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Summary 
 

Neural stem cells proliferate in the adult central nervous system (CNS) 

in two main regions, the subgranular zone (SGZ) of the dentate gyrus (DG) of 

the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. 

The finding that neural stem cells are able to divide, migrate and differentiate 

into several cellular types raised a new hope for restorative neurology. Nitric 

oxide (NO), a pleiotropic signaling molecule in the CNS has been described to 

be able to modulate the proliferation of neural stem cells, but whether it acts 

as a pro- or anti-proliferative agent is still controversial. Some evidence 

suggests that NO is a physiological inhibitor of cell proliferation. However, 

under certain conditions, NO can act as a proliferative agent, favoring cell 

proliferation. Thus, targeting the NO system may be a powerful strategy to 

control cell proliferation/differentiation. However, the exact mechanisms by 

which NO regulates neuronal proliferation and differentiation are not yet 

clarified, and further investigation on this matter is needed. 

Therefore, the main goal of this work was to study the mechanisms 

that are involved in the dual effect of NO in neural stem cell proliferation.  

Cultures of neural stem cells isolated from the SVZ of mice were exposed to a 

NO donor, in a range of concentrations comprehending both physiological and 

pathophysiological concentrations. We found that depending on the 

concentration, NO can have opposite effects on the proliferation of neural 

stem cells. Relatively low levels of NO, but already considered in the 

pathopysiological range, increased the proliferation of neural stem cells, while 

much higher levels of NO reduced proliferation. Very likely, different 

mechanisms are responsible for this dual effect of NO on neural stem cell 

proliferation. 

The proliferative effect of NO in neural stem cells was further 

investigated, and the underlying mechanisms involved were shown to be 

dependent on the activation of the mitogen-activated protein kinase (MAPK) 

ERK1/2 pathway. We observed that NO rapidly bypasses the epidermal 
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growth factor (EGF) receptor (EGFR) and directly activates p21Ras, as early 

as 2 min after exposure to NOC-18, triggering cell proliferation via activation of 

the ERK/MAPK pathway. Moreover, the activation of the ERK/MAPK pathway 

was shown to be involved in the activation of transcription factors, particularly 

c-myc, p90RSK and Elk-1. Indeed, activation of p90RSK resulted in a 

decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, 

p27KIP1, which allows for cell cycle progression. 

On the other hand, since the main intracellular receptor for NO is 

guanylyl cyclase, we investigated whether the proliferative effect of NO was 

mediated by cyclic GMP. We found that short-term exposure of neural stem 

cell cultures to NO (6 h) increased cell proliferation in a cGMP-independent 

manner by activating the ERK/MAPK signaling pathway, while long-term 

exposure to NO (24 h) activated independently the two signaling pathways, 

MAPK/ERK and the soluble guanylyl cyclase/cyclic GMP/protein kinase G. 

Concerning the antiproliferative effect of NO, we found that the release 

of high concentrations of NO by NOC-18 caused the nitration of the EGF 

receptor, with intermediate formation of peroxynitrite, in SVZ-derived neural 

stem cells expressing EGFR. Concomitantly with increased nitration in 

tyrosine residues, NO caused a decrease in the phosphorylation status of the 

EGFR. Moreover, using a culture model of SVZ-derived stem cells mixed with 

microglia isolated from wild-type mice (iNOS+/+), similar results were obtained. 

Thus the increased release of NO by activated iNOS+/+ microglial cells, 

following treatment with LPS plus IFN-γ,  caused nitration of EGFR, an 

irreversible post-translational modification of tyrosine residues, which parallels 

the decrease in proliferation of SVZ-derived neural stem cells treated with the 

inflammatory stimulation. In addition, cells expressing EGF receptor showed a 

strong labeling for 3-nitrotyrosine, indicative of protein nitration, following 

treatment with NOC-18. MnTBAP, a scavenger of superoxide, was able to 

prevent the nitration of the EGFR, as well as increased its phosphorylation 

status. Furthermore, either MnTBAP, or FeTMPyP, which promotes the 
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degradation of peroxynitrite, were able to rescue the proliferation of neural 

stem cells in iNOS+/+mixed cultures following inflammation. 

Finally, using an in vivo model of injury-induced neuroinflammation and 

neurogenesis, the kainic acid model of temporal lobe epilepsy, we showed 

that cell proliferation is prevented when the production of NO is abolished by 

deleting the iNOS gene, in iNOS-/- mice, which strongly suggests that NO 

promotes neural stem cell proliferation under certain pathophysiological 

conditions in vivo.   

Overall, the results presented in this work clarify the mechanisms by 

which NO regulates the proliferation of neural stem cells. Thus, we show for 

the first time that supraphysiological levels of NO have a dual effect on neural 

stem cell proliferation, with different signaling mechanisms. Thus, the 

p21/ERK/MAPK signaling pathway appears to be involved in the rapid effect of 

NO in promoting cell cycle progression and early cell proliferation. For a longer 

exposure to NO, two independent pathways appear to be active: the 

p21/ERK/MAPK, and also the guanylyl cyclase/cGMP/PKG. Much higher 

levels of NO administered to SVZ-derived stem cell cultures or in SVZ-

microglia mixed cultures, have an antiproliferative effect by decreasing the 

signaling through the EGFR due to nitration of tyrosine residues in this 

receptor.  

Based on our work in the animal model and in cell cultures, our data 

suggests that NO from inflammatory origin is mostly proliferative. This study 

suggests that the modulation of the nitrergic system may be useful to harness 

the potential of endogenous neural stem cells for brain repair. 
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Resumo  
 

A proliferação de células estaminais neurais é um processo que ocorre 

no sistema nervoso central (CNS) adulto em duas regiões em particular: na 

zona subgranular (SGZ) do girus dentado (DG) do hipocampo e na zona 

subventricular (SVZ) que delimita os ventrículos cerebrais laterais. A 

descoberta de algumas propriedades das células estaminais neurais, como a 

capacidade proliferativa e de diferenciação em vários tipos celulares, 

trouxeram novas perspectivas para a terapia neuro-restaurativa. Portanto, o 

conhecimento dos mecanismos de regulação destas células constitui um foco 

de interesse da comunidade científica. O monóxido de azoto, também 

designado de óxido nítrico (NO), é uma molécula gasosa que intervém na 

sinalização de ínumeros processos biológicos. Em particular no CNS, o NO 

tem sido descrito como capaz de modular a proliferação de células estaminais 

neurais, mas se actua como um agente pró- ou anti-mitótico ainda é 

controverso, sendo cada vez mais aceite que possa actuar em ambos os 

sentidos. Alguns autores sugerem que o NO é um inibidor fisiológico da 

proliferação celular. No entanto, em certas condições, o NO pode actuar 

como um agente pró-mitótico, favorecendo a proliferação celular.  

Assim, a modulação do sistema nitrérgico poderá ser uma estratégia 

poderosa de controlo da proliferação/diferenciação celular. De facto, os 

mecanismos pelos quais o NO regula a proliferação e diferenciação neuronal 

ainda não estão esclarecidos, e uma investigação mais aprofundada sobre 

este assunto é necessária.  

Neste estudo, o objectivo principal foi estudar os mecanismos de 

regulação da proliferação das células estaminais neuronais pelo NO. 

Procurou-se entender qual o efeito do NO na proliferação destas células, se 

proliferativo ou antiproliferativo, e decifrar os mecanismos responsáveis por 

esses efeitos.  Para a execução do trabalho foram conduzidas experiências in 

vitro e in vivo. Nas experiências in vitro, culturas de células estaminais neurais 

isoladas da SVZ de murganhos foram expostas a diferentes concentrações de 
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um fármaco dador de NO, o NOC-18. Foram utilizadas concentrações de 

NOC-18 que permitiram uma libertação de NO compreendida entre valores 

fisiológicos e fisiopatológicas, como confirmado pela medição dos níveis de 

NO nos meios de cultura pela reacção de Griess. Dependendo da 

concentração, o NO pode ter efeitos opostos na proliferação das células 

estaminais neurais. Observámos que níveis relativamente baixos de NO, 

embora na gama fisiopatológica, aumentam a proliferação de células 

estaminais neurais em cultura, enquanto níveis mais elevados de NO 

induzem uma redução da proliferação celular. Muito provavelmente, 

diferentes mecanismos são responsáveis por este duplo efeito do NO na 

proliferação de células estaminais neurais. 

Estudámos em seguida os mecanismos envolvidos no efeito 

proliferativo do NO e observámos que o aumento de proliferação induzido 

pelo NO é dependente da activação da via de sinalização das proteína-

cinases activadas por mitogénios (MAPK). O NO entra na célula activando 

directamente a p21Ras, ultrapassando o receptor do EGF (EGFR). De facto, 

o NO activa a p21Ras após 2 minutos de incubação, sinalizando pela via das 

ERK/MAPK, envolvida na activação de factores de transcrição, como o Myc, 

Elk-1 e p90RSK, que regulam a progressão do ciclo celular. De facto, 

observámos que a activação da p90RSK resulta numa diminuição dos níveis 

nucleares da cinase dependente de ciclina 1, p27KIP1, permitindo a progressão 

do ciclo celular e consequentemente a mitose. 

Sendo a via de sinalização da guanilato ciclase um dos principais 

alvos intracelulares do NO, estudámos também o hipotético envolvimento 

desta via de sinalização na mediação do efeito proliferativo do NO. 

Curiosamente, a exposição de curta duração (6 horas) ao NO aumenta a 

proliferação celular de uma forma independente de cGMP, activando a via 

das p21/ERK/MAPK. Por outro lado, a exposição de longa duração (24 horas) 

ao NO parece activar ambas as vias de sinalização: a das p21/ERK/MAPK, 
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que parece estar activa em todas as fases analisadas, e a da proteína cinase 

G dependente de cGMP. 

Quanto ao efeito antiproliferativo do NO, observou-se que a liberação 

de altas concentrações de NO pelo dador de NO, NOC-18, causou a nitração 

do receptor de EGF, com formação intermédia de peroxinitrito, em células 

estaminais neurais isoladas da SVZ que expressam o EGFR. Observámos 

que concomitantemente com o aumento da nitração em resíduos de tirosina, 

o NO causou uma diminuição no estado de fosforilação do EGFR. Além disso, 

utilizando um modelo de cultura de células estaminais neurais derivadas da 

SVZ em co-cultura com células da microglia isoladas de murganhos de 

genótipo selvagem para a iNOS (iNOS+/+), foram obtidos resultados 

semelhantes. Ou seja, o aumento da libertação de NO pela células da 

microglia iNOS+/+  activadas, após tratamento com LPS mais IFN-γ, relaciona-

se com o aumento da nitração do EGFR, que é concomitante com a 

diminuição da proliferação das células SVZ. Além disso, as células que 

expressam o EGFR apresentam uma forte marcação para 3-nitrotirosina, um 

índice experimental para a nitração de proteínas, após o tratamento com 

NOC-18. O uso de um “scavenger” de peroxinitrito e superóxido, o MnTBAP, 

previne a nitração do EGFR, bem como aumenta o seu estado de 

fosforilação. Além disso, quer o MnTBAP ou o  FeTMPyP, que promove a 

degradação de peroxinitrito, foram capazes de resgatar a proliferação de 

células estaminais neurais em co-cultura com células da microglia iNOS+/+. 

Usando um modelo in vivo de neuroinflamação e neurogénese, 

nomeadamente  o modelo de epilepsia do lobo temporal induzida por ácido 

caínico, observou-se que o aumento da proliferação celular obtido após 

epilepsia é anulado quando a produção de NO é abolida por interrupção do 

gene da iNOS em murganhos iNOS-/-. Estes resultados sugerem fortemente 

que o NO promove a proliferação de células estaminais neurais em algumas 

condições fisiopatológicas in vivo, pelo menos neste modelo de lesão 

cerebral.  
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Globalmente, os resultados apresentados neste trabalho esclarecem 

os mecanismos pelos quais o NO regula a proliferação de células estaminais 

neurais. Assim, mostramos que o NO, quando em níveis supra-fisiológicos, 

poderá ter um efeito duplo na proliferação celular, mediante a activação de 

diferentes mecanismos de sinalização. Deste modo, a via das 

p21/ERK/MAPK parece estar envolvida num efeito rápido do NO no sentido 

de promover a progressão do ciclo celular. Para uma exposição mais longa 

ao NO, duas vias independentes parecem estar activas: a via das 

p21/ERK/MAPK, que é a primeira a ser activada, e a via da guanilato ciclase-

cGMP-PKG. Para níveis muito mais elevados o NO tem um efeito 

antiproliferativo diminuindo a sinalização do EGFR por intermédio de um 

mecanismo de modificação proteica pós-translacional, a nitração.  

De acordo com resultados obtidos no modelo animal e de culturas 

mistas, o NO de origem inflamatória tem um efeito predominantemente 

proliferativo. Estes estudo sugere portanto que a modulação do sistema 

nitrérgico poderá ser útil para aproveitar o potencial das células estaminais 

neurais endógenas na terapia neuro-regenerativa. 
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1.1 Neurogenesis 
 

Neurogenesis, the process of generating new neurons from progenitor 

cells, was long considered to be limited to embryonic development in the 

mammalian central nervous system (CNS). This understanding originated 

from early works describing the development of adult brain of humans and 

other mammals (Koelliker, 1896; His, 1904; Ramon y Cajal, 1999). In fact, the 

brain was thought to be fixed after birth, with no changes at the cellular level, 

such as mitotic divisions, although some works reported the existence of 

mitotic cells in the adult brain of mammals (Allen, 1912; Brians, 1959). Joseph 

Altman had a major contribution with a series of papers showing evidence for 

adult neurogenesis in the adult brain of rat and cat, using autoradiography to 

track tritiated ([3H])-thymidine incorporated by dividing cells (reviewed by 

Gross, 2000). However, these works were based in non-convincing methods 

to prove whether these newborn cells would integrate into neurons and be 

integrated in the CNS, and the significance of these results was not 

recognized. Other works were published showing evidence for adult 

neurogenesis in songbirds, by repeating Altman’s experiments combined with 

electron microscopy, but again these reports were not considered relevant for 

the scientific community (Kaplan and Hinds, 1977; Nottebohm, 1985). In the 

nineteen nineties new techniques to detect cell proliferation were developed, 

namely the use of the thymidine analogue, 5-bromo-2’-deoxyruridine (BrdU), 

as a proliferation marker, instead of [3H]-thymidine. Moreover, the 

development of specific antibodies against glial or neuronal markers allowed 

the distinction of neurons from glial cells. In fact, these new methods helped 

the detection of adult neurogenesis, which has been demonstrated to occur 

until senescence in mammalians, including humans (Eriksson et al., 1998).  

Furthermore, the integration of newborn neurons into the neuronal network 

was confirmed by experiments testing synapse formation, long-term 

potentiation and expression of immediate early genes following stimulation of 
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hippocampus (van Praag et al., 1999; Song et al., 2002; Benninger et al., 

2003; Jessberger and Kempermann, 2003). 

 

1.1.1 Neurogenesis in the adult mammalian brain  
 

	
   Neurogenesis occurs throughout life in two discrete regions of the adult 

mammalian brain: the subventricular zone (SVZ) of the lateral ventricles and 

the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, 

both located in the telencephalon. The several stages of adult neurogenesis, 

including the proliferation of adult neural stem cells (NSCs) or progenitors, 

differentiation and fate determination of progenitor cells, survival, maturation 

and integration in the existing neuronal network of newborn neurons, are 

regulated by physiological and pathological inputs that reach the neurogenic 

niches, Particularly in rodents, olfactory discrimination and some forms of 

learning and memory require the integration of newborn neurons in the 

olfactory bulb (OB) and in the hippocampus, respectively, promoting the 

recruitment of neural stem cells from their niches to these areas. 

 The existence of neurogenesis in areas beyond the SVZ and SGZ of 

the adult mammalian brain have also been reported, namely in the neocortex 

(Gould et al., 1999; Dayer et al., 2005), striatum, amygdala (Bernier et al., 

2002), hypothalamus (Gould et al., 2001; Xu et al., 2005), mesencephalon 

(Zhao et al., 2003), dorsal vagal complex (Bauer et al., 2005) and spinal cord 

(Yamamoto et al., 2001). However, these findings need further experimental 

support and more studies are needed (Rakic, 2002; Gould, 2007). Moreover, 

progenitor cells from several non-classical neurogenic regions of the 

mammalian brain, such as the optic nerve, hypothalamus, cortex, spinal cord 

and cerebellum, have been used in in vitro studies and differentiated into 

neurons and macroglial cells (Kirschenbaum et al., 1994; Palmer et al., 1999; 

Kondo and Raff, 2000; Laywell et al., 2000; Nunes et al., 2003; Markakis et 

al., 2004; Lee et al., 2005). The continuous regeneration of astrocytes and 
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oligodendrocytes in the mammalian brain appears to be due to these 

progenitor cells (Laywell et al., 2000; Levine et al., 2001; Dawson et al., 2003). 

Neurogenesis is also believed to occur in the nonmammalian brain 

(reviewed in Kaslin et al., 2008) and has been extensively studied in songbirds 

(Nottebohm, 2004; Chapouton et al., 2007). 

 
 
1.1.1.1 Neurogenic niches in the adult brain 
   

1.1.1.1.1  The subventricular zone 
 

The subventricular zone is a thin cell layer located next to the 

ependyma of the telencephalic lateral walls of the lateral ventricles (Altman, 

1969). There are four types of cells in the SVZ: ependymal cells, type B glial 

fibrillary acidic protein (GFAP)-positive progenitors, type C transit amplifying 

cells, and type A migrating neuroblasts. Type B GFAP-positive neural 

progenitors are also referred as SVZ astrocytes, which are relatively quiescent  

(Fig. 1.1) (Doetsch et al., 1999; Alvarez-Buylla and Garcia-Verdugo, 2002). 

The identity of the resident adult neural stem cells that give rise to new 

neurons in the SVZ has been the subject of several studies and different cell 

types have been suggested, including astrocytes (Doetsch et al., 1999), 

ependymal cells (Johansson et al., 1999) and subependymal cells (Morshead 

et al., 1994). However, the ependymal cells have been shown to be quiescent, 

not presenting properties of NSCs (Doetsch et al., 1999; Capela and Temple, 

2002). At present, the hypothesis that seems most accepted is that SVZ 

astrocytes are neural stem cells expressing GFAP, which are morphologically 

identical to astrocytes from other brain regions (Doetsch et al., 1999; Garcia et 

al., 2004). The SVZ is thought to provide a specific microenvironment, also 

referred to as the stem cell “niche”, characterized by the presence of several 

proteins involved in the maintenance of self-renewal and/or multipotency of 

neural stem cells (Alvarez-Buylla and Lim, 2004). Examples of these proteins 
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include Notch1 (Chojnacki et al., 2003), sonic hedgehog (Machold et al., 

2003), basic fibroblast growth factor (bFGF) (Zheng et al., 2004) and ciliary 

neurotrophic factor (Emsley and Hagg, 2003). 

 

 
Figure 1.1. The neurogenic niche in the subventricular zone (SVZ). A) Cross-
section of the adult mouse brain showing the subventricular zone (SVZ, orange), 
adjacent to the lateral ventricle (LV, light grey). B) Schematic illustration of the SVZ 
architecture and cell types. Multiciliated ependymal cells line the LV (E, gray). SVZ 
astrocytes or B cells (B, blue, GFAP-positive) act as neural stem cells and divide to 
give rise to rapidly dividing precursors, or C cells (C, green, Dlx2-positive). The C cells 
generate neuroblasts, or A cells (A, red, PSA-NCAM-positive) that migrate as chains 
through glial tunnels formed by SVZ slowly dividing astrocytes (B cells) into the 
olfactory bulb. The C cells can be found scattered in clusters along the network of 
chains. C) Specific cell markers appearing in each cell type. GFAP, glial fibrillary 
acidic-protein; Dlx2, homeobox protein Dlx2; PSA-NCAM, polysialylated-neural cell 
adhesion molecule (adapted from Alvarez-Buylla et al., 2002). 
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In rodents and other mammals, type C transit amplifying cells are 

continuously generated from slow-dividing B stem cells, proliferate rapidly and 

originate type A migrating neuroblasts (Fig. 1.1 and 1.2). Signals like the Wnt-

β-Catenin pathway regulate the proliferation and progression of type C transit 

amplifying cells, increasing the proliferation of these cells in the SVZ (Adachi 

et al., 2007).  

 

 
Figure 1.2. 3-Dimentional representation of the architecture of the SVZ. B cells 
(B, blue) present an apical ending at the ventrical surface and a long basal process 
that terminates on blood vessels. A cells (A, red) and C cells (C, green) and 
multiciliated ependymal cells (E, brown). LV – lateral ventrical (adapted from Mirzadeh 
et al., 2008). 

	
  
Unlike neural stem cells and type C cells, neuroblasts are already 

committed to the neuronal lineage. Few days after their formation, neuroblasts 

migrate tangentially, up to a distance of 5 mm in the rodent, from the SVZ to 

the olfactory bulb. This stream of tangentially and rostrally migrating 
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neuroblasts is referred to as the rostral migratory stream (RMS). In addition, a 

small number of precursors of oligodendrocytes is also produced in the SVZ, 

which migrate and are incorporated in the corpus callosum (Menn et al., 

2006). Upon reaching the OB, neuroblasts migrate radially from the RMS to 

the granule cell layer and glomerular layer and differentiate into inhibitory 

GABAergic granule interneurons and periglomerular dopaminergic 

interneurons, respectively. It has been suggested that the destination of each 

neuroblasts in the OB is already determined before it leaves the SVZ, however 

the mechanisms underlying this event remain to be elucidated (Merkle et al., 

2007). It is believed that these newly formed interneurons modulate the 

activity of glutamatergic neurons, mitral cells and tufted cells, thereby 

intervening in the olfactory system plasticity (reviewed by Lledo and 

Saghatelyan, 2005).  

The migrating neuroblasts are usually bipolar, presenting extended 

processes that allow contact to adjacent cells and form  “chains” in which 

migrating cells can slide on each other (Lledo and Saghatelyan, 2005). These 

chains of migrating neuroblasts are unsheathed by astrocytes, also referred to 

as glial tubes. Although the function of astrocytes in the migration of 

neuroblasts is not clear, astrocytes may be involved in the modulation of 

GABA levels, which are involved in the control of the speed of neuroblast 

migration. Several studies described the involvement of different molecules in 

the migratory behavior of neuroblasts and showed that rostral migration 

occurs in parallel with the directional flow of cerebrospinal fluid (CSF) in the 

lateral ventricle (Sawamoto et al., 2006).  

The CSF flow creates a concentration gradient of diffusible effectors 

secreted by the choroid plexus. Thus, the septum provides chemorepellent 

signals that might contain the axon guidance molecules Slit1 and Slit 2, which 

help guiding the rostral migration of SVZ neuroblasts. Modification of 

cytoskeleton also occurs, an event where the cyclin-dependent kinase 5 plays 

a crucial role in chain formation, and also in the speed and direction of the 
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neuroblasts migration through the RMS (Hirota et al., 2007). Moreover, 

migration through the RMS and in the OB is regulated by cell-cell and cell-

extracellular matrix interactions. Particularly, the EphB2-ephrin-B2 and 

neuregulin-ErbB4 pathways are involved in the proper organization of the 

RMS, while the polysialic acid-neural cell adhesion molecule (PSA-NCAM) 

protein, β1-integrin, proteoglicans and laminins are important for the regulation 

of the migration of SVZ neuroblasts. In the OB, the radial migration of 

neuroblasts is dependent on the extracellular matrix protein tenascin-R and 

the glycoprotein reelin (Lledo and Saghatelyan, 2005). Neuroblasts in the 

RMS are also attracted to the OB by several other molecules like netrin-1, 

prokineticin-2, glial cell-line derived neurotrophic factor (GDNF) and brain-

derived neurotrophic factor (BDNF) (reviewed by Kaneko and Sawamoto, 

2009).  

Of all the cells formed in the SVZ, only a small number matures and 

integrates the olfactory system after the migration process. The remaining 

cells appear to degenerate in a process apparently dependent on caspases 

(Biebl et al., 2005). The newly formed neurons in the OB go through different 

stages of development (Petreanu and Alvarez-Buylla, 2002; Lledo et al., 

2006), where GABAergic receptors develop before glutamatergic receptors or 

of dendritic spines formation (Lledo and Saghatelyan, 2005). About half of new 

neurons are eliminated after 6 weeks, although how this process is regulated 

remains unclear (Mizrahi et al., 2006; Ninkovic et al., 2007; Imayoshi et al., 

2008). However, the survival of new neurons is known to be dependent on 

external stimuli. In fact, for instance, odor deprivation reduces the complexity 

of dendritic arborization, suggesting that odorant cues and stimulation are 

important for survival of the newborn neurons (Petreanu and Alvarez-Buylla, 

2002; Saghatelyan et al., 2005; Yamaguchi and Mori, 2005). 

The SVZ in the human brain is morphologically and functionally 

different from the SVZ of other mammals, since it is coated with a layer of 

astrocytes, that is not found in other mammals, except for humans and non-
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human primates. Although there is proliferation in the SVZ of humans there is 

little evidence for the presence of RMS neuroblasts to the OB in humans 

(Sanai et al., 2004; Quinones-Hinojosa et al., 2006), but proliferation and 

neurogenesis were already detected in the olfactory bulb (Bedard and Parent, 

2004). 

 

1.1.1.1.2 The subgranular zone of the dentate gyrus  
 

In the hippocampus, a proliferating population of multipotent 

precursors is found in the innermost subgranular cell layer of the SGZ of the 

dentate gyrus (Altman and Das, 1965). According to morphology and 

expression of specific molecular markers two types of neural progenitor cells 

could be identified in the SGZ: type 1 and type 2 (Fig. 1.2). Type 1 

hippocampal progenitors have a radial process that spans the entire granule 

cell layer and branch out to the inner molecular layer. These progenitor cells 

express nestin, GFAP, Sry-related HMG box transcription factor and Sox-2 

(Fukuda et al., 2003; Garcia et al., 2004; Suh et al., 2007). Although 

expressing the astrocytic marker GFAP, these cells present morphological and 

functional aspects different from astrocytes. Type 2 hippocampal progenitors 

can arise from type 1 progenitor cells, but do not express GFAP. More 

interestingly, type 2 hippocampal progenitors expressing Sox-2 can 

differentiate into neurons or astrocytes (Suh et al., 2007). In fact, the presence 

of the transcription factor Sox-2 is crucial for the maintenance of "stemness" of 

these adult stem cells, as well as neural stem cells from the SVZ, and also 

embryonic stem cells (ES) (reviewed in Jaenisch and Young, 2008).  

In the SGZ, type 1 and 2 cells are in close contact with a dense layer 

of granule cells including differentiated neurons and newly formed neurons. 

The newly formed cells in the SGZ migrate a short distance as neuroblasts, 

being integrated in the granular cell layer of dentate gyrus as granule neurons 

(Fig. 1.3) (Eriksson et al., 1998; Kempermann et al., 2004; Seri et al., 2004). 

Most of the newly formed SGZ cells die, but neurons that survive the first two 
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weeks are more likely to become mature and integrate a functional 

hippocampal neural circuitry (Kempermann et al., 2003). In adult mice, newly 

generated granule neurons of the hippocampus undergo a continuous process 

of maturation that can take weeks, presenting electrophysiological activity 

after one month (van Praag et al., 2002). Astrocytes, oligodendrocytes and 

other types of neurons can be identified in the granular zone 

microenvironment, where astrocytes seem to play an important role in 

promoting the differentiation of hippocampal progenitor cells, as well as the 

integration of new neurons, an event mostly mediated by Wnt signaling (Song 

et al., 2002; Lie et al., 2005).  

 
Figure 1.3. The neurogenic niche in the subgranular zone of the hippocampus. 
A) Cross-section of the adult mouse brain showing the hippocampus. B) Schematic 
illustration of the subgranular layer (SGL) and granule cell layer (GCL) architecture 
and cell types. SGL astrocytes or Type 1 cells (1, blue, GFAP-positive) divide to give 
rise to intermediate precursor cells, or type 2 progenitor cells (2, yellow), that divide 
and mature into new granule neurons (G, red). C) Specific cell markers appearing in 
each cell type. GFAP, glial fibrillary acidic-protein; PSA-NCAM, polysialylated-neural 
cell adhesion molecule (adapted from Alvarez-Buylla et al., 2002). 
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1.1.1.2 Neural stem cells and neural progenitors  
 

The term adult neural stem cells is given to all cells in the adult 

mammalian nervous system that have the capacity for self-renewal and 

differentiation into different types of nerve cells, including neurons, astrocytes 

and oligodendrocytes (Gage, 2000). The characteristics of stem cells were 

first described by Hall and Watts in 1989 (Hall and Watt, 1989), stating the 

conditions under which a cell was to be considered a stem cell: 

 

a) Self-renewal capacity, where a pool of stem cells is maintained 

throughout the life of the organism by symmetrical mitotic divisions 

resulting in daughter cells with similar proliferative capacity; 

b) Ability to generate progenitors, through asymmetric mitotic divisions, 

with limited proliferative capacity and committed to differentiation. 

 

Various in vitro studies using neurospheres assays and adherent 

monolayer cultures were performed to demonstrate the existence of NSCs in 

the adult brain, as well as to show the capacity for self-renewal and the 

multipotent properties of these cells (reviewed by Taupin and Gage, 2002). 

However, these criteria should be demonstrated over an extended period of 

time, more than 5 passages in culture, and should coincide with a significant 

increase in progeny when compared with the number of cells in the initial 

population (Reynolds and Rietze, 2005). In 1992, Reynolds and Weiss made 

the first isolation and characterization in vitro of a population of stem cells 

isolated from the adult brain of mice (Reynolds and Weiss, 1992). In this 

study, a population of undifferentiated cells that expressed nestin was isolated 

from the striatal region, containing the SVZ. Nestin is an intermediate filament 

that has been characterized as a marker for stem cells during central nervous 

system development, and so considered as a marker for adult stem cells and 

adult neural progenitor cells (Frederiksen and McKay, 1988; Reynolds and 

Weiss, 1992). These cells were grown in a serum-free medium, supplemented 
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with epidermal growth factor (EGF), and formed floating aggregates, hence 

designated as neurospheres. Neurospheres are aggregates of stem cells and 

progenitor cells with proliferative capacity. These cells were multipotent and 

had the ability to differentiate into neurons, astrocytes and oligodendrocytes. 

Other studies were performed where astrocytes and oligodendrocytes were 

also obtained in vitro from rodent and also from human cultures of 

hipoocampal and SVZ cells, among others (Levison and Goldman, 1997; 

Luskin et al., 1997; Palmer et al., 2001; Sanai et al., 2004). 

In 1995, Gage and collaborators isolated and characterized in vitro a 

population of cells with identical properties to those isolated by Reynolds and 

Weiss, but now from the adult rat hippocampus (Gage et al., 1995). Isolated 

cells were grown as monolayers, in culture medium supplemented bFGF. 

Other studies characterized this population of cells as containing self-renewing 

and multipotent NSCs (Gritti et al., 1996; Palmer et al., 1997). Since these 

studies, self-renewing, multipotent stem cells and neural progenitors have 

been isolated from the adult CNS of other species, including humans, 

particularly from the SVZ and the hippocampus (Taupin and Gage, 2002).  

Although NSCs can be isolated from different areas of the adult CNS, 

adult neurogenesis has only been consistently found in vivo in the SVZ and in 

the SGZ (reviewed in Ma et al., 2009). The SVZ and SGZ are hypothesized to 

have a microenvironment, known as neurogenic niche, with specific factors 

that promote differentiation and integration of newborn neurons (reviewed by 

Suh et al., 2009).  

 

1.1.2 Role of adult neural stem cells 
 

Adult neural stem cells present in the SVZ of the lateral ventricles and 

in the SGZ of the DG are able to form new neurons (Gage, 2000). Although 

adult neurogenesis has been intensively studied over the past twenty years, 

only since 2002 it has been established that newly formed neurons in the adult 

brain are functional (Carlen et al., 2002) and integrate into the pre-existing 



General Introduction_____________________________________ 	
  
	
  

	
  	
  
22	
  

neuronal network participating in specific physiological functions of the tissue. 

The neurogenic event is a tightly regulated process, even though its 

physiological functions have not been fully elucidated. Certain conditions are 

known to increase adult neurogenesis, like pregnancy (Shingo et al., 2003), 

for instance, or damage to the brain (Arvidsson et al., 2002; Zhao et al., 2003).  

 

 

 
 

Figure 1.4. Adult neurogenesis in the dentate gyrus of the hippocampus. A) 
Adult neurogenesis in the dentate gyrus of the hippocampus undergoes five stages: 
Stage 1 – Proliferation. Stem cells (blue) located within the subgranular zone (SGZ) 
in the dentate gyrus present short processes that extent tangentially along the border 
of the granule cell layer and hillus, and radial processes that project through the 
granule cell layer. SGZ stem cells give rise to transient amplifying cells (red). Stage 2 
– Differentiation. Transient amplifying cells differentiate into immature neurons 
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(green). Stage 3 – Migration. Immature neurons migrate into the granule cell layer 
(brown). Stage 4 – Axon/Dendritic targeting. Immature neurons (purple) project their 
axons towards the CA3 pyramidal cell layer, and their dendrites in the opposite 
direction into the molecular cell layer. Stage 5 – synaptic integration. New granule 
neurons (orange) receive and integrate input signals from the entorhinal cortex and 
send output signals to the CA3 and hillus regions. EC – entorhinal cortex; DG, dentate 
gyrus region; MCL, molecular cell layer; GCL, granular cell layer. B) The specific 
properties of each stage are summarized bellow. GFAP, glial fibrillary acidic-protein; 
DCX, doublecortin; PSA-NCAM, polysialylated-neural cell adhesion molecule 
(adapted from Ming and Song, 2005).  

 

Newly generated neurons arising from the hippocampus mature and 

acquire electrophysiological properties similar to the neighboring neurons (Fig. 

1.4), establish new synaptic connections and participate in functions such as 

learning and memory (Carlen et al., 2002; van Praag et al., 2002). Other 

studies suggest that neurogenesis plays an important role in mechanisms of 

specific memory acquisition (Rochefort et al., 2002). Accordingly, the 

pharmacological suppression of hippocampal neurogenesis significantly 

reduces learning capacity in rats (Shors et al., 2001).  

Newborn neurons emerging from the SVZ migrate through the RMS 

and integrate into the neuronal network of the olfactory bulb (Fig. 1.5), 

establish functional synaptic connections and develop electrophysiological 

properties of mature neurons (Carlen et al., 2002; Petreanu and Alvarez-

Buylla, 2002; Belluzzi et al., 2003). Furthermore, neurogenesis in the OB 

improves odor memory and discrimination, an important mechanism for 

offspring recognition by mice, after pregnancy, for instance (Gheusi et al., 

2000; Rochefort et al., 2002; Shingo et al., 2003). 

 Moreover, several models of injury in the rodent brain have been used 

to show that proliferation of stem cells is greatly increased in the SVZ and DG, 

following injury, which might be related to a repair attempt from the lesioned 

brain (Lowenstein and Parent, 1999). 
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Figure 1.5. Neurogenesis in the olfactory system. A) Newly generated cells from 
the SVZ migrate through the rostral migratory stream (RMS) and integrate into the 
neuronal network of the olfactory bulb as interneurons (OB). Stage 1 – Proliferation. 
Stem cells (blue) in the SVZ give rise to transient amplifying cells (green). Stage 2 - 
Fate specification. Transient amplifying cells differentiate into neuroblasts (red). 
Ependymal cells (gray) of the lateral ventricle are essential to inhibit gliogenesis, 
favouring neuronal fate specification. Stage 3 – Migration. Neuroblasts migrate 
through the RMS into the OB. These immature neurons migrate as chains and are 
ensheathed by astrocytes. Stage 4 - Synaptic integration. New neurons that reach 
the OB, migrate radially into outer cell layers and differentiate into granule or 
periglomerular neurons. Lateral ventricle, LV; Olfactory bulb, OB; Rostral migratory 
stream, RMS; Subventricular zone, SVZ. B) Some specific properties of each stage 
are summarized bellow. GFAP, glial fibrillary acidic-protein; DCX, doublecortin; NeuN, 
Neuronal nuclei; PSA-NCAM, polysialylated-neural cell adhesion molecule (adapted 
from Ming and Song, 2005).  
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1.1.3 Regulation of adult neurogenesis 
 

Adult neurogenesis is implicated in many forms of plasticity in the 

CNS, and understanding the fundamental mechanisms that control this 

process are of great relevance. Most of the studies about the regulation of 

adult neurogenesis focused on the understanding of cell cycle progression or 

in the expression of different markers during cell differentiation. The 

neurogenic process consists of three main steps: a) precursor cell 

proliferation, b) migration, and c) differentiation, integration and survival. 

Despite numerous limitations, in the last decade numerous factors that affect 

adult neurogenesis have been identified. However, the precise mechanisms 

that control neuronal fate in the adult nervous system remain largely unknown. 

Both intrinsic and extrinsic factors can interfere with the process of 

neurogenesis. 

 

1.1.3.1 Hormones 
 

Hormones in the adult mammalian brain regulate neurogenesis 

(reviewed by Abrous et al., 2005). Estrogens have a proliferative effect on 

progenitor cells of DG, increasing their survival (Tanapat et al., 1999). On the 

other hand, estrogen does not appear to affect neurogenesis in the SVZ of 

adult rats, although these cells express specific receptors for estrogen 

(Brannvall et al., 2002; Isgor and Watson, 2005). Other hormones such as 

prolactin and thyroid hormones appear to increase neurogenesis in the SVZ of 

rodents (Giardino et al., 2000; Shingo et al., 2003), or in both the DG and 

SVZ, such as polyamines (Malaterre et al., 2004). On the other hand, stress 

hormones such as corticosteroids, particularly glucocorticoids, decrease 

neurogenesis in the DG of young rats and primates (Gould et al., 1998; Kippin 

et al., 2004).  
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1.1.3.2 Trophic factors 
 

Several trophic factors have been described as having a mitotic action 

on neurogenic regions of the adult brain. Thus, growth factors such as EGF 

and bFGF are potent agents for the maintenance and growth of adult NSCs in 

vitro. In vivo, both factors are proliferative in the SVZ, although only BFGF 

increases the number of newborn neurons in the olfactory bulb (Kuhn et al., 

1997). In 2002, Doetsch and colleagues found that EGF inhibits the 

differentiation of type C transit amplifying cells in neuroblasts (Doetsch et al., 

2002). Other studies have reinforced the idea that EGF is present in the adult 

SVZ, particularly after the re-expression of ErbB2, a receptor for EGF, and 

subsequent induction of radial glia morphology in GFAP-positive cells in the 

SVZ of young adult mice (Ghashghaei et al., 2007). Although bFGF does not 

appear to increase the proliferation in the SGZ in young mice (Jin et al., 2003), 

the knockdown of its receptor FGFR-1 in CNS decreases neurogenesis in this 

region (Zhao et al., 2007). In 2009, Sun and collaborators showed that the 

intravenous administration of basic fibroblast growth factor increased 

proliferation both in the SVZ and DG, following traumatic brain injury (Sun et 

al., 2009). 

The transforming growth factor alpha (TGF-α) increases neurogenesis 

both in the SVZ and the DG, as demonstrated by studies in animal models 

(Craig et al., 1996; Tropepe et al., 1997; Battista et al., 2006). The insulin-like 

growth factor 1 (IGF-1) also known as somatomedin C or mechano growth 

factor is a growth-promoting peptide hormone produced in the CNS by 

neurons and glial cells that exhibits neurotrophic properties in the adult 

mammalian brain (Niblock et al., 2000; Anderson et al., 2002). The IGF-1 

increases cell proliferation in the SGZ as demonstrated in in vivo and in vitro 

(Aberg et al., 2000; Trejo et al., 2001; Aberg et al., 2003; Perez-Martin et al., 

2003). 

Brain-derived neurotrophic factor (BDNF) is a member of the 

neurotrophin family of growth factors, which prevents neurons from dying 
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during development (Hempstead, 2006; Reichardt, 2006). In the brain, BDNF 

is active in the cortex, hippocampus and basal forebrain, areas linked to 

memory and learning (Yamada and Nabeshima, 2003; Binder and Scharfman, 

2004; Bekinschtein et al., 2008). BDNF was shown to increase cell 

proliferation in the granule cell layer of the OB and in the DG of rodents 

(Zigova et al., 1998; Benraiss et al., 2001; Lee et al., 2002). On the other 

hand, BDNF is able to to influence the survival and/or differentiation of newly 

born neurons, thus playing an important role in the maintenance of basal 

neurogenesis (Abrous et al., 2005). 

Vascular endothelial growth factor (VEGF) is a hypoxia-induced protein 

that stimulates growth of new blood vessels, restoring oxygen supply to 

tissues (Ferrara and Gerber, 2001). VEGF belongs to a subfamily of the 

platelet-derived growth factor family. This angiogenic protein exhibits 

neurotrophic and neuroprotective properties (Meirer et al., 2001). VEGF 

stimulates cell proliferation both in the SVZ and the SGZ of rodents, 

suggesting that VEGF may be involved in the crosstalk between angiogenesis 

and neurogenesis (Jin et al., 2002; Hansen et al., 2008).  

 

1.1.3.3 Neurotransmitters and neuromodulators 
 

Neurogenesis in the adult brain can be modulated by 

neurotransmitters. Several studies evaluated the effect of neurotransmitters in 

the neurogenic process. Serotonin appears to be important for proliferation 

and maintenance of PSA-NCAM positive neurons in the SVZ and SGZ 

(Brezun and Daszuta, 1999). Depending on the location, glutamate may have 

a dual effect on neurogenesis, acting as an antiproliferative agent in the 

hippocampus, decreasing the formation of PSA-NCAM neurons (Nacher et al., 

2001), or, conversely, increasing the proliferation of SVZ cells in vitro (Brazel 

et al., 2005). Similarly, noradrenaline also has different roles depending on 

their location. Depletion of noradrenaline decreases proliferation in the DG, 

but not in the SVZ of rat (Kulkarni et al., 2002). Moreover, dopamine 
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stimulates the proliferation of SVZ cells in vitro (Coronas et al., 2004; Van 

Kampen et al., 2004), while the pharmacological elimination of dopaminergic 

nigrostrial projections decreases proliferation of neuronal precursors in the 

SVZ (Baker et al., 2004; Hoglinger et al., 2004).  

Nitric oxide (NO) is a gaseous free radical synthesized in many cell 

types from L-arginine, a reaction catalyzed by NO synthase (NOS). NO is an 

intercellular messenger with multiple functions within the cardiovascular 

system, immune system and nervous system, where it can act as a non-

canonical neurotransmitter (Alderton et al., 2001). The effect of NO on 

neurogenesis appears to be dependent on the concentration achieved locally. 

Different studies reported a dual role of NO on cell proliferation, acting as a 

proliferative or antiproliferative agent in the adult brain. While the 

antiproliferative effect of NO is dependent on the inhibition of cyclin-dependent 

kinases and transcription factors by the p53 and Rb protein respectively 

(reviewed by Gibbs, 2003), the proliferative effect of NO is mediated by 

increased levels of cGMP in the SVZ and in the dentate gyrus of the 

hippocampus of the adult rodent brain (Zhang et al., 2001; Zhang et al., 2002). 

It appears that in physiological conditions, NO tonically inhibits neural stem 

cell proliferation in the brain (Packer et al., 2003; Moreno-Lopez et al., 2004; 

Matarredona et al., 2005; Torroglosa et al., 2007), while in pathophysiological 

conditions it exerts a proliferative effect on the dividing population of neuronal 

precursors (reviewed in Whitney et al., 2009). However, other studies reported 

that supraphysiological concentrations of NO inhibit neural stem cell 

proliferation and promote astrogliogenesis in the SVZ (Covacu et al., 2006). 

Moreover, it was found that exogenous administration of NO to adult rats 

significantly increased cell proliferation and migration in the SVZ and DG 

(Zhang et al., 2001). Particularly, precursors that express neuronal NO 

synthase (nNOS) were identified in the regions of final differentiation in the 

SVZ of adult mice (Moreno-Lopez et al., 2000).  
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The exact mechanisms by which NO regulates neuronal proliferation 

and differentiation are not yet clarified, and further investigation on this matter 

is needed. NO will be discussed in more detail in section 1.3 of the General 

Introduction, and the mechanisms underlying the role of NO on NSCs 

proliferation will be addressed in the present thesis. 

 

1.1.3.4  Glial cells 
 

Glial cells can regulate adult neurogenesis, particularly astrocytes 

which are important sensors of changes in the extracellular microenvironment 

(Alvarez-Buylla et al., 2002). Astrocytes could be involved in the regulation of 

neurogenesis by releasing local signals (Song et al., 2002), such as 

neurosteroids, cytokines, growth factors, glutamate, among others (reviewed 

by Abrous et al., 2005). Moreover, the fact that some proliferating cells in the 

DG express a receptor for S-100, a small acidic calcium binding neurotrophic 

protein released by astrocytes, has reinforced the putative role of astrocytes in 

the regulation of adult neurogenesis (Abrous et al., 2005).  

 

1.1.3.5  Survival and fate selection 
 

The last step of the formation of new neurons is their survival following 

differentiation and integration. Different molecules regulate neural stem cell 

survival and death pathways in the adult and embryonic brain. In fact, the 

same molecules may have different functions according to the developmental 

stage, and the differences between microenvironments are mostly reflected by 

the extrinsic regulators of the metabolism of neural stem cells.  

The subgranular zone of the DG is one of the niches in the adult brain 

where new neurons are formed. A great percentage of these new neurons die 

after birth (Cameron et al., 1993; Eriksson et al., 1998; Rakic, 2002), but this 

event may be slowed or even prevented by environmental enrichment, 

particularly by performing cognitive tasks. However, the mechanisms 
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underlying the survival of newborn neurons remain unclear. Many authors 

have suggested that the significant decline in the number of newborn neurons 

after they are generated may be due to programmed cell death, confirmed by 

the fact that these cells are positive for terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL). Survival may thus be due to the prevention 

of programmed cell death or rather to a generalized increase in hippocampal 

neurogenesis (Kempermann et al., 1998; Gould et al., 1999). The events that 

trigger cell death in newborn neurons are still under investigation. One 

possibility is that failure to correctly integrate or making the proper connections 

to receive synaptic inputs from the existing circuits may select for elimination 

cells that are not properly integrated with the surrounding tissue. 

Newly generated neurons are also originated in the rostral migratory 

stream. As happens with newborn neurons in the dentate gyrus, TUNEL-

positive cells are observed along the rostral migratory stream (Brunjes and 

Armstrong, 1996; Fiske and Brunjes, 2001), the SVZ, and the OB (Biebl et al., 

2000; Moreno-Lopez et al., 2004). Sensory input failure for these cells may 

result in apoptosis, which is confirmed by an increased number of TUNEL-

positive cells in the granule cell layer of the OB. However, whether cell death 

occurs solely in post-mitotic OB neurons or whether neural precursor cells are 

also subjected to cell death in the adult is not clear.  

 

 
1.1.4 Neurogenesis and brain injury  
 

It has been observed that injury and pathological conditions affect adult 

neurogenesis, having an impact in neurogenic regions but also in normally 

non-neurogenic areas (Ming and Song, 2005). The insult to the brain may be 

acute, like ischemic brain stroke, traumatic brain injury or prolonged seizures, 

or a slow-progressing neurodegenerative disease. Neurogenesis decreases 

with normal aging and is impaired in several neurodegenerative disorders, 

such as Huntington’s disease (Lazic et al., 2004; Gil et al., 2005) or 
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Alzheimer’s disease (Tatebayashi et al., 2003). All these conditions are 

accompanied by an inflammatory response in the brain.  

Many brain lesions lead to increased proliferation in the SVZ and the 

SGZ, causing migration of neural precursors to the lesioned areas. Specific 

types of injury were hypothesized to increase proliferation of neural 

progenitors and induce migration and differentiation of new neurons to regions 

where adult neurogenesis is extremely limited or non-existent (Magavi et al., 

2000; Magavi and Macklis, 2001). The factors that attract neural progenitors to 

the lesioned areas are still under investigation. Whether these newborn 

neurons are functionally integrated and survive in the existing neuronal 

circuitry remains a question of hot debate. 

 

1.1.4.1 Acute brain lesions 
 

1.1.4.1.1 Ischemia 
 

Ischemic brain insults have been demonstrated to stimulate progenitor 

cell proliferation in the SGZ and the SVZ of adult rodents (Kokaia and Lindvall, 

2003; Parent, 2003). Ischemic brain stroke have been used to show the 

migration of neuronal precursors from the SVZ to the damaged striatum, with 

subsequent differentiation (Arvidsson et al., 2002). However, most of the 

newly formed neurons died prematurely within two to five weeks following 

stroke, which suggests that the local microenvironment, although essential for 

releasing of signals attracting immature neurons and further differentiation, is 

not adequate for long-term survival.  

Multiple models of ischemia have also demonstrated an increase in 

neurogenesis. In models of transient global ischemia increased proliferation 

was demonstrated in the DG (Liu et al., 1998; Takagi et al., 1999; Kee et al., 

2001; Yagita et al., 2001; Iwai et al., 2002; Choi et al., 2003; Bingham et al., 

2005; Darsalia et al., 2005) and in the SVZ (Zhang et al., 2001; Arvidsson et 

al., 2002; Tang et al., 2009) by an increase in the number of BrdU-positive 
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cells. In the ischemic brain, newly formed cells from the SGZ migrate to the 

granule cell layer of the DG (Liu et al., 1998; Kee et al., 2001; Yagita et al., 

2001; Iwai et al., 2002; Bingham et al., 2005), while cells from the SVZ migrate 

to the olfactory bulb, cortex (Zhang et al., 2001) and striatum (Arvidsson et al., 

2002; Darsalia et al., 2005). The majority of proliferating cells differentiated 

into neurons, as evaluated by the colocalization of BrdU with mature neuronal 

markers (Kee et al., 2001; Yagita et al., 2001; Arvidsson et al., 2002; Iwai et 

al., 2002; Bingham et al., 2005). It is hypothesized that VEGF plays an 

important role in the increased neurogenesis following ischemia, by 

stimulating proliferation, migration and survival of neurons (Hansen et al., 

2008). 

Overall, it has been demonstrated that following ischemia newborn 

neurons can integrate the CNS network and improve cognitive function. 

However, further studies are needed to proof a causal relationship between 

increased neurogenesis and improved recovery following ischemia (reviewed 

by Ekdahl et al., 2009).  Moreover, although neurogenesis has been shown to 

increase following ischemia, only a fraction of the newly generated neurons 

survive long-term (Arvidsson et al., 2002). 

 

1.1.4.1.2 Traumatic brain injury 
 

Traumatic brain injury (TBI), a condition in which sudden trauma and 

secondary injury cause brain damage, increases cell proliferation in the 

dentate gyrus, in the SVZ as well as in the cortex (Dash et al., 2001; Lu et al., 

2003; Rice et al., 2003). Following TBI, progenitor cells from the SVZ and SGZ 

become activated. In facto, newly generated neurons survived 3 to 4 weeks 

post-TBI in the granule cell layer of the DG as demonstrated by co-labeling 

with BrdU or [3H]-thymidine and calbindin, a mature neuronal marker of this 

region (Gould and Tanapat, 1997; Dash et al., 2001; Rice et al., 2003). 

Moreover, it was observed that exogenous administration of NO significantly 

increased proliferation, survival, migration and differentiation of neural 
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progenitors in the rat DG, as well other brain areas, and significantly improved 

neurological functional outcome following TBI (Lu et al., 2003). However, it is 

still unclear whether the increased proliferation of progenitor cells results in 

stable neurogenesis, with long-term survival of the newly generated neurons 

post-injury (Richardson et al., 2007). 

 

1.1.4.1.3 Epilepsy 
 

Temporal lobe epilepsy (TLE) is the most common type of epilepsy in 

adults. Spontaneous and recurrent seizures originating in the temporal lobe 

promote extensive neuronal loss in CA1, CA3 and the hilus of the DG of the 

hippocampus. Seizures, like other acute insults to the CNS such as ischemic 

stroke or traumatic brain injury, are followed by local inflammation and 

increased proliferation of neural stem cells and neuronal precursors in the 

main neurogenic areas. Studies using adult rodent models of acute seizures 

or limbic epileptogenesis demonstrated an increased neurogenesis in the SGZ 

and SVZ, following injury (Parent et al., 1997; Gray and Sundstrom, 1998; 

Parent et al., 2002). Status epilepticus (SE) in rat models is followed by an 

increase in neurogenesis in the DG (Palmer et al., 1997; Bonde et al., 2006). 

The majority of newborn cells generated in the SGZ of the DG migrate into the 

granule cell layer and differentiate into granule neurons, projecting axons to 

the CA3 region and dendrites to the molecular layer. However, some of the 

immature neurons and newly generated cells in the SGZ mislocate the hilus, 

develop the electrophysiological characteristics of dentate granule neurons 

and fire abnormal bursts in synchrony with the CA3 pyramidal neurons 

(Scharfman et al., 2000). These abnormal neuronal circuits are thought to 

contribute to spontaneous and recurrent epileptic seizures, thus suggesting 

that aberrant neurogenesis following SE is involved in the development of 

epilepsy (Walter et al., 2007). In the SVZ, proliferation is significantly 

increased following SE, and the newly formed neuroblasts rapidly migrate to 

the olfactory bulb, but some neuroblasts also migrate into other injured 
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forebrain regions (Parent et al., 2002), which could suggests an attempt of 

endogenous recovery following SE. 

 

1.1.4.2 Neurodegenerative disorders  
 

 Neurodegenerative disorders are characterized by slow and 

progressive neuronal death. In the absence of treatment for these disorders, 

the development of therapeutic strategies that can compensate the loss of 

neurons is of great interest, particularly the possibility of replacing the lost cells 

and restoring brain function.  Changes in adult neurogenesis have been 

observed in some neurological disorders, like Alzheimer’s, Parkinson’s and 

Huntington’s disease. 
 

1.1.4.2.1 Huntington’s disease 
 

Huntington’s disease (HD) is a neurodegenerative disease 

characterized by neuronal loss in the caudate-putamen. In humans, 

postmortem analysis has revealed that cell proliferation is increased in the 

subependymal layer of the caudate nucleus in HD (Curtis et al., 2003). The 

newly generated cells express glial or neuronal markers. Curtis and 

collaborators also demonstrated that increased cell proliferation in the SVZ 

correlated with the severity of HD (Curtis et al., 2003). Increased neurogenesis 

was also demonstrated in rodent models of HD (Tattersfield et al., 2004; 

Vazey et al., 2006; Lorincz and Zawistowski, 2009). Batista and colleagues 

also reported a progressive increase of cell proliferation in the SVZ of R6/2 

transgenic mice. Interestingly, this study also reported deficits of cell migration 

between the SVZ to the olfactory bulb in R6/2 mice, due to redirection of new 

neurons to the striatum of R6/2 mice (Batista et al., 2006).  Taken together, 

these data indicate that attempts at neuronal regeneration may occur in the 

diseased adult brain, although these endogenous efforts do not address the 
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continued neurodegeneration of the affected brain areas, thus not being 

minimally effective. 

However, other studies reported that cell proliferation and 

neurogenesis in the hippocampus is decreased in HD transgenic mouse 

models, either R6/1 or R6/2 mice (Gil et al., 2004; Lazic et al., 2004; Gil et al., 

2005; Phillips et al., 2005; Lazic et al., 2006; Phillips et al., 2006). 

Interestingly, although the relationship between the decreased hippocampal 

neurogenesis and the progression of HD is not fully understand, van Dellen 

and colleagues reported that increased hippocampal neurogenesis delays 

progression of HD in the model mice (van Dellen et al., 2000).  

Further studies are needed to fully understand how neurogenesis is 

affected in HD patients or HD models, and whether cell therapies could be 

beneficial to ameliorating this disorder.   

 

1.1.4.2.2 Alzheimer’s disease 
 

Alzheimer’s disease (AD) is a chronic progressive disorder 

characterized by a widespread neuronal death in several brain areas, which 

ultimately leads to dementia and death. The AD brain is characterized by the 

presence of senile plaques containing β-amyloid peptide (Aβ), derived from 

amyloid precursor protein (APP), and neurofibrillary tangles, containing 

hyperphosphorylated microtubule-associated protein tau. Accumulation of Aβ 

causes neuronal loss and atrophy in the hippocampus and SVZ, decreases 

proliferation and differentiation of neural stem cells and progenitors, and 

promoting apoptosis (Donovan et al., 2006; Ziabreva et al., 2006).  

Moreover, evidence suggesting enhanced neurogenesis has been 

found in patients with AD and in AD rodent models (Jin et al., 2004; Jin et al., 

2004; Yu et al., 2009). In mouse models, cell proliferation was stimulated in 

the DG at early stages of AD, however the newly generated neurons did not 

fully mature (Li et al., 2008) or did not survive for long (Chen et al., 2008; Gan 
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et al., 2008). Moreover, AD-specific proteins have been associated with AD-

associated neurogenesis (Lopez-Toledano and Shelanski, 2007; Gan et al., 

2008; Rohe et al., 2008). In fact, the complexity of the pathophysiological 

features of AD is not fully clarified, however it is hypothesized that deficits in 

neurogenesis contribute to the AD pathogenesis (reviewed by Kaneko and 

Sawamoto, 2009). 

 

1.1.4.2.3 Parkinson’s disease 
 

Parkinson’s disease (PD) is a motor disorder characterized by rigidity, 

resting tremors and bradykinesia. In PD patients, dopaminergic neurons in the 

substantia nigra pars compacta degenerate, causing loss of motor 

coordination in muscle movements. Increased neurogenesis in the substantia 

nigra has been a matter of debate in animal models of PD. Zhao and 

collaborators reported neurogenesis to be increased in the substancia nigra 

pars compacta in a mouse model of PD (Zhao et al., 2003). However, in 2004, 

contradictory observations were published. Using similar methodological 

techniques in the same animal model of PD, Frielingsdorf and collaborators 

found no evidence of new dopaminergic neurons in the substantia nigra. 

Furthermore, this group also reported no evidence of neural stem cell 

migration from the cerebroventricular system into the substancia nigra 

(Frielingsdorf et al., 2004). Shan and colleagues also demonstrated that NPCs 

successfully migrate to the substancia nigra, and differentiate into 

dopaminergic neurons (Shan et al., 2006). However, other studies in patients 

and animal models suggest chronic inflammation during PD to enhance 

proliferation of NPCs from the SVZ and dentate gyrus and differentiation into 

neurons, but the inflammatory niche is not supportive of survival and 

incorporation of newborn neurons (Huisman et al., 2004; Winner et al., 2006; 

Jackson-Lewis and Przedborski, 2007; Peng et al., 2008).  
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1.1.5 Brain repair and stem cell based therapies 
 

Repair of damage tissues and organs is essential for the survival of 

organisms. The repair properties of any tissue or organ are linked to its 

intrinsic ability for cell replacement of dead cells and the correct integration of 

the newborn cells that, ideally, should restore the original structure. Therefore, 

repair of tissues with high cell turnover and low needs for reconstruction, such 

as skin or bone, is more efficient. The CNS, on the other hand, has weak 

capabilities for both endogenous cell replacement and pattern repair. Some 

strategies have been studied over the past years attempting brain repair, 

particularly therapies using stem cells attempting the enhancement of 

neurogenesis. Next, some of the most relevant therapeutic strategies for brain 

repair will be discussed. 

 

1.1.5.1 Cell transplantation 
 

Transplantation of neural precursors or stem cells is one of the 

promising methods being studied for the reconstruction of neuronal circuits. 

However, not all cells are good candidates to be used. The cells to be used for 

grafting must be phenotypically plastic, which means that they need to be able 

to differentiate into appropriate neurons or glial cells and most importantly, 

they must be able to proliferate ex vivo following stimulation with mitogens. 

Some authors have shown that grafted cells should be in the correct 

developmental stage to fully respond to the instructive niche of implantation. 

However, several studies have shown immature cells to fail integration in the 

hippocampus (Wang et al., 1998; Sheen et al., 1999). In fact, cells need to 

respond to the neurogenic signaling from the lesioned tissue, which means 

that cells should be used in a developmental state concomitant with the 

appropriate receptor competence to sense the external microenvironment. 

In rodent models, SVZ-derived neural stem cells are an interesting 

starting material for intracerebral transplantation. These cells fulfill the major 
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criteria mentioned above (plasticity, multipotency, ability to proliferate ex vivo), 

and are good candidates for cell-replacement strategies. SVZ cells have been 

used in experimental models of Parkinson's disease, and successfully 

differentiated into mature neurons and integrated the neuronal network, thus 

contributing to improved motor performance (Zigova et al., 1998; Richardson 

et al., 2005). SVZ cells were also used in Huntington’s disease with improved 

motor performance (Vazey et al., 2006). In an animal model of multiple 

sclerosis, Cayre and collaborators observed that SVZ cells grafted into the 

subcortical white matter differentiated into oligodendrocytes and induced 

remyelination (Cayre et al., 2006). In other study using this model, SVZ cells 

were injected in the lateral ventricles repopulating and differentiating into 

functional oligodendrocytes (Pluchino et al., 2005). However, one of the 

limitations of a successful grafting is the absence of the required neuronal 

factors that allow differentiation of grafted cells in the site of injury. For 

instance, ex vivo pre-treatment with factors to correctly differentiate the cells in 

order to increase the graft efficiency is a desirable option (Zhang et al., 2003), 

but may not be sufficient in determining the fate of the grafted immature cell. 

Moreover, the microenvironment of the injured brain plays a very important 

role, having instructive cues adequate to allow neuronal differentiation and its 

manipulation also seems to be necessary to improve efficiency and survival of 

the graft (Cao et al., 2002). 

In humans, the perspective of using adult neural stem cells is 

appealing for autologous transplantation, overcoming the need to find a 

matching donor, or the administration of immunosuppressive drugs (Galvin 

and Jones, 2006). However, isolation of sufficient stem cells from patients 

would involve invasive surgery, and the destruction of healthy brain structures, 

which limits the clinical application of this strategy (Taupin, 2006). The use of 

other cell types, such as embryonic stem (ES) cells or induced pluripotent 

stem (iPS) cells, is being investigated for cell transplantation strategies for the 
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treatment of several neurodegenerative disorders, such Alzheimer’s disease, 

Parkinson’s disease (Lindvall and Kokaia, 2010). 

Although these strategies may be a promising approach for the 

treatment of neurodegenerative disorders, further studies need to be 

conducted so that they could be considered as a viable option for clinical 

therapy. Moreover, cell replacement could also be achieved by inducing 

endogenous stem cells in the adult CNS to differentiate into new neurons and 

glial cells, a less invasive strategy when compared to cell transplantation.  
 

1.1.5.2 Stimulation of endogenous neurogenesis 
 

In situ stimulation of endogenous adult neural stem cells and 

modulation of injury-induced neurogenesis is presently being considered as a 

potential therapeutic approach for neuronal repair in neurodegenerative 

disorders, as opposed to the more invasive approach of transplantation of 

exogenous stem cells (Picard-Riera et al., 2004). Although grafting strategies 

may be an efficient approach for the treatment of neurodegenerative disorders 

affecting local neuronal populations such as in Huntington or Parkinson’s 

diseases, in multifocal diseases affecting multiple regions of the brain 

stimulation of endogenous neurogenesis seems to be more advantageous. 

Since most brain disorders that could benefit from enhanced neurogenesis are 

accompanied by neuroinflammation, understanding how the inflammatory 

response affects neurogenesis is fundamental to better design therapeutic 

strategies for safe and efficient upregulation of endogenous neurogenesis. 

Multiple studies have been conducted in order to increase 

neurogenesis in the SVZ. Injection of EGF and bFGF in the lateral ventricles 

of rodents increases proliferation and neurogenesis in this area (Craig et al., 

1996; Kuhn et al., 1997). Moreover, administration of BDNF also increases 

cell proliferation and migration into the OB, but also to other brain regions, 

such as the striatum, the thalamus and the hypothalamus (Zigova et al., 1998; 

Pencea et al., 2001). Neurogenesis could also be increased by inhibiting bone 
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morphogenetic protein (BMP) actions, for instance with Noggin (Lim et al., 

2000). It has been demonstrated that intraventricular injection of adenoviruses 

encoding Noggin and BDNF increase the formation of new spiny neurons from 

progenitor cells in the adult striatal ventricular zone (Chmielnicki et al., 2004). 

Some drugs used in the clinics to treat different pathologies could also 

increase cell proliferation. Neuroleptics like olanzepine, (used for the treatment 

of schyzophrenia or bipolar disease) increase proliferation in the SVZ (Green 

et al., 2006). Another example is the administration of nitric oxide donors or 5-

phosphodiesterase inhibitors, such as sildenafil, which increase the 

neurogenesis in the OB and the DG of rats by a mechanism involving the 

intracellular increase of cGMP levels (Zhang et al., 2002; Lu et al., 2003; 

Zhang et al., 2003; Zhang et al., 2006). The development of strategies to 

increase endogenous proliferation and further migration of newly generated 

cells towards the damaged area is needed. For that purpose, the use of 

chemoattractive factors, like stromal cell derived-factor 1-alpha (SDF-1α), is 

being used together with proneurogenic factors like VEGF (Zhang et al., 2003; 

Imitola et al., 2004; Sun et al., 2004; Sun et al., 2006).  

 

1.1.5.3 Other strategies 
 

1.1.5.3.1 Neuroprotection 
 

Neuroprotection concerns the mechanisms and strategies used to 

protect against neuronal loss or degeneration in the CNS. Neuronal loss is a 

common feature following an acute brain injury or as a result of chronic 

neurodegenerative diseases. The main goal of neuroprotection is to limit 

neuronal dysfunction and neuronal death, thus maintaining the integrity of 

cellular interactions in the brain. Several strategies are being investigated and 

some products can potentially be used for neuroprotection, such as free 

radical scavengers, antiexcitotoxic agents, apoptosis inhibitors, neurotrophic 

agents, ion channel modulators, metal ion chelators and gene therapy (Polazzi 
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and Monti, 2010). Neuroprotective strategies are not only useful to limit the 

extent of the disease-induced lesion or limiting neuronal loss, but may also 

enhance the survival of newborn cells.  

 

1.1.5.3.2 Anti-inflammatory approaches  
  

Inflammation is frequently associated with brain injury, 

neurodegenerative diseases and radiation treatment for brain tumors. 

Although inflammation is detrimental for adult neurogenesis (reviewed by 

Whitney et al., 2009), it was demonstrated that neurogenesis can be restored 

by anti-inflammatory treatments (Ekdahl et al., 2003; Monje et al., 2003; 

Simard and Rivest, 2004). In fact, acute inflammation is important for the 

protection of the CNS against pathogens or insults and is also involved in the 

clearance of damaged or dead cells. An acute inflammatory response also 

enhances neurogenesis. However, chronic inflammatory may hinder 

neurogenesis. Although described by different authors that chronic 

inflammation may stimulate one or more processes of neurogenesis, such as 

proliferation, migration or differentiation, the problem remains in the reduced 

long-term survival of newly formed neurons (Whitney et al., 2009). 

In light of these facts, a full understanding of how the inflammatory 

response affects neurogenesis is fundamental to the development of 

therapeutic strategies that can induce neurogenesis from endogenous NPCs. 

The use of anti-inflammatory drugs that selectively block the anti-neurogenic 

effect of inflammatory mediators such as tumour necrosis factor alpha (TNF-

α), interleukin (IL)-6 and IL-18, without preventing the neurogenic role of 

inflammation have been addressed as an approach to increase neurogenesis 

(reviewed by Ajmone-Cat et al., 2008). Epidemiological evidence that chronic 

use of nonsteroidal anti-inflammatory drugs (NSAIDS) is associated with a 

decreased risk of developing neurodegenerative diseases such as AD or PD 

has been reported (McGeer and McGeer, 1995; Lim et al., 2000; Chen et al., 
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2003). In the case of acute lesions, the administration of the NSAID 

indomethacin following stroke increased the number of neuroblasts in the 

striatum of rats (Hoehn et al., 2005), while minocycline was reported to 

increase the number of newborn neurons in the DG after occlusion of the 

middle cerebral artery in rats (Liu et al., 2007).  

This is an area with great interest where further research is needed. 

Although anti-inflammatory drugs may be useful for preventing the detrimental 

effects of inflammation on neurogenesis, it has been suggested that its use as 

adjuncts to other therapeutic agents, particularly drugs that aim to restore 

neuronal loss, could to be more advantageous mainly due to the multiple 

agents underlying the etiology of neurodegenerative disorders. 

Neuroinflammation will be discussed in detail in the following section. 
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1.2 Neuroinflammation 
 

Inflammation is a complex biological response to harmful stimuli, such 

as stress, injury or infection (Nencini et al., 2003; Schmidt et al., 2005). The 

neuroinflammatory response attempts the protection of the affected organism 

by removing the injurious stimuli, removing dead and damaged cells initiating 

the healing process.  

 

1.2.1 Inflammation following injury in the central nervous system  
 

In the past, the CNS was considered immune-privileged because of its 

protection by the blood-brain barrier (BBB), which selectively allows certain 

inflammatory effectors to enter and exit. Presently, it is well established that 

immune surveillance does take place in the CNS, because of the selective 

permeability of its barrier to T cells, macrophages and dendritic cells (Hickey, 

1999). Following damage or exposure to pathogens, an inflammatory 

response takes place, involving two types of immune cells: CNS resident 

microglial cells and astrocytes, and infiltrating lymphocytes, monocytes and 

macrophages of the hematopoietic system (Stoll and Jander, 1999; Streit et 

al., 1999). Activated immune cells release a plethora of regulatory substances, 

like complement molecules, cytokines such as interferon gamma (IFN-γ), TNF-

α, IL-1β, IL-18 and IL-6, chemokines such as SDF-1α and monocyte 

chemoattractant protein-1 (MCP-1), glutamate, reactive oxygen species and 

reactive nitrogen species like nitric oxide (Whitney et al., 2009). These 

inflammatory mediators are responsible for the recruitment of resident 

microglia and stimulation of astrogliosis but also for the disruption of the BBB 

and recruitment of monocytes and lymphocytes from the hematopoietic 

system into the site of inflammation (Hickey, 1999; Lossinsky and Shivers, 

2004; Taupin, 2008). Astrogliosis occurs following injury to the CNS (Latov et 

al., 1979; Miyake et al., 1988), and this event is believed to be necessary for 
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containing the inflammatory response, repairing the BBB and reducing further 

neuronal death (Bush et al., 1999; Lossinsky and Shivers, 2004).  

The activation of inflammatory-recruited cells leads to the release of 

inflammatory factors that creates a positive feedback loop of inflammatory 

activation, resulting ultimately in neuronal loss and/or neuronal damage. 

Inflammatory factors could have both beneficial and harmful effects on the 

cellular environment. Although CNS inflammation should be taken as a 

protective process, its injurious properties have also to be considered (Wyss-

Coray and Mucke, 2002). In most organs, inflammation leads to collateral 

injury, which is normally reversible due to the inherent regenerative capacity of 

those tissues. However, collateral injury in the CNS is mediated by 

inflammatory factors that are neurotoxic themselves or responsible for the 

increased migration of inflammatory cells into the lesioned areas, which 

propagates the detrimental inflammatory status leading to neuronal loss and 

atrophy of the affected areas. To minimize this reciprocating cycle, an 

uncontrolled immune response is avoided by increasing the threshold needed 

to initiate the inflammatory process. In fact, the immune response in the brain 

is different from that in peripheral tissues, particularly the initiation and 

sensitivity to inflammation. Thus, a neuroinflammatory response requires 

higher levels of antigen or damage to occur compared to the levels in 

peripheral tissues (Matyszak, 1998; Perry, 1998). 

The severity of neuroinflammation varies from mild acute to 

uncontrolled chronic inflammation, resulting in different activation states of 

inflammatory cell types and different biological outcomes (Stoll et al., 2002). 

Neuroinflammation is now believed to be involved in the mechanisms leading 

to various CNS diseases, also affecting neurogenesis (Das and Basu, 2008).  
 

1.2.2 Microglia: the immune resident cells of the brain 
  

Microglia are glial cells found in the central nervous system structures, 

brain and spinal cord. Unlike astrocytes, oligodendrocytes and ependymal 
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cells, microglial cells derive from the mesodermal germ layer and were 

identified by del Rio Hortega (1919). In the adult CNS, microglia are numerous 

and are distributed throughout the parenchyma. In the healthy, brain, microglia 

are usually referred to as “resting microglia”, whose function has been clarified 

by different studies (Davalos et al., 2005; Nimmerjahn et al., 2005; Davalos et 

al., 2008). Microglia in this resting state are in a constant surveillance activity 

of their immediate surrounding. Due to this constant probing activity of 

microglial cells, Hanish and Kettenmann suggested a new designation for this 

resting state – “surveying microglia” (Hanisch and Kettenmann, 2007). In fact, 

resting microglia present a typical morphology, with long slender processes 

extending from a small-elongated soma. Microglial processes and 

arborizations are highly dynamic and mobile, being randomly formed de novo 

or retracted (Nimmerjahn et al., 2005). Such a dynamic and fine organization 

enables the stationary microglial cells to screen different brain regions without 

disturbing the neuronal structure. The active scanning by microglia rapidly 

changes to a targeted movement into a site of injury, and this response is 

apparently dependent on the activation of purinergic receptors and may 

involve astrocytes (Gehrmann, 1996; Haynes et al., 2006). Moreover, 

microglia is distributed throughout the CNS with variable density in different 

brain regions (Lawson et al., 1990). This ramified morphology occurs only in 

vivo, and seems to be relatively absent in isolated microglia in cell cultures. 

Microglial can transition from an active probing state towards a more 

reactive state in response to a pathological event, a process characterized by 

morphological and functional changes. The microglial cells have the ability to 

adapt their activation status according to the pathological process occurring in 

the brain, thus exhibiting functional plasticity (Fig. 1.6).  
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Figure1.6. Activity states of microglial cells. A) Microglial cells in normal tissue 
(1). Microglia in the resting state are in fact actively surveying their environment. (2)  
Microglia have receptors for different molecules which allows the detection of signals 
from disturbances in homeostasis. Neurons may release signaling molecules which 
keep microglial cells in this surveillance mode. (3) Circulating monocytes can 
differentiate into perivascular macrophages or into parenchymal microglial cells. B) 
Small homeostatic disturbances – focal and transient microglial activation. (4) 
Vascular or tissue damage is detected by microglial cells that rapidly respond 
changing its activity profile. (5) Astrocytes support the microglial response by 
releasing, for example, purinoreceptor ligands. (6) Disruption of normal cross-talk 
between neurons and microglia, allow endangered neurons to call microglial cells. (7) 
Alerted microglial cells can produce neurotrophic factors to support endangered 
neurons. (8) Endangered neurons can also release signaling molecules that are not 
usually released or release signaling molecules in critical concentrations, indicating 
functional disturbances. (9) Microglial cells may be able to restore normal 
homeostasis thus limiting further damage. C) Large homeostatic disturbances – 
strong insults to the CNS. (10) Microglial cells may adapt a more reactive behavior 
with drastic changes in phenotype. Excessive acute, chronic or maladaptative 
responses of microglial cells may be detrimental to neurons and glial cells (adapted 
from Hanisch and Kettenmann, 2007). 

 

During the activation process, cell morphology changes from a ramified 

to a hyperramified and finally to an amoeboid morphology, which facilitates 

cell migration through the neuronal parenchyma (Raivich, 2005; Hanisch and 

Kettenmann, 2007). Reactive microglia have the capacity to rapidly upregulate 

a large number of receptor types, like cytokine receptors, toll-like receptors or 

cell adhesion molecules (see Table 1.1 for a complete description). On the 

other hand, these cells also release a plethora of inflammatory agents, like 

cytokines, chemokines, proteases or free radicals (see Table 1.2 for a full 

listing). The secreted products have been shown to act as pro- or anti-

inflammatory agents, contributing to beneficial or detrimental outcomes in the 
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CNS. In fact, several of the products that have been reported to play an 

antimicrobial role have also been implicated in neurodegenerative disorders 

(reviewed by Graeber and Streit, 2010). Moreover, there is evidence that the 

microglial neurotoxic profile is due to both the loss of the beneficial functions 

and/or a shift of cellular function to a pro-inflammatory state, by releasing 

cytotoxic substances, including NO or superoxide (O2
-), and the pro-

inflammatory factors IL-1β and TNF-α, whose primary function is the 

destruction of invading pathogens (Block and Hong, 2005; Ransohoff and 

Perry, 2009; Graeber and Streit, 2010).  

 

Table 1.1 Microglial cell membrane receptors (adapted from Block and Hong, 
2005). 

Cell Adhesion molecules 
Immunoglobulins (Ig) superfamily 

Major histocompatibility (MHC) class I and II glycoproteins 
CD4 receptors 
Ig Fc receptors (FcγRI, RII, RIII) 
Intercellular adhesion molecule 1 (ICAM-1) 

Integrins 
Leucocyte function-associated antigen-1 (LFA-1, CD11a/CD18: CR1) 
Mac-1 (CD11b/CD18; CR3) 
p150, p95 (CD11c/CD18; CR4) 

Complement receptors: C1q, C5a 
Cytokine/chemokines receptors 

Interferon (IFN)-α, IFN-β, IFN-γ 
Interleukin (IL)-1, IL-6, IL-10, IL-12, IL-16, IL, 23 
Tumor necrosis factor (TNF)-α 
Macrophage-colony stimulating factor (M-CSF), Granulocyte-
macrophage (GM)-CSF 
CCR, CXCR, CX3CR 

Opioid receptors (µ , κ) 
Cannabinoid receptors (CB1, CB2) 
Toll-like receptors 
CD14 receptors 
Mannose receptors 
Purinogenic receptors 
Benzodiazepine receptors (mitochondrial membrane) 
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Under certain pathological conditions, the resident microglial 

population of the adult CNS parenchyma can be supplemented with bone 

marrow-derived cells (Priller et al., 2001; Bechmann et al., 2005; Massengale 

et al., 2005; Wirenfeldt et al., 2007; Soulet and Rivest, 2008). Microglial-like 

cells migrating into the adult CNS from the peripheral blood and joining to the 

resident reactive microglia has been demonstrated in various models of acute 

injury (Priller et al., 2001; Wirenfeldt et al., 2007; Clausen et al., 2008; 

Lambertsen et al., 2009), as well as in chronic inflammation (Simard et al., 

2006; Remington et al., 2007). 

 

Table 1.2 Secretory products of microglial cells (adapted from Block and 
Hong, 2005). 

Complement factors: C1, C3, C4 
Amyloid precursor protein (APP) 
Quinolinic acid, glutamate 
Proteases: elastase, plasminogen 
Matrix metalloproteinases: MMP-2, MMP-3, MMP-9 
Growth factors: nerve growth factor, fibroblast growth factor 
Cathepsins B and L 
Eicosanoids: PGD2, leukotriene C4 
Free radicals: superoxide, nitric oxide 
Chemokines 

CC: CCL2/MCP-1, CCL3/MIP-1α, CCL4/M1P-1β, CCL5/RANTES 
CXC: CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, CXCL12/SDF-1α 
CX3C: CX3CL1/fractaline 

Cytokines 
IL-1α, IL-1β, IL-6, IL-10, IL-12, IL-16, IL-23 
Transforming growth factor (TGF)-β, TNF-α 

 
 

1.2.2.1 Acute microglia activation 
 

 In the brain, the innate immune response is predominantly characterized 

by an activation of microglia, which act as the resident macrophages of the 

CNS. Activated microglial cells engage in different actions, scavenging the 
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damaged or dead neurons, as well as initiating a local inflammatory reaction. 

Many molecules and conditions that indicate a threat to the CNS can trigger 

the transition from the resting (or surveying) state to active, alert and reactive 

microglia. Microglia recognize a wide range of signals from homeostatic or 

pathophysiological surveillance. High levels of factors that are not usually 

present or that occur in an abnormal format, such as protein aggregates, or 

others, such as microbial structures, are sensed by microglia receptors that 

present matching specificities. Activation of these receptors triggers signaling 

pathways that cause microglia to respond to the detected insult. Receptors 

such as the family of pattern recognition Toll-like receptors (TLRs), detect and 

distinguish between fungal, bacterial and viral structures (reviewed by Hanisch 

and Kettenmann, 2007). Activation of microglia can result in different 

phenotypes, which means functional diversity. When challenged by acute 

bacterial invasion, phagocytosis occurs together with the release of 

inflammatory mediators. On other hand, microglia release anti-inflammatory 

factors when removing apoptotic cells or cellular debris. 

   

1.2.2.2 Chronic microglia activation  
 

 Chronic neuroinflammation persists for a long period following an initial 

injury or insult to the CNS. It is characterized by a long-standing microglial 

activation and subsequent sustained release of inflammatory mediators that 

leads to increase oxidative and nitrosative stress. These effects work to 

perpetuate the inflammatory response, activating additional microglial cells, 

promoting their differentiation, thus resulting in a self-perpetuating release of 

inflammatory factors (Frank-Cannon et al., 2009).   

The transition from acute to chronic activation of microglia can be 

exemplified by the alteration in cytokine production, with a progressive 

reduction in the production of IL-1β, IL-1α, TNF-α, IL-6 and free radicals, such 

as nitric oxide. In contrast, IL-10 and prostaglandin E2 (PGE2), that continue 
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being produced and released during chronic inflammation, are potent 

suppressors of the inflammatory function of microglia (Ekdahl et al., 2009). 

Chronic inflammation is often associated to be detrimental and 

damaging to the nervous tissue, however it could also play a protective role, 

as in the case of acute neuroinflammation. Whether inflammation is beneficial 

or detrimental to the brain may be dependent on the duration of the 

inflammatory response and also on the kind of microglial activation. Activated 

microglia change into a chronic profile following injury, maintaining an acute 

phenotype or changing into another activation state, whose effects could be 

neuroprotective or maladaptative (Cacci et al., 2008). 

  

1.2.3 Inflammatory neurodegeneration 
 

Neurodegeneration is characterized by the slow, progressive 

dysfunction and loss of neurons in CNS. Immune activation within the CNS is 

a classical feature of ischemia, infections, trauma and neurodegenerative 

diseases (Fig. 1.7). Often it could contribute to collateral injury, which has 

been implicated in neuronal loss and atrophy in different brain regions. The 

susceptibility of neurons to cell death mediated by the innate inflammatory 

response (Boje and Arora, 1992; Chao et al., 1992) and the failure of self-

repair of the brain (Bjorklund and Lindvall, 2000), combined with the inhibition 

of axonal growth and limited repopulation by neuronal precursor cells are 

pointed as the main causes for the neurodegenerative event that follows 

inflammation (Goldberg and Barres, 2000; Fournier and Strittmatter, 2002). 

However, not all immune responses in the CNS are detrimental, and in many 

cases they actually aid repair and regeneration. Particularly, microglial cells 

seem to play an important role in facilitating the reorganization of neuronal 

circuits and triggering repair. It has been shown that insufficient clearance of 

cell debris by microglia, prevalent in several neurodegenerative diseases and 

declining with aging is associated with an adequate regenerative response 

(Neumann et al., 2009).  
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Figure 1.7. Reactive microgliosis leads to chronic neuronal damage. Microglial 
activation both with pro-inflammatory stimuli, such as lipopolysaccharide (LPS), and 
direct neuronal damage result in the release of neurotoxic factors, such as interleukin-
1beta (IL-1β), nitric oxide (NO), tumor necrosis-alpha (TNF-α), peroxynitrite (ONOO–), 
superoxide (O2

–) and hydrogen peroxide (H2O2). Following damage with pro-
inflammatory factors or direct neurotoxic triggers, neurons release microglial 
activators, such as MMP3, neuromelanin or α-synuclein, which activate microglial 
cells, thus perpetuating the cycle. This self-perpetuating cycle of microglia 
overactivation in response to neuronal damage, which results in progressive 
neurotoxicity, is known as reactive microgliosis. Reactive microgliosis has been 
suggested to underly the progressive neuronal damage in many neurodegenerative 
disorders Aβ, amyloid-β; MMP3, matrix metalloproteinase 3; MPP+, 1-methyl-4-
phenylpyridinium ion; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 
6-hydroxydopamine; PGE2, prostaglandin E2; PHOX, NADPH oxidase; SP, substance 
P (adapted from Block et al., 2007). 

Thus, microglia seem to play dual roles in neurodegeneration, both as 

a detrimental or beneficial agent (Ekdahl et al., 2009). Immune activation is 

also important to limit viral infections and removal of necrotic cells following 

ischemia. Like microglia, T cells can also help recovery during 

neurodegenerative diseases, although the mechanisms remain unclear. The 

relationship between inflammation and neurodegeneration is being studied in 

models of CNS diseases such as Alzheimer’s and Parkinson’s disease, and 

suggest neuroinflammation to be a crucial process, if not the cause of CNS 

injury seen in these diseases (Whitney et al., 2009; Lehnardt, 2010). However, 
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these studies also revealed complex neuroimmune interactions, both at 

cellular and molecular levels, demonstrating that immune cells secrete both 

neurotoxic and neuroprotective molecules (Amor et al., 2010). Despite 

different triggering events, a common feature for the neurodegenerative event 

seems to be the chronic activation of microglia.  
 

1.2.4 Brain inflammation and neurogenesis 
 

Inflammation in the CNS is a complex process with different outcomes 

in neurogenesis. Besides the differences between mild acute and uncontrolled 

chronic inflammation, the shift from pro-neurogenic to anti-neurogenic 

inflammation seem to be dependent on the mechanism by which microglia, 

macrophages and/or astrocytes are activated, as well as on the duration of 

inflammation. Inflammation and microglia activation was initially thought to 

inhibit adult neurogenesis, however recent evidence indicates that microglia 

under certain circumstances can be beneficial to the neurogenic process.  

Ekdahl and colleagues showed that lipopolysaccharide (LPS)-induced 

microglial activation impairs hippocampal neurogenesis in rats (Ekdahl et al., 

2003), apparently through the increased production of TNF-α, as also reported 

later by Liu (Liu et al., 2005). Further support for the detrimental effect of LPS-

activated microglia has been provided by Cacci and collaborators, showing 

that acute activation of microglia with LPS reduces neural stem cells survival 

and neuronal differentiation (Cacci et al., 2008). The mechanism by which 

microglia exerts these adverse effects is through the release of the pro-

inflammatory mediators IL-1β, IL-6, IFN-γ and TNF-α and reactive oxygen and 

nitrogen species, which seem to play an essential role in suppressing 

neurogenesis (Ben-Hur et al., 2003; Cacci et al., 2005; Iosif et al., 2006; Koo 

and Duman, 2008). Moreover, suppression of activated microglia with an 

antibiotic, such as minocycline was shown to increase neurogenesis in the 

hippocampus, thus suggesting that the degree of impaired neurogenesis 

correlate with the number of activated microglial cells (Ekdahl et al., 2003). 
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Neurogenesis was also restored following treatment with indomethacin, a non-

steroidal anti-inflammatory drug, after irradiation-induced inflammation (Monje 

et al., 2003) or focal cerebral ischemia (Hoehn et al., 2005). Other studies 

report an increased survival of the newly generated neuroblasts in the striatum 

following stroke (Hoehn et al., 2005), or in the dentate gyrus following middle 

cerebral artery occlusion (MCAO) (Liu et al., 2007), when microglia activation 

is inhibited indomethacin or by minocycline, respectively. 

However, in 2006, Butovsky and collaborators reported microglia to 

play a dual role of on neurogenesis, suggesting that microglia activated by 

inflammation inhibited neurogenesis, but also that microglial cells, when 

activated by IL-4 or low levels of IFN-γ, associated with T-helper cells, induced 

neurogenesis and oligodendrogenesis (Butovsky et al., 2006). Moreover, a 

persistent production of neurons from adult neural stem cells has been 

observed, even after inhibition of acute microglia activation, during recovery 

after stroke (Kokaia et al., 2006; Thored et al., 2006). Furthermore, long-term 

survival of newborn neurons was observed following SE, concomitant with 

chronic microglial activation (Bonde et al., 2006). In vitro studies have also 

showed an important role for microglia in directing the replacement of 

damaged or lost cells (Aarum et al., 2003; Morgan et al., 2004; Walton et al., 

2006; Nakanishi et al., 2007). More recently, Jakubs and colleagues showed 

that microglia activation by LPS and inflammation enhances the integration of 

newborn neurons into the adult rat hippocampus (Jakubs et al., 2008). These 

studies suggest a neuroprotective role of microglia for newborn cells.  

More recently, Thored and colleagues have shown that long-term 

accumulation of activated microglia, although with a downregulated 

inflammatory profile, is concomitant with persistent neurogenesis in the adult 

SVZ after stroke (Thored et al., 2009). These authors also suggested that IGF-

1 plays an important role in the pro-neurogenic role of long-term accumulation 

of microglia, since it could promote proliferation and differentiation of neural 

progenitors, which is in agreement with previous studies (Kalluri et al., 2007; 
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Zhu et al., 2008). Other inflammatory mediators have also been implicated in 

the enhanced proliferation and migration of new neurons following brain 

damage, such as the SDF-1α and its receptor CXCR4 (Imitola et al., 2004; 

Thored et al., 2006). Moreover, the release of trophic factors like GNDF and 

BDNF are involved in the removal of synapses of damaged neurons, while the 

expression of the glutamate uptake protein GLT-1 by microglial cells during 

chronic microglial activation prevents glutamate-mediated neurotoxicity 

(Ekdahl et al., 2009).  

In summary, these studies suggest that although microglia has a 

detrimental action in early stages of the inflammatory response that follows 

acute insults, it could be converted into a protective state during chronic 

activation. However, future studies need to be conducted in order to assess 

the interaction between inflammation and neurogenesis, and more importantly, 

how newborn cells integrate the neuronal network. Different microglial 

phenotypes and morphologies occur during inflammation, thus the genetic and 

proteomic characterization will be of great interest to understand more 

accurately this complex crosstalk.  

Astrocytes constitute the majority of glial cells in the CNS, and play an 

important role in neuroinflammation, as mentioned previously. Astrocytes, 

known collectively as astroglia, are roughly star-like and have broad end-feet 

on their processes. Considered in the past to be the packing material in the 

brain holding neurons in place, nowadays astrocytes are known to provide 

structural support for neurons, but also for playing important regulatory 

functions, including maintenance of extracellular ion balance, signaling to 

neurons through Ca2+-dependent release of glutamate and repair and scarring 

process of the brain and spinal cord following injury (Svendsen, 2002). In 

inflammation, activated astrocytes release inflammatory factors, growth factors 

and regulate extracellular levels of excitatory amino acids, such as glutamate, 

which could induce neurogenesis from adult neural stem cells (Song et al., 

2002). Astrocytes are also involved in regulating the production of neural 
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synapses. However, like microglia, astrocytes have also been implicated in 

chronic inflammation that underlies neurodegeneration (Blasko et al., 2004). 

 
1.2.5 Inflammatory mediators 
 

1.2.5.1 Cytokines 
 

Cytokines are a group of small chemical messengers secreted by glial 

cells in the CNS and by numerous cells of the immune system. Cytokines can 

be classified as proteins, peptides or glycoproteins. Each cytokine has a cell-

surface receptor, whose activation and subsequent intracellular signaling may 

involve upregulation and/or downregulation of several genes and their 

transcription factors that could lead to increased production of other cytokines, 

increased expression of receptors or, instead, the suppression of their own 

effect. The fact that cytokines trigger the release of other cytokines makes 

them important in chronic inflammatory processes.  

The role of pro-inflammatory cytokines released by activated microglial 

cells, has been studied in the brain. Cytokines are described to have a 

differential effect on neurogenesis (Monje et al., 2003). IL-6 and TNF-α 

decreased neurogenesis in vitro (Monje et al., 2003), while IFN-γ has a 

detrimental effect on survival and proliferation of neural stem/progenitor cells 

(Ben-Hur et al., 2003). Particularly IL-6 has been implicated in the mechanism 

underlying the negative effect of activated microglia on hippocampal 

neurogenesis (Monje et al., 2003). IL-6 is also released by astrocytes, 

decreasing the number of newly formed of neurons (Vallieres et al., 2002). 

Other pro-inflammatory cytokines play an important role in modulating 

neurogenesis, such as TNF-α, that is produced in immune responses by 

activated astrocytes and microlial cells, as well as in some neurodegenerative 

diseases (Whitney et al., 2009). TNF-α exerts its biological functions via 

interaction with TNF-α receptors (TNFR), TNF-R1 or TNF-R2 (Cacci et al., 

2005). Depending on the type of TNFR activated, TNF plays different effects 
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on neurogenesis (Iosif et al., 2006). Thus, TNF-R1 acts as a suppressor of 

neural progenitor cells proliferation in the adult hippocampus, both in intact 

and in pathological brain. More recently, it has been shown that TNF-R1 is a 

negative regulator of stroke-induced SVZ progenitor proliferation (Iosif et al., 

2008). Contrarily, TNF-R2 enhances proliferation and survival of newly 

generated striatal and hippocampal neurons (Heldmann et al., 2005).  

Other studies reported TNF-α to be a positive regulator of 

neurogenesis both in vivo (Wu et al., 2000) and in vitro (Widera et al., 2006), 

an effect mediated by activation of nuclear factor κB (NF-κB) and further 

increased cyclin D1 expression. Cyclin D1 is necessary for cell cycle 

progression by promoting passage through the G1/S restriction point, thus 

promoting cell proliferation (Widera et al., 2006). The proliferative effect of 

TNF-α has also be suggested to be a consequence of the TNF-α–mediated 

up-regulation of neurotrophins and growth factors such as nerve growth factor 

(NGF) and bFGF (Das and Basu, 2008). Besides regulating cell proliferation, 

TNF-α exerts a detrimental effect on differentiation and neuronal survival (Liu 

et al., 2005). Other pro-inflammatory cytokines, such as IL-1β and IL-18, have 

been studied with respect to neurogenesis, however the exact role in the 

neurogenic process needs further research (Whitney et al., 2009).  

 
 
1.2.5.2 Complement system 

 

The complement system is a part of the innate immune system with an 

important role in protection against infectious agents via inflammation, 

opsonization and cytolysis. Although complement proteins derived from 

serum/blood-brain barrier breakdown can contribute to injury or disease, 

infiltrating immune cells may represent an important local source of 

complement after injury. Astrocytes, microglia and neurons produce the 

complement proteins, but the role in normal and in ischemic CNS remains 

unclear (Thomas et al., 2000; D'Ambrosio et al., 2001). The complement 
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cascade is involved in triggering cell death and recruiting cells of the immune 

system to sites of inflammation, however, it might also have important 

neuroprotective roles that are only now coming to light. Recent evidence 

suggests that targeted activation of complement might be a potential approach 

for treatment of stroke and other acute neurodegenerative diseases 

(Yanamadala and Friedlander, 2010).  

C3a and C5a are two complement molecules, both potent 

chemoattractants, expressed mainly in hippocampus and cortex in the normal 

brain (Davoust et al., 1999; O'Barr et al., 2001). It has been reported that 

neural progenitors and immature neurons express the receptors for 

complement fractions C3a and C5a. Mice lacking C3a or C3a receptor present 

reduced basal neurogenesis and impaired neurogenesis in the SVZ following 

ischemia, thus suggesting a beneficial involvement of these complement 

molecules in neurogenesis (Rahpeymai et al., 2006).  

More recent studies have implicated the complement system in 

diseases of the CNS, such Alzheimer’s disease and other neurodegenerative 

conditions, such as spinal cord injuries (Yanamadala and Friedlander, 2010). 

Altogether, these reports open another aspect of modulation of neurogenesis 

by the inflammatory process, and more studies need to be done. 

 
1.2.5.3 Cyclooxygenase-2 

 

Cyclooxygenase-2, also referred as COX-2, is an inducible enzyme 

produced by macrophages and activated microglial cells following 

inflammation. The proliferative effect of COX-2 has been reported after 

inhibition or knockout of COX-2, which decreased progenitor cells proliferation 

in the SGZ of adult mice following transient forebrain ischemia (Sasaki et al., 

2003; Das and Basu, 2008). It has been hypothesized that COX-2 may affect 

neurogenesis through the production of prostaglandin E2 (Uchida et al., 2002), 

which may act directly via PGE2 receptor subtype EP3 receptors expressed in 

the granule cell layer of the dentate gyrus (Nakamura et al., 2000) or indirectly 
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through bFGF (Sabbieti et al., 1999). Moreover, administration of inhibitors of 

cyclooxygenase such as acetylsalicylic acid and indomethacin was also 

reported to reduce ischemia-induced proliferation in adult gerbils or rats 

(Kumihashi et al., 2001; Sasaki et al., 2003). 
 
1.2.5.4 Nitric oxide  

 

Nitric oxide, a short-lived diffusible gas, is an important cellular 

messenger involved in many physiological and pathological processes. NO is 

biosynthesized from L-arginine, oxygen and NADPH by various nitric oxide 

synthase (NOS) enzymes. NO is constitutively produced in neurons via 

neuronal NOS (nNOS) and has important roles in neuronal differentiation, 

survival, neurodegeneration and synaptic plasticity (Holscher, 1997). NO is 

also generated via inducible NOS (iNOS), expressed following an insult to the 

CNS such as ischemic neuronal death, thus acting as an inflammatory 

mediator (Estrada and DeFelipe, 1998). The role of NO as a modulator of 

neurogenesis is still unclear, and matter of strong debate. Controversial 

findings are found in the literature which ultimately illustrate that NO has 

influence in the neurogenic process both by inhibiting or stimulating 

neurogenesis depending on the source of NO. Thus, NO produced by the 

nNOS isoform has been demonstrated to have an antiproliferative effect both 

in vitro and in vivo (Packer et al., 2003; Moreno-Lopez et al., 2004; Zhu et al., 

2006; Torroglosa et al., 2007). In the areas surrounding the SVZ, immature 

neurons express nNOS. The selective inhibition of nNOS with 7-nitroindazole 

(7-NI) greatly increased cell proliferation in the subventricular zone, RMS and 

olfactory bulb (Moreno-Lopez et al., 2004). Furthermore, proliferation was 

increased in the mouse DG by nNOS inhibition (Zhu et al., 2006) and in an 

nNOS knockout mouse model (Zhu et al., 2006; Fritzen et al., 2007). On the 

contrary, NO synthesized by endothelial NOS (eNOS) in the SVZ and iNOS in 

the dentate gyrus following focal ischemia, stimulates neurogenesis (Zhu et 

al., 2003; Reif et al., 2004; Cardenas et al., 2005). Moreover, increased 
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immunoreactivity against iNOS following transient ischemia was shown to 

correlate with a decrease of nNOS in the hippocampus, which is concomitant 

with an increased neurogenesis (Luo et al., 2007; Corsani et al., 2008).  

Altogether these findings illustrate that NO is a modulator of 

neurogenesis in diverse ways, and the different NO synthases are important 

players in this effect on neurogenesis (Estrada and Murillo-Carretero, 2005). 

NO effects on neurogenesis are dependent on the developmental period and 

source of NO. Apparently, under physiological conditions NO acts as a 

negative regulator of cell proliferation while in inflammatory conditions a 

decrease in nNOS and increase in iNOS may act as a mechanism to enhance 

neurogenesis. However more studies need to be conducted to determine the 

signaling mechanisms underlying the dual role of NO on neurogenesis. NO 

will next be discussed in detail in section 1.3, and the mechanisms underlying 

the role of NO on NSCs proliferation will be addressed in the present thesis. 
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1.3 Nitric oxide  
 

1.3.1 Nitric oxide in the nervous system 
 

Nitric oxide is a gaseous signaling molecule synthesized by the nitric 

oxide synthase (NOS) family of enzymes present in most cells in the body. NO 

is implicated in a wide range of physiological processes, being involved in 

several functions including blood-vessel tone, immune response and 

neurotransmission, but it can also be an important player in pathophysiological 

processes. Different members of the NOS family control different functions of 

NO. The discovery of NO in the nervous system was a breakthrough in the 

concept of neural communication. Indeed, the existence of nitrergic nerves 

dependent on the release of NO for transmission mechanisms emphasizes the 

uniqueness of this mediator (Moncada et al., 1997). Unlike canonical 

neurotransmitters, NO is synthesized on demand, diffusing from nerve 

terminals and it is not stored in vesicles nor released by exocytosis.  

In the peripheral nervous system, NO controls the relaxation of 

smooth-muscle cells, regulating the muscle tone of the gastrointestinal tract 

and urogenital tract, such as smooth-muscle relaxation in the corpora 

cavernosa allowing penile erection (Curro and Preziosi, 1998; Takahashi, 

2003). In the CNS, NO is also associated with cognitive function, having an 

important role in synaptic plasticity important to the control of biological 

functions including body temperature, sleep-wake cycle, appetite and 

modulation of hormone release (reviewed by Calabrese et al., 2007). NO can 

also act as a neuromodulator, particularly due to its diffusion distance of 40 ± 

300 µm in radius (Garthwaite and Boulton, 1995), thus acting not only in cells 

that release NO, but acting on neighboring cells as an autocrine and/or 

paracrine messenger. Another distinctive feature from classical 

neurotransmitters is that, unlike them, NO ends its action after reacting with a 

substrate and not by enzymatic degradation or re-uptake. In addition, the key 

mechanism to regulate the activity of NO is the control of its synthesis. 
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Garthwaite and colleagues showed for the first time that in the CNS NO 

behaves as an intracellular messenger by increasing cyclic GMP levels, after 

the activation of glutamate receptors (Garthwaite et al., 1988). 

Physiologically, NO interacts with several intracellular targets activating 

different signaling pathways with a stimulatory or inhibitory response 

(reviewed by Guix et al., 2005). However, NO could be toxic to cells, in a 

mechanism dependent on the formation of reactive nitrogen species (RNS) 

(Pacher et al., 2007). Oxidative stress and nitrosative stress, a consequence 

of high levels of reactive oxygen species (ROS) and RNS, have been 

implicated in the pathogenesis of several neurodegenerative disorders 

(Moncada and Bolanos, 2006; Sultana et al., 2006; Sultana et al., 2007). 

 

1.3.1.1 Nitric oxide synthases 
 

The NOS family of enzymes is responsible for the synthesis of NO. 

Three different enzyme isoforms have been identified in mammalian cells: 

neuronal NOS (nNOS, type I), endothelial NOS (eNOS, type III) and inducible 

NOS (iNOS, type II) (Dawson and Snyder, 1994; Bredt, 1999; Guix et al., 

2005). Neuronal and endothelial NOS are constitutively expressed in specific 

tissues and require calcium-calmodulin complexes for their activation, while 

iNOS is calcium-independent and its regulation depends on de novo synthesis 

(reviewed by Guix et al., 2005).  

NO is synthesized by NOS, in a reaction that catalyzes the conversion 

of L-arginine, and oxygen into NO and L-citrulline (Palmer et al., 1988; 

Moncada et al., 1991). All three NOS isoforms need NADPH and co-factors for 

catalytic activity, specifically flavin mononucleotide (FMN), flavin adenine 

dinucleotide (FAD), iron protoporphyrin (heme), and tetrahydrobiopterin (BH4). 

FAD, FMN and heme are involved in the redox reactions leading to the 

synthesis of NO (Fig. 1.8). Heme and BH4 comprise the scaffold that 

maintains the substrate channel (Gorren and Mayer, 1998). 
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Figure 1.8. Synthesis of nitric oxide by nitric oxide synthase (NOS). L-arginine is 
oxidized to Nw-hidroxyarginine in the presence of NADPH and O2. Nw-hidroxyarginine 
is re-oxidized to L-citrulline producing NO. NO easily diffuses within the cell or across 
the cell membrane, and is involved in multiple biological processes. All the NOS 
isoforms have four prosthetic groups that are required for the production of NO: flavin 
adenine dinucleotide (FAD), flavin adenine mononucleotide (FMN), tetrahydrobiopterin 
(BH4) and iron protoporphyrin IX (heme). The electron flow in the NO synthase 
reaction is: NADPH > FAD > FMN > heme > O2. 

 The most common isoform in the brain is nNOS, and is present in 

different areas, such as the cerebral cortex, the thalamus, the hypothalamus, 

the striatum, the amydgala, the olfactory bulb, the cerebellum and the 

hippocampus, particularly in the CA1 region and in the DG (Bredt et al., 1991; 

Vincent and Kimura, 1992; Dawson and Snyder, 1994; Rodrigo et al., 1994). 

Although nNOS is present mainly in neurons, it has been found in astrocytes 

and cerebral blood vessels as well. The nNOS gene is present in chromosome 

12, and four major nNOS isoforms have been described, the α (160 kDa), β 

(136 kDa) γ (125 kDa) and µ (165 kDa), isoforms that differ in size. nNOS can 

be regulated at the post-translational level via phosphorylation by protein 

kinase (PK) A, calmodulin-dependent kinases and PKC. Expression of nNOS 

is under the control of sex hormones, which increase nNOS in human neurons 

(Lee et al., 2003). 

Human eNOS is a 135 KDa protein with 1294 amino acids codified by 

a gene located in chromosome 7, present in the endothelium (Marsden et al., 

1993). In the brain, eNOS is expressed in cerebral endothelial cells, regulating 

cerebral blood flow, in granulle cells of the dentate gyrus and in pyramidal 

neurons of CA1, CA2 and CA3 hippocampal regions (reviewed by Calabrese 
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et al., 2007). eNOS has also been identified in other cell types including 

human and rat astrocytes (Colasanti et al., 1998; Iwase et al., 2000). 

iNOS, whose gene is located in chromosome 17 (Lowenstein et al., 

1992), is expressed mainly in macrophages, astrocytes and microglial cells 

following inflammatory or immunological stimulation (Bredt, 1999; Calabrese 

et al., 2006).  iNOS is also expressed by neurons (Heneka and Feinstein, 

2001). While the reversible binding of calcium to calmodulin regulates nNOS 

and eNOS, iNOS is regulated at the transcriptional level, not depending on 

calcium for activation. The fact that calmodulin is already bound to iNOS 

explains its calcium-independency (Guix et al., 2005). 

Although the main producing pathway of NO is dependent on the 

activation of NOS, NO can be synthesized by other mechanisms: the xanthine 

oxidase pathway, reduction of nitrates in acid and reducing conditions or by 

H2O2 and L-arginine by a non-enzymatic mechanism. Nevertheless, the 

synthesizing pathway responsible for the messenger role of NO is its 

enzymatic synthesis. 

 

1.3.1.2 Cell survival and neuroprotection 
 

  NO is an important neuroprotective agent in the CNS, acting by 

multiple mechanisms to afford neuroprotection. NO may promote 

neuroprotection by S-nitrosylation, enhancing neuronal survival, particularly 

against excitotoxicity due to prolonged stimulation of NMDA receptors. 

Moreover, NO can also confer cytoprotection through the inhibition of caspase 

activity also by S-nitrosylation of the catalytic cysteine residues in caspases, 

reducing the activity of these proteases (Tenneti et al., 1997; Liu and Stamler, 

1999; Mannick et al., 2001). The induction of heme oxygenase-1 (HO-1) is an 

early event in cellular response against oxidative stress and NO has been 

shown to induce HO-1 in the hippocampus (Kitamura et al., 1998). Moreover, 

the effect of NO in the kinase Akt and the transcription factor cAMP 

responsive element-binding (CREB) has been shown to be involved in the 
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survival pathway of cerebellar granule cells, in a mechanism mediated by the 

sGC-cGMP-PKG pathway (Contestabile and Ciani, 2004; Riccio et al., 2006). 

 

1.3.1.3 Neurodegenerative diseases  
 

Strong evidence has been reported in the literature to support a role of 

NO in the pathogenesis of neurodegenerative disorders, including 

autoimmune and chronic neurodegenerative diseases. This role of NO seems 

to be dependent on the concentration reached locally in the tissue. When NO 

is produced in excess, NO shifts from a physiological to a neurotoxic agent. 

NO overproduction can be due to nNOS activation following persistent 

glutamate excitatory input and/or to iNOS expression. Likewise, the excessive 

release of both glutamate and NO, coupled with oxidative stress and 

mitochondrial dysfunction, are involved in a number of neurodegenerative 

diseases. NO from glial origin has been reported as an important factor 

contributing for the vulnerability of neurons. Thus, iNOS expression and 

further increase in NO levels due to microglial activation causes neuronal 

death both in vivo and in vitro in rodents (Lee et al., 2003; Cunningham et al., 

2005). Some authors suggested this neurotoxic effect to be a consequence of 

inhibition of the respiration, leading to hypoxia, and excitotoxicity (reviewed by 

Pacher et al., 2007), hypothesizing the involvement of ONOO- in the 

mechanisms of neuronal death, due to excessive NO release by glial cells 

(Mander et al., 2005). Protein nitration inhibits tyrosine phosphorylation which 

affects the signaling of many pathways involved in the control of cell survival, 

proliferation, or programmed cell death. Although NO has been implicated in 

acute injury events, particularly due to the massive release of NO from 

inflammatory response, its as also been associated to more slowly and 

progressive disorders can be sporadic or by genetic inheritance. Parkinson’s 

disease, Alzheimer’s disease, Huntington’s disease, multiple sclerosis and 

amyotrophic lateral sclerosis are all neurodegenerative disorders in which NO 

has been suggested to be involved, since all of them show evidence of 
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oxidative and nitrosative stress (Guix et al., 2005; Calabrese et al., 2009). 

Furthermore, the presence of 3-nitrotyrosine, a marker for protein nitration, 

has been reported in several neurodegenerative diseases linked to oxidative 

stress such as AD or PD (Good et al., 1996; Good et al., 1998). 

Understanding the involvement of NO in the ethiology of these disorders 

highlights the potential beneficial role of selective NOS inhibitors. However, 

the best therapeutical approach would be the prevention of peroxynitrite 

formation with antioxidants (Calabrese et al., 2007). 

 

1.3.2 Nitric oxide signaling  
 

1.3.2.1 Classical pathway 
 

1.3.2.1.1 sGC-cGMP-PKG pathway  
 

The main cellular signaling pathway stimulated by NO is the activation 

of soluble guanylate cyclase (sGC), subsequent production of cyclic 

guanosine-3’,5’-monophosfate (cGMP) and further activation of protein 

kinases that regulate various physiological (Arnold et al., 1977). Neurons 

synthesize cGMP in response to NO by activation of sGC, a heterodimeric 

heme-containing enzyme. NO reacts with the heme group of the sGC, which 

undergoes a conformational change, converting GTP into the second 

messenger cGMP (Fig. 1.9). Some studies suggest that NO can also 

downregulate sGC activity, particularly in some neuroinflammatory conditions 

(Sardon et al., 2004).  

cGMP-dependent kinases (PKG), which are serine/treonine kinases, 

are activated by cGMP and are involved in several physiological phenomena 

including long-term potentiation in the hippocampus and long-term depression 

in the cerebellum (Jurado et al., 2005; Schlossmann and Hofmann, 2005). 

PKG type I is expressed as two isoforms: PKG Ia, which is activated at low 

cGMP concentrations, and is present in the cerebellar Purkinje cells and 
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smooth muscle cells; and PKG Ib, which requires higher concentrations of 

cGMP for activation, and is more abundant in the hippocampus and olfactory 

bulb. PKG II is a membrane-bound protein, in contrast to the cytosolic type I, 

which has been observed in the brain, intestine and kidney (Schlossmann and 

Hofmann, 2005). 

 

	
  
Figure 1.9. Nitric oxide signaling: guanylate cyclase activation. Nitric oxide reacts 
with the heme group of the soluble guanylyl cyclase (sGC), a cytosolic enzyme that 
catalyses the transformation of guanosine-5’-triphosphate (GTP) into 3,5-cyclic 
guanosine monophosphate (cGMP). cGMP is a second messenger with several 
downstream effectors, but the most important is protein kinase G (PKG). cGMP 
modulates the activity of certain phosphodiesterases of cyclic nucleotides (PDE), that 
catalyze the hydrolysis of cGMP, thus avoiding excessive accumulation of this 
molecule. 

 

cGMP also modulates the activity of phosphodiesterares of cyclic 

nucleotides (PDE). The use of selective PDE inhibitors have been proven to 

be useful in clinic, particularly the inhibitors of PDE type 5, such as sildenafil 

citrate, sold as viagra, or tadalafil and vardenafil which are drugs used to treat 

erectile dysfuncion and pulmonary arterial hypertension (Krumenacker et al., 

2004; Burnett, 2006; Hemnes and Champion, 2006). 
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1.3.2.2 Post-translational modifications  
 

1.3.2.2.1 S-nitrosylation 
 

Nitric oxide can have different effects, depending on the local 

concentration and molecular environment. S-nitrosylation is a post-

translational modification, and is a reversible regulatory mechanism on several 

proteins due to a direct interaction of NO with the sulphur from thiols groups in 

specific aminoacids in proteins, like cysteins, forming nitrosothiol adducts (Fig. 

1.10) (Hanafy et al., 2001).  

	
  
Figure 1.10. S-Nitrosylation. S-nitrosylation is a ubiquitous modification of cysteine 
thiol by nitric oxide (NO). S-nitrosylated proteins form when cysteine thiol reacts with 
NO in the presence of an electron acceptor (O2). A) At high concentrations, NO may 
react with oxygen producing nitrogen dioxide (NO2), which is a strong oxidant. B) 
Once sufficient levels of NO2 are attained, NO is oxidized by NO2 to form dinitrogen 
trioxide (N2O3). N2O3 can be partially dissociated into nitrite (NO2

-) and nitrosium ion 
(NO+). C) The nitrosium ion is responsible for nytrosylation of electrophilic compounds, 
such as thiols. NO+ reacts with the sulfur atom of cysteine thiols (R-SH), forming S-
nitrothiols (RSNO) (adapted from Hanafy et al., 2001). 

	
  
S-nitrosylation is one of the most important cellular mechanisms of NO 

for switching and regulating protein function (Hess et al., 2005; Lipton, 1999). 

While nitrosylation of proteins, such as metalloproteinases and proteasome 
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components may lead to neurodegenerative disorders (Gu et al., 2002; 

Halliwell, 2002), the nitrosylation of other proteins results in neuroprotection 

(Foster et al., 2009). S-nitrosylation, as any physiologically relevant signal 

transduction mechanism, alters function, presents substrate selectivity, and is 

reversible (Hanafy et al., 2001). S-nitrosylation of p21Ras is a good example 

signal transduction by NO, as detailed next.  

 

1.3.2.2.1.1  p21Ras-MAPK pathway 

 
Figure 1.11. Nitric oxide signaling: the p21Ras-MAPK pathway. EGF-mediated 
dimerization and trans-(auto)phosphorylation of EGFR favours p21Ras activation 
(Ras-GTP), due to the exchange of GDP for GTP catalysed by a guanine nucleotide 
exchange factor (GEF). Folowing p21Ras activation a sequential phosphorylation 
cascade of kinases including Raf-family kinases, ERK/MAPK kinases (MEK1⁄2 and 
ERK1⁄2) occurs, leading to the activation of different transcription factors. The GTPase 
activity of Ras, enhanced by a GTPase-activating protein (GAP), transforms back 
active Ras (Ras-GTP) in its inactive form (Ras-GDP). NO targets the EGFR-p21Ras-
MAPK proliferative pathway at different points including: S-nitrosylation of EGFR, 



___________________________________________ Chapter 1	
  
 
	
  

	
   	
  
69	
  

inhibiting its intrinsic tyrosine kinase activity; S-nitrosylation of p21Ras, favouring its 
activation by enhancing nucleotide exchange and inhibition of the promoter activity of 
the transcription factor c-fos. 
 
 

NO is able to S-nitrosylate the p21 monomeric GTPase, p21Ras. Ras 

has 5 cysteine residues, but only cysteine 118 (Cys118) is nitrosylated with 

functional relevance (Lander et al., 1995; Lander et al., 1996; Lander et al., 

1997). Nitrosylation of p21Ras enhances its guanine nucleotide exchange and 

the subsequent recruitment of downstream effectors such as the mitogen 

activated kinase (MAPK) pathway (Fig. 1.11), playing a key role in 

proliferation, differentiation and apoptosis by modulation of cyclin-dependent 

kinases and their inhibitors (Guix et al., 2005). Furthermore, S-nitrosylation of 

p21Ras also recruits the phosphatidylinositol-3 kinase (PI3-K) pathway 

(reviewed in Villalobo, 2006).  

 

1.3.2.2.2 Nitration  
 

 Nitration has been proposed as an irreversible post-translational 

modification with important biological effects (Ischiropoulos, 2003). NO quickly 

reacts with superoxide anion (O2
-), which leads to the formation of 

peroxynitrite (ONOO-) (Reiter et al., 2000). Furthermore, peroxynitrite can be 

synthesized after persistent inhibition of mitochondrial respiratory chain activity 

by NO (Moncada and Bolanos, 2006). Peroxynitrite is as strong oxidant, which 

can oxidize thiol residues to sulfenic and sulfonic acids and nitrate peptides 

and proteins at the phenyl side chain of tyrosine residues (Fig. 1.12). Tyrosine 

nitrated by peroxynitrite forms 3-nitrotyrosine that may impair some cellular 

functions, since tyrosine residues are important for phosphorylation signaling, 

for instance. Nitration of tyrosine residues interferes with the normal activity of 

proteins by inducing conformational changes leading ultimately to a loss of 

function (Hanafy et al., 2001). Examples of this post-translational modification 

include heme oxygenases, histone deacetylase 2 or actin (Guix et al., 2005). 
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Copper/zinc-superoxide dismutase (Cu/Zn-SOD or SOD1) deficiency 

facilitates peroxynitrite formation from NO since neurons are unable to 

eliminate O2
- efficiently (Moncada and Bolanos, 2006). In some cases, 

nitration of tyrosine resides results in a gain of function, particularly in the case 

of protein kinase C, glutathione S-transferase, JNK and poly-ADP-ribose 

synthetase (for review see Guix et al., 2005). Tyrosine-nitrated proteins have 

been detected in tissue samples from various inflammatory or degenerative 

diseases, which suggest that protein modification by peroxynitrite may be 

involved in the pathogenesis of several neurological diseases (Ischiropoulos 

and Beckman, 2003; Moncada and Bolanos, 2006). 

 

	
  
Figure 1.12. Protein nitration. Protein nitration consists in the addition of a nitro 
group (NO2) to proteins, mainly with 3-position tyrosine residues (Tyr), with formation 
of 3-nitrotyrosine. A) Nitric oxide (NO) can react with superoxide anions (O2

-) to form 
peroxynitrite (ONOO-), which is a strong oxidant agent. The ONOO- mediated nitration 
depends on its intermediate products, such us nitrogen dioxide (NO2) and hydroxyl 
radical (OH.). NO can be produced by inducible nitric oxide synthase (iNOS) under 
inflammatory conditions or by neuronal nitric oxide synthase (nNOS), as in the case of 
excitotoxicity. B) Tyrosine is oxidized to a tyrosine radical (Tyr.) by the hydroxyl 
radical. Next, the tyrosine radical binds to NO2, forming nitrotyrosine (Tyr-NO2) 
(adapted from Hanafy et al., 2001). 
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1.3.3 Nitric oxide and adult neurogenesis 
 

Nitric oxide was described to have a dual role on the regulation of adult 

neurogenesis. NO synthesized from nNOS appears to decrease neurogenesis 

or to act as an antiproliferative agent (Packer et al., 2003; Moreno-Lopez et 

al., 2004), whereas NO from iNOS and eNOS origin seems to stimulate 

neurogenesis (Zhu et al., 2003; Reif et al., 2004).  

Indeed, some studies suggested NO to be antiproliferative under 

physiological conditions (Packer et al., 2003; Moreno-Lopez et al., 2004; 

Matarredona et al., 2005; Covacu et al., 2006; Torroglosa et al., 2007; Murillo-

Carretero et al., 2009), while others reported NO to be proliferative, enhancing 

neurogenesis in pathological conditions (Zhang et al., 2001; Zhu et al., 2003). 

Next, the effect of NO in cell proliferation and neurogenesis will be discussed. 

 

1.3.3.1 Cell proliferation and physiological neurogenesis 
 

 NO is an antiproliferative agent for a wide variety of cell types, 

including neuronal precursors (Packer et al., 2003). Several mechanisms have 

been proposed to explain how NO exerts its anti-mitotic effect. In physiological 

conditions NO was shown to inhibit cell proliferation (Peunova et al., 2001), in 

a mechanism independent of cGMP (Ignarro et al., 2002; Murillo-Carretero et 

al., 2002). NO can also exert its antiproliferative action via the p21Ras 

signaling pathway (Gonzalez-Zulueta et al., 2000). An increase in the activity 

of PKA has also been described to mediate the antiproliferative effect of NO, 

being involved in increased expression of p53, p21Ras and heme oxigenase 

(Guix et al., 2005). Transcription factors are common intracellular targets that 

mediate the antiproliferative effect of NO. Vossen and Erard suggested that 

NO downregulates the activity of transcription factors, and in particular nuclear 

receptors, via S-nitrosylation of cysteine residues as a possible mechanism to 

decrease cell proliferation (Vossen and Erard, 2002). 
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 Moreover, the anti-proliferative effect of NO has been associated with 

the inhibition of cyclin A and the activation of the cyclin-dependent kinase 

inhibitor p21Cip1/Waf1
 by p42/p44 mitogen-activated-protein kinase (Ishida et al., 

1997; Bauer et al., 2001). Poluha and collaborators, reported NO-mediated 

neuronal differentiation to use similar mechanisms to those described by 

Ishida and collaborators (Poluha et al., 1997). Decreased cell proliferation and 

subsequent cell cycle arrest are phenomena closely linked to cell 

differentiation. Thus, the anti-mitotic effect of NO, which allows the action of 

differentiating factors, strongly suggests a role of NO in the maturation 

process that occurs during developmental and adult neurogenesis. 

Indeed, NO is a regulator of neurogenesis in the CNS. The transient 

expression of nNOS during the development of the CNS suggest that NO 

participates in embryonic neurogenesis (Bredt and Snyder, 1994; Roskams et 

al., 1994; Santacana et al., 1998). In fact, NO may regulate cell proliferation 

during brain development, playing an important role in axonal projection 

patterning (Peunova and Enikolopov, 1995; Kuzin et al., 1996). Endogenous 

NO appears to be a negative regulator of neurogenesis in the SVZ and DG 

where it usually reduces neuronal precursor proliferation, as demonstrated in 

nNOS knockout mice or by the treatment with inhibitors of NOS (Packer et al., 

2003; Matarredona et al., 2004; Moreno-Lopez et al., 2004). The decreased 

expression of the oncogene N-myc has been suggested as a possible 

mechanism for the antineurogenic effect of physiological NO (Ciani et al., 

2004).  

Two major evidences from experimental studies suggest NO as an 

important modulator of cell proliferation and cell differentiation. First, the fact 

that several tumoral cell lines express different isoforms of NOS when 

exposed to differentiating factors, and second, the fact that inhibiting NOS 

activity prevents or delays cell differentiation. Altogether, these evidences 

suggest NO to be a pivotal player in the switch from immature proliferative 

neural stem cells to differentiating cells. 
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1.3.3.2 Cell proliferation and pathophysiological neurogenesis 
 

NO from inflammatory origin has been reported as an agent promoting 

adult neurogenesis in the damaged ischemic brain (Zhu et al., 2003; Sun et 

al., 2005). Moreover, NO-releasing drugs can enhance recovery after brain 

injury, partly by increasing neurogenesis in the dentate gyrus and 

subventricular zone (Zhang et al., 2001; Lu et al., 2003; Chen et al., 2004; 

Keynes and Garthwaite, 2004), following ischemic stroke (Zhang et al., 2001) 

and traumatic brain injury (Lu et al., 2003). It was suggested that nNOS-

derived NO and iNOS-derived NO play opposite roles in regulating 

neurogenesis following cerebral ischemia (Luo et al., 2007).  Indeed, Luo and 

collaborators demonstrated that reduced nNOS is involved in ischemia-

induced hippocampal neurogenesis by up-regulating iNOS expression, in a 

mechanism dependent on cAMP responsive element-binding protein 

phosphorylation (Luo et al., 2007).  

 

 

 

As seen, NO can have concentration-dependent effects, depending on 

the local concentration and surrounding molecular environment. At 

physiological concentrations NO is described to be a mediator in 

antiproliferative signaling on several tumoral cell lines, as well as on 

stem/progenitor cell cultures, favoring cell differentiation (Packer et al., 2003; 

Matarredona et al., 2004; Moreno-Lopez et al., 2004), while in 

pathophysiological concentrations NO can affect neural stem cell proliferation 

(Covacu et al., 2006; Torroglosa et al., 2007; Murillo-Carretero et al., 2009). 

However, the molecular mechanisms responsible for this dual effect of NO are 

not fully clarified.  
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1.4 Objectives  
 

Nitric oxide is a pleiotropic signalling molecule with several distinct 

functions in the central nervous system including regulation of proliferation of 

stem cells, but contradictory observations are found in the literature. Some 

studies suggest that NO has an antiproliferative action, favoring 

astrogliogenesis (Covacu et al., 2006; Torroglosa et al., 2007), while others 

point out that NO can increase cell proliferation (Zhang et al., 2001; Lu et al., 

2003; Zhu et al., 2003; Chen et al., 2004). Moreover, NO was shown to 

modulate neurogenesis in the adult CNS. Depending on the insult and on its 

source, NO can act either as an anti-proliferative agent (Packer et al., 2003; 

Matarredona et al., 2004), or stimulate neuronal precursor proliferation and 

differentiation (Zhang et al., 2001; Zhu et al., 2003). It appears that in 

physiological conditions, NO tonically inhibits cell proliferation in the brain, 

while in pathophysiological conditions, such as brain injury, it exerts a 

proliferative effect on the dividing population of neuronal precursors. However, 

the exact mechanisms by which NO regulates neuronal proliferation and 

differentiation are not yet clarified, and further investigation on this matter is 

needed. Since neuroinflammation is detrimental for adult neurogenesis, it 

would be of great interest to elucidate the role of inflammatory NO, produced 

by the transcriptionally regulated enzyme inducible nitric oxide synthase 

(iNOS), on the ongoing neurogenesis in these conditions.  

Within this scenario, we propose to identify the mechanisms that are 

involved in the role of NO in neural stem cell proliferation. Therefore, the main 

goal of this work was to study the regulation of proliferation of neural stem cell 

by NO.  

 

The aims of the specific chapters are presented as follows: 

In Chapter 2, we investigated the effect of different concentrations of 

NO from an exogenous donor on the proliferation of derived neural stem cells 

isolated from the subventricular zone, at concentrations ranging from 
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physiological to pathophysiological levels. For in vivo studies, we used a 

model of injury-induced neuroinflammation and neurogenesis, the kainic acid 

(KA) model of temporal lobe epilepsy to evaluate cell proliferation in the SGZ 

of the dentate gyrus of the hippocampus, both in wild-type and in iNOS-

deficient mice. Particularly the involvement of the EGRF-p21Ras-MAPK 

pathway was studied as an eventual target for NO-mediated proliferative 

events.  

In Chapter 3, the involvement of the sGC-cGMP-PKG pathway in the 

proliferative effect of NO described in Chapter 2 was studied in an in vitro 

model of SVZ-derived neural stem cells. We investigated the involvement of 

the guanylyl cyclase and cGMP-dependent signaling in both early and late 

proliferation of neural stem cells.  

In Chapter 4, we used both SVZ-derived neural stem cells cultures 

alone or in a mixed culture system with microglia isolated from wild-type or 

iNOS-knockout mice to investigated the antiproliferative effect of high 

concentrations of NO on neural stem cell proliferation and explored what the 

underlying mechanisms for the antiproliferative effect. We further studied 

whether the antiproliferative effect of high concentration of NO released either 

by an exogenous NO donor or by active microglial cells was mediated by 

peroxynitrite formation, and subsequent nitration of the EGF receptor, thus 

leading to decreased proliferative signaling. 
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Chapter 2 

 
 

 
 
 

Nitric oxide stimulates the proliferation of neural stem 

cells bypassing the epidermal growth factor receptor 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part of the work presented in this chapter was published in  

Stem Cells, 28, 1219–1230 (2010) 
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1.5 Summary 
 

Nitric oxide (NO) was described to inhibit the proliferation of neural 

stem cells. Some evidence suggests that NO, under certain conditions, can 

also promote cell proliferation, although the mechanisms responsible for a 

potential proliferative effect of NO in neural stem cells have remained 

unaddressed. In this work, we investigated and characterized the proliferative 

effect of NO in cell cultures obtained from the mouse subventricular zone. We 

found that the NO donor NOC-18 (10 µM) increased cell proliferation, whereas 

higher concentrations (100 µM) inhibited cell proliferation. Increased cell 

proliferation was detected rapidly following exposure to NO, and was 

prevented by blocking the mitogen-activated kinase (MAPK) pathway, without 

activating the EGF receptor. Downstream of the EGF receptor, NO activated 

p21Ras and the MAPK pathway, resulting in a decrease in the nuclear 

presence of the cyclin-dependent kinase inhibitor 1, p27KIP1, allowing for cell 

cycle progression. Furthermore, in a mouse model that shows increased 

proliferation of neural stem cells in the hippocampus following seizure injury, 

we observed that the absence of inducible NO synthase (iNOS-/- mice) 

prevented the increase in cell proliferation observed following seizures in wild-

type mice, showing that NO from iNOS origin is important for increased cell 

proliferation following a brain insult. Overall, we show that NO is able to 

stimulate the proliferation of neural stem cells bypassing the EGF receptor and 

promoting cell division. Moreover, under pathophysiological conditions in vivo, 

NO from iNOS origin also promotes proliferation in the hippocampus. 
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1.6 Introduction 
 

Neural stem cells proliferate throughout life in two main regions of the 

adult central nervous system, the subventricular zone (SVZ) of the lateral 

ventricles and the subgranular zone (SGZ) of the dentate gyrus of the 

hippocampus. The newborn cells can differentiate into neurons or glia 

(Eriksson et al., 1998; Gage, 2000; Alvarez-Buylla et al., 2002). The 

proliferation of neural stem cells and neurogenesis in the SVZ or SGZ are 

often increased following a brain insult, such as ischemic stroke (Arvidsson et 

al., 2002) or seizures (Parent et al., 1997), which might be part of mechanisms 

supporting self-repair (Lowenstein and Parent, 1999; Curtis et al., 2007). 

Thus, the identification of potential therapeutic targets for modulation of 

endogenous neurogenesis is of great interest.  

Several recent studies have suggested that nitric oxide (NO) inhibits 

proliferation of neural stem cells under physiological conditions (Packer et al., 

2003; Moreno-Lopez et al., 2004; Matarredona et al., 2005). In isolated neural 

stem cells from the SVZ, supraphysiological concentrations of NO inhibit 

neural stem cell proliferation and promote differentiation of precursors into 

astrocytes (Covacu et al., 2006; Torroglosa et al., 2007). Torroglosa and 

colleagues have suggested that NO modulates the tyrosine kinase activity of 

the epidermal growth factor receptor (EGFR) (Torroglosa et al., 2007), by a 

mechanism involving nitrosylation of specific cysteine residues in the EGFR 

(Murillo-Carretero et al., 2009). On the other hand, NO was found to increase 

neurogenesis following ischemic brain damage (Zhu et al., 2003). Moreover, 

treatment with a NO donor following middle cerebral artery occlusion 

increases cell proliferation, neurogenesis and functional recovery (Zhang et 

al., 2001). Apparently, following a brain insult, the effect of NO on neural stem 

cells is proliferative, rather than antiproliferative, and enhances neurogenesis. 

However, there are no studies exploring the signaling pathways involved in the 

proliferative effect of NO following brain injury.  
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In this chapter, we investigated how pathophysiological concentrations 

of NO affect proliferation of neural stem cells and the underlying mechanisms 

involved. We show that NO bypasses the EGFR and directly activates 

p21Ras, triggering cell proliferation via activation of the mitogen-activated 

protein kinase (MAPK) ERK1/2. This kinase, in turn, modulates transcriptional 

and cell cycle regulators. Finally, using an in vivo model of brain insult, we 

show that cell proliferation is prevented when the production of NO is 

abolished by deleting the iNOS gene. This strongly suggests, contrary to 

earlier beliefs, that NO promotes neural stem cell proliferation under certain 

pathophysiological conditions in vivo.   

 

1.7 Materials and Methods 
 
1.7.1 Materials 
	
  

Dulbecco’s Modified Eagle’s Medium:F-12 nutrient mixture, (D-MEM/F-

12, with GlutaMAXTM-I), B27 supplement, trypsin-EDTA solution (0.05% 

trypsin, 1 mM EDTA in HBSS), antibiotics (10,000 units/ml of penicillin, 10 

mg/ml streptomycin), and trypsin (1:250) were purchased from GIBCO BRL, 

Life Technologies (Invitrogen, Paisley, UK). Deoxyribonuclease 1 (DNase-1), 

BrdU, PMSF, dithiothreitol, chymostatin, leupeptin, antiparin, pepstatin A, 

trypan blue, L-NAME, U0126, alkaline phosphatase-linked anti-rabbit 

secondary antibody and mouse anti-α-tubulin primary antibody were 

purchased from Sigma Chemical (St Louis, MO, USA). AG 1478 hydrochloride 

was obtained from Tocris Bioscience (Bristol, UK). EGF and bFGF were from 

Invitrogen (Paisley, UK). M-CSF was purchased from Peprotech (London, UK) 

and NOC-18 from Alexis Biochemicals (San Diego, CA, USA). BSA and 

MnTBAP were obtained from Calbiochem (San Diego, CA, USA). Hoechst 

33342, anti-mouse IgG labeled with Alexa Fluor 594 or 488, and anti-rabbit 

IgG labeled with Alexa Fluor 594 or 488 secondary antibodies were purchased 

from Molecular Probes (Invitrogen, Paisley, UK). Griess Reagent System was 
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obtained from Promega (Madison, WI, USA). PVDF membranes and the 

Enhanced Chemifluorescence (ECF) reagent were obtained from Amersham 

Pharmacia Biotech (Buckinghamshire, UK). Other reagents used in 

immunoblotting experiments were purchased from BioRad (Hercules, CA, 

USA). 

 

1.7.2 Animals 
	
  

C57BL/6J mice or B6.129P2-Nos2tm1Lau/J were obtained from Charles 

River (Barcelona, Spain) or The Jackson Laboratory (Bar Harbor, ME, USA), 

respectively, and kept in our animal facilities with food and water ad libitum in 

a 12h dark:light cycle. All experiments were performed in accordance with 

institutional and European guidelines (86/609/EEC) for the care and use of 

laboratory animals. 

 

1.7.3 Subventricular zone cell cultures  
	
  

Neural stem cell cultures were obtained from the SVZ of postnatal day 

0-3 C57BL/6J mice. The SVZ was dissected as previously described (Agasse 

et al., 2008), and the tissue was digested in 0.025% trypsin/0.265 mM EDTA, 

for 20 min at 37ºC, and mechanically dissociated. Single cells were 

ressuspended in fresh D-MEM/F-12 with GlutaMAXTM-I, supplemented with 

1% B27, 1% antibiotic (10,000 units/ml of penicillin, 10 mg/ml streptomycin), 

10 ng/ml EGF and 10 ng/ml basic fibroblast growth factor (bFGF), and plated 

on uncoated Petri dishes at a density of 3,000 cells per cm2. The SVZ stem 

cells were grown as floating aggregates in a 95% air-5% CO2 humidified 

atmosphere at 37ºC, during 7 days. Next, the cells were collected and plated 

for 5 days on poly-L-lysine-coated plates, in the same medium as above, 

without added growth factors.  
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1.7.4 Experimental treatments in neural stem cell cultures 
	
  

SVZ-derived neural stem cells were exposed to different 

concentrations of the NO donor DETA-NONOate/NOC-18 (1, 10 and 100 µM) 

for different periods of time, as indicated in the figure legends and in the text. 

The MEK1/2 inhibitor, U0126 (1 µM) or the EGFR inhibitor, AG 1478 

hydrochloride (200 nM), were added 30 min before NOC-18 and kept 

throughout the incubation period.  

 

1.7.5 Detection of cell proliferation and cell death by microscopy 
analysis 

 

To analyze proliferation of neural stem cells, 10 µM 5-bromo-2’-

deoxyuridine (BrdU) was added to the cultures 16 hours prior to fixation. BrdU 

is a thymidine analogue that is incorporated during DNA synthesis (Selden et 

al., 1993). Nuclei that incorporated BrdU in this time-window were detected by 

immunofluorescence, as follows. Following 20 min fixation with 4% 

paraformaldehyde/4% sucrose, the cells were permeabilized with 1% Triton X-

100 for 5 min, and DNA was denaturated by treatment with 1 M HCl for 30 

min, at 37ºC. Non-specific binding was blocked with 3% bovine serum albumin 

(BSA) in 0.2% Tween-20 in phosphate-buffered saline (PBS) (PBS-T) for 1 h. 

BrdU-positive cells were labeled with a rat anti-BrdU antibody (1:50; 

Immunologicals Direct, Oxford, UK) for 90 min, at room temperature. The cells 

were then incubated with a secondary antibody goat anti-rat IgG conjugated 

with Alexa Fluor 594 (1:200), for 1 h at room temperature. Nuclei were stained 

with Hoechst 33342 (1 µg/ml) for 3 min.  

Dead cells were detected by the terminal deoxynucleotidyl transferase-

mediated dUTP nick-end labeling (TUNEL) assay, which detects 3’-OH free 

ends in DNA fragments occurring in cells undergoing apoptosis. A commercial 

kit from Roche (In Situ Cell Death Detection kit, Fluorescein; Roche Applied 

Science, Mannheim, Germany) was used, and the standard protocol provided 

by the supplier was followed. Briefly, after BrdU staining, the cells were 
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incubated with the TUNEL reaction mixture in a humidified chamber for 1 h, at 

37 ºC, in the dark. Coverslips were mounted on glass slides using DAKO 

fluorescence mounting medium (Dako Cytomation, Glostrup, Denmark), the 

cells were visualized in a fluorescence microscope (Axioskop 2 Plus, Zeiss, 

Jena, Germany) and images were acquired with the Axiovision software 4.7. 

The number of BrdU-positive nuclei and/or apoptotic cells (TUNEL-

positive cells) was counted in each coverslip, and the data are expressed as 

percentage of the total number of nuclei, counterstained with Hoechst 33342. 

A minimum of 4 independent experiments (from neural stem cell cultures 

prepared from different animals) was analyzed for each condition. In each 

coverslip, the cells of 7-10 randomly selected fields were counted, which 

represents approximately 900-1,200 cells per coverslip. Colocalization of BrdU 

and TUNEL was analyzed by laser scanning confocal microscopy, in at least 

50 cells from each coverslip in a Leica DM IRE3 microscope (Leica Confocal 

Software Version 2.77, Leica, Wetzland, Germany). Double-labeled cells were 

analysed by orthogonal reconstruction of sections scanned at 1 µm-thickness. 

 

1.7.6 Detection of cell proliferation and cell cycle analysis by flow 
cytometry 

	
  
SVZ cell proliferation was also assessed by incorporation of 5-ethynyl-

2’-deoxyuridine (EdU) and detected by flow cytometry. EdU is incorporated 

into DNA of dividing cells during S phase (Buck et al., 2008; Cappella et al., 

2008; Chehrehasa et al., 2009). SVZ cells were incubated with NOC-18 10µM 

for 24 h or 100 µM for 48 h, and EdU incorporation was used to assess cell 

proliferation, using a commercially available kit from Invitrogen (Click-iT® EdU 

Alexa Fluor® 488 Flow Cytometry Assay Kit). EdU was added to the SVZ 

cultures 16h before fixation. Fixation was performed with 70% ethanol 

overnight. Detection of EdU incorporation was based on click chemistry, a 

copper-catalysed reaction between an azide (conjugated to a fluorophore) and 

an alkyne (EdU). Fixed cells were incubated for 30 min with Alexa Fluor® 488 
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azide and copper sulfate.  Next the cells were incubated with RNase and the 

nuclear dye 7-actinomycin D (7-AAD) for 30 min. Cells were analyzed for EdU 

incorporation and cell cycle on a FACScalibur using the Cellquest software 

(Becton Dickinson, San Jose, CA, USA). Fifty thousand events were acquired 

per experiment. Each condition was performed in duplicate, in at least 3 

independent experiments. The flow cytometer was calibrated with fluorescent 

standard microbeads (CaliBRITE Beads; BD Biosciences, San Jose, CA, 

USA) for accurate instrument setting. 

 

1.7.7 Immunocytochemistry 
 

Fixed cultures (as described in section 2.3.5) were incubated with 

primary antibodies for 90 min, at room temperature, or overnight, at 4ºC. After 

rinsing with PBS, the cells were incubated with the appropriate secondary 

antibodies for 1 h (1:200, anti-mouse or anti-rabbit IgGs conjugated with Alexa 

Fluor 488 or 594), at room temperature. Nuclei were labeled with Hoechst 

33342 (1 µg/ml) for 3 min. Images were acquired in a laser scanning 

microscope LSM 510 META (Zeiss, Jena, Germany). The primary antibodies 

and the dilutions used were as follows: mouse anti-Sox-2, 1:100 (R&D 

Systems, Minneapolis, MN, USA); rabbit anti-nestin, 1:100 (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA); rabbit anti-GFAP, 1:400 (Dako 

Cytomation, Glostrup, Denmark); mouse anti-nestin, 1:500 (BD Transduction, 

San Jose, CA, USA); mouse anti-Ki-67, 1:50 (Novocastra Laboratories, 

Newcastle, UK); rabbit anti-phospho-ERK1/2, 1:50 (Cell Signaling, Danvers, 

MA, USA); mouse anti-EGFR (Chemicon, Temecula, CA, USA), rabbit anti-

EGFR (Cell Signaling), 1:50; rabbit anti-phospho-Tyr1173-EGFR, 1:200 (Cell 

Signaling); rabbit anti-p27KIP1, 1:50 (Cell Signaling). 

 

1.7.8 Nitric oxide production evaluation 
 

NO release by NOC-18 was assessed by measuring the concentration 

of nitrites in the culture medium, using a commercial kit from Promega (Griess 



Stimulation of neural stem cell proliferation by nitric oxide___________________ 	
  
	
  

	
  	
  
86	
  

Reagent System). The standard protocol provided by the supplier was 

followed. The concentration of nitrite for each sample was calculated from a 

standard curve performed using a sodium nitrite solution and the data were 

expressed in µM. 

 

1.7.9 Ras GTPase activation assay 
	
  
 To detect the presence of activated Ras in cell lysates, a commercial 

kit was used (Millipore Iberica S.A.U., Madrid, Spain) and the standard 

protocol provided by the supplier was followed. Briefly, SVZ cultures were 

exposed to NOC-18 for different time periods, and lysates were prepared and 

analysed for the presence of GTP-bound p21Ras. 

 

1.7.10 Western blot analysis 
	
  

Cells were lysed in 50 mM Tris-HCl, 10 mM EGTA, 1% Triton X-100 

and 2 mM MgCl2, supplemented with 100 µM phenylmethylsufonyl fluoride 

(PMSF), 1 mM dithiothreitol, 1 µg/ml chymostatin, 1 µg/ml leupeptin, 1 µg/ml 

antiparin, 5 µg/ml pepstatin A, 1 mM sodium orthovanadate, 50 mM NaF, pH 

7.4 at 4ºC. Protein concentration was determined by the bicinchoninic acid 

(BCA) method (BCATM Protein Assay kit, Pierce, Rockford, IL, USA). The 

samples were used for Western blot analysis after adding 6x concentrated 

sample buffer (0.5 M Tris, 30% glycerol, 10% sodium dodecyl sulfate (SDS), 

0.6 M dithiothreitol, 0.012% bromophenol blue) and heating, for 5 min, at 

95ºC.  

Equal amounts of protein were separated by electrophoresis on SDS-

polyacrylamide gels, and transferred electrophoretically to polyvinylidene 

difluoride (PVDF) membranes. These were then blocked for 1 h at room 

temperature, in Tris-buffered saline (137 mM NaCl, 20 mM Tris-HCl, pH 7.6) 

containing 0.1% Tween-20 (TBS-T) and 3% BSA. Incubations with primary 

antibodies (rabbit anti-phospho-Tyr845/1068/1148/1173-EGFR, rabbit anti-

phospho-ERK1/2; mouse anti-ERK1/2; rabbit anti-phospho-c-Raf (Ser338); 
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rabbit anti-phospho-p90RSK (Ser380); rabbit anti-phospho-Elk-1 (Ser383); 

rabbit anti-phospho-c-Myc (Thr58/Ser62); rabbit anti-phospho-CREB (Ser133); 

rabbit anti-p27KIP1, all diluted 1:1,000; Cell Signaling, Danvers, MA, USA) in 

TBS-T 1% BSA were performed overnight, at 4ºC. Next, the membranes were 

incubated for 1 h at room temperature with alkaline phosphatase-linked 

secondary antibodies (anti-rabbit or anti-mouse IgG, 1:20,000) in TBS-T 1% 

BSA. After extensive washing in TBS-T 0.5% BSA, immunoreactive bands 

were visualized in the VersaDoc 3000 imaging system (BioRad, Hercules, CA, 

USA), following incubation of the membrane with ECF reagent for 5 min. 

Protein loading controls were performed using antibodies against either the 

total protein in study (e.g. total ERK1/2), or against α-tubulin (1:10,000).  

  

1.7.11 Administration of kainic acid to mice 
	
  

 Adult male wild-type C57BL/6J mice or iNOS-deficient mice 

(B6.129P2-Nos2tm1Lau/J) with 8-10 weeks of age were used. The weight of the 

animals varied between 20-25 g. Kainic acid (KA; Ocean Produce, Canada) 

was dissolved in a sterile saline solution (0.9% NaCl in water) and injected 

subcutaneously (25 mg/kg). All animals that received KA developed grade 5 

seizures or higher (1972’s Racine´s six-point scale modified for mice 

(Schauwecker and Steward, 1997)). In animals injected with saline solution 

alone, no seizures were observed. The mice were maintained for 1 to 5 days 

after the first generalized seizure. At least three animals survived in each 

experimental group. The genotype of each mice was confirmed by PCR using 

the primers recommended by The Jackson Laboratory for B6.129P2-

Nos2tm1Lau/J mice (5'- ACATGCAGAATGAGTACCGG-3', 5'-

TCAACATCTCCTGGTGGAAC-3’, and 5'-AATATGCGAAGTGGACCTCG-3'; 

TIB Biomol, Berlin, Germany). DNA was obtained from tail clips and purified 

with the QIAamp DNA mini kit (Qiagen Iberia, S.L., Madrid, Spain), and the 

PCR was run using the FastStart PCR Master mix from Roche Applied 

Science (Barcelona, Spain). 
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1.7.12 Immunohistochemistry 
	
  

Cell proliferation in the subgranular zone of the hippocampus was 

assessed by BrdU incorporation. BrdU was delivered by intraperitoneal 

injection in four doses of 50 mg/kg, each 2 hours apart, resulting in a total of 

200 mg/kg, up to 12 h before sacrificing the mice. The mice were perfused 

transcardially with 0.9% NaCl followed by 4% paraformaldehyde in PBS (pH 

7.4), following deep anesthesia with sodium thiopental (0.5 g/kg; B. Braun 

Melsungen AG, Melsungen, Germany). The brains were removed and further 

kept overnight in 4% paraformaldehyde, and then dehydrated in 20% 

sucrose/0.1 M PBS for 24 h, at 4ºC. Coronal sections were cut and separated 

in eight series throughout the brain on a cryostat at a thickness of 30 µm. 

Free-floating brain sections were processed for detection by 

immunohistochemistry of BrdU incorporation in the SGZ, as detailed next. 

Brain sections were treated with 1 M HCl for 30 min at 65ºC, for DNA 

denaturation, and then blocked for 1 h with 5% normal goat or donkey serum 

in 0.25% Triton X-100 in PBS. Slices were then incubated with the primary 

antibodies, mouse anti-BrdU (1:50; DAKO, Glostrup, Denmark) or rat anti-

BrdU (1:50, AbD Serotec, Oxford, UK), mouse anti-Ki-67 (1:50, Novocastra 

Laboratories, Newcastle, UK), rabbit anti-GFAP (1:2000; DAKO), rat anti-

CD45 (1:100; Abcam, Cambridge, UK), and goat anti-doublecortin (1:400; 

Santa Cruz Biotechnology, Santa Cruz, CA) overnight, at 4ºC. After rinsing 

with 0.25% Triton X-100 in PBS, the sections were incubated with goat or 

donkey anti-mouse or anti-rabbit IgG conjugated with Alexa Fluor 594 or Alexa 

Fluor 488  (1:200) for 2 h. Nuclei were stained with Hoechst 33342 (5 µg/ml) 

or with DRAQ5 (5 µM) for 10 min. The sections were mounted in 2% gelatin-

coated slides with DAKO fluorescence mounting medium. Images were 

acquired in a laser scanning microscope LSM 510 META (Zeiss, Jena, 

Germany), and cell counting or quantification of immunoreactive area (using 

ImageJ, version 1.42o, NIH) was performed in the 5 mid sections of the 

hippocampus, of at least 3-4 animals, for the correspondent time points. 
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1.7.13 Data analysis  
	
  

Data are expressed as means ± SEM. Statistical significance was 

determined by using two-tailed t tests, one-way or two-way analysis of 

variance (ANOVA), as appropriate. Differences were considered significant 

when p < 0.05. 

 
1.8 Results 
 
1.8.1 Characterization of SVZ primary cultures 
	
  

Neural stem cells were isolated from the SVZ and cultured as floating 

aggregates (neurospheres), as originally described by Reynolds and Weiss 

(Reynolds and Weiss, 1992). For experiments, the cells were plated on poly-L-

lysine-coated coverslips for 5 d, and characterized at this stage. The cells 

were stained against Sox-2, a transcription factor essential to maintain self-

renewal of undifferentiated stem cells, and nestin, a neural precursor cell 

marker. The percentage of double-labeled cells was approximately 70%, 

suggesting that the majority of cells remained undifferentiated after plating 

(Fig. 2.1A-C). The number of Sox-2/nestin positive cells is similar to the 

number of cells positive for both nestin and glial fibrillary acidic protein (GFAP) 

(Fig. 2.1D-F), both markers expressed in type B cells of the SVZ (Doetsch et 

al., 1997). Moreover, GFAP cells were mostly Sox-2 positive (Fig. 2.1G-I). In 

fact, the percentage of Sox-2/nestin positive cells is similar to values obtained 

in other studies in which the inhibitory effect of NO on the proliferation of 

neural stem cells isolated from the SVZ was reported (Covacu et al., 2006; 

Torroglosa et al., 2007).  
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Figure 2.1. Characterization of SVZ stem cell cultures. The micrographs show 
laser scanning confocal images of SVZ cells labeled against Sox-2 (A, G, red), nestin 
(B, green; E, red) and GFAP (D, H, green). Merged images are shown in C, F and I. 
Nuclei were labeled with Hoechst 33342 (blue). Scale bars: 45 µm in A, B and C, 25 
µm in D, E and F, and 20 µm in G, H, and I. 

	
  
1.8.2 NO has a dual effect on the proliferation of neural stem cells 
	
  

The NO donor NOC-18 was previously used to investigate the effect of 

NO on the proliferation of SVZ cultures (Covacu et al., 2006; Torroglosa et al., 

2007). However, in a recent study, only concentrations above 30 µM were 

analysed (Torroglosa et al., 2007), and another work, using lower 
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concentrations (starting at 10 µM), reported that NOC-18 had no positive 

effect on the proliferation of neural stem cells (Covacu et al., 2006). In these 

reports, the effect of NO (in higher concentrations) in SVZ cells was found to 

be antiproliferative. Moreover, these studies were always performed in the 

presence of EGF, which could mask any potential proliferative effect of NO in 

these cells. Thus, to investigate whether NO could affect the proliferation of 

neural stem cells, we first evaluated the incorporation of BrdU by SVZ cell 

cultures, kept without EGF after plating, following treatment with a range of 

concentrations of NOC-18 for 24 or 48 h.. Exposure to 10 µM NOC-18 for 24 h 

increased BrdU incorporation (13.3 ± 0.4%, p<0.001), as compared to 

untreated cultures (8.8 ± 0.7%) (Figs. 2.2A and C), while 100 µM had no effect 

at 24 h. On the other hand, exposure for 48 h to 100 µM NOC-18, resulted in a 

significant decrease in proliferation (5.4 ± 0.3%, p<0.05), compared to control 

cultures (9.0 ± 0.8%) (Figs. 2.2B and C), which is in agreement with previous 

studies (Covacu et al., 2006; Torroglosa et al., 2007). 10 µM NOC-18 had no 

effect on proliferation after 48 h of treatment. The lowest concentration of 

NOC-18 used (1 µM) had no significant effect on cell proliferation at any time. 

The effect of NO on the proliferation of neural stem cells was also 

studied by assessing the number of Ki-67-expressing cells. Ki-67 is present 

during G1, S, G2, and mitosis, but absent from non-dividing cells (G0), being 

considered a good marker to evaluate proliferation. We observed similar 

results to those obtained with BrdU incorporation: 10 µM NOC-18 for 24 h 

significantly increased the number of Ki-67 positive cells (10.5 ± 0.9%, 

p<0.05), when compared to untreated cultures (6.3 ± 0.2%) (Fig. 2.2D), while 

100 µM NOC-18 for 48 h significantly decreased the number of Ki-67 positive 

cells (3.0 ± 0.1%, p<0.05) compared to untreated cultures (6.5 ± 0.6%) (Fig. 

2.2E).  
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Figure 2.2. Effect of exposure to NO on the proliferation of neural stem cells. (A, 
B) Effect of the NO donor NOC-18 on the number BrdU-positive cells in SVZ cultures. 
Representative images of BrdU-positive cells (red) in neural stem cell cultures after 
exposure to increasing concentrations of NOC-18 for 24 h (A) and 48 h (B) are 
shown. Nuclei are labeled with Hoechst 33342 (blue). Scale bar: 30 µm. (C) The 
graph depicts the percentage of BrdU-positive cells in SVZ neural stem cells cultures 
after treatment with increasing NOC-18 concentrations for 24 and 48 h. Data are 
expressed as means ± SEM of at least 4 independent experiments. One-way ANOVA 
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(Dunnett’s post-test). *p<0.05 and ***p<0.001, NOC-18 significantly different from 
control. The percentage of Ki-67-positive cells following treatment with NOC-18 (10 
µM) for 24 h (D) or 100 µM NOC-18 for 48 h (E) is shown. Nitrite levels were 
measured in the culture medium of SVZ cultures or in culture medium alone, after 24h 
(F), as an indication of the amount of NO in the medium. Cell proliferation following 
treatment with NOC-18 (10 µM) for 24 h (G) or 100 µM NOC-18 for 48 h (H) was also 
assessed by incorporation of EdU and assessed by flow cytometry. Data are 
expressed as means ± SEM of at least 3 independent experiments. Two-tailed t-test, 
*p<0.05, NOC-18 significantly different from control. 

 

The release of NO by NOC-18 was also evaluated, at 24 h (Fig. 2.2F). 

Starting at 10 µM, exposure to NOC-18 significantly increased the amount of 

NO, as assessed by measuring the levels of nitrites in the culture medium. 

Release of NO by 1 µM NOC-18 was bellow the detection limit of the Griess 

assay. Similar amounts of nitrites were detected in the culture medium, either 

in a cell-free system or in culture medium removed from SVZ cultures (two-

factor ANOVA, p>0.05).  

The proliferative effect of NO was also evaluated by a non-manual 

counting method, using detection of EdU incorporation by flow cytometry, as 

described in the 2.3.6 section. We observed that 24 h after addition of NOC-18 

(10 µM) to SVZ cultures, incorporation of EdU significantly increased to 15.9 ± 

2.0% (p<0.05) as compared to the EdU incorporation in control cultures (Fig. 

2.2G). Furthermore, cell cycle analysis showed that NOC-18 (10 µM) induced 

a significant increase in the percentage of cells in G2/M (Fig. 2.3; 9.1 ± 0.4%, 

p>0.05), as compared to the control cultures (7.86 ± 0.3%). However, we 

failed to observe a decrease in cell proliferation induced by exposure to the 

higher concentration of NOC-18 (100 µM) for 48 h. 

Since NO may induce apoptosis in neural cells (Canals et al., 2001), 

cell death was evaluated following treatment with NOC-18, to test whether the 

effect of NO on proliferation could be masked by any potential cytotoxicity of 

NO. We found that the concentrations of NOC-18 used did not affect cell 

survival significantly, compared to untreated cultures (Table 2.1).  
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Figure 2.3. NOC-18 increases the number of cells in G2/M phase. SVZ cell cycle 
analysis was assessed by flow cytometry following treatment with NOC-18.  NOC-18 
(10 µM, 24 h treatment) induced a significant increase in the percentage of cells in 
G2/M (B) as compared to control cultures (A). No differences were found for G0/G1 or 
S phases comparing both conditions. Moreover, NOC-18 had no toxic effect (sub G1).  
Data are expressed as means ± SEM of at least 3 independent experiments. Two-
tailed t-test, *p<0.05, NOC-18 significantly different from control. a.f.u. – arbitrary 
fluorescence units. 

 

Furthermore, besides incorporation during DNA synthesis, BrdU can 

also be incorporated in cells undergoing DNA repair. Co-localization of BrdU 

and TUNEL following exposure to NOC-18 (10 µM) for 24 h was not 

increased, comparing to untreated cells (Table 2.2). Moreover, 100 µM NOC-

18 (48 h) did not change cell viability nor increased cell death.  

We also investigated the participation of endogenous NO on the cell 

proliferation of SVZ cell cultures. The cultures were treated with L-NAME (500 

µM), an inhibitor of NO production by the constitutive NO synthases. L-NAME 

had no effect in the proliferation of neural stem cells, as evaluated by BrdU 

incorporation (data not shown). 
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Table 2.1. Cell viability in neural stem cell cultures following exposure to NOC-

18. 

 Treatment % live cells % dead cells 

24
 h

 

Control 

1 µM NOC-18  

10 µM NOC-18  

100 µM NOC-18 

71.7 ± 1.2%  

73.2 ± 2.3% (n.s.) 

71.7 ± 2.9% (n.s.) 

75.5 ± 2.9% (n.s.) 

28.8 ± 1.0%  

29.0 ± 1.6% (n.s.) 

31.5 ± 0.5% (n.s.) 

25.2 ± 1.3% (n.s.) 

48
 h

 

Control 

1 µM NOC-18  

10 µM NOC-18  

100 µM NOC-18 

80.0 ± 2.0%  

77.2 ± 1.5% (n.s.) 

78.6 ± 2.1% (n.s.) 

77.5 ± 2.9% (n.s.) 

17.7 ± 0.7% 

20.5 ± 1.6% (n.s.) 

17.9 ± 1.7% (n.s.) 

19.8 ± 3.4% (n.s.) 

 
Cell viability was assessed by analysis of nuclear morphology. Cells were considered 
dead when nuclei were condensed/fragmented and brightly stained with Hoechst 
33342, and cells presenting a regular nuclear morphology and a light nuclear stain 
with bright nucleoli were considered live cells. Data are expressed as means ± SEM of 
at least 3 independent experiments. n.s. (non-significant) p>0.05, not different from 
the control, one-way ANOVA, Dunnett’s post-test. 
 
 
Table 2.2. Colocalization of BrdU-positive and TUNEL-positive cells in neural 
stem cell cultures following exposure to NOC-18. 

	
   Treatment % TUNEL+ % BrdU+ % BrdU+/TUNEL+ 

24
 h

 

Control 

1 µM NOC-18  

10 µM NOC-18  

100 µM NOC-18  

20.0 ± 1.4% 

22.4 ± 0.3% (n.s.) 

20.1 ± 2.7% (n.s.) 

21.0 ± 2.2% (n.s.) 

8.8 ± 0.7% 

11.7 ± 0.3% 

13.3 ± 0.4%*** 

9.5 ± 0.2% 

6.4 ± 1.8% 

4.6 ± 1.9% (n.s.) 

4.8 ± 2.4% (n.s.) 

4.3 ± 3.4% (n.s.) 

48
 h

 

Control 

1 µM NOC-18  

10 µM NOC-18  

100 µM NOC-18  

20.6 ± 1.0%  

21.7 ± 1.6% (n.s.) 

21.2 ± 3.3% (n.s.) 

20.0 ± 0.5% (n.s.) 

9.0 ± 0.8% 

9.2 ± 1.1% 

8.8 ± 0.8% 

5.4 ± 0.3%* 

3.6 ± 1.9% 

2.5 ± 1.7% (n.s.) 

4.9 ± 1.9% (n.s.) 

3.9 ± 1.7% (n.s.) 

 
Data are expressed as means ± SEM of at least 4 independent experiments. One-way 
ANOVA *p<0.05 and ***p<0.001, significantly different from control; n.s. (non-
significant) p>0.05; (Dunnett’s post-test). 
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1.8.3 The proliferative effect of NO is mediated by the activation of the 
ERK1/2 signaling pathway 

	
  
 We next evaluated the signaling pathway underlying the proliferative 
effect of NO on neural stem cells, using 10 µM NOC-18 as a stimulus. The 
antiproliferative effect of NOC-18 (100 µM) will be addressed in chapter 4. The 
main proliferative pathway in neural stem cells is triggered by activation of the 
epidermal growth factor receptor (EGFR) and activation of the signaling 
cascade of MAPK, with subsequent activation of transcription factors, 
modification of proteins involved in cell cycle progression and transcription of 
immediate early response genes (Shi et al., 2008). Several kinases are part of 
the MAPK family, and the ERK1/2 kinases are the elements usually linked to 
cell proliferation (Meloche and Pouyssegur, 2007). Within this scenario, the 
involvement of the ERK1/2 pathway in the proliferative effect of NO was 
investigated.  
 
 

Figure 2.4. NO increases cell proliferation via the ERK/MAPK signaling pathway 
(opposite page). A) Percentage of BrdU-positive cells in SVZ neural stem cell 
cultures following treatment with 10 µM NOC-18, for 24 h, with or without 1 µM U0126, 
a selective MEK1 and MEK2 inhibitor. Data are expressed as means ± SEM of at 
least 4 independent experiments. One-way ANOVA (Bonferroni’s post-test). 
***p<0.001, significantly different from control. +++p<0.001, significantly different from 
NOC-18. B) Western blot analysis of phospho-ERK1/2 levels in lysates of neural stem 
cells. Exposure to 10 µM NOC-18 for 15 min enhanced ERK1/2 phosphorylation, 
which was blocked completely by U0126. Data are expressed as means ± SEM of at 
least 4 independent experiments. One-way ANOVA (Bonferroni’s post-test). *p<0.05, 
significantly different from control. C) NOC-18 increased the immunoreactivity against 
phospho-ERK1/2 (green) in neural stem cells, following 30 min exposure. Nuclei are 
labeled with Hoechst 33342 (blue) and dividing cells are labeled with the mitotic 
marker Ki-67 (red). The images are representative of 3 independent experiments. 
Scale bar: 20 µm. D) Phospho-ERK1/2 colocalization with nuclear Ki-67 in 
proliferating cells upon treatment with NOC-18. Exposure to 10 µM NOC-18 for 30 min 
induced translocation of phospho-ERK1/2 (green) to the nuclei (blue), colocalizing 
with nuclear Ki-67 (red) in proliferating cells (arrowheads, left panel); the orthogonal 
reconstruction of the selected area is shown on the right panel. Cytosolic phospho-
ERK1/2 is present in non-dividing cells (Ki-67-negative cells) (arrows). Nuclei are 
labeled with Hoechst 33342 (blue). Scale bar: 20 µm. E) Time-dependent increase in 
the percentage of Ki-67-positive cells after exposure to NOC-18 (10 µM). Data are 
expressed as means ± SEM of at least 3 independent experiments. One-way ANOVA 
(Dunnett’s post-test). **p<0.01, significantly different from control. F) U0126 blocked 
the early increase in the percentage of Ki-67-positive cells following exposure to 10 
µM NOC-18 for 30 min. Data are expressed as means ± SEM of at least 3 
independent experiments. One-way ANOVA (Bonferroni’s post-test). **p<0.01, 
significantly different from control. ++p<0.01, significantly different from NOC-18.  



___________________________________________ Chapter 2	
  
	
  

	
   	
  
97	
  

 

 



Stimulation of neural stem cell proliferation by nitric oxide___________________ 	
  
	
  

	
  	
  
98	
  

The proliferative effect of NO was abolished by U0126, a selective 
inhibitor of MEK1/2, the kinase immediately upstream of ERK1/2 (Murphy and 
Blenis, 2006). U0126 prevented the increase in BrdU incorporation triggered 
by NOC-18 (10 µM), keeping cell proliferation similar to basal levels (8.7 ± 
0.9%; p<0.001), when compared to NOC-18 alone (13.4 ± 0.6%; p<0.001), 
(Fig. 2.4A). MEK1/2 activates ERK1/2 (also referred to as p44/p42) by 
phosphorylation of Thr202/Tyr204 and Thr185/Tyr187 residues. Treatment 
with 10 µM NOC-18 rapidly increased ERK1/2 phosphorylation within 15 min 
of exposure (139.3 ± 13.8%, as compared to basal levels, p<0.05; Fig. 2.4B), 
and U0126 prevented ERK1/2 phosphorylation induced by NO (p<0.05). This 
effect was evident both by Western blot analysis (Fig. 2.4B) and by 
immunostaining, where a strong labeling of phospho-ERK1/2 was observed 30 
min following exposure to NO (Fig. 2.4C). Moreover, NOC-18 caused 
translocation of phospho-ERK from the cytosol to the nucleus, as depicted in 
Fig. 2.4D, concomitantly with increased expression of Ki-67, meaning that 
these cells have started to divide. Within the first hour of exposure to NOC-18, 
NO significantly increased the number of Ki-67-expressing cells (Fig. 2.4E), 
and this proliferative effect detected after 30 min exposure to NOC-18 was 
blocked by U0126 (Fig. 2.4F). 

After determining the involvement of the ERK1/2 pathway in the 
proliferative effect of NO, we investigated the entry point of NO in this 
signaling pathway. Upstream of ERK1/2, NO could be a) activating the EGFR 
directly, causing the receptor to transactivate and achieve phosphorylation 
levels high enough to trigger the downstream signaling of the ERK1/2 
cascade; or b) activating directly p21Ras, which has a cysteine residue 
susceptible of being S-nitrosylated by NO (Lander et al., 1995; Lander et al., 
1997), thus causing a conformational shift that allows the exchange of GDP 
for GTP and activation of p21Ras. Activation of the EGFR was evaluated by 
Western blot analysis of the phosphorylation of specific tyrosine residues 
(tyrosines 845, 1068, 1148 and 1173). Particularly, phosphorylation of tyrosine 
1173  (Tyr1173-EGFR) is linked to increased downstream signaling towards 
ERK1/2, allowing for docking of the SHC scaffolding protein, which provides 
the link between EGFR and the Ras protein (Batzer et al., 1994; Okabayashi 
et al., 1994).  
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Figure 2.5. The proliferative effect of NO is independent from the activation of 
the EGF receptor. SVZ cells were treated with NOC-18 (10 µM) or EGF (20 ng/ml) for 
5 min, in the presence or absence of AG1478 (200 ng/ml). EGFR activation was 
assessed using phospho-specific antibodies against tyrosine residues 845 (B), 1068 
(C), 1148 (D) or 1173 (E). Representative images are shown in A. A loading control 
was performed by reprobing against EGFR. Data are expressed as means ± SEM of 
at least 4 independent experiments. One-way ANOVA (Bonferroni’s post-test). 
***p<0.001 and **p<0.01, significantly different from control; +++p<0.001 and ++p<0.01, 
significantly different from EGF alone; ###p<0.001 and ##p<0.01, significantly different 
from NOC-18+EGF. 
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We observed that treatment with NO, up to 5 min, did not increase 
phosphorylation of EGFR in the analysed tyrosine residues (Fig. 2.5). Cells 
treated with EGF (20 ng/ml) for 5 min were used as a positive control of EGFR 
phosphorylation, showing a strong increase in the receptor phosphorylation, 
which was abolished by pretreatment with an inhibitor of EGFR, AG1478 (200 
nM) (Fig. 2.5). Furthermore, EGF treatment increased the immunoreactivity of 
Tyr1173-EGFR, in EGFR-expressing cells (Fig. 2.6), in an AG1478-sensitive 
manner, while NOC-18 produced no effect on tyrosine 1173 phosphorylation.  

Moreover, blocking EGFR with AG1478 did not prevent the increase in 
BrdU incorporation stimulated by NOC-18 (Fig. 2.7A). EGF alone increased 
cell proliferation, and this effect was abolished by AG1478 (p<0.001). 
Interestingly, when the proliferative effect of EGF was blocked in the presence 
of AG1478, exposure to NOC-18 still increased proliferation (NOC-
18+EGF+AG1478; p<0.001), which confirms that the signaling of NO-induced 
proliferation is not dependent on the activation of the EGF receptor.  

Since NO did not activate EGFR directly, we next evaluated the 
activation of p21Ras. We observed that NO significantly increased Ras activity 
at 2 min after exposure to NOC-18 (Fig. 2.7B). Furthermore, downstream of 
p21Ras, the phosphorylation of c-Raf increased 5 min after exposure to NOC-
18 (142.9 ± 5.6%, as compared to basal levels, p<0.001), and this effect was 
not prevented by pretreatement with AG 1478 (132.8 ± 4.5%, compared to 
basal levels, Fig. 2.7C). These results suggest that NO bypasses the EGF 
receptor and activates directly p21Ras, which in turn increases the 
phosphorylation of c-Raf.  

We next evaluated the effect of NO on the activation of several 
downstream targets of the ERK1/2 pathway, such as the p90 ribosomal S6 
kinase (p90RSK) and the transcription factors c-Myc, Elk-1, and CREB, 1 h 
after the exposure to NOC-18. Treatment with NOC-18 increased the 
phosphorylation levels of p90 RSK (167.9 ± 17.0%, p<0.05, two-tailed t test), 
c-Myc (148.7 ± 8.3%, p<0.01, two-tailed t test) and Elk-1 (158.9 ± 11.6%, 
p<0.01, two-tailed t test), as compared to untreated control cultures (Fig. 
2.7D), while the levels of CREB were unchanged by exposure to NO (p>0.05, 
two-tailed t test).  
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Figure 2.6. The proliferative effect of NO is independent of the activation of the 
EGF receptor. Exposure to NOC-18 (10 µM, 5 min) did not increase the 
phosphorylation of EGFR at Tyrosine 1173 (green), in EGFR-expressing cells (red). 
Nuclei are labelled with Hoechst 33342 (blue). The activation of the EGFR was 
induced by EGF (20 ng/ml), and could be prevented by pretreatment with AG 1478 
(200 nM), an inhibitor of EGFR. Scale bar: 20 µm. 



Stimulation of neural stem cell proliferation by nitric oxide___________________ 	
  
	
  

	
  	
  
102	
  

 
Figure 2.7. p21Ras is the entry point of NO in the ERK/MAPK signaling pathway. 
A) Effect of blocking the EGF receptor on the cell proliferation induced by exposure to 
NOC-18 (10 µM) for 24 h, as evaluated by BrdU incorporation. Data are expressed as 
means ± SEM of at least 3 independent experiments; one-way ANOVA, with 
Bonferroni’s post-test. ***p<0.001, significantly different from control; +++p<0.001, 
significantly different from EGF alone; ###p<0.001, significantly different from 
EGF+AG1478. B) Effect of NO on p21Ras GTPase activity. Data are expressed as 
means ± SEM of at least 4 independent experiments. One-way ANOVA (Dunnett’s 
post-test). *p<0.05, significantly different from control. C) Western blot analysis of 
phospho-c-Raf levels in lysates of neural stem cell cultures treated with NOC-18 for 5 
min. Exposure to 10 µM NOC-18 enhanced phosphorylation of c-Raf, which was not 
blocked by pretreatment with the EGFR inhibitor AG 1478 (200 nM). A loading control 
was performed by reprobing against α-tubulin. Data are expressed as means ± SEM 
of at least 4 independent experiments. One-way ANOVA (Bonferroni’s post-test). 
***p<0.001 and **p<0.01, significantly different from control. D) Western blot analysis 
of the phosphorylation levels of p90 RSK and of the transcription factors Elk-1, c-Myc 
and CREB, in lysates of neural stem cell cultures treated with NOC-18 for 1 h. 
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One of the targets of p90RSK is the cyclin-dependent kinase inhibitor 

p27KIP1 (Fujita et al., 2003). This inhibitor stalls cell division by inhibitory 

binding to cyclin/cyclin-dependent kinase complexes. In Fig. 2.4E we showed 

that NO increases the number of Ki-67-positive cells 1 h after exposure to 

NOC-18, i.e. dividing cells that lack p27KIP1 in the nucleus (Fig. 2.8A). Non-

dividing cells presented p27KIP1 either in the nucleus or in the cytosol (Fig. 

2.8A). Following exposure to NOC-18 (10 µM) for 1h, the number of cells 

presenting p27KIP1 in the nucleus was significantly decreased (p<0.001), while 

the number of cells presenting p27KIP1 in the cytosol or p27KIP1-negative was 

significantly increased after exposure to NO (p<0.01 and p<0.05, respectively) 

(two-way ANOVA: treatment: p<0.272, F= 1.325, df=1; p27KIP1 localization: 

p<0.0001, F= 55.51, df=2; treatment x p27KIP1 localization (interaction): 

p<0.0001, F= 29.12, df=2) (Fig. 2.8B). Overall, the levels of p27KIP1 were lower 

in lysates of SVZ cultures treated with NOC-18 for 1h (p<0.01, Fig. 2.8C). 

Moreover, blockade of the EGF receptor with AG1478 did not prevent the 

decrease in p27KIP1 levels induced by exposure to NOC-18 (p>0.05), whereas 

U0126 abolished this effect (p<0.001, Fig. 2.8C). 

 

1.8.4 Abolishment of cell proliferation in iNOS-/- mice following seizures 
	
  

 Finally, we investigated whether the effect of NO in the mouse brain, in 

pathological conditions, is proliferative or antiproliferative. Increased cell 

proliferation in the SGZ of the dentate gyrus of the hippocampus is a hallmark 

of epileptic seizures in rodents (Parent, 2007), and occurs simultaneously with 

increased neuroinflammation, which comprehends activation of microglial cells 

and expression of iNOS (De Simoni et al., 2000). Microglial cells are, in such 

conditions, able to produce large amounts of NO (Murphy et al., 1993). We 

used the kainic acid (KA) model of status epilepticus to investigate the role of 

NO in cell proliferation in vivo. Wild-type (WT) or iNOS-/- mice were treated 

with either saline or KA, as described in section 2.3.11. 
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Figure 2.8. Effect of NO on the levels of the cyclin-dependent kinase inhibitor 
p27KIP1. Neural stem cells treated with NOC-18 have more dividing cells and are 
negative for p27KIP1 in the nucleus (A). Following exposure to NOC-18, Ki-67-positive 
cells (red), i.e. proliferating cells, lack p27KIP1 in the nucleus (arrows, lower panel). 
Non-dividing cells (negative for Ki-67) present p27KIP1 either in the nucleus or in the 
cytosol (green). Nuclei are labeled with Hoechst 33342 (blue). Scale bar: 20 µm. B) 
Percentage of cells presenting p27 KIP1 in the nucleus, in the cytosol or cells where 
p27KIP1 is absent. Data are expressed as means ± SEM of at least 3 independent 
experiments. Two-way ANOVA (Bonferroni’s post-test). ***p<0.001, **p<0.01 and 
*p<0.05, significantly different from control. C) Levels of p27KIP1, as evaluated by 
Western blot analysis, following exposure for 1 h to 10 µM NOC-18, in the presence or 
absence of U0126 (1 µM) or AG1478 (200 nM). Data are expressed as means ± SEM 
of at least 4 independent experiments. One-way ANOVA (Bonferroni’s post-test). 
**p<0.01 and ***p<0.001, significantly different from control; +++p<0.001, significantly 
different from NOC-18. 

 

BrdU incorporation was greatly increased following SE in the SGZ of 

wild-type C57BL/6J mice, up to 5 d after seizures following treatment with KA 
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(Fig. 2.9B; two-way ANOVA: treatment: p<0.0001, F=118.7, df=3; time: 

p<0.0001, F=65.3, df=3; treatment x time (interaction): p<0.0001, F=26.3, 

df=9). There was a significant increase in newly born cells as early as 48 h 

after SE in the wild-type KA-treated group (p<0.05), and a steady rise in cell 

proliferation up to day 5. At this time, the number of BrdU-positive cells in the 

SGZ of wild-type mice treated with KA was 4-fold higher (82.7 ± 5.9 

cells/section, p<0.001) than that of saline-treated wild-type mice. In saline-

treated wild-type mice, the number of proliferating cells in the granular cell 

layer of the dentate gyrus remained constant throughout the time points 

evaluated (average 22 cells/section). In iNOS-/- mice, the number of BrdU-

positive cells in the dentate gyrus following treatment with KA was similar to 

that found in saline-treated iNOS-/- or wild-type mice (p>0.05), for all time 

points. These data suggest that abolishing NO of iNOS origin prevents the 

proliferation of neural stem cells in vivo, following the seizure insult. 

 We next evaluated whether the involvement of NO was specific to the 

proliferation of neuronal precursors (following seizures) or also involved in the 

proliferation of astrocytes or microglia cells. Doublecortin (DCX) was used as 

a marker of neuronal commitment, and GFAP was used to evaluate 

astrogliosis. We found that seizures increased DCX immunoreactivity (Fig. 

2.9A and 2.9C) in wild-type mice, but not in iNOS-/- mice. On the other hand, 

GFAP immunoreactivity increased with KA treatment, and was elevated either 

in WT or iNOS-/- mice (Fig. 2.9A and 2.9D). Moreover, Ki-67-positive cells did 

not colocalize with GFAP or CD-45, a microglial marker (Fig. 2.10). 
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Figure 2.9. Increased cell proliferation in the SGZ following seizures is 
abolished in iNOS-/- mice (opposite page). Evaluation of cell proliferation in the SGZ 
of wild-type (WT) vs iNOS-/- mice (KO) was assessed by BrdU incorporation, at 
several time points after status epilepticus induction (B). Representative images are 
shown 5 d after treatment with KA (A). The levels of doublecortin (C, red) and of 
GFAP (D, red) were also analysed.  Data are expressed as means ± SEM. Two-way 
ANOVA (Bonferroni’s post-test), *p<0.05, **p<0.01 and ***p<0.001, significantly 
different from control. Scale bar: 50 µm. E) Representative image from a 3% agarose 
gel electrophoresis of secondary PCR products. The genotype of the animals used in 
this study was confirmed by electrophoresis of PCR-amplified DNA of WT (108 bp) 
and iNOS-deficient mice (275 bp). M, 50-bp DNA ladder; WT, wild-type; KO, iNOS 
KO; NC, negative control in the PCR (water). 

	
  

	
  
Figure 2.10. No evidence of colocalization of Ki-67 in CD45 or GFAP-positive 
cells in the dentate gyrus following seizures. Dividing cells (Ki-67-positive, in red) 
did not colocalize with either CD45 (A) or with GFAP (B). Representative images are 
shown 5 d after treatment with KA.  Scale bar: 20 µm. 
 

 
1.9 Discussion 
	
  

In this chapter, we show that NO can have opposite effects on the 

proliferation of neural stem cells. NO either promotes or inhibits neural stem 
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cell proliferation, depending on the concentration and duration of exposure. In 

particular, we show that the proliferative effect of NO is due to the activation of 

p21Ras, bypassing the activation of the EGF receptor. As a result, activation 

of p90 RSK, Elk-1 and c-Myc increases and the levels of the cyclin-dependent 

kinase inhibitor p27KIP1 decrease. Additionally, in an in vivo model of brain 

injury associated with increased cell proliferation, we show that NO from iNOS 

origin promotes cell proliferation. 

 

1.9.1 NO induces the proliferation of neural stem cells bypassing the 
EGF receptor 

	
  
Neural stem cells are able to self-renew and proliferate in response to 

EGF (Reynolds and Weiss, 1996; Doetsch et al., 2002). Our results strongly 

suggest that NO bypasses the EGF receptor, using its signaling pathway, 

without requiring activation of the EGF receptor to exert its proliferative effect. 

Our results strongly suggest that NO signals via the MAPK pathway, but its 

target is downstream of the EGF receptor itself. To the best of our knowledge, 

our study is the first showing that NO induces proliferation of neural stem cells 

by directly activating the EGFR-ERK1/2 signaling pathway without activation 

of the EGF receptor. NO stimulated the downstream signaling of the EGF 

receptor pathway, rapidly activating p21Ras and increasing the 

phosphorylation of c-Raf. p21Ras is likely to be the entry point of NO in the 

signaling cascade, since this was the first detectable element of the ERK1/2 

pathway that we found to be activated following exposure to NO. In vitro 

assays using recombinant p21Ras have shown that NO activates p21Ras, via 

S-nitrosylation of a critical cysteine residue (Cys118), inducing a 

conformational change and causing the release of GDP and binding of GTP, 

thus activating p21Ras (Lander et al., 1995; Lander et al., 1997). In our study, 

the activation of p21Ras was fast, peaking at 2 min after exposure to NOC-18, 

suggesting a direct effect of NO on p21Ras, without intermediate signaling. 

Downstream of p21Ras, the ERK1/2 kinases were activated following 
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exposure to NO. Blocking MEK1/2 with U0126 completely abolished ERK1/2 

phosphorylation induced by NO and prevented the proliferative effect of NO, 

demonstrating that NO triggers proliferation upstream of ERK1/2.  

Following activation of the ERK1/2 pathway, the proliferative effect of 

NO is fast and robust. We found that the number of dividing cells (Ki-67-

positive) rapidly increased within the first hour of exposure to NO, which is 

accompanied by phosphorylation of several effectors of the ERK1/2 pathway, 

namely, p90RSK, Elk-1 and c-Myc. Phosphorylation of the transcriptional 

regulators Elk-1 and c-Myc strongly suggests that NO increases cell 

proliferation by activating the transcription of immediate early genes. More 

interestingly, NO strongly induced the phosphorylation of p90RSK, which can 

be activated following the binding of active ERK1/2 (Gavin and Nebreda, 

1999). p90RSK plays an important role in the regulation of transcription factors 

and other regulators, translocating to the nucleus where it can phosphorylate, 

among others, c-Fos and the cyclic AMP response element-binding protein 

(CREB) (Chen et al., 1993; Xing et al., 1996). We did not observe increased 

phosphorylation of either CREB or c-Fos (data not shown). While in the 

nucleus, another important substrate of p90RSK is the cyclin-dependent 

kinase inhibitor 1, p27KIP1. p27KIP1 can be phosphorylated by p90RSK and then 

translocated to the cytosol, where it is ubiquitinated and degraded by the 

proteasome (Vlach et al., 1997; Fujita et al., 2003). p27KIP1 prevents 

progression from G1 to S phase by complexing with cyclins and cyclin-

dependent kinases, namely with cyclin E-CDK2 and cyclin D-CDK4 (Polyak et 

al., 1994; Toyoshima and Hunter, 1994), and its nuclear export and 

translocation to the cytosol allow for progression into S phase. We detected a 

significant decrease in the levels of p27KIP1 in lysates of cultures exposed to 

NOC-18 for 1 h, and this effect might explain the proliferative effect of NO. 

Moreover, we observed translocation of p27KIP1 to the cytosol following 

treatment with NO, shown by a decrease in the number of cells presenting 

nuclear p27KIP1, while the number of cells presenting cytosolic p27KIP1 or 
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absence of this inhibitor was increased. This suggests that NO triggers cell-

cycle reentry by promoting the translocation of p27KIP1 from the nucleus to the 

cytosol, which is in agreement with the observation of an increased number of 

cells in G2/M. p27KIP1 has been found to be a key regulator of the cell division 

of transit-amplifying progenitors from the SVZ (Doetsch et al., 2002). Another 

study found that higher concentrations of NO, which decrease the proliferation 

of neural stem cells, are correlated with the nuclear presence of p27KIP1 in 

stem cells of the mouse subventricular zone (Torroglosa et al., 2007). Those 

results and ours suggest that p27KIP1 is a likely mediator of the proliferative 

effect of NO.	
  

Since NO can be cytotoxic (Boje and Arora, 1992; Dawson et al., 1993; 

Dawson et al., 1994; Bal-Price and Brown, 2001), there is the possibility that 

increased BrdU uptake is the result of DNA repair, following an insult caused 

by NO. On the other hand, if cell death occurs due to NO-mediated toxicity, it 

will result in fewer BrdU-labeled cells, which can be misinterpreted as 

decreased cell proliferation. Nevertheless, our results obtained by monitoring 

BrdU incorporation were paralleled by those obtained with proliferative 

markers (Ki-67), which argues against these possible interpretations. 

Moreover, we did not observe any significant changes in nuclear morphology 

or TUNEL staining. Therefore, taken together our data strongly suggest that 

the changes in BrdU incorporation following exposure to NO are not due to 

changes in cell viability, but in fact caused by changes in cell proliferation.  

 

1.9.2 Nitric oxide as a proliferative versus antiproliferative agent 
	
  

We used NOC-18 in a range of concentrations mimicking 

pathophysiological conditions, particularly neuroinflammation. At 10 µM, NOC-

18 releases NO in a similar manner to lipopolysaccharide-treated microglial 

cells, whereas 100 µM NOC-18 generated 10-fold higher levels of NO (data 

not shown). The lower concentration of NOC-18 caused neural stem cells to 

proliferate, whereas the higher concentration inhibited cellular proliferation. 
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Varying the concentration of NO by approximately a factor of 10 profoundly 

affected its effect on the proliferation of neural stem cells. The higher 

concentration of NOC-18 (100 µM) used in other studies as an equivalent to 

NO released during neuroinflammation, in fact appears to be a concentration 

artificially much higher than what is attained during brain inflammation. 

To evaluate the effect of NO on cell proliferation after injury in vivo, we 

examined the rodent model of status epilepticus in wild-type mice and mice 

that lack iNOS. Status epilepticus triggers a strong increase in hippocampal 

inflammation and greatly boosts proliferation of neural precursor cells in the 

SGZ of the dentate gyrus of rodents (Parent et al., 1997; Gray and Sundstrom, 

1998; Parent, 2007). We observed that proliferation was greatly increased in 

the dentate gyrus of wild-type mice after seizures. In contrast, mice lacking 

iNOS did not display an increase in cell proliferation in the dentate gyrus 

following seizures. These data strongly suggest that seizures stimulate cell 

proliferation by a mechanism dependent on NO produced by iNOS. An earlier 

report by Zhu and colleagues described that iNOS expression was necessary 

for increased cell proliferation in the dentate gyrus of mice subjected to focal 

cerebral ischemia, although the mechanism was not addressed in their study 

(Zhu et al., 2003). Their work and ours support the fact that NO produced 

during a brain insult associated with an inflammatory reaction will favor cell 

proliferation. Studies that have used high concentrations of NO donors in 

models of neural stem cell proliferation have focused on the antiproliferative 

effects of NO (Covacu et al., 2006; Torroglosa et al., 2007), and have probably 

examined situations that are less relevant to those occurring in vivo. 

 

In restorative neurology, both transplantation of exogenous stem cells 

and promotion of endogenous neurogenesis have been proposed as 

strategies to repair the damaged brain. Excessive proliferation of neural 

precursors or pluripotent stem cells associated with the formation of tumors is 

a major concern in the clinical application of both these strategies (Li et al., 
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2008). Targeting the NO system may be a powerful strategy to control cell 

proliferation. According to our results this might moderately increase 

proliferation of neural stem cells. On the other hand, NO donors might also be 

used therapeutically, to enhance endogenous neurogenesis. Overall, this work 

sheds new light on the effects of NO on the proliferation of neural stem cells, 

and may help in steering research efforts towards modulating the nitrergic 

system to regulate proliferation of stem cells.  
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Chapter 3 
 

 
 
 

 

Nitric oxide increases the proliferation of neural stem 
cells via the guanylyl cyclase - cyclic GMP - protein 

kinase G pathway  
 
 

 

 

  

 

 

 

 

 

 

 

 

 
 
 
The work presented in this chapter is submitted for publication in a 

peer-reviewed international journal. 
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1.10 Summary 
 

The aim of the work presented in chapter 3 was to test whether cGMP 

and the cGMP-dependent kinase (PKG) are involved in the proliferative effect 

triggered by NO described in chapter 2. For this purpose, cultures of neural 

stem cells isolated from the subventricular zone (SVZ) of C57BL/6J mice were 

used. Long-term exposure to the NO donor (24 h), NOC-18, increased cell 

proliferation, in a cyclic GMP-dependent manner, as determined by the 

inhibitory effect of a guanylate cyclase inhibitor, ODQ. Similarly to NOC-18, 8-

Br-cGMP, a cGMP analogue, also increased cell proliferation following 24 h 

exposure. Interestingly, shorter exposures to NO (6 h) increased cell 

proliferation in a cGMP-independent manner, via the ERK/MAP kinase 

pathway, while 8-Br-cGMP had no effect on cell proliferation. Furthermore, the 

selective phosphodiesterase 5 (PDE5) inhibitor, T0156, enhanced the 

proliferative effect of NOC-18. On the other hand, the selective inhibitor of 

PKG, KT 5823, prevented the proliferative effect induced by NO. In 

conclusion, NO stimulates SVZ-derived stem cell proliferation, and this effect 

is mediated through the sGC/cGMP/PKG pathway at later stages, while 

initially the ERK/MAPK pathway is more relevant for the early proliferative 

effect of NO. 
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1.11 Introduction 
 
We showed in Chapter 2 that the NO donor NOC-18 can stimulate 

neural stem cell proliferation, when used in low doses (1-10 µM). 

Nevertheless, the mechanisms underlying the proliferative effect of NO were 

not fully clarified.  

The main biological target of NO is the heme-containing enzyme 

guanylyl cyclase. Guanylyl cyclase catalyzes the conversion of GTP to cyclic 

GMP (cGMP), which can then act on further downstream targets, such as the 

cGMP-dependent kinase (PKG) and cGMP-gated channels. NO and cGMP 

have been described as important effectors in several cellular processes, such 

as survival, differentiation, growth, axon guidance, proliferation or migration, 

through the activation of different downstream signalling cascades (Gomez-

Pinedo et al., 2010; Tegenge et al., 2010; Madhusoodanan and Murad, 2007; 

Tegenge and Bicker, 2009). cGMP and cGMP-sparing agents such as 

sildenafil or tadalafil have been shown to positively affect neurogenesis 

(Zhang et al., 2002; Wang et al., 2005; Zhang et al., 2006; Gomez-Pinedo et 

al., 2010). It remains to be established whether cGMP and PKG are 

responsible for the proliferative effect of NO when applied to neural stem cells. 

Within this scenario, we investigated the role of the guanylyl cyclase-cGMP-

PKG pathway in the proliferative effect of NO. We observed that cGMP 

analogues mimick the effect of NO in increasing cell proliferation. Moreover, 

blocking guanylyl cyclase prevented the proliferative effect of NO, thus 

pointing to a beneficial effect of NO-cGMP signalling pathway in enhancing 

neural stem cell proliferation. 

 
1.12 Materials and Methods 

 
1.12.1 Materials 
 

Dulbecco’s Modified Eagle’s Medium:F-12 nutrient mixture, (D-MEM/F-

12, with GlutaMAXTM-I), B27 supplement, trypsin-EDTA solution (0.05% 
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trypsin, 1 mM EDTA in HBSS) and antibiotic (10,000 units/ml of penicillin, 10 

mg/ml streptomycin) were purchased from GIBCO BRL, Life Technologies, 

Scotland. 5-bromo-2’-deoxyuridine (BrdU), 8-bromoguanosine 3’,5’-cyclic 

monophosphate (8-Br-cGMP), phenylmethylsufonyl fluoride, dithiothreitol, 

orthovanadate, chymostatin, leuptin, antiparin, pepstatin A, trypan blue and 

Nω-nitro-L-arginine methyl ester (L-NAME) and 1,4-Diamino-2,3-dicyano-1,4-

bis(o-aminophenylmercapto)butadiene monoethanolate (U0126) were 

purchased from Sigma Chemical (St Louis, MO, USA). KT5823 was 

purchased from Alomone Labs (Jerusalem, Israel). 1H-[1,2,4]Oxadiozolo[4,3-

a]quinoxalin-1-one (ODQ) and the phosphodiesterase 5 inhibitor (T0156) were 

obtained from Tocris Bioscience (Bristol, UK). Epidermal growth factor (EGF), 

basic fibroblast growth factor (bFGF) and Click-iT® EdU Alexa Fluor® 488 

Flow Cytometry Assay Kit were purchased from Invitrogen (Paisley, UK). 

Mouse anti-Sox-2 was purchased from R&D Systems (Minneapolis, MN, USA) 

and rabbit anti-nestin from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

DETA-NONOate (NOC-18) was obtained from Alexis Biochemicals (San 

Diego, CA, USA). DAKO fluorescent mounting medium was purchased from 

DakoCytomation (Glostrup, Denmark). Rat anti-mouse BrdU was obtained 

from Oxford Biotechnology. Hoechst 33342 dye, anti-rat IgG conjugated with 

Alexa Fluor 594, anti-mouse IgG conjugated with Alexa Fluor 594 and anti-

rabbit IgG conjugated with Alexa Fluor 488 secondary antibodies were 

purchased from Molecular Probes (Leiden, The Nederlands). Polyvinylidene 

difluoride (PVDF) membranes, enhanced chemifluorescence (ECF) reagent, 

alkaline phosphatase-linked anti-rabbit and anti-mouse secondary antibodies 

were obtained from Amersham Pharmacia Biotech (Buckinghamshire, UK). 

Monoclonal mouse anti-p44/42 MAPK (ERK1/2) and rabbit anti-phospho-

ERK1/2 antibodies were obtained from Cell Signaling Technology (Danvers, 

MA, USA). Other reagents used in immunoblotting experiments were 

purchased from BioRad. 
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1.12.2 Animals 
	
  

C57BL/6J mice were obtained from Charles River (Barcelona, Spain) 

and kept with food and water ad libitum in a 12h dark:light cycle. All 

experiments were performed in accordance with NIH and European 

(86/609/EEC) guidelines for the care and use of laboratory animals.  

 
1.12.3 Subventricular zone cell cultures  
	
  

Neural stem cell cultures were obtained from the SVZ of postnatal day 

0-3 C57BL/6J mice, as previously described in Chapter 2 (Carreira et al., 

2010). The SVZ stem cells were grown as floating neurospheres in a 95% air-

5% CO2 humidified atmosphere at 37ºC.  

Seven days following plating the primary neurospheres were 

harvested, centrifuged and dissociated as single cells. Cells were then 

replated as above and allowed to grow as secondary neurospheres. 

Neurospheres with 2-4 passages were collected and plated for 5 days on 16-

mm diameter glass coverslips, for immunocytochemistry assays, or on 12-well 

plates, coated with poly-L-lysine, in serum-free medium, without growth 

factors, for preparation of lysates or flow cytometry assays.  

 

1.12.4 Experimental treatments of SVZ cell cultures 
	
  

SVZ-derived neural stem cells were exposed to the NO donor NOC-18 

(10 µM) or to the cGMP analogue 8-Br-cGMP (20 µM) for different periods of 

time, as indicated in detail in the figure legends and in the text. The soluble 

guanylyl cyclase inhibitor ODQ (50 µM), the protein kinase G (PKG) inhibitor 

KT5823 (1 µM), the phosphodiesterase 5 inhibitor T0156 (1 µM) and the 

MEK1/2 inhibitor U0126 (1 µM) were added 30 min before NOC-18 or 8-Br-

cGMP and kept throughout the incubation period.  
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1.12.5 Detection of BrdU incorporation 
	
  

Cell proliferation was assessed by the incorporation of the thymidine 

analogue, BrdU. BrdU (10 µM) was added to the cultures 16 h before fixation 

(Alvaro et al., 2008; Carreira et al., 2010). Nuclei that incorporated BrdU in this 

time-window were detected by immunofluorescence, as follows. Following 20 

min fixation with 4% paraformaldehyde/4% sucrose in PBS, the cells were 

permeabilized with 1% Triton X-100 for 5 min, and DNA was denaturated by 

treatment with 1 M HCl for 30 min, at 37ºC. Non-specific binding was blocked 

with 3% BSA in PBS-T for 1 h, and then BrdU-positive cells were labeled with 

a rat anti-BrdU antibody (1:50) for 90 min, at room temperature. The cells 

were then incubated with a secondary antibody goat anti-rat IgG conjugated 

with Alexa Fluor 594 (1:200), for 1 h, at room temperature. Nuclei were 

stained with Hoechst 33342 (1 µg/ml) for 3 min. Coverslips were mounted on 

glass slides using DAKO fluorescence mounting medium Dako Cytomation. 

The cells were visualized in a fluorescence microscope (Axioskop 2 Plus, 

Zeiss, Jena, Germany) and images were acquired with the Axiovision software 

4.7. The number of BrdU-positive nuclei was counted in 7-10 randomly 

selected fields for each coverslip (in a total of approximately 900-1,200 cells 

per coverslip), and the data were expressed as percentage of the total number 

of living cells. A minimum of 3 independent experiments was analyzed for 

each condition.  

 
1.12.6 Detection of cell proliferation and cell cycle analysis by flow 

cytometry 
	
  

Cell proliferation was also assessed by incorporation of EdU and 

detected by flow cytometry, using the Click-iT® EdU Alexa Fluor® 488 Flow 

Cytometry Assay Kit, as described in section 2.3.6 at Chapter 2.  
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1.12.7 Western blot analysis 
	
  

Cells were lysed in 50 mM Tris-HCl, 10 mM EGTA, 1% Triton X-100 

and 2 mM MgCl2, supplemented with 100 µM PMSF, 1 mM dithiothreitol, 1 

µg/ml chymostatin, 1 µg/ml leupeptin, 1 µg/ml antiparin, 5 µg/ml pepstatin A, 1 

mM sodium orthovanadate, 50 mM NaF, pH 7.4 at 4ºC. Protein concentration 

was determined by the BCA method, and the samples were used for Western 

blot analysis, after adding 6x concentrated sample buffer (0.5 M Tris, 30% 

glycerol, 10% SDS, 0.6 M dithiothreitol, 0.012% bromophenol blue) and 

heating, for 5 min, at 95ºC. 

 Equal amounts of protein were separated by electrophoresis on SDS-

polyacrylamide gels, and transferred electrophoretically to PVDF membranes. 

These were then blocked for 1 h at room temperature in Tris-buffered saline 

(137 mM NaCl, 20 mM Tris-HCl, pH 7.6) containing 0.1% Tween-20 (TBS-T) 

and 3% BSA. Incubations with primary antibodies (rabbit anti-phospho-

ERK1/2 or mouse anti-ERK1/2 (1:1,000); Cell Signaling, Danvers, MA, USA) 

in TBS-T 1% BSA were performed overnight, at 4ºC. Next, the membranes 

were incubated for 1 h at room temperature with alkaline phosphatase-linked 

secondary antibodies (anti-rabbit or anti-mouse IgG, 1:20,000) in TBS-T 1% 

BSA. After extensive washing in TBS-T 0.5% BSA, immunoreactive bands 

were visualized at the VersaDoc 3000 imaging system (BioRad, Hercules, CA, 

USA), following incubation of the membrane with ECF reagent for 5 min. The 

results are expressed as the percentage of control of phospho ERK/total ERK 

ratio. 

 
1.12.8 Data analysis  
	
  

Data are expressed as means ± SEM. Statistical significance was 

determined by using two-tailed t tests or one-factor analysis of variance 

(ANOVA), as appropriate, followed by post hoc Bonferroni’s or Dunnet’s tests, 

as indicated in the figure legends and in the text. Differences were considered 

significant when p < 0.05. 
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1.13 Results 
 
1.13.1 NO increases cell proliferation via the guanylyl cyclase-cyclic 

GMP pathway 
	
  
 To investigate the involvement of cGMP in the proliferative effect of 

NO, we evaluated the incorporation of thymidine analogues (EdU or BrdU) by 

SVZ cell cultures following treatment with a NO donor (NOC-18). We have 

shown in chapter 2 that treatment with the NOC-18 in the range of 1-10 µM 

increases proliferation of SVZ cells, but whether cGMP is involved in NO-

induced cell proliferation has not been addressed. We first investigated the 

involvement of cGMP in the proliferative effect of NO at 6h; and later at 24h of 

treatment with NOC-18 (10 µM). Exposure to NOC-18 for 6 h increased the 

incorporation of EdU to 146.4 ± 6.4% of the control (p<0.05) (Fig. 3.1A). At 24 

h, NOC-18 treatment further increased EdU incorporation to 165.3 ± 10.2% of 

the control (p<0.001) (Fig. 3.1B). In control conditions (untreated cells), the 

number of EdU-positive cells (percentage of total living cells) was 2.4 ± 0.7% 

at 6h and 2.2 ± 0.9% at 24h.  

The involvement of cGMP in the proliferative effect of NOC-18 was 

evaluated using the guanylyl cyclase inhibitor ODQ. Treatment with ODQ 

prevented the NO-induced incorporation of EdU at 24h (p<0.05), when 

comparing to SVZ cells treated with NOC-18 alone (Fig. 3.1B), suggesting that 

cGMP mediates the effect of NO on cell proliferation. However, the 

proliferative effect of NOC-18 at 6h of treatment was not affected by ODQ 

(p>0.05; Fig. 3.1A), suggesting that mechanisms other than guanylyl cyclase 

and cGMP are responsible for the proliferative effect of NO at 6h of incubation 

with NOC-18. Thus, we then investigated whether the mitogen-activated 

kinase ERK1/2 was involved in the latter effect. Inhibition of ERK1/2 activation 

by U0126 indeed prevented the increase in EdU-positive cells stimulated by 

NOC-18, at both 6h (p<0.05) and 24h (p<0.001) (Fig. 3.1C and 3.1D, 

respectively).  
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Figure 3.1. NO increases cell proliferation via the guanylyl cyclase-cGMP 
pathway for longer (24 h) but not for shorter (6 h) periods of cell exposure to 
NO. Cell proliferation following treatment with NOC-18 (10 µM), in the absence or 
presence of 50 µM ODQ, for 6 h (A) or 24h (B), evaluated by incorporation of EdU 
and assessed by flow cytometry. Data are expressed as means ± SEM of at least 4 
independent experiments. One-way ANOVA (Bonferroni’s post-test). **p<0.01 or 
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***p<0.001, significantly different from control; +++p<0.001, significantly different from 
NOC-18. EdU incorporation in neural stem cells following exposure to NOC-18 (10 
µM) in the absence or presence of 1 µM U0126, a selective MEK1 and MEK2 inhibitor, 
for 6 h (C) or 24 h (D), as assessed by flow cytometry.  Data are expressed as means 
± SEM of at least 4 independent experiments. One-way ANOVA (Bonferroni’s post-
test). *p<0.05 or ***p<0.001, significantly different from control; +p<0.05 or +++p<0.001, 
significantly different from NOC-18. E) BrdU incorporation in neural stem cells 
following exposure to NOC-18 (10 µM) for 24 h, in the absence or presence of a 
guanylyl cyclase inhibitor, ODQ (50 µM). ODQ completely blocks the increase in the 
number of BrdU-positive cells (red, representative images in the left panel). Nuclei are 
labeled by Hoechst 33342 (blue). Scale bar: 20 µm. Data are expressed as means ± 
SEM of at least 4 independent experiments (right panel). One-way ANOVA 
(Bonferroni’s post-test). ***p<0.001, significantly different from control; +++p<0.001, 
significantly different from 10 µM NOC-18. 

 

Since ODQ only prevented EdU-incorporation 24h following treatment 

with NOC-18 (analysed by flow cytometry), we further confirmed this 

observation by evaluating the incorporation of BrdU by immunocytochemistry 

and microscopy analysis. Treatment with NOC-18 alone for 24h increased the 

number of BrdU-positive cells from 8.5 ± 0.3% of total cells (control) to 13.4 ± 

0.5% (p<0.001), and ODQ also blocked this effect significantly (4.6 ± 0.3%, 

p<0.001), when compared to NOC-18 (Fig. 3.1E). Since NO may induce 

apoptosis in neural stem cells (Canals et al., 2001), cell death was evaluated. 

Flow cytometry analysis of nuclei stained with 7-AAD, as described in the 

section 3.3.6, showed that the drugs used in this study did not affect cell 

survival significantly, compared to untreated cultures (Table 3.1). 
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Table 3.1 – Cell viability in neural stem cell cultures following exposure to 
NOC-18 with or without U0126 or ODQ. 
 
 Treatment % live cells % dead cells 

6 
h 

Control 

10 µM NOC-18  

10 µM NOC-18 + 1 µM U0126 

1 µM U0126 

10 µM NOC-18 + 50 µM ODQ 

50 µM ODQ 

90.9 ± 1.4% 

90.0 ± 1.7% (n.s.) 

90.2 ± 1.9% (n.s.) 

92.6 ± 1.2% (n.s.) 

90.6 ± 1.7% (n.s.) 

90.0 ± 1.6% (n.s.) 

9.1 ± 1.4%  

10.0 ± 1.7% (n.s.) 

9.8 ± 1.9% (n.s.) 

7.4 ± 1.2% (n.s.) 

9.4 ± 1.7% (n.s.) 

9.5 ± 1.8% (n.s.) 

24
 h

 

Control 

10 µM NOC-18  

10 µM NOC-18 + 1 µM U0126 

1 µM U0126 

10 µM NOC-18 + 50 µM ODQ 

50 µM ODQ 

90.6 ± 1.2% 

91.0 ± 1.4% (n.s.) 

90.1 ± 1.4% (n.s.) 

89.8 ± 1.8% (n.s.) 

91.4 ± 1.1% (n.s.) 

90.5 ± 2.0% (n.s.) 

9.4 ± 1.2% 

9.0 ± 1.4% (n.s.) 

9.9 ± 1.4% (n.s.) 

9.5 ± 1.6% (n.s.) 

8.6 ± 1.1% (n.s.) 

9.5 ± 2.0% (n.s.) 

 
Cell viability was assessed by analysis of cell cycle distribution using the nuclear dye 
7-Amino-actinomycin D (7-AAD), detected by flow cytometry. Data are expressed as 
means ± SEM of at least 3 independent experiments. n.s. (non-significant) p>0.05, not 
different from the control, one-way ANOVA (Dunnett’s post-test). 
 
 
1.13.2 The cGMP analogue 8-Br-cGMP mimics the proliferative effect of 

NOC-18 
	
  

Since cGMP appears to mediate the proliferative effect of NO at 24h, 

we assessed the proliferative effect of a cGMP analogue, 8-Br-cGMP (20 µM), 

by flow cytometry. We observed a significant increase in EdU incorporation to 

157.9 ± 14.6% (p<0.01) following 24 h of treatment (Fig. 3.2B), but not at 6 h 

(Fig. 3.2A), compared to control cultures. We further confirmed the 24 h 

observations by evaluating the incorporation of BrdU by immunocytochemistry 

and microscopy analysis. Treatment with 8-Br-cGMP for 24h significantly 

increased the number of BrdU-positive cells to 12.4 ± 0.5% (p<0.01) when 

comparing to control (4.6 ± 0.3%) (Fig. 3.2C).  
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Figure 3.2. Effect of the cGMP analogue, 8-Br-cGMP, on cell proliferation in SVZ 
neurosphere cultures. A) EdU incorporation in neural stem cells following exposure 
to 20 µM 8-Br-cGMP as assessed by flow cytometry. 8-Br-cGMP for 6 h had no effect 
on cell proliferation. p>0.05, two tailed t-test. B) Longer exposure (24 h) to 8-Br-cGMP 
had a proliferative effect by increasing the incorporation of EdU. Two-tailed t-test. 
**p<0.01, significantly different from control. Data are expressed as means ± SEM of 
at least 4 independent experiments. C) 8-Br-cGMP (20 µM) mimics the proliferative 
effect of NO, as determined by BrdU incorporation following 24 h treatment. 
Representative images of BrdU-positive cells (red) in neural stem cell cultures after 
exposure to 20 µM 8-Br-cGMP, for 24 h, are shown in the left panel.	
   Nuclei are 
labeled with Hoechst 33342 (blue). Scale bar: 20 µm. The data in the graph represent 
the percentage of BrdU-positive cells and are expressed as means ± SEM of at least 
3 independent experiments. Two-tailed t-test. ***p<0.01, significantly different from 
control. 

	
  
1.13.3 NO-induced activation of the guanylyl cyclase pathway is 

independent of ERK/MAPK pathway activation  
	
  

To identify the intracellular pathways that mediate the proliferative 

effect of NO, we investigated whether the guanylyl cyclase pathway is 

involved in the activation of the ERK/MAPK pathway in chapter 2. We showed 
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that NOC-18 alone stimulates proliferation of SVZ cultures by activating 

ERK1/2. To evaluate how fast the phosphorylation of ERK1/2 occurs following 

exposure to NOC-18, we analyzed the phospho-ERK1/2:total ERK1/2 

immunoreactivity ratio at several time points after the stimulus (at 5, 15, 30 

and 60 min). ERK1/2 phosphorylation increase to 138.1 ± 8.4% of the control 

15 min after treatment with 10 µM NOC-18 (p<0.001) (Fig. 3.3A). At 30 min, 

the levels of phospho-ERK1/2 were similar to basal levels, suggesting that 

NO-induced phosphorylation of ERK1/2 is a transient event.  

The activation of ERK by NO is an event independent of guanylyl 

cyclase. ODQ did not prevent the increase in the phosphorylation of ERK 1/2 

triggered by NOC-18 (164.3 ± 6.5% of the control), suggesting that ODQ alone 

had no significant effect on ERK 1/2 phosphorylation (Fig. 3.3B).  

Since cGMP can activate the cGMP-dependent protein kinase (PKG), 

the involvement of PKG in the activation of ERK1/2 was evaluated, following 

treatment with NOC-18. We observed that PKG does not appear to be 

involved in the early activation of ERK1/2 by NO, since KT5823 did not 

prevent the phosphorylation of ERK1/2 stimulated by exposure to NOC-18 for 

15 min (Fig. 3.3C).  

 

1.13.4 The cGMP analogue 8-Br-cGMP activates the ERK/MAPK pathway 
via PKG  

	
  
We also analyzed the phospho-ERK1/2:total ERK1/2 immunoreactivity 

ratio at 5, 15, 30, 60 and 120 min following treatment with 8-Br-cGMP. There 

was a steady increase in the levels of phosphorylated ERK1/2 up to 2 h after 

treatment. At this time point, 20 µM 8-Br-cGMP induced a two-fold increase in 

phospho-ERK1/2:total ERK1/2 immunoreactivity ratio (221.1 ± 12.3 %), as 

compared to untreated cultures (Fig 3.4A). Inhibition of PKG with KT 5823 

prevented ERK1/2 phosphorylation following exposure to 8-Br-cGMP (Fig. 

3.4B). 

 



___________________________________________ Chapter 3 
	
  

	
   	
  
127	
  

	
  
 

Figure 3.3. NO activates the ERK/MAPK pathway in a cGMP independent 
manner. A) Time course analysis of the phosphorylation of ERK1/2 following 
exposure to NOC-18 (10 µM). NOC-18 enhanced ERK1/2 phosphorylation as early as 
15 min following treatment. Data are expressed as means ± SEM of at least 4 
independent experiments. One-way ANOVA (Bonferroni’s post-test). ***p<0.001, 
significantly different from Control. B) Western blot analysis of the involvement of 
guanylyl cyclase in the phosphorylation of ERK1/2, in lysates of neural stem cell 
cultures treated with NOC-18, for 15 min. No effect of ODQ (50 µM) on ERK1/2 
phosphorylation was observed. Data are expressed as means ± SEM of at least 3 
independent experiments. One-way ANOVA (Bonferroni’s post-test). **p<0.01 and 
*p<0.05, significantly different from control. C) No effect of the PKG inhibitor (KT5823; 
1 µM) on the phosphorylation of ERK1/2 stimulated by exposure to NOC-18 (10 µM), 
for 15 min. One-way ANOVA (Bonferroni’s post-test). *p<0.05, significantly different 
from control. 
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Figure 3.4. The cGMP analogue 8-Br-cGMP increases the phosphorylation of 
ERK1/2. A) Time course analysis of the phosphorylation of ERK1/2 upon treatment 
with 20 µM 8-Br-cGMP in lysates of neural stem cell cultures. Following exposure to 8-
Br-cGMP, there is a time-dependent increase in the phosphorylation of ERK1/2, up to 
120 min. Data are expressed as means ± SEM of at least 4 independent experiments. 
One-way ANOVA (Bonferroni’s post-test). ***p<0.001 and **p<0.01, significantly 
different from control. B) KT5823 prevents the phosphorylation of ERK1/2 stimulated 
by treatment with 8-Br-cGMP for 2h One-way ANOVA (Bonferroni’s post-test). 
***p<0.001, significantly different from control. +++p<0.001, significantly different from 
8-Br-cGMP. 
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1.13.5 cGMP and PKG contribute to late but not to early proliferation 
induced by NO  

	
  
Next, the involvement of cGMP and PKG in the proliferative effect of 

NO was studied by flow cytometry by evaluating the incorporation of EdU by 

SVZ cell cultures, following treatment with NOC-18 or 8-Br-cGMP. Blockade of 

PKG by KT5823 had no effect on early proliferation (6h) (Fig. 3.5A) but 

significantly prevented the EdU incorporation induced by NOC-18 treatment at 

24 h (97.5 ± 15.2 %, p<0.01), as compared to cultures treated with NOC-18 

alone (157.3 ± 12.4%) (Fig. 3.5B). Concerning the exposure of SVZ cells to 

the cGMP analogue, the inhibition of PKG prevented the proliferation induced 

by 8-Br-cGMP both for 6 h (102.918 ± 2.0 %, p<0.05) (Fig. 3.5C) and 24 h 

(83.8 ± 8.1 %, p<0.05) (Fig. 3.6D) when comparing to 8-Br-cGMP alone 

(123.757 ± 6.1 %, for 6 h and 162.7 ± 20.1 %, for 24 h). Flow cytometry 

analysis of nuclei stained with 7-AAD, as described, showed that the drugs 

used in this study did not affect cell survival significantly, compared to 

untreated cultures (Table 3.2). 
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Figure 3.5. Involvement of the cGMP/PKG signalling pathway in the proliferation 
of neural stem cells. Cell proliferation following treatment with NOC-18 (10 µM), in 
the absence or presence of 1 µM KT5823, a selective PKG inhibitor, for 6 h (A) or 24 
h (B), evaluated by incorporation of EdU and assessed by flow cytometry. Data are 
expressed as means ± SEM of at least 4 independent experiments. One-way ANOVA 
(Bonferroni’s post-test). ***p<0.001, significantly different from control; ++p<0.001, 
significantly different from NOC-18. EdU incorporation in neural stem cells following 
exposure to 8-Br-cGMP (20 µM) in the absence or presence of 1 µM KT5823, for 6 h 
(C) or 24 h (D), as assessed by flow cytometry.  Data are expressed as means ± SEM 
of at least 4 independent experiments. One-way ANOVA (Bonferroni’s post-test). 
*p<0.05 or ***p<0.001, significantly different from control; +p<0.05, significantly 
different from 8-Br-cGMP. 
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Table 3.2 – Cell viability in neural stem cell cultures following exposure to 
NOC-18 or 8-Br-cGMP with or without KT5823. 
 
 Treatment % live cells % dead cells 

6 
h 

Control 

10 µM NOC-18  

10 µM NOC-18 + 1 µM KT5823 

20 µM 8-Br-cGMP 

20 µM 8-Br-cGMP + 1 µM KT5823 

1 µM KT5823 

89.7 ± 1.1% 

91.0 ± 1.9% (n.s.) 

89.2 ± 1.1% (n.s.) 

93.0 ± 1.2% (n.s.) 

90.2 ± 1.2% (n.s.) 

92.1 ± 1.3% (n.s.) 

10.3 ± 1.0%  

9.0 ± 1.1% (n.s.) 

10.8 ± 1.2% (n.s.) 

7.0 ± 2.2% (n.s.) 

9.8 ± 2.0% (n.s.) 

7.9 ± 1.6% (n.s.) 

24
 h

 

Control 

10 µM NOC-18  

10 µM NOC-18 + 1 µM KT5823 

20 µM 8-Br-cGMP 

20 µM 8-Br-cGMP + 1 µM KT5823 

1 µM KT5823 

87.9 ± 1.9% 

91.0 ± 2.1% (n.s.) 

92.1 ± 2.3% (n.s.) 

89.9 ± 0.8% (n.s.) 

90.0 ± 1.2% (n.s.) 

93.5 ± 1.1% (n.s.) 

12.1 ± 1.9% 

9.0 ± 0.9% (n.s.) 

7.9 ± 1.0% (n.s.) 

10.1 ± 1.3% (n.s.) 

10.0 ± 1.4% (n.s.) 

6.5 ± 0.8% (n.s.) 

 

Cell viability was assessed by analysis of cell cycle distribution using the nuclear dye 
7-Amino-actinomycin D (7-AAD), detected by flow cytometry. Data are expressed as 
means ± SEM of at least 3 independent experiments. n.s. (non-significant) p>0.05, not 
different from the control, one-way ANOVA (Dunnett’s post-test). 
 

To further demonstrate the involvement of cGMP in the late 

proliferative effect of NO, SVZ cultures were treated with NOC-18 and a 

blocker of cGMP degradation and BrdU incorporation was assessed at 24 h. A 

selective phosphodiesterase 5 (PDE5) inhibitor, T0156, was used in these 

experiments. T0156 potentiated the increase in cell proliferation triggered by 

NOC-18 to 17.4 ± 1.9 % of BrdU-positive cells (p<0.001; Fig. 3.6), when 

compared to treatment with NOC-18 alone (12.7 ± 0.3 % of BrdU-positive 

cells). Proliferation in control cultures was 8.5 ± 0.3 %. 
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Figure 3.6. Blockade of cGMP degradation enhances the proliferative effect of 
NOC-18. A) Representative images of BrdU-positive cells (red) in neural stem cells 
following exposure to NOC-18 (10 µM) for 24h, in the presence or absence of a 
phosphodiesterase 5 inhibitor, T0156. Nuclei are labeled by Hoechst 33342 (blue). 
The images are representative of 3 independent experiments. Scale bar: 20 µm. B) 
Blockade of cGMP degradation by T0156 (1 µM) increased the proliferative effect of 
NO, assessed by evaluating the number of BrdU-positive cells. Data are expressed as 
means ± SEM of at least 4 independent experiments. One-way ANOVA (Bonferroni’s 
post-test). ***p<0.001, significantly different from control; +++p<0.001, significantly 
different from NOC-18. 

 
1.14 Discussion 
 

In this work, we show that cGMP and PKG are involved in the late 

proliferative effect triggered by nitric oxide (NO). The inhibition of guanylyl 

cyclase or PKG abolishes cell proliferation induced by NO, while blocking the 

degradation of cGMP further enhances the proliferative effect of NO. Although 

cGMP and PKG were not involved in the early activation of ERK1/2, they were 
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mandatory for cell proliferation following treatment with the NO-donor NOC-18 

for 24 h. Moreover, the cGMP analogue 8-Br-cGMP had a similar effect to 

treatment with NOC-18 on cell proliferation.  

We demonstrated that the late proliferative effect of NO is mediated by 

cGMP since the sGC inhibitor, ODQ, blocked NO-induced cell proliferation, as 

observed by the decreased incorporation of BrdU or EdU. Moreover, the 

blockade of cGMP degradation with a selective PDE5 inhibitor, T0156, 

potentiated the proliferative effect of NO. The sGC-cGMP pathway is the main 

effector pathway of NO biological effects as a second messenger. NO-

mediated elevation of the intracellular levels of cGMP has been reported to 

directly regulate the activity of downstream effectors such as protein kinase G 

(PKG) (Fiscus et al., 1983; Fiscus et al., 1984; Forstermann et al., 1990; 

Fiscus, 2002). More recently, it was reported that elevation of cGMP levels by 

PDE5 inhibition promoted cGMP/PKG activation, enhancing mesenchymal 

stem cell proliferation (Haider et al., 2010). Other studies correlate elevation of 

cGMP levels to the enhancement of neurogenesis (Wang et al., 2005; Zhang 

et al., 2006; Zhang et al., 2006). 

Our results show that NO-induced activation of ERK1/2 is fast, 

occurring in a cGMP-independent manner, since ODQ did not prevent ERK1/2 

phosphorylation. On the other hand, 8-Br-cGMP increased ERK1/2 

phosphorylation at a slower rate than NOC-18. Previously, we demonstrated 

that phosphorylation of ERK1/2 is essential for the proliferative effect of NO, 

either at the early stages of cell proliferation following exposure to NO (after 

30 min), or for later endpoints (24 h) (see Chapter 2). For short-term 

exposures (6 h), our results strongly suggest that the proliferative effect of NO 

is dependent on the activation of the ERK1/2 pathway and cGMP-

independent, since in cultures treated with NOC-18 for 6 h, ODQ had no effect 

on NO-induced cell proliferation. Interestingly, long-term exposure to NO (24 

h) increased cell proliferation in a cGMP-dependent manner.  
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To further demonstrate the involvement of cGMP in cell proliferation we 

assessed EdU incorporation following treatment with 8-Br-cGMP. On the other 

hand, in cultures treated with 8-Br-cGMP, the PKG inhibitor blocked cell 

proliferation at 24 h. Blockade of PKG inhibited ERK1/2 activation as well, thus 

suggesting that cGMP can cause ERK1/2 activation via PKG. Although 8-Br-

cGMP results in increased ERK1/2 phosphorylation, activation of ERK1/2 by 

NO did not require cGMP or PKG activation. In cultures treated with NOC-18, 

the inhibitor of PKG inhibited cell proliferation at 24 h, but not the early 

activation of ERK1/2. Moreover, inhibition of PKG had no effect on early 

proliferation induced by NO.  

Altogether, our results show that NO can activate two independent 

pathways, depending on the period of exposure of the cells, which induces the 

increase in neural stem cell proliferation: the ERK/MAP kinase and 

GC/cGMP/PKG pathways. Although there is no evidence of crosstalk between 

these two pathways for the early effect of NO, this possibility can not be 

excluded for NO-induced cell proliferation at later stages. While the early 

proliferation of neural stem cells triggered by NO is independent of cGMP and 

PKG, the complete blockade of the proliferative effect of NO at later stages by 

inhibition of either sCG, PKG or MEK1/2 suggests a crosstalk between the two 

pathways.  

PKG is a serine/threonine kinase that is activated upon binding of 

cGMP, and it has been implicated in the regulation of gene expression, as 

reviewed by Madhusoodanan and  Murad (Madhusoodanan and Murad, 

2007). According to some authors cGMP is involved in the NO-mediated 

arrest of cell proliferation, in which PKG activation mediates the indirect 

inhibition of Raf-1 and subsequent decreased signaling by the MAPK pathway 

(Yu et al., 1997; Guo et al., 1998; Costa and Assreuy, 2005). These events 

have a negative effect on cell proliferation (Villalobo, 2006). Additionally, some 

studies suggest that the cGMP/PKG pathway is involved in the activation of 

the MAPK pathway, particularly ERK1/2 (Zaragoza et al., 2002; Ota et al., 
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2008), although we did not observe a crosstalk between the cGMP/PKG and 

ERK1/2 activation for early proliferation. While cGMP and PKG are 

undoubtedly involved and essential for the proliferative effect of NO in neural 

stem cells, the ERK pathway is not its target, and the precise mechanisms 

remain to be addressed. 
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Chapter 4 
 
 
 
 

 

Nitric oxide from microglial origin impairs neural stem 
cell proliferation via nitration of the epidermal growth 

factor receptor  
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1.15 Summary 
 

In Chapter 2, we found that the NO donor NOC-18 (100 µM), for 48 h, 

inhibited cell proliferation of SVZ-derived neural stem cells. We now 

investigated the mechanisms responsible for the antiproliferative effect of NO. 

We observed that NOC-18 caused the nitration of the EGF receptor in SVZ-

derived neural stem cells expressing this receptor, which is concomitant with a 

decreased phosphorylation status of the EGF receptor. Using MnTBAP, a 

scavenger of peroxynitrite, nitration was prevented and cell proliferation 

rescued in SVZ-derived stem cell cultures. Moreover, using a culture system 

of SVZ-derived stem cells mixed with microglia isolated from wild-type mice 

(iNOS+/+) or knockout mice (iNOS-/-), we show that the increased release of 

NO by activated iNOS+/+ microglial cells, following treatment with LPS plus 

IFN-γ, enhanced nitration of the EGF receptor, which is concomitant with 

decreased proliferation of SVZ-derived neural stem cells. Preventing 

peroxynitrite formation, by MnTBAP or FeTMyP, cell proliferation is restored to 

basal levels in iNOS+/+ mixed cell cultures. 

Overall, we show for the first time that NO has an antiproliferative 

effect in neural stem cell mediated by peroxynitrite formation, which causes 

nitration of the EGF receptor, leading to decrease in its phosphorylation 

status, thus preventing regular proliferation signaling.  
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1.16 Introduction 
 

Brain inflammation was shown to be detrimental to neurogenesis 

(Ekdahl et al., 2003; Monje et al., 2003). However, the inflammatory factors 

involved in the negative effects of inflammation on the formation of new brain 

cells are not totally identified.  

Activation of microglia is a hallmark of the neuroinflammatory process 

(Hanisch and Kettenmann, 2007). Microglial cells are highly dynamic sensors 

that continually scan the surrounding tissue (Davalos et al., 2005; Nimmerjahn 

et al., 2005). Upon an injury, or change in the environment, microglia promptly 

respond with morphological and biochemical changes, producing and 

releasing a plethora of signaling molecules (reviewed by Hanisch and 

Kettenmann, 2007). Inflammation has different effects on neurogenesis and 

under some circumstances, particularly following tissue damage it inhibits the 

neurogenic process (Ekdahl et al., 2003; Kempermann and Neumann, 2003; 

Monje et al., 2003; Ekdahl et al., 2009). Upon neurotoxic, traumatic and 

inflammatory damage in the mammalian brain, nitric oxide (NO) is formed in 

high amounts, following the expression of the inducible nitric oxide synthase 

(iNOS) (Chao et al., 1992; Galea et al., 1992; Nathan and Xie, 1994; Murphy, 

2000). NO can nitrosylate cysteine residues or nitrate tyrosine residues, 

typically leading to alterations in protein function (reviewed by Hanafy et al., 

2001). Reactive nitrogen and oxygen species are important factors in 

microglial-mediated inflammation (Rock et al., 2004).  

In isolated neural stem cells from the SVZ, supraphysiological 

concentrations of NO inhibit neural stem cell proliferation and promote 

differentiation of precursors into astrocytes (Covacu et al., 2006; Torroglosa et 

al., 2007). Torroglosa and colleagues have suggested that NO modulates the 

tyrosine kinase activity of epidermal growth factor (EGF) receptor (EGFR) 

(Torroglosa et al., 2007), although the molecular mechanisms behind this 

effect remain unclear.  
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In the present study, we investigated how elevated concentrations of 

NO affect proliferation of neural stem cells, and what the underlying 

mechanisms are. To better understand whether NO mediates the detrimental 

effects of inflammation on neural stem cell proliferation, we used a culture 

system of SVZ-derived stem cells mixed with microglia isolated from wild-type 

mice (iNOS+/+) or knockout mice (iNOS-/-) for iNOS. We show that levels of NO 

similar to those produced by the brain’s immune system have an 

antiproliferative effect mediated by peroxynitrite formation, which causes 

nitration of the EGF receptor, thus preventing regular signaling. 

 
1.17 Materials and Methods 
 
1.17.1 Materials 
	
  

Dulbecco’s Modified Eagle’s Medium:F-12 nutrient mixture, (D-MEM/F-
12, with GlutaMAXTM-I), B27 supplement, trypsin-EDTA solution (0.05% 
trypsin, 1 mM EDTA in HBSS), gentamicin, antibiotic (10,000 units/ml of 
penicillin, 10 mg/ml streptomycin) and trypsin (1:250) were purchased from 
GIBCO BRL, Life Technologies, Scotland. Deoxyribonuclease 1 (DNase-1), 5-
bromo-2’-deoxyuridine (BrdU), phenylmethylsufonyl fluoride, dithiothreitol, 
orthovanadate, chymostatin, leuptin, antiparin, pepstatin A, trypan blue, 
lipopolysaccharide (LPS) and alkaline phosphatase-linked anti-rabbit 
secondary antibody were purchased from Sigma Chemical (St Louis, MO, 
USA). Epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) 
and Click-iT 5-ethynyl-2’-deoxyuridine (EdU) Alexa Fluor 647 HCS Assay 

were purchased from Invitrogen (Paisley, UK). Macrophage colony stimulating 
factor (M-CSF) and interferon-gamma (IFN-γ) were purchased from Peprotech 

(London, UK) and DETA-NONOate (NOC-18) from Alexis Biochemicals (San 
Diego, CA, USA). BSA and MnTBAP were obtained from Calbiochem (San 
Diego, CA, USA). FeTMPyP was purchased from Cayman Chemical (Tallinn, 
Estonia). Rabbit anti-GFAP and DAKO fluorescent mounting medium were 
obtained from DakoCytomation (Glostrup, Denmark). Rat anti-mouse BrdU 



Antiproliferative effect of NO mediated by nitration of the EGFR________________ 

	
  	
  
142	
  

was obtained from Oxford Biotechnology and rat anti-mouse-CD11b from 
Serotec (Oxford, UK). Mouse anti-nestin, rabbit anti-iNOS and mouse anti-
GAPDH were purchased from BD Transduction (San Jose, CA, USA). Mouse 
anti-3-nitrotyrosine was purchased from Upstate Biotechnology 
(Charlottesville, VA, USA) and rabbit anti-EGFR from Cell Signaling (Danvers, 
MA, USA). Rabbit anti-nestin was obtained from Santa Cruz Biotechnology 
(Santa Cruz, CA, USA) and mouse anti-Sox-2 from R&D Systems 
(Minneapolis, MN, USA); Hoechst 33342, anti-mouse IgG conjugated with 
Alexa Fluor 594 or 488, and anti-rabbit IgG conjugated with Alexa Fluor 633, 
594 or 488 secondary antibodies were purchased from Molecular Probes 
(Invitrogen, Paisley, UK). Griess Reagent System was obtained from Promega 
(Madison, WI, USA). Polyvinylidene difluoride (PVDF) membranes, enhanced 
chemifluorescence (ECF) reagent and alkaline phosphatase-linked anti-rabbit 
and anti-mouse secondary antibodies were obtained from Amersham 
Pharmacia Biotech (Buckinghamshire, UK). Other reagents used in 
immunoblotting experiments were purchased from BioRad (Hercules, CA, 
USA). 
 

1.17.2 Animals 
	
  

C57BL/6J (iNOS+/+) mice or B6.129P2-Nos2tm1Lau/J  (iNOS-/-) were 

obtained from Charles River (Barcelona, Spain) or The Jackson Laboratory 

(Bar Harbor, ME, USA), respectively, and kept with food and water ad libitum 

in a 12h dark:light cycle. All experiments were performed in accordance with 

NIH and European guidelines (86/609/EEC) for the care and use of laboratory 

animals. 

 

1.17.3 Primary microglial cell cultures 
	
  

Primary mixed glial cultures were prepared from the brains of 0 to 3-
day-old C57BL6 (iNOS+/+) or B6.129P2-Nos2tm1Lau/J (iNOS-/-) mice according 
to the method of Giulian and Baker (Giulian and Baker, 1986). Briefly, the 
brains were removed from the skull, following decapitation, and placed in 
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dissection medium composed of Ca2+- and Mg2+-free Hank’s balanced salt 
solution (HBSS) (137 mM NaCl, 5.36 mM KCl, 0.44 mM KH2PO4, 0.34 mM 
Na2PO4.2H2O, 4.16 mM NaHCO3, 5 mM glucose, 1 mM sodium pyruvate, 10 
mM HEPES, pH 7.4), supplemented with 0.25% gentamicin. The enveloping 
meninges and the cerebellum were discarded and the cortex tissue was 
mechanically dissociated and digested with trypsin (0.1%) and DNase 1 
(0.001%) in Ca2+- and Mg2+- free HBSS for 20 min, at 37ºC. Cells were 
seeded in 75 cm2 flasks coated with poly-L-lysine, at a density of 0.2 X 106 
cells/cm2 and cultured in D-MEM/F-12 with GlutaMAX™-I supplemented with 
10% FBS, 0.25% gentamicin and 0.25 ng/ml M-CSF, at 37ºC and 95% air-5% 
CO2 in a humidified incubator. Culture medium was changed every 3 - 4 days 
and confluency was achieved after 10 – 14 DIV. Microglia was detached from 
the mixed glial cultures 3-10 days after reaching confluency, by shaking at 200 
r.p.m. for 2 h, and collected from the supernatant by centrifugation at 1500 
r.p.m., for 5 min. Cells were then seeded for 3 days onto 16-mm diameter 
glass coverslips, for immunocytochemistry assays, or on 12-well plates, for 
preparation of lysates, both coated with poly-L-lysine, in serum-free medium, 
without M-CSF. Next, cultures were treated with an acute inflammatory 
stimulus (except the controls): 100 ng/ml LPS plus 0.5 ng/ml IFN-γ, for 24 h 

(Saura et al., 2003). 

 

1.17.4 Subventricular zone cell cultures  
	
  

Neural stem cell cultures were obtained from the SVZ of postnatal day 

0-3 wild-type or transgenic C57Bl6 mice expressing enhanced green 

fluorescent protein (eGFP) under the control of the actin promoter, as 

described in Chapter 2 (Carreira et al., 2010). The SVZ-derived neural stem 

cells were allowed to develop as primary neurospheres in a 95% air-5% CO2 

humidified atmosphere at 37ºC, during 7 days. Next, neurospheres were 

collected and plated for 5 days on 16-mm diameter glass coverslips, for 

immunocytochemistry assays, or on 12-well plates, coated with poly-L-lysine, 

in the same medium as above, without growth factors, for preparation of 

lysates. 
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1.17.5 Mixed cell cultures  
	
  

GFP-positive SVZ neurospheres were collected and plated together 

with microglial cell cultures (iNOS+/+ or iNOS-/-) on 16-mm diameter glass 

coverslips, for immunocytochemistry assays, or on 12-well plates, for 

preparation of lysates, both coated with poly-L-lysine, and kept in fresh D-

MEM/F-12 with GlutaMAXTM-I medium, supplemented with 1% B27, 0.25% 

gentamicin, 10 ng/ml EGF and 10 ng/ml bFGF, at 37ºC and 95% air-5% CO2 

in a humidified incubator, for 3 days. GFP-positive SVZ neurospheres were 

also seeded alone, for 3 days, on 16-mm diameter coverslips or on 12-well 

plates, coated with poly-L-lysine, and cultured in the same medium as above, 

for control experiments as indicated in the figure legends and in the text. 

Cultures were treated with 100 ng/ml LPS plus 0.5 ng/ml IFN-γ, for 24 

h. Control cultures were left untreated. The cell-permeable superoxide 

dismutase mimetic and peroxynitrite scavenger MnTBAP (100 µM) (Szabo et 

al., 1996) or the peroxynitrite decomposition catalyst FeTMPyP (50 µM) 

(Misko et al., 1998), when used, were added 30 min before LPS plus IFN-γ 

and kept throughout the incubation period. 

 

1.17.6 Experimental treatments in SVZ-derived neural stem cell cultures 
	
  

SVZ-derived neural stem cells were exposed to the NO donor DETA-

NONOate/NOC-18 (100 µM) for 48 h, or to peroxynitrite (ONOO-, 5 mM) for 10 

min. MnTBAP (100 µM) or FeTMPyP (50 µM), were added 30 min before 

NOC-18 and kept throughout the incubation period.  

 

1.17.7 Detection of BrdU incorporation in SVZ cell cultures 
	
  
	
   To analyze proliferation of SVZ-derived neural stem cells, 10 µM BrdU 

was added to the cultures 16 hours prior to fixation (Carreira et al., 2010; 

Milenkovic et al., 2004; Alvaro et al., 2008). Nuclei that incorporated BrdU in 

this time-window were detected by immunofluorescence, as detailed next. 
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Following 20 min fixation with 4% paraformaldehyde/4% sucrose in 

phosphate-buffered saline (PBS, 0.1 M), the cells were permeabilized with 1% 

Triton X-100 for 5 min, and DNA was denaturated by treatment with 1 M HCl 

for 30 min, at 37ºC. Non-specific binding was blocked with 3% BSA in 0.2% 

Tween-20 in PBS (PBS-T) for 1 h, and then BrdU-positive cells were labeled 

with a rat anti-BrdU antibody (1:50) for 90 min, at room temperature. The cells 

were then incubated with a secondary antibody goat anti-rat IgG conjugated 

with Alexa Fluor 594 (1:200), for 1 h, at room temperature. Nuclei were 

stained with Hoechst 33342 (1 µg/ml) for 5 min. Coverslips were mounted on 

glass slides using DAKO fluorescence mounting medium DakoCytomation 

(Glostrup, Denmark). The images were acquired in a laser scanning 

microscope LSM 510 META (Zeiss, Jena, Germany) or in a fluorescence 

microscope (Axioskop 2 Plus, Zeiss, Jena, Germany. The number of BrdU-

positive nuclei was counted in 8-10 randomly selected fields for each coverslip 

(in a total of approximately 900-1,200 cells per coverslip), and the data were 

expressed as percentage of the total number of living cells. A minimum of 3 

independent experiments, from neural stem cell cultures prepared from 

different animals, were analyzed for each condition. 

 

1.17.8 Detection of EdU incorporation 
	
  

Neural stem cell proliferation was also assessed by incorporation of 

the EdU. EdU (10 µM) was added to the cultures 4 h prior to fixation. Nuclei 

that incorporated EdU were detected by immunofluorescence, as follows. 

Following 20 min fixation with 4% paraformaldehyde/4% sucrose in PBS (0.1 

M), the cells were washed with 3% BSA/PBS and then permeabilized with 

0.5% Triton X-100 / PBS for 15 min, at room temperature. The cells were then 

incubated with the Click-iT reaction cocktail [1x Click-iT Reaction Buffer 87.5% 

(v/v), CuSO4 2% (v/v), fluorescent azide (Alexa Fluor 647) 0.05% (v/v), and 1x 

Reaction Buffer Additive 10% (v/v)], protected from light. Cells were then 

washed twice in 3% BSA/PBS and an immunocytochemistry was performed 
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as detailed next. The number of EdU-positive nuclei was counted in 8-10 

randomly selected fields for each coverslip (in a total of approximately 900-

1,200 cells per coverslip), and the data were expressed as percentage of the 

total number of living cells. A minimum of 3 independent experiments was 

analyzed for each condition. 

 

1.17.9 Immunocytochemistry 
	
  

Following fixation and permeabilization, nonspecific binding was 

blocked with 3% BSA. Cells were incubated with the primary antibodies for 90 

min, at room temperature. After rinsing with PBS, the cells were incubated 

with the appropriate secondary antibodies for 1 h (1:200, anti-mouse, anti-

rabbit or anti-rat IgGs conjugated with Alexa Fluor 488, 594 or 633), at room 

temperature. All antibodies were prepared in blocking solution. Nuclei were 

labeled with Hoechst 33342 (1 µg/ml) for 5 min, after incubation with the 

secondary antibodies. Coverslips were mounted on glass slides, the cells 

were visualized using a fluorescence microscope (Axioskop 2 Plus, Zeiss, 

Jena, Germany) and the images were acquired with the Axiovision software 

(release 4.7) or in a laser scanning microscope LSM 510 META (Zeiss, Jena, 

Germany). The primary antibodies and the concentrations used were: mouse 

anti-Sox-2, 1:100; rabbit anti-nestin, 1:100; rabbit anti-GFAP, 1:400; mouse 

anti-nestin, 1:500; rat anti-mouse-CD11b, 1:200; rabbit anti-iNOS, 1:200; 

mouse anti-3-nitrotyrosine, 1:100 or rabbit anti-EGFR, 1:50. 

	
  
1.17.10 Evaluation of nitric oxide production 
	
  

NO production was assessed by measuring the concentration of 

nitrites in the culture medium (Green et al., 1982), in primary microglia 

cultures, SVZ-derived neural stem cell cultures or mixed cell cultures, as 

indicated in the figure legends and in the text. A commercial kit from Promega 

(Griess Reagent System) was used, and the standard protocol provided by the 

supplier was followed. The concentration of nitrite for each sample was 
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calculated from a standard curve performed using a sodium nitrite solution and 

data were expressed in µM. 

 

1.17.11 Western blot analysis  
	
  

Cells were lysed in 50 mM Tris-HCl, 10 mM EGTA, 1% Triton X-100 

and 2 mM MgCl2, supplemented with 100 µM phenylmethylsufonyl fluoride, 1 

mM dithiothreitol, 1 µg/ml chymostatin, 1 µg/ml leupeptin, 1 µg/ml antiparin, 5 

µg/ml pepstatin A, 1 mM sodium orthovanadate, 50 mM NaF, pH 7.4 at 4ºC. 

Protein concentration was determined by the BCA method, and the samples 

were used for Western blot analysis, after adding 6x concentrated sample 

buffer (0.5 M Tris, 30% glycerol, 10% SDS, 0.6 M dithiothreitol, 0.012% 

bromophenol blue) and heating, for 5 min, at 95ºC. Equal amounts of protein 

were separated by electrophoresis on SDS-polyacrilamide gels, and 

transferred electrophoretically to PVDF membranes. These were then blocked 

for 1 h at room temperature, in Tris-buffered saline (137 mM NaCl, 20 mM 

Tris-HCl, pH 7.6) containing 0.1% Tween-20 (TBS-T) and 3% BSA. 

Incubations with primary antibodies (anti-iNOS or anti-GAPDH, 1:500) in TBS-

T 1% BSA were performed overnight, at 4ºC. Next, the membranes were 

incubated for 1 h at room temperature with alkaline phosphatase-linked 

secondary antibodies (anti-rabbit or anti-mouse IgG, 1:20,000; respectively) in 

TBS-T 1% BSA. After extensive washing in TBS-T 0.5% BSA, immunoreactive 

bands were visualized in the VersaDoc 3000 imaging system (BioRad, 

Hercules, CA, USA), following incubation of the membrane with ECF reagent 

for 5 min.  

 
1.17.12 Immunoprecipitation 
	
  
 Following the various experimental treatments as detailed in figure 

legends, the cultures were lysed in 20 mM Tris-HCl, 100 mM NaCl, 2 mM 

EDTA, 2 mM EGTA, supplemented with 100 µM PMSF, 1 mM dithiothreitol, 1 
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µg/ml chymostatin, 1 µg/ml leupeptin, 1 µg/ml antiparin, 5 µg/ml pepstatin A, 1 

mM sodium orthovanadate, 50 mM NaF, pH 7.0, at 4ºC. Protein concentration 

was determined by the BCA method, and the samples were used for 

immunoprecipitation of nitrated proteins, using an antibody against 3-

nitrotyrosine conjugated with agarose beads (#389549, Cayman Europe, 

Tallinn, Estonia), or immunoprecipitated against the EGF receptor, using an 

antibody against the EGF receptor (Cell Signaling, Danvers, MA, USA) 

conjugated with protein A sepharose beads (GE Healthcare Europe GmbH, 

Munich, Germany). Briefly, equal amounts of sample (250 µg of protein) were 

incubated with the antibody overnight at 4ºC, and then with the beads for 2 h 

at room temperature. Following rinsing, the supernatant was discarded and 

the beads were suspended in 2x concentrated sample buffer, boiled for 5 min, 

and centrifuged using Spin-X centrifuge tube filters (0.45 µm cellulose acetate; 

Corning Inc., Lowell, MA, USA), to separate the beads from the 

immunoprecipitates. Equal volumes of immunoprecipitate were loaded onto 

SDS-PAGE gels, and Western blotted as described above against the EGF 

receptor (#2232, Cell Signaling, Danvers, MA, USA; or #04-290, Millipore 

Iberica S.A.U., Madrid, Spain), in the case of the nitrated protein 

immunoprecipitates, or against phospho-tyrosine (P-Tyr 100, Cell Signaling, 

Danvers, MA, USA), in the case of the EGF receptor immunoprecipitates. 

 

1.17.13 Statistical analysis  
	
  
	
   Data are expressed as means ± SEM. Statistical significance was 

determined by using two-tailed t tests, one-factor or two-factor analysis of 

variance (ANOVA) as appropriate, followed by post hoc Bonferroni’s or 

Dunnet’s tests, as indicated in the figure legends and in the text. Differences 

were considered significant when p < 0.05. 
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1.18 Results  
 
1.18.1 Characterization of cell cultures 
 
1.18.1.1 Primary microglial cell cultures 
	
  
 Microglial cells were isolated from mixed glial cultures by shaking, as 

detailed in the section 4.3.3. Cells were seeded on poly-L-lysine-coated 

coverslips for 3 d and characterized at this stage. The percentage of CD11b, a 

microglial cell marker, and glial fibrillary acidic protein (GFAP) positive cells 

was assessed by immunostaining. Approximately 90% of the cells were 

positive for CD11b, thus suggesting that the cultures were highly pure for 

microglial cells. No co-localization for CD11b/GFAP was observed. 

 

1.18.1.2 SVZ-derived neural stem cells 
	
  

Neural stem cells were isolated from the SVZ and cultured as floating 
aggregates (neurospheres). Cells were plated on poly-L-lysine-coated 
coverslips for 3 or 5 d, and characterized at these stages. Staining against the 
transcription factor Sox-2, and nestin, a neural precursor cell marker, was 
performed. The percentage of double-labeled cells was approximately 70%, 
which suggests that the majority of cells remained undifferentiated after plating 
as determined previously (Carreira et al., 2010). The number of nestin/GFAP 
positive cells, both markers expressed in type B cells of the SVZ, was similar 
to the number of Sox-2/nestin positive cells. Moreover, GFAP-positive cells 
were mostly Sox-2 positive (Carreira et al., 2010). 

 

1.18.1.3 Mixed cell cultures 
	
  

To investigate how NO from microglial origin could affect the 
proliferation of SVZ-derived neural stem cells, mixed cultures were performed 
as described in previous sections. Using LPS plus IFN-γ for 24h as an 

inflammatory stimulus, cultures were characterized by evaluating microglial 
cells morphology, iNOS expression and NO production. We observed the 
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presence of iNOS in wild-type (iNOS+/+) microglial cells cultured together with 
GFP-positive SVZ cells (iNOS+/+ mixed cultures), following treatment with LPS 
plus IFN-γ. This effect was clear both by immunostaining (Fig. 4.1A) and by 

Western blot analysis (Figure 4.1C).  In cultures of iNOS-/- microglial cells with 
GFP-positive SVZ cells (iNOS-/- mixed cultures), we did not observe an 
increase in iNOS levels after the inflammatory stimulus, as assessed by 
Western blotting (Fig. 4.1C).  

In iNOS+/+ microglial cell cultures (Fig. 4.1B), exposure to LPS plus 
IFN-γ for 24h induced an increased immunoreactivity against iNOS, but not in 

iNOS-/- microglial cell cultures (data not shown). Concomitantly, following 
treatment with LPS plus IFN-γ, both iNOS+/+ and iNOS-/- microglial cells 

exhibited an activated morphology with ovaloid cytoplasm, marked cellular 
hypertrophy and retraction of processes.  

To determine whether SVZ-derived neural stem cells contributed to the 
increase in iNOS levels observed in mixed cell cultures (Fig. 4.1C), we also 
evaluated the presence of iNOS in SVZ-derived neural stem cell lysates, and 
observed a total absence of iNOS expression following treatment with LPS 
plus IFN-γ in these cultures (Fig. 4.1D).  

 
Figure 4.1.	
   Characterization of cell cultures (opposite page). A) Presence of 
iNOS-positive cells (green) in mixed cultures of wild-type (iNOS+/+) microglia (CD11b-
positive, red) together with GFP-positive SVZ cells (white), following treatment with 
LPS + IFN-γ for 24 h, as compared to controls (upper panels). Nuclei were labeled 
with Hoechst 33342 (blue). Representative images of immunocytochemistry are 
shown. Scale bar: 20 µm. B) Exposure to LPS + IFN-γ for 24 h induced expression of 
iNOS (green) in iNOS+/+ microglia (CD11b-positive red). Nuclei were labeled with 
Hoechst 33342 (blue). The images are representative of 3 independent experiments. 
Scale bar: 50 µm. C) Detection of iNOS in mixed cultures of SVZ cells with iNOS+/+ 
microglia, but not with iNOS-/- microglia, after treatment with LPS + IFN-γ for 24 h, as 
assessed by Western blotting. GAPDH was used as a loading control. The images are 
representative of 3 independent experiments. D) Absence of iNOS in SVZ cells 
cultured alone upon exposure to LPS + IFN-γ for 24 h. GAPDH was used as a loading 
control. The images are representative of 3 independent experiments.  E) Production 
of NO, as measured by nitrite levels in the culture media, following treatment with LPS 
+ IFN-γ,  for 24 h, in microglia cells when cultured alone (microglia cultures) or 
together with SVZ cells (mixed cultures), or in SVZ cells cultured alone (SVZ cultures). 
Data are expressed as means ± SEM of at least 4 independent experiments.  Two-
way ANOVA (microglia cultures and mixed cultures); ***p<0.001, significantly different 
from control. Two-tailed t test (SVZ cultures); p>0.05. 
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In order to estimate the amount of NO produced by activated microglia 

in culture, we challenged microglial cells with LPS plus IFN-γ for 24 h, and 

assessed NO production by measuring nitrite levels in the culture media. 

Nitrite levels were higher in LPS plus IFN-γ-treated iNOS+/+ microglial cell 

cultures (1.95 ± 0.3 µM, p<0.001), than in untreated cultures (0.32 ± 0.1 µM), 

corresponding to a 6-fold increase in NO production above control levels. 

Furthermore, this increased NO production was also observed in iNOS+/+ 

mixed cultures (1.96 ± 0.2 µM, p<0.001) following treatment with LPS plus 

IFN-γ, as compared to untreated mixed cultures (0.39 ± 0.1 µM). In SVZ-

derived neural stem cell cultures, in iNOS-/- mixed cultures and in iNOS-/- 

microglial cell cultures, treatment with LPS plus IFN-γ for 24 h did not 

significantly alter NO levels, as compared to untreated cultures (Fig. 4.1E). 
 

1.18.2 NO from microglial origin has an antiproliferative effect on SVZ-
derived neural stem cells  

	
  
To investigate whether NO released by microglial cells could affect the 

proliferation of SVZ-derived neural stem cells, we evaluated the incorporation 
of EdU in cultures of SVZ-derived neural stem cells cultured with iNOS+/+ or 
iNOS-/- microglia cells (from now on designated iNOS+/+ or iNOS-/- mixed 
cultures), following treatment with LPS plus IFN-γ for 24 h. In iNOS+/+ mixed 

cultures, we observed that 24 h following exposure to LPS plus IFN-γ EdU 

incorporation significantly decreased to 7.0 ± 1.09 % (p<0.001), as compared 
to control cultures (17.3 ± 0.88 %), but the same stimulus had no effect either 
in EdU incorporation in iNOS-/- mixed cultures (Fig. 4.2B) or in SVZ cultures 
alone (Fig. 4.2A). In addition, when MnTBAP or FeTMPyP are present during 
the inflammatory stimulus, cell proliferation is rescued to 15.8 ± 0.4 % or 14.7 
± 0.8 %, respectively, in iNOS+/+ mixed cultures (Fig. 4.2B). MnTABP or 
FeTMPyP had no effect on the proliferation of iNOS-/- mixed cultures treated 
with LPS plus IFN-γ (Fig. 4.2B).  

Moreover, we observed that SVZ-derived neural stem cells, but not 
microglia, incorporated EdU, as illustrated by the EdU immunostaining in the 
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GFP-positive SVZ cells and not in microglial cells, meaning that these are the 
dividing cells in mixed cultures (Fig. 4.2C). Furthermore, in Fig. 4.2C there is a 
decrease in the number of EdU positive cells in SVZ-iNOS+/+ following 
incubation with LPS plus IFN-γ, in agreement with the data in Fig. 2A. We 

confirmed that LPS plus IFN-γ for 24 h did not change cell viability in iNOS+/+ 

and iNOS-/- mixed cultures or in SVZ-cell cultures (data not shown).  
 

 
1.18.3 High levels of NO induce nitration of the EGF receptor and 

decrease its phosphorylation status 
	
  

We next investigated the possible NO-mediated nitration of the EGF 
receptor, which may affect the phosphorylation and further activation of the 
EGFR and downstream signaling, as a possible mechanism for the 
antiproliferative effect of NO. Nitration of tyrosine residues of the EGFR was 
evaluated in SVZ-derived neural stem cell cultures, but also in iNOS+/+ and 
iNOS-/- mixed cultures.  

SVZ-derived neural stem cells cultures were exposed to an NO donor, 
NOC-18 (100 µM) for 48 h. Immunoprecipitates of nitrated proteins were 
strongly labeled against EGFR after 48 h of treatment with 100 µM NOC-18. 
Moreover, this effect was similar to that observed in immunoprecipitates of 
nitrated proteins from SVZ cultures treated for 10 min with peroxynitrite, 
showing a strong nitration of the EGFR (Fig. 4.3A-B). 

Concomitantly with increased nitration in tyrosine residues, NO caused 
a decrease in the phosphorylation status of the EGFR (Fig. 4.3C). In addition, 
cells expressing the EGFR showed a strong labeling for 3-nitrotyrosine, an 
experimental index for protein nitration (Radi et al, 2001), following treatment 
with NOC-18 (Fig. 4.3F). MnTBAP, a scavenger of peroxynitrite and 
superoxide, was able to prevent the nitration of the EGFR, as well as 
increased its phosphorylation status (Fig. 4.3B-C).  
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Figure 4.2. NO from microglial origin impairs the proliferation of SVZ cells. A) 
Incorporation of EdU in mixed or SVZ cultures following treatment with LPS + IFN-γ for 
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24 h. The data represent the percentage of EdU-positive cells and are expressed as 
means ± SEM of at least 3 independent experiments. Two-way ANOVA (mixed 
culture); ***p<0.001, significantly different from control. Two-tailed t test (SVZ culture); 
p>0.05. B) Incorporation of EdU in iNOS+/+ or iNOS-/- mixed cultures upon treatment 
with LPS + IFN-γ for 24 h, with or without MnTBAP (100 µM) or FeTMPyP (50 µM). 
The data represent the percentage of EdU-positive cells and are expressed as means 
± SEM of at least 3 independent experiments. One-way ANOVA (Bonferroni’s post-
test); ***p<0.001, significantly different from control; ##p<0.01 or #p<0.05, significantly 
different from LPS + IFN-γ. C) Representative images of the incorporation of EdU 
(white) in GFP-positive SVZ cells (green) cultured together with iNOS+/+ or iNOS-/- 
microglia (CD11b-positive, red), following exposure to LPS+IFN-γ for 24h. The images 
are representative of 3 independent experiments. Scale bar: 20 µm.	
  

 

Next, we investigated whether scavenging superoxide and preventing 

the formation of peroxynitrite could rescue the antiproliferative effect of NOC-

18 (100 µM) at 48 h. NOC-18 significantly decreased BrdU incorporation to 

4.9 ± 0.2 % (p<0.001) as compared to BrdU incorporation in control cultures 

(7.7 ± 0.2 %), and MnTBAP rescued cell proliferation (7.9 ± 0.66 %), when 

present during the treatment with NOC-18 for 48 h (Fig. 4.3D). 

Furthermore, in iNOS+/+ mixed cultures, following treatment with LPS 

plus IFN-γ for 24 h, we observed an increase in the nitration of the EGF 

receptor in immunoprecipitates of nitrated proteins (127.4 ± 5.4 %, p<0.01) as 

compared to untreated cultures. Moreover, MnTBAP and FeTMPYP were able 

to prevent the nitration of EGFR in these cultures, after incubation with LPS 

plus IFN-γ, reducing EGFR nitration to 68.2 ± 7.2 % (p<0.001) or 84.9 ± 2.4 % 

(p<0.001) of the control, respectively (Fig. 4.3E). On other hand, this effect 

was not observed in iNOS-/- mixed cultures, where treatment with LPS plus 

IFN-γ did not increase the nitration of EGFR (Fig. 4.3 E). 
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Figure 4.3. High levels of NO cause nitration of the EGF receptor, decreasing its 
phosphorylation status and SVZ cell proliferation. A) Nitration of EGFR upon 
exposure to NOC-18 (100 µM, 48 h) or ONOO- (5mM, 10 min), assessed by 
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immunoblotting against EGFR, after immunoprecipitation of the nitrated proteins (IP-
3NT) in SVZ lysates. B) Superoxide dismutase (SOD) mimetic MnTBAP (100 µM), 
prevented the nitration of the EGFR following NOC-18 (100 µM) treatment. C) High 
levels of NOC-18 (100 µM) decreased the phosphorylation of tyrosine residues (P-Tyr) 
in immunoprecipitates of EGFR (IP-EGFR) in SVZ lysates. MnTBAP partially 
prevented the loss of tyrosine phosphorylation in the EGFR. D) MnTBAP (100 µM) 
prevented the antiproliferative effect of NOC-18 (100 µM) in SVZ cell cultures, as 
determined by BrdU incorporation. The data represent the percentage of BrdU-
positive cells and are expressed as means ± SEM of at least 3 independent 
experiments. One-way ANOVA (Bonferroni’s post-test). *p<0.05, significantly different 
from Control. ##p<0.01, significantly different from NOC-18. E) Nitration of the EGFR in 
SVZ cells cultured in the presence of iNOS+/+ microglia, but not with iNOS-/- microglia, 
following stimulation with LPS + IFN-γ  for 24 h.  MnTBAP (100 µM) and FeTMPyP 
(50 µM) prevented the nitration of the EGFR in SVZ cells cultured in the presence of 
iNOS+/+ microglia, following exposure to LPS+IFN-γ for 24 h. Nitration was assessed 
by immunoblotting against the EGFR, after immunoprecipitation of the nitrated 
proteins (IP-3NT). A loading control was performed by reprobing against GAPDH. 
One-way ANOVA (Bonferroni’s post-test). ***p<0.001, significantly different from 
Control. ###p<0.001, significantly different from LPS+IFN-γ .  F) Representative 
experiment showing that high concentrations of NOC-18 (100 µM) caused nitration of 
tyrosine residues in cells that express the EGF receptor (gray) after 48 h, as observed 
by immunostaining of 3-nitrotyrosine (green). Nuclei were labeled with Hoechst 33342 
(blue). Scale bar: 10 µm. 
 

1.19 Discussion 
 

In this work, we show for the first time that NO has an antiproliferative 

effect in neural stem cell proliferation due to nitration of the EGF receptor, with 

intermediate formation of peroxynitrite, which causes the receptor to decrease 

its phosphorylation status. We also show for the first time that NO mediates 

the antiproliferative effect of inflammation in mixed cultures of neural stem 

cells and microglia challenged with LPS and IFN-γ. This effect is also 

mediated by peroxynitrite and involves nitration of the EGF receptor.  

To study the effect of NO in SVZ-derived neural stem cells, primary cell 

cultures were exposed to the NO donor DETA-NONO:ate (NOC-18) in a 

concentration mimicking pathophysiological conditions, particularly 

neuroinflammation, when high concentrations of NO can be found locally in 

the brain. For this purpose, SVZ-derived neural stem cell cultures were 

incubated with 100 µM NOC-18 for 48 h, since it is a long-acting NO donor 



Antiproliferative effect of NO mediated by nitration of the EGFR________________ 

	
  	
  
158	
  

with a half-life of approximately 22 h (Keefer et al., 1996). At this concentration 

(100 µM), NOC-18 released NO to the same extent that we observed in LPS 

plus IFN-γ-treated microglial cells, thus mimicking what may be found in 

neuroinflammatory conditions.  

Here we hypothesized that the antiproliferative effect of NO might be 

mediated by peroxynitrite, since high levels of NO can inhibit mitochondrial 

respiration and elicit superoxide production (Beltran et al., 2002; Moncada and 

Bolanos, 2006).  

In several pathophysiological conditions associated with the 

inflammatory process, activated inflammatory cells generate large amounts of 

reactive oxygen species such as superoxide, hydrogen peroxide and the 

hydroxyl radical, concomitantly with increased iNOS expression and 

production of large amounts of NO. Moreover, NO can induce the production 

of superoxide by mitochondria (Beltran et al., 2002). In biological systems, NO 

and superoxide readily react to form peroxynitrite, which is an extremely 

reactive molecule (Beckman and Crow, 1993; Ischiropoulos and al-Mehdi, 

1995; Pryor and Squadrito, 1995; Radi et al., 2001). Nitration is an irreversible 

chemical modification that results from the reaction of peroxynitrite with 

tyrosine residues in proteins (Hanafy et al., 2001), seriously affecting tyrosine 

phosphorylation/dephosphorylation signaling cascades (reviewed in Monteiro 

et al., 2008). We observed that exposure to a high concentration of NO 

caused the nitration of the EGF receptor in SVZ-derived neural stem cells. 

Indeed, SVZ-derived neural stem cells expressing EGFR showed a strong 

labeling for 3-nitrotyrosine, a specific marker of protein nitration, following 

exposure to 100 µM NOC-18 for 48 h, pointing to the intermediate formation of 

peroxynitrite. In fact, we demonstrated here that treatment of SVZ neural stem 

cell cultures with peroxynitrite caused nitration of the EGF receptor. Our data 

also indicates that concomitantly with increased nitration in tyrosine residues 

of EGFR, NO decreases the phosphorylation status of this receptor, possibly 

inhibiting the tyrosine kinase activity of EGFR. The EGF receptor has over 15 



___________________________________________ Chapter 4 

	
   	
  
159	
  

tyrosine residues that can be phosphorylated and contribute to its activation. 

Since nitration of tyrosine residues appears to prevent their possibility of 

phosphorylation, which is paramount for activation of the EGFR and 

downstream signaling, a scavenger of peroxynitrite and superoxide, MnTBAP, 

was used. MnTBAP was able to partially prevent nitration of the EGF receptor 

in SVZ-derived neural stem cell cultures, as well as rescued cell proliferation 

to basal levels, suggesting that the antiproliferative effect of NO is mostly due 

to the formation of peroxynitrite and its reaction with tyrosine residues on the 

EGF receptor.	
   
In this work, we also studied the effect of NO from inflammatory origin 

in the proliferation of SVZ-derived neural stem cell. We established mixed 

cultures of iNOS+/+ or iNOS-/- microglia cells and SVZ-derived neural stem 

cells, and challenged them with LPS and IFN-γ during 24 h. We show that NO 

increased release by stimulated iNOS+/+ microglia due to treatment with LPS 

plus IFN-γ, is concomitant with increased nitration of the EGFR, which 

correlates with a decreased proliferation of SVZ-derived neural stem cells. In 

fact, NO seems to be a key player for this effect, since its absence, and 

consequently peroxynitrite absence, prevented the nitration of the EGFR. In 

iNOS-/- mixed cultures, although there was activation of microglial cells 

following acute treatment with LPS plus IFN-γ,  analysed by morphologic 

changes, no differences in cell proliferation were found in iNOS-/- mixed 

cultures following treatment with LPS plus IFN-γ,  when compared to untreated 

cultures. Several studies showed that pharmacological blockade of 

inflammation elicited by injection of LPS (Monje et al., 2003), or experimentally 

induced seizures (Ekdahl et al., 2003), can restore hippocampal 

neurogenesis. However, some proinflammatory mediators, such as 

interleukin-6 (IL-6), released by activated microglia, seem to be important 

contributors to the inhibition of SGZ neurogenesis (Vallieres et al., 2002; 

Monje et al., 2003). On the other hand, microglia can also release trophic 

factors (Batchelor et al., 1999), like brain-derived neurotrophic factor (BDNF), 

that have been reported to promote neurogenesis (Benraiss et al., 2001). 
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Thus, activated microglia may have a beneficial or detrimental role, depending 

on the stimulus and local and temporal environmental changes during CNS 

lesion. 

Although NO levels achieved after incubation with NOC-18 are very 

high when compared to those measured in iNOS+/+ mixed cultures, it should 

be noted that in mixed cultures the cells are in close contact. Therefore, it is 

very likely that in iNOS+/+ mixed cultures, NO levels achieved locally are quite 

high, as evidenced by the increased nitration of the EGF receptor following 

acute stimulation of microglial cells with LPS plus IFN-γ. Moreover, we show 

that scavenging peroxynitrite formation, by MnTBAP or FeTMyP treatment 

(Misko et al., 1998; Salvemini et al., 1998), basal cell proliferation is restored 

and nitration of the EGF receptor is prevented in iNOS+/+ mixed cell cultures, 

which supports our hypothesis that the antiproliferative effect of NO is due to 

the formation of peroxynitrite and subsequent nitration of EGFR receptor (Fig. 

4.4).  

Some studies have reported that NO can have an antiproliferative 

effect by affecting the phosphorylation of the EGF receptor in fibroblasts 

(Estrada et al., 1997), neuroblastoma cells (Murillo-Carretero et al., 2002), and 

neural stem cells (Torroglosa et al., 2007), but how such an effect is mediated 

was not demonstrated before. In Caco-2 cells (cell line obtained from human 

colon carcinoma) peroxynitrite was shown to cause nitration of EGFR (Uc et 

al., 2003). To our knowledge, this is the first study showing that nitration of the 

EGF receptor is antiproliferative in neural stem cells. Several other players of 

the EGFR signaling cascade are also likely to be susceptible to peroxynitrite-

mediated nitration, since they also have tyrosine residues that participate in 

EGFR signaling by phosphorylation/dephosphorylation and may, thus, be 

nitrated and inactivated, such as ERK1/2 or Raf-1. Although we did not 

address these other players in this work, it cannot be excluded that other 

participants in proliferation signaling, other than the EGF receptor, can be 

affected by NO and peroxynitrite-mediated nitration.   
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Figure 4.4. Illustration of tyrosine phosphorylation and signaling mediated by 
the EGF receptor (EGFR) and effects of peroxynitrite formation/removal. I – 
EGFR tyrosine kinase activity is linked to the signaling of proliferative events. Upon a 
stimulus, tyrosines of the C-terminal domain undergo phosphorylation. After 
oligomerization of the two domains, other tyrosine residues are phosphorylated and 
trigger intracellular signaling. II – Peroxynitrite (ONOO-) nitrates the tyrosine residues 
of the EGFR, preventing its phosphorylation and further signaling, e.g., in 
inflammatory conditions. Prevention of tyrosine residues nitration with MnTBAP or 
FeTMPyP restores cell proliferation. 

 

Moreover, the antiproliferative effect of NO in acute inflammatory 

conditions may be related to the enhancement of cell differentiation. Some 

publications reported that NO from inflammatory origin to be involved in 

astrogliogenesis (Covacu et al., 2006), neurogenesis in the SVZ (Walton et al., 

2006), or oligodendrogenesis (Kempermann and Neumann, 2003; Butovsky et 

al., 2006).  
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Overall, our findings highlight that control of the nitrergic system may 

be an important target in cell transplantation techniques, particularly in the 

case of grafting of neural stem cells in lesioned areas. Published evidence 

demonstrates that surviving grafts are influenced by the innate immune 

response, particularly due to acute microglia activation, which significantly 

impacts the survival and fate of both endogenous and transplanted neural 

progenitor cells (Monje et al., 2002; Ekdahl et al., 2003; Monje et al., 2003; 

Ormerod et al., 2008). Here we show that it is possible to prevent the 

antiproliferative effects of microglia during an acute inflammatory response, by 

preventing the formation of peroxynitrite. 

Overall, our work sheds new light on the mechanisms of the effects of 

NO on the proliferation of neural stem cells, and may help in steering research 

efforts towards understanding how modulation of the nitrergic system can be 

used to regulate proliferation of stem cells in a regenerative context. 
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1.20 General discussion 
 

Neurogenesis is not limited to embryonic development as previously 

thought, and occurs throughout the entire adult life of mammals, including 

humans. New neurons are continuously added to neural circuits and originate 

at two principal brain regions: the subventricular zone of the lateral ventricles, 

which generates olfactory bulb neurons, and the subgranular zone of the 

dentate gyrus of the hippocampus. Both regions harbor neural stem cells that 

can be isolated and cultured in vitro in the presence of growth factors, such as 

basic fibroblast growth factor, epidermal growth factor, or both. Indeed, cells 

can be expanded in these culture conditions, undergo several passages and 

keep an undifferentiated status and self-renewal. Moreover, the absence of 

growth factors results in the differentiation of cells into neurons, astrocytes or 

oligodendrocytes (reviewed in Suh et al., 2009).  

These singularities of neurogenesis have been studied exhaustively 

over the past years, and despite the great progress that has been achieved, 

the knowledge of the multiple aspects controlling the proliferation, 

differentiation or survival of NSCs are far from being known or understood. It 

was shown that neurogenesis decreases with aging and is impaired in several 

neurodegenerative disorders. Whether the insult is acute, such as ischemic 

brain stroke, traumatic brain injury or epileptic seizures, or is a slow-

progressing disease like Alzheimer’s disease, Huntington’s disease or 

Parkinson’s disease, all these conditions are accompanied by an inflammatory 

response in the brain (Amor et al., 2010). Furthermore, it was shown that 

blockade of inflammation restores adult neurogenesis (Monje et al., 2003). 

When an inflammatory brain response appears following an injury, activation 

of the brain immune cells takes place, particularly microglial cells. Microglial 

cells are known as an hallmark of the inflammatory process and are present 

throughout the brain in a “resting state”, or more accurately “surveillance 

state”, in physiological conditions (Hanisch and Kettenmann, 2007). In 

inflammatory conditions, microglial cells become “activated”, and among a 
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pletora of morphological and immunological alterations, they are able to 

express the inducible nitric oxide synthase, producing high levels of nitric 

oxide (NO).  

NO is a multifaceted gaseous signalling molecule with several distinct 

functions in the central nervous system (reviewed in Moncada and Bolanos, 

2006). This Janus-faced molecule is simultaneously involved in 

neuroprotection and in neurotoxicity, and is also involved in neuroinflammatory 

mechanisms (Liu et al., 2002; Calabrese et al., 2007). NO was shown to 

modulate neurogenesis in the adult CNS (Contestabile and Ciani, 2004). 

Depending on the insult and on its source, NO can act as an anti-proliferative 

agent (Packer et al., 2003; Moreno-Lopez et al., 2004; Matarredona et al., 

2005), or stimulate neuronal precursor proliferation and differentiation (Zhu et 

al., 2003). It appears that in physiological conditions, NO tonically inhibits cell 

proliferation in the brain, while in pathophysiological conditions it exerts a 

proliferative effect on the dividing population of neuronal precursors. 

Moreover, the physiological effect of NO is mostly mediated by nNOS, which 

is constitutively expressed, while pathophysiological levels of NO are attained 

following expression of iNOS. The physiological concentrations of NO in the 

normal brain have been estimated to range from low nM to 100 nM (Shibuki, 

1990). 

However, the exact mechanisms by which NO regulates neuronal 

proliferation and differentiation are not yet clarified, and further investigation 

on this matter is needed. Since neuroinflammation is detrimental for adult 

neurogenesis, it would be of great interest to elucidate the role of inflammatory 

NO on the ongoing neurogenesis in these conditions. Therefore, in the present 

work we investigated the mechanisms by which nitric oxide regulates the 

proliferation of neural stem cells. 

In this study, we show that NO can have a dual effect on proliferation 

of neural stem cells, either promoting or inhibiting neural stem cell 

proliferation. Using the NO-donor, NOC-18, in a range of concentrations 
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mimicking NO release in physiological or pathophysiological events occurring 

in the brain, we observed that low concentrations of NO, but already in the 

pathological range, have a proliferative effect in cultured neural stem cells 

isolated from the SVZ. Moreover, the highest concentration of NOC-18 used in 

this work (100  µM, for 48 h) releases a massive amount of NO, and inhibits 

the proliferation of SVZ-derived neural stem cells.   

In Chapters 2 and 3 we studied the intracellular targets of NO that 

underly the proliferative effect of NO, in particular, the possible involvement of 

the EGFR/p21Ras/ERK/MAPK and sGC/cGMP/PKG signaling pathways.  

In Chapter 2, we showed an increased activity of p21Ras as soon as 2 

min after treatment with 10 µM NOC-18, which is not dependent on the EGF 

receptor activation. Downstream of p21Ras, there is an increased activation of 

c-Raf and ERK1/2 following exposure to NO, which is also independent on 

EGFR signaling. We demonstrated that EGFR inhibition with the selective 

inhibitor AG1478 did not prevent the activation of c-Raf and ERK1/2 following 

treatment with NOC-18, demonstrating that NO triggers its proliferative effect 

in a EGFR independent fashion. In addition, we found that several 

transcription factor regulators, such as Elk-1, c-Myc and p90RSK, are 

activated by ERK1/2, following exposure to NO, suggesting that the NO 

proliferative effect is mediated by activating the transcription of immediate 

early genes. Particularly, p90RSK was studied due to its important role in the 

regulation of transcription factors, but also in the regulation of the cyclin-

dependent kinase inhibitor, p27KIP1 (Fujita et al., 2003). p27KIP1 can be 

phosphorylated by p90RSK and then translocated from the nucleus into the 

cytosol where it is ubiquitinated, thus allowing cell cycle progression (Fujita et 

al., 2003). We found that concomitantly with the increased activity of p90RSK 

there is a decreased nuclear presence of p27KIP1, contrasting with increased 

cytosolic p27KIP1, suggesting that translocation of p27KIP1 from the nucleus into 

the cytosol is occurring. This event has been described as essential for cell 

cycle progression, and has been found to be a key regulator of the cell division 
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of transit-amplifying progenitors from the SVZ (Doetsch et al., 2002). Other 

studies have shown that higher concentrations of NO caused a decrease in 

cell proliferation of SVZ stem cells, and this event correlates with the nuclear 

presence of p27KIP1 (Torroglosa et al., 2007). Moreover, we observed an 

increased Ki-67 immunoreactivity in cells that loose nuclear p27KIP1. These 

findings are strong evidence of the cell cycle progression and further mitotic 

cell division following exposure to 10 µM NOC-18. Furthermore, we also have 

shown that there is an increased immunoreactivity against Ki-67 within the first 

hour of treatment with NOC-18, an event dependent on the activation of 

ERK1/2. 

The p21Ras/ERK/MAPK pathway is rapidly activated by NO, 

bypassing the EGF receptor, following a short-term exposure to 10 µM NOC-

18. However, as shown by flow cytometry experiments, the involvement of the 

ERK/MAPK signaling pathway in the proliferative effect of NO is also true for a 

long-term exposure to NOC-18 (24 h). Thus, in Chapter 3 we investigated 

other pathways that could be involved in the proliferative effect of NO, and, 

how they work or modulate the ERK/MAPK signaling pathway. We thus 

studied the possible involvement of the sGC/cGMP/PKG pathway.  

We showed that activation of ERK1/2, which occurs rapidly, is cGMP-

independent, following short-term exposure to NOC-18. However, we cannot 

exclude the possibility that cGMP may activate the ERK/MAPK pathway. In 

fact, the cGMP analog, 8-Br-cGMP, can activate the ERK/MAPK pathway, as 

shown by Western blotting experiments. Therefore, it should be considered 

that a gradual and long-term accumulation of cGMP could activate this 

pathway, thus keeping an increased cell proliferation rate upon exposure to 

NO for 24. It also should be noted that the NO donor used (NOC-18) is a long-

acting NO-donor with an half-life of approximately 22 h (Keefer et al., 1996). In 

addition, we showed by flow cytometry that both inhibition of sGC or PKG with 

ODQ or KT5823, respectively, did not prevent the activation of ERK1/2 

following short-term (6 h) exposure to NO. Altogether these data reinforce the 
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hypothesis that short exposure to NO rapidly activates the ERK pathway in a 

mechanism independent of cGMP.  

In contrast, long-term exposure (24h) to NO increased cell proliferation 

via ERK/MAPK activation in a cGMP-dependent manner. In fact, the data 

presented in Chapter 3 suggest that a crosstalk between both pathways may 

exist, and probably cGMP may act to keep ERK/MAPK active during the 

exposure to NO. This hypothesis is supported by the fact that upon inhibition 

of guanylyl cyclase or PKG, proliferation induced by NO is completely 

abolished, and cell proliferation returns to basal levels. If these pathways were 

signaling for cell cycle progression independently, would expect a partial 

decrease, but not a complete blockade, of the proliferative effect of NO 

following inhibition of sCG, PKG or MEK1/2. 

Moreover, blockade of the degradation of endogenous cGMP, with the 

selective PDE5 inhibitor T0156, further enhanced the proliferative effect of 

NO. The same effect on cell proliferation was observed when the cGMP 

analog 8-Br-cGMP was used. Recently, it was reported that elevation of cGMP 

levels by PDE5 inhibition promoted cGMP/PKG activation, enhancing 

mesenchymal stem cell proliferation (Haider et al., 2010). Other works also 

correlate elevation of cGMP levels to the enhancement of neurogenesis 

(Wang et al., 2005; Zhang et al., 2006; Zhang et al., 2006). 

Altogether, our results support the notion that the proliferative effect of 

NO is biphasic. NO can activate two independent pathways, depending on the 

period of exposure, that act to increase neural stem cell proliferation: the 

ERK/MAPK and the sGC/cGMP/PKG pathways, with no evidence of crosstalk 

between them in the early effect of NO, but for the long-term effects the 

pathways seem to interact. Some authors suggest cGMP involvement in NO-

mediated arrest of cell cycle progression, with intermediate activation of PKG 

and indirect inhibition of Raf-1, and subsequent decreased signaling by the 

MAPK pathway (Yu et al., 1997; Guo et al., 1998; Costa and Assreuy, 2005). 

Other studies suggest the cGMP/PKG pathway to be involved in the activation 
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of the MAPK pathway, particularly ERK1/2 (Zaragoza et al., 2002; Ota et al., 

2008). 

We also investigated the effect of NO on cell proliferation after injury in 

vivo, using a rodent model of status epilepticus in wild-type mice and in mice 

that lack iNOS (iNOS-/-). In Chapter 2, we show evidence that cell proliferation 

following seizures was greatly increased in the SGZ of wild-type animals but 

not in iNOS-/- mice. Abolishment of NO production in iNOS-/- mice prevents cell 

proliferation following seizures in vivo. Thus, these results strongly suggest 

NO is a key modulator of cell proliferation in the brain, following an insult. 

Moreover, we also investigated the phenotype of proliferating cells and 

observed increased immunoreactivity for DCX in WT mice, but not in iNOS-/- 

animals, suggesting that NO from inflammatory origin induces neuronal 

commitment of neural stem cells in the DG. We also observed increased 

astrogliosis and microgliosis in KA-treated WT mice, but not in iNOS-/- mice, 

suggesting that these events are independent of NO. Other authors have 

already shown that status epilepticus triggers proliferation of neural precursors 

in the SGZ of rodents (Parent et al., 1997; Gray and Sundstrom, 1998; Parent, 

2007). In addition, Zhu and colleagues described iNOS as necessary for 

increased neurogenesis in the DG of mice subjected to other brain insults, 

such as focal cerebral ischemia (Zhu et al., 2003). These studies and ours 

support the hypothesis that NO from inflammatory origin favors cell 

proliferation in the lesioned brain. Other studies have been conducted in which 

high concentrations of NO-donors were used and anti-proliferative effects of 

NO were reported in cultured cells (Covacu et al., 2006; Torroglosa et al., 

2007), but this probably is not representative of what happens in vivo. 

In Chapter 4, we studied the antiproliferative effect of high 

concentrations of NO. Nitric oxide, when present in high concentrations can 

disrupt the mitochondrial respiratory chain, with subsequent formation of ROS, 

particularly O2
-, that is highly reactive with NO, forming peroxynitrite, which is 

involved in nitration of proteins (Ledo et al., 2004; Monteiro et al., 2008). In 
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Caco-2 cells, peroxynitrite was shown to cause nitration of the EGFR, with 

subsequent inhibition of cell proliferation (Uc et al., 2003). We investigated the 

existence of nitrated proteins in our cell culture models and we observed an 

increased nitration of the EGF receptor, with a concomitant decrease in cell 

proliferation, both in neural stem cell cultures treated with NOC-18 (100 µM, 

48 h), and in cultures of neural stem cells mixed with microglia wild-type for 

iNOS activated with LPS plus IFN-γ. Scavenging peroxynitrite or superoxide 

with MnTBAP or FeMTPyP, reversed the antiproliferative effect of NO or 

inflammation, and cell proliferation was rescued to basal levels. These results 

strongly suggest a role of NO in this process, which is further supported by the 

fact that in mixed cultures of neural stem cells with non-expressing iNOS 

microglial cells. We did not observe changes neither in the nitration status of 

the EGFR nor in the proliferation of neural stem cells. Thus, among the 

mediators of the inflammatory response, NO can be considered as an agent of 

extreme importance in controlling cell proliferation. 

Other proinflammatory agents, such as IL-6, released by activated 

microglial cells, have been reported to inhibit neurogenesis (Vallieres et al., 

2002). Other studies showed that pharmacological blockade of inflammation 

can restore neurogenesis (Ekdahl et al., 2003; Monje et al., 2003). Taking into 

consideration the data obtained and described in Chapter 4, it is plausible that 

the high concentrations of NO reached in the cultures, either in mixed cultures 

following microglial activation, or in neural stem cell cultures upon incubation 

with NOC-18, could be achieved locally in the brain, although in the seizure 

model the effect of NO was to induce proliferation in the subgranular zone. 

 

1.20.1 Future directions 
 

This work contributes for the understanding of the mechanisms that 

underly the role of NO in adult neural stem cell proliferation, although some 

aspects remain to be clarified. In fact, it will be interesting to see whether the 

increased proliferation induced by NO will lead to increased differentiation in 
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neurons. In vivo, we reported an increased proliferation of neuronal cells due 

to NO from inflammatory origin. It will be of interest to examine the survival of 

the newborn neurons, as well as their functional integration in the neuronal 

network. Electrophysiology studies may help clarifying these issues, as well as 

behavioral studies. 

Stimulation of endogenous adult neural stem cells and modulation of 

injury-induced neurogenesis is presently being considered as a potential 

therapeutic approach for neuronal repair in neurodegenerative disorders, as 

opposed to the more invasive approach of transplantation of exogenous stem 

cells. Understanding how the inflammatory response affects neurogenesis is 

fundamental to better design therapeutic strategies for safe and efficient 

regulation of endogenous neurogenesis.  

Therefore, understanding how the inflammatory agents modulate cell 

proliferation and/or differentiation of NSCs is of great usefulness, if their action 

could be correctly targeted and controlled, for instance with selective drugs for 

the agent of interest. NO has been drawing the attention of pharmaceutical 

companies in the latest years. Indeed, several non-steroidal anti-inflammatory 

NO-releasing drugs (NO-NSAID) are currently under investigation and were 

shown to be beneficial as neuroprotectants in models of several 

neurodegenerative conditions accompanied by inflammation (Keeble and 

Moore, 2002; Napoli and Ignarro, 2003). As an alternative to conventional 

NSAIDs with significant side effects (mainly in the gastrointestinal tract), 

pharmacologically improved and therapeutically enhanced NO releasing non-

steroidal anti-inflammatory drugs with fewer side effects are being developed 

(Koc and Kucukguzel, 2009). 
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1.21 Conclusions 
 

The work presented in this thesis allowed us to draw the following main 

conclusions: 

 

- Nitric oxide can have opposite effects on the proliferation of neural 

stem cells, either promoting or inhibiting neural stem cell proliferation, 

depending on the concentration and duration of exposure.  

- The proliferative effect of NO is biphasic (Fig. 6.1). NO can activate 

two independent pathways, depending on the period of exposure: the 

ERK/MAPK and the sGC/cGMP/PKG pathways.  

- cGMP and PKG are involved in the late proliferative effect triggered by 

NO. Although cGMP and PKG were not involved in the early activation 

of ERK1/2, they were mandatory for cell proliferation following long-

term exposure to NO.   

-  NO rapidly activates the ERK/MAPK pathway, and the proliferative 

effect observed is due to the activation of p21Ras, bypassing the 

activation of the EGF receptor. As a result, activation of p90RSK, Elk-1 

and c-Myc increases, and the nuclear levels of the cyclin-dependent 

kinase inhibitor p27KIP1 decrease, which allows cell division. This 

pathway is active for all the stages analyzed – short-term (6 h) and 

long-term exposure (24 h) to NO. 

- In vivo, nitric oxide from iNOS origin promotes cell proliferation and 

neuronal commitment, following an inflammatory response. 

- High levels of NO, exogenously added or from microglial origin, have 

an antiproliferative effect in neural stem cells, mediated by nitration of 

the EGF receptor, which is concomitant with decreased 

phosphorylation of this receptor, thus preventing regular signaling. 

 

In conclusion, we show for the first time the mechanisms underlying the 

dual effect of nitric oxide in the proliferation of adult neural stem cells:  
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I. a proliferative effect mediated by the early activation of 

ERK/MAPK pathway and by and later by the activation of 

sGC/cGMP/PKG pathway; 

 

II. an antiproliferative effect, mediated by peroxynitrite formation, 

which causes nitration of the EGF receptor thus preventing regular 

signaling. 

	
  
Figure 6.1. The proliferative effect of NO is biphasic. NO rapidly activates p21Ras, 
bypassing the EGF receptor, resulting in the activation of ERK1/2. Upon translocation 
to the nucleus, ERK1/2 phosphorylates kinases like p90RSK, which in turn triggers a 
decrease in the levels of p27Kip1. Upon phosphorylation, p27Kip1 is translocated to 
the cytosol. Loss of p27Kip1 results in increased cell proliferation. cGMP and PKG are 
also involved in the proliferative effect induced by long-term exposure to NO. 
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