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Resumo

Esta tese concentra-se em reconhecimento de padrões, com particular ênfase para o

con�ito de escolha entre capacidade de generalização e custo computacional, a �m

de fornecer suporte para aplicações em tempo real. Neste contexto são apresentadas

contribuições metodológicas e analíticas para a abordagem de dois tipos de datasets :

balanceados e desbalanceados. Um dataset é denominado balanceado quando há um

número aproximadamente igual de observações entre as classes, enquanto datasets

que têm números desiguais de observações entre as classes são denominados desbal-

anceados, tal como ocorre no caso de detecção de objetos baseada em imagem. Para

datasets balanceados é adoptado o perceptrão multicamada (MLP) como classi�cador,

uma vez que tal modelo é um aproximador universal, ou seja MLPs podem aprox-

imar qualquer conjunto de dados. Portanto, ao invés de propor novos modelos de

classi�cadores, esta tese concentra-se no desenvolvimento e análise de novos métodos

de treinamento para MLP, de forma a melhorar a sua capacidade de generalização

através do estudo de quatro abordagens diferentes: maximização da margem de clas-

si�cação, redundância, regularização, e transdução. A idéia é explorar novos métodos

de treino para MLP com vista a obter classi�cadores não-lineares mais rápidos que

o usual SVM com kernel não-linear, mas com capacidade de generalização similar.

Devido à sua função de decisão, o SVM com kernel não-linear exige um esforço com-

putacional elevado quando o número de vetores de suporte é grande. No contexto

dos datasets desbalanceados, adotou-se classi�cadores em cascata, já que tal modelo

pode ser visto como uma árvore de decisão degenerativa que realiza rejeições em cas-

cata, mantendo o tempo de processamento adequado para aplicações em tempo real.

Tendo em conta que conjuntos de classi�cadores são susceptíveis a ter alta dimensão

VC, que pode levar ao over-�tting dos dados de treino, foram deduzidos limites para

a capacidade de generalização dos classi�cadores em cascata, a �m de suportar a

aplicação do princípio da minimização do risco estrutural (SRM). Esta tese também

apresenta contribuições na seleção de características e dados de treinamento, devido

à forte in�uência que o pre-processamento dos dados tem sobre o reconhecimento

de padrões. Os métodos propostos nesta tese foram validados em vários datasets do
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banco de dados da UCI. Alguns resultados experimentais já podem ser consultados

em três revistas da ISI, outros foram submetidos a duas revistas e ainda estão em

processo de revisão. No entanto, o estudo de caso desta tese é limitado à detecção e

classi�cação de peões.



Abstract

This thesis focuses on pattern recognition, with particular emphasis on the trade o�

between generalization capability and computational cost, in order to provide support

for on-the-�y applications. Within this context, two types of datasets are analyzed:

balanced and unbalanced. A dataset is categorized as balanced when there are ap-

proximately equal numbers of observations in the classes, while unbalanced datasets

have unequal numbers of observations in the classes, such as occurs in case of image-

based object detection. For balanced datasets it is adopted the multilayer perceptron

(MLP) as classi�er, since such model is a universal approximator, i.e. MLPs can �t

any dataset. Therefore, rather than proposing new classi�er models, this thesis fo-

cuses on developing and analysing new training methods for MLP, in order to improve

its generalization capability by exploiting four di�erent approaches: maximization of

the classi�cation margin, redundancy, regularization, and transduction. The idea is

to exploit new training methods for MLP aiming at an nonlinear classi�er faster than

the usual SVM with nonlinear kernel, but with similar generalization capability. Note

that, due to its decision function, the SVM with nonlinear kernel requires a high com-

putational e�ort when the number of support vectors is big. For unbalanced datasets

it is adopted the cascade classi�er scheme, since such model can be seen as a de-

generate decision tree that performs sequential rejection, keeping the processing time

suitable for on-the-�y applications. Taking into account that classi�er ensembles are

likely to have high VC dimension, which may lead to over-�tting the training data,

it were derived generalization bounds for cascade classi�ers, in order to support the

application of structural risk minimization (SRM) principle. This thesis also presents

contributions on feature and data selection, due to the strong in�uence that data

pre-processing has on pattern recognition. The methods proposed in this thesis were

validated through experiments on several UCI benchmark datasets. Some experi-

mental results can be found in three ISI journals, others has been already submitted

to two ISI journals, and are under review. However, the case study of this thesis is

limited to pedestrian detection and classi�cation.
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Chapter 1

Introdution

IN the �eld of pattern recognition there are four main problems to work on: a suit-

able composition for the training dataset, feature extraction and/or selection, the

classi�er model, and the training method. This thesis addresses these four items, with

particular emphasis on the last problem. Namely, this work proposes new algorithms

for feature and data selection, analyzes cascade classi�er ensembles, and proposes new

training methods for Multilayer Perceptrons (MLP) and cascade classi�ers, starting

from the mathematical foundations to real engineering applications, passing through

methodological contributions.

1.1 Thesis scope

Pattern recognition can be categorized according to the classi�cation model or learn-

ing procedure. Regarding the classi�cation model, there are parametric and non-

parametric approaches, while the learning procedure can be supervised, unsupervised,

or semi-supervised. This thesis deals with non-parametric methods trained through

supervised and semi-supervised methods. Parametric pattern recognition requires the

knowledge of the probability density functions or the assumption of a priori distribu-

tion, whose parameters must be estimated before the application of some inference

technique, such as Bayesian decision theory. On the other hand, non-parametric pat-

tern recognition makes no assumptions regarding the distributions of the features.

However, the bayesian framework is not applicable in the case of non-parametric

1



2 CHAPTER 1. INTRODUTION

methods which demands analysis tools based on statistical learning theory [Vap98],

in order to place bounds on the performance of the studied methods. Therefore, this

thesis applies the framework of statistical learning theory to support the efectiveness

of the proposed methods, which are also empirically evaluated.

1.2 Objectives and approach

The aim of this thesis is to o�er a fast and accurate nonlinear classi�cation for both

balanced and unbalanced datasets. A dataset is categorized as balanced when there

are approximately equal numbers of observations in the classes, while unbalanced

datasets have unequal numbers of observations for each class. Image-based object

detectors, such as pedestrian detection, have to face strongly unbalanced datasets,

since each image frame is scanned by a slide window detector at di�erent scales and

positions, generating several negative bounding-boxes per each pedestrian cut-out.

For such kind of unbalanced problem, it was addopted the cascade classi�er scheme,

since such model can be seen as a degenerate decision tree which performs a sequential

rejection, by combining classi�ers in a cascade structure, keeping the processing time

suitable for on-the-�y applications.

Taking into account that classi�er ensembles, such as cascade classi�ers, are likely

to have high VC-dimension, that may lead to over-�tting the training data, their

generalization bounds are derived, in order to support the application of structural

risk minimization (SRM) principle.

In case of balanced datasets, it is adopted MLP as classi�er, since such model

is one of the most known universal approximators [HSW90], i.e. MLPs can �t any

dataset. Therefore, rather than propose new classi�er models, this thesis focuses on

the development and analysis of four new training methods for MLP, in such a way to

improve its generalization capability. The idea is to o�er nonlinear classi�ers faster

than the usual nonlinear support vector machine (SVM), with similar generalization

capability. Notice that, due to its recursive decision function, the SVM with nonlinear

kernel demands high computational e�ort when the number of support vectors is high.

Excepting a training method based on the well investigated maximal-margin prin-

ciple [Vap98], all the MLP training methods proposed in this thesis are theoretically
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investigated based on the statistical learning theory or by associating with the max-

imal margin principle.

Regarding the empirical analysis, the cascade classi�er was evaluated on pedestrian

detection, while the new training methods for MLP were evaluated on pedestrian

classi�cation.

1.3 Contributions

One of the problems that occur during supervised training is called over�tting. The

error on the training dataset is driven to a small value, however the error is large when

new data are presented to the classi�er. It occurs because the classi�er memorizes the

training examples, i.e., the classi�er does not learn to generalize to new situations. To

deal with this kind of problem this thesis proposes and analyses new methods for im-

proving generalization capability whitout decreasing the classi�cation speed. Namely,

this thesis includes theoretical, methodological, and empirical contributions in this

�eld, published or submitted for publication in ISI journals, which are summarized

in Table 1.1. The case study of this thesis is limited to pedestrian classi�cation and

detection; however the methods proposed in this thesis were validated through exper-

iments on several UCI benchmark datasets. Some experimental results can be found

in three ISI journals, others has been already submitted to two ISI journals, and are

under review. In this thesis two datasets were applied: the Daimler Pedestrian Clas-

si�cation benchmark [MG06] and a Dataset1 previouly collected in the scope of the

research project Perception Methods for an Intelligent Transportation System using

On-Board Sensing [LPNR11].

1.4 Thesis outline

This thesis is organized as follows. Chapter 3 approaches data pre-processing, by

introducing new algorithms for feature and data selection. Chapter 4 presents new

training algorithms for MLP training that are also mathematically analyzed. Chapter

5 introduces a mathematical analysis on cascade classi�er, based on the statistical

1http://webmail.isr.uc.pt/ cpremebida/dataset



4 CHAPTER 1. INTRODUTION

Table 1.1: Contributions

Contribution Scope Chapter Publications

New feature selector based on genetic algo-
rithm and information theory;

methodological 3.1 [LNA+09], [LN10]

Data selector to compose balanced datasets; methodological 3.2 -

MMGDX, a new maximum-margin training
method;

methodological 4.1 [LN10]

New training method based on redundancy; methodological 4.2 -

Proof that redundancy improves the general-
ization capability of multilayer perceptrons;

theoretical 4.2 -

Analysis on a new regularization technique,
named eigenvalue decay;

theoretical 4.3 [LN11]

New training method based on regularization
and genetic algorithm;

methodological 4.3 [LN11]

New transductive training method for neural
networks;

methodological 4.4 [LN11]

Cascade classi�er scheme based on the princi-
ple of minimization of structural risk;

methodological 5.3 [LPNR11]

Bounds on the expected true positive rate,
false positive rate, and BER;

theoretical 5.4 [LPNR11]

Bounds on the expected risk of cascade classi-
�ers;

theoretical 5.4 [LPNR11]

WERM, a new training method specially de-
veloped for cascade classi�ers;

methodological 5.6 -

Experimental study on a new LIDAR/vision-
based pedestrian detection dataset;

empirical 6.3 [LPNR11]

Three computational applications (protected
by the BSD license) available to the scienti�c
community through the MATLAB Central.

comput. applic. 3.1, 4.1, 6.1 -

learning framework, in such a way to o�er a fast and e�ective approach for highly

unbalanced datasets. In Chapter 6 the methods and algorithms proposed here are

validated through applications in pedestrian detection and classi�cation. Finally,

Chapter 7 concludes this thesis, giving directions for future works.



Chapter 2

State of the art

TH is thesis proposes new training methods for two usual non-linear models: MLP

and cascade of linear classi�ers, which were chosen due to their suitability to

on-the-�y applications, since such models can perform nonlinear classi�cation under

low computational e�ort. Therefore, the idea is to improve the generalization capacity

of such models through the training methods.

MLP is one of the most known universal approximators, as stated by Hornik et al.

[HSW90], who shown that a MLP with one sigmoidal hidden layer and linear output

layer can �t any dataset, because the sigmoidal hidden units of MLP compose a basis

of linearly independent soft functions. Despite the simplicity of MLP, experiments

with real-world benchmark datasets [LN10], [HCH+04], [Sam04], give evidence that an

adequate training can lead the MLP to achieve performance which is better than (or

at least similar) as other state-of-the-art approaches, such as Bayesian Neural Network

[NZ06], novel algorithms based on Kernel Fisher Discriminant analysis [MRW+99],

or Support Vector Machines (SVM) with non-linear kernels [Liu04].

This thesis exploits four di�erent approaches in improving the generalization capa-

bility of MLP: by classi�cation-margin maximization, by redundancy, by regulariza-

tion, and by transduction; however, there are other approaches in improving the gen-

eralization of NN, such as selective sampling [CAL94] or noise injection [Mat92]. Ac-

tualy, generalization is one of the most widely studied problems in machine learning.

A mathematical formalism for the generalization problem was proposed in [Val84];

however, the study of distribution-free learnability, more speci�cally, non-parametric

5



6 CHAPTER 2. STATE OF THE ART

methods for pattern recognition, started earlier with the pioneer work [VC71], which

studied the uniform convergence of relative frequencies of events to their probabilities

as function of the hypothesis space complexity and the cardinality of the training

dataset. Then the work [BEHW89] introduced the VC-dimension, a simple combina-

torial parameter of the class of concepts to be learned that measures the capacity of

the set of hypothesis, in order to deal with in�nite hypothesis spaces. Such parameter

enable to place bounds on the expected classi�cation risk, even in case of in�nite hy-

pothesis spaces [Vap98]. The interest in statistical learning theory led to an increasing

e�ort in view to establish bounds on the VC-dimension of non-discrete concept classes

in the context of multilayer perceptrons. In this sence, it is important to highlight

the work [BH89], which investigated the optimal neural architecture in terms of gen-

eralization capability, by studying the order of growth of the VC-dimension of the

neural network hypothesis space. This research line also yielded the work [KM95],

which places polynomial bounds on the complexity of the neural network hypothesis

space. In [CAL94] the authors propose to improve generalization by selective sam-

pling, in order to di�erentiate a region of uncertainty from the bulk of the domain.

A new interesting research line on the generalization capability of neural networks

was introduced in [YNW+07], which proposed a local generalization error model that

gives upper bounds on the expected classi�cation error of unlabeled examples within

a neighborhood of the training examples, di�erently from the usual approaches that

provide generalization bounds intended for the entire input space. The proposed error

model is based on a stochastic sensitivity measure, which is an interesting alternative

to the most known approaches on statistical learning, such as the bias-variance trade-

o� and the VC-style analysis, which is based on the classi�er-space complexity that

is di�cult to estimate, excepting in the case of linear models. However, Yeung et al.

[YNW+07] do not present a comparative study between the proposed generalization

bounds and the usual ones, which could justify some disadvantages of the proposed

analysis, such as the restrictive assumption that the unlabeled examples lie within

the neighborhood of the training examples, as well as the assumption of uniform dis-

tribution for the input pertubations. In summary, that study is still an open �eld,

in the sense that it requires a proof that the proposed bounds are tighter than the

usual ones. Moreover, the comparison of the proposed analysis with the analysis on

the transductive learning introduced in [Vap82] and developed in [Vap98] reveals an

advantage of the last approach, since it does not assumes that the unlabeled examples

lie within the neighborhood of the training examples.
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During almost three decades statistical learning theory was a purely theoretical

analysis of the problem of function estimation from a given collection of data [Vap99].

However, in 1992 statistical learning theory became not only a tool for the theoretical

analysis but also a tool for creating practical algorithms for non-parametric pattern

recognition. Namely, the maximum margin principle, which underlies the SVM, was

introduced in [BGV92], where it was proposed a generic training algorithm that maxi-

mizes the margin between the training patterns and the decision boundary. The works

[DGC07] and [Abe05] extended the maximum margin principle to NN training. In

[DGC07] a decision tree based on linear programming is applied to maximize the mar-

gins, while in [Abe05] an MLP is trained layer by layer based on the CARVE algorithm

[YD98]. Motivated by the success of large margin methods in supervised learning,

some authors extended large margin methods to unsupervised learning [ZBS07]. In

this thesis the maximum margin principle is applied to a new training method that

jointly optimizes both MLP layers in a single process, back-propagating the gradi-

ent of an maximum-margin based objective function, through the output and hidden

layers, in order to create a hidden-layer space that enables a higher margin for the

output-layer separating hyperplane. The proposed maximum margin based objective

function aims to stretch out the margin to its limit by applying an objective function

based on Lp-norm, in order to take into account the idea of support vectors, however,

overcoming the complexity involved in solving a constrained optimization problem,

usual in SVM training.

As regards redundancy, studies on animal physiology have shown evidences of neu-

rophysiological nervous redundancy in biological systems [KDMC83], such as the

monkey visual cortex, see [SL86]. This physiological evidence has been complemented

by some empirical studies on redundancy in arti�cial neural networks. This thesis

complements some founding works in redundancy applied to NN, such as [IP90], by

presenting a theoretical analysis, in the statistical learning framework, that shows

the positive e�ects of redundancy on the upper-bound on the expected classi�cation

risk. Moreover, it is proposed a redundant arti�cial neural network that can be un-

derstood as an ensemble of small neural networks, which are trained independently

and aggregated into an usual MLP with two hidden layers.

Another commonly used technique in improving the generalization is regularization,

since it prevents the learning algorithm from over�tting the training data. There
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are three usual regularization techniques for NN: early stopping [TG99], curvature-

driven smoothing [Bis96], and weight decay [Jin04]. In the early stopping criterion

the available data are divided into three subsets. The �rst subset is the training

dataset, which is used for updating the network weights and biases. The second

subset is used as a validation dataset and the third subset is used to evaluate the �nal

accuracy. The error on the validation dataset is monitored during the training process.

After some number of iterations the NN begins to over�t the data and the error on

the validation dataset begins to rise. When the validation error increases during a

speci�ed number of iterations, the algorithm stops the training section and applies the

weights and biases at the minimum of the validation error to the NN. In [AMM+97]

it was proposed an asymptotic theory for neural network overtraining, in order to

study the gain in the generalization error when performing early stopping and cross-

validation stopping. This work also provides a theoretical framework to estimate the

optimal split between training and validation examples. Curvature-driven smoothing

includes smoothness requirements on the cost function of learning algorithms, which

depend on the derivatives of the network mapping. Weight decay is implemented by

including additional terms in the cost function of learning algorithms, which penalize

overly high values of weights and biases, in order to control the classi�er complexity,

which forces the NN response to be smoother and less likely to over�t. The work

[Bar98] gave theoretical support for the usual weight decay training method based on

statistical learning theory. This thesis introduces a new regularization scheme, named

eigenvalue decay. This approach aims at improving the classi�cation margin, as will

be showed. This regularization scheme led to the development of a new training

method for NN based on the same principles of SVM.

The work [Vap82] has introduced the transductive setting in the context of statisti-

cal learning. Transductive learning is based on the idea that prior knowledge carried

by the unlabeled testing dataset can be learned by an algorithm, potentially leading

to superior performance. Transduction is a concept closely related to semi-supervised

learning. However, di�erently from inductive inference, no general decision rule is

inferred. In the case of transduction the inferred decision rule aims only at the labels

of the unlabeled testing data. This thesis introduces a transductive NN, which is

similar to the transductive SVM [Vap98], in the sense that our method also exploits

the geometric structure in the feature vectors of the test examples, by taking into ac-

count the principle of low density separation, which states that the decision boundary
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should lie in a low-density region of the feature space.

In [GBD92] the generalization problem is formulated in the framework of the bias-

variance dilemma, which decomposes the expected classi�cation error into a bias term

and a variance term. Assuming an in�nite supply of independent training datasets,

the bias term measures how closely the learning-algorithm average guess matches the

target (averaged over all training datasets). The variance term measures how much

the learning-algorithm guess bounces-around for the di�erent training datasets, that

is, it measures how consistent the classi�er decisions are. Such analysis shows that

a classi�er space with a high capacity, i.e. high VC-dimension, is likely to have low

bias, but large variance. On the other hand, a classi�er space with a low capacity

usualy have a low variance but a large bias. The works [KD95] and [KW96] extended

the analysis introduced in [GBD92] in such a way to deal with the usual zero-one loss

functions. The introduction of the the bias-variance dilemma supported the idea that

by composing an ensemble of multiple classi�ers it is possible to reduce the variance

term without a�ecting the bias term, some works, such as [Kun02] and [IYM03], have

provided empirical evidence that an ensemble of classi�ers is often better than single

classi�ers. One of the most known classi�er enssemble is the AdaBoost [FS95], a

method derived from the multiplicative weight-update technique proposed in [LW94].

Both works, [LW94] and [FS95], have provided theoretical analyzes for their algo-

rithms; however, a more comprehensive analysis on classi�er ensembles is presented

in [SFBL98], which introduces bounds on the expected risk of classi�er compositions.

However, the main theorem of [SFBL98], Theorem 2, is based on a restrictive as-

sumption that was introduced only in the proof, when it should be included in the

theorem statement. Namely, the number of component-classi�ers is assumed as func-

tion of the component-classi�er space VC-dimension1. This thesis also deals with

classi�er ensembles; however, it focuses only on the cascade classi�er, because such

classi�er ensemble is especially important for machine vision applications, such as ob-

ject detection, since it is possible to combine successively more complex classi�ers in

a cascade structure, focusing the attention on promising regions of the image, saving

processing time. Apart of the usual approaches, we highlight the seminal work of Vi-

ola and Jones [VJ01], where they have proposed a boosted cascade classi�er scheme,

which can be viewed as an object speci�c focus-of-attention mechanism that discards

1See the last line of the proof of Theorem 2 of [SFBL98], where it is stated: �setting N =
[(4/θ) ln (m/d)] completes the proof�. Notice that, in the context of that work, d denotes the VC-
dimension of each component-classi�er space and N denotes the number of component-classi�ers.
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regions which are unlikely to contain the objects of interest. Another interesting con-

tribution was reported in [BP02], that proposed a cascade classi�er scheme based on

a speci�c formulation of the expectation-maximization (EM) algorithm, which allows

the unsupervised estimation of both the class-conditional density functions and the

prior joint probabilities of classes. The proposed technique also allows to include in

the estimation process additional prior information.

Similarly to other classi�er ensembles, cascades of linear classi�ers are likely to

have high VC dimension, which may lead to over-�tting the training data, according

to the principles introduced in [Vap98] that established a trade-o� between the em-

pirical risk and the expected risk, which can be optimized by controling the classi�er

space complexity, i.e. its VC dimension. Actually, [Vap98] states that the larger

the VC dimension, the larger the probability of success at �tting the training data;

however, the larger the probability that the expected risk will deviate from the em-

pirical risk. Therefore, in order to improve the generalization capacity of cascades of

linear classi�ers, this thesis proposes the SRM-cascade, which is based on the struc-

tural risk minimization (SRM) principle [Vap98], an inductive principle for model

selection that balances the model complexity, i.e. the VC dimension of the ensemble

model, against its success at �tting the training data, which corresponds to �nding

the simplest model in terms of VC dimension and best in terms of empirical error.

Our preliminary works on SRM-cascade [LPNA11] applied the SRM principle inde-

pendently on each cascade stage. Such method can be improved by estimating the

strutural risk of the entire ensemble. However, despite the methodological [GB00]

and experimental [SK07] contributions given in previous works, there is still a lack of

theoretical analysis on the generalization capability of cascade classi�ers; di�erently

from the bagging strategy, which was theoretically analyzed by previous works such

as [SFBL98] or [KWD03]. Therefore, this thesis contributes with a theoretical anal-

ysis, based on statistical learning theory, providing bounds on the false positive rate

(FP) and true positive rate (TP), in such a way as to compose the upper-bound on

the expected classi�cation risk for the entire cascade ensemble.

This thesis focuses speci�cally on cascade of linear SVMs, despite the kernel map-

ping technique, which was introduced by [CV95] in order to construct nonlinear SVMs

by mapping input vectors to a high-dimensional feature space, where a linear deci-

sion surface is constructed. However, in [Bur98] the authors show how SVM with

polynomial and Gaussian radial basis function kernels can have very large, and even
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in�nite, VC dimension, which can a�ect the generalization performance. Moreover,

in the context of some on-the-�y applications, the use of SVM with nonlinear kernels

may lead to a prohibitive computational cost, since its decision function requires a

recursive calculation that demands a large amount of time when the number of sup-

port vectors is big. Moreover, linear classi�ers o�er the possibility of controling their

VC dimension, enabling the application of SRM principle. Taking into account that

the stages of cascade classi�ers must be adjusted so that the TP is close to one, it is

also proposed a new training method for linear classi�ers that enables the control of

the relationship between TP and FP during the training, in order to avoid the usual

threshold adjustment, which often over-penalizes the classi�er accuracy.

As a case study, the proposed training methods are applied to pedestrian clas-

si�cation [MG06] and pedestrian detection [LPNR11], aiming at improving the de-

tection rate in outdoor environment. Autonomous ground vehicles navigating in

environments with static and moving objects around should be provided with per-

ception systems capable to detect and classify the objects of surroundings, in order

to avoid collisions and to mitigate situations of risk during the navigation. In this

context, protection systems for pedestrian safety is an emerging area of Advanced

Driver Assistance Systems (ADAS) which achieved a notable development in the last

decade. It is a still growing research �eld, evidenced by recent projects, challenges

[DAR03],[ELR06], and recent publications [DWSP09],[EG09]. For instance, in the

last years, two signi�cant surveys in pedestrian detection and protection systems,

in the context of Intelligent Vehicles (IV) and Intelligent Transportation Systems

(ITS), were published in [GT07],[GLSG10]. In our experiments, the detection system

receives information from both LIDAR and monocular camera, in order to bring re-

dundancy and complementary characteristics that can improve the system reliability

and its level of inference. This redundant approach is a typical solution adopted by

IV-ITS research community, as can be seen in [DFR07], where geometrical informa-

tion from the LIDAR data is used, not only to classify the objects as vehicles or

non-vehicles, but also to provide range information that is usefull to deal with the

problem of object scale variations in the images. In [HCR+07] regions of interest,

detected by the LIDAR, are subdivided in �ve areas, where di�erent trained SVMs

are employed to classify vehicles. In [MSRD06] an Adaboost, using Haar-like fea-

tures, also classi�es regions of interest detected by the a single-layer LIDAR, while in
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[SSO06] the authors apply a convolutional neural network to classify regions of inter-

est provided by a multi-layer LIDAR. The work [SS08] applies HOG/SVM based on

monocular color images and multi-layer LIDAR data to detect pedestrians, while in

[FC07] a context-based approach is used to di�erentiate between static and dynamic

on-road objects, which are detected by the LIDAR and distinguished based on their

dynamic behavior and some geometrical-features constraints.



Chapter 3

Data pre-processing

THIS chapter introduces two data pre-processing algorithms. The �rst algorithm

is a feature selector, while the second one is a data selector.

Feature selection is a usual pre-processing procedure which aims at speeding up

learning process, improving model interpretability, while decreasing the classi�er com-

plexity (in Vapnik sense), in order to enhance the generalization capability, which

depends on the interrelationship between the sample size, the number of features,

and the classi�er space complexity. The interrelationship between the sample size

and the classi�er space complexity was modeled in [Vap98]. On the other hand, the

interrelationship between the number of features and the classi�er space complexity

depends on the addopted classi�er model, e.g. in case of linear classi�ers, such as the

classi�ers that compose the cascade ensemble applied in this thesis, the VC dimension

is directly proportional to the number of features [BEHW89], while in case of MLPs,

the VC dimension grows with the square of the number of weights [KS97]; therefore,

since the number of weights grows linearly with the number of inputs, i.e. the num-

ber of features, it is possible to state that the MLP space complexity grows with the

square of the number of features, which may lead the MLP to over�t the training

data. Moreover, it has been often observed in practice that an overly high number of

features may degrade the performance of a classi�er if the number of training sam-

ples that are used to design the classi�er is small relative to the number of features.

Feature selection algorithms can be dichotomized into two categories: feature ranking

and subset selection. Feature ranking ranks the features by a metric and selects the

features which achieve a threshold. Subset selection optimizes an objective function

13
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aiming at �nding the optimal subset of features. The algorithm proposed in this

chapter falls on the second category, being a development of the well known feature

ranking algorithm proposed in [PLD05]. The feature selector proposed in this chapter

optimizes an objective function based on information theory by means of evolutionary

computation.

3.1 Feature selector by GA

The algorithm presented in this section was proposed in our previous work [LN10]

and is available for download at Matlabcentral1.

The selection of a suitable set of features can be achieved by maximizing the

mutual information I(y;x1, . . . , xN) between the target y (i.e. the class label) and

the set of features {xi, . . . , xN} which compose the input vector X. However, this

procedure demands a high computational e�ort, due to the required calculation of

joint-entropy values, such as H(xi, . . . , xN , y), which requires the estimation of the

joint-distribution p(xi, . . . , xN , y). In order to decrease such computational cost, the

present work applies a classi�er selection criterion based on the principle of minimal-

redundancy-maximal-relevance (mRMR) [PLD05], which maximizes the mutual infor-

mation I(y;x1, . . . , xN) indirectly2, by jointly minimizing a measure of redundancy,

which is averaged on all the features, and maximizing a measure of discriminant

power, which is also averaged on all the features, as explained below.

Let V be the relevance of a set of N features, i.e., the mean value of the mutual

information I(xi; y) between each feature and the label,

V =
1

N

N∑
i=1

I(xi; y) (3.1)

and P be the redundancy, i.e., the mean value of the mutual information I(xi;xj)

among features,

1http://www.mathworks.com/matlabcentral/�leexchange/29553-feature-selector-based-on-
genetic-algorithms-and-information-theory

2in [PLD05] there is a proof of the equivalence between directly maximizing the mutual informa-
tion and the the mRMR approach.
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P =
1

N2

N∑
i=1

N∑
j=1

I(xi;xj) (3.2)

Therefore, the application of the mRMR principle corresponds to searching a set of

features to satisfy the maximization problem

max
xi1 ...xiN

Φ (3.3)

subject to:

ik 6= iz for k 6= z (3.4)

where Φ = V − P . The constraint (3.4) was introduced in order to avoid repeated

features. This constraint is cheked in steps 22-25 of Algorithm 1. The extreme value

of (3.3) is attained when the features xi are totally correlated to the target output y

and mutually exclusive between them.

From (3.1) and (3.2) it is possible to conclude that mRMR only requires low-cost

calculations, i.e., values of mutual information that are calculated over couples of

variables. However, the combinatorial optimization problem described by (3.3) and

(3.4) has

0.5
M !

(M −N)!
(3.5)

possible solutions, where M is the number of available features. In order to decrease

the computational e�ort necessary to checking all the possibilities, the work [PLD05]

proposed an incremental search method that achieves a near-optimal solution. For

instance, due to the incremental approach, the method proposed in [PLD05] always

selects the feature which has the largest relevance, i.e. I (y;x), independently from

its redundancy, i.e. I (x;x1, . . . , xN). To be more speci�c, the most relevant feature is

always the �rst feature which is selected. However, depending on the redundancy, it

is possible the existence of an optimal set of features that does not contain the most

relevant feature. Therefore, as a development of [PLD05], we propose to perform the

combinatorial optimization of I (y;x1, . . . , xN) by means of Genetic Algorithm (GA),

similarly to the indirect approach described in our previous works [LNA+09], [LN10].

However, the crossover operation was modi�ed in order to deal with combinatorial

optimization problems, namely, each gene of a new individual is taken from one of

the parents in a random process. The Algorithm 1 details the feature selection which

requires statistical information supplied by Algorithm 2. The proposed crossover
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operation is detailed in steps 10-27 of Algorithm 1, while the mRMR �tness function

is represented by steps 5 and 6.

3.2 Training data selector

The interest in training data selection increased with the applications of SVM with

non-linear kernels in real world problems, since such algorithms are based on a mathe-

matical programming problem that requires a large computational e�ort to be solved,

even for moderately sized datasets. Moreover, due to its decision function, the SVM

with nonlinear kernel also requires a high computational e�ort to classify new data,

when trained on large datasets, since the number of support vectors is related to the

number of training examples.

Regarding the previous works on data selection, it is important to highlight [BdPB00]

which employed k-means clustering to select particularly salient data points from the

training dataset. In [AI01] the Mahalanobis distance is applied to estimate boundary

points. The work [LM01] introduced the reduced SVM setting, which chooses a sub-

set of training examples by using random sampling, while [SC03] proposed a method

that selects patterns near the decision boundary based on neighborhood properties.

Image-based object detection using multi-scale sliding window, such as the pedes-

trian detection algorithm applied in our experiments, may generate thousands of

negative cropped images for each positive occurence. Therefore, to avoid bias prob-

lems and unfeasible computational requirements in such large unbalanced datasets,

we propose an algorithm which composes balanced training datasets from unbalanced

ones. Namely, the proposed algorithm selects the hard negative examples, i.e. nega-

tive samples which are likely to be near the decision boundary, in order to preserve

the information which is relevant to compute the classi�er separating hypersurface.

The idea is to provide support to the training of neural networks, not only in case of

image-based object detection, but also in case of multi-class classi�cation, where the

training dataset is usually highly unbalanced, which leads training methods based on

mean squared error (MSE) to totally ignoring the minority class.

The data resampling algorithm proposed in this section selects negative training

data based on the con�dence measure suggested in [AGHR05], which is the number
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of negative training examples that are contained in the largest hypersphere centered

at a negative example without covering a positive example, i.e. considering a sphere

around a negative example, x(neg,i), that is as large as possible without covering

a positive example, then the Con�dence Measure of x(neg,i), here named CMi, is

calculated by counting the number of negative examples that fall inside this sphere.

The smaller the value CMi the more likely x(neg,i) will be close to a decision boundary.

Therefore, the process of sample selection, i.e. negative data selection, is solved by

ranking the negative samples through an exhaustive search in their surrounding, as

summarized in Algorithm 3, which has time complexity O (nn (nn + np)).
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Algorithm 1 feature selector by GA

Input: I (xn;xm) and I (xn; ytrain), n = (1, . . . ,M) and m = (1, . . . ,M): statistical data from
Algorithm 2;
N : desired number of features for the ensemble;
a: selective pressure;
maxgener: maximum number of generations;
Npop: population size

Output: {i}: set of indexes of the selected features
1: generate a set with Npop chromosomes {Cr} for the initial population, each chromosome is a

vector Cr = [i1 . . . iN ] containing N features indexes i randomly generated without repeated
elements;

2: for generation = 1 : maxgener do
3: evaluating the population:
4: for ind = 1 : Npop do
5: calculate V and P for the individual Crind, according to (3.1) and (3.2), by means of

the previously calculated mutual information values for all the elements (i.e. indexes) of
chromosome Crind;

6: Φind ← (V − P ): storing the �tness of each individual ind;
7: end for
8: rank the individuals according to their �tness Φind;
9: store the genes of the best individual in {i};
10: performing the crossover:
11: k ← 0;
12: for ind = 1 : Npop do
13: k ← k + 1;
14: randomly selecting the indexes of parents by using the asymmetric distribution

proposed in [LNA+09]:
15: ϑj , j = 1, 2 ← random number ∈ [0, 1] with uniform distribution;

16: parentj , j = 1, 2← round
(
Npop

eaϑj−1
ea−1

)
[LNA+09];

17: create the set {iabs}, containing all the indexes which are absentees in both parents;
18: assembling the chromosome Crson

k :
19: for n = 1 : N do
20: randomly select a parent (i.e. between parent1 and parent2) to give the nth gene for the

kth individual of the new generation:
21: Crson

(k,n) ← Cr(parent1or2,n);

22: considering the constraint (3.4):
23: if there is duplicity of indexes in Crson

k then
24: pick up and remove from {iabs} a new index for Crson

(k,n);
25: end if
26: end for
27: end for
28: end for
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Algorithm 2 Mutual information calculation

Input: {x1, . . . , xM}, {ytrain}: dataset containing vectors with all the available features and their
respective target outputs, regarding the training dataset

Output: I (xn;xm) and I (xn; ytrain), n = (1, . . .M) and m = (1, . . . ,M): statistical data
1: calculate entropy H (xn) of each feature n (details about the distribution generation in [PLD05]);
2: calculate entropy H (ytrain) of the target output;
3: calculate the joint entropy H (xn, xm) of each feature pair (n,m);
4: calculate the joint entropy H (xn, ytrain) of each feature n and the target output;
5: calculate the mutual information I (xn; ytrain) = H (xn) + H (ytrain) − H (xn, ytrain) between

each feature n and the target output;
6: calculate the mutual information I (xn;xm) = H (xn) +H (xm)−H (xn, xm) between elements

of each feature pair (n,m);

Algorithm 3 training data selector

Input: S =
{
x(neg,1), . . . , x(neg,nn)

}
∪
{
x(pos,1), . . . , x(pos,np)

}
: set of negative and positive training

examples, respectively;

Output:
{
x

′

(neg,1), . . . , x
′

(neg,np)

}
: set composed by np negative examples, selected from{

x(neg,1), . . . , x(neg,nn)

}
;

1: calculating CM of all the nn negative examples:
2: for i = 1 : nn do
3: searching the closest positive example, to determine the radius, dmin, of the hy-

persphere centered at x(neg,i):
4: dmin ←∞: setting the largest possible value for dmin;
5: for j = 1 : np do
6: d←

∥∥x(neg,i) − x(pos,j)

∥∥;
7: if d < dmin then
8: dmin ← d;
9: end if
10: end for
11: counting the number of negative examples that fall inside the hypersphere whose

radius is dmin:
12: CMi = 0;
13: for k = 1 : nn do
14: d←

∥∥x(neg,i) − x(neg,k)

∥∥;
15: if d < dmin then
16: CMi = CMi + 1;
17: end if
18: end for
19: end for
20: sort the examples according to their value of CM , from the smaller to the larger, composing the

rearanged set
{
x

′

(neg,1), . . . , x
′

(neg,nn)

}
;

21: pick up the �rst np examples of
{
x

′

(neg,1), . . . , x
′

(neg,nn)

}
.
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Chapter 4

Improving the generalization capacity

of MLP

SIMILARLY to other more complex neural models, such as Simultaneous Recur-

rent Neural networks (SRN) [IKW08], an MLP with one sigmoidal hidden layer

and linear output layer is a universal approximator, because the sigmoidal hidden

units of MLP compose a basis of linearly independent soft functions [HSW90]. Tak-

ing into account the simplicity of MLP, this thesis adopts this model for pattern

recognition applications.

Regarding the classi�cation speed, the MLP is faster than nonlinear SVM. Notice

that, in the context of some on-the-�y applications, the use of SVM with nonlinear

kernels may lead to a prohibitive computational cost, since its decision function re-

quires a recursive calculation that demands a large amount of time when the number

of support vectors is high. Therefore, this chapter proposes new training methods

for MLP, in order to o�er a fast nonlinear classi�cation with enhanced generaliza-

tion capacity. Particularly, four di�erent approaches are exploited to improve the

generalization capacity of MLPs:

• maximization of the classi�cation-margin;

• redundancy;

• regularization;

• transduction.
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4.1 Improving generalization by maximizing the clas-

si�cation margin

This chapter introduces a novel maximum-margin training method for MLP, based

on the gradient descent with adaptive learning rate algorithm (GDX) and so named

Maximum-Margin GDX (MMGDX)1, which directly increases the margin of the MLP

output-layer hyperplane. The proposed method jointly optimizes both MLP layers

in a single process, back-propagating the gradient of an MM-based objective func-

tion, through the output and hidden layers, in order to create a hidden-layer space

that enables a higher margin for the output-layer hyperplane, avoiding the testing of

many arbitrary kernels, as occurs in case of SVM training. The proposed MM-based

objective function aims to stretch out the margin to its limit. It is also proposed an

objective function based on Lp-norm in order to take into account the idea of sup-

port vectors, however, overcoming the complexity involved in solving a constrained

optimization problem, usual in SVM training. The training method proposed in this

chapter has time and space complexities O(N) while usual SVM training methods

have time complexity O(N3) and space complexity O(N2), where N is the training-

dataset size.

MM-based training algorithms for neural networks (NN) are often inspired on SVM-

based training algorithms, such as [DGC07] and [Abe05]. In [DGC07] a decision tree

based on linear programming is applied to maximize the margins, while in [Abe05] an

MLP is trained layer by layer based on the CARVE algorithm [YD98]. Motivated by

the success of large margin methods in supervised learning, some authors extended

large margin methods to unsupervised learning [ZBS07]. Besides early stopping crite-

rion, our work also explores MM-based training algorithms. However, di�erent from

the SVM approach, in this section the concept of margin has an indirect relation with

support vectors. Actually in this section, margin is de�ned as the orthogonal distance

between each pattern and the output-layer hyperplane. Inspired on SVM-based train-

ing algorithms, a simple method that applies Lp-norm in order to take into account

the idea of support vectors is proposed.

1MMGDX was made available for download at Matlabcentral,
http://www.mathworks.com/matlabcentral/�leexchange/28749-mmgdx-a-maximum-margin-
training-method-for-neural-networks
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Table 4.1: Some variations of back-propagation algorithm

Method Comments

Levenberg Marquardt (LM)
[Mor78]

This second order method is the fastest usual
training algorithm for networks of moderate size.
Despite of the large amount of memory needed, it
has a memory reduction feature for use when the
training set is large;

Levenberg Marquardt
with Variable Projection
(LMVP) [KL08]

The variable projection method reduces the di-
mension of the learning problem, and then the
LM is applied to optimize the NN model by using
a Jacobian matrix computed by a modi�ed back-
propagation algorithm;

Powell Beale conjugate gra-
dient (CGB) [Pow77]

Less storage requirements than LM, also presents
faster convergence;

BFGS quasi-Newton (BFG) Requires storage of approximate Hessian matrix
and has more computation in each iteration than
the conjugate gradient algorithm, usually con-
verges in fewer iterations;

Adaptive learning rate
(GDX) [DB98]

Faster training than basic gradient descent, how-
ever, it can only be used in batch mode training;

Bayesian regularization
(BR) [Wil95]

Bayesian regularization minimizes a linear combi-
nation of squared errors and weights in order to
obtain a network with good generalization quali-
ties.

4.1.1 Gradient descent with adaptive learning rate

Besides some global search methods that have been applied in MLP training, such as

genetic algorithms [Jin04], simulated annealing [SDJ99], or hybrid methods [LGL06],

there are many variations of the back-propagation algorithm due to di�erent ap-

proaches of the gradient descent algorithm, such as the methods which are commented

in Table 4.1. The MATLAB Neural Network Toolbox o�ers some training algorithms,

among them we highlight the Gradient Descent with momentum term and adaptive

learning rate (GDX) [DB98], due to its application in this work.

The usual objective function of GDX is the MSE of

ri = (yi − ŷi) (4.1)
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where yi is the target output, ŷi is the output estimated by the MLP for the input

xi belonging to the training dataset, and ri is the error. Back-propagation is used

to calculate the derivatives of the MSE functional with respect to the weight and

bias. Each variable is adjusted according to the gradient descent with momentum

term. For each epoch, if MSE decreases towards the goal, then the learning rate is

increased by a given factor η. If MSE increases by more than a given threshold γ, the

learning rate is decreased by a given factor µ, and the updating of synaptic weights

that increased the MSE is discarded.

4.1.2 Maximum-Margin GDX

This sub-section introduces the MMGDX, a new MM-based training algorithm where

both MLP layers are jointly optimized in a single process. In fact, an MM-based

objective function J is back-propagated through the output and hidden layers in such

a way as to create a hidden output especially oriented towards obtaining a larger

margin for the output-layer separating-hyperplane. This methodology is di�erent

from other previous approaches, such as [Abe05] where the MLP is trained layer by

layer. The unconstrained optimization problem

min
W1,b1,W2

J (4.2)

is applied to a MLP with one sigmoidal hidden layer and linear output layer, according

to the following model:

yh = ϕ (W1 · x+ b1)

ŷ = W T
2 yh+ b2

(4.3)

where yh is the output vector of the hidden layer, Wl (l=1, 2) is the synaptic weights

matrix of the layer l, b1 is the bias vector of layer 1, x is the input vector, and ϕ (·) is
the sigmoid function. In MMGDX, the output layer of model (4.3) has bias b2 = 0,

because after the training section the ROC curve information is taken into account

to adjust the classi�er threshold, which acts as bias. The separating-hyperplane of

model (4.3) is given by

W T
2 yh

limit = 0 (4.4)
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where yhlimit is a point belonging to the hyperplane. Considering yhproj as the pro-

jection of point yh on the separating-hyperplane (4.4) and d as the distance between

the separating-hyperplane (4.4) and yh, yields:

yh− yhproj = d
W2

‖W2‖
(4.5)

Multiplying both sides of (4.5) by W T
2 yields:

W T
2 yh−W T

2 yh
proj = d

W T
2 W2

‖W2‖
(4.6)

As yhproj belongs to hyperplane (4.4), substituting (4.4) and the second line of (4.3)

in (4.6), yields:

d =
ŷ

‖W2‖
(4.7)

As the sigmoid activation function bounds the hidden neuron output in the interval

[0, 1], the norm of vector yh has its maximum value equal to
√
n, where n is the number

of hidden neurons. Taking into account that the norm of W2

‖W2‖ is one, we can deduce

that

−
√
n ≤ W T

2

‖W2‖
yh ≤

√
n (4.8)

i.e. the distance d (4.7) is bounded in the interval [−
√
n,
√
n]. Therefore, as the

target output yi (where i denotes the training example index) assumes the values -1

or 1, we propose the error function

ei =

(
yi
√
n− ŷi
‖W2‖

)
(4.9)

in order to force the MLP to stretch out the value of di (in this work de�ned as the

classi�cation margin of example i) to its limit, creating a hidden output space where

the distance between patterns of di�erent classes is as larger as possible. Di�erent

from our approach, the traditional back-propagation methods usually adopt the error

(4.1), which permits the undesirable increase of the output matrix W2 in order to

achieve the target output yi without taking into account the distance di, as can be

inferred from (4.7).
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4.1.3 MMGDX based on MSE

Our �rst approach of MMGDX, here referred as MMGDX-A, has a maximal margin

objective function based on MSE:

J =
1

N

N∑
i=1

e2
i (4.10)

where N is the total number of training examples and ei is de�ned in (4.9). The

weights update is based on the gradient descent with momentum term and adaptive

learning rate, therefore this method was named MMGDX. Backpropagation is used

to calculate the derivatives of the objective function (4.10) as follows

∂J

∂WLn
1

=
−2W n

2

N ‖W2‖

N∑
i=1

eiϕ
′
(vni )xi (4.11)

∂J

∂bn1
=
−2W n

2

N ‖W2‖

N∑
i=1

eiϕ
′
(vni ) (4.12)

∂J

∂W2

=
−2

N

N∑
i=1

ei

(
yhi
‖W2‖

− W T
2 yhiW2

(‖W2‖)3

)
(4.13)

where WLn
1 is the nth row of matrix W1, W

n
2 is the nth element of vector W2, b

n
1 is

the nth position of vector b1, ϕ
′
(·) is the derivative of the sigmoid function, vni =

WLn
1 xi + bn1 is the activation function of neuron n, and yhi is the hidden layer output

vector in response to example xi.

The weights of layer (l = 1, 2) are updated as follows:

WLn
1,k+1 = WLn

1,k − α
∂J

∂WLn
1

∣∣∣∣
k

− β ∂J

∂WLn
1

∣∣∣∣
k−1

(4.14)

W2,k+1 = W2,k − α
∂J

∂W2

∣∣∣∣
k

− β ∂J

∂W2

∣∣∣∣
k−1

(4.15)

bn1,k+1 = bn1,k − α
∂J

∂bn1

∣∣∣∣
k

− β ∂J

∂bn1

∣∣∣∣
k−1

(4.16)

where k is the iteration, α is the learning rate, and β is the momentum term. In

short, each variable is adjusted according to the gradient descent with momentum
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term. For each epoch, if the MM-based objective function J decreases towards the

goal, then the learning rate α is increased by a given factor η. If J increases by

more than a given threshold γ, the learning rate is decreased by a given factor µ and

the updating of synaptic weights and biases that increased J in the current itera-

tion are undone. During the training, the value of area under ROC curve (AUC) is

calculated at each τ epochs, over the validation dataset. If AUC increases, then a

register of network parameters is updated. In the �nal, the registered network pa-

rameters, which correspond to the highest AUC, are adopted. The training section

stops after ξ failed attempts in improving the AUC. Algorithm 4 details the proposed

method. Notice that, at each iteration the non-recursive equations (4.14)−(4.16)
are calculated, as well as the recursive equations (4.10)−(4.13) that demand a num-

ber of iterations directly proportional to the total number of training examples N .

Therefore, the MMGDX has time complexity O(N). Similarly to other �rst-order

optimization methods, the MMGDX does not need to store second-order derivatives

to compose Jacobian matrix, therefore it has space complexity O(N).

4.1.4 MMGDX based on Lp-norm

The second approach of MMGDX, here denoted as MMGDX-B, has the objective

function J based on Lp-norm:

J = ‖E‖p (4.17)

where ‖·‖p is the Lp-norm, E = [e1, e2, . . . , eN ] is the error vector, and ei is de�ned in

(4.9). The main idea is to calculate the functional J focusing specially on the support

vector margins, inspired on the SVM soft-margin training algorithm. The Lp-norm is

a trick to avoid the constrained optimization problem usual in SVM-like approaches.

Notice that, larger errors ei are related to support vectors (i.e. the patterns with small

distance d from the separating-hyperplane), therefore, if the Lp-norm is applied, the

larger is p the larger is the contribution of the larger errors in the calculation of the

objective function J . In fact, if p→∞ only the pattern with smallest distance from

the separating hyperplane will be considered in the calculation of the objective func-

tion J . In short, the Lp-norm enables the implementation of a training algorithm

with some similarity to the soft-margin SVM (i.e. with larger importance for the
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Algorithm 4 MMGDX

Input: {xtrain}, {ytrain}: training dataset
{xvalid} , {yvalid}: validation dataset (for AUC calculation)
n: number of neurons in the hidden layer
τ : number of iterations between each AUC checking
ξ: stop criterion (maximum number of events AUC ≤ AUCmax)

Output: W1,W2, b1, b2: network parameters
1: initiate weights according to nguyen-widrow algorithm [NW90];
2: i← 0;AUCmax ← 0; k ← 0;
3: while i ≤ ξ do
4: for epoch = 1 : τ do
5: k ← k + 1;
6: update weights by means of (4.11), (4.12), (4.13), (4.14), (4.15), and (4.16);
7: propagate {xtrain} through the model (4.3) obtaining {ŷtrain};
8: apply {ŷtrain} and {ytrain} in equations (4.9) and (4.10) in order to check Jk;
9: if Jk > Jk−1 + γ then
10: α← µ · α;
11: else
12: if Jk < Jk−1 then
13: α← η · α;
14: end if
15: end if
16: end for
17: propagate {xvalid} through the model (4.3) obtaining {ŷvalid};
18: calculate AUC using {ŷvalid} and {yvalid};
19: if AUC > AUCmax then
20: AUCmax ← AUC;
21: W stored

1 ←W1; W
stored
2 ←W2; b

stored
1 ← b1;

22: else
i← i+ 1;

23: end if
24: end while
25: W1 ←W stored

1 ; W2 ←W stored
2 ; b1 ← bstored

1

26: adjust threshold (i.e. network parameter b2) by means of ROC curve information

support vector margins), applying back-propagation in an unconstrained optimiza-

tion approach. Backpropagation is used to calculate the derivatives of the objective

function (4.17) as follows:

∂J

∂WLn
1

= −k W n
2

‖W2‖

N∑
i=1

e
(p−1)
i ϕ

′
(vni )xi (4.18)

∂J

∂bn1
= −k W n

2

‖W2‖

N∑
i=1

e
(p−1)
i ϕ

′
(vni ) (4.19)

∂J

∂W2

= −k
N∑
i=1

e
(p−1)
i

(
yhi
‖W2‖

− W T
2 yhiW2

(‖W2‖)3

)
(4.20)
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where WLn
1 is the nth row of W1, W

n
2 is the nth element of vector W2, b

n
1 is the nth

position of vector b1, ϕ
′
(·) is the derivative of the sigmoid function, vni = WLn

1 xi+b
n
1 is

the activation function of neuron n, yhi is the hidden layer output vector in response

to example xi, and

k =

(
N∑
i=1

epi

)( 1−p
p )

(4.21)

The weights update was described in Subsection 4.1.3. A dynamic norm is adopted

in order to escape from local minima. Actually, if the optimization algorithm stops

at a local minimum, the adopted norm p is replaced by L2-norm during one iteration.

If J is improved, the algorithm restores the adopted norm p.

In short, our results on benchmark datasets, [LN10] and [LN11], indicate that an

adequate training algorithm can lead the MLP to achieve performance which is better

than (or at least similar) as other state-of-the-art approaches, such as Bayesian Neural

Network [NZ06], algorithms based on Kernel Fisher Discriminant analysis [MRW+99],

or SVM with nonlinear kernels [Liu04], which is the most known maximal margin

algorithm, for which di�erent kernels have been proposed.

4.2 Improving generalization by redundancy

Studies on animal physiology have shown evidences of neurophysiological nervous

redundancy in biological systems. Redundancy seems to be a fundamental charac-

teristic of nervous systems, as reported in [KDMC83], which has showed that there

are several physiological systems within the motor nervous system that produce the

same behavior. This study also has reported that the ensemble of these subsystems

enhanced the movement precision. Redundancy was also found in the monkey visual

cortex, see [SL86]. This physiological evidence has been complemented by some em-

pirical studies on redundancy in arti�cial neural networks. The redundant arti�cial

neural network (RNN) can be understood as an ensemble of small neural networks,

here named neural subsystems, which are trained independently. After aggregating

such subsystems the resultant NN model is a usual MLP with two hidden layers.

Arti�cial neural networks are still very simple models of the brain, which may lead



4.2. IMPROVING GENERALIZATION BY REDUNDANCY 29

us to suppose that the NN performance can be improved by adding new physiological

characteristics. However, some of these characteristics may be only requirements from

brain's physical processes, without any in�uence on the learning ability. Therefore,

before increasing the complexity of the usual models by adding new biological char-

acteristics, it is convenient to show, mathematically, their e�ciency in improving the

NN performance, since real world problems require large computational e�ort, which

may prevent on-the-�y applications. Taking into account this fact, this chapter com-

plements some founding works, such as [IP90], by presenting a theoretical analysis,

in the statistical learning framework, that shows the positive e�ects of redundancy

on the upper-bound on the expected classi�cation risk.

RNN are in line with the current technology; notice that, due to limitations of the

current paradigm in speed up the processor clock, the computer technology points

to parallel processing. Therefore, RNN can take advantage of such fact, similarly to

biologic systems, where redundancy does not increase the overall network process-

ing time, because all redundant units are working in parallel. In fact, it has been

estimated that the brain has up to seven layers of redundancy [Gla87].

4.2.1 The adopted MLP model

The present study adopts an homogeneous RNN. The term homogeneous denotes a

RNN composed by subsystems with the same structure and complexity, in Vapnik

sense, i.e. MLPs with the same number of neurons, but di�erent random seeds or

even trained by di�erent training methods. The adopted MLP model is given by

(4.22).

yh1 = ϕ (W1 · x+ b1)

yh2 = φ (W2 · yh1 + b2)

ŷ = W3 · yh2 + b3

(4.22)

where x is the input vector, yh1 and yh2 are the output vectors of the �rst and second

hidden layer respectively, ŷ is the RNN output, W1 =
[
W T

(1,1),W
T
(1,2), . . . ,W

T
(1,Nc)

]T
,

b1 =
[
bT(1,1), b

T
(1,2), . . . , b

T
(1,Nc)

]T
, W(1,n), and b(1,n) are the weight matrix and bias vector
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of the �rst layer of the nth neural subsystem,

W2 =


W T

(2,1) 01×nn · · · 01×nn

01×nn W T
(2,2) · · · 01×nn

...
...

. . .
...

01×nn 01×nn · · · W T
(2,Nc)

 , (4.23)

b2 =
[
b(2,1), b(2,2), . . . , b(2,Nc)

]T
, W(2,n) and b(2,n) are the weight matrix and bias value

of the output layer of the nth neural subsystem, 01×nn is a vector that has all its com-

ponents equal to zero, nn is the number of hidden neurons of each neural subsystem,

W3 = [1, 1, . . . , 1], b3 = 0, and φ(·) is a step-like function which is 1 if its argument is

larger than zero, and -1 otherwise.

Figure 4.1 illustrates the architecture of the RNN, which has an usual MLP archi-

tecture, except for some disabled connections in the second hidden layer, i.e. some

synaptic weights are zero, according to (4.23).

4.2.2 Training the RNN

The RNN is trained by parts. Namely, each neural subsystem, whose model is given

by (4.3), is trained independently with initial weights and biases generated through

di�erent random seeds. The subsystems can also be trained by using di�erent train-

ing methods and training datasets, similarly to the bagging approach; however, the

training datasets must have the same cardinality, in order to conform to the theoreti-

cal analysis developed in the next section. After the training of the subsystems, their

output neurons must have their linear transfer functions2 replaced by step-like trans-

fer functions, φ, before integration in the RNN, according to Fig.4.1. The weights

of the output layer are �xed, i.e. the RNN output neuron performs a non-trainable

fusion. Algorithm 5 details the RNN training.

4.2.3 Generalization bounds for RNN

This section presents a mathematical proof of the e�ciency of the proposed redundant

training method. The main idea is to derive the upper bound on the expected risk

2see model (4.3)
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Figure 4.1: Architecture of the proposed RNN.

for RNN as function of the number of neural subsystems, in order to show that the

larger the number of neural subsystems, the smaller the upper bound on the expected

risk.

Considering a training dataset S with l pairs (x1, y1) , . . . , (xl, yl), where x ∈ U

represents the input vectors and y denotes the targets, which are considered to

be drawn randomly and independently according to an unknown joint distribution

F (x, y) = F (y|x)F (x), we de�ne the learning procedure as the process of choos-

ing an appropriate function f (x, α∗) [Vap98], in the sense of the adopted objective

function of the training algorithm, from a set of functions f (x, α), α ∈ Λ which can

contain a �nite number of elements (e.g., in the case of decision trees) or an in�nite

number of elements (e.g. syntactic classi�ers, such as RNN, which have a set Λ of

adjustable parameters that can assume any real value).
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Algorithm 5 RNN training

Input: {xtrain} , {ytrain}: training dataset
nn: desired number of hidden neurons for the subsystems
Nc: desired number of neural subsystems

Output: trained RNN model
1: for n = 1 : Nc do
2: apply {xtrain} and {ytrain} to train the nth neural subsystem, obtaining the adjusted param-

eters W(1,n), W(2,n), b(1,n), b(2,n);
3: end for

4: W1 ←
[
WT

(1,1),W
T
(1,2), . . . ,W

T
(1,Nc)

]T
;

5: b1 ←
[
bT(1,1), b

T
(1,2), . . . , b

T
(1,Nc)

]T
;

6: W2 ←


WT

(2,1) 01×nn
· · · 01×nn

01×nn
WT

(2,2) · · · 01×nn

...
...

. . .
...

01×nn
01×nn

· · · WT
(2,Nc)

;
7: b2 ←

[
b(2,1), b(2,2), . . . , b(2,Nc)

]T
;

8: W3 ← [1, 1, . . . , 1];
9: b3 ← 0;
10: apply the adjusted parametersW1, W2, W3, b1, b2, and b3 in (4.22) to compose the trained RNN

model;

Taking into account the following loss function

L (f(x, α), y) =
{

0 if f(x,α)=y

1 if f(x,α)6=y
, (4.24)

the �rst step of our study is to determine the probability that the expected risk

R(α) =
∫
L (f(x, α), y) dF (x, y) will deviate from the empirical risk Remp(α) =

1
l

∑l
i=1 L (f(xi, α), yi) for the case of a single neural subsystem. Since the set Λ

contains in�nite real valued parameters, it is required a measure of the classi�er

complexity. There are several complexity measures3, in this work it is adopted the

VC-dimension [BEHW89], de�ned below.

De�nition 4.1. [BEHW89] The VC-dimension, h, of a set of binary functions

f (x, α), α ∈ Λ is de�ned as the maximal number of vectors x1 . . . xh which can

be shattered, i.e. dichotomized in all 2h ways, by using functions in the set.

The upper-bound on the expected risk for a single neural subsystem can be esti-

mated by applying directly the famous learning bound derived by Vapnik and Cher-

vonenkis, which is stated in the following theorem:

3such as covering numbers, annealed entropy, VC entropy, Rademacher, and Gaussian complexity.
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Theorem 4.1. [Vap98] Let h denote the VC-dimension of the set of functions

f (x, α), α ∈ Λ. For all α, all l > h, and all σ > 0 the inequality bounding the

expected risk

R(α) ≤ Remp(α) +

√
h
(
ln 2l

h
+ 1
)
− ln σ

4

l
(4.25)

holds with probability of at least 1−σ over the random draw of the training samples.

To complete this analysis, it is necessary to estimate the upper-bound on the ex-

pected risk for the whole RNN, given by Corollary 4.1., which requires the following

lemma:

Lemma 4.1. Let us assume the cumulative binomial distribution:

P (X ≤ x) =

bxc∑
k=0

(nk) (p)k (1− p)(n−k) (4.26)

where n is the number of trials, p ∈ [0, 1] is the success probability in each trial, X

is a random variable, and b·c is the �oor operator. Then, for k > np, the Hoe�ding

inequality [Hoe63] yields the upper bound:

P (X ≤ x) ≤ 1

2
exp

(
− 2

n
(np− x)2

)
(4.27)

Corollary 4.1. Let us assume an homogeneous RNN composed by Nc neural subsys-

tems. Suppose the neural subsystem space has VC-dimension hsub and let Rsub
emp be the

biggest value of empirical risk over all the neural subsystems. By assuming that the

distribution of the error among the neural subsystems is independent, it is possible to

derive the following upper bound on the expected risk for the RNN

RRNN ≤
1

2
exp

−2Nc

0.5−Rsub
emp(α)−

√√√√hsub

(
ln 2l

hsub
+ 1
)
− ln σ

4

l


2 (4.28)
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which holds with probability of at least 1 − σ over the random draw of the training

samples.

Proof. Due to the step-like function, φ(·), the output of the second hidden layer,

yh2, is composed by the label outputs of all the neural subsystems. Therefore, the

linear output-neuron performs a majority-vote fusion over all the neural subsystems.

In this case, an error occurs if, at least, Nc/2 neural subsystems fail, i.e. RRNN =

P (s ≤ Nc/2), where s is the number of neural subsystems which have success. This

probability is given by the following equation

RRNN = P (s ≤ Nc/2) ≤
Nc/2∑
k=0

(
Nc
k

)
(1−Rsub)

k (Rsub)
(Nc−k) (4.29)

where Rsub is the upper bound on the expected risk for the worst neural subsystem,

given by Theorem 4.1, according to the following inequation:

Rsub ≤ Rsub
emp(α) +

√√√√hsub

(
ln 2l

hsub
+ 1
)
− ln σ

4

l
(4.30)

However, (4.29) has factorials and a summation which do not enable a good analysis.

Therefore, by substituting p = 1−Rsub, x = Nc/2, and n = Nc into (4.27) we obtain

the following upper bound on (4.29):

RRNN = P (s ≤ Nc/2) ≤ 1

2
exp

(
−2Nc (0.5−Rsub)

2) (4.31)

Substituting (4.30) into (4.31) completes the proof.�

By observing the quadratic form in the argument of the exponential function in

(4.28) it is possible to state that the larger the number of neural subsystems, Nc,

the smaller the upper bound on the expected risk, RRNN . This analysis supports

the e�ciency of our redundant training method in improving the generalization ca-

pability of MLPs. However, such theoretical result is based on the assumption that

the distribution of the error among the neural subsystems is independent. Therefore,

the diversity of behaviour among the neural subsystems is a key subject, which can be

approached by adopting di�erent training methods for each neural subsystem, as will

be done in the experimental chapter of this thesis.
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4.3 Improving generalization by regularization

This section deals with regularization, a commonly used technique for preventing

the learning algorithm from over�tting the training data. There are three usual

regularization techniques for NN: early stopping [TG99], curvature-driven smoothing

[Bis96], and weight decay [Jin04]. In the early stopping criterion the available data

are divided into three subsets. The �rst subset is the training dataset, which is used

for updating the network weights and biases. The second subset is used as a validation

dataset and the third subset is used to evaluate the �nal accuracy. The error on the

validation dataset is monitored during the training process. After some number of

iterations the NN begins to over�t the data and the error on the validation dataset

begins to rise. When the validation error increases during a speci�ed number of

iterations, the algorithm stops the training section and adopts the weights and biases

corresponding to the minimum of the validation error. Curvature-driven smoothing

includes smoothness requirements on the cost function of learning algorithms, which

depend on the derivatives of the network mapping. Weight decay is implemented by

including additional terms in the cost function of learning algorithms, which penalize

overly high values of weights and biases, in order to control the classi�er complexity,

which forces the NN response to be smoother and less likely to over�t.

This thesis introduces a novel regularization scheme, named eigenvalue decay, that

includes an additional term in the cost function of the learning algorithm, which pe-

nalize overly high values of the biggest and the smallest eigenvalues of W1W
T
1 , where

W1 is the synaptic weight matrix of the �rst layer of model (4.3). This approach aims

at improving the classi�cation margin, as will be shown. This regularization scheme

led to the development of a new training method based on the same principles of

SVM, and so named Support Vectors NN (SVNN). Moreover, it is given an insight

on how the most usual cost function, i.e. mean squared error (MSE), can hinder

the margin improvement. This section starts by proposing the eigenvalue decay tech-

nique, then the relationship between such regularization scheme and the classi�cation

margin is analyzed. Finally, a novel algorithm for maximum margin training, based

on regularization and evolutionary computing, is proposed.
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4.3.1 Eigenvalue decay

The most usual objective function is the MSE:

E =
1

N

N∑
i=1

(yi − ŷi)2 (4.32)

where N is the cardinality of the training dataset, yi is the target output, ŷi is the

output estimated by the MLP for the input xi belonging to the training dataset.

However, in case of the usual weight decay method [DB98], additional terms which

penalize overly high values of weights and biases are included. Therefore, the generic

form for the objective function is:

E∗ = E + κ1

∑
wi∈W1

w2
i + κ2

∑
wj∈W2

w2
j + κ3

∑
b(1,k)∈b1

b2
(1,k) + κ4b

2
2 (4.33)

where W1, W2, b1, and b2 are the MLP parameters, according to (4.3), and κi > 0,

i=(1. . . 4) are regularization hyperparameters. Such method was theoretically ana-

lyzed by Bartlett [Bar98], which concludes that the bounds on the expected risk of

MLPs depends on the magnitude of the parameters rather than the number of pa-

rameters. In the same work [Bar98] it is shown that the misclassi�cation probability

can be bounded in terms of the empirical risk, the number of training examples, and

a scale-sensitive version of the VC-dimension, known as the fat-shattering dimen-

sion4. Then, upper bounds on the fat-shattering dimension for MLPs are derived in

terms of the magnitudes of the network parameters, independently from the number

of parameters5.

In the case of eigenvalue decay the proposed objective function is:

E∗∗ = E + κ (λmin + λmax) (4.34)

where λmin and λmax are, respectively, the smallest and the biggest eigenvalues of

W1W
T
1 .

4See Theorem 2 of [Bar98]
5See Theorem 13 of [Bar98]
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4.3.2 Analysis on eigenvalue decay

In this sub-section we show a relationship between eigenvalue decay and the class�-

cation margin, mi. Our analysis requires the following lemma:

Lemma 4.2. Let K denotes the �eld of real numbers, Kn×n a vector space containing

all matrices with n rows and n columns with entries in K, A ∈ Kn×n be a symmetric

positive-semide�nite matrix, λmin be the smallest eigenvalue of A, and λmax be the

largest eigenvalue of A. Therefore, for any x ∈ Kn, the following inequalities hold

true:

λminx
Tx ≤ xTAx ≤ λmaxx

Tx (4.35)

Proof. The upper bound on xTAx, i.e. the second inequality of (4.35), is well known;

however, this work also requires the lower bound on xTAx, i.e. the �rst inequality of

(4.35). Therefore, since this proof is quite compact, we will save a small space in this

work to present the derivation of both bounds as follows:

Let V = [v1 . . . vn] be the square n× n matrix whose ith column is the eigenvector

vi of A, and Λ be the diagonal matrix whose ith diagonal element is the eigenvalue λi

of A; therefore, the following relations hold:

xTAx = xTV V −1AV V −1x = xTV ΛV −1x = xTV ΛV Tx (4.36)

Taking into account that A is positive-semide�nite, i.e. ∀i, λi ≥ 0:

xTV (λminI)V Tx ≤ xTV ΛV Tx ≤ xTV (λmaxI)V Tx (4.37)

where I is the eye matrix. Note that xTV (λminI)V Tx = λminx
Tx and xTV (λmaxI)V Tx =

λmaxx
Tx; therefore, substituting (4.36) into (4.37) yields (4.35). �

The following theorem gives a lower and an upper bound on the classi�cation

margin:
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Theorem 4.2. Let mi be the margin of the training example i, i.e. the smallest

orthogonal distance between the classi�er separating hypersurface and the training

example i, λmax be the biggest eigenvalue of W1W
T
1 , and λmin be the smallest eigen-

value of W1W
T
1 ; then, for mi > 0, i.e. an example correctly classi�ed, the following

inequalities hold true:
1√
λmax

µ ≤ mi ≤
1√
λmin

µ (4.38)

where

µ = min
j

yiW T
2 ΓjW1

(
xi − xjproj

)√
W T

2 ΓjΓTjW2

 , (4.39)

Γj =


ϕ
′
(v1) 0 · · · 0

0 ϕ
′
(v2) · · · 0

...
...

. . .
...

0 0 · · · ϕ
′
(vn)

 , [v1, v2, . . . , vn]T = W1 · xk + b1, ϕ
′
(vn) =

∂ϕ
∂vn

∣∣∣
xjproj

, xjproj is the j
th projection of the ith training example, xi, on the separating

hypersurface, as illustrated in Fig.4.2, and yi is the target label of xi.

Proof. The �rst step in this proof is the calculation of the gradient of the NN output

ŷ in relation to the input vector x at the projected point, xjproj. From (4.3) we have:

∇ŷ(i,j) =
∂ŷ

∂x

∣∣∣∣
xjproj

= W T
2 ΓjW1 (4.40)

The versor

~pj =
∇ŷ(i,j)∥∥∇ŷ(i,j)

∥∥ (4.41)

is normal to the separating surface, giving the direction from xi to x
j
proj; therefore

xi − xjproj = d(i,j) ~pj (4.42)

where d(i,j) is the scalar distance between xi and x
j
proj. From (4.42) we have:

∇ŷ(i,j)

(
xi − xjproj

)
= d(i,j)∇ŷ(i,j)~pj (4.43)

Substituting 4.41 into 4.43 and solving for d(i,j), yields:

d(i,j) =
∇ŷ(i,j)

(
xi − xjproj

)∥∥∇ŷ(i,j)

∥∥ (4.44)
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Figure 4.2: A feature space representing a nonlinear separating surface with the
projections, xjproj, of the i

th training example, xi, and examples of orthogonal distances
d(i,j).

The absolute value of the classi�er margin, mi, is the smallest value of d(i,j) in relation

to j, that is:

|mi| = min
j

(
d(i,j)

)
(4.45)

The sign of mi depends on the target class yi, therefore:

mi = min
j

(
yi
∇ŷ(i,j)

(
xi − xjproj

)∥∥∇ŷ(i,j)

∥∥
)

(4.46)

Substituting (4.40) in (4.46), yields:

mi = min
j

yiW T
2 ΓjW1

(
xi − xjproj

)√
W T

2 ΓjW1W T
1 ΓTjW2

 . (4.47)

Note thatW1W
T
1 is a symmetric positive-semide�nite matrix, therefore, from Lemma

4.2., the inequalities:

λminW
T
2 ΓjΓ

T
jW2 ≤ W T

2 ΓjW1W
T
1 ΓTjW2 ≤ λmaxW

T
2 ΓjΓ

T
jW2 (4.48)
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hold true for any Γj and any W2. From (4.48) and (4.47) it is easy to derive (4.38).

�

The objective function of the eigenvalue decay decreases λmax and λmin, aiming at

increasing the lower bound and the upper bound on the classi�cation margin, accord-

ing to (4.38). Notice that, the numerator of (4.39) depends not only on the mag-

nitudes
∥∥W T

2 ΓjW1

∥∥ and
∥∥xi − xjproj∥∥ but also on the collinearity between W T

2 ΓjW1

and
(
xi − xjproj

)
, which can be improved even taking into account the minimization

of λmax and λmin.

4.3.3 Maximal-margin Training by GA

Some previous works have proposed maximal-margin training algorithms for NN in-

spired on SVM, such as [DGC07] and [Abe05]. In [DGC07] a decision tree based on

linear programming is applied to maximize the margins, while in [Abe05] an MLP

is trained layer-by-layer based on the CARVE algorithm [YD98]. However, Theo-

rem 4.2 allows us to propose a maximal-margin training method even more similar

to SVM, in the sense that the proposed method also minimizes values related with

the parameters of the classi�er model, in order to maximize the margin, allowing the

minimization of the classi�er complexity without compromising the accuracy.

The main idea of our method is not only to avoid nonlinear SVM kernels, in such a

way as to o�er a faster nonlinear classi�er, but also to be based on the maximal-margin

principle; moreover, the proposed method is more suitable for on-the-�y applications,

such as object detection [EG09], [PLN09b]. Namely, the use of SVM with nonlinear

kernels may implicate in a prohibitive computational cost. Notice that the SVM

decision function, c(x), requires a large amount of time when the number of support

vectors, Nsv, is high:

c(x) = sgn

(
Nsv∑
i=1

yiαiK (xi, x) + b

)
(4.49)

where αi and b are SVM parameters, (xi, yi) is the i
th support vector data pair, sgn(·)

is 1 if the argument is greater than zero and −1 if it is less than zero, and K(·, ·) is
a nonlinear kernel function, i.e. the algorithm �ts the maximum-margin hyperplane

in a transformed feature space, in order to enable a nonlinear classi�cation.
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The iterative computation (4.49) becomes more simple if a linear kernel, (xTi xj), is

used:

c(x) = sgn

(
Nsv∑
i=1

yiαix
T
i x+ b

)
= sgn (a · x+ b) (4.50)

where a =
∑Nsv

i=1 yiαix
T
i is calculated once. The right-hand side of (4.50) does not

involve an iterative computation and thus decreases the processing time by, at least,

Nsv times. However, this classi�er cannot perform a nonlinear classi�cation. Due to

this fact, our research group has been working on maximal-margin training algorithms

for NN, such as the MMGDX [LN10]. However, the optimization problem proposed

in [LN10] is usually hard, because the objective function of MMGDX has several local

minima, as well as points where the gradient vector has large magnitude. These facts

motivated this new SVM-like training method for NN, named Support Vector NN

(SVNN), here proposed.

In order to better understand our method, it is convenient to take into account the

soft margin SVM optimization problem, as follows:

min
w,ξi

(
1

2
‖w‖2 + C

N∑
i=1

ξi

)
(4.51)

subject to

∀i |yi (w · xi − b) ≥ 1− ξi (4.52)

∀i |ξi ≥ 0 (4.53)

where w and b compose the separating hyperplane, C is a constant, yi is the target

class of the ith training example, and ξi are slack variables, which measure the degree

of misclassi�cation of the vector xi. The optimization is a tradeo� between a large

margin (min ‖w‖2), and a small error penalty (minC
∑N

i=1 ξi).

We propose to train the NN by solving the following similar optimization problem:

min
W1,ξi

(
λmin + λmax +

C

N

N∑
i=1

ξi

)
(4.54)

subject to

∀i |yiŷi ≥ 1− ξi (4.55)

∀i |ξi ≥ 0 (4.56)
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where ŷ is given by (4.3), C is a regularization hiperparameter, yi is the target class

of the ith training example, and ξi are also slack variables, which measure the degree

of misclassi�cation of the vector xi.

The constrained optimization problem (4.54)-(4.56) is replaced by the following

equivalent unconstrained optimization problem:

min
W1,W2,b1,b2

Φ (4.57)

where

Φ = λmin + λmax +
C

N

N∑
i=1

H(yiŷi) (4.58)

and H(t) = max(0, 1− t) is the Hinge loss.

Since (4.57) has the discontinuous objective function Φ, which does not allow the

use of gradient-based optimization methods, a real-coded GA is applied, using Φ as

�tness function. Note that the last term of (4.58) penalizes models whose estimated

outputs do not �t the constraint yiŷi ≥ 1, in such a way as to save a minimal margin,

while the minimization of the �rst two terms of (4.58) aims at the enlargement of such

minimal margin by eigenvalue decay, acording to Theorem 4.2. Algorithm 6 details

the proposed optimization process.

Fig.4.3 illustrates the two-dimensional feature space of Banana benchmark dataset

and the separating surface generated by a NN trained by Algorithm 6. The examples

in the yellow area are classi�ed as positive, while the examples in the white area are

classi�ed as negative.

Training algorithms based on MSE often create unnecessary boundaries, as an e�ort

to attribute label 1 for all the positive examples and -1 for all the negative examples,

as can be seen in Fig.4.4, which illustrates the feature space of Banana benchmark

dataset, as well as the separating surface generated by a NN trained by GDX.

SVNN does not apply the MSE cost function, which penalizes output values, ŷi,

bigger than 1 or smaller than -1, during the training. Fig.4.5 illustrates the behaviour

of a NN model trained by MMGDX [LN10] on Banana dataset. Note that MMGDX

avoids unnecessary boundaries that increase the risk of miss-classi�cation in case of

large dispersion around the data clusters

In short, training algorithms based on MSE hinders the margin improvement, be-

cause this objective function bounds the value of |ŷi|.
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Figure 4.3: Feature space of Banana benchmark dataset, as well as the separating
surface generated by a NN trained by SVNN. Blue points are positive examples, while
red points are negative.

4.4 Improving generalization by transduction

This section deals with transduction, a concept closely related to semi-supervised

learning [CSZ06]. However, di�erently from inductive inference, no general decision

rule is inferred. In the case of transduction the inferred decision rule aims only at

labelling the testing data.

The SVM-like training method, introduced in the previous section, can be exploited

to address transductive learning. Therefore, we propose the transductive NN (TNN),

which is similar to the transductive SVM (TSVM) [Vap98]. The proposed TNN

accomplishes transduction by �nding those test labels for which, after training a
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Figure 4.4: Feature space of Banana benchmark dataset, as well as the separating
surface generated by a NN trained by GDX. Blue points are positive examples, while
red points are negative.

NN on the combined training and test datasets, the margin on the both datasets is

maximal. Therefore, similarly to TSVM, TNN exploits the geometric structure in

the feature vectors of the test examples, by taking into account the principle of low

density separation, i.e. the decision boundary should lie in a low-density region of

the feature space, because a decision boundary in a high-density region would cut

a data cluster into two di�erent classes, which is in disagreement with the cluster

assumption that is stated as follows: if points are in the same data cluster, they are

likely to be of the same class.

The TNN training method can be easily implemented by including in (4.57) an

additional term that penalizes all the unlabeled data which are near to the decision
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Figure 4.5: Feature space of Banana benchmark dataset, as well as the separating
surface generated by a NN trained by MMGDX. Blue points are positive examples,
while red points are negative.

boundary. Therefore, the new optimization problem is:

min
W1,W2,b1,b2

Φ∗ (4.59)

where

Φ∗ = λmin + λmax +
C1

N

N∑
i=1

H(yiŷi) +
C2

Nu

Nu∑
j=1

H(|ŷj|), (4.60)

C1 and C2 are constants, ŷj is the NN output for the unlabeled data xj, and Nu is the

cardinality of the unlabeled dataset. Notice that, the operator |·| in the last term of

(4.60) makes this additional term independent of the class assigned by the NN for the

unlabeled example, i.e. independent from the sign of ŷj, since we are interested only in

the distance from the unlabeled data to the decision boundary. In order to illustrate
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the e�ect of the last term of (4.60), i.e. the term that penalizes the unlabeled data

which are near to the decision boundary, we introduce two toy examples which enable

a comparative study on the decision boundaries generated by SVNN and TNN, as

can be seen in Figs. 4.6 and 4.7, where circles represent training data and points

represent testing (unlabeled) data. The SVNN regularization parameter was set as

C1 = 104, while the TNN parameters were set as C1 = C2 = 104.

Figure 4.6: Separating surfaces generated by two NNs with 5 hidden neurons. Circles
represent training data and points represent testing (unlabeled) data: (a) NN trained
by SVNN, (b) NN trained by TNN.

Note that both toy examples are in accordance with the cluster assumption, i.e.

there are low-density regions surrounding data clusters whose elements belong to the

same class. TNN places the separating-surface along such low-density regions, in

order to increase the absolute value of the margin of the unlabeled data, in such a

way as to decrease the last term of (4.60). Empirically, it is sometimes observed that

the solution to (4.60) is unbalanced, since it is possible to decrease the last term of

(4.60) by placing the separating-surface away from all the testing instances, as can be

seen in Fig. 4.8. In this case, all the testing instances are predicted in only one of the

classes. Such problem can also be observed in case of TSVM, for which an heuristic

solution is applied to constrain the predicted class proportion on the testing data, so

that it is the same as the class proportion on the training data. This work addopts

a solution similar to the heuristic usually applied to TSVM, by including in (4.60) a
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Figure 4.7: Separating surfaces generated by two NNs with 4 hidden neurons. Circles
represent training data and points represent testing (unlabeled) data: (a) NN trained
by SVNN, (b) NN trained by TNN.

term that penalizes models whose predicted class proportion on the testing data is

di�erent from the class proportion on the training data. Therefore, we rewrite (4.60)

as:
Φ∗ = λmin + λmax + C1

N

∑N
i=1H(yiŷi) + C2

Nu

∑Nu
j=1H(|ŷj|)

+C3

∣∣∣ 1
N

∑N
i=1 yi −

1
Nu

∑Nu
j=1 sgn (ŷj)

∣∣∣ (4.61)

where C3 is a penalization coe�cient. By using (4.61) with C1 = C2 = 104 and

C3 = 103 we obtain the separating-surface illustrated by Fig. 4.9.

4.5 Multi-class problems

As occurs in case of SVM, the extension of the proposed training methods from two-

class to multi-class is not trivial and may be a topic for further study. However, it

is possible to decompose the multi-class classi�cation problem into multiple two-class

classi�cation problems. Some usual approaches to decompose a multi-class pattern

classi�cation problem into two-class problems are one-against-all (OAA), one-against-

one (OAO), and P-against-Q (PAQ). Those approaches are popular among researchers

in SVM, Adaboost, or decision trees.

The OAA modeling scheme was �rst introduced by Vapnik [Vap98] in the SVM
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Figure 4.8: Toy experiment with TNN without the last term of (4.61). Circles repre-
sent training data and points represent testing (unlabeled) data.

context. For a M -class pattern classi�cation problem the OAA scheme uses a system

ofM binary NNs. In order to train the mth NN, the traning dataset Ω is decomposed

in two sets, Ω = Ωm ∪ Ωm̄, where Ωm contains all the examples of class m, which

receive the label 1, and Ωm̄ contains all the examples belonging to all other classes,

which receive the label -1. A decision function for the ensemble output can be

ĉ = arg max
m=1,...,M

(ŷm) (4.62)

where ĉ is the estimated class and ŷm is the likelihood of the mth NN. This archi-

tecture has advantages over a single NN for multi-class problems, for instance, each

NN can have its own feature space and architecture, since all of them are trained

independently. However, there are some disadvantages, namely, the ensemble may

not adequately cover some regions in the feature space, i.e., regions that are rejected

by all NNs as other classes. Another problem is the training data, namely, when the

number of classes is large, the training data for each NN is highly unbalanced, i.e.,

Ωm << Ωm̄. This fact can lead the NN to totally ignoring the minority class Ωm.

The OAO modeling scheme, also known as pair-wise method, can avoid the OAA
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Figure 4.9: Toy experiment using TNN with (4.61). Circles represent training data
and points represent testing (unlabeled) data.

problems. The pair-wise method decomposes the M -class pattern classi�cation prob-

lem into M(M − 1)/2 binary problems, i.e., each NN is trained to discriminate class

i from class j, avoiding highly unbalanced training datasets. Notice that, each class

m can receive up to M − 1 votes, because there are M − 1 NNs that are trained

to discriminate class m from each one of the other classes. Among many decision

functions, we detach the simple majority vote, which counts the votes for each class

based on the output from all NNs. The class with the largerst number of votes is the

system output. In OAO modeling the feature space is less likely to have uncovered

regions, due to the redundancy in the training of pattern classes. Another advantage

of OAO modeling is that it has the capability of incremental class learning, i.e., a

new set of NNs can be included and trained in order to represent a new class without

a�ecting the existing NNs. However, the major disadvantage of OAO modeling is the

required computational e�ort when the number of classes, M , is large. Notice that,

in this method it is necessary to train M(M − 1)/2 NNs, therefore, both time and

space complexities grow in the order O (M2). Fortunately, it is possible to train all

NNs simultaneously on di�erent computers in order to speed up the training time.

More details on multi-class pattern classi�cation using NNs can be found in [OM07].
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Algorithm 6 Maximal Margin Training by GA

Input: X,y: matrices with N training datapairs;
nneu: number of hidden neurons;
C : regularization hyperparameter;
a: selective pressure;
maxgener: maximum number of generations;
Npop: population size

Output: W1, W2, b1, and b2: NN parameters
1: generate a set of Npop chromosomes, {Cr}, for the initial population, taking into account

the number of input elements and nneu; therefore, each chromosome is a vector Cr =
[w1, . . . , wnw

, b1, . . . , bnb
] containing all the Ng synaptic weights and biases randomly generated

according to the Nguyen-Widrow criterion [NW90];
2: for generation = 1 : maxgener do
3: for ind = 1 : Npop do
4: rearrange the genes, Crind, of individual ind, in order to compose the NN parameters W1,

W2, b1, and b2.
5: for i = 1 : N do
6: calculate ŷi, according to (4.3), using the weights and biases of individual ind;
7: end for
8: calculate Φ for the individual ind, according to (4.57), using y and the set of NN outputs

{ŷi} previously calculated;
9: Φind ← Φ: storing the �tness of individual ind;
10: end for
11: rank the individuals according to their �tness Φind;
12: store the genes of the best individual in Crbest;
13: k ← 0;
14: for ind = 1 : Npop do
15: k ← k + 1;
16: ϑj ← random number ∈ [0, 1] with uniform distribution, j = (1, 2);

17: parentj ← round
(
Npop

eaϑj−1
ea−1

)
, j = (1, 2): (randomly selecting the indexes of parents by

using the asymmetric distribution proposed in [LNA+09]);
18: for n = 1 : Ng do
19: η ← random number ∈ [0, 1] with uniform distribution;
20: Crson

(k,n) ← ηCr(parent1,n) + (1− η)Cr(parent2,n): calculating the n
th gene, to compose the

chromosome of the kth individual of the new generation, by means of weighted average;
21: end for
22: end for
23: end for
24: rearrange the genes of the best individual, Crbest, in order to compose the NN parameters W1,

W2, b1, and b2.



Chapter 5

Improving the generalization capacity

of cascade classi�ers by SRM

CASCADE classi�er is a suitable approach in handling highly unbalanced data,

since it successively rejects negative occurences in a cascade structure, keeping

the processing time suitable for on-the-�y applications. Therefore, such kind of clas-

si�er ensemble is especially important for machine vision applications, such as vision

based object detection, [VJ01], [MG06], for which the most usual approach is to scan

the image frame by using a sliding window, which generates thousands of negative

occurrences for each positive cropped image. On the other hand, similarly to other

classi�er ensembles, cascade classi�ers are likely to have high VC dimension, which

may lead to over-�tting the training data. Therefore, in this chapter the SRM prin-

ciple is exploited in order to improve the generalization capacity of cascade classi�ers

by controlling their complexity, which depends on the model of their classi�ers, the

number of cascade stages, and the feature space dimension of each stage. In this

context, we propose to accomplish the SRM principle by controling the number of

cascade stages and the number of features in each stage.

The training method proposed in this chapter, named SRM-cascade [LPNA11],

controls the number of features in each cascade stage by applying a feature selector,

in such a way to �nd the number of features that minimizes the upper bound expected

risk (4.25) of each cascade stage independently. However, the control of the number of

cascade stages is not so simple, since it depends on the estimation of the strutural risk

of the entire ensemble. Unfortunately, despite the methodological [GB00], [VJ01] and

51
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experimental [SK07], [MG06] contributions given in previous works, there is still a lack

of theoretical analysis on the generalization capability of cascade classi�ers; di�erently

from the bagging strategy, which was theoretically analyzed by previous works such

as [SFBL98] or [KWD03]. Therefore, it was required a theoretical analysis on cascade

classi�ers, based on statistical learning theory, in order to provide an upper-bound

on the expected classi�cation risk for the entire cascade ensemble.

Taking into account that a positive occurrence rejected by a cascade stage cannot

be recovered by the following stages, the classi�ers that compose the ensemble must

be adjusted so that the TP is close to one. The usual approach to achieve high TP

is to adjust the classi�er threshold, i.e. the bias, after the training. However, this

approach can be improved by adjusting all the classi�er parameters (not only the

bias), in such a way as to achieve the intended TP. Therefore, in this chapter it is

proposed a new training method for linear classi�ers that enables the control of the

ratio between TP and FP during the training.

5.1 Brief description of cascade classi�ers

This section brie�y introduces the generic model of a cascade classi�er ensemble, in

order to contextualize our analysis. The cascade classi�er can be seen as a degenerate

decision tree, i.e., a positive result from the �rst classi�er triggers the evaluation of a

second classi�er. A positive result from the second classi�er triggers a third classi�er,

and so on. A negative outcome at any point leads to the immediate rejection of the

pattern, according to the scheme depicted in Fig.5.1.

Figure 5.1: Cascade classi�er scheme.
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Regarding the training process, the �rst stage is trained by using the entire train-

ing dataset, while the other stages are trained by using a sub-set composed by the

aggregation of the positive examples, which are the same for all the ensemble stages,

with the false positive examples not rejected by the previous stages when running on

negative training examples. All the stages are trained in such a way as to achieve

high TP. This process is summarized in Algorithm 7 and illustrated in Fig.5.2.

Algorithm 7 Generic cascade classi�er training

Input: TPdes, Sneg =
{
x(neg,1), . . . , x(neg,nn)

}
, Spos =

{
x(pos,1), . . . , x(pos,np)

}
, Nc: adopted TP ,

sets of negative and positive nf -dimensional training examples, and number of cascade stages
respectively;

Output: {Pk}, {sk}: sets of parameters of the cascade stages and set of vectors with the indexes
of the selected features for each stage k, respectively;

1: k ← 1: where k is the stage index;
2: Sk ← Sneg ∪ Spos;
3: while k ≤ Nc do
4: select a set of N of the nf features and compose the training dataset S(k,N), whose exemplars

are obtained from the exemplars of Sk by retaining only the N selected features;
5: store the indexes of the selected features in vector sk;
6: apply S(k,N) and Ltrain to train the kth cascade stage, in order to obtain its parameters Pk;
7: apply S(k,N), Ltrain, and Pk to compute TP ;
8: while TP < TPdes do
9: increase the classi�er bias in order to increase the TP , updating Pk;
10: recalculate TP from S(k,N) and Ltrain, using the learned cascade stage with the current

bias;
11: end while
12: scan the current training dataset, Sk, by using the current cascade stage, i.e. using the set of

parameters Pk and the set of features sk, in order to collect a set of false positive occurrences,
SFP ;

13: Sk+1 ← SFP ∪ Spos: composing the dataset for the next stage;
14: k ← k + 1;
15: end while

Notice that, the training dataset used in stage k is a sub-set of the set which was

applied in the training of the previous stage, k− 1. In this context it is important to

change the set of features at each stage, which may enable the correct classi�cation

of the patterns that were misclassi�ed by the previous stage. Therefore, each stage

can have a feature set with its respective cardinality, which implicates in di�erent

classi�er complexities from a stage to another.

Among several variations of cascade classi�ers, we highlight the seminal work of

Viola and Jones [VJ01], where it is proposed a boosted cascade classi�er scheme, in

the framework of image-based object detection, which can be viewed as an object

speci�c focus-of-attention mechanism that discards image regions which are unlikely

to contain the objects of interest. In order to decrease the processing time, the boosted
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Figure 5.2: Generic cascade classi�er training.

cascade applies few features in the �rst stage, increasing the number of features at each

stage, i.e. in case of boosted cascade, the scheme of Fig.5.2 has N1 < N2 . . . < Nk.

5.2 Upper bound on the expected risk of cascade

classi�ers

Since the application of SRM principle in cascade classi�ers requires the estimation

of the upper bound on the expected risk of the entire ensemble, this section presents

a VC-style analysis that provides an upper bound on the false positive rate (FP) and

a lower bound on the true positive rate (TP), which are composed in order to derive

an upper bound on the expected classi�cation risk of the entire ensemble, aiming at
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controling the number of cascade stages.

5.2.1 Brief review on statistical learning theory

This section brie�y introduces some principles of statistical learning theory, in order

to support our theorems, which require the following de�nition and lemmas.

De�nition 5.1. Let Q (x, α) = L (y, f (x, α)) ∈ {0, 1} be a loss function, in which y

is the label of x. The growth function is de�ned as the quantity

G (l) = ln sup
x1,...,xl

(N (x1, . . . , xl)) (5.1)

where N (x1, . . . , xl) ≤ 2l is the number of di�erent separations1 that the functions

of the set Q (x, α), α ∈ Λ can produce on the set of vectors x1, . . . , xl.

The following lemma, directly derived from the Sauer lemma [Sau72], establishes

the relationship between the growth function and the VC-dimension.

Lemma 5.1. [Vap98] Let h be the VC-dimension of the set of functions f (x, α),

α ∈ Λ. Then, the growth function of a set of indicator functions Q (x, α), α ∈ Λ

satis�es the relationship

G (l)

{
=l ln 2 if l≤h
≤ln(

∑h
i=0 C

i
l)≤ln( elh )

h
=h(1+ln l

h) if l>h
(5.2)

where e is the Euler constant and Ci
l is the number of i-combinations from a given

set S of l elements.

As can be inferred from Lemma 5.1, even if the set of functions Q (x, α), α ∈
Λ, contains in�nitely many elements, only a �nite number of clusters of events is

1in the context of this chapter, separation means the dichotomizing of the exemplars in some

given universe of discourse into two groups.
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distinguishable on the �nite set of examples x1, . . . , xl. Therefore, in order to derive

bounds on the expected risk for the in�nite set of indicator functions Q (x, α), α ∈ Λ,

we take advantage on the relationship stated in the following lemma:

Lemma 5.2. [Vap98] Let X1 (l) and X2 (l) denote two spaces of half-samples of length

l,

ρ
(
X2l
)

= sup
α∈Λ

∣∣∣∣∣1l
l∑

i=1

Q (xi, α)− 1

l

2l∑
i=l+1

Q (xi, α)

∣∣∣∣∣ (5.3)

and

π (X1) = sup
α∈Λ

∣∣∣∣∣
∫
Q (x, α) dF (x)− 1

l

l∑
i=1

Q (xi, α)

∣∣∣∣∣ (5.4)

Then, the distribution of the random variable π (X1) is connected with the distribution

of the random variable ρ
(
X2l
)
by the inequality

P {π (X1) > ε} < 2P

{
ρ
(
X2l
)
> ε− 1

l

}
(5.5)

Therefore, to estimate the probability of π (X1), which is our interest, we can esti-

mate the probability of ρ
(
X2l
)
, which is based on a �nite set of examples x1, . . . , xl,

that implicates in a �nite number of distinguishable events.

To complete the set of foundations required for our study, it is given the following

lemma, which de�nes the rate of convergence that connects two relative frequencies2:

Lemma 5.3. [Vap98] For any �xed sample size 2l, any �xed function Q (x, α∗), any

ε > 0, and any two randomly chosen half-samples the inequality

P

{
1

l

∣∣∣∣∣
l∑

i=1

Q (xi, α
∗)−

2l∑
i=l+1

Q (xi, α
∗)

∣∣∣∣∣ > ε

}

≤ 2e−ε
2l (5.6)

holds true. (see Sections 4.5.3 and 4.5.4 of [Vap98]).

2In statistics the relative frequency of an event i is the number of times the event occurred in the
experiment, normalized by the total number of events.
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5.2.2 VC-style analysis on cascade classi�ers

This section starts by introducing the derivation of the upper bound of FP and the

lower bound of TP. These bounds are applied in the derivation of bounds on the BER

and classi�cation risk of cascade classi�ers. The following theorems derive bounds on

FP and TP.

Theorem 5.1. Let l be the cardinality of the training dataset and nn be the number

of negative examples; then, with probability 1 − η, 0 < η < 0.5, the risk for the

function Q (x, αl) which minimizes the functional FPemp = 1
nn

∑nn
i=1 Q (x, αl) satis�es

the inequality

|FP (αl)− FPemp (αl)| ≤
1

nn
+

√
h
(
ln 2l

h
+ 1
)
− ln η

4

nn
(5.7)

where FP (αl) =
∫
Q (x, αl) dF (x) and Q (x, αl) = 1 if x is a false positive, otherwise

Q (x, αl) = 0.

proof. Considering the �xed function Q (x, α∗) and taking into account that the

functional FP is based only on the negative examples, from (5.6), for any �xed sample

size 2l, with 2nn negative examples, and any two randomly chosen half-samples with

the same number of negative examples, the inequality

P

{
1

nn

∣∣∣∣∣
nn∑
i=1

Q (xi, α
∗)−

2nn∑
i=nn+1

Q (xi, α
∗)

∣∣∣∣∣ > ε− 1

nn

}

≤ 2e−(ε− 1
nn

)
2
nn (5.8)

holds true. Therefore, taking into account that the number of events depends on the

sample size, 2l, for the set of indicator functions Q (x, α), α ∈ Λ we have

P

{
1

nn
sup
α∈Λ

∣∣∣∣∣
nn∑
i=1

Q (xi, α)−
2nn∑

i=nn+1

Q (xi, α)

∣∣∣∣∣ > ε− 1

nn

}

≤
∑
α∗∈Λ∗

P

 1

nn

∣∣∣∣∣∣
nn∑
i=1

Q (xi, α
∗)−

2nn∑
i=nn+1

Q (xi, α
∗)

∣∣∣∣∣∣ > ε− 1

nn
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≤ 2N (x1, . . . , x2l) e
−(ε− 1

nn
)

2
nn ≤ 2e

(
G(2l)−(ε− 1

nn
)

2
nn
)

(5.9)

where Λ∗ = Λ∗(x1 . . . , x2l) is the �nite set of distinguishable functions Q(xi, α
∗). The

last inequality of (5.9) came from (5.1).

Combining (5.9) with the statement (5.5) we obtain

P

{
sup
α∈Λ

∣∣∣∣∣E (Q (x, α))− 1

nn

nn∑
i=1

Q (xi, α)

∣∣∣∣∣ > ε

}

≤ 4e

(
G(2l)−(ε− 1

nn
)

2
nn
)
. (5.10)

Doing

η := 4e

(
G(2l)−(ε− 1

nn
)

2
nn
)

(5.11)

and solving (5.11) with respect to ε, yields

ε =
1

nn
+

√
G(2l)− ln η

4

nn
(5.12)

From (5.2) and (5.12), for h < l, we have

ε ≤ 1

nn
+

√
h(ln 2l

h
+ 1)− ln η

4

nn
(5.13)

Rewriting (5.10) as

P

{
sup
α∈Λ

∣∣∣∣∣E (Q (x, α))− 1

nn

nn∑
i=1

Q (xi, α)

∣∣∣∣∣ ≤ ε

}
> 1− η (5.14)

and by substituting (5.13) into (5.14) completes the proof. �

Theorem 5.2. With probability 1−η, 0 < η < 0.5, the risk for the function Q (x, αl)

which maximizes the functional TPemp = 1
np

∑np
i=1Q (x, αl) satis�es the inequality

|TP (αl)− TPemp (αl)| ≤
1

np
+

√
h
(
ln 2l

h
+ 1
)
− ln η

4

np
(5.15)

where TP (αl) =
∫
Q (x, αl) dF (x) and Q (x, αl) = 1 if x is a true positive, otherwise

Q (x, αl) = 0.
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proof. The proof starts by determining the upper bound on the false negative rate

(FN) similarly to the proof of Theorem 5.1. Therefore, the following inequality

|FN (αl)− FNemp (αl)| ≤
1

np
+

√
h
(
ln 2l

h
+ 1
)
− ln η

4

np
(5.16)

holds with probability 1 − η, where np is the number of positive examples. Taking

into account that TP (αl) = 1 − FN (αl) and TPemp (αl) = 1 − FNemp (αl), and

substituting these equations in the left-hand side of (5.16) we prove (5.15). �

Now we have the premises to determine the upper bound on the expected risk,

R(αk), of a k-stage cascade ensemble, according to the following corollary:

Corollary 5.1. Let ntp and ntn be the number of positive and negative occurrences

on the test data, np be the number of positive training examples, n(n,k) be the number

of negative training examples used in the kth stage, lk = np + n(n,k), hk be the VC-

dimension of the kth cascade stage, TP be the true positive rate on the training data,

which is arbitrarily adopted for all the stages, and FP(emp,k) the false positive rate on

the training data for stage k. Then, for a cascade classi�er ensemble with Nc stages,

the upper bound on the expected misclassi�cation risk is given by the inequality

R(αk) ≤
emax

(ntp + ntn)
, (5.17)

where

emax = ntp

(
1−

Nc∏
k=1

min (TPk)

)
+ ntn

Nc∏
k=1

max (FPk) , (5.18)

max (FPk) = FP(emp,k) +
1

n(n,k)

+

√
hk
(
ln 2lk

h
+ 1
)
− ln η

4

n(n,k)

(5.19)

and

min (TPk) = TP − 1

np
−

√
hk
(
ln 2lk

h
+ 1
)
− ln η

4

np
(5.20)

with probability 1− η, 0 < η < 0.5.
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proof. The bounds (5.20) and (5.19) are derived directly from Theorems 5.1 and 5.2,

respectively. The stages of a cascade classi�er are subject to two kind of errors: false

negatives and false positives. If a false negative occurs in the current stage, it cannot

be reverted by the next stages; however, false positives can be detected by the other

stages, excepting if it occurs in the last stage. The �rst parcel of (5.18) computes the

upper bound on the number of false negatives which occur in all the stages and the

second parcel gives the upper bound on the number of false positives that pass by all

the stages. �

5.2.3 Theoretical implications

The next step is to derive the number of classi�er stages, N∗c , that minimizes the

upper bound on the expected risk. The following corollary is derived from Corollary

5.1.

Corollary 5.2. Let F̄P and ¯TP be the geometric means of max (FPk) and

min (TPk) on all the stages, according to

F̄P =

(
Nc∏
k=1

max (FPk)

)1/Nc

(5.21)

and

¯TP =

(
Nc∏
k=1

min (TPk)

)1/Nc

(5.22)

Then, the number of stages that minimizes the upper bound on the expected risk is the

nearest integer of

N∗c =

ln
(
ntn
ntp

)
+ ln

(
ln(F̄P)
ln( ¯TP)

)
ln
(

¯TP
)
− ln

(
F̄P
) (5.23)

where min (TPk) and max (FPk) are given by (5.20) and (5.19) with probability 1−η,
0 < η < 0.5.
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proof. Equation (5.23) can be obtained by calculating the root of the derivative of

(5.18),
∂emax
∂Nc

= ntn ln
(
F̄P
)
F̄P

Nc − ntp ln
(

¯TP
)

¯TP
Nc , (5.24)

with respect to Nc. �

Corollary 5.3. For a cascade classi�er ensemble with Nc stages, the upper bound

on the expected BER is given by the inequality

BER(αk) ≤
1

2

(
1−

Nc∏
k=1

min (TPk)

)
+

1

2

Nc∏
k=1

max (FPk) , (5.25)

where min (TPk) and max (FPk) are given by (5.20) and (5.19) with probability 1−η,
0 < η < 0.5.

proof. This corollary is proved similarly to Corollary 5.1. �

Notice that, by substituting ntn = ntp = 0.5 in (5.18) we obtain (5.25). Therefore, by

substituting ntn = ntp = 0.5 in (5.23) we obtain the number of stages that minimizes

the upper bound on the expected BER, which is the nearest integer of

N∗∗c =

ln

(
ln(F̄P)
ln( ¯TP)

)
ln
(

¯TP
)
− ln

(
F̄P
) (5.26)

As a prelude for analyzing the real experiments in pedestrian detection, which de-

mands a large computational time, a graphical representation of (5.23) was generated,

in order to support preliminary qualitative analysis. Figs. 5.3 and 5.4 are a kind of

4D-graphs where the color indicates the upper bound on the expected error, calcu-

lated according to (5.18) (the red color indicates high error, while blue indicates low

error). The x-axis indicates the geometric mean of the lower bound on TP , while

the y-axis indicates the geometric mean of the upper bound on FP . The z-axis in-

dicates the value of N∗c , calculated according to (5.23). Fig. 5.3 illustrates the ratio

ntn/n
t
p = 1, while Fig. 5.4 illustrates the ratio ntn/n

t
p = 70000.

These �gures help us to highlight some facts regarding the theoretical analysis:
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Figure 5.3: Optimal number of stages with ntn/n
t
p = 1 (gmean means geometric

mean).

1. By analysing the colors of Figs. 5.3 and 5.4 it is possible to conclude that,

if the TP is mantained high, high values of FP can be partialy decreased by

increasing the number of stages, i.e., this kind of classi�er ensemble is more

sensitive to TP than FP, as already expected. Therefore, as usual in previous

works, the classi�er threshold has to be adjusted in such a way as to enable

high TP on the training data set. However, this approach does not assure high

TP on the testing dataset, which depends on the number of positive training

data, as stated in (5.20);

2. If the number of stages is smaler than N∗c , some false positives are not detected,

which increases the total error. However, if the number of stages is bigger than

N∗c , the error also increases due to the false negatives (i.e. missing) accumulated

along the stages;



5.2. UPPER BOUND ON THE EXPECTED RISK OF CASCADE
CLASSIFIERS 63

0.7
0.75

0.8
0.85

0.9
0.95

1

0

0.1

0.2

0.3

0.4
2

4

6

8

10

12

14

min(TP)

Nc*

gmean(max(FP))

Figure 5.4: Optimal number of stages with ntn/n
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p = 70000 (gmean means geometric

mean).

3. By observing the �rst term in the numerator of (5.23) it is possible to reason that

the larger the ratio ntn/n
t
p, the larger N

∗
c , what enables a good performance even

under a high FP. Taking into account that pedestrian detection applications

have high ratio ntn/n
t
p, it is possible to understand why cascade ensembles are

a favorable choice in such kind of applications;

4. When ntn/n
t
p is small, a single classi�er may be a better option than a cascade

ensemble. Note that Fig. 5.3 has a triangular plateau where the optimal number

of classi�ers is one, i.e. in this region a single classi�er is a better option than

a cascade classi�er.
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5.3 SRM-cascade

This section exploits the previous theoretical analysis aiming at the application of

the SRM principle in the training of cascade classi�ers. This work deals with cascade

ensembles composed by linear classi�ers, since such model o�er a good opportunity

to apply SRM schemes, because their VC dimension can be precisely determined,

enabling the perfect control on the classi�er complexity and, consequently, a better

control on the upper bound on the expected risk. Namely, in case of usual linear

classi�ers, VC dimension= N + 1, where N is the number of features. However,

because this work also applies linear SVMs, this value will be used as an upper

bound, since the VC dimension of SVM is limited by the margin constraints, i.e. in

case of linear SVM we have VC dimension ≤ N + 1.

SRM is an inductive principle for model selection introduced by Vapnik [Vap98].

It describes a general model of capacity control that optimizes a tradeo� between

the quality of the approximation and the hypothesis space complexity, e.g. the VC

dimension. The SRM principle can be justi�ed by considering the inequality (4.25).

Namely, as the VC dimension, h, increases, the minima of empirical risk are decreased;

however, the term responsible for the con�dence interval, i.e. the second parcel of

(4.25), is increased. Fig. 5.5 illustrates a real world example of the tradeo� between

the quality of the approximation and the hypothesis space complexity. Namely, this

�gure illustrates the empirical risk, the con�dence interval given by the second parcel

of (4.25), and the sum of both terms, i.e. the upper bound on the expected risk,

of a linear SVM applied to the Daimler Pedestrian Classi�cation benchmark dataset

[MG06]. This example is based on the worst case, i.e. it considers the VC dimension

as the feature space dimension plus one.

The SRM procedure divides the class of functions into a hierarchy of nested subsets

in order of increasing complexity, which in our case is related to linear models work-

ing in feature spaces of increasing dimensionalities. Then it performs empirical risk

minimization on each subset and selects the model whose sum of empirical risk and

the con�dence interval, given by the second parcel of (4.25), is minimal; i.e. it selects

the model whose upper bound (4.25) is minimal. In case of SRM-cascade the scheme

of Fig.5.2 has the number of features, Nk, in each stage k choosen through the appli-

cation of the SRM procedure at each stage independently; however, the the choice of

the number of stages, Nc, is based on Corollary 5.1, as summarized in Algorithm 8.
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Figure 5.5: Example of empirical risk, con�dence interval, and upper bound on the
expected risk of a linear SVM applied to the Daimler Pedestrian Classi�cation dataset.

For each stage k an iterative process is applied to determine the optimal number

of features (see steps 8 to 25 of Algorithm 8), which in our context is the number

of features that results on the minimal upper bound on the expected risk, de�ned

by Theorem 4.1. Therefore, a feature selection algorithm, such as Algorithm 1, is

applied recursively, in order to select di�erent numbers of features (step 9), composing

di�erent training sets, S(N,n). The bigger the number of features, N , the bigger the

linear classi�er complexity. The ensemble stages are recursively trained in such a

way to obtain the desired TP (steps 13 to 16). The trained stage is applied to the

training data , in order to obtain the empirical risk, Remp (α) (step 15). Then, R (α)

is computed by replacing the number of training data, l, and the upper bound on the

VC-dimension of the SVM, h = N + 1, in (4.25) (step 18). The composition selected

features+classi�er with the smallest R (α) is chosen to compose the current ensemble

stage (steps 19 to 24). Then, the upper bound on the expected risk of the entire
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ensemble, R (αk), is evaluated by applying (5.17). If R (αk) increases, the training

stops and the current stage is discarded (steps 26 to 35).

As can be seen in Fig. 5.2, excepting the �rst stage, each stage is trained by using

a dataset which was generated by the previous stages (steps 32 and 33). Namely,

the training set which is used in the current stage k is composed by all the positives

training examples and the false positives not rejected by the previous stages (1, . . . , k−
1).

5.4 Weighted Error Rate Minimization

In this section it is proposed a new training method for linear classi�ers, named

weighted error rate minimization (WERM), which enables the control of the ratio

between TP and FP during the training.

As can be inferred from (5.18), if the TP is maintained high, high values of FP

can be partially decreased by increasing the number of stages. Therefore, as usual in

previous works, the classi�er must be adjusted in such a way as to enable high TP

on the training dataset. However, this approach does not assure high TP on the test

dataset, which depends on the number of positive training data as well as the dataset

cardinality. Taking into account that l = nn + np, it is possible to state that the

larger the number of negative examples, the smaller the lower bound on the expected

TP, since l is in the numerator of the right-hand side of (5.15). Therefore, the more

unbalanced the dataset, i.e. the larger is the ratio nn/np, the more important is to

sustain high TP on the training dataset.

The usual approach to achieve high TP is to adjust the classi�er threshold, i.e. the

bias, after the training. However, this approach can be improved by adjusting all the

classi�er parameters (not only the bias), in such a way as to achieve the intended TP,

without a�ecting the overall classi�er performance.

The idea is to solve the unconstrained optimization problem:

min
w,b

J =
k

np

np∑
i=1

(
1− ŷ(i,p)

)2
+

1

nn

nn∑
j=1

(
−1− ŷ(j,n)

)2
, (5.27)

where

ŷ(i,p) = wTx(i,p) + b, (5.28)
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ŷ(j,n) = wTx(j,n) + b, (5.29)

x(i,p) is the i
th positive training example, x(j,n) is the j

th negative training example,

and k > 1 is a hyperparameter that weights the �rst parcel. Notice that, minimizing

the �rst parcel is equivalent to minimize the FN, while minimizing the second parcel

is equivalent to minimize the FP; therefore, the bigger k, the smaller will be the FN

after the minimization of J .

The classi�er is trained iteratively; the algorithm starts with k = 1, at each it-

eration the value of the hiperparameter k is increased by a constant amount, then

the optimization problem (5.27) is solved and the obtained parameters w and b are

applied to evaluate the TP. This process continues until the desired TP is reached.

The optimization problem (5.27) requires to solve the system of equations ∂J
∂w

= 0

and ∂J
∂b

= 0 with respect to w and b, which yields:

wT =

(
c1 − c2 +

c6c3

c5

)
c−1

4

(
I(n×n) −

cT3 c3

c5

c−1
4

)−1

(5.30)

and

b =
−c6 − wT cT3

c5

, (5.31)

where

c1 =
2k

np

np∑
i=1

xT(i,p), (5.32)

c2 =
2

nn

nn∑
j=1

xT(j,n), (5.33)

c3 = c1 + c2, (5.34)

c4 =
2k

np

np∑
i=1

x(i,p)x
T
(i,p) +

2

nn

nn∑
j=1

x(j,n)x
T
(j,n), (5.35)

c5 = 2 (k + 1) , (5.36)

c6 = 2 (1− k) (5.37)
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Algorithm 8 SRM-cascade training

Input: TPdes, Sneg =
{
x(neg,1), . . . , x(neg,nn)

}
, Spos =

{
x(pos,1), . . . , x(pos,np)

}
, Nc: adopted TP ,

sets of negative and positive nf -dimensional training examples, and number of cascade stages
respectively;

Output: {w∗k}, {b∗k}, and {s∗k}: sets of classi�er parameters and set of vectors with the indexes of
the selected features for each stage k, respectively;

1: k ← 1: where k is the stage index;
2: Sk ← Sneg ∪ Spos;
3: step← increment in the number of features;
4: R∗

all ← 1: upper bound on expected risk of the entire ensemble;
5: flag ← 0;
6: while flag = 0: loop over the stages; do
7: R∗ ← 1: upper bound on expected risk of the current stage;
8: for N = 1 : step : nf do
9: select a set of N of the nf features by applying a feature selector method [LN10] to the Sk

dataset, and compose the training dataset S(k,N), whose exemplars are obtained from the
exemplars of Sk by retaining only the N selected features;

10: store the indexes of the selected features in vector s;
11: apply S(k,N) and Ltrain to train a linear SVM or WERM, in order to obtain the classi�er

parameters w(k,N) and b(k,N);
12: apply S(k,N), Ltrain, w(k,N), and b(k,N) to compute Remp (α) and TP ;
13: while TP < TPdes do
14: b(k,N) ← b(k,N)+0.05: increasing the bias (or k in the case of WERM) in order to increase

the TP ;
15: recalculate TP and the empirical risk, Remp, from S(k,N) and Ltrain, using the learned

classi�er model with the current bias b(k,N);
16: end while
17: h← N + 1: VC-dimension of the current classi�er;
18: replace l = |S(k,N)|, Remp, and h in (4.25), in order to obtain the expected risk R (α);
19: if R (α) < R∗ then
20: R∗ ← R (α);
21: w∗k ← w(N,k);
22: b∗k ← b(N,k);
23: s∗k ← s; // feature indexes
24: end if
25: end for
26: calculate the upper bound on expected risk of the entire ensemble, R (αk), by applying (5.17);
27: if R (αk) ≥ R∗

all then
28: flag ← 1: stopping training;
29: k ← k − 1: discarding the current stage (making the previous stage as the last cascade

stage);
30: else
31: R∗

all ← R (αk);
32: scan the current training dataset, Sk, by using the current cascade stage, i.e. using the

classi�er with parameters w∗k, b
∗
k, and the set of features s∗k, in order to collect a set of false

positive occurrences, SFP ;
33: Sk+1 ← SFP ∪ Spos: composing the dataset for the next stage;
34: k ← k + 1: increasing the stage index;
35: end if
36: end while



Chapter 6

Experiments on Pedestrian Detection

and Classi�cation

FOR evaluating the performance of the proposed methods, two kind of prob-

lems are considered: pedestrian classi�cation and pedestrian detection. The

�rst problem is approached by applying a MLP on a balanced dataset: the Daimler

Pedestrian Classi�cation benchmark [MG06]. The second problem, pedestrian detec-

tion, is approached by applying a cascade classi�er on the Laser and Image Pedestrian

Detection (LIPD) dataset [LPNR11], a highly unbalanced dataset.

6.1 Image descriptors

The experiments performed in this work apply two image descriptors: histogram of

oriented gradients (HOG) [DT05] and covariance features (COV) [TPM06], [TPM07].

The COV descriptor applied in this work computes four sub-regions within a region

R, which represents the area of a cropped image. Each sub-region overlaps half of

its area. Let I be the input image matrix, and zp the corresponding d-dimensional

feature vector calculated for each pixel p:

zp =

[
x, y, |Ix| , |Iy| ,

√
I2
x + I2

y , |Ixx| , |Iyy| , arctan
|Iy|
|Ix|

]
(6.1)

where x and y are the pixel p coordinates, Ix and Iy are the �rst order intensity deriva-

tives regarding to x and y respectively, Ixx and Iyy are the second order derivatives,

69
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and the last term in (6.1) is the edge orientation. For the ith rectangular sub-region

Ri, the covariance matrix CRi is expressed by

CRi =
1

Ni − 1

Ni∑
p=1

(zp − µi)(zp − µi)T (6.2)

where µi is the statistical mean of zp over the i
th sub-region Ri and Ni is the number

of pixels in Ri. Notice that, due to the symmetry of CRi , only the upper triangle

part need to be stored, hence the covariance descriptor of a sub-region is an 8 × 8

matrix. The features of the whole region R are also calculated, therefore a feature

vector with 180 features is generated, i.e. 4 sub-regions Ri, totalizing 144 features,

plus 36 features of the whole region R.

Regarding the HOG descriptor, the histogram channels were calculated over rect-

angular cells (i.e. R-HOG) by the computation of unsigned gradient. The cells

overlap half of their area, meaning that each cell contributes more than once to the

�nal feature vector. In order to account for changes in illumination and contrast,

the gradient strengths were locally normalized, i.e. normalized over each cell. The

HOG parameters were adopted after a set of experiments performed over the training

dataset. The better accuracy was achieved by means of 9 rectangular cells and 9 bin

histogram per cell. The nine histograms with nine bins were then concatenated to

make a 81-dimensional feature vector. The Matlab source code of the HOG descriptor

applied in this experiment was made available for download at Matlabcentral1.

6.2 Experiments on pedestrian classi�cation

In this section the contributions introduced in Chapter 4 and part of the contributions

of Chapters 3 and 5 are evaluated. Namely, the Daimler Pedestrian Classi�cation

dataset [MG06] is used to evaluate the training method for linear classi�ers, WERM,

and all the MLP training methods proposed in Chapter 4.

From the Daimler Pedestrian Classi�cation dataset were extracted HOG and COV

features. The experiments with MLPs made use of HOG features, while the experi-

ments with WERM made use of both HOG and COV features, since such experiment

apply a boosted cascade classi�er, which demands a large amount of features.

1http://www.mathworks.com/matlabcentral/�leexchange/28689-hog-descriptor-for-matlab
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6.2.1 Evaluating the proposed training methods for MLP

In this sub-section the proposed MLP training methods are evaluated. The MLP

architecture was chosen by means of 5-fold cross validation on the training dataset.

After such procedure, it was addopted an MLP architecture with 20 hidden neurons

for all the training methods, excepting for the RNN. The RNN was composed by

four MLPs, which were previously trained by GDX, MMGDX, SVNN, and TNN,

in order to improve the diversity of behaviours among the neural subsystems, as

suggested by Corollary 4.1, which is based on the assumption that the distribution

of the error among the neural subsystems is independent. All the subsystems have

20 hidden neurons, therefore, the RNN is homogeneous, according to the assumption

of Corollary 4.1. Since the Daimler dataset has large cardinality, the computational

e�ort was high for all the proposed training methods. The following paragraphs report

the speci�cities of each training method.

The MMGDX had to be applied iteratively by changing the Lp-norm, from smaller

to larger p, in order to avoid optimization problems that usually occur when using

high Lp-norms on large datasets. The training started with the L4-norm, followed

by other 4 training stages with the norms L8, L10, L12, and L14. The training was

performed with 4000 epochs per stage, using α = 10−3 and β = 10−4. The total

CPU time was around 28 hours. The amount of memory required by MMGDX was

small when compared with SVM-RBF, which was time- and space-consuming when

running on the Daimler dataset.

In the case of SVNN the training was split into two stages, in order to deal

with memory constraints. In the �rst stage the GA parameters were set as a = 6,

maxgener = 40, Npop = 10000. In order to re�ne the search, the second stage started

by seeding an individual, composed by the MLP parameters obtained in the �rst

stage, in the initial GA population. In the second stage the GA parameters were

set as a = 4, maxgener = 20, Npop = 5000. The idea is to avoid a large number of

individuals, i.e. to save memory. The parameter of SVNN objective function was set

as C = 104 and the total CPU time was around 64 hours.

The TNN parameters were set as C1 = 7 × 103, C2 = 3 × 103, C3 = 0. The MLP

parameters obtained by SVNN were used to compose a chromossome that was seeded

in the initial GA population, in order to speed up the TNN algorithm convergence.
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Figure 6.1: ROC curves relative to the proposed MLP training methods applied to
the Daimler Pedestrian Classi�cation dataset.

The GA parameters were set as a = 6, maxgener = 20, Npop = 7000. The total CPU

time was around 33 hours.

Figure 6.1 illustrates the ROC curves of all the proposed methods plus the ROC

curve of GDX, while Table 6.1 summarizes the performance indexes of all the training

methods plus the performance indexes of SVM with RBF kernel [LDGN09]. The

RNN had the best performance indexes, excepting for the AUC. Notice that, due to

the step-like activation function, the RNN output is quantized in �ve discrete levels,

since such model is composed by four neural subsystems. Therefore, as can be seen

in Figure 6.1, the ROC curve can only have six points, which limits the AUC.

Another interesting fact is the relationship between the accuracies on the training

and testing datasets in the case of SVNN and TNN. Note that due to the regulariza-

tion and the margin constraints the NN cannot �t well the training dataset; however,

the large margin leads to a better performance on the testing dataset; specially in the

case of TNN, since this alghorithm also takes into account margin constraints on the
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Table 6.1: Performance indexes on Daimler dataset

method acctrain acctest TP FP BER AUC

GDX 0.9070 0.8628 0.8792 0.1530 0.1369 0.9373

MMGDX 0.9077 0.8788 0.8902 0.1322 0.1210 0.9515

SVNN 0.8971 0.8965 0.9065 0.1130 0.1033 0.9613

TNN 0.8818 0.9089 0.9171 0.0990 0.0910 0.9704

RNN 0.9557 0.9369 0.9382 0.0643 0.0631 0.9506

SVM-RBF - 0.8828 0.9019 0.1356 0.1168 0.9543

Table 6.2: Number of calculations per input data

classi�er model # sum # product # nonlinear funct. Equation

MMGDX/SVNN/TNN 1661 1640 20 (4.3)

RNN 6648 6564 84 (4.22)

SVM-RBF 344646 348849 4203 (4.49)

testing dataset.

Regarding the computational e�ort in classifying images, the neural models were

quite less expensive than the SVM-RBF, since the trained SVM-RBF has 4203 sup-

port vectors. Table 6.2 presents the number of calculations required to classify a

81-dimensional input data (features HOG) for each model, with the last column in-

dicating the classi�er model.

Note that GDX, MMGDX, SVNN, and TNN have 20 hidden neurons, while RNN

has 80 neurons in the �rst hidden layer and 4 neurons in the second hidden layer. As

can be seen in Table 6.2, the computational cost of the SVM-RBF hinders on-the-�y

applications.

6.2.2 Evaluating WERM

The experiment reported in this sub-section uses the Daimler Pedestrian Classi�cation

dataset to evaluate WERM and SVM in the training of linear classi�ers. The results

are illustrated in Fig.6.2 in the form of two ROC curves. The blue curve was obtained

by repeating the WERM training with di�erent values of the hyperparameter k, see
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Figure 6.2: ROC curves resulting from the application of a linear model on the
Daimler dataset. The blue curve was obtained by repeating the WERM training
with di�erent values of the hyperparameter k, while the red curve was obtained by
varying the threshold after a single training with SVM.

(5.27), while the red curve was obtained by varying the threshold, i.e. the parameter

b of (4.49), after a single training with SVM. The idea is to allow a comparative

analysis of their behaviors for high values of TP, as required in the training of cascade

classi�ers. In order to reproduce the usual conditions in the training of cascade

classi�ers, both methods make use of only 20 features, selected from the set of 261

features generated from HOG and COV descriptors by using the feature selector

introduced in Chapter 3.

Notice that, in spite of the slightly better performance of SVM for the threshold = 0,

i.e. the performance for the value of b that �ts the objective function and constraints

of the SVM training, WERM presents better performance when both methods are

forced to improve the TP. For instance, for TP = 0.98, SVM has FP = 0.54, while

WERM has FP = 0.46, which seems to be a suitable value for only 20 features. This

low FP makes possible to decrease the number of cascade stages, which decreases the
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computational cost.

6.3 Experiments on pedestrian detection

Pedestrian protection systems can be divided, in general, in two �elds of research:

passive and active safety systems [GT07]. Active safety systems, which is of interest

here, are based on pedestrian detection using sensors on-board the vehicle, and/or on

the infrastructure, with the role of predicting and anticipating possible risks of colli-

sion. In particular, active pedestrian detection systems using on-board laserscanner

and monocular camera will be emphasized in these experiments. More speci�cally,

this experimental evaluation is focused on cascade ensembles of SVMs designed to

detect pedestrian evidences inside ROIs generated by a laserscanner-based processing

module. The proposed cascades, involving a series of SVMs, perform direct negative

rejection in each stage, with the purpose of reducing the number of negatives and

the computational time in the subsequent stages, which is of particular importance

in pedestrian detection, since a key problem in monocular image-based pedestrian

detection, namely in the �eld of Advanced Driver Assistance Systems (ADAS) appli-

cations, is the huge amount of negatives (potential false alarms) in contrast with the

number of positives, which demands a vast processing time consumption and a high

con�dence detector.

6.3.1 The LIPD dataset

The LIPD dataset [PLN09a], which was collected, labeled, and arranged by our col-

league Cristiano Premebida, contains, besides images from a monocular camera and

scans from a 4-layers laserscanner, data from two proprioceptive sensors, an IMU

and an incremental encoder, in conjunction with DGPS and battery-bank state data

(terminal voltage, current and temperature). The dataset was recorded using the sen-

sor system mounted on the ISRobotCar (autonomous electric vehicle with a chassis

from Yamaha Europe and control systems developed in the Institute for Systems and

Robotics of Coimbra University), see Fig. 6.3.
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Sensors specifications:

LIDAR: Ibeo (Alasca XT model)
Vert. Res.: 4 layers, [1.6:0.8:1.6°]
Used freq: 12.5 Hz
Range: 0.3 – 200m
used FOV: 120°

Camera: FireWire Allied (Guppy)
Sensor: CCD (Bayercolor format)
Lens: 6.5 mm (CSmount)
Resolution: 640x480 (@30fps)
FOV: 66 x 44 (horiz. x vert.)

Figure 6.3: ISRobotCar: a electric vehicle and its sensors setup, enlarged at the
bottom-right part, used in the dataset collection. A short speci�cation of the sensors
are presented at the top-right side of the �gure.

The ISRobotCar was driven through areas of the engineering campus of the Uni-

versity of Coimbra and neighboring areas2. Table 6.3 outlines the sensors and their

manufacturers, the data communication interface protocols, and the frequency of data

acquisition used to record the dataset in a host PC.

Table 6.3: LIPD dataset: sensors, interfaces and used acquisition frequency

Sensor Manufacturer Interface Acquisition rate

LIDAR (Alasca-XT) Ibeo Ethernet 12.5Hz
Camera (Guppy) Allied FireWire 30fps
IMU XSens USB 120Hz
DGPS TopCon USB 5Hz
Encoder and batteries - USB 10Hz

The manual labeling process, inherent to any supervised dataset, was carried out

using the image frames as primary reference for pedestrian and non-pedestrians an-

notation. The labeled segments, extracted from raw data laser-scans, were validated

using the corresponding image frame (for ground truth con�rmation). All the samples

of interest were labeled under user supervision.

2http://www.isr.uc.pt/cpremebida/PoloII-Google-map.pdf
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Figure 6.4: Laser-based ROI projections in an image frame, with clusters of range
points in the left part and their projections in the image frame, represented by dashed
regions.

In summary, the LIPD dataset comprises a training dataset, (Dtrain) and a testing

dataset, Dtest. Dtrain is used to train the classi�er parameters and also to perform

cross-validation and feature selection, while Dtest is used to evaluate the performance

of the proposed techniques. The training dataset contains 5237 positive occurrences

composed by laser-segments and ROIs (see Fig. 6.4), i.e. cropped images of pedes-

trians, and 6328 full-frames of 640x480 resolution images without any pedestrian evi-

dence, i.e. a free-number of negative ROIs can be extracted from such negative frames

by using a sliding window. The testing dataset contains 4823 full-frame of 640x480

resolution images with detailed annotations regarding the pedestrian appearance, in

terms of occlusion [EG09], more speci�cally, occluded/partial pedestrians are labeled

as class type 0, while entire body pedestrians are labeled as class type 1.

De�nition 6.1. a positive sample is de�ned by an entire body pedestrian (PED)

present in both the camera and laser �eld of view (FOV). A negative sample is de�ned

by any other object (nPED) present in the FOV of both sensors, while an occluded

pedestrian denotes a partial occluded PED.

De�nition 6.2. ROIs are projections of laser-segment returns onto the image, de�ned

considering the extremes of a segment rather than individual laser-points. The ROIs
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Figure 6.5: Pedestrian detection architecture illustrating the main processing modules
in the laserscanner and Image-based systems [PLN09a].

coordinates are calculated under the assumption of �at surface, knowing the distance

of the laser setup from the ground and considering the maximum height of the objects

as 2.5m.

6.3.2 Method to de�ne ROIs in the image

A key problem in monocular image-based pedestrian detection is the huge amount of

negatives in contrast with the number of positives, what demands a vast processing

time consumption and a high con�dence detector. An usual solution adopted to

avoid using brute-force multiscale sliding windows approach is to combine, in a sensor

fusion architecture, the image-based sensors with active sensors like laserscanners.

Therefore, in this work the laserscanner acting as a primary object detection sub-

system, where each detected object, represented by its laser-segments, constitutes a

hypothesis of being a positive or a negative. The laser-segments are projected in

the image plane, generating regions of interest, ROIs, which are scanned by a sliding

window, as illustrated in Fig. 6.5.

The principal processing modules of our pedestrian detection system are described

below3:

1. Laserscanner-data processing: a module comprising a set of data processing

tasks that decrease complexity and processing time of subsequent stages, such

as: �ltering-out isolated/spurious range-points, discarding measurements that

3Details about the processing modules used in this work are given in [PLN09b].
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occur out a prede�ned FOV, and data alignment;

2. Laserscanner segmentation: this module outputs a set of segments obtained by

a range-data segmentation method applied per laserscanner layer, which are

then combined;

3. Coordinate transformation: a module that performs a set of rigid coordinate

transformations, obtained by system calibration [ZP04], to project laser-segments

into the image plane. This module outputs a set of ROIs;

4. Cascade detection: this module combines HOG and COV descriptors with a

cascade of SVMs, aiming at detecting potential pedestrians inside the ROIs, by

using a sliding window.

The number of window detectors, used to scan the ROIs in searching for pedestrian

evidence, is limited and it is de�ned by the size of the ROI. These window detectors

are shifted by horizontal and vertical step factors, and the window scale is estimated

using the depth information provided by the ROIs, i.e. laserscanner measurements are

also used for scale estimation. This approach decreases the computational processing

time, restricting the areas of interest in the image, at most, a dozen ROIs, keeping the

false positives at low values. For instance, the number of window detectors generated

by this laserscanner-based approach is, in average, thousands times lower than the

usual full-scanning image approach.

6.3.3 Training data selection

Image-based pedestrian detection using multi-scale sliding window approach demands

a large computational e�ort, and faces a very unbalanced number of negatives nn

against the positives np, i.e. np � nn. To avoid bias problems and unfeasible compu-

tational requirements in such large unbalanced datasets, a under-sampling algorithm

is desirable [KC06]. In order to preserve the information which is relevant to compute

the classi�er separating hypersurface and, at the same time, to reduce the training

dataset cardinality, it is applied a SVM-based data selection (under-sampling) algo-

rithm, developed by our collegue Cristiano Premebida [LPNA11], which is inspired in

the parallel SVM architecture introduced in [GCB+04]. In short terms, the data re-

sampling algorithm applied in this work selects, from the negative training set (Sneg),
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a set of instances which correspond to support vectors (SSV).

Given the initial training set Sneg, with nn negative training examples, our under-

sampling algorithm selects ns instances which correspond to the support vectors of

Sneg. The �rst step of the resampling algorithm is to split Sneg in nS subsets Si ⊂
Sneg, i = 1, · · · , nS; further, for each subset Si, a SVM classi�er is used to extract the

support vectors which will be used to compose a set of negative support vectors, SSV .

Thus, each ith-SVM is trained with a subset comprising np positives and
nn
nS

negatives.

The �nal step is to aggregate all the negative support vectors obtained from the nS

SVMs. Lastly, the �nal training set, S is composed by aggregating the selected

negative support vectors, SSV , and the np positive examples, i.e. S = SSV ∪ Spos.

6.3.4 SRM-cascade training

This sub-section describes the application of the proposed SRM-cascade in pedestrian

detection using the LIPD dataset, which requires the pre-processing of image frames

before applying Algorithm 8. The training process starts by collecting approximately

1.8 × 107 non-pedestrians samples by using a multiscale sliding window approach

inside regions of interest (ROIs), which are de�ned by a laserscanner-based detection

system on the 6328 full-frames without pedestrians of the training dataset, see step

1 of Algorithm 9. From each cropped image a set of features are extracted by using

two image descriptors: HOG and COV (step 2 and 3). Then, the data selector

described in Section 6.3.3 is employed to reduce the number of negative examples

from approximately 1.8 × 107 to 151528 (step 4). Finally, the cascade training is

carried out by using 151528 non-pedestrian examples and 5237 pedestrian examples

(step 5). Fig. 6.6 details the training dataset composition.

As detailed in Algorithm 8 in Section 5, for each stage k an iterative process is

applied, in order to determine the optimal number of features that in our context is

the number of features for which results the minimal upper bound on the expected

risk. Therefore, the feature selector is applied iteratively, in order to select di�erent

numbers of features, N , from both HOG and COV descriptors. These data compose

di�erent training sets, S(N,n). The ensemble stages are trained in order to obtain

the empirical risk, Remp (α). Then, the expected risk, R (α), is computed by (4.25),

setting the number of training data, l, and the upper bound on the VC-dimension
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Figure 6.6: Training dataset composition.

Algorithm 9 Training the SRM cascade by using the LIPD dataset

Input: Dtrain = Dpos ∪ Dneg, Nc, and TPdes: training dataset with cropped images of pedestri-
ans (Dpos) and frames without pedestrians (Dneg), number of cascade stages, and desired TP
respectively;

Output: {w∗n}, {b∗n}, and {s∗n}: sets of SVM parameters and set of vectors with the indexes of the
selected features for each stage n, respectively;

1: collect non-pedestrians samples from Dneg, by using sliding window approach, in order to com-
pose a training dataset with cropped images of non-pedestrians D∗neg;

2: extract nf HOG and COV features from Dpos, in order to generate the training dataset Spos of
nf -dimensional exemplars;

3: extract nf HOG and COV features from D∗neg, in order to generate the training dataset Sall
neg of

nf -dimensional exemplars;
4: apply the data selector described in Section 6.3.3 on Sall

neg and Spos, in order to generate the
smaller dataset Sneg;

5: apply Sneg and Spos to Algorithm 8;

of the SVM space, h = N + 1. The composition selected features+SVM with the

smallest R (α) is chosen to compose the current ensemble stage. The training stops

when the upper bound on the expected risk of the entire ensemble, given by (5.17),

does not decrease.

6.3.5 Scanning settings

Since we have the ground truth of our testing dataset, it is possible to calculate the

performance indexes of the proposed cascade ensemble, and consequently to empiri-

cally evaluate our theoretical analysis.
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The sliding window parameters used in the testing followed the setting S4, from

[EG09]: spatial stride (∆x = 0.1,∆y = 0.025) and scale step ∆s = 1.25. The samples

were extracted from the ROIs projections instead of the whole image.

In our experiments a miss is computed when a pedestrian (class 1) is not detected,

and a false positive occurs when an area with no label is detected. The methodology

used to assess the detection performance of the cascade is similar to the one described

in [EG09]: the matching criterion is based on the intersection area, in pixels, between a

window detector and the ground-truth bounding-box; if the area of a window detector

covers more than 25% of the area of a ground-truth event, then a TP is considered.

Moreover, a nonmaximum suppression method [Dal06] is used to discard overlapping

detections, i.e. detections at close locations. Thus, from the set of windows containing

detected objects with a ratio of intersection area above 0.6 it is retained the detection

with the greatest con�dence and the remaining are discarded.

6.3.6 Evaluating the SRM-cascade

For the purpose of comparison, we made experiments with SRM-cascade and boosted

cascade [VJ01] using the LIPD dataset. The boosted cascade applied in our experi-

ments follows the de�nitions of our previous work [LPNA11]. The results were ploted

as a function of the number of stages, Nc, in order to verify the e�cience of Corollary

5.1 in forecasting the optimal number of cascade stages, in SRM sense, i.e. the idea

is to verify the contribution of (5.17) in the application of SRM principle to cascade

classi�ers.

The experimental results with SRM-cascade are summarized in four graphics,

shown in Figures 6.7, 6.8, 6.9, and 6.10, with the following metrics: risk on test-

ing dataset (R), BER, FP, and TP. These metrics were evaluated for an arbitrary

TP of 0.98. Concerning the experiments on the training dataset, the aforementioned

metrics are denoted in the graphics as: Remp, BERtrain, TPemp, and FPemp, while

the results on the testing dataset are denoted as: Rtest, BERtest, TPtest, and FPtest.

Figures 6.11 and 6.12 show the results of SRM-cascade and boosted cascade [VJ01]

applied to LIPD dataset, respectively.

Regarding the training, the SRM-cascade presented its lowest value of empirical
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risk, Remp = 0.2592, at Nc = 17 and its lowest value of BER, BERtrain = 0.2569,

at Nc = 14, while the boosted cascade presented its lowest value of empirical risk

,Remp = 0.3061, at Nc=12 and the its lowest value of BER, BERtrain = 0.2569 at

Nc=12. Regarding the testing, the SRM-cascade presented its lowest value of risk,

Rtest = 0.0327, at Nc = 17, more speci�cally, for FPtest=0.0326 and TPtest=0.699.

The upper bound on the expected risk of the entire ensemble, given by (5.17), did

not decrease for Nc > 12, as can be seen in the red curve of Fig. 6.7, which was

ploted by applying (5.17). Therefore, the SRM-based training adopts only 12 stages,

despite the decreasing of the empirical risk along the following stages, as can be seen

in the blue curve of Fig. 6.7. The SRM-cascade with 12 stages showed Rtest = 0.0331,

which is only 0.0004 larger than the risk of the cascade with 17 stages. Therefore,

the SRM-based training avoided the, almost unusefull, computational e�ort related

to the last 5 stages. Moreover, the SRM-cascade presented risk on the testing data

slightly smaller than the risk of the boosted cascade, which was Rtest = 0.0337.

The SRM-cascade also was the best approach in terms of BER, as can be seen by

comparing Figs 6.8 and 6.12; namely, the SRM-cascade presented BERtest = 0.0316

at Nc = 1, while the boosted cascade presented BERtest = 0.0360, also at Nc = 1.

Notice that, BER is not an usual metric for object detection aplications, since FP is

the major concern in such kind of application. Nonetheless, if BER was assumed to

be the stop criterion of the cascade training, the upper bound curve in Fig. 6.8, i.e.

the red curve that was generated through the application of Corollary 5.3, correctly

indicates one single stage (Nc = 1), while the training curve (blue curve in Fig. 6.8)

is still decreasing, which indicates that the empirical risk is not a viable reference for

the optimum number of stages.

The performances of both methods on the testing dataset were better than their

performances on the training dataset, which were even close to the upper bound on

the expected risk (the red curve). This apparently unexpected fact is due to the used

data selection algorithm, which composes a training dataset with hard-negatives, i.e.

non-pedestrian examples quite similar to pedestrian examples, since each one is a

support vector (see Section 6.3.3).
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Figure 6.7: SRM-cascade applied to LIPD dataset: empirical risk (Remp), risk on
the testing dataset (Rtest), and upper bound on the expected risk, as function of Nc.
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Figure 6.8: SRM-cascade applied to LIPD dataset: empirical BER, BER on the
testing dataset, and upper bound on the expected BER, as function of Nc.
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Figure 6.9: SRM-cascade applied to LIPD dataset: TPemp, TPtest, and lower bound
on the expected TP , as function of Nc.
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Figure 6.10: SRM-cascade applied to LIPD dataset: FPemp, FPtest, and upper bound
on the expected FP , as function of Nc.
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Figure 6.11: Boosted cascade applied to LIPD dataset: empirical risk (Remp), risk
on the testing dataset (Rtest), and upper bound on the expected risk, as function of
Nc.
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Figure 6.12: Boosted cascade applied to LIPD dataset: empirical BER, BER on the
testing dataset, and upper bound on the expected BER, as function of Nc.



Chapter 7

Conclusions and discussion

THIS thesis proposes and analyzes di�erent techniques to deal with two types

of datasets: balanced and unbalanced. It was proposed the use of MLP in

approaching balanced datasets and cascade classi�er for unbalanced datasets.

Experiments on a real world benchmark dataset provide evidence of the e�ective-

ness of the proposed MLP training methods regarding accuracy, AUC, and BER; espe-

cially when compared to the usual GDX. An MLP trained by the proposed methods is

a suitable option for a faster non-linear classi�cation, by avoiding the time-consuming

calculation of the decision-function of nonlinear SVMs, which may hinder on-the-�y

applications, as can be seen in Table 6.2 or in Section 4.2 of [EG09]. Moreover, the

experimental results on the Daimler dataset indicate that an MLP trained by SVNN,

TNN, and RNN can outperform the SVM-RBF.

The proposed MLP training methods have time and space complexities O(N), while

usual SVM training algorithms haveO(N3) time andO(N2) space complexities, where

N is the training-dataset cardinality [TKC05]. However, despite the favorable time

complexity, in practice all the proposed MLP training methods were time-consuming

when applied to the Daimler dataset. However, specially in the case of MMGDX,

which has low memory requirements, a second order gradient-based training method

might be a suitable approach in optimizing the objective function (4.17), because

such method may avoid local minima and decrease the CPU time.

The theoretical analysis developed in Section 4.3 led us to propose a new regular-

ization method which aims at increasing the classi�cation margin. This fact allowed

87
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the synthesis of two novel SVM-like training methods for NN, including a transduc-

tive training algorithm. The experiments indicated that, regarding the classi�cation

accuracy, both SVNN and TNN are quite similar; however, algorithms based on trans-

ductive learning, such as TNN, can better take advantage of the unlabeled data when

few labeled data are available.

The theoretical analysis on the proposed redundant training method, RNN, was

validated by the experiments on pedestrian classi�cation, which showed the clear ad-

vantage of this method, which reached an impressive accuracy, specially taking into

account that the MLP applied only HOG features. Moreover, such experimental re-

sult indicates that the variety of training methods for MLP proposed in this thesis is

especially useful in combining MLPs into redundant architectures, since the diversity

of behavior among the neural subsystems leads to larger independence in the distri-

bution of the error among the neural subsystems, which improved the generalization

capability of the RNN.

Regarding object detection, given that such type of application usually generates

highly unbalanced datasets, it was adopted cascade classi�ers, because such type of

classi�er ensemble can quickly process unbalanced data by sequential negative rejec-

tion. However, similarly to other classi�er ensembles, cascade classi�ers are likely to

have high VC dimension, which may lead to over-�tting the training data. Therefore,

this work applies the SRM principle aiming at improving the generalization capacity

of cascade classi�ers by de�ning the number of cascade stages and the number of

features in each stage. To control the number of cascade stages it was required the

derivation of a upper bound on the expected risk of the entire ensemble, which also

yielded a new bound on BER1 that can also be applied in the analysis of single clas-

si�ers, being specially useful in analyzing their performance under high unbalanced

data.

The preliminary results on pedestrian detection, presented in the Chapter 6, indi-

cate that the theoretical framework developed in Section 5.2.2 is useful in applying

the SRM principle on cascade classi�ers, i.e. in our experiments Corollary 5.1 gave

the correct estimate of the optimal2 number of stages, which enables the use of the

entire training dataset, S, in the cascade training, since, di�erently from the boosted

1there are some works in digital signal processing which establish bounds on the bit error rate
(BER), which is di�erent from balanced error rate

2In SRM sense
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cascade, the SRM-cascade does not require a validation dataset to evaluate its gen-

eralization capacity (aiming at avoiding overtraining). However, to enable a fair

comparison of those methods, the SRM-cascade was trained with the same subset

of the training dataset that was used in training the boosted cascade, i.e. without

aggregate the validation data reserved for training the boosted cascade. In this sense,

our theoretical framework also decreases the computational e�ort, which is usually

high in training methods whose stop criterion is based on cross-validation.

The theoretical analysis developed in Section 5.2.3 highlights the trade-o� between

true positive rate and computational e�ort, indicating that the larger the adopted

true positive rate for the cascade stages, the larger is the number of stages and,

consequently, the computational e�ort. Moreover, Corollary 5.2 indicates that, in

case of balanced datasets, a single classi�er may be a better option than a cascade

ensemble (see Fig. 5.3).

As future work we intend to apply other theoretical frameworks, such as Radamacher

complexity [BM03], to derive a tighter upper bound on expected risk of the cascade

ensemble. Moreover, we intend to repeat the experiments aggregating the validation

data in the SRM-cascade training, aiming at a better detection rate.

Despite the limited scope of the case study adopted by this thesis, the empirical

analysis reported here is in accordance with the experimental studies performed on

several benchmark datasets and reported in our works [LN10], [LN11], and [LPNR11].
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