-Me-α-D-GlcpA 

1 
Glucan-α-D-Glcp 

2 
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II.3. Lignin-carbohydrate bonds 

 

The other major macromolecular component in wood is lignin. This is a highly heterogeneous 

branched polymer made of phenylpropane units. Besides variations in the content of lignin 

according to the type of wood (Table II), the chemical composition and the main types of 

linkages between their building blocks also depend on the wood species. In general, for 

softwood lignins the main monomer is coniferyl alcohol while hardwood lignins are 

comprised of both coniferyl alcohol and sinapyl alcohol. Aromatic rings having one methoxyl 

group (OCH3) on C-3 position are usually referred as guaiacyl units, whereas syringyl units 

are those having two methoxyl groups at C-3 and C-5 positions (Fig. 4). The linkages 

between the sub-units are carbon-carbon (e.g. 5-5, β-5, β-1 and β-β) and mainly ether (e.g., β-

O-4, α-O-4 and 4-O-5) bonds[35,45-47]. 

 

 

 

 

 

 

Figure 4. Basic building block of lignin. I) R = R’ = H, p-coumaryl alcohol (compression wood); II) R 

= H, R’ = OCH3, coniferyl alcohol (hardwoods and softwoods); III) R = R’ = OCH3, sinapyl alcohol 

(hardwoods). 

 

The existence of lignin-carbohydrate covalent bonds or the so-called lignin-carbohydrate 

complex (LCC), as first referred by Bjorkman[48], has been studied continuously but with 

uncertainties regarding the type, frequency and amount of these bonded aggregates in woods 

and pulps[9,35,49]. The LCCs that have been reported are mainly covalently bonded aggregates 

of lignin and hemicelluloses (glucomannan and xylan). As reviewed by Watanabe[50,51], 

several types of lignin-carbohydrate bonds have been proposed, including: 
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- benzyl ether type between the α-hydroxyl group of a phenylpropane unit of lignin and 

a hydroxyl group of a carbohydrate unit; 

- benzyl ester type between the α-hydroxyl group of a phenylpropane unit of lignin and 

the carboxyl group of a glucuronic acid residue; 

- glycoside type between a alcoholic or phenolic hydroxyl group of a phenylpropane 

unit of lignin and a reducing end group of carbohydrates; 

- acetal type between two hydroxyl groups from carbohydrates and the side-chain α-

carbonyl group of a phenylpropane unit of lignin. 

 

However, it was recently found uronic acid residues attached to the γ-position of the side 

chain, forming γ-ester LCC bonds instead of benzyl ester type[8,52]. Among the lignin-

carbohydrate bonds referred in the literature, those of benzyl ester and ether types (Fig. 5) are 

often considered the most frequent type of linkages in the cell walls, which in turn are closely 

related to the biosynthesis of lignin. However, benzyl esters are labile under the alkaline 

pulping conditions and thus are easily cleaved[9,50,51,53,54]. In contrast, benzyl ether type 

linkages of LCCs with a p-etherified aryl group (non-phenolic units) remain after kraft 

pulping and are considered the key-responsible for the decrease of the degradation rate of 

lignin in the final stage of delignification (Fig. 6)[50].  

 

Figure 5. Proposed structures of lignin-carbohydrate complexes: a) benzyl ester type and b) benzyl 

ether type (adapted[35,55]). 
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Figure 6. Overview of reactions during kraft pulping[56]. 

 

On the other hand, besides natural LCCs there are the regenerated LCCs during the pulping 

process. It was previously proposed the formation of LCC bonds by aldol condensation and 

benzylic acid rearrangement during the conditions of the kraft pulping process[16]. In fact, as 

previously introduced, almost all residual lignin (ca. 90%) in kraft pulp was found to be 

chemically linked to the polysaccharide component and for the most part with 

hemicelluloses[12]. Those remaining alkali-stable linkages in LCCs, also perceived as 

amphipathic substances, are thus considered to affect pulp bleachability and to be the main 

origin of the residual chromophores in kraft pulp[50]. Besides these xylan-lignin derived 

chromophores, there is the additional role of alkali-resistant heteroaromatic-derived 

chromophores in kraft pulp xylan which are formed under the severe pulping conditions[57]. 

In fact, the formation of chromophores during kraft delignification (Fig. 6) is well 

acknowledged seeing that the pulp specific absorption coefficient increases compared to that 

of the original wood sample. Proposed chromophores include a series of lignin derived 

chromophores (arylcoumarones, stilbene quinones, o-quinone structures, metal-catechol 

complexes etc.) and also originated from the polysaccharide component[35,56]. The recognized 

low reactivity of kraft pulp lignin has been associated with its condensed structure and 

crosslinking with polysaccharides[35]. 

During the kraft cooking process, lignin and hemicelluloses may re-precipitate with 

decreasing pH in the last phase of delignification due to alkali depletion (Fig. 6). Moreover, 
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the dissolved polysaccharides, particularly eucalypt glucuronoxylan, may precipitate or be 

adsorbed at the fibre surface and thus affecting the wood pulp yield and pulp quality. It is 

known that the xylan structure affects the extent of adsorption[56]. In the case of E. globulus 

xylan, owing to its peculiar structure and high molecular weight (30-36 kDa), it is retained to 

a higher degree compared to other industrially important wood species[58]. However, it was 

recently found that xylan retention in pulp at the last phase of kraft pulping is mainly 

determined by solid-liquid phase equilibrium affecting xylan diffusion instead of the 

individual effect of the liquor pH[59]. Ensuring a high alkalinity towards the end of the kraft 

cooking is also important from the viewpoint of preventing an increased formation of stable 

lignin–carbohydrate complexes. Hence, it is straightforward to assume that the presence of 

alkali-stable chromophores based on LCCs play an important role in post-bleaching 

efficiency. 

 

II.4. Brightness stability of bleached pulp: relationship with 
hemicelluloses 

 

As depicted in Figure 7, chromophores are artificially created at the very first chemical 

processing stage, the kraft pulping. Only through the use of more selective chemicals in the 

following bleaching process the residual lignin and chromophores can be effectively removed 

and degraded and thus leading to the desired brightness development. However, during post-

bleaching conditions the brightness of the bleached pulp can decline seriously at the drying 

section and during the storage and transportation of pulp bales, which is more important in the 

case of market pulp[60,61]. This phenomenon is brightness reversion and the extent of which 

affects the bleached pulp is governed by several factors, including the intrinsic chemical 

composition of pulp and external variables such as the temperature, moisture and, to a lesser 

degree, the effect of light. To mention that even in a conventional bleaching stage there is the 

possibility of brightness reversion due to uncontrolled depletion of bleaching reagent part way 

in the tower, thus reverting brightening development along the stage[62]. 
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Figure 7. Simplified diagram of a kraft pulp fibreline representing stages where chromophores are 

created (yellowed blocks) and removed (bleaching). 

 

The problem of brightness reversion of bleached chemical pulps has been earlier assigned to 

chromophore formation from almost all aforementioned pulp constituents[63]. Presently, the 

ageing reactions of either residual lignin or carbohydrates of bleached pulps are the main 

debatable causes for the reversion[64]. The pulp yellowing tendency has been also related to 

the amount of hydrolysable substances in bleached pulps arisen upon acidic pre-treatment[65]. 

Conversely, a great part of coloured matter produced during artificial ageing could be 

extracted by methanol[65] or even by water[66]. Such products resulted from the thermal decay 

of polysaccharide chains containing hydrolytically labile partially oxidized structural units 

containing carbonyl and carboxyl groups[65]. 

The enhancement of chromophores formation upon ageing has been previously evidenced by 

the deposition of models of oxidized carbohydrates or their conversion products, such as 5-

hydroxymethyl-2-furaldehyde (HMF) and 2-furaldehyde (furfural), over different cellulosic 

substrates[67-70] Moreover, the effect of transition metals in colour forming ageing reactions 

has been also confirmed[66,68,69,71,72]. 

The brightness reversion of bleached chemical puls is notoriously a rather complex subject 

and some contradictory findings can be related to the artificial ageing conditions applied (Fig. 

8) and to the different origin and process history of bleached pulps. The desirable 

understanding and prediction of the ageing behaviour of materials has excited the interest of 

many research groups for a long-time. As regards bleached pulp brightness reversion a myriad 

of ageing procedures exists but no general method has been adopted by research groups[61,73]. 

In general, wet-thermal ageing is considered a more reliable method for measuring and 

predicting the brightness stability of kraft pulp, since both temperature and moisture have 

influence at the drying machine and shipment and storage of pulp bales where reversion 

mainly occurs (Fig. 7)[61]. In addition, one aspect poorly investigated regards the comparison 

between the bleached pulp behaviour under normal conditions of usage with the conditions of 

the accelerated ageing tests[74]. Because some ageing tests are performed at elevated 
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temperature and moisture contents it may not reflect the phenomena occurring during natural 

ageing[74,75]. 

 

 

 

 

 

 

 

 

Figure 8. Overview of testing methodologies for the measurement of brightness reversion of bleached 

pulps (adapted from[60,74]). 

 

It is commonly accepted that the bleaching history, and especially the final bleaching stages, 

affects seriously the brightness stability of pulps[76,77]. For example, although hexeneuronic 

acids (HexA) content has been shown to correlate with thermal yellowing of bleached 

pulps[78], in many other studies this fact was not confirmed[14,77,79]. In fact, the introduction of 

a final alkaline hydrogen peroxide treatment (P stage) instead of chlorine dioxide stage (D 

stage) in the elemental chlorine free (ECF) bleaching improves the brightness stability of fully 

bleached eucalypt kraft pulps, despite the higher amount of HexA residues in their 

composition[14]. 

In general, one main reason for this longstanding issue is related to difficulties in the 

assessment of residual chromophores due to their low abundance (ppm or even ppb range) in 

fully bleached pulps[26,80]. Bleaching chemistry of the final bleaching stages and its 

relationship with the gain and the stability of brightness are thus insufficiently studied. 

The analysis of chromophores that have emerged during aging is essential for understanding 

the mechanisms of brightness reversion and to find technical solutions to overcome it. The 

analysis of chromophores in bleached pulps after ageing may involve their previous extraction 

and chemical characterization or, alternatively, be assessed in-situ. Just in recent times, the 

residual chromophores from bleached chemical pulps were isolated and characterized thus 

allowing the identification of the important chromophore structures in bleached eucalypt 
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pulps[26]. Particularly, an important structural moiety was identified in several residual 

chromophores, which was the 2-hydroxy-(1,4)benzoquinone. This structure exhibits a 

peculiar reactivity characterized by special stabilization by resonance and tautomerism as 

illustrated in Figure 9. 

 

 

 

 

 

 

 

 

Figure 9. Stabilization of 2,5-dihydroxy-(1,4)benzoquinone. 

 

The good brightening performance of DP final bleaching was explained by a synergistic effect 

of both stages through the removal of the special stabilization of 2-hydroxy-

(1,4)benzoquinone structures. The D stage produces chloro-substituted derivatives without 

delocalized double bonds and thus become vulnerable to the final P stage[26]. 

The origin of 2-hydroxy-(1,4)benzoquinone structures was proposed to be from 

carbohydrates[26], similarly to Theander-type products[70,81]. These chromophores would be 

formed from oxidative degradation and re-condensation of degradation products of 

monosaccharides[26]. Just recently, the finding of the same compounds in lignin-free cotton 

linters confirmed their origin from (oxidized) carbohydrate structures rather than from lignin 

fragments[82]. However, in the case of wood pulps it is still not clear whether their main origin 

is cellulose or hemicelluloses[26,65]. 

In general, the role of hemicelluloses in the brightness reversion of bleached chemical pulps 

has been addressed in a number studies[65,83,84]. These previous efforts are not surprising 

seeing that this component contains the major part of oxidized groups in pulp, namely 

carboxyl groups, such as the native uronic acids and the artificially introduced hexeneuronic 

acids (HexA)[83,85]. In this context, the specific role of hexeneuronic acids on the brightness 

reversion of bleached pulps has been the subject of many studies and a positive correlation 
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between the amount of HexA and the extent of reversion have been obtained[78,86]. However, 

in other studies HexA content did not explain the differences in brightness reversion among 

ECF bleached pulps[14,27,79]. 

Hexeneuronic acid groups are formed during kraft pulping via demethylation of the native 4-

O-methylglucuronic acid groups attached to the wood xylan backbone (Fig. 10). Their 

presence increases chlorine dioxide consumption in ECF bleaching and causes overestimation 

of the residual lignin in pulps by the kappa number test[87,88]. Because pulping temperature 

and alkaline profiles affect the HexA content (formation and degradation reactions), its 

variation in pulps can be significant, as demonstrated in E. globulus kraft pulps[89-91]. 

 

 

 

 

 

 

 

Figure 10. Alkali-catalysed reaction of 4-O-methylglucuronic acid group attached to xylan backbone 

resulting in the formation of 4-deoxy-L-threo-hex-4-enopyranosyluronic acid (HexA) group. 

 

The role of either xylan or glucomannan in the brightness reversion of kraft pulps have been 

studied through the application of enzymatic treatments either with xylanase or mannase, 

respectively[83,84]. It was found a decreased of the content of carboxyl groups in pulps only in 

the case of hardwood pulps and xylanase treatment. The enzymatic removal of xylan had a 

superior effect on brightness stability (wet-thermal ageing) compared to that of glucomannan 

removal. Although the uronic acids were considered to participate in brightness reversion, at 

high brightness values and low uronic acids levels, their role was less obvious[83]. 

Considering the specific role of HexA, the beneficial use of a xylanase post-treatment in 

bleached hardwood kraft pulps on reducing brightness reversion was linked to the removal of 

HexA from the pulps[84]. Although only a part of HexA (about one third) could be accessible 

to the enzymatic degradation, the reduction of brightness reversion was significant. It was also 

suggested that the xylanase treatment on fully bleached pulps mainly removes HexA rather 
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than LCCs or re-precipitated xylan, which in turn could cause steric hindrance[84]. The 

corresponding proposed model for the improving effect of a xylanase treatment on the 

reduction of HexA-induced reversion of pulp is depicted in Figure 11. 

 

 

Figure 11. Proposed model for the improving effect of a xylanase treatment on the brightness stability 

of bleached pulp[84]. 

 

Although a xylanase post-treatment can be an interesting solution for the problem of 

brightness reversion, the cost of the enzyme, the potential yield loss and the eventual negative 

effect on the papermaking potential (due to xylan depletion) are factors to be considered[84]. 

The same type of compromise between costs and pulp quality stands for the adjustment of the 

bleaching sequence through the use of hot stages, powerful ozone bleaching or a final 

hydrogen peroxide stage[60,77]. 

The multi-factorial nature of pulp brightness reversion complicates the understanding of the 

phenomena and in finding solutions to tackle this puzzling problem. A schematic picture was 

proposed by Beyer et al.[71] showing some of the possible reaction pathways leading to 

brightness reversion of chemical pulps under wet-thermal conditions. 

 



On the role of xylan in the final bleaching of Eucalyptus globulus kraft pulps                                                                 Loureiro, P.E.G. 

 18

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Proposed scheme of the reaction pathways in the wet-thermal reversion of TCF pulps[71]. 

 

Owing to the rather significant differences in brightness stability of pulps bleached by final 

chlorine dioxide and hydrogen peroxide which are not well understood, this final bleaching 

couple was selected as a case-study towards an improved understanding of this subject. 

Accordingly, the main goal of this study was focused on a comparative analysis of 

chromophore and chromogen groups in those pulps and, particularly, of the corresponding 

extracted xylans from pulps and bleached model-xylans. This was complemented with the 

analysis of the degradation products from bleached pulps submitted to wet-thermal ageing.  

Partially (DED) and fully bleached (DEDD and DEDP) pulps and xylans were submitted to a 

solid-state analysis by an advanced spectroscopic approach using UV-Resonance Raman 

(UV-RR) and UV-vis Diffuse Reflectance (UV-vis DR) spectroscopy and the ageing 

degradation products were extracted by aqueous ethanol and assessed by advanced mass 

spectrometry. 
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III. EXPERIMENTAL 

 

III.1. Pulp bleaching 

 

A partially D0(EOP)D1 bleached Eucalyptus globulus kraft pulp (87.3 % ISO brightness) was 

supplied by a Portuguese pulp mill. In the laboratory, the D0(EOP)D1 (also referred as DED) 

industrial pulp was bleached with either chlorine dioxide or hydrogen peroxide, yielding the 

DEDD and DEDP fully bleached pulps. Aiming at facilitating the identification of notable 

structural changes in the pulps upon final bleaching, excessive charge of reagents (up to 8.0% 

on a dry pulp basis) was applied (Table III). 

 

Table III. Final bleaching data and pulp properties of the D0(EOP)D1, D0(EOP)D1D2 and D0(EOP)D1P 

bleached pulps[14]. Final D stage: 8.0% ClO2 odp (oven dried pulp based and as active Cl2), 70 ºC, 180 

min; Final P stage: 8.0 % H2O2 odp, 1.1 % NaOH odp, 0.2% DTPA odp, 90 ºC, 60 min. 

 

Pulp 
Bleaching data  and pulp properties 

DED DEDD DEDP 

H2O2 consumption (%) --- --- 92 

NaOH consumption (%) --- --- 79 

ClO2 consumption as active Cl2 (%) --- 94 --- 

Final pH --- 2.5 10.9 

ISO brightness (%) 87.3 91.0 91.5 

Intrinsic viscosity (dm3/kg) 997 881 837 

(%) 3.6 3.9 2.3 Brightness 
reversion PC number 0.67 0.52 0.26 

CO (mmol/kg) 48.2 73.6 60.3 

COOH (meq/kg ) 78.1 77.8 83.3 

HexA(mmol/kg) 3.2 1.9 2.9 
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These pulps were produced in another study[14] and their content of oxidized groups, intrinsic 

viscosity and optical properties are presented in Table III. The bleaching trials were run in 

sealed polyethylene bags immersed in a reciprocal shaking water bath with temperature 

control and using 20 g odp at 10% consistency. After bleaching, chemical consumptions were 

determined and the pulps were thoroughly washed with distilled water and finally conditioned 

in a dark room at 4 ºC. 

 

III.2. Xylan isolation 

 

The air dried pulps (D0(EOP)D1, D0(EOP)D1D2 and D0(EOP)D1P bleached pulps) were 

manually disintegrated and then subjected to a soft mechanical treatment by ball milling 

during 35 min. Sixty mL of DMSO were added to 2 g of ball milled pulp (odp basis) in a 

sealed erlenmeyer flask.  Xylan was dissolved at 60ºC for 12 h under stirring and temperature 

control. Afterwards, the pulp slurry was vacuum filtered and the filtrate was kept at room 

temperature in the dark. The filtered pulp cake was then inserted into the same erlenmeyer 

flask and the procedure was repeated with fresh solvent (more 60 mL of DMSO). The pulp 

cake was then washed with 40 mL of water in three consecutive steps and the filtrates were 

collected into the same flask. The dissolved xylan was precipitated by adding into a mixture 

of 400 ml ethanol and 350 mL methanol under vigorous stirring and acidified with 10 mL of 

formic acid to reach a pH around 3. The suspension was then centrifuged and washed with 

anhydrous methanol in five consecutive times and then dried in vacuum at room temperature. 

The partially xylan-depleted pulp was oven dried at 60 ºC. 

 

III.3. Xylan bleaching 

 

Fifty mg of DED xylan (previously isolated from the DED pulp) were dissolved in distilled 

water at room temperature during 3 days under stirring. The dissolved xylan was then 

bleached with 10% ClO2 (as active chlorine on a dry xylan basis) at 0.5% consistency under 

stirring and temperature control (70 ºC) in a glass screw-top tube during 1 h (solution initial 

pH: 3.6). 

As for hydrogen peroxide bleaching, xylan was dissolved during 1 h at room temperature with 

distilled water previously set to pH 11.9 with the addition of NaOH (xylan addition reduces 
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the solution pH) and under stirring. Hydrogen peroxide was then added: chemical charge of 

10% H2O2 (on a dry xylan basis) at 0.5% consistency and during 1 h at 90ºC. 

After bleaching the produced DED-D and DED-P bleached xylans were again precipitated in 

methanol-ethanol solution, and then consecutively and repeatedly centrifuged and washed 

with methanol and finally dried in vacuum under room temperature - the same purification 

procedure used for the isolated xylans. 

 

III.4. Artificial wet-thermal ageing 

 

The DED, DEDD and DEDP bleached pulps were adjusted to pH 5 at 1% consistency with 

the addition of H2SO4 and then filtered off. Five g (odp) of each wet pulp (30% humidity) 

were then artificially aged under wet-thermal conditions in double sealed polyethylene bags 

immersed in a water bath at 70 ◦C for 5 days in dark. The reversion results were assessed via 

the Post Colour (PC) number as determined by the k/s difference (Kubelka–Munk theory) 

before and after the ageing (k is the specific absorption coefficient and s is the specific 

scattering coefficient): 

 

                                                                                    (Eq. 1) 

 

After ageing the pulps were suspended in an ethanol–water (1:1) solution (liquid to pulp ratio 

of 5) for 12 h and then filtered off. 

 

III.5. Wet-chemistry characterization 

 

III.5.1. UV-vis spectroscopy 

 

Three mg of xylan were dissolved in 15 mL cadoxen under stirring. The solutions were then 

dissolved with 15 mL water and the UV-vis spectra were recorded on a JASCO V-560 

spectrophotometer. The scanning speed was 200 nm/min and the bandwidth was 2 nm and 

using a cadoxen-water solution (1:1) as blank reference. 
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III.5.2. 1H NMR spectroscopy 

 

The xylans were dissolved in D2O and using sodium 3-(trimethylsilyl)-propionate-d4 as 

internal standard. The 1H NMR spectra were recorded at ambient temperature on a Bruker 

AMX 300 spectrometer operating at 300.1 MHz. A relaxation delay of 12 s and r.f. angle of 

90º was used and 1000 scans were collected. 

 

III.5.3. Molecular weight distribution by size exclusion chromatography (SEC) 

 

Three mg of xylan were dissolved in 100 µL of 8% LiCl/N,N-dimethylacetamide (DMAc) 

solution at 105 ºC during 1 h and then further diluted with 600 µL DMAc. The SEC was 

carried out on two PLgel 10 µm MIXED B 300×7.5 mm columns protected by a PLgel 10 µm 

pre-column (Polymer Laboratories, UK) using a PLGPC 110 system (Polymer Laboratories). 

The columns, injector system and the detector (RI) were maintained at 70 °C during the 

analysis. The eluent (0.1 M LiCl in DMAC) was pumped at a flow rate of 0.9 mL/min. The 

analytical columns were calibrated with pullulan standards (Polymer Laboratories). 

 

III.5.4. Electrospray ionisation-mass spectrometry (ESI-MS) 

Electrospray ionisation-mass spectrometry (Micromass Q-TOF2 hybrid tandem mass 

spectrometer) was carried out in a negative mode after extract dilution (10%) in a mixture 

(1:1) of water and acidic methanol (0.1% formic acid). The samples were introduced at a flow 

rate of 10 µL/min into the electrospray source. In MS and MS/MS experiments TOF 

resolution was set to approximately 9000. The cone voltage was set to 30 V, and capillary 

voltage was maintained at 3 kV. Source temperature was at 80 ºC and desolvation temperature 

at 150 ºC. Tandem mass spectra were obtained using Ar as the collision gas and the collision 

energy was set between 25 and 45 V. The data was processed using MassLynx software 

(version 4.0). 
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III.6. Solid-state characterization 

 

Non invasive techniques, such as UV-Resonance Raman (UV-RR) spectroscopy, allow an in-

situ assessment of residual chromophores in bleached pulps present in trace amounts. Rather 

particular chromophore structures can be assessed by Raman scattering while applying an 

appropriate UV excitation wavelength fulfilling the resonance conditions[14,15,64,92,93]. On the 

other hand, unlike to the narrow spectral envelope used for the ISO brightness measurement at 

457 nm, UV-vis Diffuse Reflectance (UV-vis DR) spectroscopy provides complementary 

information on chromophores across the entire UV-vis spectral window[94]. 

 

 

 

 

III.6.1. UV-vis Diffuse Reflectance (UV-vis DR) spectroscopy 

 

Diffuse reflectance spectra were recorded at room temperature on a JASCO V-560 

spectrophotometer equipped with a JASCO ISV-469 integrating sphere and using BaSO4 

standard as background reference. The pulp samples were pressed into 100 mg pellets. The 

studied range was 200-800 nm with a scanning speed of 200 nm/min and a bandwidth of 5 

mm. The reflectance (R as the reflectance of the opaque sample) spectra were converted into 

k/s spectra using known Kubelka-Munk equation (Eq. 2): 

  

                                       (Eq. 2) 

  

A constant scattering coefficient among the studied samples was assumed for a comparative 

quantitative analysis of the changes in chromophores among the studied pulps. 

As shown in Figure 13, there is excellent agreement between reflectance measurements at 457 

nm using the integrating sphere and the ISO brightness measurement following ISO standards 
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(ISO 2470). Handsheets for optical properties determination were prepared using the standard 

procedure described in ISO 3688. 

 

 

 

 

 

 

 

 

 

Figure 13. Diffuse reflectance at 457 nm using integrating sphere vs. ISO brightness of several pre-

bleached pulps across D0(EOP)D1E2D2 and OQ(PO)DP bleaching sequences before and after wet-

thermal ageing according to TAPPI T 260 (100 ºC and 100 % R.H.). 

 

III.6.2. UV-Resonance Raman (UV-RR) spectroscopy 

 

Micro-Raman spectra were recorded using a Jobin Yvon (Horiba) LabRam HR 800 micro-

Raman spectrometer @ 325nm (He-Cd UV laser, Kimmon IK Series) under backscattering 

configuration using a 40X NUV objective. Before the analyses, 100 mg of each pulp sample 

was pressed into 11 mm diameter pellets. 

To avoid sample photodegradation, a neutral density filter (ND 0.6) was used for the spectral 

acquisition of the xylan samples. For the pulp samples 30 s of acquisition time was enough to 

avoid photodegradation. The spectral range was 750-1800 cm-1 in order to cover 

chromophores and carbohydrate related bands and for each sample at least 3 points were 

analysed in order to obtain an average spectra.  

The spectral data was subjected to background correction (linear luminescence - fluorescence) 

and normalized to the 1375 cm-1 band. For the quantitative analysis, curve fitting was made 

using Lorentzian peak functions without smoothing the normalized spectra. An example of  

spectral data processing is given in Figure 14 for the case of a photodegraded cellulose sample 
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exhibiting an increased intensity in the 1600 cm-1 band related to photodegradation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Example of spectral data processing (micro-Raman spectrum of a photodegraded Avicell® 

PH-101cellulose sample)[14]. 
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IV. RESULTS & DISCUSSION 

 

IV.1. Effect of xylan partial extraction on pulp chromophores 

 

In Figure 15 it is observed that the partial removal of xylan after treatment of the bleached 

pulps with Me2SO produced a removal of chromophores absorbing below ca. 300 nm for 

DED and DEDD pulps. In the case of the DEDP bleached pulp, the removal of chromophores, 

observed as change in k/s values, is less significant. Therefore, this means that during the 

alkaline hydrogen peroxide bleaching, xylan chromophores were removed from the fibre 

surface more extensively. Either residual HexA moieties in xylan or degraded residual lignin 

associated to xylan may explain these spectral features. 

Figure 15. UV-vis Diffuse Reflectance spectra of a) D0(EOP)D1, b) D0(EOP)D1D2 and c) 

D0(EOP)D1P bleached pulps before (black line) and after partial extraction (green line) of xylan . 
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The analysis by UV-Resonance Raman spectroscopy (Fig. 16) reveals that the partial removal 

of xylan from the bleached pulps is reflected in a decrease of the band intensity at ca. 1600 

cm-1. The UV-RR signal at ca. 1595 cm−1 includes polyconjugated carbonyl structures (O=C–

(C=C)n−), including aromatic structures, though polyunsaturated moieties also contribute at 

ca. 1630 cm-1[15]. On the one hand, this selective assessment reveals that the xylan is an 

important source of polyconjugated carbonyl moieties in bleached pulps. On the other hand, 

confirms that the alkaline hydrogen peroxide treatment can reach a higher removal extent of 

xylan-related chromophores compared to the acidic chlorine dioxide treatment, which exhibits 

the highest decrease in the band height at ca. 1600 cm-1 after partial xylan removal. Thus 

xylan-related chromophores are retained to a higher degree after the final D stage which is 

consistent with the most pronounced decrease in the k/s values of the UV-Vis DR spectrum 

(Fig. 15). 

Figure 16. UV-vis Diffuse Reflectance spectra of a) D0(EOP)D1, b) D0(EOP)D1D2 and c) 

D0(EOP)D1P bleached pulps before (black line) and after partial extraction (green line) of xylan. 
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As for the increased intensity at 1093-1120 cm-1, assigned to stretching vibration modes of 

COC/OCO groups, including carbonyl groups in hydrated and hemiacetal/hemiketal 

configuration, it can be explained by a greater cellulose exposition after the xylan removal. 

Hence, the highest increase is observed for the less exposed DED cellulose. 

 

IV.2. Characterization of extracted and bleached xylans 

 

IV.2.1. Wet-chemistry characterization 

 

In Figure 17, The 1H NMR spectra of the xylans isolated from DED, DEDD and DEDP 

bleached pulps did not show significant signals at 6.0-8.0 ppm assigned to aromatic protons in 

bound residual lignin. At the same time the notable absorption at 280 nm in UV spectra of all 

xylans dissolved in cadoxen is registered (Fig. 18). The absorption at this region is abnormal 

and indicates the presence of aromatic structures or other compounds with highly conjugated 

double bonds in xylans isolated from bleached pulps. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. 1H NMR spectra of the xylans isolated from D0(EOP)D1, D0(EOP)D1D2 and D0(EOP)D1P 

bleached pulps. 
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Figure 18. UV-vis spectra of the xylans isolated from D0(EOP)D1, D0(EOP)D1D2 and D0(EOP)D1P 

bleached pulps dissolved in cadoxen solution. 

 

In addition, it is observed in Figure 18 that a new type of conjugated oxidized group, different 

than HexA, appeared at ca. 240-260 nm in the UV-vis spectra of xylans dissolved in cadoxen. 

In fact, the 1H-NMR spectra from Figure 17 show that DED and DEDP xylans exhibit notable 

signals at 8.37 and 8.44 ppm, respectively, assigned to unknown unsaturated structures. 

Similar features were observed with HexA enriched Birch xylan treated with ozone and 

chlorine dioxide[95]. 

The SEC profiles of the xylans isolated from the DED, DEDD and DEDP bleached pulps are 

presented in Figure 19 and for the DED model-xylan either bleached with chlorine dioxide 

(DED-D) or hydrogen peroxide (DED-P) are shown in Figure 20. The average molecular 

weights of xylans and their polydespersities are presented in Table IV. 

The harsh final bleaching treatment induced more xylan degradation with hydrogen peroxide 

(non stabilized conditions) than with chlorine dioxide, considering the molecular weight 

values of xylans extracted from the pulps and of the DED model-xylan treated with D and P 

stages. In general, the tendencies in degradation of xylan in DED pulp and xylan isolated from 

DED pulp as a model sample were similar after the treatments with D and P stages. Some 

more degradation of model xylan was observed than that obtained with the retained xylan in 

DED pulp after the P stage (bleached DED-P vs. DEDP xylans; Fig. 19 and 20) which may be 

explained by better accessibility of the former. Additionally, the oxidized xylan in pulp may 

suffer some structural association with cellulose, analogously as oxidized cellulose suffering 
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crosslinking and becoming difficult to dissolve in typical cellulose solvents[96]. 

 

 

 

 

 

 

 

 

 

 

Figure 19. SEC curves (offset) of the xylans isolated from D0(EOP)D1, D0(EOP)D1D2 and 

D0(EOP)D1P bleached pulps. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. SEC curves (offset) of the D0(EOP)D1 xylan before and after bleaching with chlorine 

dioxide (D0(EOP)D1-D) and hydrogen peroxide (D0(EOP)D1-P). 
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Table IV. Weight average molecular weight (Mw), number average molecular weight (Mn) and 

polydispersity index (PDI) values of the isolated and bleached xylans. 

 

 

 

 

 

 

 

 
* Polydispersity index: Mw/Mn 

 

IV.2.2. Solid-state characterization 

 

In previous studies using UV-RR spectroscopy coupled to UV-vis DR spectroscopy, xylan 

was highlighted as an important source of chromophores in bleached eucalypt pulps[14,15]. 

Particular selectivity in the detection and identification of chromophores in pulps is achieved 

using 325 nm laser beam excitation[14,15] rather than under deep-UV excitation for the 

detection of aromatic lignin[92,97,98] and HexA moieties[93]. This band (325 nm) at the diffuse 

reflectance (DR) spectra corresponds to the absorption of polyunsaturated chromophore 

structures[15]. 

The UV-RR spectra of the xylan isolated from the DED bleached pulp and post-treated with 

chlorine dioxide and hydrogen peroxide are presented in Figure 21. It is observed that alkaline 

hydrogen peroxide treatment has reduced the amount of polyconjugated chromophore 

structures detected at ca. 1600 cm-1 in the UV-RR spectra. As for the acidic chlorine dioxide 

treatment, the amount of chromophores did not change. This is in agreement with the previous 

results of UV-Vis DR and UV-RR spectroscopy from pulps before and after partial extraction 

of xylan (Fig. 15 and 16). Once again it is confirmed the role of xylan as an important source 

of chromophores by the high intensity at ca. 1600 cm−1 in the UV-RR spectra. In addition, it 

can be concluded that the nature of chromophores in xylan is different in relation to the 

particular final bleaching stage, as observed in Table V. 

Xylan ID 
Mw  

(KDa) 

Mn 

(KDa) 
PD * 

isolated DED 14.8 9.2 1.62 

isolated DEDD 13.2 8.6 1.54 

isolated DEDP 12.9 7.9 1.64 

bleached DED-D 14.4 8.7 1.65 

bleached DED-P 12.0 6.9 1.73 
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The characteristic signals of chromophores belonging to the DED xylan bleached with 

alkaline hydrogen peroxide are down-shifted in wavenumbers compared to the original xylan. 

Conversely, the signals from chromophores of DED xylan bleached with chlorine dioxide are 

high-shifted in wavenumbers. The signal at ca. 1627 cm-1 (Table V) can be assigned to a more 

extended chromophore system such as conjugated units bearing aromatic, ethylenic and 

carboxylic acid groups (e.g., 3,5-dimethoxy-4-hydroxycinnamic acid)[15] which is present in 

DED-D xylan. This is in close agreement with a previous study[14] about extracted xylans 

from fully bleached pulps where the final chlorine dioxide treatment increased the structural 

conjugation of xylan. However, in that same study this fact was more noticeable from the 

increased intensity of the Raman signal at ca. 1600 cm-1 (increased amount of polyconjugated 

structures) in the xylan isolated from the DEDD bleached pulp[14]. This difference in 

chromophores between xylan oxidized in bulk and in solution can be explained, at least 

partially, by poor dissolution of oxidized xylan fragments extracted from bulk in solution 

during bleaching. On the other hand, previous studies indicated that the influence of charge 

transfer complexes on the intensity of the signal at ca. 1600 cm-1 can be minimized by 

appropriate pH control, which was the case of these xylan samples precipitated to the same 

pH[14]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. UV-RR spectra of the D0(EOP)D1 xylan before and after bleaching with chlorine dioxide 

(D0(EOP)D1 – D ) and hydrogen peroxide (D0(EOP)D1 – P). 

 

1600 1400 1200 1000 800
0.0

0.5

1.0

1.5

2.0

DED-P xylan

DED-P xylan

DED-D xylan

N
or

m
al

iz
ed

 in
te

ns
ity

 (a
rb

itr
. u

ni
ts

)

Raman shift (cm-1)

 DED xylan
 Bleached DED-D xylan
 Bleached DED-P xylan



On the role of xylan in the final bleaching of Eucalyptus globulus kraft pulps                                                                 Loureiro, P.E.G. 

 33

 

Table V. Characteristic Raman signals of xylan-related chromophores: model xylan (DED) before and 

after bleaching with chlorine dioxide (DED-D) and hydrogen peroxide (DED-P). 

Chromophores signals (cm-1) 
Xylan ID 

Maximum intensity Band deconvolution 

DED 1601 1623  1600 1573 

DED-D 1604 1627 1605 1578 

DED-P 1594 1621 1591 1540 

 

In contrast to the treatment with chlorine dioxide, the removal of chromophores from xylan 

bleached with hydrogen peroxide is easier. However, this xylan showed an increased 

oxidation degree as revealed by increased bands at 1120 and 1093 cm-1 in the UV-RR spectra 

(Fig. 21) co-responsible to O-C-O vibrations in hydrated carbonyls[14]. This fact is reflected 

by more extended xylan degradation (lower molecular weights) in final P than in D stage 

(Table IV). 

In terms of furan-type chromogen structures detectable at ca. 1480 cm-1 in the UV-RR 

spectra[15] (Fig. 21) this signal was observed in the Raman spectra of the three xylan samples. 

After final D bleaching stage the intensity of this signal is most noticeable. This fact may 

explain why xylan chromophores are more difficult to remove upon chlorine dioxide 

bleaching and why DEDD bleached pulp possesses high brightness reversion, due to 

conversion of chromogens into chromophore structures. 

 

IV.3. Brightness reversion of pulps bleached by ClO2 and H2O2 

 

The industrial pre-bleached DED eucalypt kraft pulp with 87.3 % ISO brightness was 

bleached either with chlorine dioxide (DEDD pulp) or with hydrogen peroxide (DEDP pulp) 

under laboratory conditions reaching 91 ± 0.5 % ISO brightness. The analysis of brightness 

reversion of the two fully bleached pulps clearly indicated their distinct behaviour upon 

hydrothermal ageing at 70 ºC, 30% pulp humidity for 5 days (Table VI). Although the degree 

of brightness reversion with these ageing conditions was much higher when compared to the 

conditions previously studied according to the TAPPI T 280 procedure (Table III; 100 ºC, 
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100% R.H., 1 h)[14], the differences between the DEDD and DEDP pulps are maintained. The 

final chlorine dioxide stage (DEDD) revealed almost twice the brightness reversion when 

compared to that obtained after a final hydrogen peroxide stage (DEDP). 

 

Table VI. Effect of the final D and P bleaching stages applied to the industrial D0(EOP)D1 pulp on the 

ageing behaviour of the fully bleached pulps. 

Brightness  
reversion* Pulp 

ISO 
brightness 

(%) 

HexA 
(mmol/kg) 

PC number 

Loss of intrinsic 
viscosity after ageing 

and extraction 
(dm3/ Kg) 

DED 87.3 3.2 4.3 - 241 

DEDD 91.0 1.9 6.5 - 254 

DEDP 91.5 2.9 3.7 - 68 

* measured at 457 nm of the corresponding k/s spectra before and after ageing. 

 

As the brightness reversion did not correlate with the HexA content in pulps (Table VI), the 

contribution of other chromogen structures to the formation of chromophores in pulps during 

ageing may be anticipated. The different nature and the amount of oxidised structures induced 

by final bleaching with ClO2 and H2O2 in pulps would be expected to predetermine their 

different response to ageing. Accordingly, a discrimination of the origin and amount of 

degradation structures have been carried out by the assessment of ageing products released 

from aged pulps extractable with ethanol-water (1:1, v/v). 

 

IV.4. Analysis of ageing products by mass spectrometry 

 

The ESI-MS spectra in Figure 22 revealed a mixture of dissolved oligomers with molecular 

mass until 1500 Da in the extracts from aged DED and DEDD pulps and till 700 Da in the 

corresponding DEDP extract. The lowest abundance and diversity of oligomeric products 

were observed in extract from aged DEDP pulp. 
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Figure 22. Negative mode ESI-MS spectra of the ethanol-water extracts from the aged D0(EOP)D1, 

D0(EOP)D1D2 and D0(EOP)D1P bleached pulps (* - denotes contaminants). 

 

In terms of general patterns, the ESI-MS spectra of DED and DEDD extracts were similar to 

that reported for the eucalypt lignin, whereas the ESI-MS spectrum of DEDP extract was 

closer to the oligomers of carbohydrate origin[99].  This may be explained, at least partially, by 

a more effective leaching of lignin-derived oligomeric compounds under the alkaline 

bleaching conditions of the final P stage than during the weakly acidic final D bleaching 

stage, thus explaining the lower abundance of oligomeric compounds in the extract from the 

aged DEDP bleached pulp. In this context, the removal of partially degraded thermally labile 

lignin-xylan complex during the alkaline P stage is predictable, thus explaining the much 

lower k/s decrease at ca. 225-325 nm in UV-vis DR spectra of the DEDP pulp than that of the 
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DEDD pulp (Fig. 15) and likewise in the UV-RR spectra of xylans (Fig. 21). The extremely 

important contribution of xylan-lignin complex to the amount of chromogen/chromophore 

structures is thus confirmed[14]. This explains, to some extent, the significant diminishing of 

brightness reversion of eucalypt kraft pulp which was alkali-extracted (E-stage) before the 

final D stage (DEDED vs. DEDD)[15]. 

Unfortunately, the scarce knowledge on the structure of xylan-lignin complex did not allow 

some clear identification of corresponding oligomers in extracts from aged pulps. However, 

the signals at m/z 325, 375, 401, 875, and 1065 (among many others) in the negative mode 

ESI-MS spectra of DED and DEDD pulp extracts were previously found in kraft lignin-

carbohydrate complex isolated from black liquor after eucalypt wood kraft pulping[100]. The 

aforementioned signals were not detected in ESI-MS spectrum of the extract from DEDP pulp 

thus corroborating with the proposition about a more extensive removal of lignin-reach 

fraction from pulp during the final P stage.   

Reliable assignments of several xylo-oligosaccharides (XOS) in extracts by ESI tandem mass-

spectrometry (MS/MS) were possible based on previously reported database[95,101]. Thus, the 

series of acidic XOS were identified: 4-methoxy glucuronic acid (MeGlcA, m/z 207.0), 

xylobiuronic acid (Xyl-MeGlcA, m/z 339.2) and its homologous series including Xyl3-

MeGlcA (m/z 603.2), Xyl4-MeGlcA (m/z 735.3), Xyl5-MeGlcA (m/z 867.4), and Xyl6-

MeGlcA (m/z 999.4). These findings are coherent with the known eucalypt heteroxylan 

structure that is basically O-acetyl-(4-O-methylglucurono)xylan[43]. The signals at m/z 111.1 

and at m/z 175.0 were assigned to 2-furoic and HexA acids, respectively[95]. The ESI-MS 

spectrum of the DEDP extract also exhibited abundant ions at m/z 216.9, 336.9 and 456.9. 

These ions were difficult to fragment in MS/MS experiments even at a very high collision 

energies (> 40 V), but showed the losses of 120 Da from molecular ion, typical for the cross-

ring fragmentation of pyranosyl ring[101]. These signals were assigned to the carbohydrate-

derived adducts with iron [M+Fe-H]-. Thus the presence of transition metals in extracts 

complicated significantly the spectra patterns. 

Regarding the eventual contribution of oxidised carbohydrates to the polyunsaturated 

chromophore structures in aged pulps, different furan derivatives are produced under 

carbohydrate hydrothermal decay[57,70,81,102]. Furans form linear or cyclic furan-derived 

oligomers via aldol condensation reaction and are typical chromophores[65,71,103]. Hence the 

furan-derivatives should also contribute to oligomeric products detected in ESI-MS spectra. 

Among furan derivatives the furoic acid was the only unambiguously identified. 

Reductic acid (2,3-dihydroxy-2-cyclopenten-1-one) is a recognised chromophore formed from 
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uronic moieties and keto-glycosides under acidic treatment[81] and has been also identified as 

an ageing product of bleached pulps[65,78]. Reductic acid was not clearly identified by GC-MS 

among degradation products in extract as TMS derivative (not shown) but its presence is 

suspected as an iron complex (m/z 168.9) and was detected in DEDP extract (Fig. 22). 

Reductic acid participates in condensation reactions with furan derivatives[65] and, being 

complexed with iron, is a strong chromophore. Iron is also well known to be strongly bound 

to pulp in view of their persistence in pulps during bleaching and chelation stages[104].  

Low molecular weight degradation products formed during pulp ageing may suffer 

condensation reactions leading to the formation of aromatic structures[26,70,81]. 

Dihydroxyacetophenone[81] and hydroxybenzoquinone-type structures[26] were detected 

among ageing products of bleached pulps and may be considered as strong chromophores. 

However, during this work these aromatic monomer structures were not clearly detected by 

mass spectrometry. 

 

IV.5. Assessment of acidic and alkaline treatments on the ageing 
behaviour of bleached pulp 

 

In order to verify whether a mild acidic or alkaline pH treatment can affect the brightness 

reversion tendency, the same DEDD and DEDP bleached pulps were submitted to either 

alkaline or acidic conditions, respectively. At 0.5 % consistency and room temperature 

overnight (ca. 12h), the DEDD bleached pulp was submitted to pH 11 while the DEDP 

bleached pulp was submitted to pH 4. The results on brightness and wet-thermal ageing 

(TAPPI T 260 procedure at 100 ºC and 100 % R.H.) are presented in Table VII. 

It is observed in Table VII that the pH to which the pulp was exposed before making the 

handsheets for the measurement of ISO brightness and ageing testing can have a significant 

role on the optical properties of the bleached pulp. This is mainly the case of the DEDD 

bleached pulp which exhibited more significant changes in terms of ISO brightness and 

reversion results than the DEDP bleached pulp. It is thus verified that even with a mild 

alkaline treatment some chromogen structures are extracted from the DEDD pulp which 

benefits the brightness stability under wet-thermal conditions. The reduction in brightness 

after treatment at pH 11 of the DEDD pulp can be explained by the so-called effect of alkali-

darkening[105,106]. As for the DEDP bleached pulp, the treatment at pH 4.0 led to only slightly 

worst results. It can be concluded that the final pH of the last bleaching stage is itself an 
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important parameter controlling the extent of brightness reversion. In other words, the 

property of brightness reversion is dependent on the degree of retention in pulp of the 

aforementioned xylan-lignin degraded structures that are leachable under alkaline conditions. 

 

Table VII. Effect of a polishing alkaline or acidic treatment at room temperature in brightness 

reversion, respectively applied to the D0(EOP)D1D2 and D0(EOP)D1P bleached pulps. 

Brightness reversion 
Pulp 

ISO brightness 
(%) Δ (%) PC number 

DEDD (pH 2.5) 90.9 3.8 0.51 

DEDD* (pH 11) 90.4 (-0.5) 2.9 (-0.9) 0.38 (-0.13) 

DEDP (pH 10.2) 91.8 2.2  0.24 

DEDP* (pH 4.0) 91.6 (-0.2) 2.4 (+0.2) 0.27 (+0.03) 
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V. CONCLUSIONS 

 

Final bleaching with chlorine dioxide produces unsaturated moieties in xylan, absorbing at 

240-260 nm, different from HexA residues and from those present in the original xylan 

isolated from a DED bleached pulp. This was also noticeable by employing UV-Resonance 

Raman spectroscopy from the increased amounts of conjugated structures in model-xylan 

bleached with chlorine dioxide. Compared to chlorine dioxide, the final alkaline hydrogen 

peroxide stage is more efficient in terms of the removal of xylan-related chromophores, 

though it is more detrimental regarding the xylan integrity. 

UV-visible Diffuse Reflectance and UV-Resonance Raman spectroscopy coupled to mass 

spectrometry analysis of ageing products revealed that the significant difference in wet 

thermal brightness reversion between DED pulps bleached by a final hydrogen peroxide 

(DEDP) or chlorine dioxide (DEDD) stage is the result of a distinct amount of partially 

degraded polysaccharides and of xylan-lignin complex involved in the hydrothermal decay. 

The content of partially oxidized structures was significantly higher in the DEDD than in the 

DEDP bleached pulp thus pre-determining the worst brightness stability of the former. 

However, the amount of oxidized structures in pulp is not exclusively the result of a particular 

bleaching reagent (degree of induced oxidative degradation) but rather the consequence of 

retention of these degraded structures in pulp under specific bleaching conditions. Under the 

alkaline conditions of the final peroxide bleaching stage the major part of degraded oxidised 

compounds are leached from the pulp thus diminishing their contribution to the formation of 

chromophores during subsequent ageing. The ageing products of carbohydrate origin arisen 

during pulp ageing are strong contributors to pulp yellowing, especially while complexing 

with transition metals (primarily ferrous salts).  In this context the profile of metal ions in 

pulps is another important factor to consider. 
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