
Quality of Experience in Database Systems

i

PhD Thesis submitted to the University of Coimbra

(Tese de Doutoramento submetida à Universidade de Coimbra)

Quality of Experience in Database Systems
(Qualidade de Experiência em Sistemas de Bases de Dados)

Rogério Luís de Carvalho Costa

Advisor: Professor Pedro Nuno San-Bento Furtado

Quality of Experience in Database Systems

ii

Quality of Experience in Database Systems

iii

Table of Contents

TABLE OF CONTENTS .. III

TABLE OF FIGURES ... VII

ABSTRACT ... XI

RESUMO DA TESE EM PORTUGUÊS .. XIII

ACKNOWLEDGEMENTS .. XIX

1 INTRODUCTION.. 1

1.1 The Quality of Experience Proposal .. 3

1.1.1 Data Access Requirements and Specific Performance Indicators .. 4

1.1.2 QoE-Oriented Scheduling and Placement .. 5

1.1.3 Reputation for QoE ... 6

1.2 Evaluation Methodology .. 7

1.3 Main Contributions .. 8

1.4 Dissertation Organization ... 10

2 RELATED WORK ... 11

2.1 QoE-oriented Systems .. 11

2.2 Scheduling and Placement in Parallel and Distributed Databases ... 12

2.3 Admission Control and Real Time Databases .. 18

2.4 Runtime Estimations in Database Systems ... 19

2.5 Conclusion .. 20

3 USER DEFINED REQUIREMENTS FOR QOE-ORIENTED DATABASE SYSTEMS
 21

3.1 Requirements: How to Specify and Remove Them ... 21

3.1.1 Requirements Specification Area ... 22

3.1.2 Requirements for Blocks of Statements ... 23

3.1.3 Dropping Requirements ... 25

3.2 Data Access Requirements: Definitions and SQL Extensions ... 26

3.2.1 Data Freshness Requirement ... 27

3.2.2 Execution Deadline Requirement ... 28

3.2.3 Disconnected Execution Mode Requirement ... 29

3.2.4 Data Availability Requirement .. 31

3.2.5 Execution Periodicity Requirement .. 33

Quality of Experience in Database Systems

iv

3.2.6 Execution Finish Time Requirement ... 34

3.2.7 Execution Start Time Requirement... 35

3.2.8 Execution Priority Requirement ... 36

3.3 Conclusion .. 37

4 TASKS AND TASK LEVEL REQUIREMENTS ... 39

4.1 Jobs, Tasks, Schedulers and Database System’s Architecture ... 39

4.2 Data Placement Assumptions ... 42

4.3 Tasks Generation .. 43

4.4 Task Level Requirements Specification ... 44

4.5 Tasks and Task Level Requirements Specification: Examples .. 46

4.5.1 Tasks and Requirements Generation in a Distributed Database System: Examples 46

4.5.2 Tasks and Requirements Generation in a Parallel Database System: Examples 49

4.5.3 Tasks and Requirements Generation in a Centralized Database System: Examples 51

4.6 Conclusion .. 54

5 REPUTATION AND ELECTION-INSPIRED SCHEDULING 55

5.1 Election-Inspired Scheduling for QoE-Oriented Databases ... 56

5.1.1 Defining Pre-Candidates ... 57

5.1.2 The Campaign Period .. 60

5.1.3 Electing a Winner.. 60

5.2 On the Fly Elections and Jobs with Several Tasks .. 63

5.3 Election-Inspired Scheduling and Alternative Sets of Tasks for the Same Job 65

5.4 Reputation on Maintaining Commitments to Satisfy Tasks’ Requirements 67

5.5 Using Promises and Reputation to Estimate Tasks’ Execution Time Interval 69

5.5.1 Estimating Task’s Execution Time Interval ... 70

5.5.2 Reputation on Maintaining Promises on Tasks’ Execution Time Interval 70

5.6 What-if Elections and Dynamic Replication for QoE ... 72

5.7 Reputation and Resource Availability Monitoring .. 73

5.8 Conclusion .. 74

6 TASKS EVALUATION AND MANAGEMENT AT DATA SERVICES 75

6.1 Participating in Elections .. 75

6.1.1 Presenting Itself as a Pre-Candidate ... 75

6.1.2 Evaluating Tasks’ Requirements and Making Promises .. 76

6.2 Data Transfer Time Estimation ... 78

6.3 Query Execution Time Estimation ... 79

Quality of Experience in Database Systems

v

6.3.1 Small Tasks Execution Time Estimations .. 80

6.3.2 Estimating Normal and Long-running Queries Execution Time .. 80

6.4 Conclusion .. 84

7 MEASURING THE QOE PROVIDED BY DATABASE SYSTEMS 85

7.1 Acceptance Rate Indicator (AR) .. 86

7.2 Commitment Maintenance Rate Indicator (CMR) ... 87

7.3 Success Rate (SR) Indicator ... 88

7.4 QoE-Level (QoEL) Indicator ... 89

7.5 Using QoE-related Indicators to Evaluate Systems - Examples .. 90

7.6 Using QoE-related Indicators to Alert Administrators ... 92

7.7 Conclusion .. 93

8 EXPERIMENTAL EVALUATION ... 95

8.1 Scenario I: QoE in Distributed Databases .. 98

8.1.1 Execution constraints over distributed query execution .. 98

8.1.2 Availability and freshness in the global warehouse ... 101

8.2 Scenario II: Parallel Warehouses and QoE .. 104

8.2.1 Choosing when to execute jobs based on DARs ... 105

8.2.2 Autonomic behavior: placing data in database clusters ... 108

8.3 Scenario III: DARs for QoE in OLTP Applications ... 110

8.4 Evaluating Specific Features ... 115

8.4.1 Reputation Tests ... 116

8.4.2 Queue Management and Time Estimation Analysis ... 122

8.5 Conclusion .. 127

9 CONCLUSIONS AND FUTURE WORKS ...129

APPENDIX A – EXPERIMENTAL ENVIRONMENT DETAILS131

A.1 - QoE-oriented Prototype and other Developed Software ... 131

A.2 – TPC-H based tests: Global and Parallel Warehouses, and Reputation Evaluation 132

A.3 – TPC-W based tests: Centralized OLTP Database, Queue Management and Time Estimation

Analysis ... 134

REFERENCES ..138

Quality of Experience in Database Systems

vi

Quality of Experience in Database Systems

vii

Table of Figures

Figure 1 - User satisfaction in database systems – Alternatives 3

Figure 2 - QoE-oriented system in a multi-data services environment - Overview 6

Figure 3 - Requirements Specification Area format ... 22

Figure 4 - Requirements Definition Area - Example ... 23

Figure 5 - Requirements Definition Area in a CREATE TABLE Command - Example

 ... 23

Figure 6 – Adding a Requirements Definition Area - ALTER TABLE Command –

Example... 23

Figure 7 - SQL Extensions – Blocks of Statements with Requirements 24

Figure 8 - SQL Extensions – Blocks of Statements with Requirements – Example 25

Figure 9 - SQL Extensions – Dropping an Execution Periodicity Requirement 25

Figure 10 - SQL Extensions – Dropping a Requirement - Example 26

Figure 11 – Dropping a Requirements - ALTER TABLE Command – Example 26

Figure 12 - SQL Extensions – Data Freshness Requirement ... 27

Figure 13 - SQL Extensions – Data Freshness Requirement - Example 28

Figure 14 - SQL Extensions – Execution Deadline Requirement 28

Figure 15 - SQL Extensions – Execution Deadline Requirement – Example 29

Figure 16 - SQL Extensions – Disconnected Execution Mode Requirement 29

Figure 17 - SQL Extensions – Disconnected Execution Mode Requirement – Example

 ... 30

Figure 18 - SQL Extensions – Retrieving the Results of a Disconnected Executed

Command .. 30

Figure 19 - SQL Extensions – Retrieving the Results of a Disconnected Executed

Command - Example ... 30

Figure 20 - SQL Extensions - Data Availability Requirement 32

Figure 21 - SQL Extensions - Data Availability Requirement – Examples 33

Figure 22 - SQL Extensions – Execution Periodicity Requirement 34

Figure 23 - SQL Extensions – Execution Periodicity Requirement – Example 34

Figure 24 - SQL Extensions – Execution Finish Time Requirement 35

Figure 25 - SQL Extensions – Execution Finish Time Requirement – Example 35

Figure 26 - SQL Extensions – Execution Start Time Requirement 36

Figure 27 - SQL Extensions – Execution Start Time Requirement – Example 36

Figure 28 - SQL Extensions – Execution Priority Requirement 37

Figure 29 - SQL Extensions – Execution Priority Requirement – Examples 37

Figure 30 - Multiple Data Services in a Parallel Database System 41

Figure 31 - Multiple Data Services in Global Databases ... 41

Figure 32 - Task's generation and results merging – Example 44

Figure 33 - Globally Distributed Data Services - Example .. 47

Figure 34 - User command with Execution Deadline and Data Freshness requirements –

Example... 47

Figure 35 – Data Availability and Disconnected Execution Mode requirements –

Example... 48

Figure 36 - Star Schema – Example ... 49

Figure 37 - Database cluster with fragmented and replicated tables 50

Figure 38 - User command that accesses a replicated table - Example 50

Figure 39 - User command that accesses a fragmented table – Example 51

Figure 40 - Command with several requirements - Example ... 52

Figure 41 – Alternative set of requirements - High priority and execution deadline -

Example... 53

Figure 42 - Block of statements with requirements – Example 53

Figure 43 - Election inspired task scheduling: main steps ... 57

Quality of Experience in Database Systems

viii

Figure 44 - Levels of Pre-Candidates – Voluntarily Presented Pre-Candidates 58

Figure 45 - Requirements to be a Selected as a Pre-Candidate 58

Figure 46 - Levels of Pre-Candidates – Pre-Candidates Selected by the Community

Scheduler ... 59

Figure 47 - On the Fly Elections Impact on Job's Finish Time - Example 65

Figure 48 - Reputation of services S1 and S2 – Example .. 69

Figure 49 - Reputation of S1 on Maintaining Promises – Example 72

Figure 50 - Multiple queue management .. 79

Figure 51 - Workload Execution Phases - Example ... 80

Figure 52 - Estimating a query finish time after changing the MPL 81

Figure 53 – Phase Changes When Increasing the MPL - Example 81

Figure 54 - Estimating Processed Cost ... 82

Figure 55 - Estimating Remaining Execution Cost .. 82

Figure 56 - Estimating Future Phase Changes ... 83

Figure 57 - Scenario I: testing execution constraints over distributed query execution . 98

Figure 58 - REQUERIMENTS clause especifying 10 minutes deadline 99

Figure 59 - Job mean execution time - Distributed query processing 99

Figure 60 - Benefit of replica creation ... 100

Figure 61 - AR, CMR and SR - KPI values when using and when not using DARs ... 101

Figure 62 - Scenario I: testing availability and freshness DARs in distributed

warehouses .. 102

Figure 63 – Availability requirement example – LINEITEM table 103

Figure 64 - Availability tests results ... 103

Figure 65 – Data Freshness requirement – Example for LINEITEM table 104

Figure 66 - Distributed query execution time - With and without DARs 104

Figure 67 - Scenario II: Evaluating DARs at cluster of off-the-shelf computers 105

Figure 68 - Specifying multiple DARs to jobs - Example ... 106

Figure 69 - Mean execution time for each job using several scheduling strategies 107

Figure 70 - Execution time of long-running jobs ... 107

Figure 71 - Job execution time in three nodes configuration 108

Figure 72 - Benefits of replica creation .. 109

Figure 73 - Job execution time in five nodes configuration ... 110

Figure 74 - Scenario III: centralized web-based OLTP application 111

Figure 75 – Acceptance Rate for distinct Scheduling Strategies 113

Figure 76 - Acceptance Rate for distinct types of transactions - ADC Application 113

Figure 77 – Success Rate for distinct Scheduling Strategies .. 114

Figure 78 – QoEL for distinct Scheduling Strategies ... 114

Figure 79 - QoEL for order detail transactions... 115

Figure 80 - Number of executed tasks per data service – without using reputation based

mechanisms ... 116

Figure 81 - AR, CMR and SR – without using reputation based mechanisms 117

Figure 82 - Reputation on maintaining commitments to satisfy tasks – without using

reputation based mechanisms .. 117

Figure 83 - Reputation on maintaining commitments to satisfy tasks – using minimal

reputation requirement .. 118

Figure 84 - AR, CMR and SR – using minimal reputation requirement 119

Figure 85 – Number of executed tasks – using minimal reputation requirement 119

Figure 86 - Number of executed tasks per data services in distinct time intervals 120

Figure 87 – Number of executed tasks – using minimal reputation requirement and

restrictions on the maximum number of victories in sequence ... 121

Figure 88 - AR, CMR and SR – using minimal reputation requirement and restrictions

on the maximum number of victories in sequence .. 122

Figure 89 - Acceptance Rate - Alternatives on the use of Small Tasks Queue 123

Quality of Experience in Database Systems

ix

Figure 90 – Execution Time and Execution Time Forecast Error for each type of

transaction - Alternatives on the use of Small Tasks Queue ... 125

Figure 91- Number of Small Tasks transactions executed in the 5,500 tasks per minute

submission rate .. 126

Figure 92 - Number of Order Detail transactions executed in the 5,500 tasks per minute

submission rate .. 126

Figure 93 – QoEL - Alternatives on the use of Small Tasks Queue............................. 127

Figure 94 - TPC-H’s Tables ... 133

Figure 95 - Main Tables of TPC-W Database .. 135

Quality of Experience in Database Systems

x

Quality of Experience in Database Systems

xi

Abstract

This work aims at providing mechanisms to increase users' satisfaction when using

database systems. We express users' satisfaction in terms of Quality of Experience

(QoE). Therefore, our proposals aim to increase the degree of QoE a database system

provides.

Traditional database systems execute operations immediately upon submission

and, since they do not allow users to express execution-related constraints, they do not

evaluate whereas those constraints are covered, and they do not take corrective action

when necessary.

Our proposal for QoE makes the database system take into consideration users'

expectations on deciding how or when to execute operations. This is based on a set of

Data Access Requirements (DAR) that users can associate to database operations and

the QoE-prepared system considers those when processing the operations.

Since the objective of the QoE-oriented database system is to provide user

satisfaction, the analysis of its performance must consider success rate measures on

achieving the user specified constraints. We have defined Key Performance Indicators

based on such measures and used those as part of our comparison of approaches.

Our proposed Data Access Requirements (DARs) include execution deadlines,

execution start and end times, data availability, data freshness, execution priority,

disconnected execution and job repetition. Some of those, such as execution deadlines,

are useful in any data processing architecture - centralized, parallel or distributed –

whereas DARs such as availability are especially designed for parallel and distributed

contexts.

For the proposed approach to work on any of those architectures we needed to

develop a set of features that includes runtime estimations, requirements-based task

scheduling and future jobs monitor and scheduling.

Besides that, we also developed some other features required for parallel and

distributed QoE-oriented database systems. Those include an election-based global

scheduler, capacity to evaluate data availability degree and capacity to decide on data

replication. Another important aspect in parallel and distributed settings was the

development of reputation strategies. These allow the system to constantly have updated

quantitative information on the degree of QoE expectations fulfillment by nodes or sites

and, based on these, to adapt in order to maintain high QoE capabilities. Requirements

fulfillment rates and runtime estimations are the bases of proposed reputation

algorithms, which support better scheduling decisions.

We show experimentally, using benchmark scenarios, that the proposed QoE-

oriented database system is able to satisfy the user-defined execution-related constraints

in both centralized, parallel and distributed cases. In order to do this we have created a

prototype and tested the most important concepts proposed in this thesis. The

approaches were compared with best effort (no QoE) counterparts and, when relevant,

with scheduling approaches such as round-robin or on-demand.

Quality of Experience in Database Systems

xii

Quality of Experience in Database Systems

xiii

Resumo da Tese em Português

Dado que a tese foi escrita em Inglês (língua franca desta área de conhecimento) e foi

desenvolvida na Universidade de Coimbra em Portugal, faz-se nesta secção um breve

resumo em Português do conteúdo da tese. A secção começa com o sumário da tese e

depois apresenta uma breve descrição do conteúdo de cada capítulo.

Sumário

Este trabalho visa fornecer mecanismos para aumentar a satisfação dos utilizadores

quando utilizam sistemas de bases de dados. Consideramos satisfação dos usuários em

termos de Qualidade de Experiência (QoE). Desta forma, as nossas propostas visam

aumentar o nível de QoE fornecido por sistemas de bases de dados.

Sistemas de bases de dados tradicionais executam as operações imediatamente

após a submissão e, como eles não permitem que os utilizadores expressem restrições

relacionadas com a execução de comandos, não podem avaliar se essas restrições são

atendidas e não podem executar acções corretivas quando necessário.

A nossa proposta de QoE faz com que os sistemas de bases de dados tenham em

consideração as expectativas dos utilizadores ao decidir como ou quando executar os

comandos que lhes são submetidos. Esta estratégia é baseada em Requisitos de Acesso a

Dados (Data Access Requirements - DAR) que os utilizadores podem associar a

operações de bases de dados e que os sistemas preparados para fornecer QoE tomam em

consideração quando processam tais operações.

Como o objetivo de sistemas de bases de dados orientados a QoE é prover

satisfação aos utilizadores, a análise do seu desempenho deve considerar indicadores

específicos sobre a satisfação de restrições definidas por estes. Nós definimos

Indicadores Chave de Desempenho baseados nessas medidas e utilizamo-los como parte

de comparação de abordagens.

Os tipos de Requisitos de Acesso a Dados (DARs) propostos incluem prazos de

execução, hora de início e término de execução de comandos, actualidade dos dados

utilizados, prioridade de execução de comandos, execução desconectada e repetição de

trabalhos. Alguns destes, como os prazos de execução, são úteis em quaisquer

arquiteturas de bases de dados – centralizada, paralela ou distribuída – enquanto outros

DARs, como o de disponibilidade dos dados, são especialmente preparados para os

contextos paralelo e distribuído.

Para que as abordagens funcionem em quaisquer destas arquiteturas, precisámos

desenvolver um conjunto de funcionalidades que incluem estimativas de tempo de

execução, escalonamento de tarefas baseado em requerimentos e monitoramento e

escalonamento de trabalhos futuros.

Além disso, também desenvolvemos algumas funcionalidades que são

requeridas para sistemas paralelos e distribuídos de bases de dados orientados a QoE.

Estas incluem um escalonador global baseado em eleições, capacidade de avaliar o nível

de disponibilidade de dados e capacidade de decidir sobre replicação de dados. Outro

aspecto importante nas configurações paralela e distribuída é o desenvolvimento de

estratégias baseadas em reputação. Estas permitem que o sistema tenha informações

quantitativas constantes sobre o nível de atendimento às expectativas de QoE por parte

Quality of Experience in Database Systems

xiv

de nós ou sítios e, baseado nisso, execute acções para se adaptar no intuito de manter

altos níveis de QoE. A taxa de atendimento de requisitos e as estimativas de tempo de

execução são a base dos algoritmos de reputação, os quais suportam melhores decisões

de escalonamento.

Nós mostramos experimentalmente, utilizando cenários e “benchmarks”, que o

sistema de bases de dados orientado à QoE é capaz de satisfazer as restrições definidas

pelos utilizadores sobre a execução de comandos, tanto no caso centralizado, como nos

casos paralelo e distribuído. Para isso, criámos um protótipo e testámos os conceitos

mais importantes propostos nessa tese. As abordagens propostas foram comparadas com

as correspondentes dos ambientes de “best effort” melhor esforço (sem QoE) e, quando

relevante, com abordagens de escalonamento como a circular ou a sob demanda.

Introdução

No Capítulo 1 introduzimos os conceitos da tese, incluindo a estratégia utilizada para

QoE e a utilização de mecanismos de reputação.

O principal objectivo de sistemas orientados a QoE é satisfazer aos usuários. De

facto, considerar as expectativas dos usuários é um dos principais aspectos da QoE

[Zapater & Bressan, 2007]. Desta forma, a nossa estratégia para oferecer QoE quando

executamos operações de bases de dados é permitir aos utilizadores que exprimam as

suas necessidades e fazer com que o sistema as considere quando executa os comandos.

 Nesse contexto, propomos que os utilizadores possam especificar Requisitos de

Acesso a Dados (Data Access Requirements - DARs) em conjunto com os comandos de

bases de dados. Tais requisitos colocam restrições sobre a execução de comandos ou

objetivos a serem atingidos quando se gere dados armazenados.

 Caberá ao sistema avaliar os requisitos e, caso não seja possível atendê-los,

avisar o utilizador quanto antes.

 No Capítulo 1 também são introduzidos os conceitos de escalonador comunitário

e de tarefas e a necessidade de utilização de mecanismos para incrementar os níveis de

QoE fornecidos em ambientes de bases de dados paralelas e distribuídas.

Trabalhos Relacionados

Para implementação do mecanismo proposto para aumentar o nível de QoE fornecido

pelos sistemas de gestao de bases de dados, foi necessário incorporar diversas

funcionalidades. Neste contexto, o Capítulo 2 apresenta trabalhos de diferentes áreas

que são relacionados com alguns aspecto estudados nesta tese.

 São apresentados trabalhos das seguintes áreas:

- Sistemas orientados a QoE;

- Escalonamento de comandos e colocação de dados em bases de dados paralelas

e distribuídas;

- Controlo de admissão e execução de transações sujeitas a restrições;

- Estimativas de tempo de execução de comandos em sistemas de bases de dados.

Quality of Experience in Database Systems

xv

Definindo Requisitos

No Capítulo 3 apresentamos propostas relativas à especificação de requisitos de acesso

a dados e de extensão da linguagem SQL para suportar tais requisitos.

Os requisitos são especificados numa área específica, denominada área de

especificação de requisitos, e identificada pela palavra-chave REQUIREMENTS.

Os requisitos podem estar associados por uma associação do tipo E (separados

por vírgulas) ou ainda ter uma associação do tipo OU, como na Figura 1. Podem estar

associados a comandos de manipulação de dados (Figura 1), a comandos de definição de

dados (Figura 2) e a blocos de comandos.

Figura 1 - Exemplo de Área de Especificação de Requisitos– Comando SELECT

Figura 2 - Exemplo de Área de Especificação de Requisitos - Comando CREATE TABLE

Blocos de comandos são conjuntos de comandos delimitados por BEGIN BLOCK e

END BLOCK, e para os quais é especificado um conjunto de DARs. Os blocos de

comandos podem conter clausulas PARALLEL ou SEQUENTIAL, utilizados para

identificar se os comandos devem ser executados em sequência ou se podem ser

executados em paralelo.

 O exemplo da Figura 3 apresenta um bloco de comandos com o seu conjunto de

requisitos. Cada comando pode ser executado em paralelo e possui os seus próprios

requisitos.

 SELECT *

 FROM SALES

 WHERE STATE_ID = 1

 REQUIREMENTS

 (DEADLINE 900)

 OR

 (START AFTER '2010/12/15 19:00',

 FINISH BEFORE '2010/12/16 08:00',

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS TMP_SALES,

 AVAILABLE DURING 100 PERCENT

 IN PERIOD FROM '2010/12/16' TO '2010/12/17'

 CREATE TABLE CUSTOMERS (

 CUSTOMER_ID INTEGER PRIMARY KEY,

 CUSTOMER_NAME VARCHAR(100)

)

 REQUIREMENTS MyRequirements

 AVAILABLE DURING 100 PERCENT

 IN PERIOD FROM '2010/12/16' TO '2010/12/17'

Quality of Experience in Database Systems

xvi

Figura 3 - Exemplo de Blocos de Comandos com Requerimentos

O Capítulo 3 apresenta ainda a definição formal e exemplos de utilização dos vários

tipos de requisitos propostos.

Tarefas e Requisitos ao Nível de Tarefas

No capítulo 4, são apresentados os conceitos de trabalho e tarefa. Um trabalho será uma

unidade lógica para os quais são definidos, pelo utilizador, um ou mais requisitos. Para

a execução de um trabalho será necessário executar uma ou mais tarefas. Cada tarefa

poderá ter um ou mais requisitos, que são derivados dos requisitos definidos para os

trabalhos.

Nesse contexto, utilizamos dois níveis de escalonadores: o de trabalhos

(comunitário) e o de tarefas (relacionado com um serviço de dados específico).

 O Capítulo 4 apresenta como são definidas as tarefas e seus requisitos a partir

dos trabalhos e dos DARs. Apresenta ainda diversos exemplos de tais definições nos

contextos de bases de dados centralizada, paralela e distribuída.

Reputação e Escalonamento Baseado em Eleições

No Capítulo 5 propomos estratégias para escalonamento de trabalhos em ambientes de

bases de dados paralelas e distribuídas, com a respectiva alocação de tarefas aos

serviços.

 BEGIN PARALLEL BLOCK

 SELECT C.ID, C.NAME, C.PHONE

 FROM CUSTOMERS C

 WHERE EXISTS (SELECT 1

 FROM SALES S

 WHERE S.CUSTOMER_ID = C.CUSTOMER_ID

AND S.REVENUE > 1000

AND S.DATE > '2010/01/01')

 REQUIREMENTS REQ1

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS TOP_CUSTOMERS

 AVAILABLE DURING 10 MINUTES AFTER EXECUTION;

 SELECT S.STATE_ID, ST.STATE_NAME, SUM(S.REVENUE) AS SUM_REVENUE

 FROM SALES S

INNER JOIN STATES ST

ON S.STATE_ID = ST.STATE_ID

 WHERE S.DATE > '2010/01/01'

 GROUP BY S.STATE_ID, ST.STATE_NAME

 REQUIREMENTS

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS REVENUE_PER_STATE

 AVAILABLE DURING 10 MINUTES AFTER EXECUTION;

 END BLOCK

 REQUIREMENTS REQ_BLOCK

 FRESHNESS OF STATES HIGHER THAN '2010/07/01’,

 FINISH BEFORE '14:00',

 REPEAT EVERY FRIDAY IN PERIOD FROM '2010/07/01' TO '2010/08/01'

Quality of Experience in Database Systems

xvii

 As estratégias propostas são baseadas em eleições. Inicialmente, alguns serviços

são selecionados como pré-candidatos para executar uma tarefa. Então, os serviços

avaliam se podem ou não executar a tarefa em questão, satisfazendo seus requisitos (e

ainda satisfazer os requisitos das outras tarefas que já lhes tinham sido atribuídas). Caso

possam, tornam-se candidatos e apresentam promessas de tempo para a sua execução. O

escalonador comunitário de trabalhos irá, então, alocar tarefas aos candidatos

considerando critérios de reputação e de tempo de execução prometido.

 As estratégias propostas são utilizadas ainda para identificar réplicas de dados

que poderiam ser criadas para incrementar os níveis de QoE fornecidos pelo sistema.

Avaliação e Gestão de Tarefas nos Serviços de Dados

Durante a realização das eleições para atribuição das tarefas aos serviços de dados, cada

pré-candidato deverá avaliar se conseguirá atender aos requisitos das tarefas ou não. No

Capítulo 6 são apresentados os mecanismos de avaliação utilizados pelos serviços de

dados.

 São apresentadas, também, as estratégias de escalonamento utilizadas pelos

escalonadores de tarefas e os mecanismos de estimação de tempo de execução de

consultas.

Medindo a QoE proporcionada por Sistemas de Bases de Dados

Os indicadores de desempenho tradicionais não são capazes de avaliar os níveis de QoE

fornecidos por sistemas de bases de dados, uma vez que não tomam em consideração

nas suas medidas se os requisitos de utilizador foram cumpridos ou não. No Capítulo 7,

apresentamos propostas de quatro indicadores de desempenho (Acceptance Rate,

Commitment Maintenance Rate, Success Rate, QoE-Level) para sistemas de bases de

dados orientados a QoE.

 Os indicadores propostos são baseados nas seguintes estatísticas:

• Número de trabalhos com DARs submetidos ao sistema;

• Número de trabalhos com DARs que o sistema aceitou executar;

• Número de trabalhos cujos DARs o sistema satisfez.

Além de serem utilizados para avaliar o QoE, tais indicadores podem ainda ser

utilizados para alertar os administradores do sistema quando o nível de QoE fornecido

for insatisfatório.

Avaliação Experimental

O Capítulo 8 apresenta resultados obtidos experimentalmente que comprovam a

utilidade das propostas da tese. São apresentados resultados de avaliações em três

cenários:

• Ambientes de data warehouse globais;

• Ambientes de data warehouse paralelos;

• Ambientes on-line transaction processing (OLTP) sobre bases de dados

centralizadas.

Quality of Experience in Database Systems

xviii

Além dos estudos relacionados com os três cenários citados acima, são também

avaliados aspectos específicos relativos a algumas das propostas dessa tese. São eles:

• Utilização de reputação no escalonamento;

• Mecanismos de filas de tarefas e estimativas de tempo de execução.

Conclusões e Trabalhos Futuros

O Capítulo 9 apresenta as conclusões do trabalho e os possíveis trabalhos futuros.

Quality of Experience in Database Systems

xix

Acknowledgements

At first, I would like to thank to Professor Pedro Furtado for his advice. During the last

years, he continuously encouraged me and was always ready to discuss directions and

objectives. His critical comments and observations helped me to keep moving forward

with this work.

 I thank administrative and technical staff members of DEI, for always being

available to help me in administrative issues and on using department’s infrastructure.

 I would like to thank my parents, Alvaro and Marlene, for their continuous

support in my journey and never-ending love. I would like to express my special thanks

to my brother and sister, and their families.

 Finally, I would like to dedicate this thesis for my wife Renata, who always kept

motivating and supporting me, and for my daughter Mariana. I thank them for their love

and patient, which were indispensable.

Quality of Experience in Database Systems

xx

Quality of Experience in Database Systems

1

1 Introduction

In this work, we propose how to provide high Quality of Experience (QoE) to database

users. QoE mechanisms allow the database system to take into consideration execution-

related constraints that are important to users in processing decisions. This way a QoE-

oriented database system is able to adjust based on user expectations. This is

unavailable in traditional database systems.

The level of QoE a system provides is closely related to the satisfaction such

system provides to users [Kilkki, 2008; Nokia, 2004]. In order to provide high

satisfaction to database users, we intend to make the system behave as users expect it to

do.

The popularity of the Quality of Experience term increased in recent years

[Kilkki, 2008]. Nokia (2004) argues that mobile service providers, which do not provide

high levels of QoE, are in competitive disadvantage and may lose revenue. Marez &

Moor (2007) argue that providing and measuring QoE is central in today’s information

and communication thechnology. In this work we propose how to incorporate QoE-

related mechanisms in database systems.

The key difference between a traditional database system and a QoE-oriented

database system is that the former aims at finishing every request as soon as possible,

while the later aims at satisfying users’ expectations.

For instance, let us consider that a user needs a certain report in 3 minutes, but

the database would take 5 minutes to conclude the report’s query. In a best effort

oriented system, the user would wait for 3 minutes for the report and, then, discover that

the system would not finish report execution by the time the user needed it to be

finished. In a QoE-oriented system, the user would specify that he needs the report to be

finished in 3 minutes and the system would immediately inform the user that the report

would not be finished by the specified deadline. Then, the user may consider changing

the deadline, may decide not to start report execution (reducing the waste of user and

processing time) or may schedule report execution for another period.

Users may also want to specify that a certain report must be ready tomorrow at a

certain hour or every 28
th

 day of each month and leave the system to take decisions and

actions.

Now consider a distributed database composed of several sites and distributed

query workloads. The unavailability of even a single site may compromise the whole

query workload. A QoE system can take into consideration user specifications that the

data should be available either always or in a certain time interval to take autonomous

decisions that manage data replication.

 In the above-described examples, users specify the way they expect the system

to behave (e.g., when a certain query should finish or a certain data would be

Quality of Experience in Database Systems

2

accessible). A QoE-oriented system must know what users expect and with that

information, it must try to maximize user satisfaction.

 In our QoE-oriented database system, users’ expectations are expressed in terms

of Data Access Requirements (DARs). Some examples of DARs are the deadline to

execute a query, the acceptable freshness of a certain data replica and a period on which

a certain dataset must be available to users. Programmers may include requirements in

application programs or end users may specify them through applications’ interfaces.

Figure 1-I illustrates the difference between a QoE and a non-QoE system and

the use of user-defined requirements. For each statement or block of statements, a user

may specify a set of requirements that the system should try to fulfill.

 The level of user satisfaction in using the database systems is related to the

amount of requirements that the system is able to fulfill. If the system executes user's

commands and fulfills specified requirements, then the user will become happy with the

system (Figure 1-II). But what if the system is unable to meet the requirements set by

the user?

If the system tries to execute every submitted command, even though it is not

capable to satisfy specified requirements, it will lead to user frustration, as the

user/application may wait for a long time to realize that stated requirements would not

be met (Figure 1-III). Besides that, resources may be wasted executing commands that

may not be useful to users (as their requirements are not satisfied).

A QoE-oriented database management system must analyze the requirements

specified by users, execute the operations only if possible and inform users as soon as

possible when it is unable to meet the requirements. This eliminates (or at least reduces)

the time lost by users waiting for the execution of commands that would not be

performed in a satisfactory way and also reduces the processing time wasted doing tasks

that would have no practical use for end users. Besides that, if the system (almost)

immediately informs the user that a requirement would not be satisfied, he/she may

change the requirement or take any other actions he/she wants to. This strategy (Figure

1-IV) would generate less dissatisfaction than the alternative in Figure 1-III.

A QoE database system is a superset of a traditional database system. Since the

specification of QoE requirements is optional, it is still possible to apply the default

(best effort) processing mode to statements or blocks of statements.

Quality of Experience in Database Systems

3

Figure 1 - User satisfaction in database systems – Alternatives

The rest of the introduction will overview the approach (Section 1.1), discuss how we

test it (Section 1.2) and present the main contributions of the thesis (Section 1.3).

Finally, Section 1.4 concludes the chapter by describing the structure of the remainder

of the thesis.

1.1 The Quality of Experience Proposal

In order for a database system to support Quality of Experience, several mechanisms

must be added to it, including runtime estimations, requirement-based task scheduling

and capacity to decide on data-replication.

In this section, we provide an introductory overview of the main mechanisms

proposed in this thesis.

 In Section 1.1.1 we discuss the use of data access requirements to improve the

QoE level provided by the database system. We also present the need of specialized

Quality of Experience in Database Systems

4

performance indicators for QoE-oriented databases. Then, Section 1.1.2 introduces

some key aspects of the proposed architecture, including considered schedulers and the

existence of task level requirements. In Section 1.1.3 we introduce the use of reputation

to increase the level of QoE the system provides.

1.1.1 Data Access Requirements and Specific Performance Indicators

Our QoE-oriented system proposal is capable of guaranteeing a set of user-defined data

access requirements (DARs). Such requirements are useful in several environments. For

instance, consider distributed computing models in which users do not have full control

over available computing resources (e.g. Grid Computing). Resources’ owners may set

limitations on the use of resources by remote users. Thus, shared resources (including

data) may become unavailable to users for considerable periods, not only due to failures

or scheduled maintenance, but also due to restrictions on resources use imposed by

resources’ owners. The execution of tasks in an environment with periodic outages and

performance variation can be quite frustrating for users, especially if using traditional

databases strategies, which initiate the execution of each task as soon as possible. In

fact, it is common in highly distributed systems, that tasks have different requirements

to be executed.

Proposed types of DARs are:

• Data freshness – specifies the minimal required freshness (timestamp) of

a certain data replica in order for the system to use such replica in

command execution;

• Execution deadline – specifies a deadline interval for command

execution;

• Disconnected execution mode – specifies that the system should execute

the command even though the user is not connected to the system;

• Data availability – specifies a period in which a certain dataset must be

available to users;

• Execution periodicity – specifies a periodicity for command execution;

• Execution finish time – specifies an upper bound for command execution

finish time;

• Execution start time – specifies a lower bound for command execution

start time;

• Execution priority – specifies the command priority.

Although some of such DARs are especially useful in parallel and distributed database

systems (e.g. data freshness requirements), most of them are also useful in centralized

databases.

Proposed DARs can be associated to a single user statement or to a block of

statements (that may be executed sequentially or in parallel, as defined by the user).

Besides that, users can specify alternative DARs that may be used by the system to

choose the ones that are feasible (or that lead to the highest levels of QoE). For instance,

users may specify that a certain set of statements must be executed in no more than 5

minutes or, in case the system cannot do that, then it must be executed at night.

Quality of Experience in Database Systems

5

 We also propose SQL extensions that enable DARs specification in SQL

language.

 QoE-oriented systems and best effort systems have different objectives. Hence,

we should not use the same performance indicators to measure the performance of both

kinds of systems. For instance, executing a high number of transactions per minute does

not imply satisfying users’ expectations. In fact, QoE-oriented systems aim to provide

high QoE levels to users. Therefore, the provided QoE level is one among the possible

performance indicators used to measure the performance in QoE-oriented systems. In

Chapter 7, we describe such performance indicator and propose a set of key

performance indicators for QoE-oriented database systems. Besides being used for

performance evaluation, such indicators can also be used to alert system’s

administrators when the level of QoE the system provides is undesirable.

1.1.2 QoE-Oriented Scheduling and Placement

User defined requirements may be associated with one or more database commands (as

detailed in chapter 3). We call job to a set of database commands that have shared

DARs. Each job is transformed into one or more tasks (e.g. database operations) and

associated task level requirements. A job’s tasks should only be executed if all the

DARs associated with the job can be satisfied (i.e. all task level requirements can be

fulfilled). In our architecture, we have a community scheduler that is responsible to

transform jobs into tasks and to assign task execution to data services, and a tasks

scheduler which evaluates if task level requirements can be satisfied or not and

schedules tasks execution at data services level. Chapter 4 presents a formal definition

of jobs and tasks, the generation of tasks and task level requirements and the use of

proposed schedulers in centralized, parallel and distributed databases.

Figure 2 presents an overview of the proposed architecture in an environment

with several data services (i.e. parallel or distributed database system). The community

scheduler is the system component responsible for global operations, including

assigning tasks execution to data services and maintaining reputation information about

participating services. At each data service, there is a tasks scheduler, which is the local

scheduler responsible to do task level requirements evaluation and local command

scheduling.

Quality of Experience in Database Systems

6

Figure 2 - QoE-oriented system in a multi-data services environment - Overview

After having transformed users’ jobs and DARs into tasks and task level requirements,

the community scheduler initiates task execution negotiation with data services. If there

is any task level requirement that cannot be satisfied (leading to the impossibility of

satisfying a user’s DAR), then the QoE-oriented database system immediately informs

the user that it cannot execute the command and satisfy specified requirements.

Therefore, the user may change a DAR or give up on command execution.

Task execution assignment to data services is based on an election-inspired

scheduling model. In such model, data services should commit themselves on fulfilling

task level requirements and make promises on the required interval to execute the task.

The community scheduler uses reputation information when deciding which service

should execute a task. Besides that, election inspired mechanisms are used to identify

data replicas that can improve the level of QoE the system provides. Chapter 5 discusses

election-inspired scheduling and placement.

Services do not execute concurrently all the tasks assigned to them. Each service

executes just a few tasks concurrently and maintains a task queue with remaining tasks.

During task execution negotiation, each service must evaluate if it can execute the task

that is being negotiated, satisfying its requirements, while executing all the tasks the

service has already committed itself to execute, and also satisfying corresponding

requirements. The service’s local scheduler automatically adjusts the number of queries

that are executed concurrently by the underlying DBMS (multiprogramming level) in

order to increase the number of tasks the site can execute while fulfilling negotiated

requirements. The methods used by local schedulers to evaluate requirements

fulfillment, schedule query execution and automatically adjust the number of

concurrently executed queries are discussed in chapter 6.

1.1.3 Reputation for QoE

Our proposals are capable to handle several autonomous data services that may agree

(or not) to provide a certain service (i.e. database operation) according to consumer’s

terms (i.e. task level requirements).

Data Services

DBMS

User’s commands and

data access

requirements

Community

scheduler

Tasks

scheduler

DBMS Tasks

scheduler

DBMS Tasks

scheduler

Election inspired

scheduling of task

execution and

requirements fulfillment

Command execution

satisfying specified

requirements – High

QoE

Quality of Experience in Database Systems

7

When a data service agrees to specified terms and the community scheduler

selects such service to execute a certain task, then the service should fulfill the specified

requirements.

Sometimes, selected data services may fail (intentionally or not) to achieve

negotiated task level requirements. For instance, requirements fulfillment failure may

happen when data services misestimate the size of a certain task. Besides that, when

there are no penalties, data services may intentionally agree to execute a task whose

requirements they cannot satisfy, just in order to obtain some benefit. Anyway, when a

service fails to satisfy a task’s requirement, the system will probably fail to satisfy some

of the user’s DARs, thus reducing user’s QoE.

Therefore, the community scheduler should always assign a task to the most

dependable data service among the ones that can execute such task. In order to do that,

our community scheduler maintains reputation information about service’s capacity to

maintain its commitments of satisfying specified requirements and about the precision

of services’ runtime estimations. Reputation information is used to support task

execution assignment to data services, as proposed in Chapter 5.

The use of the proposed reputation system contributes significantly to increase the

level of QoE the system provides, as demonstrated in Chapter 8.

1.2 Evaluation Methodology

In order to evaluate the techniques proposed in this thesis, we will make a set of

experiments that provide quantitative results and show the importance of QoE oriented

strategies. The experiments will be based on a prototype that implements most of the

proposals, and lab experiments run over benchmark data.

 In order to show the usefulness of QoE related mechanisms, we will build

several experiments that run over three scenarios: global warehouse, parallel warehouse

and centralized on-line transaction processing (OLTP) application. In such scenarios,

we present the use of DARs and, when relevant, compare proposed techniques with best

effort strategies, like round-robin and on-demand scheduling.

 Besides such three scenarios, we also use made a set of experiments to evaluate

some specific aspects of proposed techniques, like the use of reputation, the

management of tasks queues and the query execution time estimation strategy.

 We evaluate the proposed techniques using a set of metrics, which include the

specialized metrics proposed in Chapter 7, which are designed to measure the

performance of QoE-oriented systems.

 Chapter 8 describes the experiments and presents the experimental results that

prove the importance of proposed strategies. The experimental testbed environment is

detailed in Appendix A.

Quality of Experience in Database Systems

8

1.3 Main Contributions

In this thesis, we advance several concepts and mechanisms that are relevant for

implementing a QoE-oriented database system. The main research contributions of the

research can be summarized as:

→ Uses of Quality-of-Experience in databases systems - Most existing

strategies for data management are best effort oriented. In this work, we

detail the use of Quality-of-Experience in data management, presenting the

main benefits of such approach and the mechanisms that enable the system

to provide high QoE to users.

→ Key Performance Indicators for QoE-oriented Systems – Traditional

performance indicators for database systems are not adequate to measure

the performance of QoE-oriented systems. We define a set of specialized

KPIs that can be used to estimate the QoE levels a system provides, to

compare QoE-oriented systems and to alert systems’ administrators when

the system is providing low levels of QoE.

→ Definition of Data Access Requirements and proposal of SQL
Extensions - We define a set of Data Access Requirements (DARs) that

users may specify for database operations and also propose some SQL

extensions to enable the specification of Data Access Requirements in

SQL.

→ Election inspired query scheduling model – An election inspired query

scheduling model which combines task-based requirements and runtime

estimations is proposed in order to provide a highly dependable

environment while maintaining site autonomy.

→ Mapping of user-defined requirements into task level requirements
and use of requirements for scheduling command execution and
placing data – We present how to map user-defined DARs into task level

requirements that should be fulfilled by data providers. Data providers

should satisfy such requirements in order to improve users’ satisfaction and

also to reduce the amount of unnecessary (or useless) work executed by a

system. Proposed replica placement strategy also considers task level

requirements, providing a more reasonable use of data replication, reducing

the number of useless data replicas and increasing space for placing

replicas that actually increase the QoE levels the system provides.

→ Reputation Models for QoE-oriented Database Systems – We use

reputation systems to rank service providers according to their commitment

to maintaining their promises on satisfying certain requirements and to

adjust services’ runtime estimations. Reputation systems increase system's

dependability and QoE levels.

→ Dynamic Replica Placement Strategy for QoE – We propose a strategy

that detects which data may be replicated (to which site) in order to

increase the level of QoE provided by the system.

→ Data service query scheduling policies – We propose how to implement

external schedulers that consider query execution-related requirements. The

Quality of Experience in Database Systems

9

proposed policies aim at determining whether task requirements of the

submitted task and of executing tasks would be fulfilled if the task was

accepted for execution, and to maximize the number of database queries to

be executed while fulfilling specified requirements.

→ Query execution time estimation method – Foreseeing query execution

time is an important tool in several situations. We propose a query

execution time estimation method that provides some reasonable estimate.

→ Automatic adjustment of the multi-programming degree for fulfilling
task level requirements – Query execution time can be highly affected by

concurrent execution of others queries. We propose a method to

automatically adjust the number of simultaneously executed queries

considering specified task level requirements.

→ Actual implementation of a prototype with the proposed features and
experimental evaluation – Results experimentally obtained with the actual

evaluation of proposed strategies prove the validity of such strategies.

Experimental evaluation is done considering centralized, parallel and

distributed database systems.

Parts of this work are described in the following publications:

• Conference Papers:

◦ Costa, R.L.C., Furtado, P. (2009) Runtime Estimations, Reputation and

Elections for Top Performing Distributed Query Scheduling. 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid (CCGrid

2009). pp. 28-35.

◦ Costa, R.L.C., Furtado, P. (2008) QoS-Oriented Reputation-Aware Query

Scheduling in Data Grids. In 14th International Euro-Par Conference on

Parallel Processing (Euro-Par 2008). pp. 489-498.

◦ Costa, R.L.C., Furtado, P. (2008) A QoS-Oriented External Scheduler. In

23rd Annual ACM Symposium on Applied Computing (ACM SAC 2008).

pp. 1029-1033.

◦ Costa, R.L.C., Furtado, P. (2008) Scheduling in Grid Databases. In Proc. of

the 22nd International Conference on Advanced Information Networking

and Applications - Workshops (AINAW 2008). pp. 696-701.

◦ Costa, R.L.C., Furtado, P. (2007) An SLA-Enabled Grid DataWarehouse,

Eleventh International Database Engineering and Applications Symposium

(IDEAS 2007). pp. 285-289.

◦ Costa, R.L.C., Furtado, P. (2006) Data Warehouses in Grids with High QoS,

8th International Conference on Data Warehousing and Knowledge

Discovery (DaWaK 2006). pp. 207-217.

• Book Chapters:

◦ Costa, R.L.C., Antunes, R., Furtado, P. (2009) Optimizer and Scheduling for

the Community Data Warehouse. Architecture, Methods and Supporting

Quality of Experience in Database Systems

10

Technologies for Data Analysis Series: Studies in Computational

Intelligence Vol. 225, pp. 21-55. Springer.

◦ Costa, R.L.C., Furtado, P. (2009) QoS-Oriented Grid-Enabled Data

Warehouses. Data Warehousing Design and Advanced Engineering

Applications: Methods for Complex Construction, pp. 150-170. IGI Global.

◦ Costa, R.L.C., Furtado, P. (2009) Deploying Data Warehouses in Grids with

Efficiency and Availability. Complex Data Warehousing and Knowledge

Discovery for Advanced Retrieval Development: Innovative Methods and

Applications, pp. 208-229. IGI Global.

◦ Costa, R.L.C., Furtado, P. (2009) Placement and Scheduling over Grid

Warehouses. Grid Technology for Maximizing Collaborative Decision

Management and Support: Advancing Effective Virtual Organizations, pp.

83-104. IGI Global.

1.4 Dissertation Organization

In the following chapter, we describe related work. Then, chapter 3 proposes a set of

Data Access Requirements types and SQL extensions that can be used to specify such

requirements.

Chapter 4 defines jobs and tasks, presents the community scheduler and the tasks

schedulers, and how users’ commands and DARs are transformed into tasks and task

level requirements.

In Chapter 5, we detail election-inspired scheduling. We present how to select

possible candidates to execute a task and elect a winner to execute a task among the

candidate data services. We propose how election-inspired strategies can provide

information about replica placement. We also detail reputation mechanisms that are

used to increase the system’s dependability and the QoE level it provides.

Chapter 6 describes task level scheduling. We present how tasks scheduler

evaluates if task level requirements can be fulfilled or not. We also describe the

proposed query execution time estimation method.

Then, Chapter 7 presents a set of Performance Indicators for QoE-oriented

database systems. We formally define proposed indicators and present some examples

on their usage. Besides that, we discuss the use of such indicators to alert system’s

administrator when the system is providing undesirable levels of QoE.

Chapter 8 proves the usefulness of the proposed strategies by presenting

experimental results obtained in centralized, parallel and distributed databases

scenarios. Besides that, it also evaluates some key aspects of the proposed features,

which include the use of reputation for scheduling, queues management in data services

local schedulers and time estimation.

In Chapter 9, we present some final considerations and open aspects left for

future work.

Appendix A details the experimental environments used to evaluate the

proposed techniques.

Quality of Experience in Database Systems

11

2 Related Work

In this work, we propose strategies to provide QoE to database users. Our strategy

considers user-specified requirements such as the freshness of data replicas that can be

used to provide QoE while answering queries, or the execution deadline of a certain

block of statements (such requirements are formally defined in the following chapter).

Besides that, in order to render possible QoE-related strategies, we propose specialized

query scheduling and dynamic placement strategies. Our scheduler also uses a

Reputation System as part of its strategy to schedule command execution, and

estimation of the necessary time to execute a database command is also important to

provide QoE to users.

 In this Chapter, we discuss some work related to the main topics that we deal

with in this thesis. Such related work is organized in the following areas:

- QoE-oriented systems (Section 2.1);

- Scheduling and placement in parallel and distributed databases (Section 2.2);

- Admission control and real-time databases (Section 2.3);

- Runtime estimations in database systems (Section 2.4).

Section 2.5 concludes the chapter.

2.1 QoE-oriented Systems

Quality of Experience is a measure of user satisfaction when using a certain service or

system [Kilkki, 2008; ITU, 2007]. The QoE level provided by a system includes the

effects of all the system's components and all the underlying components (e.g. network)

[ITU, 2007].

Quality of Experience is distinct from the traditional Quality of Service (QoS)

metrics. While QoS is mainly focused on technology and performance in the technical

perspective, QoE is a user-centric approach that considers users' goals [Marez & Moor,

2007; Zapater & Bressan, 2007].

Measuring QoE is not easy, due to its subjectivity. Traditional QoE measuring

methods are based on opinion tests and questionnaires [Moller, Engelbrecht & Kuhnel,

2009; Sanchez-Macian et al., 2006], like the Mean Opinion Score (MOS). MOS [ITU,

1996] is a graduation on results observed by users during a listening-opinion test. Table

1 presents MOS's score values.

Quality of Experience in Database Systems

12

Table 1 - MOS Scores

Obtained Quality Score

Excellent 5

Good 4

Fair 3

Poor 2

Bad 1

Questionnaire-based methods have several problems, like the difficulty in selecting the

users that will answer the questionnaire, the amount of time it takes to retrieve users’

opinions and the need for continuous user cooperation [Sanchez-Macian et al., 2006].

The use of QoS to estimate provided QoE is used in some works. Sanchez-

Macian et al. (2006) use ontologies and rules in a framework to calculate QoE by the

values of QoS parameters. Kim et al. (2008) estimate QoE using information about

network-level QoS metrics. Krauter, Buyya & Maheswaran (2002) present the factors

that influence QoS and QoE in multimodal dialogue systems, like kiosks and smart

home environments. Among the factors that influence the QoE level in multimodal

systems are the system's utility and effectiveness. Martinez-Yelmo, Seoane & Guerrero

(2010) organize network-related aspects into layers (similar to the TCP/IP model) and

discuss how each layer can affect QoE.

QoE measurement can also be done with the use of Key Performance Indicators

(KPIs). The process of using KPIs to measure QoE involves identifying the most

appropriate KPIs and weighting them [Nokia, 2004].

To the best of our knowledge, our work is the first one to incorporate the QoE

concept in database systems. Our strategy is based on making the system fulfill

execution-related constraints specified by users. Performance indicators are used to alert

system’s administrators when the level of QoE provided by the system is unacceptable.

2.2 Scheduling and Placement in Parallel and Distributed
Databases

Query scheduling in parallel and distributed databases has been studied for several years

and there is a wide range of works on such issue.

Parallel data allocation and processing approaches typically rely on partitioning

the data. Stöhr et al (2000) propose a multi-dimensional hierarchical fragmentation

strategy called MDHF for use in OLAP systems based on shared-disk parallel machines.

In MDHF, fact tables are partitioned based on a set of dimension attributes. Authors

show that queries’ performance benefits from the use of dimension-based partitioned

fact tables, even when the submitted queries are over hierarchical levels different from

the ones that were used to generate the facts table’s fragments.

Röhm et al (2000) discuss the execution of parallel OLAP queries in the

PowerDB system, which is composed by a set of independent processing nodes (off-the-

shelf computers) and a coordinator node. Each processing node has its own DBMS. The

Quality of Experience in Database Systems

13

coordinator node is responsible for scheduling query execution between processing

nodes and to collect execution results, sending them back to users. Authors compare the

use of two data placement strategies: (i) fully replication of the database into all nodes,

and (ii) an hybrid approach where the largest table is partitioned across all nodes and the

other tables are fully replicated at all nodes. The presented experimental results stand

that the hybrid approach leads to higher throughput than the other one.

Virtual Partitioning [Akal et al, 2002] is another database allocation scheme

experimentally tested in PowerDB. Its goal is to achieve intra-query parallelism in

cluster-based data warehouses. In such strategy, all data is fully replicated into all

processing nodes. Clustered primary key indexes are created on the facts table, and one

(or more) of the primary key attributes is chosen to be a partitioning attribute.

Assuming that the possible values on the partitioning attribute are known, virtual

partitions are created, considering each one a range of values in the partitioning

attribute. Submitted queries are transformed into several subqueries each one addressing

a virtual partition. This strategy can lead to performance gains if the underlying DBMS

considers the range predicates very selective and uses the clustered index to access only

a fragment of the fact table (reducing I/O) instead of doing a full table scan in such

table. Hence, one great challenge on Virtual Partitioning is to properly choose

partitions’ bounds (determining its sizes). Akal et al (2002) claim that they should be

chosen so that the duration of parallel subqueries execution is approximately equal.

The Node-Partitioned Data Warehouse (NPDW) [Furtado, 2004; Furtado,

2004b] is another strategy for the implementation of parallel data warehouses in shared-

nothing systems. In NPDW, facts and large dimension tables are hash-partitioned and

the resulting partitions are placed on different nodes. In order to minimize repartitioning

costs, the most frequently used equi-join attribute should be used to generate facts

tables’ partitions. Small dimension tables are replicated at all nodes, while large

dimension tables are hash-partitioned as well.

The Skalla System [Akinde et al, 2002] enables the use of OLAP tools in order

to analyze distributed network trace data. IP flow data
1
 is obtained in several data

collection points. Next to each data collection point is placed a Skalla site, which is a

local data warehouse storing the information captured in the collection point. Hence, it

is reasonable to consider that the conceptual fact table (about IP flow) is partitioned

across the local data warehouses. OLAP queries are submitted to a Skalla coordinator,

which is responsible to construct a distributed query execution plan, to submit it to

Skalla sites, to collect the results and to send them back to the user. Submitted OLAP

queries are translated into GMDJ expressions (which are composed by specialized

GMDJ operators (Akinde & Böhlen, 2001). Distributed execution plans are constructed

to execute each GMDJ expression.

Most of the existing works on generic distributed databases aim at providing

high performance systems. Stonebraker et al. (1996) proposed Mariposa, which is one

of the first works on Distributed Database Management that considered user-specified

constraints. Mariposa query scheduling model is economic-inspired: the user specifies

how much he/she can pay for a certain query to be executed by a certain time limit.

Each participating node specifies the execution (monetary) cost and the necessary time

to execute the query at the node. The system considers the available budget and the

1
 Information about packets transferred from a given source to a given destination. This includes,

for example, origin and destination IP, port and mask, besides the number of transferred packets and the

total transferred bytes.

Quality of Experience in Database Systems

14

necessary cost to execute the query when choosing which node should execute the

query. Mariposa also considers an economic model to distribute data replicas among

nodes [Sidell et al., 1996]. Mariposa aims at providing high performance while

satisfying a certain budget, which is not the objective of our QoE-Oriented Distributed

Database (our QoE-oriented database considers several types of user-defined data

access requirements).

Garlic [Haas et al., 1997] is another scheduler for widely distributed and

heterogeneous data sources. In fact, it is a middleware that enables data access through

the use of wrappers. Garlic uses a set of rules to construct global execution plans for

distributed queries. Wrappers participating in the execution of distributed queries,

transforming operations of the global query execution plan into operations that can be

performed by the database corresponding to the wrapper. Distinct global execution

plans are evaluated and the system chooses the plan with the lowest foreseen execution

cost.

 In [Li et al, 2005a], IBM’s DB2 Information Integrator is used together with

some complementary modules to do efficient query scheduling in federated databases.

Estimated and measured query execution costs are used in order to foresee which

database would provide the lowest query execution time.

Grid based systems became of special interest in the last decade. Grid based

applications are usually run over some kind of Grid Resource Management (GRM)

system, like Globus Toolkit [Foster & Kesselman, 1997] or Legion [Grimshaw et al.,

1997]. In fact, GRM systems provide some basic functionality that can be used by a

wide range of application systems, like remote job monitoring or efficient data transfer

between sites.

 The Legion GRM system creates a virtual machine abstraction of the grid. Each

available resource is modeled as an object. User applications are instantiated as objects

of the Application class. Users can specify several parameters while instantiating objects

of such class. Legion has some built-in scheduling mechanisms that implement random

and round-robin job assignment policies [Natrajan, Humphrey, & Grimshaw, 2004], but

it also supports the use of third part job schedulers. In fact, the scheduler and the

scheduling strategy that should be used by an application are examples of the

parameters that can be specified while instantiating objects of the Application class.

 The Globus Toolkit can also use application level schedulers. Condor-G [Frey et

al., 2002] and Nimrod-G [Buyya, Abramson, & Giddy, 2000] are examples of such

schedulers.

 In Condor-G, execution requirements can be associated to jobs. Some examples

of possible requirements are: the network domain, the file system and the operation

system on which the job can be executed. Condor-G uses classified advertisements

(ClassAds) to advertise jobs’ requirements and nodes’ characteristics. A specialized

process is responsible to scan the advertisements and to do the matchmaking between

jobs and nodes that are compatible. Nimrod-G is economy inspired (like Mariposa).

Each job may have a budget and a deadline. Auctions are conducted by the system’s

central module. Each job is executed by the node with the lowest execution cost

(considering only the nodes that can finish job’s execution by a specified deadline).

Both Condor-G and Nimrod-G are general purpose grid schedulers.

There are also some works on the use of reputation to schedule grid jobs.

Silaghi, Arenas & Silva (2007) present generic functions that determine reputation

Quality of Experience in Database Systems

15

values of service providers and of issues of interest. Reputation-based job scheduling in

donation grids is discussed by Sonnek et al. (2006). Such work aims at obtaining high

performance when executing queries in unreliable environments, where (malicious)

nodes can answer a query with uncertain data. There are other works that use reputation

systems to detect malicious nodes [Kamvar, Schlosser & Garcia-Molina, 2003; Singh &

Liu, 2003]. In our system, reputation is used to rank (autonomous and heterogeneous)

data services on their capacity to maintain promises and commitments.

Some of the available works on scheduling in grids aim at providing good load

balancing among available resources. Cao et al (2003; 2005) use software agents to

represent available processing resources (i.e. workstation clusters and multiprocessor

machines). Some of the agents’ functionalities are: (i) schedule job execution at the

resource it represents; (ii) publish the resources capabilities, and (iii) cooperate with

other agents to find a resource to execute jobs that cannot be executed locally. A job

execution time prediction system (PACE [Nudd et al, 2000]) is used by agents to predict

resources’ performance. An agent verifies if the resource it represents can execute the

job by the required deadline. If so, then the job is scheduled to be executed by such

agent’s resources. If the required deadline cannot be achieved by the resource the agent

represents, then the agent searches between its neighbors for one that can execute the

job by the specified deadline. Agents do not do exhaustive searches between available

resources for the one that would finish job execution earlier.

 Koenig & Kale (2007) discuss load balancing in grid applications with high

volumes of inter-processor communication. Grid’s resources are organized

hierarchically into clusters according to communication latency. The proposed strategy

comprises two phases: (i) jobs are allocated into nodes in order to minimize inter-cluster

communication; and (ii) intra-cluster job assignment considers the processing capacity

of each node - more work is assigned to nodes that have the fastest processors.

The abovementioned general purpose schedulers do not consider database

specific factors, like data replica and placement and skews that may happen during

database query execution. Such factors are commonly considered in the context of data

grids.

 In data grids, the grid infrastructure is used to store huge volumes of widely

distributed data or to manage the execution of jobs that generate or consume great

volumes of data [Krauter, Buyya & Maheswaran, 2002; Venugopal, Buyya &

Ramamohanarao, 2006].

 Ranganathan & Foster (2004) evaluate several job scheduling strategies for data

grids, including Random, Least Loaded and Data Present. In the random strategy, jobs

are randomly assigned to participating nodes. In least loaded strategy, each job is

assigned to the node that has the lowest number of jobs waiting for execution. In both

random and least loaded strategies, if the node selected to execute a job does not store

the data that the job needs, then such data is fetched from a remote site during job

execution. In data present strategy, a job can only be assigned for execution to a site

that already stores the data that is necessary to execute the job. Authors claim that

accessing remote data in grids may be time consuming and that, in some situations, jobs

should only be assigned to sites that already store required data locally.

Park & Kim (2003) also discuss the use of locally stored data and remote data

while executing data grid jobs. Authors present a cost model to predict job execution

time in several configurations, like: (i) executing a job at the site that stores required

Quality of Experience in Database Systems

16

data; (ii) executing a job at the site on which the job was submitted but accessing remote

data; and (iii) executing a job at a remote site but using the data from the site on which

the job was submitted. The proposed cost model considers several parameters, including

network bandwidth and input and output data size. A central scheduler assigns each job

to the site that has the lowest foreseen execution time.

Although most of the initial works on data grids considered the use of flat files,

the use of grid-enabled database management systems is very promising [Nieto-

Santisteban et al., 2005; Watson, 2001].

Watson (2001) proposes the use of ODBC/JDBC to build federated databases

composed by heterogeneous systems. Alpdemir et al. (2004) use a set of OGSA (Open

Grid Services Architecture [Foster et al., 2002]) compliant web services to provide

access to the Polar* [Smith et al., 2002] distributed query processor. The Polar*

processor builds distributed execution plans by dividing each query into a set of

operators that are executed by distinct nodes.

Scheduling in grid-based data warehouses is discussed in [Lawrence & Rau-

Chaplin, 2006; Dehne & Lawrence, 2007; Wehrle, Miquel & Tchounikine, 2007].

Dehne & Lawrence (2007) and Lawrence & Rau-Chaplin (2006) use a two-tiered data

warehouse with local cached data at the first tier and database server at the second tier.

The system aims at executing queries using only locally stored data. If it cannot be

done, then incoming query is transformed into a set of queries that access local data and

some complementary ones that are executed by the database server (at the second tier).

Cached data is also maintained in an R-tree at database server level. This strategy aims

at reducing data movement over the grid.

Wehrle, Miquel, & Tchounikine (2007) use the Globus toolkit and a set of

services to build a distributed data warehouse. Dimension data is replicated across

participating nodes. Fact’s data is partitioned and partitions are distributed at

participating nodes. Each node has a local data index that provides information about

locally stored data. The system tries to use locally stored data to answer queries

(through the use of the local data index). When it is not possible, a communication

service is used to search for required data at remote sites. The communication service

uses the local data index service of remote nodes to access remote data.

None of the above presented works on grid query scheduling deals with several

types of user-defined requirements. Such works are oriented to provide high

performance, not high QoE.

Database replication can be used in distributed databases to improve query

execution performance and data availability, but determining the necessary number of

replicas and optimally placing such replicas into the nodes of a distributed system is an

NP-hard problem [Loukopoulos & Ahmad, 2000].

Wolfson & Jajodia (1992) present algorithms to dynamically replicate data and

to minimize communication costs and times.

Ranganathan & Foster (2001) evaluate several strategies of dynamic file

replication in grids, including Best Client Replication and Cascading Replication. In

such strategies, the system creates a new file replica whenever the number of accesses

to a certain file reaches a specified threshold value. The best client node of a certain file

is the node with the highest number of access requests to the file. In Best Client

Replication, the new replica of a file is created at the file’s best client node. In

Quality of Experience in Database Systems

17

Cascading Replication, the system places the new replica file at the first node in the

path between the file’s node and the file’s best client node.

In [Li et al, 2005b], IBM’s DB2 Information Integrator is used together with

complementary modules to deal with federated databases. Dynamic replica placement is

used to maintain the average query execution time bellow a threshold value.

Sathya, Kuppuswami & Ragupathi (2006) discuss Best Replica Site Replication,

Cost Effective Replication and Topology Based Replication. The Best Replica Site

strategy is inspired in the Best Client Replication strategy: the main difference between

such policies is that in Best Replica Site the site where the new replica would be created

is chosen considering the number of accesses to the file, the replica’s expected utility

for each site and the distance between sites (Best Client considers only the number of

access requests to the file). Cost Effective Replication uses a cost function to evaluate

the cost of accessing a replica at each site: the new replica is created in the site that

minimizes the foreseen costs. In Topology Based Replication, file replicas are created in

the node with the highest number of direct connections to other nodes.

Lin, Liu & Wu (2006) also consider system topology in order to choose where to

place data replicas. In [Lin, Liu & Wu, 2006], the database is placed at the root node of

a hierarchical (tree-like) grid. The system tries to answer each job using data placed at

the node where the job was submitted. If the node does not store the required data, then

the system looks for the data at the node’s parent node. If data cannot be found there,

then the system looks for data at the node’s grandparent, and so on. When the number of

hops is greater than a certain threshold value, the system places a new data replica at the

node that maximizes the number of queries that can be answered without creating new

replicas.

Dang, Hwang & Lim (2007) considers the amount of data accessed from a data

set in order to decide if the data set should be replicated or not. When the amount of

accessed data is greater than the system’s average access rate to data files, the system

creates a new replica of accessed data. If the amount of accessed data of a certain data

set is smaller than the system’s average access rate by a certain amount, then the data

replica is dropped. The authors use a distance function in order to choose the location

for data replicas: new replicas are created at the node that minimizes the used function.

Haddad & Slimani (2007) aims at maximizing the economic value of data stored

at each node. Authors propose that each data fragment have a certain price. System’s

nodes try to foresee the future price of data fragments and to store fragments that are

forecasted as the most valuable ones.

Besides the abovementioned works on replica selection and placement, there are

also works that deal with replica catalogs and replica synchronization and consistency

([Chen et al, 2005; Chervenak et al, 2004; Chervenak et al, 2005; Deris et al, 2004;

Düllmann & Segal, 2001]). We do not deal with these topics in this work, considering

that capabilities may be offered by the underlying infra-structure system (e.g. the grid

management system).

Existing works on scheduling and placement are not capable deal adequately

with user-defined execution-related constraints. On the other hand, our strategies are

oriented to improve the level of QoE the system provides and, then, are capable to deal

with user-defined requirements.

Quality of Experience in Database Systems

18

2.3 Admission Control and Real Time Databases

In our approach for QoE-oriented database systems, users can define requirements for

the execution of database commands. The execution of queries and transactions with

constraints is also studied in the context of real time databases. But in real time

databases the objective (and variety) of constraints is distinct from the objective in QoE-

oriented databases.

 In fact, in real time databases, data may become outdated and transaction

constraints (e.g. deadlines) are used to guarantee that transactions are executed while

data is still valid (i.e. data has temporal validity and constraints are used to maintain

temporal data consistency) [Ozsoyoglu & Snodgrass, 1995; Ramamritham, 1993].

Hence, real time transactions may only be correct it they meet executing time

constraints and use time consistent data [Stankovic, Son & Hansson, 1999].

Kang (2003) deals with QoS management in main-memory real time databases.

The author presents three QoS metrics: deadline miss ratio, database freshness (which

refers to the fresh of the entire data in the database) and perceived freshness (which

refers to the data accessed by timely transactions). The proposed strategy aims to

guarantee a certain perceived freshness value, while transactions are grouped according

to desired miss ratios. In order to increase the number of query operations that the

system can afford to execute, the authors propose a mechanism that does not update

immediately the entire database with recent data acquired from sensors. Hot data (i.e.

data that is frequently accessed) is updated immediately while cold data (i.e. data that is

not regularly accessed) is updated on demand (reducing CPU utilization). An admission

control mechanism estimates the CPU utilization of every incoming transaction. A new

transaction is only accepted if the required CPU is available. The system monitors

deadline miss ratios and dynamic adapts the data update policy in order to reduce the

measured miss ratio.

But real time databases are generally used in controlling systems, where a

deadline miss may result in tragic situations [Ramamritham, 1993]. In QoE-

oriented databases, constraints (requirements) are used to provide high levels of

Quality-of-Experience and a failure to fulfill a requirement will result in user’s

frustration. In some situations, a QoE-oriented database system mail choose to not

satisfy a user requirement in order to fulfill some others and, then, increase the total

QoE level provided by the system. A QoE-oriented database system should be able to

deal with a wider variety of types of requirements than a real time database system.

Early works on admission control mechanisms (including the ones used in real-

time databases) often study how to specify an upper bound to the multi-programming

degree (i.e. the number of commands being executed concurrently by the DBMS)

without leading to system thrashing. Schroeder et al (2006a) studies the lowest multi-

programming degree that can be used without hurting system performance (if the multi-

programming degree is too low, one will have a lower throughput, since not all DBMS

resources will be utilized). In Schroeder et al (2006b), the authors stand for the use of an

external scheduler in order to schedule transaction execution considering expected

response times. Database transactions are organized into classes according to expected

response time and placed in a transactions queue. The mean execution time of

transactions of each class is measured by a performance monitor. A transaction is

accepted to be executed if the time that it would spend in the queue plus the mean

execution time for the transactions of the class it belongs to is lower than its expected

Quality of Experience in Database Systems

19

response time. Query execution performance depends, among others, on the number and

type of database commands that are being executed concurrently by the DBMS. This

work aims to use low multi-programming degrees in order to reduce the impact of

multiple concurrently query executions in each query's execution performance and,

then, increase the accuracy of using the mean execution time of transaction execution of

a certain class to predict future executions.

Elnikety et al. (2004) present an admission control system to be used in dynamic

content Web sites. The main objective of the work is to maintain system's throughput

even in high load situations (i.e. prevent thrashing). In such work, an admission control

system (called Gatekeeper) is implemented in a proxy between an application server and

a database server. It monitors the execution time of application servlets (i.e. web site

components that interacts with the database system). The average response time of a

servlet execution is the load that such servlet produces. Authors also define the system

capacity as the load level that leads to the highest throughput. Every time a servlet

execution starts, the admission control mechanism estimates if the load produced by

such servlet would make the system's load exceed its capacity. If it is true, then servlet

execution does not start immediately: the servlet is placed in an admission (First-In-

First-Out) queue. When a servlet execution ends, the admission control system

evaluates if it can start the execution of a servlet of the admission queue. The execution

of accepted servlets is scheduled using the shortest-job-first (SJF) strategy. Aging is

used in order to prevent long jobs from starving.

Therefore, existing admission control systems are not capable to adequately deal

with distinct types of user-defined execution-related constraints. Our proposals, on the

other hand, consider several types of user-defined requirements in order to schedule

command execution, verifying what requirements can be fulfilled and choosing when to

execute submitted commands while satisfying specified requirements (e.g. to start the

execution of a certain long-running transaction immediately or to start its execution at

night, if executing immediately is not a requirement).

2.4 Runtime Estimations in Database Systems

An important issue in providing QoE for users is to verify which requirements may be

fulfilled and which may not. In order to do that for requirements involving deadlines or

target times the system needs to estimate a query execution time.

In [Spiliopoulou, Hatzopoulos & Costas, 1996] the authors propose some

models to estimate communication and I/O costs in query execution over parallel shared

nothing machines. Such models are used to compute the execution time of query plan

operators. Authors use the costs of individual query operators to estimate the execution

time of a query in the considered environment. The work does not consider the

interference in query execution performance that may exist when more than one query

is executed simultaneously.

Gupta, Mehta & Dayal (2008) uses a machine learning approach to estimate a

range for the execution time of a query. The authors use similar queries (do not consider

sudden changes in workload). Besides that, it should be noticed that to define the time

ranges to consider is a key aspect in the proposed strategy. Using a large number of

small time ranges leads to high error in time estimation, while using a too low number

Quality of Experience in Database Systems

20

of large time ranges may turn out to be meaningless. Therefore, if the time ranges are

not adequately chosen, then the system may fail to predict query execution time, in a

way that leads to low user satisfaction.

Some recent research papers on estimating query execution time deal with

progress indicators for long-running queries. These works include [Chaudhuri, Kaushik

& Ramamurthy, 2005; Chaudhuri, Narasayya & Ramamurthy, 2004; Luo et al, 2005;

Luo, Naughton & Yu, 2006]. Most of then are able of estimating the progress of a single

query, without considering the existence of multi-query influence, which leads to high

errors when estimating the progress of query execution in systems where several queries

are being executed concurrently ([Luo, Naughton & Yu, 2006]).

Luo, Naughton & Yu (2006) discuss query execution progress indicators on

multi-query environment. The authors consider that the progress indicator mechanism

has perfect knowledge about the cost of a query that is still remaining to execute at a

certain time and of the speed (units of cost per unit of time) of the execution of each

query. Query execution is divided in stages that are somewhat similar to our workload

executing phases (discussed in Chapter 6) and the amount of cost executed of each

query at a certain phase is computed considering query's execution speed. In contrast to

that work, we consider that the scheduling mechanism does not have a perfect

knowledge of a query's execution speed and neither of the exact cost of a query that is

still to be executed at a certain time. Instead, our strategy estimates the cost units that

were processed and that are still remaining for execution at each phase change (entering

or exiting of queries). An adaptive conversion function is used to model the relation

between execution time and processed cost.

2.5 Conclusion

In this chapter, we discussed some works concerning the use of mechanisms in database

systems that are somehow related to our QoE proposals.

 First, we reviewed some works on QoE-oriented systems. Then, we presented

some key works on query scheduling and data placement on parallel and distributed

database systems. We also discussed some related work on database admission control

systems, external schedulers and real time databases. Finally, we presented some work

on query execution time estimation.

 In the following chapter, we present our approach to provide high QoE to

database users. We present how users can specify data access requirements and propose

a set of requirements and SQL extensions that can be useful in many situations.

Quality of Experience in Database Systems

21

3 User Defined Requirements for QoE-oriented

Database Systems

According to [ITU, 2007], Quality of Experience (QoE) is the measure of user’s

satisfaction when using a certain system or service. Therefore, a QoE-oriented system

can be seen as a system whose main objective is to provide high satisfaction to users.

Our proposal of a QoE-oriented database system considers that the database

system should take into account users' expectations (which is a key aspect of QoE-

oriented systems [Zapater & Bressan, 2007]) when executing database operations.

In order to do that, we propose that users should have the possibility to specify

their objectives through Data Access Requirements (DARs), which are execution

requirements related to database statements or blocks of statements. In Section 3.1 we

propose the way users can specify (and remove the specification) of requirements for

statements, blocks of statements and database objects.

In Section 3.2, we formally define a set of types of DARs and some SQL

extensions that enable users to use SQL in order to specify requirements from each of

the proposed types. The proposed set of DARs covers some of the most common

database operations’ requirements.

Finally, Section 3.3 presents a summary of the chapter and some final

comments.

Hence, the main contributions of this chapter are: (i) the specification of a set of

types of Data Access Requirements and (ii) the description of SQL extensions that are

used to specify user requirements in SQL.

3.1 Requirements: How to Specify and Remove Them

The main objective of a QoE-oriented system is to satisfy users. In fact, taking into

account users' expectations is a key aspect of QoE [Zapater & Bressan, 2007].

Therefore, our approach to provide QoE in database systems’ operations is to allow

users to express their needs and to make the system take such needs into account when

executing users’ commands.

In such a context, we propose that users specify optional Data Access

Requirements (DARs), together with database commands. Such requirements impose

restrictions on statement execution (e.g. the use of a certain data replica that is not up to

date) or objectives that should be met by the system during command execution (e.g. a

deadline for query execution) or while managing stored data (e.g. a guarantee that a

certain table would be available for users in a certain time period).

Quality of Experience in Database Systems

22

In the following section, we present the Requirements Specification Area, which

is our proposal to include requirements specification in SQL commands. We discuss the

use of the Requirements Specification Area in data manipulation and data definition

commands.

Some of the most common operations may be applied also for a block of

commands. For instance, a user may need to build a report in a certain deadline, and

such report is built based on three database queries. Therefore, in order to build the

report within the required time, all the three database queries must be executed before

the deadline. Hence, the deadline is a requirement that applies for the block of three

queries. In Section 3.1.2, we propose the use of the Requirements Specification Area

together with a BEGIN BLOCK/END BLOCK that enables users to specify

requirements that are valid for a block of statements.

In the real world, requirements may change over time. Therefore, there should

be a way to enable users to cancel some of the specified requirements. In 3.1.3, we

discuss how users can inform the system that DARs specified in the past should not be

satisfied anymore.

3.1.1 Requirements Specification Area

In the QoE-oriented database system, each user’s command may have a set of

associated DARs. We propose the use of the keyword REQUIREMENTS to identify in

SQL the beginning of an area of DARs specification. Such keyword may be followed

by the requirements area name, as defined in Figure 3.

Figure 3 - Requirements Specification Area format

Therefore, data access requirements are defined in the requirements specification area.

Each requirements specification area may contain several DARs’ definitions, which

should be separated by colons (the syntax of each of the proposed requirements is

defined later in this Chapter). Requirements may also be grouped using parenthesis. The

keyword OR can also be used to indicate that some group of requirements may be

satisfied instead of another group.

Example 3.1 Figure 4 presents an example on the use of multiple requirements in a

single user query. In such query, Requirement_Definition_1, Requirement_Definition_2

and Requirement_Definition_3 represent user defined requirements, such as a deadline

for query execution or the possibility to use data replicas that have a certain freshness

(the specification of user-defined DARs should follow the syntax that is defined in the

following Sections). The system should fulfill requirements Requirement_Definition_1

and Requirement_Definition_2, or Requirement_Definition_3.

 REQUIREMENTS [Requirements_Area_Name]

Quality of Experience in Database Systems

23

Figure 4 - Requirements Definition Area - Example

Besides the use on data manipulation commands, user defined requirements can also be

associated to database objects (e.g. tables and views). We propose that the requirements

can be defined during or after object creation. In both situations, we also use the

REQUIREMENTS keyword.

Example 3.2 In Figure 5, we present an example of requirements definition during table

creation. Figure 6 presents requirements definition via an ALTER TABLE command.

Figure 5 - Requirements Definition Area in a CREATE TABLE Command - Example

Figure 6 – Adding a Requirements Definition Area - ALTER TABLE Command –
Example

3.1.2 Requirements for Blocks of Statements

In some situations, users may want to specify requirements that are valid for a block of

statements (or commands) instead of for a single command.

Consider, for instance, a certain report that should be built in five minutes. But

such report is based in two database queries. Therefore, both queries should finish

within the specified deadline or none of them should be executed. In such situation, the

user may specify the deadline for the block of statements (or block of commands).

 SELECT *

 FROM SALES

 WHERE STATE_ID = 1

 REQUIREMENTS MyRequirements

 (Requirement_Definition_1,

Requirement_Definition_2)

OR

(Requirement_Definition_3)

 CREATE TABLE CUSTOMERS (

 CUSTOMER_ID INTEGER PRIMARY KEY,

 CUSTOMER_NAME VARCHAR(100)

)

 REQUIREMENTS MyRequirements

 Requirement_Definition_1,

Requirement_Definition_2,

Requirement_Definition_3

 ALTER TABLE CUSTOMERS

 ADD REQUIREMENTS Requirement_Definition_n

Quality of Experience in Database Systems

24

Definitions
Let Q = {q1,q2, ..., qn} denote a set of user statements (or commands), with q

ranging on Q. Let R = {r1, r2, …, rn} denote a set of data access requirements

with r ranging on R. A Block of Statements (or Commands) with Requirements is

a set of user statements Q that share the same set of data access requirements R.

Statements defined in a Parallel Block of Statements may be executed in parallel.

Statements defined in a Sequential Block of Statements must be executed in the

same order as they are defined. SQL Extensions
In order to enable the specification of a Block of Statements with Requirements, we

propose the use of the key expressions BEGIN BLOCK and END BLOCK. The clauses

PARALLEL and SEQUENTIAL are used to specify if the commands defined in the

block should be executed in parallel or sequentially. The block’s requirements

specification area is placed after the END BLOCK clause, like it is represented in Figure

7.

Figure 7 - SQL Extensions – Blocks of Statements with Requirements

When executing the statements that are in the block, the system should satisfy all the

requirements in the block’s requirements specification area. But each statement may

have its own requirements, which are specified in the statements’ requirements

specification area.

Example 3.3 Figure 8 presents an example on the use of a parallel block of statements.

In such figure, several requirements are specified (types of requirements are defined in

Section 3.2). The block presented in Figure 8 has two queries; each of them has a Data

Availability and a Disconnected Execution Mode requirement. Both queries should be

executed even though the user that submitted them is disconnected from the database

system. The result set of the execution of the first query should be named

TOP_CUSTOMERS. The result set of the execution of the second query should be

named REVENUE_PER_STATE. The result set of the execution of each query should

be available for users during 10 minutes after the end of the corresponding query’s

execution. Besides that, the entire block has a Data Freshness Requirement, an

Execution Finish Time Requirement and an Execution Periodicity Requirement. Both

 BEGIN [PARALLEL|SEQUENTIAL] BLOCK

 Command_1

 Command_2

 …

 Command_N

 END BLOCK

 REQUIREMENTS Requirements_Area_Name

 Requirement_Definition_1,

Requirement_Definition_2,

 ...

Quality of Experience in Database Systems

25

queries inside the block may use a replica of the STATES relation which is 72 hours

old, should have its execution finished at 14 o’clock and should be executed every

Friday during July, 2010.

Figure 8 - SQL Extensions – Blocks of Statements with Requirements – Example

3.1.3 Dropping Requirements

Requirements change over time. Therefore, there should be a way for users to inform

the database system that a certain requirement should not be fulfilled anymore.

In order to cancel the execution of commands that have associated DARs, we

propose the use of the DROP REQUIREMENTS command. Figure 9 represents the

syntax of such command, which accepts as parameter the Requirements Area Name of

the command whose execution the user wants to cancel.

Figure 9 - SQL Extensions – Dropping an Execution Periodicity Requirement

 BEGIN PARALLEL BLOCK

 SELECT C.ID, C.NAME, C.PHONE

 FROM CUSTOMERS C

 WHERE EXISTS (SELECT 1

 FROM SALES S

 WHERE S.CUSTOMER_ID = C.CUSTOMER_ID

AND S.REVENUE > 1000

AND S.DATE > '2010/01/01')

 REQUIREMENTS REQ1

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS TOP_CUSTOMERS

 AVAILABLE DURING 10 MINUTES AFTER EXECUTION;

 SELECT S.STATE_ID, ST.STATE_NAME, SUM(S.REVENUE) AS SUM_REVENUE

 FROM SALES S

INNER JOIN STATES ST

ON S.STATE_ID = ST.STATE_ID

 WHERE S.DATE > '2010/01/01'

 GROUP BY S.STATE_ID, ST.STATE_NAME

 REQUIREMENTS

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS REVENUE_PER_STATE

 AVAILABLE DURING 10 MINUTES AFTER EXECUTION;

 END BLOCK

 REQUIREMENTS REQ_BLOCK

 FRESHNESS OF STATES HIGHER THAN '2010/07/01’,

 FINISH BEFORE '14:00',

 REPEAT EVERY FRIDAY IN PERIOD FROM '2010/07/01' TO '2010/08/01'

 DROP REQUIREMENTS Requirements_Area_Name

Quality of Experience in Database Systems

26

Example 3.4 In the example of Figure 8, the requirements area of the block of

commands is named as REQ_BLOCK. If the user wants to cancel the execution of such

block of commands before August 1
st
, 2010, then he/she should execute the DROP

REQUIREMENTS command specified in Figure 10.

Figure 10 - SQL Extensions – Dropping a Requirement - Example

Database objects can also be altered in order to remove specified requirements. We

propose the use of the ALTER command together with the DROP REQUIREMENTS

clause.

Example 3.5 In Figure 11, specified requirements are removed from table

CUSTOMERS.

Figure 11 – Dropping a Requirements - ALTER TABLE Command – Example

3.2 Data Access Requirements: Definitions and SQL Extensions

In this section, we define a set of possible types of DARs and propose how they can be

specified in SQL. Some of proposed DARs are especially useful in distributed databases

(e.g. Replica Age) but most can also be used in centralized and parallel environments.

The proposed types of DARs are:

• Data Freshness Requirement – defines the acceptable timestamp that a

certain replica must correspond to in order to be used to answer a query;

• Execution Deadline Requirement – defines an upper bound for the duration

of a command’s execution;

• Disconnected Execution Mode Requirement – specifies that a certain

command should be executed even though the user who specified the

requirement is no longer connected to the database. This allows users to

schedule for later use;

• Data Availability Requirement – defines a time period over which a certain

dataset should be available to users;

• Execution Periodicity Requirement – defines that a certain command must

be executed in some time windows in a determined time period;

 DROP REQUIREMENTS REQ_BLOCK

 ALTER TABLE CUSTOMERS

 DROP REQUIREMENTS

Quality of Experience in Database Systems

27

• Execution Finish Time Requirement – defines a timestamp on which the

command execution should already be finished;

• Execution Start Time Requirement – defined a lower bound on the time that

a certain command may have its execution started;

• Execution Priority Requirement – defines the execution order priority of

distinct statements (considering that the system would also satisfy the DARs

it had already committed itself to satisfy).

In the following, we formally describe the abovementioned set of types of DARs

for database operations and propose some extensions to SQL language that would

enable users to specify such DARs using SQL.

3.2.1 Data Freshness Requirement

In databases, data replication can improve query execution performance and data

availability. However, in most situations it is not possible to use synchronous

replication, which means that some data replicas are not up to date. Users may choose to

do not use up to date data in order to improve query execution performance or even to

execute a query (when up to date data is not available).

The Data Freshness Requirement specifies a filter to the system about which

data replicas may be used to answer a certain query. Definitions
Let R = {r1, r2, …, rn}, with r ranging on R, denote a set of replicas of a certain

data set D. Consider that the data of ri is matched with the that existed in D at a

certain timestamp Ti. The Data Freshness Requirement (ω) specifies a timestamp

that is used as a lower bound for Ti. Therefore, a certain data replica ri can only

be used to answer a query when:

ω ≤ Ti SQL Extensions
We propose an SQL extension that enables the specification of the Data Freshness

Requirement for each relation used in a query command. Such extension is the

FRESHNESS clause used in Figure 12 (where relation is the relation name and

freshness_parameter is the requirement’s value).

Figure 12 - SQL Extensions – Data Freshness Requirement

Example 3.6 In the example of Figure 13, a user specifies that the system can execute

the query using any replica of the SALES relation whose data corresponds at least to the

data stored in the master SALES table in December 1
st
, 2010.

 FRESHNESS OF relation HIGHER THAN freshness_parameter

Quality of Experience in Database Systems

28

Figure 13 - SQL Extensions – Data Freshness Requirement - Example

3.2.2 Execution Deadline Requirement

In many situations, users may need to finish a command’s execution in a certain time

period. For instance, a user may need a certain report for a briefing that would happen in

a few minutes, which would impose a deadline for the execution of report’s queries.

An Execution Deadline Requirement specifies a timestamp interval by which the

execution of a statement should be finished. Definitions
Let q denote a user statement which takes a certain time (t) to be executed. Let s

represent the timestamp on which q’s execution starts. Let t0 represent the

timestamp on which q is submitted to the system. The Execution Deadline

Requirement (δ) of q represents a timestamp interval on which a user needs the

execution of q to finish. The Execution Deadline Requirement is satisfied when:

t0 + δ ≥ (sq + tq) SQL Extensions
We propose a DEADLINE clause, which accepts a deadline_parameter that

represents the maximum acceptable duration of command’s execution (in seconds). In

Figure 14 we present the syntax of the DEADLINE clause.

Figure 14 - SQL Extensions – Execution Deadline Requirement

Example 3.7 The sample query shown in Figure 15 must be completed in no more than

two minutes after its submission to the system.

 SELECT P.PRODUCT_ID, PRODUCT_NAME, SUM(REVENUE)

 FROM SALES S

 INNER JOIN PRODUCTS P

 ON S.PRODUCT_ID = P.PRODUCT_ID

 WHERE DATE >= '2010/06/01'

 GROUP BY P.PRODUCT_ID, PRODUCT_NAME

 REQUIREMENTS

 FRESHNESS OF SALES HIGHER THAN '2010/12/01'

 DEADLINE deadline_parameter

Quality of Experience in Database Systems

29

Figure 15 - SQL Extensions – Execution Deadline Requirement – Example

3.2.3 Disconnected Execution Mode Requirement

When users or applications submit commands to databases, they usually stay connected

to the system waiting for the results of command’s execution. This is the default

behavior of the system. Nevertheless, sometimes users or applications may want to

submit a command and disconnect from the database. In such situation, the user would

only connect again to obtain command’s results after sometime (when he/she believes

that command execution is already finished).

For instance, consider a manager who needs a report, which is based on a certain

query or set of queries. He is about to leave home and wants the report to be finished

when he arrives at his office (10 minutes latter). Then, just before leaving home, he

submits the report for execution using his cell phone and establishes an execution

deadline of 10 minutes. The manager disconnects from the database after submitting the

report and connects again only after he arrives at this office. Then, he would query for

his report.

The Disconnected Execution Mode Requirement specifies that the database

command should be executed even though the user who submitted it is disconnected

from the system. Definitions
Let q denote a user statement and u denote the user who submitted the statement

for the system. Let r denote the result of the execution of q. The Disconnected

Execution Mode Requirement is satisfied when the system executes q and makes

r available for database users even though u is disconnected from the system. SQL Extensions
We propose the use of the EXECUTE DISCONNECTED clause in order to

specify the Disconnected Execution Mode Requirement. Figure 16 presents the full

syntax of such clause: the DatasetName represents the name of the object on which the

system would store command’s results.

Figure 16 - SQL Extensions – Disconnected Execution Mode Requirement

 SELECT PRODUCT, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/06/01'

 GROUP BY PRODUCT

 REQUIREMENTS

 DEADLINE 120

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS DatasetName

Quality of Experience in Database Systems

30

Example 3.8 Consider a manager who uses a cell phone application to submit a report

for execution when leaving home and who wants to receive the report when arriving at

the office 10 minutes later. Figure 17 presents an example of the command submitted by

the cell phone application. This is a query with two requirements: execution deadline

and disconnected execution mode. Such query should be executed in 10 minutes even

though the user is disconnected from the system and its results should be identified as

REVENUE_PER_STATE.

Figure 17 - SQL Extensions – Disconnected Execution Mode Requirement – Example

In Figure 16, the DatasetName represents the name of the object that would store the

results of user’s command. When the user or application wants to retrieve the

command’s results, he/it would query the database for the DatasetName, as presented in

Figure 18.

Figure 18 - SQL Extensions – Retrieving the Results of a Disconnected Executed
Command

Example 3.9 In order to retrieve the results of the query of Figure 17, the application

may submit the command of Figure 19 (i.e. query REVENUE_PER_STATE).

Figure 19 - SQL Extensions – Retrieving the Results of a Disconnected Executed
Command - Example

 SELECT STATE, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/01/01'

 AND STATUS IN (0,1)

 AND NOT EXISTS (

 SELECT 1

FROM REFUNDS

WHERE STATUS = 0

AND REDUNDS.SALE_ID = SALES.SALE_ID)

)

 GROUP BY STATE

 REQUIREMENTS

 DEADLINE 600,
 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS REVENUE_PER_STATE

 SELECT * FROM DatasetName

 SELECT * FROM REVENUE_PER_STATE

Quality of Experience in Database Systems

31

It is expected that reports that would be executed in disconnected mode would produce

result sets that are significantly smaller than the data sets the computations access.

Therefore, retrieving the results of a disconnected executed command is not usually

very time consuming. Besides that, as such results set has just being generated, the

system may choose to maintain it in memory for a certain time. But, users would only

have a guarantee that the results set would be available for a certain time if they specify

a Data Availability Requirement (which we describe in the following).

3.2.4 Data Availability Requirement

In several situations, users may need to have a guarantee that certain datasets are

available. Users may want to make the result set of a certain time-consuming query

available for other users during a certain time; In distributed databases, some sites may

become offline during certain time periods, making the data they store inaccessible for

remote users.

The Data Availability Requirement specifies a period over which a dataset

should be available to users. Definitions
Let U denote a set of system’s users with u ranging on U. Let D denote a dataset

and T={t1,t2,…,tn} denote a set of time windows (e.g. every Friday of a certain

month) with t ranging on T. The Data Availability Degree (AD,T) is the interval of

T on which D is actually available to U. The Data Availability Requirement

(δD,T) is the interval of T on which D should be available to U. Thus, δ is a lower

bond for A (δD,T ≤ AD,T).

When a user specifies a Data Availability Requirement for a certain piece of data during

a certain set of time windows, he/she expects that the data availability “degree” of such

piece of data during the specified set of time windows be higher or equal to the

specified requirement.

In order to satisfy a Data Availability Requirement, a QoE-oriented system

dynamically creates and places data or replicas. Such data replicas may be materialized

in disk or not. For instance, if a user wants to guarantee that a certain query result is

available during a small time period, he/she can specify an availability period and the

system may choose to provide the desired availability using the main memory or not. SQL Extensions
We propose an AVAILABILITY clause in order to identify a data availability

requirement. The definition of a data availability requirement must include the desired

min-value for the data availability degree.

 Figure 20 presents the syntax of the AVAILABILITY clause. Such clause

enables users to specify the min-value for the data availability degree in minutes (using

the Minutes parameter of Figure 20) or as a percentage of a certain time window (using

the Percentage parameter).

Quality of Experience in Database Systems

32

In Figure 20, Repeating and InPeriod are used to specify the set of time

windows T over which the defined availability degree should be provided. InPeriod

specifies date and time boundaries for T. In case T is composed by several periods,

which happens with some periodicity, Repeating should be used (repeating is defined

later on).

In order to guarantee the desired availability degree, the system may choose to

dynamically create data replicas. Users may indicate that the data that should be

available is the one that exists when the command is submitted (option SNAPSHOT),

that master data and replicas updates may occur asynchronously (option

ASYNCHROUNOUS) or that data master data and data replicas must always be

synchronized (option SYNCHROUNOUS).

Figure 20 - SQL Extensions - Data Availability Requirement

Example 3.10 Figure 21 presents some commands that use the AVAILABILITY

clause. In the first one, a query has a 5 minutes execution deadline and is executed in

disconnected mode. Query’s results are stored in REVENUE_PER_PROD, which should

be available during 20 minutes after query execution. In command II of Figure 21, a

snapshot of table CUSTOMERS should be available during 99% of the time between

January 1, 2010 and March 31, 2010. In command III, the TOP_SALES table should be

available every month from days 25 to 30. Data replicas may not be fully synchronized

with master tables.

 AVAILABLE DURING [Period MINUTES]|[Percentage PERCENT]

 [Repeating][InPeriod][CollectData]

 Repeating = [EVERY MONTH FROM BegiDay TO EndDay]|

 [EVERY BeginDayOfWeek TO EndDayOfWeek]|[EVERY DayOfWeek]

 InPeriod = IN PERIOD FROM BeginDateTime TO EndDateTime

CollectData = [SNAPSHOT|ASYNCHRONOUS|SYNCHRONOUS]

Quality of Experience in Database Systems

33

Figure 21 - SQL Extensions - Data Availability Requirement – Examples

3.2.5 Execution Periodicity Requirement

Consider an organization in which every Friday there is a board meeting with the

managers. In such meetings, some reports about sales are presented to the managers.

Reports must be based on the most up to date data. Therefore, reports’ queries are built

using an Execution Finish Time Requirement (defined in Section 3.2.6) that specifies an

execution finish time for the database commands. But such reports must be built every

week. Hence, reports’ queries may also have an Execution Periodicity Requirement

which specifies the periodicity on which the database command should be executed. Definitions
Let q denote a user statement and T={t1,t2,…,tn} denote a set of time windows

(e.g. every Friday of a certain month) with t ranging on T. The Execution

Periodicity Requirement (τ) is the set of time windows (τ C T) on which q should

be executed. SQL Extensions
We propose a REPEAT clause in order to identify an Execution Periodicity

Requirement, as presented in Figure 22. Such clause accepts the time windows

identification using the same Repeating and InPeriod clauses that we used in the Data

Availability Requirement: Repeating specifies the frequency on which the command

execution should be repeated and InPeriod specifies date and time boundaries for such

executions.

 I) SELECT PRODUCT, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/01/01'

 GROUP BY PRODUCT

 REQUIREMENTS

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS REVENUE_PER_PROD,

 DEADLINE 300,

 AVAILABLE DURING 20 MINUTES

II) ALTER TABLE CUSTOMERS

 ADD REQUIREMENTES

 AVAILABLE DURING 99 PERCENT

 IN PERIOD FROM '2010/01/01'

 TO '2010/03/31'

SNAPSHOT

III)ALTER TABLE TOP_SALES

 ADD REQUIREMENTS

 AVAILABILITY DURING 100 PERCENT

 EVERY MONTH FROM 25 TO 30

ASYNCHRONOUS

Quality of Experience in Database Systems

34

Figure 22 - SQL Extensions – Execution Periodicity Requirement

Example 3.11 Figure 23 presents an example on the use of the Execution Periodicity

Requirement. Consider a managers’ meeting that takes place every Friday and on which

some reports about sales are presented to the managers. The query of Figure 23 may be

used to construct one of the reports presented in such meetings: it is executed in every

Friday of the first semester of 2010 with an execution finish time of 14 o’clock.

Figure 23 - SQL Extensions – Execution Periodicity Requirement – Example

3.2.6 Execution Finish Time Requirement

Users may need to have the execution of a certain statement or block of statements by a

certain time. For instance, consider that a certain report may be executed at night, no

matter when, since its execution is finished before 08AM from the next day. In this

situation, users may specify an Execution Finish Time Requirement.

 The Execution Finish Time Requirement indicates when the execution of a

certain statement or block of statements should be finished. Definitions
Let q denote a user statement, which takes a certain time (t) to be executed. Let s

represent the timestamp on which q’s execution starts. The Execution Finish

 REPEAT Repeating InPeriod

 Repeating = [EVERY MONTH FROM BegiDay TO EndDay]|

 [EVERY BeginDayOfWeek TO EndDayOfWeek]|[EVERY DayOfWeek]

 InPeriod = IN PERIOD FROM BeginDateTime TO EndDateTime

 SELECT STATE, SUM(REVENUE)

 FROM SALES

 WHERE MONTH(SALES.DATE) = MONTH(SYSDATE)

 AND YEAR(SALES.DATE) = YEAR(SYSDATE)

 AND STATUS IN (0,1)

 AND NOT EXISTS (

 SELECT 1

FROM REFUNDS

WHERE STATUS = 0

AND REDUNDS.SALE_ID = SALES.SALE_ID)

)

 GROUP BY STATE

 REQUIREMENTS REQUIREMENTS_REPORT_1

EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS MANAGER_REPORT,

FINISH BEFORE '14:00',

REPEAT EVERY FRIDAY IN PERIOD FROM '2010/01/01' TO '2010/07/01'

Quality of Experience in Database Systems

35

Time Requirement (φ) of q represents a timestamp on which the execution of q

must have finished. The Execution Finish Time Requirement is satisfied when:

φ ≥ (s + t) SQL Extensions
We propose a FINISH BEFORE clause, which accepts a finish_time_parameter that

represents the timestamp on which query’s execution should already have finished. In

Figure 14 we present the syntax of the FINISH BEFORE clause.

Figure 24 - SQL Extensions – Execution Finish Time Requirement

Example 3.12 The sample query shown in Figure 15 must be completed before 17:00

hours.

Figure 25 - SQL Extensions – Execution Finish Time Requirement – Example

3.2.7 Execution Start Time Requirement

Users may want to a certain report to be executed while they are disconnected from the

system. However, in such situation, report execution may have a certain restriction on

the timestamp on which the report execution is allowed to start. The Execution Start

Time Requirement specifies the timestamp on which a certain command execution is

allowed to start. Definitions
Let q denote a user statement whose execution starts at timestamp s. The

Execution Start Requirement of q (σq) represents the timestamp on which report

execution is allowed to begin. The Execution Start Requirement of q is satisfied

when:

σq ≤ s SQL Extensions
In order to express the Execution Start Time Requirement in SQL, we propose the

START AFTER clause. Such clause accepts a start_time_parameter, which is the

 FINISH BEFORE finish_time_parameter

 SELECT PRODUCT, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/06/01'

 GROUP BY PRODUCT

 REQUIREMENTS

 FINISH BEFORE 17:00

Quality of Experience in Database Systems

36

lower bound (date and) time for command execution start. Figure 26 presents the syntax

of the START AFTER clause.

Figure 26 - SQL Extensions – Execution Start Time Requirement

Example 3.13 In Figure 27, we present an example on the use of the START AFTER

clause. The query uses two requirements: execution start time and disconnected

execution mode. Such query should be executed after 08PM and its results should be

identified as REVENUE_PER_STATE.

Figure 27 - SQL Extensions – Execution Start Time Requirement – Example

3.2.8 Execution Priority Requirement

Statements may have distinct priorities, which should indicate that some of them should

be executed before others. For instance, report queries submitted by the board members

of an organization may have higher priority (and should be executed earlier) than the

ones submitted by other members of the organization.

 The Execution Priority Requirement indicates the execution priority of the

considered command. Definitions
Let qi and qj denote two user statements. Let ρi denote the Execution Priority

Requirement of qi and ρj denote the Execution Priority Requirement of qj. In

order to satisfy such requirements, qi should be executed before qj whenever ρi <

ρj.

Each statement has a priority, which must be expressed in a scale. For simplicity, we

use only two values for priority: normal priority and high priority.

When evaluating the execution of queries with DARs, the system must evaluate

if such statements (or block of statements) are compatible with the ones that the system

 START AFTER start_time_parameter

 SELECT STATE, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/01/01'

 AND STATUS IN (0,1)

 AND NOT EXISTS (

 SELECT 1

FROM REFUNDS

WHERE STATUS = 0

AND REDUNDS.SALE_ID = SALES.SALE_ID)

 GROUP BY STATE

 REQUIREMENTS

 START AFTER 08PM

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS REVENUE_PER_STATE

Quality of Experience in Database Systems

37

already agreed to execute. This is also valid in the case of high priority statements or

block of statements. For example, consider two queries: qi and qj. The query qi has a

deadline di, execution time ei and low priority, and the query qj is of high priority, has a

deadline dj (dj > 2 * di) and execution time ej (ej = dj − di). The system accepted query qi

before the submission of qj. In order to satisfy the deadline requirement of both queries,

the system should execute qi before qj. However, this schedule would not satisfy

specified priority requirements, which indicate that qj must be executed before qi.

Therefore, when the user submits qj, the system verifies it cannot satisfy the specified

priority requirement and informs the user. SQL Extensions
We propose the use of a HIGH PRIORITY clause (Figure 28) to identify that a

statement is of high priority. Statements that do not have such clause are of normal

priority.

Figure 28 - SQL Extensions – Execution Priority Requirement

Example 3.14 In Figure 29, query I has a high priority requirement, while query II is of

normal priority.

Figure 29 - SQL Extensions – Execution Priority Requirement – Examples

3.3 Conclusion

Quality of Experience is a measure on user’s satisfaction when using a certain system or

service. One way to increase user’s satisfaction is to make the system behave the way

the user needs (or expects) the system to do.

In this chapter, we presented the use of user-defined Data Access Requirements

(DARs) in order to increase the levels of QoE provided by database systems.

 HIGH PRIORITY

 I) SELECT PRODUCT, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/06/01'

 GROUP BY PRODUCT

 REQUIREMENTS

 HIGH PRIORITY

 II) SELECT PRODUCT, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/06/01'

 GROUP BY PRODUCT

Quality of Experience in Database Systems

38

We presented how to specify DARs to database commands, which may be single

statements or blocks of statements. We also presented how to specify DARs for

database objects (e.g. tables, result sets). We also proposed that users should be able to

cancel requirements.

Then, we defined a set of types of DARs that cover the most common

requirements in database operations. Proposed types of requirements are: Data

Freshness, Execution Deadline, Disconnected Execution Mode, Data Availability,

Execution Periodicity, Execution Finish Time, Execution Start Time and Execution

Priority.

We also proposed some SQL extensions that enable users (e.g. programmers

which include requirements in application programs) to specify each of the proposed

types of DARs in SQL.

During this chapter, most database commands examples are data retrieval

queries. One possible future line of work on this subject is to study which requirements

should be defined concerning data insertion, deletion and updating commands. Some of

the proposed types of requirements may also be used in those cases.

In the following chapter, we discuss tasks generation from users’ commands and

DARs.

Quality of Experience in Database Systems

39

4 Tasks and Task Level Requirements

In previous chapter, we proposed that database users should be capable to specify one or

more Data Access Requirements (DARs) for statements or blocks of statements. Then,

the system should evaluate if it can satisfy specified DARs and inform the user in case

such DARs cannot be satisfied.

 We call job to a logical unit that should only have any part of it executed if all its

DARs can be satisfied. A job can be a block of statements with DARs or even a single

command (when it is not part of a block of statements). The first step in QoE-oriented

scheduling is to transform jobs into smaller units (tasks) whose execution may be better

evaluated and scheduled by the system. In order to guarantee DARs’ fulfillment, each

task has one or more task level requirements. The number and types of tasks (and the

corresponding requirements) generated to execute a job depends on several factors,

including the types of DARs and the physical design of accessed data.

 In this chapter, we discuss task generation and task level requirements

specification. First of all, Section 4.1 make some basic definitions, presenting a formal

definition for jobs and tasks, proposing schedulers architecture and discussing how such

schedulers can be used in distinct database architectures. Section 4.2 discusses data

placement alternatives. Then, in Section 4.3 we detail tasks generation. Section 4.4

presents task level requirements specification. Then, Section 4.5 contains several

examples of task generation and task level requirements specification considering

centralized, parallel and distributed database environments. Finally, in Section 4.6 we

summarize the chapter and present some final comments.

The main contribution of this chapter is the mapping of user-defined requirements

into task level requirements that are used scheduling command execution and placing

data

4.1 Jobs, Tasks, Schedulers and Database System’s
Architecture

Users’ commands and block of commands with DARs should be transformed into tasks

that may have task level requirements. Definitions
A job is a statement or a block of statements that should only have any part of it

executed if the system satisfies all specified DARs associated to the job.

Therefore, if the system cannot satisfy any of the DARs associated to any

command participating in a job, then the system should not execute any part of

Quality of Experience in Database Systems

40

the job. In order to evaluate DARs fulfillment, the system may only consider a

certain time window (e.g. the next thirty days).

A task is a logical unit that should be executed in order to complete a job. A job

execution may comprise one or more tasks, which may be executed in parallel in

some cases. When several tasks are generated for a single job, there may be

tasks that depend on others and tasks that supply others.

 Dependent tasks are tasks whose execution that may not start until the end of the

execution of the tasks on which they depend on. Supplier tasks are tasks whose

execution must end to allow the execution start of the tasks that depend on them.

A task’s execution may have several task level requirements, which must be

fulfilled in order to guarantee the fulfillment of user specified DARs.

 Jobs and tasks are handled by two types of schedulers: community and tasks

scheduler.

The community scheduler is responsible to manage job’s execution, generating

tasks and the corresponding requirements and determining where tasks will execute,

while the tasks scheduler evaluates whether task level requirements can be satisfied or

not, and schedules tasks’ execution.

In a generic environment, there may be several data services (i.e. database

management engines that may execute tasks). One approach is to use a single tasks

scheduler to evaluate requirements fulfillment and schedule tasks execution in all

available data services. Such scheduler would manage all available resources and be

capable to estimate future conditions in all participating services. Besides presenting a

limited scalability, such strategy also imposes that data services are tightly coupled, with

a single scheduler that controls all available resources. In order to increase the system’s

scalability and to consider a more generic environment where heterogeneous data

services may have a certain degree of autonomy, we consider that there is a task

scheduler to manage the operations of each data service. Besides that, one or more

community schedulers are used to interact with several data services. Such organization

enables community and task schedulers to be used in centralized, parallel and

distributed databases.

For instance, in a centralized database there is a single data service, which leads

to a single task scheduler, and a single community scheduler is sufficient as well.

In a shared-nothing parallel architecture (e.g. cluster database), each node can be

seen as a data service and have its own tasks scheduler, as represented in Figure 30. A

single community scheduler may be used to interact with all the data services. Such

scheduler may reside in any machine.

Quality of Experience in Database Systems

41

Figure 30 - Multiple Data Services in a Parallel Database System

Multiple data services can also be considered in distributed databases. In Figure 31, we

present a globally distributed database, where each site is considered a single data

service and has its own tasks scheduler. Task schedulers in a site may manage either a

single or several nodes. A single community scheduler may be used in such situation,

but the use of more than one can improve system scalability and availability (when

using multiple community schedulers, they may share information about services’

reputation in order to increase scheduling quality).

Figure 31 - Multiple Data Services in Global Databases

Database Cluster

Node i = Data

Service i

Node 1 = Data

Service 1

Node 2 = Data

Service 2

Tasks

Scheduler

Tasks

Scheduler

Tasks

Scheduler

Quality of Experience in Database Systems

42

4.2 Data Placement Assumptions

Physical data placement is a key aspect of database systems and may influence in

command execution performance and data availability. There are some alternatives

strategies to physically place data, especially in the parallel and distributed database

context.

One approach to physically place data in parallel/distributed environments is to

distribute relations between available nodes. However, such approach commonly leads

to low performance (as data movement between nodes is needed to do join operations).

In fact, parallel/distributed database design commonly uses two primitive operations:

replication and fragmentation. Such operations may also be combined in hybrid

configurations.

The distributed data placement strategies we deal with are:

• Schema Replication – tables are fully replicated at distinct services. Queries can be

entirely executed at a data service, with no need to do data shipping between

services. On the other hand, it demands more space to store data (as all the data is

placed in more than one place) and imposes some overhead to the system in order to

maintain data replica synchronization;

• Schema Fragmentation (or Partitioning) – database tables are split into partitions

considering pre-defined criteria. Table fragmentation may improve query execution

performance and enable the use of intra-query parallelism (inter-query parallelism is

provided by the database management system, which is capable to execute several

commands concurrently).

Table partitioning may be horizontal (where entire tuples of the relation are placed

at distinct partitions) or vertical (where table’s columns are placed at distinct

partitions). Horizontal partitioning is the most commonly used strategy and is the

one that may lead to the generation of several tasks for each job (as discussed in the

following section). We treat vertical partitioning as if each partition is a distinct

table and partition join operations must be explicitly defined in users’ commands.

→ Subject-Based and Key-Based Multiple-table partitioning – in a schema with

several tables, a common approach is to partition large or very large tables

and replicate the other ones. In this case, all partitioned tables must follow

the same partition criteria, which should be subject-based (e.g. tables that are

geographically distributed, and where each table stores data about the events

that occur in the region they are stored) or key-based partitioned (e.g. tables

are partitioned considering the values of their join attribute);

→ Fragment Replication – besides creating fragments and replicating tables, it

is also possible to replicate table fragments. This can simultaneously lead to

some of the advantages of replication and fragmentation, like availability

and intra-query parallelism [Costa & Furtado, 2009];

• Multiple Simultaneous Fragmentation Schemes – system administrators may

simultaneously use more than one of the above described placement strategies. For

instance, a certain table may be stored entirely stored in a single site, and

simultaneously be key-based partitioned and have its partitions distributed placed

across distinct services. This increases the available alternatives to the system when

looking for providing high performance (and high QoE).

Quality of Experience in Database Systems

43

On the fly repartitioning may be necessary when tables that are partitioned considering

distinct criteria are accessed by a single query. However, repartitioning is a very

expensive operation. Therefore, we consider that multiple simultaneous fragmentation

schemes are used in order to avoid the need of on the fly repartitioning.

4.3 Tasks Generation

Tasks generation from an SQL command concerns analyzing the submitted command,

locating the necessary data to execute the command and writing new commands that

should be executed in order to generate the result of the submitted command. Therefore,

the following three situations should be considered when generating the tasks for a

command:

I. The command accesses a schema that is not partitioned – a single task is

generated for such command;

II. The command accesses a schema that is (subject or key)–based partitioned with

n fragments – the command (query) must be transformed into a set of queries to

operate over the individual fragments, as Furtado (2005) describes, and either a

single or multiple commands to merge the partial fragment results [Furtado,

2005b]. The number of tasks generated for such command is therefore between

n+1 and 2n – 1 (n fragment operating queries and either 1 merge query or

multiple merge query steps if hierarchical merge is used as described in

[Furtado, 2005b]. Furtado (2005) discusses systematically the query clauses

transformations that are necessary to operate over partitioned data, and the ones

used to merge rewritten commands’ results in order to obtain the original

command’s results set;

III. The command accesses a schema, which has multiple fragmentation schemes –

several sets of tasks are generated, each one corresponding to a fragmentation

scheme. The election-based task scheduling process (described in the next

chapter) is used to choose which set of tasks should be executed.

Although tasks are generated considering existing data allocation schemes, a task can be

executed by a data service that does not store all required data to execute task’s query.

In such case, missing data is copied during task execution.

Besides individual commands, users may also specify blocks of statements (as

described in chapter 3) with DARs. The main difference between the use of blocks of

statements and the use of individual commands is in the verification of DARs

fulfillment: the system only accepts the block of commands for execution if all the tasks

from all the commands can be executed while achieving all specified requirements.

Therefore, in case of blocks of statements, tasks are generated for each of the

statements defined in the block in the same way they would be if the command was not

included in a block. However, each task will have requirements generated from the

command’s DARs and from the block DARs.

Quality of Experience in Database Systems

44

Users may also specify alternative sets of requirements using the keyword OR. In

this case, tasks are generated considering each set of requirements. The system would

select among the alternative set of requirements the one that would be executed

(described in Section 5.3).

Example 4.1 Consider a sales relation that is physically partitioned into several

fragments that are placed across several distributed sites or across distinct nodes of a

shared-nothing parallel machine. A user query that retrieves all rows from the Sales

table must access all the physically distributed fragments.

Figure 32(a) presents an example of a user’s SQL command that is defined over

the distributed sales relation. Then, in order to execute such command, it is transformed

into a set of tasks. Tasks are other SQL commands that can be executed at distinct sites:

Figure 32(b) presents an example of a task’s SQL that access the fragment i of the sales

relation. The SQL command of Figure 32(b) should be executed at each of the data

services that store a fragment of the sales relation. Figure 32(c) presents an example of

the operation that should be executed in order to obtain the result of user’s query

(Figure 32(a)) from the results of tasks’ queries (Figure 32(b)).

Figure 32 - Task's generation and results merging – Example

4.4 Task Level Requirements Specification

User’s commands and block of commands are transformed into one or more tasks and

associated execution requirements. Table 2 lists transformations of DARs into task level

requirements.

Table 2 - User Specified DARs and Task Level Requirements

Command’s DARs Task Level Requirements

When multiple tasks are

generated for the same

job

Task.ExecutionStartTime > Necessary time to execute supplier tasks

(Tasks’ executors are elected in the same order that the tasks should be

executed – i.e. starting with tasks that does not depend on

other tasks and ending on tasks that are not suppliers of any

other tasks.

After the executor of a task is elected, the community scheduler has a

foreseen execution time of such task. Such foreseen time is

used to define the Execution Start Time of the tasks that

depend on the considered task)

(a) User’s command

Select product_group,

 sum(revenue)

from sales

where conditions
group by product_group
 DAR Specification

(b) Task's SQL for site i

R(i) = Select product_group,

 sum(revenue)

 from sales_i
 where conditions
 group by product_group

(c) Generating the resultset of

user’s command

Temp =⋃ ����� ; 1 ≤ � ≤
���� �� �����
 ��������′ ����������

Resultset = Select product_group,

 sum(revenue)

 from Temp
 where conditions
 group by product_group

Quality of Experience in Database Systems

45

Command’s DARs Task Level Requirements

FRESHNESS OF ρ IS

α
Task.Relation(ρ).Freshness ≥ α

START AFTER σ Task.ExecutionStartTime > σ

DEADLINE δ

If the task has no dependent task (which includes tasks of single-task

jobs) then:

Task.ExecutionDeadline = δ

FINISH BEFORE φ Task.ExecutionFinishTime = φ

EXECUTE

DISCONNECTED

RESULTSET

IDENTIFIED AS η

Task.Results.StoreAtTemporaryRelation(η)

AVAILABLE DURING τ

MINUTES
Task.TemporaryRelation(relation_identifier).AvailableTime = τ

AVAILABLE DURING τ

PERCENT
Task.TemporaryRelation(relation_identifier).AvailabilityPercentage = τ

IN PERIOD FROM τ1

TO τ2

(used in Data

Availability DAR)

Task.TemporaryRelation(relation_identifier).AvailableFrom = τ1

Task.TemporaryRelation(relation_identifier).AvailableUntil = τ2

SNAPSHOT Task.Results.StoreToFutureUse

SYNCHRONOUS Task.RefreshMode = Synchronous

ASYNCHRONOUS Task.RefreshMode = Asynchronous

REPEAT EVERY

[EVERY MONTH FROM

BegiDay TO

EndDay]|

[EVERY

BeginDayOfWeek TO

EndDayOfWeek]|

[EVERY DayOfWeek]

IN PERIOD FROM

BeginDateTime TO

EndDateTime

Task.ExecutionDate = Date to execute the task

(A task is generated for each execution. Each task has its own

execution date, which is assigned by the community scheduler

when it generates the task)

HIGH PRIORITY Task.ExecutionPriority = High

No DAR is specified Task.ExecutionMode = ASAP

Most of transformations presented in Table 2 are straightforward (like the ones for Data

Freshness and Execution Priority requirements).

Quality of Experience in Database Systems

46

 In line 1 of Table 2, we present the ExecutionStartTime requirement

specification for tasks that participate in multi-task jobs (i.e. jobs with several tasks).

Such requirement is used in multi-task jobs. The value of such requirement is specified

on the fly: the value for the requirement of a task i is specified after the election of the

executors of all tasks that are suppliers of the i-th task, as described in Table 2. Task

scheduling in such cases occur in natural order, that is, starting with supplier tasks and

ending at dependent tasks.

Tasks generated for jobs with an Execution Deadline requirement (line 4 of

Table 2) and that do not have dependent tasks should have an ExecutionDeadline

requirement (therefore, such requirement is also used for tasks of single-task jobs that

have an Execution Deadline DAR). However, the general rule of multi-task jobs is also

valid and all the tasks should have ExecutionStartTime requirement, which is defined

during the task execution assignment.

In the last line of Table 2, we present the requirement generated for database

commands that have no DAR. Such tasks have a requirement that indicates that they

should be executed as soon as possible.

 In the following section, we present several examples of task generation and

task level requirements specifications, considering centralized, parallel and distributed

database environments.

4.5 Tasks and Task Level Requirements Specification: Examples

In the following, we present some examples of tasks generation and requirements

specification.

First, in Section 4.5.1 we consider user commands and DARs submitted to a

distributed database environment. We discuss the use of the Data Freshness, Execution

Deadline, Disconnected Execution Mode and Data Availability Requirements.

Then, in Section 4.5.2 we discuss task and requirements generation for best

effort commands in a parallel database system. We consider partitioned and replicated

data.

Finally, in Section 4.5.3 we consider a centralized database and present

examples of tasks and requirements specification for commands with Execution Start

Time, Execution Finish Time, Execution Priority, Execution Deadline, Execution

Periodicity, Disconnected Execution Mode and Data Availability requirements. We also

present an example of tasks and requirements specification for a block of commands

and for alternative sets of requirements.

4.5.1 Tasks and Requirements Generation in a Distributed Database
System: Examples

Consider a global (possible virtual) organization which has a globally distributed

database composed by several sites. Each site is considered as a data service and may

have one or more nodes, as represented in Figure 33. Each data service has its own tasks

scheduler, which manages site’s resources.

Quality of Experience in Database Systems

47

Data service i stores a table named Sales, which stores the information about the

company sales. The database at data service i is constantly being updated and stores

huge volumes of data. In order to maintain high availability and to increase query

execution performance, system administrators regularly replicate the Sales data to other

sites. Nevertheless, as the volumes of data are too big, replica synchronization occurs

just a few times per month and sales replicas are often outdated.

The following two examples consider such environment.

Figure 33 - Globally Distributed Data Services - Example

Example 4.2 At the middle of July 2010, a user must generate a certain report about

revenues on the first semester of 2010. Such report must be presented in a briefing that

would occur in less than 10 minutes. Although Sales replicas may be outdated, there is a

great possibility that some of them already store the data about the entire first semester

of 2010. Therefore, the user may submit a command using two data access

requirements: Data Freshness Requirement and Execution Deadline Requirement. The

user’s command is represented in Figure 34, where an Execution Deadline of five

minutes and a Data Freshness of July 1, 2010 are specified.

Figure 34 - User command with Execution Deadline and Data Freshness requirements –
Example

The command represented in Figure 34 may be transformed into a single task with two

requirements. Table 3 presents the values of each specified requirement (as a single task

 SELECT DATE, STATE, SUM(REVENUE)

 FROM SALES

 WHERE DATE BETWEEN '2010/01/01' AND '2010/06/30'

 GROUP BY DATE, STATE

 REQUIREMENTS

 DEADLINE 300,

 FRESHNESS OF SALES HIGHER THAN '2010/07/01'

Quality of Experience in Database Systems

48

is used, then the execution deadline of the task is similar to the one specified in the

DAR and there is no need to specify a requirement on the task’s start time).

Table 3 - Task Level Requirements for Execution Deadline and Data Freshness - Example

Command’s DARs Task Level Requirements

DEADLINE 300 Task.ExecutionDeadline = 300

FRESHNESS OF

SALES HIGHER

THAN

'2010/07/01'

Task.Relation(‘Sales’).Freshness ≥ '2010/07/01'

Example 4.3 Let us now exemplify the use of Data Availability and Disconnected

Execution Mode requirements. Begging at January 2, 2011 and for the following two

weeks, users from the entire organization need to build reports about the organization’s

revenue in 2010, even though site i becomes inaccessible for remote users.

 In order to solve such situation, at January 1, 2011, a system administrator may

replicate the data about all the sales in 2010 at all existing data services. However, this

can be resource and time consuming. Alternatively, the system administrator submits

the command of Figure 35 that has a Data Availability Requirement and a Disconnected

Execution Mode requirement.

Figure 35 – Data Availability and Disconnected Execution Mode requirements – Example

In order to satisfy the requirements of such command, the query’s results should be

stored in a temporary relation named SALES_OF_2010 (first requirement in Table 4).

Second, third and fourth requirements in Table 4 impose restrictions on data

availability, specifying the period in which the temporary relation should be available

(which indicates, for instance, that the service cannot go down for scheduled

maintenance during the specified period).

Table 4 - Task Level Requirements for Data Availability and Disconnected Execution
Mode requirements - Example

Command’s DARs Task Level Requirements

EXECUTE

DISCONNECTED

RESULTSET

IDENTIFIED AS

SALES_OF_2010

Task.Results.StoreAtTemporaryRelation(‘Sales_of_2010’)

 SELECT *

 FROM SALES

 WHERE YEAR(DATE) = 2010

 REQUIREMENTS

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS SALES_OF_2010,

 AVAILABLE DURING 100 PERCENT
 IN PERIOD FROM '2011/01/02' TO '2011/01/15'

Quality of Experience in Database Systems

49

Command’s DARs Task Level Requirements

AVAILABLE DURING

100 PERCENT

IN PERIOD FROM

'2011/01/02' TO

'2011/01/15'

Task.TemporaryRelation(‘Sales_of_2010’).AvailableFrom = ‘2011/01/02’

Task.TemporaryRelation(‘Sales_of_2010’).AvailableUntil = ‘2011/01/15’

Task.TemporaryRelation(‘Sales_of_2010’).AvailabilityPercentage = 100

4.5.2 Tasks and Requirements Generation in a Parallel Database System:
Examples

Consider a data warehouse stored at a shared-nothing parallel machine composed by

off-the-shelf computers (i.e. database cluster). Each cluster’s node is a data service. The

warehouse follows a star schema, as the one represented in Figure 36, and has a big

facts table (Sales table) and some small dimensions tables.

Figure 36 - Star Schema – Example

The Fact table is partitioned into 10 fragments, which are distributed across the cluster

nodes. Each fragment may be replicated at several nodes. Dimensions tables are

replicated at all nodes. Figure 37 represents such environment.

 The examples of this section consider such environment.

Period table
Region table

Period_id

Salesperson_id

Customer_id

Region_id

Product_id

Total_price

Quantity

Revenue

Sales table
Period_id

Period_desc

Month

Quarter

Year

Salesperson_id

Name

Department

Salesperson table

Region_id

Region_desc

State

Nation

Continent

Customer_id

Name

Phone_Number

Customer table

Product_id

Description

Price

Weight

Product table

Quality of Experience in Database Systems

50

Figure 37 - Database cluster with fragmented and replicated tables

Example 4.4 The command of Figure 38 is a best effort command that accesses the

Customer table. Each of the available data services stores a replica of such table.

Therefore, any of the services is capable to execute the command, which may be

transformed into a single task.

 Figure 38 - User command that accesses a replicated table - Example

The command of Figure 38 is a best effort command (with no explicitly defined data

access requirements). Tasks generated for such kind of commands have an

ExecutionMode requirement, which indicates that the system must execute them as soon

as possible (as represented in Table 5).

Table 5 - Task Level Requirements for Best Effort Oriented Query - Example

Command’s DARs Task Level Requirements

--- Task.ExecutionMode = ‘ASAP’

Example 4.5 Consider that a user submitted the SQL command represented in Figure

39. Such command accesses the entire Sales table. But such table is fragmented and its

Database Cluster

Node i = Data

Service i

Dimensions

Tables Replicas

Sales Table

Fragment i

Node 1 = Data

Service 1

Dimensions

Tables Replicas

Sales Table

Fragment 1

Node 2 = Data

Service 2

Dimensions

Tables Replicas

Sales Table

Fragment 2

 SELECT CUSTOMER_ID, NAME, PHONE_NUMBER

 FROM CUSTOMER
 WHERE NAME LIKE 'A%'

Quality of Experience in Database Systems

51

fragments are distributed across existing data services. Therefore, one possible way to

execute such command is to generate eleven tasks. Each of the first ten tasks accesses a

certain fragment of the Sales relation. Such tasks are executed in parallel. At the end of

such tasks execution, another task is used to merge the results of the executed tasks in

order to generate a single result set (as discussed in Section 4.3).

Figure 39 - User command that accesses a fragmented table – Example

Table 6 presents the requirements generated for specified tasks. All tasks have the

requirement that indicates that they must be executed as soon as possible. A

requirement on the minimum value for the task’s execution start time is specified for the

final task (as the first ten may start in parallel and the last only starts when the first ten

are finished). The value of such parameter is specified when the election for the

executor of each of the first ten tasks is finished. Such value is the maximum estimated

completion time between the ones of the first ten tasks.

Table 6 - Task Level Requirements for a Multi-Tasks Job - Example

Task Number Command’s
DARs

Task Level Requirements

1 to 11 ---- Task.ExecutionMode = ‘ASAP’

11 ----

Task.ExecutionStartTime > Foreseen time to execute tasks

1 to 10 – such value is estimated during the

executor election of such tasks

4.5.3 Tasks and Requirements Generation in a Centralized Database
System: Examples

Now consider a centralized database used by an OLTP (Online Analytical Processing)

system. Consider that such database stores a Sales table (as in previous examples) with

data about the sales that an organization does. Such table is continuously updated with

new data (hundreds of rows per second during working hours). Such scenario is

considered in the following three examples.

Example 4.6 Every working day, at 19h o’clock, there is a meeting of some of the

organization managers where a report on the sales is presented. Such report is built

considering the command of Figure 40. Such command accesses a single table stored at

a centralized database and has some requirements.

 SELECT REGION_ID, MAX(REVENUE), MIN(REVENUE), AVG(QUANTITY)

 FROM SALES
 GROUP BY REGION_ID

Quality of Experience in Database Systems

52

 Figure 40 - Command with several requirements - Example

The user who submitted the command of Figure 40 wants to receive the query’s results

at before 18:55hrs. He/she wants report execution to begin after 18:30hrs.

 The user command may be transformed into a task with several requirements,

which are represented in Table 7. Such task must be repeatedly executed every day from

Monday to Friday. Therefore, the system may generate (and schedule) a set of tasks,

each one for a distinct day (the Execution Date is different for every execution, as

represented in Table 7). Such initially created set may comprise the period of the next

30 days. Every day, the system generates (and schedules) the task that would be

executed in the thirtieth subsequent day.

Table 7 - Several Task Level Requirements - Example

Command’s DARs Task Level Requirements

START AFTER

'18:30'
Task.ExecutionStartTime > 18:30

FINISH BEFORE

'18:55'
Task. ExecutionFinishTime = 18:55

EXECUTE

DISCONNECTED

RESULTSET

IDENTIFIED AS

SALES_REPORT

Task.Results.StoreAtTemporaryRelation(‘Sales_Report’)

AVAILABLE DURING

60 MINUTES
Task.TemporaryRelation(‘Sales_Report’).AvailableTime = 60

REPEAT EVERY

MONDAY TO FRIDAY
Task.ExecutionDate = Date to execute the task

Example 4.7 Consider that, at the middle of the day, one of the organization’s managers

needs to urgently know the total revenue of that day. The SQL command of Figure 41

may be submitted to the QoE-oriented system. In such situation, the command can be

treated as being of normal priority if its execution can finish in no more than 1 minute.

Otherwise, the command must be treated as being of high priority.

 SELECT PRODUCT_ID, CLIENT_ID, SUM(REVENUE), SUM(QUANTITY)

 FROM SALES

 WHERE DATE = SYSDATE

 GROUP BY PRODUCT_ID, CLIENT_ID

 REQUIREMENTS MANAGERS_REPORT

 START AFTER '18:30',

 FINISH BEFORE '18:55',

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS SALES_REPORT,

 AVAILABLE DURING 60 MINUTES,

 REPEAT EVERY MONDAY TO FRIDAY

Quality of Experience in Database Systems

53

Figure 41 – Alternative set of requirements - High priority and execution deadline -
Example

The command of Figure 41 accesses a single table stored at a centralized database.

Therefore, it may be transformed into a single task. But alternative sets of requirements

must generated (due to the use of the OR clause), as represented in Table 8.

Table 8 - Task Level Requirements for Execution Priority Requirement – Example

Set of
requirements

Command’s DARs Task Level Requirements

I HIGH PRIORITY Task.ExecutionPriority = High

II DEADLINE 60 Task.ExecutionDeadline = 60

Example 4.8 Consider the block of statement of Figure 42. Both queries of such block

must be executed in a certain deadline, or none of them should be executed.

Figure 42 - Block of statements with requirements – Example

 SELECT SUM(REVENUE)

 FROM SALES

 WHERE DATE = SYSDATE

 REQUIREMENTS

 (HIGH PRIORITY)

 OR

 (DEADLINE 60)

 BEGIN PARALLEL BLOCK

 SELECT PRODUCT, SUM(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/06/01'

 GROUP BY PRODUCT

 REQUIREMENTS

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS PRODUCT_REVENUE

 AVAILABLE DURING 10 MINUTES AFTER EXECUTION;

 SELECT STATE, AVG(REVENUE)

 FROM SALES

 WHERE DATE >= '2010/06/01'

 GROUP BY STATE

 REQUIREMENTS

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS STATE_REVENUE

 AVAILABLE DURING 10 MINUTES AFTER EXECUTION;

 END BLOCK

 REQUIREMENTS
 DEADLINE 60

Quality of Experience in Database Systems

54

The block represented in Figure 42 is transformed into two tasks: one corresponding to

the first SQL query and another that corresponds to the second SQL query. Each task

may be executed in parallel, as the block is a parallel block of statements. Table 9

presents the task level requirements of both tasks.

The community scheduler is responsible to guarantee that the system would only

accept the block of statements (i.e. job) for execution if both tasks can be executed and

have all their requirements satisfied.

Table 9 - Task Level Requirements for Tasks Generated for Blocks of Statements -
Example

Task Command’s DARs Task Level Requirements

I EXECUTE

DISCONNECTED

RESULTSET

IDENTIFIED AS

PRODUCT_REVENUE

Task.Results.StoreAtTemporaryRelation(‘Product_Revenue’)

I AVAILABLE DURING

10 MINUTES Task.TemporaryRelation(‘Product_Revenue’).AvailableTime = 10

I DEADLINE 60 Task.ExecutionDeadline = 60

II EXECUTE

DISCONNECTED

RESULTSET

IDENTIFIED AS

STATE_REVENUE

Task.Results.StoreAtTemporaryRelation(‘State_Revenue’)

II AVAILABLE DURING

10 MINUTES Task.TemporaryRelation(‘State_Revenue’).AvailableTime = 10

II DEADLINE 60 Task.ExecutionDeadline = 60

4.6 Conclusion

In this chapter, we defined jobs and tasks, and discussed the community and task

schedulers, and how such schedulers can be used in centralized, parallel and distributed

databases.

We detailed considered data allocation strategies and presented policies to do

tasks generation and transformation of DARs into task level requirements. We also

discussed issues related to task generation and requirements specification for blocks of

statements.

Then, we presented several examples of task generation and task level

requirements specification for DARs and considering both centralized, parallel and

distributed databases.

Overall, this chapter explained how commands and DARs are transformed into

tasks and their requirements for execution in data services. In the next chapter we

discuss how data services are elected for execution and how reputation is used within

the process of election.

Quality of Experience in Database Systems

55

5 Reputation and Election-Inspired Scheduling

In previous chapter, we discussed how users’ commands and DARs can be transformed

into tasks and task level requirements, which should be fulfilled in order to satisfy

commands’ DARs. In this chapter, we discuss task execution assignment to data

services.

We propose an election inspired scheduling strategy. In this model, a set of

services is defined as pre-candidates to execute a task. Then, each pre-candidate

evaluates if it can satisfy task’s requirements and makes promises on the necessary time

to execute the task. The community scheduler elects a winner to execute the task,

considering candidates’ reputation and promises. If all tasks generated for a certain

command have an elected executor, then the system accepts the command for execution.

Otherwise, the system informs the user that the specified DARs cannot be satisfied and

command execution is rejected.

The election inspired scheduling model maintains a certain degree of data

service autonomy. Each data service may implement its own policy to decide on which

elections it wants to participate. Local scheduling policies can be used to differentiate

users and to do resource reservation. Heterogeneous environments (for instance, in

terms of operational system, hardware architecture and database management system)

can be used.

 Another important issue in elections is reputation. When a task’s requirement is

not achieved, the system may fail to satisfy a DAR that it committed itself to satisfy.

Therefore, task’s requirements fulfillment is important to make the system dependable.

But can a candidate break a promise?

In our proposed election-inspired scheduling strategy, we deal with candidates

that break campaign promises after being elected (just as it happens in real-world

elections). Candidates may make promises they cannot accomplish, intentionally or not.

For instance, unintentional mistakes when estimating the execution time of a query or

when foreseeing future conditions (e.g. in terms of availability of network resources)

may lead to campaign promises that are unfeasible. Besides that, if data services receive

some kind of incentive (e.g. monetary) to execute tasks, then some candidates may act

maliciously and intentionally make a promise that they cannot accomplish just to win

the election (and increase revenue). On the other hand, if there are any kind of penalties

(e.g. fine) when a task’s requirements are not fulfilled, then candidates may become too

conservative when making promises (e.g. specifying a query execution time higher than

the one the candidate had estimated as necessary). Such candidates would have some

kind of risk aversion.

The election inspired scheduling strategy uses reputation information as part of

the process of selecting an election winner. We consider the reputation as an

expectation about service’s behavior based on its past behavior or on information about

Quality of Experience in Database Systems

56

the service (which is similar to the definition of reputation used in [Abdul-Rahman &

Hailes, 2000]).

Depending on the requirement’s type, reputation is used to qualify the candidate

(e.g. to help select the most trustful candidate) or to calibrate candidates promises (e.g.

to help identify what is the difference between the candidate’s promise and the

candidate’s act when elected). The reputation system helps to identify the best candidate

to execute a task, both in terms of selecting the best promises and of choosing the most

trustful candidate among existing ones. Therefore, the reputation system increases the

system’s dependability and leads to higher QoE levels, as it increases the possibility of

assigning tasks execution to service providers that would satisfy all specified

requirements, and avoiding those that miss many requirements.

The election-inspired scheduling differs from existing strategies because not

only it deals with several types of user-defined data access requirements, but also

because it also incorporates the reputation mechanism in order to improve the system’s

dependability when choosing the data service to execute each task. Therefore, our

strategy can provide QoE-levels that other existing strategies cannot.

Section 5.1 presents the election-inspired scheduling mechanism, which

considers task level requirements and services’ reputation when assigning tasks’

execution to data services. Then Section 5.2 discusses the use of election inspired

scheduling for jobs with several tasks, presenting the use of on the fly elections to

improve the level of QoE the system provides. In Section 5.3, we discuss the use of the

election inspired scheduling strategy together with alternative sets of tasks generated for

a single job. Then, in Section 5.4 we detail the evaluation of services’ reputation on

maintaining commitment to satisfy tasks. Section 5.5 details how the community

scheduler estimates tasks’ execution time. Section 5.6 presents the use of what-if

elections to select which data can be replicated (and where it should be placed) in order

to increase the level of QoE the system provides. Then, Section 5.7 discusses resource

availability monitoring. Finally, Section 5.8 presents a chapter summary and some final

comments.

The main contributions of this chapter are: (i) election inspired query scheduling

model, (ii) reputation models for QoE-oriented database systems, and (iii) dynamic

replica placement strategy for QoE.

5.1 Election-Inspired Scheduling for QoE-Oriented Databases

User’s commands may have several Data Access Requirements (DARs). Jobs are

transformed into tasks, which may have several associated requirements. We propose an

election inspired strategy to assign task execution to data services. Figure 43 presents

the main steps of the election inspired scheduling strategy. In Section 5.1.1 we detail the

first step, pre-candidate definition. Then, Section 5.1.2 briefly discusses the campaign

period, where services evaluate requirements and make promises. Section 5.1.3 details

how the community scheduler elects the winner service.

Quality of Experience in Database Systems

57

Figure 43 - Election inspired task scheduling: main steps

5.1.1 Defining Pre-Candidates

Election inspired scheduling begins (Figure 43) with the definition of the set of pre-

candidate services that participate in the task’s executor election.

 A service can present itself voluntarily to be a pre-candidate or can be selected

by the community scheduler as a pre-candidate. Pre-candidates (both the voluntarily

presented and the selected by the community scheduler) are divided into levels: first

level pre-candidates, second level pre-candidates, and so on.

In election inspired scheduling, the community scheduler starts the election

considering the first level pre-candidates. If none of the first level pre-candidates agrees

to be a candidate (i.e. execute the task while satisfying all its requirements), then the

system invokes the pre-candidates of the second level. If none the second level pre-

candidates agree to be a candidate then the system invokes the pre-candidates of the

next level and so on, while there are services to be invoked. If no service presents itself

as a candidate, then the job execution is canceled and the user is informed that the

specified DARs cannot be satisfied.

Voluntarily Presented Pre-Candidates – A service presents itself voluntarily as a pre-

candidate according to the policy defined by the services administrators. We propose

the use of a load based policy that would make the service become a pre-candidate

when its load is below a threshold value (we discuss such strategy in Chapter 6).

Voluntarily presented pre-candidates are classified into levels considering their

reputation on maintaining its commitments (such reputation evaluation is detailed in

Section 5.4). The system administrator should set the values that are used as threshold

values to classify data services according to their reputation. Figure 44 presents the

values for three levels of pre-candidates.

Define pre-candidates

services Task and

Requirements

Invoke possible

candidates (send task

and requirements)

Community Scheduler

Verify if it would

be a candidate (e.g.

if it can satisfy

requirements)

Data Services

Elect a winner

to execute the

task

Community Scheduler

Each service

commits itself

(or not) with

requirements

and make

proposals

Quality of Experience in Database Systems

58

Figure 44 - Levels of Pre-Candidates – Voluntarily Presented Pre-Candidates

Pre-Candidates Selected by the Community Scheduler – A service is selected as a

pre-candidate by the community scheduler if it has a high possibility to win the executor

election (i.e. has a high reputation) and meets some requirements to execute the task

(i.e. store most of required data to execute the task).

 Therefore, in order to be selected as a pre-candidate by the community

scheduler, a service must have high reputation on maintaining its commitments (detailed

in Section 5.4) and store most of required data to execute a task, as represented in

Figure 45. The lowest allowed reputation value and maximum allowed amount of data

movement are parameters set by the system administrator.

Figure 45 - Requirements to be a Selected as a Pre-Candidate

In fact, the system administrator should set several values to be used as threshold of

reputation and amount of data movement, defining the levels of pre-candidates, as

represented in Figure 46.

Quality of Experience in Database Systems

59

Figure 46 - Levels of Pre-Candidates – Pre-Candidates Selected by the Community
Scheduler

Fixing a lower bound for candidates’ reputation – in order to avoid that tasks

execution are assigned to untruthful candidates, a lower bound for candidates’

reputation must be specified by the system administrator.

 If a service reputation falls below the minimal reputation allowed, then it is

discarded as a candidate for some elections. After that, and in order to allow re-

evaluation for potential increase in service’s reputation, the service with low reputation

is considered as pre-candidate for just a few elections. If service’s reputation value

remains smaller than the minimal allowed value, then the service is discarded as a

candidate for some elections once again, and so on.

In Chapter 8, we present experimental results on the use of such mechanism. In

our experimental evaluations, we used 0.9 as the lowest acceptable reputation value for

pre-candidate services. Services whose reputation is below 0.9 participated only in 10%

of elections.

Limiting the number of victories in sequence – service behavior may change over

time. For instance, an external load (e.g. an antivirus system doing a full system scan)

may transform a service that used to be trustful into one that fails the accomplishment of

all tasks’ requirements. But such change in behavior does not cause an immediate

change in the service’s reputation. Besides that, the higher the number of tasks being

executed concurrently, more difficult it is to foresee execution times. In order to reduce

the impact of such situations in the requirements fulfillment, it should be possible to

limit the number of victories in sequence for a certain service.

 When a service reaches the number of allowed victories in sequence, it is

discarded from being a candidate for new elections during a certain time.

Using Availability Prediction – in order to improve the quality of the scheduling of

tasks that are related to data availability, an availability prediction method is used: only

services whose predicted availability for the considered period is equal or higher to the

task’s availability requirement can participate in the election as pre-candidate.

Quality of Experience in Database Systems

60

 There are several works that address of predicting the availability of a resource

during a certain period. Some of the works on resource availability prediction whose

prediction methods can be used here are [Rahman, Hassan, & Buyya, 2010; Rood &

Lewis, 2008].

5.1.2 The Campaign Period

Each pre-candidate evaluates if it would participate in the election or not. If the pre-

candidate agrees to participate in the election, it becomes a candidate to execute the task

and goes on campaign, committing itself to meet task’s requirements and promising to

execute the task within a certain time interval (intra-service task evaluation and

management is detailed in Chapter 6).

The campaign period ends after a certain time or when all the candidates have

already informed the community scheduler about their decisions on participating or not

in the election. After the campaign period ends, the community scheduler elects a

winner to execute each task.

5.1.3 Electing a Winner

When more than one service is candidate to an election, then the community scheduler

must choose one service among the candidates to be the election’s winner. The

community scheduler assigns an Election’s Score (ES) to each candidate. The candidate

with the highest ES is selected as election’s winner.

 The ES of each candidate is computed considering two components: the

Normalized Reputation (NRep) and the Normalized Execution Completion Time

(NExecTime). Depending on the DARs of the original command, each of them may

have more importance than the other. Therefore, we use two calibration factors: υ and ω

(υ ∈ �0,1�; 	ω ∈ �0,1�; 	υ + 	ω = 1). The Election Score of the i-th candidate (ESi) is

computed by the following equation:

"#$ = 	υ ∗
��&$, + 	ω ∗
"'�()���$

The value of each calibration factor (υ and ω) should be tuned by the system

administrator in order to reflect the importance that the corresponding index has in the

election. However, it is important to notice that reputation and completion time

estimation have distinct importance depending on the DARs specified at user’s job. For

some types of DARs, the election winner should be the service that is most likely to

satisfy task’s requirements (i.e. the service with the highest reputation among the

candidates). For other types of DARs, the scheduler should consider both the foreseen

task’s execution time and the service’s reputation on satisfying specified requirements.

Table 10 summarizes possible criteria, presenting for which DARs only

reputation is used and for which DARs the system considers both the candidates’

reputation and runtime estimations.

Quality of Experience in Database Systems

61

Table 10 - Criteria to Select the Winner Candidate Considering DARs

Criteria
Group

Criteria Group Description Command’s DAR

I
The winner is elected based on

candidates’ reputation

(υ =1; ω = 0).

Execution Deadline (when not used

together with Execution Priority or when

the job generates a single task)

Data Availability (when associated to

database objects)

Execution Start Time

Execution Finish Time (when not used

together with Execution Priority or when

the job generates a single task)

II

The winner is elected based on

candidates’ reputation and on

campaign promises (υ > 0; ω >

0), unless when DARs from this

group are used together with

DARs from Group I.

If DARs from this group are used

together with DARs from Group

I, then the winner is selected

based only on candidates’

reputation

(υ =1; ω = 0).

Execution Deadline (when used together

with Execution Priority or when the job

generates multiple tasks)

Execution Finish Time (when used

together with Execution Priority or when

the job generates multiple tasks)

Data Freshness

Disconnected Execution Mode

Data Availability (when associated to

queries’ results sets)

Execution Periodicity

Execution Priority

III

The winner is elected based on

promises for the required time to

execute the task

(υ = 0; ω = 1). The candidate

that promises to finish the

task’s execution earlier is the

winner.

No DAR (best effort command)

For instance, when using a Data Availability Requirement with a database table (third

line of third column in Table 10), the user expects the dataset to be available: in such

situation, for each task generated to maintain data availability, the system should select

the candidate with the highest reputation (foreseen execution completion time is of no

importance). On the other hand, if a user submits a query without timing constraints, e.g

using only a Data Freshness Requirement, he/she would like to receive the query’s

results as soon as possible (Data Freshness Requirement is placed in group II of Table

10). Therefore, campaign promises are used together with candidate’s reputation in

order to select a dependable candidate that provides a fast completion time.

Quality of Experience in Database Systems

62

In the case of a job with an Execution Deadline requirement that generates

several tasks, supplier tasks should finish as soon as possible. Therefore, the fastest

foreseen execution time is relevant when choosing the task’s executor (group II of Table

10). The same assumption (i.e. fastest foreseen execution time is relevant during task

execution assignment) is valid when a job has an Execution Deadline requirement and

an Execution Priority requirement, because a job with such requirement should be

executed before low priority jobs and finish before the specified deadline. On the other

hand, when assigning for execution tasks generated from single-task jobs that have an

Execution Deadline requirement and no priority-related requirements, then the system

should assign the task execution for the job that is most likely to finish the execution

before the specified deadline (no matter when, since it is before the deadline).

Therefore, in such case, candidates’ reputation is much more relevant than the foreseen

execution time (group I of Table 10).

Normalized Reputation (NRep) – In order to compute the Normalized Reputation of a

candidate, the community scheduler considers candidates’ reputation on maintaining its

commitment to satisfy task’s requirements and the highest reputation value of election’s

candidates (candidates reputation assignment is discussed in Section 5.4). Definition
Let HR be the highest reputation value on maintaining commitments to satisfy

specified requirements of the candidates in a certain election. The Normalized

Reputation of the i-th candidate (NRepi) is computed as the relation between the

reputation of the i-th candidate (Ri) and HR.

��&$ =
�$
*�

Example 5.1 Consider three candidates S1, S2 and S3, whose reputation on maintaining

commitments to satisfy specified requirements are 0.7, 0.9 and 0.6, respectively. The

values of NRep for S1, S2 and S3 are 0.78, 1.00 and 0.67, respectively.

Normalized Execution Completion Time (NExecTime) - Depending on specified

DARs, the system should also consider the foreseen necessary time interval to execute

the task. This is done by using the Normalized Execution Completion Time (execution

time estimation is discussed in Section 5.5). Definition
Let LET be the lowest (estimated) required time to execute a task at one of

candidate services. The Normalized Execution Completion Time of the i-th

candidate (NExecTimei) is computed as the relation between LET and the

estimated time to complete the task at the i-th (Ti) candidate.

"'�()���$ =
+")
)$

Quality of Experience in Database Systems

63

Example 5.2 Consider three candidates S1, S2 and S3. The foreseen task’s execution

time at the candidates is 48 seconds, 32 seconds and 147 seconds, respectively (foreseen

task’s execution time is estimated as presented in Section 5.5). The value of NExecTime

for S1, S2 and S3 is 0.67, 1.00 and 0.22, respectively.

5.2 On the Fly Elections and Jobs with Several Tasks

Election-inspired scheduling can be used in scenarios with several jobs and

corresponding tasks. It is also used when several tasks are generated as part of the same

job. In such situations, there are several elections, one for each task.

Consider that a data service was elected to execute several tasks from the same

job but a task’s execution took (or is taking) a lot longer than promised by the service,

then the remaining tasks assigned for such service and that are queued to be executed

may be at risk of failing their DARs. In fact, the job itself may be at risk. The system

deals with this problem for future elections by means of reputation: the problem was

due to an erroneous promise by the data service, therefore its reputation will be

decreased. Nevertheless, it is also interesting to take into consideration this delay within

the current jobs execution to try to improve the situation. The community scheduler

does this by verifying which tasks are taking (or took) much longer than promised by

the data service and making on-the-fly (re-)elections.

Upon discovering the delay, the community scheduler is able to make new

elections with the remaining tasks of the data service in order to see whether there are

better candidates to execute those tasks (the data service with the problem can still be a

candidate itself and can win again the election for tasks execution, if there is no other

data service that is able to do it better).

 On-the-fly elections are also used when there is a dependency relation between

tasks. In such situations, the candidate promise on the required time to execute a task is

used as a lower bound on the start time of the tasks that depend on such task (i.e. used

as the ExecutionStartTime requirement of dependent tasks). The community scheduler

considers runtime estimations when electing a task’s executor. An error when

estimating the required time to execute a certain task i may lead to an incorrect

specification of the value of the ExecutionStartTime requirement for tasks that depend

on the i-th task. When the difference between the execution finish time of the i-th task

and the time used as the ExecutionStartTime of the tasks that depend on the i-th task is

greater than a threshold value, then (i) the ExecutionStartTime requirement of tasks that

depend on the i-th task is updated to the real value and (ii) on the fly elections are started

to choose the executor of the tasks that depend on the i-th task.

The on the fly elections have the following rules:

I) If the execution of the i-th task finishes earlier than estimated – Then the

executor of each of the dependent tasks must maintain (in the new elections)

their previous promises or make other promises that are better (i.e. lower

response time) than previous one (which makes the system improve the provided

QoE level).

Quality of Experience in Database Systems

64

If there is a new foreseen finish time for any of the tasks that are dependent on

the i-th task, then on the fly elections are started for the tasks that are dependent

on the one whose foreseen finish time has changed, and so on, until no changes

occur in the foreseen finish time of considered tasks or the executors of all tasks

that are still waiting for execution are elected;

II) If the execution of the i-th task finishes later than estimated – Then all

candidates can make new promises. Besides the elections of the new executors

of the tasks that depend on the i-th task, the system also does on the fly elections

for the executors of the other tasks that are waiting for execution. If there is no

candidate that can satisfy specified requirements of any of the remaining tasks,

then the system cancels the execution of the remaining tasks and informs the

user that the job’s DARs cannot be satisfied.

Example 5.3 Consider a certain job that comprises three tasks (task 2 is dependent on

task 1 and task 3 is dependent on task 2). The executors of each task are elected: service

I is the executor of task 1, service V is elected the executor of task 2 and service IV is

the executor of task 3 (as represented in the first timeline of Figure 47).

 Service I finishes the execution of task 1 much earlier than foreseen. As the

foreseen execution finish time of task 1 was used as the ExecutionStartTime

requirement of task 2, Service V would wait for a long time to start the execution of task

2 (represented in the second timeline of Figure 47). Then, the community scheduler

starts an on the fly election for the executor of task 2, using the real execution finish

time of task 1 as the value of the ExecutionStartTime requirement of task 2.

 Service VI wins the new election for the executor of task 2, promising to finish

the execution of task 2 earlier than it was originally promised by Service V (service VI

can provide such promise on execution time finish due to the change on the

ExecutionStartTime requirement of task 2). As the foreseen execution finish time of task

2 has changed, the community scheduler starts a new election for the executor of task 3

(considering a new value for the ExecutionStartTime requirement of task 3). Service II

is elected the new executor of task 3 and the new foreseen required time to execute the

entire job (represented in the third timeline of Figure 47) is much smaller than the

original one.

Quality of Experience in Database Systems

65

Figure 47 - On the Fly Elections Impact on Job's Finish Time - Example

5.3 Election-Inspired Scheduling and Alternative Sets of Tasks
for the Same Job

Election inspired scheduling can also be used when more than one set of tasks is defined

for a single job (set of tasks generation is discussed in Section 4.3). As discussed in that

section, more than one set of tasks may be defined due to the possibility that data sets be

placed in more than one manner, replicated and/or in different data services, or due to

the use of the OR connector in DARs specification.

In such situation, each set of tasks is individually scheduled (i.e. the executor of

each task is selected). When all elections are finished, the system selects the set of tasks

that would be executed.

If there are one or more tasks in the set of tasks for which the system could not

assign an executor, then such set of tasks is discarded.

If a single set of tasks is completely assigned for execution, then such set of tasks

is executed. On the other hand, if more than one set of tasks is completely assigned for

execution, then the system chooses the set of tasks with the highest value for the Score

of the Set of Tasks.

The Score of the Set of Tasks (SST) has two components, one based reputation

values and the other based on estimated completion times (the same way the candidate’s

Election’s Score of Section 5.1.3 has). Such components are (i) the Normalized

Quality of Experience in Database Systems

66

Reputation of Executors (NRepExec) and (ii) the Normalized Job Execution Completion

Time (NJobExecTime).

 The Score of the Set of Tasks of the i-th set of tasks (SSTi) is computed by the

following equation:

##)$ = 	υ ∗
��&"'�($, + 	ω ∗
,�"'�()���$
The calibration factors υ and ω are the same used while computing the Election’s

Score of candidates (Section 5.1.3). Definitions
Let AvgReputationi be the average value for the reputation (on maintaining

promises on tasks’ execution) of the services selected to execute the tasks of i-th

set of tasks. Let HAvgReputation be the highest value of AvgReputation among

the ones of all considered set of tasks. The Normalized Reputation of Executors

of the i-th set of tasks (NRepExeci) is the relation between AvgReputationi and

HAvgReputation:

��&"'�($ =
-.���&�������$
*-.���&�������

Let JobExecTimei be the foreseen execution completion time of the job while

executing the i-th set of tasks (i.e. estimated finish time of the last task of the set

to finish). Let LJobExecTime be the lowest value of JobExecTime for all

considered set of tasks. The Normalized Job Execution Completion Time of the i-

th set of tasks (NJobExecTimei) is the relation between LJobExecTime and

JobExecTimei.:

,�"'�()���$ =
+,�"'�()���
,�"'�()���$

Example 5.4 Consider a certain job for which two set of tasks were generated: one with

five tasks (that operate over a partitioned table) and another with a single task (which

operate over a non-partitioned table). For each set of tasks, the community scheduler

elects the executor of each task as if the other set of tasks does not exist.

Table 11 presents the reputation on maintaining commitments to satisfy tasks

requirements for each of elected executors of tasks from the first set of tasks. The last

column of Table 11 presents the average value of the reputation of elected executors

(AvgReputation). The foreseen job’s execution time while executing the first set of tasks

is 135 seconds (JobExecTime = 135).

Quality of Experience in Database Systems

67

Table 11 – First Set of Tasks - Reputation of Elected Executors - Example

 Task
AvgReputation

1 2 3 4 5

Reputation of
Elected

Executor
0.6 0.7 0.5 0.7 0.5 0.5

 The reputation value of the executor elected for the single task of the second set

of tasks is 0.7 (AvgReputation = 0.7) and the job’s execution time while executing the

first set of tasks is 165 seconds (JobExecTime = 165).

 Table 12 presents the values of NRepExec, NJobExecTime and SST for each set

of tasks (we consider υ = ω = 0.5). The second set of tasks has a higher value SST value

and, therefore, is chosen for execution.

Table 12 – NRepExec, NJobExecTime and SST for Distinct Set of Tasks - Example

 NRepExec NJobExecTime SST

First Set of Tasks
0.5
0.7 = 0.7

135
135 = 1.0 0.85

Second Set of Tasks
0.7
0.7 = 1.0

135
165 = 0.8 0.90

5.4 Reputation on Maintaining Commitments to Satisfy Tasks’
Requirements

In election inspired scheduling, each user’s command is transformed into tasks that may

have several requirements. Candidate services must agree to satisfy all specified

requirements of the task that is being scheduled. But elected candidates can fail

(intentionally or not) to satisfy specified requirements.

The reputation R of a data service on maintaining its commitment to satisfy

specified requirements while executing tasks is scaled to �0,1�. When the value of R for

a certain data service is close to 1, then such data service almost always satisfies the

specified requirements that it committed itself to fulfill. Hence, the community

scheduler has a great confidence on the data service’s capacity to maintain its

commitments. Definition
Let k represents a Success Factor (5	 ∈ {0,1}) that indicates if a certain Data

Service (S) fulfilled specified requirements of a given task (k = 1 → the service

fulfilled specified requirements; k = 0 → the service did not satisfy specified

requirements). The reputation R of S at time t considers the value of k for each of

the j tasks executed by the service, as specified in the following Equation.

Quality of Experience in Database Systems

68

�(8,9) =	
1

∑ ;$<
$=>

? ;5
<

$=>

In the previous Equation, d represents a time discount function. Such function is used to

differentiate old values of k from more recent ones, as the service’s behavior can change

over time (e.g. due to changes in the environment). On the other hand, if the service

does not execute any task, then its reputation does not change – the system maintains its

last reminder about the service’s behavior.

 Besides that, in the previous equation we consider the use of information about

the last j tasks executed by the service. In real implementations, the number of tasks (i.e.

j) to consider must be adjusted according to the system’s type. For instance, in some

systems, data about tasks executed at the last hour may be sufficient, while for others

systems, the system administrator may choose information about tasks executed during

the last entire month.

 We consider the time discount function defined by Huynh, Jennings & Shadbolt

(2006). Therefore, for a time window (∆t) from the time when the task that had the i-th

task was executed and the current time, the discount function d can be defined by the

following Equation.

;$ = �(
@AB
C)

 In the above definition of d, a scaling factor w is used to allow the use of distinct

time units and intervals. For instance, if the time unit used is minute and a Success

Factor obtained ten minutes ago should have only 15% of the effect of a recently

obtained Success Factor, then w = -10 / (ln 0.15).

 The system administrator can configure the system to alert him when the

reputation of a any service is undesirable (i.e. bellow a limit value defined by the

administrator).

Example 5.5 Consider two data services S1and S2 that should execute 10 tasks. Each

task has just one requirement and there is an interval of 1 minute between tasks

execution. Table 13 presents the service that executed each task and if the service

satisfied or not the task’s requirement. Service S1 executes tasks 1, 2, 9 and 10, and

satisfies the requirement of tasks 1, 9 and 10. Service S2 executes all the tasks from 3 to

8, and fulfills the requirement of three tasks.

Table 13 - Tasks Executed by Services S1 and S2 - Example

 Timestamp / Task

1 2 3 4 5 6 7 8 9 10

Executed
by

S1 X X X X

S2 X X X X X X

Requirement
Satisfied?

Yes No Yes Yes No Yes No No Yes Yes

Quality of Experience in Database Systems

69

In order to evaluate each service’s reputation maintaining its commitment to fulfill task

level requirements, we consider that a minute interval represents a fall of 20% on the

importance of the obtained Success Factor. Figure 48 presents the reputation of services

S1 and S2 at the end of each timestamp from 1 to 10 (i.e. after the execution of the task

that was submitted at the timestamp).

Figure 48 - Reputation of services S1 and S2 – Example

The reputation values of Figure 48 were evaluated considering just the execution of

tasks 1 to 10. Therefore, in Figure 48, service S2 has no reputation at timestamps 1 and

2. Both S1 and S2 satisfied the requirement of the first task they executed. Therefore,

both services have a reputation of 1 just after executing the first task. Services’

reputation decrease just after the first requirement they do not fulfill. A service’s

reputation increases when the service satisfies a requirement. Service S1 does not

execute any task from timestamp 3 to 8, hence its reputation is the same on such period.

The reputation of service S2 remains the same in the period from 9 to 10, when the

service does not execute any task.

5.5 Using Promises and Reputation to Estimate Tasks’ Execution
Time Interval

During tasks’ executor elections, candidates can make promises on the necessary time

interval to execute tasks. But candidates can break (intentionally or not) their promises,

taking a time interval to execute a task distinct from the one that they promised to take.

Section 5.5.1 presents how to estimate the necessary time to execute a task at a certain

candidate, considering candidate’s promises and reputation. Then, Section 5.5.2

presents how we evaluate candidates’ reputation on maintaining their promises on tasks’

execution time interval.

Quality of Experience in Database Systems

70

5.5.1 Estimating Task’s Execution Time Interval

Candidates can make promises on the necessary time to execute tasks. The reputation of

a data service on maintaining its promises on tasks’ execution finish time interval is

used to estimate the execution time of a certain task by calibrating candidate’s promise.

The estimated task’s execution time (et) value is computed as defined by the

following Equation, where eti,j represents the execution time of task i at candidate j, Pi,j

represents the candidate’s j promise on the execution time interval of task i, and Rj,t

represents the reputation on maintaining promises on tasks’ execution time interval of

candidate j at time t.

��$,< =	D$,<(1 + �<,9)

Example 5.6 Consider the election with two candidates: services S1 and S2. Candidates’

promises are 98 seconds and 107 seconds for services S1 and S2, respectively. The first

candidate’s reputation on maintaining promises on tasks’ execution time interval is 0.3,

while the reputation value for the second candidate is 0.1, as specified in Table 14. In

such situation, service S2 is the one that provides the lowest execution time interval, as

the foreseen task’s execution time in S2 (117.7 seconds) is lower than the one at S1

(127.4 seconds).

Table 14 – Estimating Task’s Execution Time Using Reputation - Example

Candidate’s Promise

(seconds)
Candidate’s Reputation

Foreseen Task’s
Execution Time (seconds)

S1 98 0.3 127.4

S2 107 0.1 117.7

5.5.2 Reputation on Maintaining Promises on Tasks’ Execution Time
Interval

We propose a reputation measure on how much a service fails to accomplish its

execution time promises.

The reputation R of a data service on maintaining its promises on tasks’

execution finish time interval is scaled to � − 1,∞). Negative values for reputation

represent the service would finish task’s execution before the time it has promised (a

value of -1 means that task’s execution would finish instantaneously). On the other

hand, positive values indicate that the service would finish task’s execution after the

time it has promised to finish (a value of ∞ means that task’s execution never ends).

When the reputation value is zero, the scheduler believes that the service would finish

task’s execution exactly at the time it has promised to finish. Definition
For each data service S, at time t, the value R of service’s reputation on

maintaining promises on tasks’ execution time interval is evaluated considering

Quality of Experience in Database Systems

71

service’s promises (P) on the past j elections the service won and the real task’s

execution time interval (E), as represented in the following Equation.

�(8,9) =	
1

∑ ;$<
$=>

? ;$(
"$ −	D$
D$)

<

$=>

In the above Equation, d represents the same time discount function we used when

defining the reputation of a data service on maintaining its commitment fulfill specified

requirements. Again, the time discount function is used to make older data about

service’s behavior less important than newer one. The above Equation considers the last

j elections in which the service made a promise and won the election. In real

implementations, the number of elections to consider may depend on the system’s

characteristics. Besides that, the initial reputation value of each service may be fixed by

the system administrator.

Example 5.7 Consider a certain service S1 that won ten elections in which it made a

promise. Table 15 presents the promise values and the actual tasks’ execution finishing

time. There is an interval of 1 minute between tasks execution. Service S1 did not win

the elections of tasks 7, 8 and 10.

Table 15 - Service's Promises and Tasks’ Execution Finish Time Interval

Timestamp / Task

1 2 3 4 5 6 7 8 9 10 11 12 13

S1 Promise 5,0 3,0 7,0 8,0 8,0 8,5 5,0 3,0 6,0 5,0

Task’s Finish

Time Interval 5,0 5,0 8,0 8,1 8,3 9,0 4,0 2,0 4,0 4,5

Figure 49 presents the reputation of S1 on maintaining its promises on tasks’ execution

finish time interval. We consider that each minute between the task’s execution and the

current time represents a fall of 20% on the importance of the task’s promise when

evaluating services reputation.

 Initially, S1 maintained its promise and terminated the execution of task 1 by the

same time interval it promised to terminate. However, in tasks 2 to 6, S1 took more time

to terminate the task than it had promise to take. Hence, from time 2 to 6, service’s

reputation is positive. Then, S1 took less time to execute tasks 9, 11, 12 and 13 than it

promised to take. Therefore, at timestamp 9, service’s reputation value begins to drop

down, and becomes negative at timestamp 11. The lowest reputation value is obtained at

timestamp 12. As the execution time interval of task 13 is closer to the service’s

promise than the execution time interval of task 12 was to the corresponding promise,

service’s reputation at timestamp 13 is closer to zero than it is at timestamp 12.

Quality of Experience in Database Systems

72

Figure 49 - Reputation of S1 on Maintaining Promises – Example

5.6 What-if Elections and Dynamic Replication for QoE

When a certain job cannot be executed, the system may start what-if elections: data

services that do not store the data required to execute (one or more of) job’s tasks, are

invoked to evaluate if they would execute considered tasks in case they store required

data.

A what-if election considers all the job’s tasks just like a normal election.

However, it just verifies if there is a schedule in which all tasks are assigned, and does

not effectively requests tasks execution.

When a certain service that does not store the required data to execute a task wins

the task’s what-if election, then it is considered that the creation of a data replica at such

service would bring a benefit to the system (i.e. increase the provided level of QoE, as it

would enable the execution of job that was not accepted for execution). If the total

benefit (β) of the creation of a certain data replica at a certain service reaches a

threshold value, then such data is selected for replication, and the system administrator

is alerted. Computing the Benefit of Replica Creation
In order to compute the total benefit (β) of a replica creation, the QoE oriented database

system should differentiate the benefit for old jobs from the ones for newer jobs.

Therefore, a time discount function may be used (the same way it was used when

computing services’ reputation):

β = 	? ;$
<

$=>

In the previous Equation, d represents the time discount function. The total benefit (β)

of a certain replica creation is the sum of a time decay function’s result for every time

Quality of Experience in Database Systems

73

that the replica creation brought any benefit to the system. We use the exponential

decay function:

;(�) = 	;H ∗ �IJ	∗	9

In such function, ;H represents the initial function value, K represents the decay constant

and t represents a time window. Filtering What-if Candidates based on Replica Synchronization Requirements
Data replicas may have distinct freshness requirements: a replica may be (i) just a

snapshot of the master data at a certain moment; (ii) periodically updated with changes

that occur in the master table (i.e. data updates occur asynchrony in the master table and

in the replica); and (iii) always synchronized with the master table (i.e. data updates

occur in the master table and in the replica as part of the same transaction – typically

controlled by a two-phase commit protocol).

 In this thesis, we do not study replica synchronization mechanisms, which are

already studied in other works and are present in current database management systems

like Oracle 11g R1 Enterprise Edition [Oracle, 2010] and SQL Server 2008 [SQL

Server, 2010]. If the system administrator identify that the underlying resources (e.g.

network resources) cannot guarantee the required replica synchronization level between

some services, it can configure the system to do use such services in what-if elections.

5.7 Reputation and Resource Availability Monitoring

Some of proposed requirements impose restrictions on data availability. In Section 5.1

we presented that resource availability predictions can be used to filter the pre-candidate

services for executing availability related tasks: services whose predicted availability

does not meet specified requirements are not even considered for the election of an

availability related task.

 Nevertheless, availability prediction methods can fail and, then, data services

availability must be periodically checked. There are several mechanisms that can be

used to monitor resources availability, including the use of a telnet client to connect to

remote data services or the use of a heartbeat daemon that periodically verifies node’s

availability. The mechanism to be used and the resource verification interval depend on

the system’s architecture (i.e. if a distributed or parallel system) and configuration.

If the system detects that a resource that should be available in a certain period

(i.e. is executing a task that has availability-related requirements) is in fact unavailable,

then it updates such service’s reputation on maintaining commitments to satisfy tasks’

requirements. Besides that, if unavailability persists for a certain period, then the system

takes corrective actions, running an on the fly election (Section 5.2) for the job(s) that

are being affected by resource unavailability, and also alerts the system administrator.

Quality of Experience in Database Systems

74

5.8 Conclusion

In this chapter, we presented the Election-inspired reputation aware QoE-oriented

scheduling strategy. In such strategy, some data services are considered as pre-

candidates to execute a task. Then, the pre-candidates should evaluate if they can or

cannot satisfy task’s requirements. If a pre-candidate evaluates that it can satisfy task’s

requirements, then it can present itself as a candidate. Candidates can also make

promises on task’s execution time.

 This chapter also discussed how to evaluate a candidate’s reputation on

maintaining commitments to satisfy specified requirements. Such reputation is used to

classify candidates in terms of their capacity to fulfill task’s requirements. We also

presented how the community scheduler foresees tasks’ execution time, considering

both candidates’ promises and their reputation on maintaining promises on tasks’

execution time interval. We presented how to select election’s winner considering both

candidate’s reputation on maintaining commitments to satisfy specified requirements

and the foreseen task’s execution time (i.e. to select a dependable candidate that

provides a low task’s execution time). The use of the reputation system increases the

system’s capability to maintain its commitment to the user (i.e. to satisfy the DARs that

the system agrees to satisfy). Therefore, it increases the QoE level the system provides.

We also presented the use of on the fly elections during the execution of jobs

with several tasks in order to improve the provided QoE level. We detailed the use of

the election inspired scheduling when there are several alternative sets of tasks for the

same job.

Besides that, we also discussed resource availability monitoring and how what-if

elections can be used to detect what data replica would improve the level of QoE

provided by the database system.

In the following chapter, we discuss how tasks are evaluated and managed at

data services.

Quality of Experience in Database Systems

75

6 Tasks Evaluation and Management at Data Services

Data services are responsible for tasks execution. In order to be assigned as the executor

of a certain task, the data service should commit itself to satisfy the task’s requirements.

The service should also specify a foreseen execution time for the task.

In Section 6.1 we discuss the participation of the data service in elections. We

present how data services can decide on presenting themselves as pre-candidates and

how tasks scheduler evaluates if it can or cannot satisfy task level requirements (decide

on being a candidate or not). Besides that, we discuss how the scheduler specifies its

promise on tasks’ execution time interval.

In order to decide on being a candidate, a service may need to estimate the

execution time of a query or to estimate the necessary time to copy remote data. In

Section 6.2 we discuss how we estimate the necessary time to transfer some piece of

data between hosts. Then, in Section 6.3 we present a strategy to estimate the execution

time of database queries based on query’s cost and system load.

Finally, Section 6.4 presents the chapter’s summary and some final comments.

The main contributions of this chapter are: (i) multi-target intra-site query

scheduling policy, (ii) query execution time estimation method, and (iii) method for

automatic adjustment of the multi-programming degree for fulfilling task level

requirements.

6.1 Participating in Elections

Data services can become pre-candidates in elections voluntarily or when selected by

the community scheduler. In both cases, pre-candidates should evaluate if they can or

cannot satisfy task’s requirements. Besides that, candidate services should make

promises on the required time to execute the task.

 In Section 6.1.1 we discuss when a data service should present voluntarily itself

as a pre-candidate to participate in elections. Then, in Section 6.1.2 we present how the

tasks scheduler evaluates if the service or cannot satisfy specified task level

requirements, and how the tasks scheduler decides on the value to promise as the

required time to execute the task.

6.1.1 Presenting Itself as a Pre-Candidate

A data service may present itself as a pre-candidate to participate in elections. This is an

indication that the service wants to evaluate if it can or cannot satisfy a task’s

requirements and make some promises on the required time to execute the task even

Quality of Experience in Database Systems

76

though the community scheduler evaluates that the service does not have high changes

to win the election. Such intention is valid for the elections that occur during a certain

time window.

 Participating in an election requires some processing time of pre-candidates (e.g.

to evaluate task’s requirements satisfaction). Although service’s administrators can

implement any local policy to choose when the service should present itself voluntarily

as a pre-candidate to execute a task, we propose that the service should only present

itself voluntarily to participate in elections when service’s load remains below a certain

threshold value for a certain time (the values for the load metric and for the time

window should be tuned by the system administrator).

Example 6.1 In Linux-based systems, the data service may present itself to participate

as a pre-candidate in all elections that occur in the next minute when the load average

metric remains below the value of 0.3 for 5 minutes.

6.1.2 Evaluating Tasks’ Requirements and Making Promises

During election-inspired scheduling, the community scheduler informs to selected pre-

candidate services about the task whose executor is being elected and about such task’s

requirements. Then, pre-candidate services should verify if they can execute such task

and satisfy its requirements while still fulfilling the requirements from tasks the service

already committed itself to fulfill.

 Table 16 summarizes the tests that should be done for each task level

requirement. If the tasks scheduler foresees it can fulfill all the requirements of the

considered task, then it can present its data service as a candidate to execute the task.

Table 17 presents the description of the methods/properties used in Table 16 for testing

requirements.

Table 16 - Evaluating Requirements Fulfillment

Task Level Requirements Testing Requirements

Task.Relation(ρ).Freshness Data to which the local replica of ρ corresponds in the master

table ≥ Task.Relation(ρ).Freshness

Task.ExecutionStartTime Task.ExecutionStartTime ≤ Task.ForeseenInitialTime

Task.ExecutionDeadline Task.ExecutionDeadline ≥ Task.ForeseenFinishTime

Task.ExecutionFinishTime Task.ExecutionFinishTime ≥ Task.ForeseenFinishTime

Task.TemporaryRelation(relation

_identifier).AvailableFrom

Task.TemporaryRelation(relation

_identifier).AvailableUntil

Period =

[Task.TemporaryRelation(relation_identifier).AvailableFrom,

Task.TemporaryRelation(relation_identifier).AvailableUntil]

Task.Results.StoreAtTemporaryR

elation

Memory.HasSpace(Task.TemporaryRelation(relation_identifier).

Size; Period)

Quality of Experience in Database Systems

77

Task Level Requirements Testing Requirements

Task.TemporaryRelation(relation

_identifier).AvailableTime

Not Exists (Scheduled.Downtime(Period))

Task.TemporaryRelation(relation

_identifier).AvailabilityPercen

tage

(Scheduled.Downtime(Period).Size / Period.Size) <=

Task.TemporaryRelation(relation_identifier).AvailabilityPerc

entage

Task.Results.StoreToFutureUse Memory.HasSpace(Task.Results.Size)

Task.RefreshMode Queue.Place(Task) && Dataset.CanRefresh(Task.RefreshMode;

Period)

Task.ExecutionDate Task.ForeseenExecutionDate ≥ Task.ExecutionDate

Task.ExecutionPriority Queue.Place(Task)

Task.ExecutionMode Queue.Place(Task)

Table 17 – Testing Methods/Properties Description

Method Description

Memory.HasSpace(Relation Size;

Time Window)

Verifies if the system has enough free space in memory

(primary or secondary) to store a relation. It uses

information about the required space and the time

period on which the space is required.

Queue.Place(task)

Verifies if the system can place the task in tasks queue

while satisfying the requirements of the newly

placed task and of the other tasks that were already

in the queue. Returns TRUE if task’s requirements

can be fulfilled (i.e. the service can be a candidate)

or FALSE in case requirements cannot be fulfilled

Task.ForeseenInitialTime

Returns the foreseen initial execution time of a task. It is

set by the Queue.Place method and considers a

certain placement of the task in tasks queue.

Task.ForeseenFinishTime

Returns the foreseen finish execution date and time of a

task. It is set by the Queue.Place method and

considers a certain placement of the task in tasks

queue.

Task.ForeseenExecutionDate

Returns the foreseen execution date(s) of a certain task.

It is set by the Queue.Place method and considers a

certain placement of the task in tasks queue.

Scheduled.Downtime(Time Window)
Verifies if the system has a scheduled downtime period

in a certain time window

Scheduled.Downtime(Time

Window).Size

Returns the size of the scheduled downtime period in a

certain time window

Quality of Experience in Database Systems

78

Method Description

Dataset.CanRefresh(RefreshMode,

Time Window)

Verifies if the system can guarantee the required refresh

mode for a certain dataset in a certain time window.

It uses information provided by system’s

administrator about constraints on data replication

modes (discussed in Section 5.6)

The method Queue.Place (Table 17) is a key method for task’s requirements evaluation.

Each tasks scheduler manages two queues: one for very small tasks and another for the

other tasks. Such size-based organization aims to provide an ‘express queue’ to very

small tasks. The Queue.Place aims at placing a task in the corresponding tasks queue in

order to finish tasks execution as soon as possible, but while satisfying the requirements

of such task and of other tasks that were already placed in the queue.

 The Task.ForeseenFinishTime property stores the task’s foreseen execution

finish (date and) time considering a certain placement of the task in the tasks queue. In

normal elections, task’s initial time is determined by the task’s position in the queue and

the task’s execution finish time is estimated as the sum of two components: (i) the time

required to transfer the necessary data to execute the task (input data transfer time) and

(ii) the time required to execute task’s database command locally (in Section 6.2 we

present how we estimate the data transfer component and in Section 6.3 we discuss

database command’s execution time estimation). But if the task is being evaluated for a

what-if election, then service’s promise considers only the second component: the time

required to execute task’s database command.

The Task.ForeseenFinishTime property is used to compute the candidate’s

promise on the necessary time interval to execute the task:

D������ =)��5. L�������L����ℎ)���	 − "��(����′�)�������&

The Task.ForeseenInitialTime is used to estimate the timestamp on which a

task’s execution begins. It is determined by the task’s position in the queue.

 The Scheduled.Downtime method verifies if the system has a scheduled

downtime in a certain time period. If the service is suitable to frequent unscheduled

downtime periods and it accepts for execution many tasks that have availability

requirements, then the service would probably have a low reputation on maintaining

commitments to satisfy tasks’ requirements.

 In the following sections, we discuss method to estimate the required time to do

data transfer between sites and to execute a query at the local site database.

6.2 Data Transfer Time Estimation

In order to execute a task, a service may need to copy remote data to the local host (as

such data is required to task’s execution). During task’s requirement evaluation, tasks

scheduler must estimate the required time to execute this operation (i.e. data copy

between hosts) in order to estimate the required time to execute a task.

Quality of Experience in Database Systems

79

Data transfer time depends on several aspects, like network latency and

bandwidth, I/O throughput, network card speed and data set size. The size of the data set

that should be copied between hosts (from a remote host to the service or from the

service to a remote host) is obtained using database statistics. All other components are

estimated according to the network benchmarks strategy proposed by Antunes &

Furtado (2007): tasks scheduler transfers (periodically or on demand, according to the

made by the system administrator) data sets of distinct sizes between sites, measuring

the required time to transfer such data. Then, such data transfer times benchmark is used

to estimate the time required to copy task’s input data from remote sites to the local

host.

6.3 Query Execution Time Estimation

In order to make a promise on the necessary time to execute a task and to evaluate

requirements fulfillment, the tasks scheduler must have a strategy to estimate task’s

execution time. In this Section, we present query execution time estimation strategies.

Typical query execution times may vary from just a few milliseconds to several

minutes. In order to deal with such variation, tasks scheduler uses two queues: an

express queue for very small tasks (e.g. whose execution takes less than 1 second) and

another one for the other queries.

Only a few small tasks can be executed concurrently (low multi-programming

level – MPL - limit). However, the number of normal and long-running tasks executed

concurrently is adjusted by a specific time estimation method. Such queue management

strategy is represented in Figure 50. The use of small tasks queue increases system’s

throughput (a large number of small tasks is executed in a small time window), but the

MPL limit for small tasks should not be so large that the execution of small tasks

significantly impact in the execution time of normal and long-running queries.

Figure 50 - Multiple queue management

Quality of Experience in Database Systems

80

First, Section 6.3.1 presents how to estimate execution time of small tasks. Then Section

6.3.2 presents how to estimate the execution time of normal and long-running database

queries.

6.3.1 Small Tasks Execution Time Estimations

A fixed (typical) value is defined for the duration of small tasks execution by the

DBMS. As small tasks execute too quickly, the typical error for this strategy is

relatively small (for instance, if small tasks queue manage the executions of queries that

typically take less than 1 second to execute and the typical value chosen for small tasks

duration is of 500 milliseconds, then the maximum forecast error would be lower than

half a second).

The total execution time of a small task should consider the required time to

execute the query by the DBMS but also consider the time that the task waits in the

queue.

Consider that typ is the value the typical execution time of a small task. Consider

a task q that is placed in the small tasks queue after n tasks. The following equation

presents how to compute the total execution time tot of q in such situation:

��� = �N& ∗ (� + 1)

Small tasks are auto-detected by the system. It periodically verifies (by

executing some sample queries) which is the query execution cost that leads to an

execution time that is near the typical duration of small tasks. Then, all tasks with a

foreseen execution cost smaller than the obtained value are considered as small tasks.

6.3.2 Estimating Normal and Long-running Queries Execution Time

Execution time estimation is not a common feature of current database management

systems. On the other hand, most current query optimizers inform the user about some

kind of execution cost for the query. Such execution cost is used together with system’s

workload in execution time estimation.

 Consider that, at a certain point in time, the system is executing a certain number

of concurrent commands (multiprogramming level - MPL). To such point in time there

is a corresponding workload cost (and workload execution phase). Whenever a new

command execution starts or ends, there is a workload execution phase change, as

represented in Figure 51.

Figure 51 - Workload Execution Phases - Example

Time
Current Time

Legend:

Query

 Phase Delimiter

Quality of Experience in Database Systems

81

Consider that there is a conversion function (δ) that returns the estimated execution time

for a certain estimated execution cost (it is important to notice that there is no exact

relation between execution cost and execution time, and that execution time depends on

several factors, including external loads, machine’s processing power and main memory

size).

 The conversion function can be used to estimate the time required for a phase

change (considering the total phase cost as input for the function). Estimating Query Execution Finish Time When Changing the MPL
For simplicity, consider that the execution cost of a command is equally distributed

during all the period of command’s execution and that in a certain time window the

system processes the same amount of cost units from all the queries that it is executing.

Suppose a certain system that is executing a single query q whose execution cost

is cq. Using the conversion function (δ), one can estimate such query’s execution time.

The execution of q starts at time t0. After a certain time point during the execution of q

(t1), the system starts the execution of a new query (q2), increasing the system’s MPL to

2 (NewMPL). Also consider that δ
-1

 can be used to estimate the execution cost processes

in a certain time window.

 Figure 52 presents some pseudo-code to represent the algorithm used to estimate

the time required to finish the execution of q after t1 (RemainingTime).

Figure 52 - Estimating a query finish time after changing the MPL

Now, consider that, at a certain time point t2 after t1 and before the end of the execution

of q and of q2, the system starts the execution of a new query (q3), as represented in

Figure 53.

Figure 53 – Phase Changes When Increasing the MPL - Example

Time

t0
Legend:

Query

 Phase Delimiter

t1 t2 t3 t4 t5

Current Time

q

q2

q3

Quality of Experience in Database Systems

82

At t2, the system can estimate the remaining execution time of each query (i.e. the time

when each phase change would occur). In order to do that the first step is to estimate

how much of q and q2 were already processed. This is a generalization of the first line of

the pseudo-code from Figure 52 and is represented in Figure 54.

Figure 54 - Estimating Processed Cost

Then, the system should estimate the remaining execution cost of each query (as it does

for q in the second line of the pseudo-code from Figure 52). Such code is represented in

Figure 55.

Figure 55 - Estimating Remaining Execution Cost

At that point starts the estimation of the next phase changes (i.e. the execution finish

time of ongoing queries). Such process is represented in Figure 56 and begins with the

selection of the next query to finish. Then, the estimating time and executed cost of the

next phase change is computed. The remaining cost of each query is updated, and one

query is removed from the pending list. These actions are repeated until all phase

changes are identified (i.e. the remaining execution time of each query is estimated).

Quality of Experience in Database Systems

83

Figure 56 - Estimating Future Phase Changes Choosing the Conversion Function
Heiss & Wagner (1991) models the relation between concurrency level and the

performance of a transaction processing system as a polynomial function of degree 2

with a parabola that opens downward. In such case, after saturation an increase in the

system’s load causes a drop in throughput.

 We also model the conversion function δ as a polynomial function of degree 2,

but our parabola opens upward. Initially, an increase in system’s load would cause a

small increase in the execution time. Above the saturation point, a small increase in

system’s load would cause a great variation in each query’s foreseen execution time.

Quality of Experience in Database Systems

84

 When a phase change occurs due to a query execution finish, then the real time

necessary for the phase change is used to calibrate the function’s coefficients. This is

done by a quadratic regression considering the foreseen execution cost for the last

Workload Execution Phase and the real execution finish time of the Workload

Execution Phase, besides some other measures obtained in previous phase changes that

occurred due to a query execution finish.

6.4 Conclusion

In this Chapter we discussed how data services decide on presenting itself voluntarily as

a pre-candidate to an election, and how they decide to be a candidate or not in an

election. We detailed task scheduling and task level requirements evaluation in data

services and presented a strategy to estimate the execution time of database queries

considering both query cost and system load.

 We discussed the tests that a tasks scheduler should do for each type of task

level requirement in order to verify if it can fulfill task’s requirements or not. We

presented how the service would specify its promise on task’s execution time interval.

Besides that, we presented a strategy to estimate the execution time of a query

considering its execution cost and the system’s load. Such strategy is conceived to be

used by database external schedulers. This way, the tasks scheduler can be implemented

as an external scheduler, which enables its use together with currently available

database management systems.

In the following chapter, we discuss the use of specialized metrics to evaluate

the level of QoE that a database system provides to users.

Quality of Experience in Database Systems

85

7 Measuring the QoE Provided by Database Systems

This chapter is concerned with the appropriate metrics to evaluate Quality of

Experience. Traditional performance indicators (e.g. throughput or execution time) do

not measure the level of QoE the system provides for users: they usually measure how

fast a system is but not how many requirements a system fulfills or how satisfactory a

system is. Therefore, traditional performance indicators are not the most adequate to

measure the performance of a QoE-oriented database.

As an illustrating example, consider two queries submitted simultaneously and

that query Q1 must be completed within 1 second and that this is a tight schedule, and

query Q2 must be completed within 1 hour and that is a relaxed schedule. In a best effort

system they will run simultaneously. Assume that Q1 does not complete within 1 second

in that scenario. In a QoE-oriented system, Q2 may be scheduled to be executed after Q1

if that allows Q1 to meet its 1 second goal. From a throughput perspective postponing

execution of Q2 for 1 second may not improve the metric (i.e. the throughput), however,

from a QoE perspective, it means that Q1 can execute and is successful as well as Q2.

We propose four specialized indicators that can be used to measure distinct

aspects of a QoE-oriented database. The first three of them (Acceptance Rate,

Commitment Maintenance Rate and Success Rate) provide measures of specific

operations (e.g. system’s capability to maintain its commitment on satisfying certain

DARs), while the last one (QoE Level indicator) can be used to estimate the level of

QoE that the system provides. Such KPIs can be used in any QoE-oriented database that

follows the model we proposed in Chapter 3 (no matter if it is a centralized, parallel or

distributed database), and it can be used to compare the level of QoE provided by a QoE

system versus the level provided by a best effort system.

Even though users cannot explicitly specify requirements in best effort oriented

systems, the data access requirements intention may be assumed for comparison

purposes with QoE systems. Hence, proposed KPIs may also be used to compare the

QoE level provided by best effort systems and by QoE oriented systems.

Besides that, the system uses the KPIs’ values to alert the administrator when the

QoE level provided to a certain database user (or transaction) remains too low for long

periods. This can enable administrators to take corrective actions before users complain

about system’s performance.

 In Section 7.1, we define the Acceptance Rate Indicator. In the proposed model

for QoE oriented databases, the system can reject to execute a command informing the

user that it cannot satisfy specified requirements. The Acceptance Rate Indicator KPI

provides a measure on how many of the submitted jobs (i.e. statements or blocks of

statements) the system agreed to execute. While it is important that the system informs

the user of jobs that it cannot satisfy, if the system rejects the execution of a too high

number of jobs, the user would probably become unhappy.

Quality of Experience in Database Systems

86

 Then, in Section 7.2 we propose the Commitment Maintenance Rate Indicator.

When a QoE oriented system agrees to execute a certain user’s command, it should

satisfy all the requirements associated with such command. But the system may fail to

satisfy some of the specified DARs (e.g. due to a wrong prediction of future conditions,

a command execution deadline cannot be satisfied), which would lead to user’s

disappointment. The Commitment Maintenance Rate Indicator provides a measure on

the number of jobs that had their DARs satisfied, considering just the jobs with

associated DARs that the system’s agreed to execute.

 In Section 7.3 we define the Success Rate Indicator. Consider a user who

submits several commands that have explicitly defined DARs. The system foresees it

cannot satisfy the requirements of some of the submitted commands (and such

commands are not executed). The system also fails to satisfy the requirements of some

of the commands that it agreed to execute. Finally, the user may feel that just a small

number of submitted commands were effectively executed and had their requirements

satisfied. The Success Rate Indicator provides a measure on the number of jobs that had

their DARs satisfied, considering all submitted jobs that have associated DARs.

 In Section 7.4 we present the QoE-Level Indicator. The QoE level a system

provides depends mostly on whether users’ expectations are met or not. But the system

may not be able to satisfy all users’ expectations, since some of them may be infeasible,

considering existing resources. The way that users become aware that their expectations

are not going to be met can also influence users’ satisfaction degree. The QoE-Level

Indicator aims to measure the level of QoE that the system provides considering several

factors, including the number of jobs with explicitly defined DARs that the system

accepts to execute and the number of jobs whose DARs the system satisfies.

In Section 7.5, we present some examples and discuss obtained values for each of

the proposed indicators.

Then, Section 7.6 presents the use of proposed indicators to alert administrators

when the system provides a level of QoE that is not acceptable.

Section 7.7 closes the chapter presenting its summary and some comments.

Hence, the main contribution of this chapter is the proposal of some specialized

performance indicators that can be used to measure distinct characteristics of QoE-

oriented database systems, and to compare the QoE levels provided by distinct systems

(which may be QoE-oriented or best effort oriented).

7.1 Acceptance Rate Indicator (AR)

Users may submit several commands to the system, each one with several requirements.

For each command, the system analyzes if it can or cannot satisfy the specified DARs.

The system only agrees to execute commands whose DARs it can satisfy. The

Acceptance Rate Indicator presents a measure on the rate of jobs with explicitly defined

DARs that the system agrees to execute.

Let NJ represent the number of jobs that have at least one DAR and were

submitted to the system in a certain time period (∆t). Let AJ represent the

number of jobs with at least one DAR that were submitted to the system in ∆t and

Quality of Experience in Database Systems

87

the system agreed to execute. The Acceptance Rate (AR) Indicator represents the

relation between AJ and NJ, as represented in the following Equation:

-� = -,
,
where 0 ≤ -� ≤ 1.

A high Acceptance Rate value indicates the system agreed to execute almost all

the jobs (i.e. commands or blocks of commands) that had associated requirements. On

the other hand, if the system rejects almost all the jobs with associated DARs, then the

AR value gets close to zero. Among the causes of low AR values, we can cite high

system loads and high number of unfeasible requirements specified by users. Both

situations can indicate that the system does not have the necessary resources to satisfy

user requirements.

When the system accepts almost all users’ jobs (high Acceptance Rate), users

may feel that the system is very capable, and that it would solve all users’ problems. But

this may be wrong… The system may fail to satisfy the DARs of accepted jobs.

If the system rejects some user jobs and satisfies the DARs of almost all the jobs

it accepts, users’ would probably be happier than in the previous case.

On the other hand, if the system has high risk aversion (or low resources) and

rejects almost all users’ jobs (low Acceptance Rate) users would feel frustrated (some of

them would feel so even though the system satisfies the DARs of the jobs it accepts).

7.2 Commitment Maintenance Rate Indicator (CMR)

When the system determines that it can satisfy all DARs of a certain command, the

system accepts such command for execution. But what if the system is slower than

predicted or something in the environment changes (which is especially feasible in

distributed information systems like data grids) and the system fails to satisfy a DAR?

Probably, the user who submitted the corresponding command would become very

unhappy, as he/she was expecting that the DARs would be satisfied (after all, the system

agreed to satisfy all specified DARs when the user submitted the corresponding

command).

The Commitment Maintenance Rate is a measure on the system’s capability to

maintain its commitments (i.e. satisfy the DARs from jobs it agreed to execute).

Let AJ represent the number of jobs that had associated DARs and the system

agreed to execute. Let SJ represent the number of jobs with at least one DAR

that were submitted to the system in ∆t and whose DARs the system satisfied. The

Commitment Maintenance Rate (CMR) Indicator represents the relation between

the number of jobs that had all DARs satisfied (SJ) and the number of jobs that

had associated DARs and the system agreed to execute (AJ).

OP� = 	 #,-,

Quality of Experience in Database Systems

88

where 0	 ≤ OP�	 ≤ 1.

A high value of Commitment Maintenance Rate is desirable as it can indicate that the

system is highly dependable and is satisfying all the requirements that it commits itself

to satisfy. Low values of CMR would certainly lead to low QoE and can be caused by

several reasons, like a highly dynamic environment (where conditions are constantly

changing) or by the use of bad algorithms to foresee the possibility to satisfy specified

requirements.

 If a system administrator wants to increase the values of Commitment

Maintenance Rate, he/she can change parameters of the system’s algorithm or the

algorithm itself that decides concerning acceptance of users’ jobs: for instance, the

system can become more conservative and decline to accept a large number of

concurrent queries or decline to accept too tight requirements. But if the used algorithm

has a high risk aversion, the system can refuse a high number of users’ jobs, which

would not lead to high levels of QoE (i.e. high values of CMR, but low values of AR

simultaneously).

7.3 Success Rate (SR) Indicator

When a user submits a command for a database system and explicitly defined a data

access requirement, he/she expects that such command would be executed and that

specified the DAR would be satisfied.

The Success Rate Indicator aims at providing a reference between the number of

jobs with DARs the system satisfied and the number of jobs with DARs submitted by

users.

The Success Rate (SR) Indicator represents the relation between the number of

jobs that had all DARs satisfied (SJ) and the number of commands with DARs

that were submitted by users (NJ).

#� = 	 #,
,
where 0	 ≤ #�	 ≤ 1.

Values of SR close to 1 are highly desirable, as they indicate that most of submitted jobs

were executed and the corresponding DARs were satisfied. When SR is equal to 1, the

system provides a high QoE. But when some of the submitted jobs do not have their

DARs satisfied, the value of SR cannot be used as the measure of provided QoE. In

Section 7.5, we present distinct situations that have the same value of SR but provide

distinct levels of QoE to users. In the following Section, we present our proposal of

indicator for measuring the QoE level a database system provides.

Quality of Experience in Database Systems

89

7.4 QoE-Level (QoEL) Indicator

Satisfaction is a subjective measure. However, in order to compare the levels of QoE

provided by distinct systems (and scheduling strategies), we must have a somewhat

rigorous indicator. Therefore, we define the QoEL indicator, which aims to provide

information on the QoE-level provided by a QoE-oriented database.

 In the proposed strategy for QoE-oriented databases, users submit database

commands or blocks of commands with associated requirements for the system, which

should evaluate if it can or cannot satisfy the specified requirements. The system only

agrees to execute jobs with DARs that it can satisfy. This situation is somewhat similar

to the situation of contracting a personalized service (e.g., home renovation or tailor

made clothes).

 Consider a person who wants to contract a service of home renovation. Such

person specifies some requirements (e.g. deadline) that should be met by the service

provider. The person would only hire a service provider that agrees to do the service

while satisfying all specified requirements. Let us consider that the person searches for

such a provider for some time, and then finds a provider who agrees to execute the

required job. Then, the person hires such provider. This would certainly give some

satisfaction to the person. Besides that, the person will certainly be happier when the

provider delivers the hired job in accordance with specified requirements. On the other

hand, if the person never finds a service provider that agrees to execute the specified

job, he/she can feel somewhat frustrated, but can also change some requirement and

start looking for a service provider again. The frustration of not finding a service

provider that agrees to execute a certain job would indeed be smaller than the

disappointment that the person would feel if he/she would hire a service provider, wait a

long time for the service to be delivered and, then, the service would not be delivered as

engaged.

 Therefore, there are two important events that can lead (or not) to satisfaction: (i)

service hiring; and (ii) service delivering. We believe that the execution of a command

or block of commands (i.e. job) with associated DARs in a QoE-oriented database is

similar to such situation. The service hiring event is related to the moment when the

system agrees (or not) to execute a job. Service delivering represents the moment when

the system finishes job execution satisfying (or not) associated DARs.

The QoE-Level Indicator (QoEL) is dependent on two factors: (i) service hiring

(H) and (ii) service delivering (D) and is computed by the following Equation.

Each factor may have a distinct importance to each person.

Q�"+ = 	R	 ∗ * + 	S ∗ T

where (R + 	S) = 1; 	R	 ≥ 0; S	 ≥ 0

We use α and β as factors that calibrate events’ importance. In most cases, service

delivering would provide greater satisfaction (or disappointment) than service hiring

(i.e. β >> α).

 The service hiring event can provide satisfaction when the system agrees to

execute submitted jobs (positive factor). On the other hand, service hiring can provide

Quality of Experience in Database Systems

90

some degree of dissatisfaction when the system does not agree to execute a job

(negative factor). Therefore, we can define H as dependent on NJ (i.e. number of jobs

with DARs that were submitted by users, as defined earlier in this Chapter) and AJ (i.e.

number of jobs with at least one DAR that were submitted to the system and the system

agreed to execute):

* =	R> ∗ -, −	RV ∗ (
, − -,)
where α1 and α2 are used to calibrate the importance of each factor. R> + RV	 =
1;	R> ≥ 0;	RV	 ≥ 0.

Similarly, the service delivering event can provide satisfaction when service is delivered

as expected (positive factor) or dissatisfaction when the service is not delivered as

expected (negative factor). Therefore, we define D as dependent on AJ and SJ (i.e.

number of jobs that had all DARs satisfied).

T = 	S> ∗ #, −	SV ∗ (-, − #,)
where β1 and β2 are used to calibrate the importance of each factor. S> + SV	 =1;	S> ≥ 0;	SV ≥ 0.

7.5 Using QoE-related Indicators to Evaluate Systems - Examples

In this Section we present some examples on the use of the above defined KPIs. In all

the examples, we consider the same number of submitted commands and the same

calibrating factors.

Consider that during a time interval of 10 minutes, users submit 1500 commands

with DARs to the system (NJ = 1500; ∆t = 10min). Suppose service delivery provides

greater satisfaction (or disappointment) for users than service hiring, and calibrate the

system with α = 0.4 and β = 0.6.

In terms of service hiring, we should calibrate two factors α1 and α2. Consider

that accepting a job results in some degree of satisfaction, but rejecting a job does not

result in much dissatisfaction (i.e. users accept that the system is doing its best to satisfy

DARs). Therefore, we choose α1 = 0.8 and α2 = 0.2.

We should also define the values of the factors related to service delivery (i.e. β1

and β2). Consider that, when the system fails to satisfy a DAR that it promised to

satisfy, it causes more disappointment than the satisfaction it provides when delivering a

job satisfying the specified DAR. Hence, we would consider β1 = 0.3 and β2 = 0.7.

In the following, we present five distinct examples. Table 18 presents a summary of the

parameter considered in proposed situations and the values obtained for each of the

proposed indicators.

Quality of Experience in Database Systems

91

Table 18 - KPIs - Examples

Example
Accepted
Jobs (AJ)

Jobs with
Satisfied

DARs (SJ)

Acceptance
Rate (AR)

Commitment
Maintenance

Rate (CMR)

Success
Rate
(SR)

QoE
Level

Indicator
(QoEL)

7.1) Best Effort

Oriented System
1.500 100 1.00 0.06 0.06 -90

7.2)

Conservative

QoE Oriented

System

200 200 0.13 1.00 0.13 -4

7.3) Daring QoE

Oriented System
1.400 700 0.93 0.50 0.47 272

7.4) Balanced

QoE Oriented

System
1.240 1.200 0.83 0.97 0.80 575

7.5)

Conservative

QoE Oriented

System II

740 700 0.49 0.95 0.47 285

Example 7.1 – Best Effort Oriented System

Consider a best effort system. The system accepts all users’ commands that have an

associated DAR, even though such DAR is not explicitly defined (best effort systems do

not deal with DARs). It achieves a high value of AJ (AJ = 1,500). Unfortunately, it

cannot satisfy all such commands and a low value of SJ is obtained (SJ = 100).

 In such situation, a high Acceptance Rate is obtained (1.00). But the values of

CMR and SR are too low (0.06 for both indicators). The system may present high

throughput or low response time, but it satisfied only a few DARs. Hence, the system

provides a low QoE level, which is represented by the value of QoEL (-90).

Example 7.2 – Conservative QoE Oriented System

Now, consider a QoE-oriented database system. Such system is calibrated in order to be

very conservative when evaluating if it can or cannot satisfy commands’ DARs (i.e.

high risk aversion). Therefore, the system refused to execute most users’ commands: it

executes only 200 commands (AJ = 200). With such configuration, the system fulfills

all DARs of the jobs it executes (SJ = 200).

Hence, the system appears quite dependable to users as it fulfills all DARs that it

committed itself to satisfy. But, although a high Commitment Maintenance Rate is

obtained (CMR = 1.00), users may feel that just a small number of their commands

were executed (SR = 0.13), which leads to a low level of QoE (QoEL = -4).

Example 7.3 – Daring QoE Oriented System

The QoE-oriented system uses a new method to estimate if it can or cannot satisfy

users’ DARs. Using this method, the system agreed to execute 1.400 commands (AJ =

Quality of Experience in Database Systems

92

1400). It is a lower number of executed commands than in Example 1 but a higher

number of executed commands than in Example II. Consider that in such configuration

the system satisfied all DARs from 700 jobs (SJ = 700).

The Acceptance Rate value of this Example is smaller than in Example I. It has a

smaller value for Commitment Maintenance Rate than the one of Example II. But the

values for Success Rate (0.47) and QoE-Level (272) are higher in Example III than the

ones of previous examples. This is because the configuration of Example III leaded to a

better balance between command acceptance and requirements fulfillment than the ones

obtained in previous examples.

Example 7.4 – Balanced QoE Oriented System

Now consider a situation where the number of accepted jobs (AJ = 1240) is somewhat

smaller than the one of the previous example, but almost all accepted jobs had their

DARs satisfied (SJ = 1200). About 80% of users’ commands that were submitted had

their DARs satisfied (SR = 0.8). This situations leads to a higher QoE level (QoEL =

575) than the previous examples.

Example 7.5 – Conservative QoE Oriented System II

In examples I to IV, an increase in the value of Success Rate provided an increase in the

value of QoE-Level, which indicates that there is a relation between SR and the

provided QoE level. But situations with the same value of SR can have distinct values

of QoEL. This happens because it is assumed that users give distinct importance to the

result of each phase of command execution (i.e., success or failure in service hiring and

delivering).

Consider a configuration where the number of accepted commands is 740 (AJ =

740) and the number of jobs whose DARs where fulfilled is 700 (SJ = 700). The

Success Rate of such configuration is equal to the obtained in Example III (SR = 0.47),

but the value of QoEL (285) is higher than the one of Example III (272). Although the

system had satisfied the same number of DARs in examples III and V, in Example III it

failed to satisfy its promises much more times than in Example V (i.e., 700 failures in

Example III and 40 failures in Example V).

7.6 Using QoE-related Indicators to Alert Administrators

In previous chapters, we presented several situations where the QoE oriented database

system alerts the administrators, including: (i) when the reputation of a certain service is

undesirable (Section 5.4); (ii) when the system detects that replication can improved the

provided level of QoE (Section 5.6); and (iii) when undesirable unavailability is

detected (Section 5.7). In this section, we discuss the use of proposed QoE-related

indicators to alert administrators when the system is providing an undesirable level of

QoE.

In several situations, systems’ administrators do not know that users are

unsatisfied with the system until it is too late. For instance, consider a web-based store.

At a certain moment, the response time of the system becomes too high (for instance,

Quality of Experience in Database Systems

93

because of an inefficient database query included by a programmer in a certain release

of the application or because the number of uses is too high for existing infrastructure).

In such situation, users may become unsatisfied with the system. Nevertheless, it may

take a long time for users to inform the store’s owner that they are unsatisfied with the

system’s performance. In fact, most users can stop using the application and never

inform the store’s owner that they are unsatisfied with the system’s performance.

Proposed specialized performance indicators are also used to alert system’s

administrator when the system is providing low levels of QoE, even before a large

number of users is affected or before users start complaining about the system.

Therefore, examples of some possible alerts are:

• The value of Acceptance Rate in a certain time window is below the acceptable

level – usually, it indicates that users’ requests are unfeasible with existing

resources. Some possible actions are: (i) database tuning; (ii) client application

tuning/refactoring; (iii) add new hardware; (iv) users may need to be trained in how

to use available DARs. AR would also be low if the strategies used by data services

to foresee future conditions are too conservative (data services are refusing to be

candidates to execute tasks even though they have resources to execute them).

• The value of Commitment Rate in a certain time window is below the acceptable

level – the system is not being able to confirm its commitments. Some possible

reasons are: (i) the system is suffering interference of other software that uses the

same infrastructure; (ii) strategies used by data services to foresee future conditions

are not accurate.

• The value of Success Rate is below the acceptable level – there may be one or more

of the problems related for above listed two indicators.

• The value of Success Rate is high (near 1.0), but the value of QoEL is near zero –

system utilization is too low: high SR values indicate that (almost) all submitted

jobs are being executed, but a QoEL near zero indicates that a low number of jobs is

being executed.

7.7 Conclusion

Traditional performance indicators are not capable to measure the level of QoE a system

provides. Therefore, they cannot be used to compare the performance of database

systems in terms of QoE. In this Chapter, we present four specialized performance

indicators to be used in QoE-oriented databases. Three of them (i.e. Acceptance Rate,

Commitment Maintenance Rate and Success Rate) are oriented for specific aspects of

DAR evaluation and fulfillment. The forth indicator (QoE-Level) aims to provide a

measure of the level of QoE a system provides.

 Therefore, proposed indicators can be used to measure the performance of QoE-

oriented databases, which is not only useful to compare database systems, but mostly to

help identify, thorough experimentation, the techniques and algorithms that can provide

higher levels of satisfaction to users.

In fact, as data access requirements may exist even though users are not capable

to explicitly define them to a database system, proposed indicators can even be used to

estimate the levels of QoE that traditional best effort-oriented systems provide.

Quality of Experience in Database Systems

94

Proposed indicators are also used to alert systems’ administrators about the level

of QoE the system is providing to users. This permits that administrators take corrective

actions before users become too unsatisfied.

In the next chapter, we present some experimentally obtained results on the use

of a QoE oriented database system.

Quality of Experience in Database Systems

95

8 Experimental Evaluation

In this chapter, we present the results of the experimental evaluation of the QoE

mechanisms that were proposed in this thesis. The objective is to show that election

scheduling, reputation and the use of data access requirements (DARs) are useful to

improve the Quality of Experience provided by database systems (offering added

control over how things execute), and to analyze how parameters such as reputation

vary with varying conditions. Next we will discuss methodology, metrics and scenarios

used in the experiments. Methodology
In order to assess the QoE-related mechanisms, we designed a set of experiments that

use some of the most important concepts that were proposed in this thesis, provide

quantitative results and show their importance. The approach was based on a prototype

of the proposal that we implemented, and lab experiments over benchmark data. We

used two benchmark databases (TPC-H [TPCH, 2010] and TPC-W [TPCW, 2010]), and

two database management systems (Oracle 11g R1 Enterprise Edition [Oracle, 2010]

and SQL Server 2008 Express Edition [SQL Server, 2010]).

The experiments were designed by setting up three main experimental scenarios

where the mechanisms would be useful to provide QoE expected behavior to the user.

The mechanisms were compared with best effort (no QoE) counterparts and, when

relevant, with scheduling approaches such as round-robin or on-demand. Besides such

scenarios, we also conducted some experiments to evaluate specific aspects of proposed

strategies. We also defined a set of metrics that were evaluated, and then we analyzed

the results and concluded on the relevance of the approaches that were proposed in this

thesis. Metrics
• Execution time – Job execution time is measured starting at the moment of job

submission and ending on job execution finish time. Since a job may have to wait in

a queue before it is executed, this metric includes the queue wait time;

• Success rate (SR), acceptance rate (AR), commitment maintenance rate (CMR) –

success rate is the ratio of submitted jobs whose DARs were satisfied, AR is the

ratio of submitted jobs that the system agreed to execute, and the commitment

maintenance rate measures how many of the accepted commands had their DARs

satisfied. These metrics are formally described in Chapter 7;

• QoE-Level (QoEL) – this metric aims to express the level of QoE provided by the

database system. It considers three values (formally described in Section 7.4):

Quality of Experience in Database Systems

96

o NJ: number of jobs with DARs specified;

o AJ: number of jobs with DARs which the system agreed to execute,

promising to satisfy the DARs;

o SJ: number of jobs whose DARs were satisfied.

These metrics are weighted using a weighted sum as described in Chapter 7 (we

use in this chapter the same weigh values used in the examples of Section 7.5).

• Reputation – this metric indicates an expectation about data service’s behavior in

terms of maintaining its commitments. Reputation is between 0 and 1. Highest

reputation is 1 and lowest reputation is 0. As data services fail to maintain their

commitments, their reputation decreases; on the other hand, as services stick to their

commitments, their reputation increases; finally, aging reduces the weight of

commit or fail events in the determination of reputation of a data service. These

concepts were defined and discussed in detail in Section 5.4. Scenarios
The proposed QoE mechanisms can be applied in quite different scenarios to provide

qualities such as execution time control, availability or others. We have setup three

different contexts to test the mechanisms. Besides these, we also added experiments

testing certain specific aspects of the proposed mechanisms. The three main scenarios

are:

1. A globally distributed data warehouse was designed as a set of sites with a varying

number of machines that register local regional sales. There are regions for Africa,

America, Asia and Europe, with different sales volumes and computing resources.

We consider that users can place DARs together with the queries and assess how the

system is able to adapt to improve the processing over two main DARs: execution

time and availability. There is also a query workload where queries execute over

more than one site.

1.1. Execution constraints over distributed query execution: In the first case a site

will be unable to meet the timing requirements specified in DARs, therefore

refusing to accept the queries that would otherwise be over the time limit. The

QoE system will decide to create a replica of the data from the slow region into

a better equipped region, then the queries will be able to meet the required

timing and there will be a balancing of execution over the sites;

1.2. Availability and freshness: In the second case we test what happens when a site

holding a region’s data is unavailable. Queries that require that region’s data

will not be able to run. The scheduling system will detect the unavailability and

decide to copy the site contents into other site(s). From then on the queries will

be able to run.

2. A parallel data warehouse was designed to run over a set of off-the-shelf computers,

data replication allows inter-query parallelism and intra-querying parallelism is

enabled by the slicing of the main table (i.e. TPC-H’s LINEITEM) into 100 pieces.

2.1. Execution time: the 100 pieces of the main table were divided into nine

database machines, and the workload has long-running and short-running

queries. Most queries will fail to honor their specified deadline when using

either round-robin or on-demand scheduling. We show that execution time

Quality of Experience in Database Systems

97

DARs over the proposed QoE-aware system allow the system to meet the

deadlines of most queries simply by choosing the best moment to execute the

heaviest queries, which would otherwise fail their deadlines and also make most

of the remaining queries fail them as well.

2.2. Autonomics: In this setup we will show that our approach is able to

automatically size a system to needs. Starting with a single node with all the

data, the system will determine that too many queries will be rejected due to

node overload, so that if and when there are new nodes, the system will

automatically copy fragments into the new node(s). We will show that the

system will be able to adapt by incrementally adding more resources (if those

are or become available);

3. An OLTP web server that should provide good response time for both long running

and short running queries is evaluated. We considered a set of user transactions that

are submitted to the system considering several distinct submission rates. Workload

transactions have both execution time and execution priorities constraints. We will

show how execution constraints will enable most short transactions to be executed

even though the system cannot execute all large transactions. Then, system

administrator is alerted and, after physical tuning, the entire workload can meet the

specified requirements.

Besides these three main scenarios, the following experiments were made to analyze

specific features of the approach:

• Reputation tests: in this setup we evaluated how the system adapts itself when

participating data services misestimate conditions, making promises that cannot be

fully accomplished. We replicated data across nine data services and submitted a

workload of hundreds of jobs. We configured three of the data services so that they

would accept to execute every job and promise to finish each of them immediately –

simulating an overly optimistic condition. We analyze how reputation varies along

time in this scenario and how the system is able to adapt in the presence of data

services that do not estimate well;

• Queue organization analysis: the scheduler proposed and implemented in the

prototype is able to use multiple queues in order to differentiate on job sizes. This

experiment analyses different queue decision parameters. It was necessary to find

out the most appropriate parameters for the queues. In such context, we also analyze

the quality of time estimations, considering distinct job sizes.

The remaining of this chapter is organized as follows: Section 8.1 presents the

experimentally obtained results on the use of QoE mechanisms over the global

warehouses environment. In Section 8.2 we present the results of the second tested

scenario: parallel warehouse. Section 8.3 presents the results obtained in the tests that

ran over the OLTP scenario. In Section 8.4 we present the analysis of specific features

tests. Finally, Section 8.5 concludes the chapter.

 A detailed description of the used testedbed environments is included in the

Appendix A.

Quality of Experience in Database Systems

98

8.1 Scenario I: QoE in Distributed Databases

In this scenario, we evaluate the use of proposed techniques over distributed

warehouses. We conducted two main sets of tests: the first one (presented in Section

8.1.1) evaluates execution time constraints and data replication for distributed query

execution, while the second set of tests (Section 8.1.2) evaluates the use of DARs to

improve data availability and enable query execution even in the presence of constant

site failures.

 In this scenario, we used TPC-H’s database and queries, and Oracle 11gR1

DBMS.

8.1.1 Execution constraints over distributed query execution

In this set of tests, we consider a distributed warehouse context, composed by three

main sites: Europe, Africa and Asia. Each site stores data about sales in its region.

Europe users are querying data about the sales of Africa and Asia. A single community

scheduler is used, while the Asia site has 5 data services and Africa has 3 data services.

Each data service has its own tasks scheduler. Although the processing power of Asia is

66% greater than the one of Africa, the size of the database stored at each site is almost

the same. Such scenario is represented in Figure 57.

 Europe users periodically submit a job workload composed by 6 jobs. Each job

is a query of TPC-H: the workload is composed by queries 1, 17 and 2, each one

repeated two times (in the specified order). Due to table partitioning (which is detailed

in Appendix A), TPC-H’s queries 1 and 17 are transformed into 100 tasks each (50 for

each site), while query 2 of TPC-H is transformed into two tasks (one for each site).

There is an interval of 20 seconds between each job submission. Each job accesses both

data from Asia and Africa. Appendix A presents a detailed description of the testbed

environments used in the experiments.

Figure 57 - Scenario I: testing execution constraints over distributed query execution

Quality of Experience in Database Systems

99

Distributed query execution without DARs
First, we ran the considered workload using no DARs. Some jobs take a long time to

execute, which makes the system fail specified constraints, making users unhappy. Distributed query execution with DARs
Next we ran the same workload using a 10 minute execution deadline interval DAR and

election-based scheduling, and considering dynamic replication between Africa and

Asia sites. Figure 58 presents the clause that is added to each job to specify the deadline.

What-if elections (section 5.6) are enabled to identify when data replication would

improve the QoE level the system provides.

Figure 58 - REQUERIMENTS clause especifying 10 minutes deadline Experimental Results
Figure 59 presents the measured execution time of each job in three distinct

configurations: (i) when no DAR is used; (ii) when DARs are specified but replication

has not occurred; and (iii) after dynamic replication.

When no DAR is used, three jobs take more than 10 minutes to execute.

Then, DARs and what-if elections (for dynamic replication) are applied. Before

replication, the system does not execute jobs 2 and 5, as it estimates that their execution

would take more time than the specified deadline. Figure 59 also presents the execution

time of each job in this case. Each job is partially (distributed) executed at Africa and

Asia sites. In such configuration, the execution time of job 6 falls down to barely 28%

of what it takes to execute such job when no DAR is used.

Figure 59 - Job mean execution time - Distributed query processing

 REQUIREMENTS

 DEADLINE 600

Quality of Experience in Database Systems

100

In Figure 59, the series “Distributed query execution with DARs after replication” refers

to the times taken by jobs after the data sets are replicated. Replication is suggested to

the administrator by the system based on a replication benefit decision strategy

described in section 5.7.

The replication benefit decision is taken by the system based on what-if

elections and execution information. In order to compute the total benefit of replica

creation, the system sums the contributions of the replica for individual job executions

considering what-if scenarios, where it evaluates what would happen if certain replicas

existed.

In this experiment both jobs 2 and 5 access tables LINEITEM and PART, and

workload is periodically executed in intervals of an hour. The system should alert the

administrator when the total benefit of replica creation (measured by the what-if

elections as described in section 5.6) reaches the threshold value, which was set to 5 in

these experiments (this parameter should be specified by the administrator). Such value

is computed based on the number of times that the system would satisfy a DAR of a job

that the system rejected to execute in a what-if scenario with replication. In this

computation an exponential time decay function is used to differentiate old executions

from newer ones (the importance of a job rejection is reduced 40% at each hour).

Figure 60 presents the replica creation benefit value computed automatically at

each hour based on what-if analysis. In such figure we detail the contribution of each

workload execution to the computation of the total replica benefit value, and for each

workload execution we also show its influence decay on the total replica benefit value

(each quota line in the figure). The total benefit line is the sum at each instant of the

individual quotas. After five workload executions, the system alerts the administrator

that replica creation should occur.

Figure 60 - Benefit of replica creation

After the administrator is advised, tables LINEITEM and PART are replicated. Figure

59 also presents the execution time of each job execution after table replication. In such

configuration, all jobs can be executed by their specified deadlines.

Quality of Experience in Database Systems

101

Figure 61 presents the values of AR, CMR and SR for the three configurations.

When no DARs are specified, the system accepts to execute every job (AR = 1.0). But

just half of them are executed by the desired deadline interval (CMR = SR = 0.5). When

execution deadline DARs are specified, the system rejects the execution of two jobs

(AR = 0.67) but the number of jobs executed within the desired deadline is increased

(SR = 0.67). After replica creation, all jobs are executed within the desired deadline (SR

= 1.0).

Figure 61 - AR, CMR and SR - KPI values when using and when not using DARs

These results have shown that the proposed QoE approaches are useful to help provide a

better service to users in a distributed (global) data warehouse context. With the

necessary DARs, the system was able to avoid a bad service to the user (according to

his requirements) and it has also adapted to provide the best possible service.

8.1.2 Availability and freshness in the global warehouse

In this tests set, users from Europe are querying data about sales in America and Africa.

America’s site has five data services while Africa’s site has three data services. Each

data service has its own tasks scheduler. A single community scheduler is used, as

represented in Figure 62.

Quality of Experience in Database Systems

102

Figure 62 - Scenario I: testing availability and freshness DARs in distributed warehouses

The site which holds Africa’s data is suffering from constant failures, which leads to

data unavailability to remote sites.

Europe users periodically submit a job workload composed by 6 jobs. As in the

previous set of tests, each job is a query of TPC-H and the workload is composed by

queries 1, 17 and 2 (each one repeated two times in this order). Jobs related to queries 1

and 17 are transformed into 100 tasks each (50 for each site), while jobs related to query

2 of TPC-H are transformed into two tasks (one for each site). There is an interval of 20

seconds between each job submission. Each job accesses both data from America and

Africa. Appendix A presents a detailed description of the testbed environments used in

the experiments. Distributed query execution without DARs
User submits a workload to be executed while Africa’s site is unavailable and none of

workload’s jobs can be executed. Distributed query execution with DARs
In this case, the system administrator specifies an availability DAR of 99.9% for tables

stored at Africa’s site from 8AM until 7PM at London. Figure 63 presents the DAR’s

specification, considering the LINEITEM table.

Quality of Experience in Database Systems

103

Figure 63 – Availability requirement example – LINEITEM table Experimental Results
The system starts to monitor the availability of Africa’s site; testing the site availability

every 1 minute (such interval can be configured). We implemented the availability

monitoring (discussed in Section 5.7) as a telnet test. At the end of the day, several

unavailability periods are detected, as represented in Figure 64 (where 1 indicates that

tested site is available and -1 indicates that the site is unavailable).

Figure 64 - Availability tests results

At the end of the day, the unavailability period reaches almost 14%. As a consequence,

table replication takes place. Africa’s tables are replicated to America’s site. But if

Africa becomes unavailable to America’s users, then there is no guarantee that data

stored at America about Africa is up to date.

In order to use such Africa’s data stored at America for query execution users

specify the data freshness requirement that is acceptable. Figure 65 presents an example

on the use of such DAR, which specifies that any replica of LINEITEM table that

corresponds to July 1
st
, 2010 in the master table can be used to answer the query. In an

application program, users may specify the freshness requirement when querying for a

report (e.g., ask for up to date data or inform the acceptable freshness).

 ALTER TABLE LINEITEM

 ADD REQUIREMENTS

 AVAILABLE DURING 99.9 PERCENT

 EVERY WEEK FROM MONDAY TO FRIDAY

 IN PERIOD FROM '08AM' TO '07PM'
 SYNCHRONOUS

Quality of Experience in Database Systems

104

Figure 65 – Data Freshness requirement – Example for LINEITEM table

With the use of availability and data freshness requirements, the system can execute

users’ jobs even though Africa is unavailable. Figure 66 presents the execution time of

each job in such situation. One series represents the no-DARs case – no job is executed

since Africa is unavailable – the other series represents the use of DARs in this context

– in this case all jobs are executed (all jobs are executed at America’s site, as Africa is

unavailable and the data stored at America’s site satisfies specified freshness

requirement).

Figure 66 - Distributed query execution time - With and without DARs

These results have shown how DARs are useful to improve data availability, enabling

users to generate reports whose execution would otherwise fail due to frequent

unavailability of some site.

8.2 Scenario II: Parallel Warehouses and QoE

In this Section, we consider the scenario of a 20GB parallel warehouse built over a

cluster of off-the-shelf computers. In this scenario, we used TPC-H’s database and

queries, and Oracle 11gR1 DBMS. TPC-H’s LINEITEM table is horizontally

partitioned into 100 fragments by ranges of the L_ORDERKEY column. LINEITEM

partitions and the other TPC-H tables are replicated at cluster’s nodes.

The workload is composed by queries 1, 11, 5, 7, 14, 17 and 2 of TPC-H. Each

of these queries is a job and may be transformed into several tasks (depending if it

 REQUIREMENTS

 FRESHNESS OF LINEITEM HIGHER THAN '2010/07/01'

Quality of Experience in Database Systems

105

accesses or not partitioned data). Jobs were submitted to the system with a 25 seconds

interval.

 In the first tests set (Section 8.2.1), DARs are used to indicate to the system

when jobs can be executed. Without DARs, long-running jobs would fail their deadlines

and also cause that short-running jobs to fail theirs. When users’ expectations are

expressed with DARs, the system chooses the best moment to execute each job,

satisfying all specified DARs and increasing the provided level of QoE.

 In the second tests set (Section 8.2.2), we use the proposed strategies to decide

on data placement over a database cluster. A small cluster, composed by three nodes is

used to execute users’ jobs. But such system cannot fulfill all specified requirements.

Then, two new nodes are added to the system, which indicates when table replication

can be used to increase the requirements fulfillment rate.

8.2.1 Choosing when to execute jobs based on DARs

In this tests set, we use nine database nodes, each one with its own tasks scheduler, and

one community scheduler, as represented in Figure 67.

Figure 67 - Scenario II: Evaluating DARs at cluster of off-the-shelf computers Using best-effort scheduling strategies
First, we ran users’ workload using two distinct best-effort strategies:

• Round-robin – each job is transformed into tasks, and those tasks are assigned to

database nodes in a round-robin fashion. This strategy aims at assigning the

same number of tasks to each database node;

• On-demand – each job is transformed into tasks that are assigned to nodes when

the nodes can execute them (i.e. the number of tasks being executed by the node

Quality of Experience in Database Systems

106

is bellow a threshold number). This strategy aims at increasing the load balance

level (as no node remains idle when there still exist tasks to execute). Using DARs to improve the level of QoE
Then, we ran our QoE-oriented scheduling strategy, considering that each job has

execution related DARs, as the ones exemplified in Figure 68. Such DARs indicate that

the system should finish job execution in no more than 15 minutes, otherwise the job

should be executed at night (after 19 PM of the current day and before 08 AM of the

day after) and its results must be stored and available for users during the next day.

Figure 68 - Specifying multiple DARs to jobs - Example Experimental Results
Figure 69 presents the execution time of each job when using the three considered

scheduling strategies (i.e. round-robin, on-demand and QoE-oriented using DARs).

When executing users’ workload using best-effort oriented techniques, 71% of the jobs

take more than 15 minutes to execute. But when using the proposed election-based

QoE-oriented scheduling strategy together with the proposed DARs, the system

immediately starts the execution of five types of jobs, which are executed in much less

than 15 minutes (as shown in the figure), and lets two longer types of jobs to be

executed at night. Figure 70 presents the execution time of those long-running jobs, that

are executed in disconnected mode and whose results are stored for future access by

users.

 REQUIREMENTS

 (DEADLINE 900)

 OR

 (START AFTER '2010/12/15 19:00',

 FINISH BEFORE '2010/12/16 08:00',

 EXECUTE DISCONNECTED RESULTSET IDENTIFIED AS TMP_SALES,

 AVAILABLE DURING 100 PERCENT
 IN PERIOD FROM '2010/12/16' TO '2010/12/17'

Quality of Experience in Database Systems

107

Figure 69 - Mean execution time for each job using several scheduling strategies

Figure 70 - Execution time of long-running jobs

Table 19 presents the values of AR, SR and QoEL for each configuration. All strategies

executed the entire workload (AR = 1.0). But the QoE oriented scheduling strategy did

not immediately start the execution of jobs of two types, which let it fulfill the 15

minutes deadline of the remaining five types of jobs and executed the two long-running

ones in alternative time windows (SR = 1.0). On the other hand, best-effort strategies

immediately start the execution of every job, failing to fulfill the deadline of three of the

five short-running jobs due to the execution of the two-long running jobs (SR = 0.28).

In such configuration, the QoEL obtained for the QoE oriented environment was 7 times

greater than the one obtained when using best-effort scheduling strategies.

Quality of Experience in Database Systems

108

Table 19 - AR, SR and QoEL for several configurations

Scheduling
Strategy

Acceptance
Rate (AR)

Success Rate
(SR)

QoE Level
Indicator (QoEL)

Round-robin 1.00 0.28 0.5

On-demand 1.00 0.28 0.5

QoE oriented 1.00 1.00 3.5

This set of tests has shown how the QoE oriented system improves users’ satisfaction

with DARs. By considering alternative DARs specified by users, the system could

choose the best moment to execute each job and meet users’ expectations.

8.2.2 Autonomic behavior: placing data in database clusters

In this test set we evaluate the capability of the system to automatically size itself to

user needs. The system is initially composed by three database nodes and a community

scheduler. Each database node has its own tasks scheduler and database management

system. LINEITEM partitions and the other TPC-H tables are replicated at database

nodes. User’s workload is composed by 4 jobs, each one being a TPC-H query. The

queries used are 1, 11, 14 and 2. Each job has an execution deadline of 5 minutes.

 Then, new nodes are added to the system. At each moment, the system

automatically evaluates if the additionally available resources would be useful to

increase requirements satisfaction rates (based on what-if elections). Based on that, the

system makes suggestions to the database administrator about data replication. Experimental Results
In the three nodes configuration, some of workload’s jobs cannot be executed by

specified deadlines, as represented in Figure 71.

Figure 71 - Job execution time in three nodes configuration

Quality of Experience in Database Systems

109

Then, two new empty nodes are added to the system and the system is configured to

consider such nodes for replication. Then, the system evaluates that data replication can

be used to improve requirements fulfillment rate using the what-if elections strategy

(defined in Section 5.6).

Job 1 accesses the LINEITEM table. Considering that the replication can take

place when the replica benefit is over 3, then replication is advised after 4 workload

executions, as represented in Figure 72 (in the exponential time decay function, the

importance of a replica creation is reduced 40% at each hour, as used previously in this

chapter). This figure represents the total benefit value of replication and the quota

contributed by each what-if evaluation on workload executions, including the decay of

those contributions. The total benefit value shown in the figure is the sum of the

individual contributions at each moment, considering the decay as well.

Figure 72 - Benefits of replica creation

As the LINEITEM table (used by job 1 and whose replication was indicated by the

system as presented above) is partitioned, the table partitions are distributed across the

two empty nodes and each new node will store 50 partitions from the initial 100 ones).

With such new configuration, the system uses 5 nodes to execute the workload and is

capable of satisfying the deadline requirement of Job 1, as represented in Figure 73

(besides satisfying the DARs of jobs 2 and 4, which were already satisfied in previous

configuration). Job 3 deadline is still not satisfied yet in this configuration. The user

would have to reconsider the deadline of that job, or to consider adding alternative

requirements to the job (i.e. allowing the job run at an alternative time), adding

additional nodes or using some other strategy to run that job as well.

Quality of Experience in Database Systems

110

Figure 73 - Job execution time in five nodes configuration

In this set of tests, we have shown how proposed election-inspired mechanisms and

DARs can be used to suggest data placement over a parallel infrastructure. The

suggested placement (which is not full replication) improved the number of DARs the

system satisfied, therefore increasing the level of QoE provided by the system.

8.3 Scenario III: DARs for QoE in OLTP Applications

In this section, we consider the scenario of a centralized web-based OLTP application.

We use a database machine and an application server, which submits several

transactions to the database machine according to distinct submission rates and using

distinct scheduling strategies. Such scenario is represented in Figure 74. First, we use

best-effort scheduling, which makes most transactions fail their requirements. As an

alternative, we also used an admission control system, which rejects the execution of

most transactions due to the requirements failing. Then, we use our QoE oriented

strategies that increases the QoE level the system provides. It increases the number of

satisfied DARs and informs the system administrator about transactions whose

requirements cannot be satisfied. After database physical tuning, all requirements can be

satisfied. Besides that, in such scenario we also evaluated the use of high priority

transactions, which reduces the mean execution time of such type of transactions when

compared to their counterparts that have normal priorities.

In this scenario, we used TPC-W’s database and queries, and SQL Server 2008

DBMS.

Quality of Experience in Database Systems

111

Figure 74 - Scenario III: centralized web-based OLTP application

Mix of Transactions

Our mix of transactions is inspired in TPC-W’s browsing mix. We implemented four

transactions: Home, Product Detail, Order Display and Admin Request (Appendix A

details the SQL commands of each transaction).

The Initial Order Display transaction is much longer than the other ones and is a

block of statements with sequentially requirements. Table 20 presents the percentage of

each transaction in the mix and the foreseen execution cost of each transaction obtained

by the transaction’s foreseen execution plan provided by the DBMS. In terms of

execution time in the considered environment, the execution time of the Product Detail

transaction varies from just a few milliseconds (when the user has no orders) up to

almost 50 seconds, while the typical execution time of the other transactions is of about

just a hundred milliseconds.

Table 20 – Initial Transaction’s Foreseen Execution Cost and Mix of Transactions

Transaction Foreseen Execution Cost
Percentage of the
Highest Foreseen

Execution Cost (%)

Percentage of Executions
in Used Mix (%)

Home 0.027 0.05 57

Product Detail 0.007 0.02 40

Order Display 31.716 100.00 2

Admin Request 0.007 0.02 1

Quality of Experience in Database Systems

112

In our experiments, we considered the Admin Request as a high priority transaction,

while the other transactions are of normal priority. All the transactions have an

execution deadline of 30 seconds. Evaluated Scheduling Strategies
We used three scheduling strategies:

• Best Effort (BE) – it simulates a traditional environment, where every user query is

submitted to the database and executed as soon as possible. The application uses as

command execution timeout the desirable transaction execution deadline. We tested

this strategy with several limits on the number of queries being concurrently

executed by the DBMS (i.e. multi-programming level - MPL). In the best effort

approach, the MPL limit is implemented as the maximum number of active

connections in the connection pool (in Appendix A we present the used connection

pool). We present here the results obtained when using the value of 600 as the

maximum MPL allowed;

• Admission Control System (ADC) – We implemented a prototype of the admission

control strategy proposed by Schroeder et al (2006b). Such strategy aims at

maintaining a low MPL in order to achieve specified deadlines (as discussed in

Chapter 2). We tested several limits to MPL and present here the results obtained

when using 20 as the maximum allowed MPL;

• QoE oriented scheduling – We used our scheduling strategy. As discussed in

Chapter 6, our system uses an express queue for small tasks and another for the

other tasks. There is a limit on the number of small tasks that can be executed

simultaneously (MPL limit) and another for the number of other tasks tan can be

executed simultaneously. In the following, we present the results obtained when the

MPL limit for small tasks is 20. The MPL limit for large tasks is automatically

adjusted. Experimental Results
Figure 75 presents the acceptance rate for each scheduling strategy and transaction

submission rate. The Best Effort strategy provides an acceptance rate of 1.0 (as it

executes all incoming queries). The Admission Control application, on the other hand,

refused to execute a large amount of transactions, leading to low values of AR. The

number of refused transactions is much greater in the ADC strategy than it is when

using our QoE strategy.

Quality of Experience in Database Systems

113

Figure 75 – Acceptance Rate for distinct Scheduling Strategies

The QoE oriented system achieved high acceptance rate for all types of transactions,

except for the long running Order Detail transaction, which had an acceptance rate of

about 2%. In the ADC case, the system refused to execute several transactions of all the

types, as presented in Figure 76.

Figure 76 - Acceptance Rate for distinct types of transactions - ADC Application

In fact, the ADC strategy was somewhat conservative, and achieved a commitment

maintenance rate of almost 1.0 in all tested transaction submission rates. The CMR of

the Best Effort strategy is equal to its success rate (as such strategy executes all

submitted transactions). The CMR of the QoE oriented strategy was close to 0.99.

The success rate obtained when using Best Effort, Admission Control System

(ADC) and QoE oriented strategies is presented in Figure 77. The QoE oriented

approach achieved much higher success rates than the other strategies. This happens

Quality of Experience in Database Systems

114

because BE executed every transaction and ADC refused to execute a too large number

of transactions.

Figure 77 – Success Rate for distinct Scheduling Strategies

The distinct behavior of studied strategies also impacted in the QoEL they provide to

users. Figure 78 presents the QoEL for distinct strategies and several workload

submission rates. The BE strategy provided low QoEL in all configurations, as the users

expect that the system would satisfy the requirements, but the number of satisfied

requirements is relatively small. The ADC strategy, on the other hand, refused to

execute a too high number of tasks, leading to even worse results in terms of QoEL. The

QoE oriented system achieves both high number of accepted transactions and high

levels of commitment maintenance rates, which led to the highest levels of QoEL.

Figure 78 – QoEL for distinct Scheduling Strategies

Quality of Experience in Database Systems

115

But the QoE oriented scheduling rejected to execute a high number of Order Detail

transactions. As the AR for such type of transactions was lower than 10% in the

monitored period, the system administrator is informed that available resources are not

capable to deal with such kind of transactions in the current configuration. Then,

physical database tuning takes place (a new index is created by the administrator).

Figure 79 presents the QoEL of Order Detail transactions before and after index

tuning. After tuning actions, the system is capable to deal with a much larger number of

Order Detail transactions, and the QoEL that was negative turns to be positive.

Figure 79 - QoEL for order detail transactions

In such context, we also evaluated the use of the execution priority requirement. The

Admin request transaction corresponds to just 1% of transactions execution requests.

We evaluated the system’s behavior when such transactions of the Admin request type

are of normal priority and when they are marked as having high priority. The mean

execution time of high priority Admin requests is just of about 52% of the mean

execution time of normal priority Admin requests.

8.4 Evaluating Specific Features

Some specific features of the QoE approach and of its application in different scenarios

were also tested as parts of the experimental analysis. In this section we first present the

results of experiments made to evaluate the use of reputation-based mechanisms

(Section 8.4.1) – reputation is a core aspect of the QoE approach, with relevance in

multi-node and multi-site environments - and then the results of tests made to evaluate

queue management and time estimation capabilities (Section 8.4.2). Queue

management is relevant for scheduling in data services – especially in OLTP

environments – and time estimation is necessary in any environment (either OLTP or

OLAP) to estimate the execution time of tasks, as part of scheduling decisions.

Quality of Experience in Database Systems

116

8.4.1 Reputation Tests

Reputation classifies the capability of an entity to commit to its promises and duties and

is used in decisions on whether to use the entity to execute a duty. In this set of tests, we

tested the proposed reputation approach when applied in tasks scheduling. We

demonstrate that the use of the proposed mechanisms is useful even when it is not

possible to accurately foresee future conditions.

We used 9 Data Services (each one with its own task scheduler) and a single

Community Scheduler. In order to verify the use of proposed reputation-based

mechanisms, 3 of the used data services are modified so that they do not estimate

correctly the required time to execute tasks: they are transformed into optimistic

schedulers, accepting to execute all tasks and making promises to finish task execution

immediately. In order to remove from the community scheduler all mechanism that can

correct wrong estimations done by tasks schedulers, we disabled the use of the

reputation on maintaining promises on execution time interval by the community

scheduler.

The workload is composed of 400 jobs, each one is created by transforming

query 1 of TPC-H to access a single partition of the LINEITEM table. Therefore, each

LINEITEM’s partition is accessed by 4 jobs. Jobs were submitted in a 4 jobs per second

rate. Each job has an Execution Deadline requirement of 30 seconds. Experimental Results – Without using reputation based mechanisms
First, the community scheduler is adjusted to assign tasks execution by just considering

candidates’ promises on the required time to execute each task. In this test, services can

be elected to execute a task no matter what their reputation is.

Only the three services that do not estimate well the required execution time

executed tasks, as represented in Figure 80. They promise instant execution, therefore

they are always chosen. This configuration had high load misbalancing.

Figure 80 - Number of executed tasks per data service – without using reputation based
mechanisms

Quality of Experience in Database Systems

117

The misbalancing and the wrong predictions made the system fail to satisfy the

requirements of most jobs. Figure 81 presents the acceptance rate, commitment

maintenance rate and success rate of the entire workload execution and of four time

intervals of workload execution. All submitted jobs were accepted (AR = 1 in all the

period), but the system was unable to fulfill several requirements (CMR < 0.25 during

the entire period of load execution), which leaded to low levels values for the success

rate indicator (final SR = 0.19). The obtained value for QoEL is 38.5.

Figure 81 - AR, CMR and SR – without using reputation based mechanisms

We also measured the reputation on maintaining commitments to satisfy tasks of each

data service (represented in Figure 82). The reputation value of the services that did not

execute any task remained in 1.0, while the reputation value of the other (optimistic)

services fluctuated around the value of 0.2 (near the achieved success rate) value.

Figure 82 - Reputation on maintaining commitments to satisfy tasks – without using
reputation based mechanisms

Quality of Experience in Database Systems

118

Experimental Results – Minimal reputation requirement
Then, Next we configured the community scheduler to use the minimal reputation

mechanism proposed in Section 5.1: in our implementation, if a service reputation on

maintaining commitments to satisfy tasks falls under 0.9, then for each 10 promises of

the data service, only one is considered. Besides that, the community scheduler was

adjusted to consider both reputation value and time estimations when electing a winner

to execute a task: election’s score (Section 5.1.3) is computed using υ = ω = 0.5. The

results we show next prove that this configuration improved the QoE the system

provides significantly: the new value is 132.3 (almost 350% the value of previously

obtained QoEL).

 In Figure 83 we present reputation on maintaining commitments to satisfy tasks

of each data service. Optimistic services (those that accept all tasks for execution,

promising to finish then immediately) had a first reputation fall to bellow the limit of

0.9. At that point the community scheduler started refusing most promises from such

data services (9 in every 10 promises, as we described above). Some time later, two of

those lower-rated data services were actually able to raise their reputation score from

executing few easy jobs, their reputation increasing over the 0.9 threshold value. As

soon as they went over the 0.9 threshold, those two services won several subsequent

elections. Of course moments later the community scheduler noticed that those data

services were not accomplishing the specified deadlines (i.e., they won several elections

in a 30 seconds period), and their reputation had another great fall.

Figure 83 - Reputation on maintaining commitments to satisfy tasks – using minimal
reputation requirement

Figure 84 presents the acceptance rate, commitment maintenance rate and success rate

of the entire workload execution and of four time intervals of workload execution. At

the beginning of workload execution, all jobs are accepted and almost all executed. But

then, the optimistic nodes become overloaded and the commitment maintenance rate

falls significantly (intervals 2 and 3). But at the last 20% of execution time (see time

150 of Figure 83), the reputation value of optimistic nodes is much lower than the 0.9

Quality of Experience in Database Systems

119

threshold value and they are allowed to participate only in 10% of elections. In such

period, the system regrets to execute many jobs, but achieves a high CMR value.

Figure 84 - AR, CMR and SR – using minimal reputation requirement

Figure 85 presents the number of tasks executed by each data service. Due to the

minimal reputation control, the workload distribution across participating services was

much more balanced than in previous test.

Figure 85 – Number of executed tasks – using minimal reputation requirement

Now, we analyze the behavior of the system in terms of task assignment during

workload execution. Figure 86 presents the number of tasks executed per data service in

distinct time intervals. Initially, all tasks are assigned to the optimistic services (most of

them to service 7). Then, in the second time interval, reputation of service 7 goes down

the acceptable limit (see time 15 of Figure 83), and it does not execute any tasks. But

most of them are assigned to another optimistic service (service 9), which did not

Quality of Experience in Database Systems

120

executed many tasks in the first time interval. The normal services (which are not

optimistic) execute some tasks. In time interval 3, the reputation of service 9 is beyond

the acceptable limit (see time 100 of Figure 83), and it does not execute new tasks. The

third optimistic service (data service 8) executes most of the tasks. Finally, in execution

interval 4, reputation values are somewhat stabilized (see period after time 150 of

Figure 83). Then, in such interval, tasks distribution per data service is much more

balanced, as represented in Figure 86.

Figure 86 - Number of executed tasks per data services in distinct time intervals

In order to improve the level of QoE provided, next we configured the system to use the

restriction on the number of victories in sequence (defined in Section 5.1).

Quality of Experience in Database Systems

121

Experimental Results – Minimal reputation requirement and restriction on the maximum number of victories in sequence
The use of the requirement of a minimal reputation value in order to participate in an

election improved scheduling quality. But it takes some time for the system to react to

changes in nodes behavior. To modify this, we also incorporated into our system a

restriction on the maximum number of victories in sequence (as discussed in Section

5.1). In our test, when a data service wins three elections in a row, it cannot participate

in another election for 5 seconds. The community scheduler was adjusted to elect

winners based on services’ reputation. This configuration increased even more the value

of the provided QoEL to 138.6.

 A key benefit of the restriction on the maximum number of victories in sequence

is that it reduces the possibilities of a great number of commitment failures due to the

change in behavior of a single service. Besides that, it also contributes to improve load

balancing between services. In Figure 87, we present the number of tasks executed per

data service. Due to proposed mechanisms, the number of tasks executed by optimistic

nodes was equivalent to the one of some of the normal (non-optimistic) nodes.

Figure 87 – Number of executed tasks – using minimal reputation requirement and

restrictions on the maximum number of victories in sequence

Indeed, the system behavior became even more stable over time. Figure 88 presents the

obtained values for AR, CMR and SR. AR and SR remained almost the same during the

entire workload execution. Workload execution CMR was of 1.0. The system was able

to satisfy the requirements of all the jobs it accepted to execute, which means that data

services’ reputation was of 1.0 even for the optimistic services.

Quality of Experience in Database Systems

122

Figure 88 - AR, CMR and SR – using minimal reputation requirement and restrictions on
the maximum number of victories in sequence

In this set of tests, we presented how proposed mechanisms can provide high QoE

levels even though some services do not estimate well the required time to execute

tasks. We presented that the minimal reputation limit increases the QoE level by

reducing the impact of wrong behavior after some time. We also presented that the

restriction on the maximum number of election victories in sequence prevents that some

wrong estimations influence the level of QoE provided by the system.

8.4.2 Queue Management and Time Estimation Analysis

When resources are limited when compared with task needs, large tasks not only fail

their own deadlines as they influence the commitment rates of other tasks as well. For

this reason the tasks scheduler mechanisms proposed in Chapter 6 treat very small tasks

in distinct ways than it deals with normal and long-running tasks. Very small tasks have

a separate queue and their own time estimation mechanism.

Estimation time is an important aspect of scheduling in our QoE proposal. In this

section we also discuss estimation time error as part of the study on alternative queue

approaches.

 In order to evaluate the use of specific mechanisms for very small tasks, we

made a set of tests that we describe in this section. Such tests were also used to evaluate

system’s time estimation capabilities.

 Such tests were made using the same TPC-W benchmark and workload used in

the scenario of centralized database systems (Section 8.3). We experimentally evaluated

three basic configurations for tasks scheduler:

• No Small Tasks Queue (NSTQ)- there is a single tasks queue and none of the

transactions is considered a small task (i.e. uses the small tasks queue);

• Small Tasks Queue-Conf.1 (STQ-Conf1) – Only the transactions that have the

lowest foreseen execution costs are considered as small tasks. We have set the

Quality of Experience in Database Systems

123

number of such transactions to 2. Therefore, the smallest tasks - Product Detail and

Admin Request transactions - are considered as small tasks and have their own

express execution queue (and database connections);

• Small Tasks Queue-Conf.2 (STQ-Conf2) – Transactions that have execution time

smaller than a certain threshold value (we have set this execution time parameter to

1 second) are considered as small tasks. In such case, Product Detail, Admin

Request and Home transactions are small tasks and have their own execution queue

(and database connections);

Each of the above alternatives was evaluated considering several limits on the number

of small tasks commands that can be concurrently executed by the DBMS (i.e. multi-

programming level - MPL).

In the following, we discuss some of the obtained results for each of the above

presented configurations, when the MPL limit for small tasks is fixed as 20. Experimental Results – Queue Management and Time Estimation
In Figure 89 we present the acceptance rate (AR) for each of considered configuration

alternatives. When considering the entire workload, the STQ-Conf2 had the highest

values of AR, while the NSTQ configuration achieved the lowest values. The

configurations that used small tasks queue had an almost constant value of acceptance

rate, while the acceptance rate in the NSTQ configuration with high load situations was

slightly smaller than the one obtained with lower loads.

Figure 89 - Acceptance Rate - Alternatives on the use of Small Tasks Queue

The distinct behavior is closely related to the strategy used to estimate the execution of

time and schedule transactions. Figure 90 presents typical execution time (measured

from the moment of job submission until its execution is completed) and foreseen time

errors for each type of transaction and distinct configurations (under the 5.500

transactions per minute workload submission rate).

Quality of Experience in Database Systems

124

 In the NSTQ configuration, tasks with a (relative) small execution cost remain in

the tasks queue waiting to be executed after the end of (relative) big tasks (derived from

the Order Detail interaction). Therefore, in such configuration Admin Request, Product

Detail and Home interactions take a few seconds to be executed. Besides that, the

scheduler makes some mistakes when foreseeing the execution time of tasks derived

from such transactions. But the foreseen execution time error for the long Order Detail

job is relatively small.

 In the STQ-Conf-1 configuration, tasks derived from the Admin Request,

Product Detail transactions have an ‘express queue’ and do not compete for database

connections with the long Order Detail job. In such configuration, the execution time of

such jobs is significantly reduced to less than a second.

In the STQ-Conf-2 configuration, the mean execution time of the Home

transaction is reduced to less than a second. Although the execution cost of the Home

transaction is about 4 times greater than the ones of the Admin and Product Detail

transactions, the Home transaction can also be placed in the small tasks queue together

with the other inexpensive transactions. This result indicates that the selection of jobs

that can use the small tasks queue can be done considering the average job execution

time.

As the number of small jobs is much higher than the number of long jobs and

due to the difference in the foreseen execution time obtained under the distinct

configurations, the AR of the NSTQ configuration is much small than the one of the

other methods.

Quality of Experience in Database Systems

125

Figure 90 – Execution Time and Execution Time Forecast Error for each type of
transaction - Alternatives on the use of Small Tasks Queue

Therefore, the use of the express queue made the system differentiate from short-

running tasks from the other ones. This could improve the number of small tasks

Quality of Experience in Database Systems

126

executed by the system, as represented in Figure 91, while reducing the number of long-

running tasks executed by just a few, as represented in Figure 92.

Figure 91- Number of Small Tasks transactions executed in the 5,500 tasks per minute
submission rate

Figure 92 - Number of Order Detail transactions executed in the 5,500 tasks per minute
submission rate

Such distinct number of executed transactions makes that each configuration achieves

highly different values of QoEL. Figure 93 presents the value for QoEL indicator for

each of the tested configurations and workload submission rates. The use of the time-

related criteria when placing a task in the small tasks queue has proven to be the one

that leaded to the best results in terms of level of QoE.

Quality of Experience in Database Systems

127

Figure 93 – QoEL - Alternatives on the use of Small Tasks Queue

In this set of tests, we presented how the use of an express queue for small tasks can

improve the level of QoE the system provides. We also presented that proposed strategy

leads to good query execution time estimations.

8.5 Conclusion

In this chapter, we presented the use of QoE related techniques in three distinct

scenarios: (i) globally distributed data warehouse; (ii) parallel cluster-based data

warehouse; and (iii) centralized OLTP application. Besides that, we also evaluated some

specific features: reputation based mechanisms, queue management and runtime

estimations.

 In the global warehouse scenario, we discussed how DARs and dynamic

replication can be used to improve the QoE level provided by the system. We also used

DARs to improve data availability and enable users to execute workloads even when

some sites are unavailable.

 In the parallel warehouse scenario, we presented how best-effort approaches,

which do not take into account user requirements, can lead to users’ dissatisfaction.

When using such approaches, the system fails to satisfy the requirements of several

jobs. Then, DARs were used to dynamically adjust the execution time of long-running

jobs, which enabled requirements fulfillment of both long-running and short-running

jobs. Such scenario was also used to present how proposed strategies can be used to

automatically suggest data placement over parallel databases.

 In the centralized database scenario, we compared our approach with best-effort

and admission control approaches, and presented how our approach can lead to the

highest levels of QoE. Besides that, we presented how our proposals can be used to alert

system administrators about the need of tuning actions. The use of execution priority

Quality of Experience in Database Systems

128

requirements was also evaluated and proven to be relevant in order to reduce the

execution time of selected transactions.

 We also made some tests to evaluate specific features proposed in the thesis. We

evaluated the use of reputation-based mechanisms in the presence of nodes making

wrong estimations (accepting to execute every task and informing that they would finish

their execution immediately) and showed how proposed mechanisms can be used to

improve scheduling decisions quality. Besides that, we also evaluated time estimations

and queue management under the presence of very small and long-running transactions.

We showed that the proposed multiple queue mechanism leads to good results both in

terms of provided level of QoE and in runtime estimations quality.

 Therefore, experimentally obtained results confirmed the usefulness and

adequacy of proposed strategies.

 In the following chapter, we present final conclusions and future work.

Quality of Experience in Database Systems

129

9 Conclusions and Future Works

Quality-of-Experience is a measure of a person’s satisfaction while using a certain

service or system. In terms of database systems, we propose that those can be translated

into constraints on execution characteristics that can be expressed by users. We then

propose how database systems could incorporate mechanisms specially oriented to

provide high levels of Quality-of-Experience to users.

 In order to support such proposal, in this work we have:

• Proposed the use of user-defined Data Access Requirements (DARs) in order to

provide to the user a way to specify how he/she expects the system to behave;

• Presented a set of types of DARs that are useful for a wide range of applications and

exemplified the use of each of proposed type of DAR;

• Presented SQL extensions that enable DARs specification in SQL;

• Proposed some key QoE-oriented components that should exist in QoE-oriented

database systems and discussed how they can be used in centralized, parallel and

distributed database systems;

• Described how user commands (jobs) and expectations (DARs) can be transformed

into tasks (that may be performed by database systems) and task-level requirements,

and presented several examples on the use of DARs and on the transformation of

user-defined jobs and DARs into tasks and tasks level requirements in the contexts

of centralized, parallel and distributed databases;

• Presented a reputation-aware, election-inspired task scheduling architecture that

assign tasks execution to data services while maintaining high levels of

requirements fulfillment;

• Proposed a strategy that detects when replica creation can improve the levels of QoE

the system provides;

• Described how data services can evaluate if specified requirements are feasible or

not and tasks can be scheduled for execution while satisfying task level

requirements;

• Presented query execution time estimation strategies that can be used by tasks

scheduler to evaluate the required time to finish a query execution while considering

multi-query influence;

• Proposed a set of specialized indicators that can be used to alert administrators when

the system is providing unacceptable levels of QoE and to compare the QoE levels

provided by distinct database systems, presenting several examples on the analysis

of such indicators;

Quality of Experience in Database Systems

130

• Experimentally evaluated several aspects of proposed strategies, presenting their

effectiveness and how QoE-oriented strategies can lead to higher QoE levels than

traditional approaches.

Based on these mechanisms we have been able to propose how QoE should be added to

database systems. On the other hand, because of the amplitude and novelty of this issue,

we expect that this work can be used as a starting point for future research in extending

these basic findings.

 Other domain-specific DARs can be defined and corresponding insurance

mechanisms can be designed. For instance, DARs specialized for geographic and

multimedia databases and DARs for security-related issues can also be studied.

 Another interesting future line of work would be to explore the use of

approximate query answering to satisfy queries with time constraint and data accuracy

DARs.

 A key aspect of the QoE-oriented database systems is prediction mechanisms

that may provide estimations on several aspects, including execution time, data transfer

times over networks and resources availability. In this thesis we explored times

estimations, but further work would be important to improve the estimation capabilities

in any of those aspects.

Overall, this thesis has shown how such QoE database systems can be

implemented and it has also shown the relevance of such systems. The experiments

have proven the usefulness of the proposed approaches.

Quality of Experience in Database Systems

131

Appendix A – Experimental Environment Details

In this Appendix, we detail the experimental environments used during the experiments

presented in Chapter 8. We present information about used machines, databases and

software. The detail presented here can be used to duplicate the experiments.

 First, we present some information about the used prototype and other developed

software. Then, in A.2, we detail the tests based on the TPC-H benchmark [TPCH,

2010], which includes the scenarios of global and parallel warehouses, and the

reputation evaluation tests. Finally, in A.3 we detail the tests based on the TPC-W

benchmark [TPCW, 2010]: the centralized database scenario, the queue management

and time estimation analysis.

A.1 - QoE-oriented Prototype and other Developed Software

In order to run proposed tests, we developed a set of JAVA applications, which

includes:

- Distributed community and tasks schedulers – distinct schedulers that communicate to

each other using sockets and implement QoE-oriented strategies proposed in this

thesis. Tasks scheduler uses the Jama matrix package [JAMA, 2010] to solve the non-

linear regression used to update the cost-to-time conversion function (Section 6.3.2).

On the start of the tasks scheduler, it executes ten database queries to obtain the initial

values to use in the cost-to-time conversion function. These schedulers were used in

reputation evaluation tests, and global and parallel scenarios;

- Global round-robin scheduler –generates tasks and assigns then to executor nodes,

following a round-robin strategy. As soon as a job is submitted to the system, its tasks

are generated and are assigned to executor nodes. Each executor node should manage a

local tasks queue. Used in the parallel warehouse scenario;

- Global on-demand scheduler - which generates tasks and assign then to executor

nodes, following an on-demand strategy. When a job is submitted to the system, its

tasks are generated and placed in a global tasks queue. When an executor node is

executing than a certain number of tasks (we used three tasks), the community

scheduler selects a task from the global queue (in first-in-first-out order) and assigns to

such node. Used in the parallel warehouse scenario;

- Local nodes queue management system – run at local nodes and execute tasks that are

assigned to the node by global round-robin or on-demand schedulers. Has a local

queue with the tasks that are assigned to the node and that are waiting for execution. A

maximum value is specified for the MPL (we used 3 as the maximum MPL value).

When there are free database connections, a task is removed from the local queue (in

Quality of Experience in Database Systems

132

first-in-first-out order) and its execution is started. Used in the parallel warehouse

scenario;

- Best effort oriented web application simulator – partially simulates the TPC-W

environment, implementing some of its transactions. Transactions are submitted to the

system considering a fix mix but distinct submission rates. Each transaction is

executed by a separate thread, which gets a database connection from a connection

pool. Used in the centralized database scenario;

- Web application simulator with admission control system – partially simulates the

TPC-W environment, implementing some of its transactions. Transactions are

submitted to the system considering a fix mix but distinct submission rates.

Implements the queue management and admission control strategy proposed by

Schroeder et al (2006b). Each transaction is executed by a separate thread, which gets

a database connection from a connection pool. Used in the centralized database

scenario;

- Web application simulator with encapsulated community and tasks schedulers –

partially simulates the TPC-W environment, implementing some of its transactions.

Transactions are submitted to the system considering a fix mix but distinct submission

rates. Community and tasks schedulers (which implements strategies proposed in this

thesis) are encapsulated in this system. Used in the centralized database scenario, on

queue analysis tests and time estimation tests.

In developed software, all DBMS accesses are done through the use of the

MiniConnectionPoolManager [Mini, 2010].

A.2 – TPC-H based tests: Global and Parallel Warehouses, and
Reputation Evaluation

In the global and parallel warehouses scenarios, and in the reputation evaluation tests,

we used the same machine environment. All such test sets were constructed over the

TPC-H database. In this Section, we present both the machines and database

environments.

Table 24 summarizes the main characteristics of used machines. The number of

machines used in each test was presented in Chapter 8.

Table 21 - Database Servers Main Characteristics

Operating System Microsoft Windows XP Professional

Database Management System Oracle 11g R1

Processor Intel Pentium 4 3.00GHz

RAM Memory 2 GB

Figure 95 presents the main tables of TPC-H.

Quality of Experience in Database Systems

133

Figure 94 - TPC-H’s Tables

We created a 20 GB database. Table LINEITEM is partitioned into 100 partitions by

ranges of the L_ORDERKEY column. Each table has the indexes used to enforce

primary key constraints and an index in each column that contains a foreign key

CUSTOMER

c_custkey

c_name

c_address

c_nationkey

c_phone

c_acctbal

c_mktsegment

c_comment

NATION

n_nationkey

n_name

n_regionkey

n_comment

PARTSUPP

ps_partkey

ps_suppkey

ps_availqty

ps_supplycost

ps_comment

REGION

r_regionkey

r_name

r_comment

LINEITEM

l_orderkey

l_partkey

l_suppkey

l_linenumber

l_quantity

l_extendedprice

l_discount

l_tax

l_returnflag

l_linestatus

l_shipdate

l_commitdate

l_receiptdate

l_shipinstruct

l_shipmode

l_comment

ORDERS

o_orderkey

o_custkey

o_orderstatus

o_totalprice

o_orderdate

o_orderpriority

o_clerk

o_shippriority

o_commentPART

p_partkey

p_name

p_mfgr

p_brand

p_type

p_size

p_container

p_retailprice

p_comment

SUPPLIER

s_suppkey

s_name

s_address

s_nationkey

s_phone

s_acctbal

s_comment

Quality of Experience in Database Systems

134

constraint. Table 22 presents the number of lines and storage size of each of used tables.

The database is stored in Oracle 11g R1 database management system.

Table 22 - TPC-H Tables – Number of Rows and Allocated Storage Size

Table Number of Rows Table Size (MB)

CUSTOMER 3,000,000 462,890

LINEITEM 119,994,608 12,655,681

NATION 25 2

PART 4,000,000 453,125

PARTSUPP 16,000,0000 2,250,000

ORDERS 30,000,000 3,046,875

REGION 5 0.4

SUPPLIER 200,000 26,758

In reputation evaluation tests, all tables are replicated over used nodes. In parallel

warehouses tests, tables are also replicated over used nodes (except for the autonomics

tests, where tables are only replicated over the initial 3 nodes). In global warehouses

tests, each region is composed by disjoint 50 partitions of the LINEITEM table, disjoint

8,000,000 lines of the PARTSUPP table and a replica of the other tables.

A.3 – TPC-W based tests: Centralized OLTP Database, Queue
Management and Time Estimation Analysis

We used the same machine and database environment, both in the centralized database

scenario and in the queue management and time estimation tests. In this section, we first

present the main characteristics of used machines and then we describe used database

environment. We also present the SQL commands used in the transactions mix.

We used the TPC-W toolset to generate about 3.7GB of data for tables AUTHOR,

ADDRESS, COUNTRY, CUSTOMER, ITEM, ORDER_LINE and ORDERS of TPC-W.

Figure 95 presents the main tables of TPC-W.

Quality of Experience in Database Systems

135

Figure 95 - Main Tables of TPC-W Database

Table 23 presents the number of lines and storage size of each of used tables. The

database is stored in a single instance of SQL Server 2008 Express Edition database

management system.

address

ADDR_ID

ADDR_STREET1

ADDR_STREET2

ADDR_CITY

ADDR_STATE

ADDR_ZIP

ADDR_CO_ID

author

A_ID

A_FNAME

A_LNAME

A_MNAME

A_DOB

country

CO_ID

CO_NAME

CO_EXCHANGE

CO_CURRENCY

customer

C_ID

C_UNAME

C_PASSWD

C_FNAME

C_LNAME

C_ADDR_ID

C_PHONE

C_EMAIL

C_SINCE

C_LAST_LOGIN

C_LOGIN

C_EXPIRATION

C_DISCOUNT

C_BALANCE

C_YTD_PMT

C_BIRTHDATE

C_DATA

item

I_ID

I_TITLE

I_A_ID

I_PUB_DATE

I_PUBLISHER

I_SUBJECT

I_DESC

I_RELATED1

I_RELATED2

I_RELATED3

I_RELATED4

I_RELATED5

I_THUMBNAIL

I_IMAGE

I_SRP

I_COST

I_AVAIL

I_STOCK

I_ISBN

I_PAGE

I_BACKING

I_DIMENSIONS

order_line

OL_ID

OL_O_ID

OL_I_ID

OL_QTY

OL_DISCOUNT

OL_COMMENTS

orders

O_ID

O_C_ID

O_DATE

O_SUB_TOTAL

O_TAX

O_TOTAL

O_SHIP_TYPE

O_SHIP_DATE

O_BILL_ADDR_ID

O_SHIP_ADDR_ID

O_STATUS

Quality of Experience in Database Systems

136

Table 23 - TPC-W Tables – Number of Rows and Allocated Storage Size

Table Number of Rows Table Size (KB)

ADDRESS 5.760.000 687.944

AUTHOR 2.500 1.040

COUNTRY 92 16

CUSTOMER 2.880.000 1.458.960

ITEM 10.000 6.024

ORDER_LINE 7.775.551 817.992

ORDERS 2.592.000 306.376

Besides the indexes created to enforce primary key constraints, we only created an

index in the column C_UNAME of table CUSTOMER.

We used two machines, one as application server and another as a database

server. Table 24 summarizes the main characteristics of server machines.

Table 24 - Database Server Main Characteristics

Operating System Microsoft Windows XP Professional

Database Management System Microsoft SQL Server 2008 Express Edition

Processor Intel Pentium D 3.00GHz

RAM Memory

Total: 700 Gb

Available to DBMS: 512 Mb (15% of database

size)

Simulated interactions are based in TPC-W v1.8. Table 25 presents the simulated

interactions, the SQL commands of each interaction and the mix of executions between

interactions. The values for the underlined variables in Table 25 are randomly

generated. Used mix is inspired in TPC-W’s Browsing Mix.

Table 25 - TPC-W-Inspired Application – Interactions, SQL Commands and Mix of
Executions

TPC-W
Web

Interaction
Interaction’s SQL Commands

Percentage of
Executions in

Used Mix
(%)

Home select DISTINCT C_FNAME,C_LNAME

from CUSTOMER

where C_UNAME=@C_UNAME

57

Quality of Experience in Database Systems

137

TPC-W
Web

Interaction
Interaction’s SQL Commands

Percentage of
Executions in

Used Mix
(%)

Product

Detail

select distinct *

from ITEM,AUTHOR

where AUTHOR.A_ID = ITEM.I_A_ID

and ITEM.I_ID = @BookID

40

Order

Display

select C_ID

from CUSTOMER

where C_UNAME=@C_UNAME

and C_PASSWD=@C_PASSWD

declare @O_ID numeric(10)

select @O_ID = max(O_ID)

from ORDERS

where O_C_ID=@C_ID

select C_FNAME, C_LNAME, C_EMAIL, C_PHONE, O_ID,

O_DATE, O_SUB_TOTAL, O_TAX, O_TOTAL, O_SHIP_TYPE,

O_SHIP_DATE, O_BILL_ADDR_ID, O_SHIP_ADDR_ID,

O_STATUS, ADDR_STREET1, ADDR_STREET2, ADDR_CITY,

ADDR_STATE, ADDR_ZIP, CO_NAME

from CUSTOMER, ADDRESS, COUNTRY, ORDERS

where O_ID=@O_ID and C_ID=@C_ID

and O_BILL_ADDR_ID=ADDR_ID

and ADDR_CO_ID=CO_ID

select ADDR_STREET1, ADDR_STREET2, ADDR_CITY,

ADDR_STATE, ADDR_ZIP, CO_NAME

from ADDRESS, COUNTRY, ORDERS

where ADDR_ID= O_SHIP_ADDR_ID

and ADDR_CO_ID=CO_ID

and O_ID=@O_ID

select OL_I_ID, I_TITLE, I_PUBLISHER, I_COST, OL_QTY,

OL_DISCOUNT, OL_COMMENTS

from ORDER_LINE, ITEM

where OL_I_ID=I_ID and OL_O_ID=@O_ID

2

Admin

Request

select distinct *

from ITEM,AUTHOR

where AUTHOR.A_ID = ITEM.I_A_ID

and ITEM.I_ID = @BookID

1

Quality of Experience in Database Systems

138

References

[Abdul-Rahman & Hailes, 2000] Abdul-Rahman, A., & Hailes, S. (2000). Supporting

Trust in Virtual Communities. HICSS '00: Proceedings of the 33rd Hawaii

International Conference on System Sciences.

[Akal et al, 2002] Akal, F., Böhm, K., and Schek, H. (2002). OLAP Query Evaluation in

a Database Cluster: a Performance Study on Intra-Query Parallelism. In

Proceedings of the 6th East European Conference. Lecture Notes in Computer

Science, 2435, pp. 181-184.

[Akinde & Böhlen, 2001] Akinde, M. O. and Böhlen, M. H. (2001). Generalized MD-

Joins: Evaluation and Reduction to SQL. In Proceedings of the VLDB 2001

international Workshop on Databases in Telecommunications, Lecture Notes in

Computer Science, 2209, pp. 52-67.

[Akinde et al, 2002] Akinde, M. O., Böhlen, M. H., Johnson, T., Lakshmanan, L. V.,

and Srivastava, D. (2002). Efficient OLAP Query Processing in Distributed Data

Warehouses. In Proceedings of the 8th International Conference on Extending

Database Technology: Advances in Database Technology. Lecture Notes in

Computer Science, 2287, pp. 336-353.

[Alpdemir et al, 2004] Alpdemir, M. N., Mukherjee, A., Gounaris, A., Paton, N. W.,

Watson, P., Fernandes, A. A., et al. (2004). OGSA-DQP: A Service-Based

Distributed Query Processor for the Grid. Advances in Database Technology -

EDBT 2004, 9th International, pp. 858-861.

[Antunes & Furtado, 2007] Antunes, R. & Furtado, P. (2007). Hardware Capacity

Evaluation in Shared-Nothing Data Warehouses. Proceedings of the 21th

International Parallel and Distributed Processing Symposium (IPDPS 2007),

pp.1-6.

[Buyya, Abramson & Giddy, 2000] Buyya, R., Abramson, D., & Giddy, J. (2000).

Nimrod/g: An architecture of a resource management and scheduling system in

a global computational grid. Proceedings Fourth International Conference on

High Performance Computing in the Asia-Pacific Region, pp. 283-289.

[Cao et al, 2003] Cao, J., Spooner, D. P., Jarvis, S. A., Saini, S., and Nudd, G. R.

(2003). Agent-Based Grid Load Balancing Using Performance-Driven Task

Scheduling. In Proceedings of the 17th International Symposium on Parallel and

Distributed Processing (IPDPS), pp.49.

[Cao et al, 2005] Cao, J., Spooner, D. P., Jarvis, S. A., and Nudd, G. R. (2005). Grid

load balancing using intelligent agents. Future Gener. Comput. Syst. 21, 1, pp.

135-149

Quality of Experience in Database Systems

139

[Chervenak et al, 2004] Chervenak, A. L., Palavalli, N., Bharathi, S., Kesselman, C., &

Schwartzkopf, R. (2004). Performance and Scalability of a Replica Location

Service. In Proceedings of the 13th IEEE International Symposium on High

Performance Distributed Computing, pp. 182-191.

[Dang, Hwang & Lim, 2007] Dang, N. N., Hwang, S., & Lim, S. B. (2007).

Improvement of Data Grid's Performance by Combining Job Scheduling with

Dynamic Replication Strategy. Sixth International Conference on Grid and

Cooperative Computing (GCC 2007), pp. 513-520.

[Chaudhuri, Kaushik & Ramamurthy, 2005] Chaudhuri, S., Kaushik, R., &

Ramamurthy, R. (2005) When can we trust progress estimators for SQL queries?

In Proceedings of the 2005 ACM SIGMOD International Conference on

Management of Data, pp. 575-586.

[Chaudhuri, Narasayya & Ramamurthy, 2004] Chaudhuri, S., Narasayya, V., &

Ramamurthy. (2004). Estimating progress of execution for SQL queries. In

Proceedings of the 2004 ACM SIGMOD International Conference on

Management of Data, pp. 803-814.

[Costa & Furtado, 2009] Costa, R. L. C., & Furtado, P. (2009). Deploying Data

Warehouses in Grids with Efficiency and Availability. In: Complex Data

Warehousing and Knowledge Discovery for Advanced Retrieval Development:

Innovative Methods and Applications, pp. 208-229. Idea Group Inc (IGI).

[Dehne & Lawrence, 2007] Dehne, F., & Lawrence, M. (2007). Cooperative Caching

for Grid Based DataWarehouses. Seventh IEEE International Symposium on

Cluster Computing and the Grid (CCGrid '07), pp. 31-38.

[Elnikety et al, 2004] Elnikety, S., Nahum, E., Tracey, J. & Zwaenepoel, W. (2004). A

method for transparent admission control and request scheduling in e-commerce

web sites. In Proceedings of the 13th International Conference on World Wide

Web (WWW '04), pp. 276-286.

[Foster & Kesselman, 1997] Foster, I., & Kesselman, C. (1997). Globus: A

Metacomputing Infrastructure Toolkit. The International Journal of

Supercomputer Applications and High Performance Computing, 11(2), pp. 115-

128.

[Foster, Kesselman & Tuecke, 2001] Foster, I., Kesselman, C., & Tuecke, S. (2001).

The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

International Journal of Supercomputer Applications, 15 (3).

[Foster et al, 2002] Foster, I., Kesselman, C., Nick, J., & Tuecke, S. (2002). The

Physiology of the Grid: An Open Grid Services Architecture for Distributed

Systems Integration. Open Grid Service Infrastructure WG, Global Grid Forum.

[Frey et al, 2002] Frey, J., Tannenbaum, T., Livny, M., Foster, I., & Tuecke, S. (2002).

Condor-G: A Computation Management Agent for Multi-Institutional Grids.

Cluster Computing, 5(3), pp. 237-246.

[Furtado, 2004] Furtado, P. (2004). Workload-Based Placement and Join Processing in

Node-Partitioned Data Warehouses. In Proceedings of the 6th International

Conference on Data Warehousing and Knowledge Discovery. Lecture Notes in

Computer Science, 3181, pp. 38-47.

Quality of Experience in Database Systems

140

[Furtado, 2004b] Furtado, P. (2004). Experimental evidence on partitioning in parallel

data warehouses. In Proceedings of the 7th ACM international Workshop on

Data Warehousing and OLAP. pp. 23-30.

[Furtado, 2005] Furtado, P. (2005). Efficiently Processing Query-Intensive Databases

over a Non-dedicated Local Network. Abstracts Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium (IPDPS’05).

[Furtado, 2005b] Furtado, P. (2005). Hierarchical Aggregation in Networked Data

Management. Euro-Par 2005, Parallel Processing, 11th International Euro-Par

Conference, pp. 360-369.

[Grimshaw et al, 1997] Grimshaw, A. S., & The Legion Team, C. (1997). The Legion

vision of a worldwide virtual computer. Communications of the ACM, 40(1), pp.

39-45.

[Gupta, Mehta & Dayal, 2008] Gupta, C., Mehta, A., & Dayal, U.. (2008). PQR:

Predicting Query Execution Times for Autonomous Workload Management.

International Conference on Autonomic Computing, 2008. (ICAC '08), pp. 13-

22.

[Haas et al, 1997] Haas, L. M., Kossmann, D., Wimmers, E. L., & Yang, J. (1997).

Optimizing Queries Across Diverse Data Sources. VLDB '97: Proceedings of the

23rd International Conference on Very Large Data Bases, pp. 276-285.

[Haddad & Slimani, 2007] Haddad, C., & Slimani, Y. (2007). Economic Model for

Replicated Database Placement in Grid. venth IEEE International Symposium

on Cluster Computing and the Grid (CCGrid '07), pp. 283-292.

[Heiss & Wagner, 1991] Heiss, H.-U., & Wagner, R. (1991). Adaptive Load Control in

Transaction Processing Systems. VLDB '91: Proceedings of the 17th

International Conference on Very Large Data Bases, pp. 47-54.

[Huynh, Jennings & Shadbolt, 2006] Huynh, T. D., Jennings, N. R., & Shadbolt, N. R.

(2006). An integrated trust and reputation model for open multi-agent systems.

Autonomous Agents and Multi-Agent Systems, 13(2), pp. 119-154.

[ITU, 1996] International Telecommunication Union. (1996). ITU-T p.800 Methods for

subjective determination of transmission quality - series p: Telephone

transmission quality; methods for objective and subjective assessment of quality.

[ITU, 2007] International Telecommunication Union. (2007). P.10/G.100 (2006)

Amendment 1 (01/07): New Appendix I - Definition of Quality of Experience

(QoE).

[JAMA, 2010] JAMA: Java Matrix Package, http://math.nist.gov/javanumerics/jama/.

Access on December 20, 2010.

[Kamvar, Schlosser & Garcia-Molina, 2003] Kamvar, S. D., Schlosser, M. T. & Garcia-

Molina, H. (2003). The Eigentrust algorithm for reputation management in P2P

networks. WWW '03: Proceedings of the 12th International Conference on

World Wide Web, pp. 640-651.

[Kilkki, 2008] Kilkki, K. (2008). Quality of Experience in Communications Ecosystem.

Journal of Universal Computer Science, 14(5), 615-624.

[Kim et al, 2008] Kim, H. J., Lee, H. D., Lee, J. M., Lee, K. H., Lyu, W., & Choi, S. G.

(2008). The QoE Evaluation Method through the QoS-QoE Correlation Model.

Quality of Experience in Database Systems

141

Networked Computing and Advanced Information Management. Fourth

International Conference on Networked Computing and Advanced Information

Management, vol. 2, pp. 719-725.

[Koenig & Kale, 2007] Koenig, G., and Kale, L. (2007). Optimizing Distributed

Application Performance Using Dynamic Grid Topology-Aware Load

Balancing. In Proceedings of 21st IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2007), pp.1-10.

[Krauter, Buyya & Maheswaran, 2002] Krauter, K., Buyya, R., & Maheswaran, M.

(2002). A taxonomy and survey of grid resource management systems for

distributed computing. Software Practice and Experience, 32, pp. 135-164.

[Lawrence & Rau-Chaplin, 2006] Lawrence, M., & Rau-Chaplin, A. (2006). The OLAP-

Enabled Grid: Model and Query Processing Algorithms. 20th International

Symposium on High-Performance Computing in an Advanced Collaborative

Environment (HPCS'06), p. 4.

[Li et al, 2005a] Li, W.-S., Batra, V. S., Raman, V., Han, W., & Narang, I. (2005). QoS-

based data access and placement for federated systems. VLDB '05: Proceedings

of the 31st international conference on Very large data bases, pp. 1358-1362.

[Li et al, 2005b] Li, W.-S., Batra, V. S., Raman, V., Han, W., Candan, K. S., & Narang,

I. (2005). Load and Network Aware Query Routing for Information Integration.

ICDE '05: Proceedings of the 21st International Conference on Data

Engineering, pp. 927-938.

[Lin, Liu & Wu, 2006] Lin, Y.-F., Liu, P., & Wu, J.-J. (2006). Optimal placement of

replicas in data grid environments with locality assurance. Parallel and

Distributed Systems, 2006. ICPADS 2006. 12th International Conference on, 1,

p. 8.

[Liu & Wu, 2006] Liu, P., & Wu, J.-J. (2006). Optimal Replica Placement Strategy for

Hierarchical Data Grid Systems. Sixth IEEE International Symposium on

Cluster Computing and the Grid (CCGRID'06), pp. 417-420.

 [Loukopoulos & Ahmad, 2000] Loukopoulos, T. and Ahmad, I. (2000). Static and

Adaptive Data Replication Algorithms for Fast Information Access in Large

Distributed Systems. In Proceedings of the the 20th international Conference on

Distributed Computing Systems (ICDCS 2000), pp. 385.

[Luo et al, 2005] Luo, G., Naughton, J. F., Ellmann, C. J., & Watzke, M. W. (2005).

Increasing the Accuracy and Coverage of SQL Progress Indicators. ICDE '05:

Proceedings of the 21st International Conference on Data Engineering

(ICDE'05), pp.853-864.

[Luo, Naughton & Yu, 2006] Luo, G., Naughton, J. F., & Yu, P. S. (2006). Multi-query

SQL Progress Indicators. EDBT 2006, Lecture Notes in Computer Science,

3896, pp. 921-941.

[Marez & Moor, 2007] Marez, L., & Moor, K. (2007). The Challenge of User-And

QoE-Centric Research and Product Development in Today's ICT-Environment.

Observatorio (OBS*), 1(3).

[Martinez-Yelmo, Seoane & Guerrero, 2010] Martinez-Yelmo, I., Seoane, I., &

Guerrero, C. (2010). Fair Quality of Experience (QoE) Measurements Related

Quality of Experience in Database Systems

142

with Networking Technologies. In 8th International Conference on

Wired/Wireless Internet Communications, (WWIC 2010), 6074, pp. 228-239.

[Mini, 2010] MiniConnectionPoolManager - A lightweight standalone JDBC

connection pool manager, http://www.source-code.biz/snippets/java/8.htm.

Access on December 20, 2010.

[Moller, Engelbrecht & Kuhnel, 2009] Moller, S., Engelbrecht, K.-P., & Kuhnel, C. W.

(2009). A taxonomy of quality of service and Quality of Experience of

multimodal human-machine interaction. International Workshop on Quality of

Multimedia Experience (QoMEx 2009), pp. 7-12.

[Natrajan, Humphrey, & Grimshaw, 2004] Natrajan, A., Humphrey, M. A., &

Grimshaw, A. (2004). Grid resource management in legion. In Grid Resource

Management: State of the Art and Future Trends, pp. 145-160. Kluwer

Academic Publishers.

[Nieto-Santisteban et al, 2005] Nieto-Santisteban, M. A., Gray, J., Szalay, A., Annis, J.,

Thakar, A., & O'Mullane, W. (2005). When Database Systems Meet the Grid.

CIDR, pp. 154-161.

[Nokia, 2004] Nokia Corporation. (2004). Quality of Experience (QoE) of mobile

services: Can it be measured and improved? Telecom Services White Papers.

[Nudd et al, 2000] Nudd, G. R., Kerbyson, D. J., Papaefstathiou, E., Perry, S. C.,

Harper, J. S., and Wilcox, D. V. (2000). Pace--A Toolset for the Performance

Prediction of Parallel and Distributed Systems. International Journal of High

Performance Computing and Applications 14 (3). pp. 228-251.

[Oracle, 2010] Oracle Database 11g Enterprise Edition,

http://www.oracle.com/us/products/database/enterprise-edition/index.html.

Access on December 20, 2010.

[Ozsoyoglu & Snodgrass, 1995] Ozsoyoglu, G., & Snodgrass, R. T. (1995). Temporal

and Real-Time Databases: A Survey. IEEE Transactions on Knowledge and

Data Engineering, 7(4), pp. 513-532.

[Park & Kim, 2003] Park, S.-M., & Kim, J.-H. (2003). Chameleon: A Resource

Scheduler in A Data Grid Environment. CCGRID '03: Proceedings of the 3st

International Symposium on Cluster Computing and the Grid, pp. 258-265.

[Rahman, Hassan, & Buyya, 2010] Rahman, M., Hassan, R., & Buyya, R. (2010)

Jaccard Index based availability prediction in enterprise grids. Procedia

Computer Science, 1 (1), pp. 2707-2716,

[Ramamritham, 1993] Ramamritham, K. (1993). Real-time databases. Distributed and

Parallel Databases, 1(2), pp.199-226.

[Ranganathan & Foster, 2001] Ranganathan, K. & Foster, I. T. (2001). Identifying

Dynamic Replication Strategies for a High-Performance Data Grid. In

Proceedings of the Second international Workshop on Grid Computing. Lecture

Notes in Computer Science, 2242, pp. 75-86.

[Ranganathan & Foster, 2004] Ranganathan, K., & Foster, I. (2004). Computation

scheduling and data replication algorithms for data Grids. In: Grid resource

management: state of the art and future trends. pp. 359-373. Kluwer Academic

Publishers.

Quality of Experience in Database Systems

143

[Röhm et al, 2000] Röhm, U., Böhm, K., and Schek, H. (2000). OLAP Query Routing

and Physical Design in a Database Cluster. In Proceedings of the 7th

international Conference on Extending Database Technology: Advances in

Database Technology. Lecture Notes in Computer Science, 1777, pp. 254-268.

[Rood & Lewis, 2008] Rood, B. & Lewis, M. (2008). Resource Availability Prediction

for Improved Grid Scheduling. In Proceedings of the 2008 Fourth IEEE

International Conference on eScience (ESCIENCE '08). pp. 711-718.

[Sathya, Kuppuswami & Ragupathi, 2006] Sathya, S. S., Kuppuswami, S., &

Ragupathi, R. (2006). Replication Strategies for Data Grids. In International

Conference on Advanced Computing and Communications (ADCOM 2006). pp.

123-128.

[Sanchez-Macian et al, 2006] Sanchez-Macian, A., López, D., Vergara, J. L., & Pastor,

E. (2006). A Framework for the Automatic Calculation of Quality of Experience

in Telematic Services. In Proceedings of the 13th HP-OVUA Workshop.

[Schroeder et al, 2006a] Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E. &

Wierman, A. (2006). How to Determine a Good Multi-Programming Level for

External Scheduling. In Proceedings of the 22nd International Conference on

Data Engineering. pp.60.

[Schroeder et al, 2006b] Schroeder, B., Harchol-Balter, M., Iyengar, A. & Nahum, E.

(2006). Achieving Class-Based QoS for Transactional Workloads. In

Proceedings of the 22nd International Conference on Data Engineering. pp. 153.

[Sidell et al, 1996] Sidell, J., Aoki, P. M., Sah, A., Staelin, C., Stonebraker, M., & Yu,

A. (1996). Data Replication in Mariposa. ICDE '96: Proceedings of the Twelfth

International Conference on Data Engineering, pp. 485-494.

[Silaghi, Arenas & Silva, 2007] Silaghi, G.C., Arenas, A.E., & Silva, L.M. (2007). A

Utility-Based Reputation Model for Service-Oriented Computing. Proceedings

of the CoreGRID Symposium, pp. 63-72.

[Singh & Liu, 2003] Singh, A. & Liu, L. (2003) TrustMe: Anonymous Management of

Trust Relationships in Decentralized P2P Systems. Peer-to-Peer Computing, pp.

142-149.

[Smith et al, 2002] Smith, J., Gounaris, A., Watson, P., Paton, N., Fernandes, A. A., &

Sakellariou, R. (2002). Distributed Query Processing on the Grid. In Third

International Workshop on Grid Computing - GRID 2002, pp. 279-290.

[Sonnek et al, 2006] Sonnek, J., Nathan, M., Chandra, A., & Weissman, J. (2006).

Reputation-Based Scheduling on Unreliable Distributed Infrastructures.

Proceedings of the 26th IEEE International Conference on Distributed

Computing Systems, pp. 30.

[Spiliopoulou, Hatzopoulos & Costas, 1996] Spiliopoulou, M., Hatzopoulos, M. &

Vassilakis, Costas. (1996). A Cost Model for the Estimation Query Execution

Time in a Parallel Environment Supporting Pipeline. Computers and Artificial

Intelligence, 15 (4).

[SQL Server, 2010] SQL Server 2008: Overview,

http://www.microsoft.com/sqlserver/2008/en/us/overview.aspx. Access on

December 20, 2010.

Quality of Experience in Database Systems

144

[Stankovic, Son & Hansson, 1999] Stankovic, J. A., Son, S. H., & Hansson, J. (1999).

Misconceptions About Real-Time Databases. IEEE Computer, 32(6), pp. 29-36.

[Stöhr et al, 2000] Stöhr, T., Märtens, H., and Rahm, E. (2000). Multi-Dimensional

Database Allocation for Parallel Data Warehouses. In Proceedings of the 26th

international Conference on Very Large Data Bases, pp. 273-284.

[Stonebraker et al, 1996] Stonebraker, M., Aoki, P. M., Litwin, W., Pfeffer, A., Sah, A.,

Sidell, J., et al. (1996). Mariposa: a wide-area distributed database system. The

VLDB Journal — The International Journal on Very Large Data Bases, 5(1), pp.

48-63.

 [TPCH, 2010] TPC-H – Homepage, http://www.tpc.org/tpch/. Access on December 20,

2010.

[TPCW, 2010] TPC-W – Homepage, http://www.tpc.org/tpcw/. Access on December

20, 2010.

[Venugopal, Buyya & Ramamohanarao, 2006] Venugopal, S., Buyya, R., &

Ramamohanarao, K. (2006). A taxonomy of Data Grids for distributed data

sharing, management, and processing. ACM Computing Surveys, 38(1).

[Watson, 2001] Watson, P. (2001). Databases and the grid. UK e-Science Technical

Report Series.

[Wehrle, Miquel & Tchounikine, 2007] Wehrle, P., Miquel, M., & Tchounikine, A.

(2007). A Grid Services-Oriented Architecture for Efficient Operation of

Distributed Data Warehouses on Globus. 21st International Conference on

Advanced Networking and Applications (AINA '07), pp. 994-999.

[Wolfson & Jajodia, 1992] Wolfson, O., & Jajodia, S. (1992). Distributed algorithms

for dynamic replication of data. PODS '92: Proceedings of the Eleventh ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

pp. 149-163.

[Zapater & Bressan, 2007] Zapater, M. N., & Bressan, G. (2007). A Proposed Approach

for Quality of Experience Assurance of IPTV. ICDS '07: Proceedings of the First

International Conference on the Digital Society, pp. 25.

