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ABSTRACT

The primary objective of this work is to obtain the global
solution of & structural synthesis problem namely the

minimum volume design of trusses.

This bilinearly constrailned problem way present multiple
optima and some examples of this nonconvex behaviour are
given.In the particular class of structural optimization
problems there 1s an incentive ta determine whetner a
previously obtained local optimum is the global optimum
aver a given range of the variables in order to terminatce
the search. The performance of a recently proposed
uniqueness test [McCormick,(198%)] is studied within the

context of the current problem.

Soland‘s (19¢71) branch and bound solution strategy 1is
directly applied to our problem and several versions based
on concepts of both separable and factorable functions are
presented.On the basis of computatianal experience
conclusions are drawn on the suitability of the different
underestimaces taken and of several heuristic modifications
sried out. A different algorithm although of branch and
bound type initially used by Reeves in 1973 to solve all-
guadratic preogramming problens is redefined in terms of

factorable envelcopes.

Wolsey's generalization (1981) of Berider's algorithm yields
a master problem that will be solved by a process of

reiaxation. For the bilinearly constrained problem both
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support and cutting functions can be linearized by
introducing binary variables, Although the relaxed problem
that has to be solved &t gagh iteration 1s still nonconvex
it 1s amenable to standard codes for -1 mixed LP. Using
the coupling proper ties among the varilables of the present
problem a shortensd version of this aethod 1is also
formulated. Results are compared with those provided by the

stategies previously mentioned.

Both solution tecnnigues covered in this study are
combinatorial in nature and thus lend themselves to the
casting of the discrete variable case (restricted list of
available sections). These extensions of the algorithm are

demonstrated with examples.
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CHAPTER ONE

INTRODUCTION

Thesis

The human capability to solve large not necessarly convex
mathematical problems arising from structural engineering
models is still rather limited . Some of the difficulties
are assocliated with the 1nability to guarantee the
obtaining of a global as opposed to merely local selutiaon
to the general nonlinear optimization problem. Minimui
volume of trusses are an example of such problems
possessing a large field of practical applications and
being themselves of intrinsic importance. In fact this one
stress-resultant problem can bpDe extended toe cover the
solution of both frame and plate problems. Bounds on Joint
displacements , memnber stresses,buckling restrictions and
member sizes are the type of constraints frequentely

encountered and to which this work is addressed.

Numerous methods have been proposed to tackle this problem
for member sizes chosen from both a continuum and a
discrete set of avallable sections. In none of them
statsments are made about the convexity of the problem or
claims for convergence to the global seolution. Nothing
prevents an algorithm wused for ceonvex progranmning when
applied to nonconvex programming from converging to a local
solution ar not beiny able to converge at all. In fact all
these methods seem to work well in some preoblems 1in the

sense that they can generate a good approximation using a
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reasonable amount of time., Unfortunately this cannot be

guaranteed in general.

in the present study the problem 1s approached as fully
nonconvex even if in specific cases the nonconvexity may
Aot manifest itself strongly or at all ; in this way the
occurence of local minima can be observed and soine
guidelines may be established to help in deciding whether
the simple optimization strategies should be neld as
sufficient or the more sophisticated tools of combinatorial
optimization should be used. Reliable identification of any
local optimum regquires search techniques whicn a) are
logically complete in the sense that the process will
terminate only after all optima have been found and b)
computationaly efficient so that detection of the optima is
not prevented by cenvergence problems. There are classes aof
nonconvex problems where property b) is not crucilal since
each local solution can be obtained numerically after a
finite number of steps. This is the case of a quadratic
nonconvex function subject to a linear ineguality system.
Unfortunately this property no longer holds Wwhen the
constraints are bilinear. The difference between Lhese
cases will be explained in more detail in the fellowlng

Chapter .

Two strategies more appropriate for nonconvex minimization
were selected. The Branch and Bound approach (B & B) is a
globally convergent method that can De applied to ths

solution of the general separable problem such as functions

of one variable and their products. Although historically



it is considered a remedy of last resort B & B algorithms
are being accepted in structural aoptimization as
competitive since each subproblem can be solved by using

linear programming (LP) technigues,

Alternatively a generaiization of Bender's algorithm by
using dual functions instead of dual wvariables and LP
Duality theory yields a master problem equivalent to the
minimum volume design. Even though the master problem is a
#-1 mixed LP and therefore still nonconvex the importance
of this procedure is due to thne fact that it can be solved
by available globally convergent codes. Several versions of
both methods were run trying out possible acceleration
schemes. The computational effort of these algorithms 1is
reported as well as the relative efficiency of saome

heuristic improvemznts.

Structural model and computational tecannigue

Trusses are discretized into a finite eliement medel and the
Lagrange coordinate technigue is wused to establish the
statics and kinematics of the graph model wunder the
assumptions of linear elastic behaviour. This type of
structure 1s taken for the purpose of presenting the
mathematical model although the wethod 1is in principle
applicable Lo any finite element discretization of
continuous models if the problem—-size obstacle <¢an be
overcome., The structure is acted upon by either single or
multiple loading. In many c<¢ases the numerical solution

requires a basic reliable Simplex system which can be
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adopted to the requirements of the problem. Land & Powell's
(1973) LP routine has been developed for this purpose.
Although not claiming to be very efficient it 1is reliable
and provides sufficient checks and stopping rules to
reassure thé user about its ouput. The examples presented
in this work have been processed with these routines in

various adapted forms .

Organization of the thesis

The object and main purpose of this researcn are briefly
described 1in Chapter 1 together with the computational
techniques used. An historical outline of the related

efforts in this field will close the Introducticon.

The bilinearly constrained problem that is the subject of
this work is described in Chapter 2 and an illustrative
example of multiple optima solution is given. Some elements
of mathematical programming strategy are also collected

together in anticipation of in forthcoming Chapters.

In Chapter 3 mesh and nodal descriptions of the statics and
kinematics of a structure are taken as the constraints of
an optimization problem. Examples of trusses possessing
multiple optima are given., Conditions are stated that
ensure that &a 1local minimizer 1is indeed the global
minimizer of & constrained nonconvex program using

McCormick (1988) relevant theory.

The Branch and Bound strategy is presented in Chapter 4 in
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order to solve the minimum wvolume of the truss with
continous design variables. A rotation of the coordinate
axes is employed teo transform the initially factorable
terms into an equivalent separable formulation which can be
solved by Soland's algorithm (1971) . Several
underestimates each defining a convex hull are wused to
create the subproblems used in this strategy. The concept
of convex envelope of a factorable function defined 1in a
rectangle of bounds is used to provide tighter
underestimates. Computational experience in the examples
used as testbed will be reported. A different combinatorial
scheme based on a modified version of Reeves' work on all

quadratic programming (1973) 1s also tried out.

In Chapter 5 the Resource-Decomposition method is described
as a generalization of Bender's algorithm to nonconvex
problems. A Master program equivalent to our Bilinearly
constrained problem is defined and solved by a process of
relaxation. Wolsey's cautting planes (1981) are added at
each iteration of the algorithm and their special nature
plays an important role in the selection of the methods of
solution of each relaxed problem. Several results of the
application of this theory are compared with solutions

previously obtained.

Both alternative strategies to solve the minimization
problem are extended in Chapter 6 to cover the synthesis of
structures where member sizes belong to a set of available
gauges. Their results are compared and some statements are

made about the wvalidity of the methods described 1in
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Chapters 4 and S5 when applied to both continuous and

discrete member sizes.

Historical outline

Historically it is difficult to ascertain the original
attempts to determine the least volume of material a
structure needs as regard its strength. Probably this
coincided with the application of the notion of force and
the laws of mechanics as foundation for designing
structures, It is generally accepted that this period began
in 1538 the year Galileo published the results of his
experiments. Since that time theoretical mechanics has

constituted a <cause for the development of ways of
predicting the behaviour of stuctures prior to

construction.

On the basis of a theorem prooved by Maxwell,Michell
indicated in 1904 the possibility of determining the
minimum material design of statically determinate trusses
subjected to a single loading condition. He concluded that
the member stresses must be at their 1limiting wvalues for
the structure to be optimal. The development of design
methods continued in the direction of finding more rational
procedures for the needs of practical engineers. The
geometry and the materials of the structure were adopted
intuitively and for specified design loads the values of
the state variables were evaluated by using methods of
analysis., The design variables would then be modified in

repeated cycles wuntil the calculated behaviour would
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satisfy certaln prescribed reguirenents.

The design philoesephy in structural engineering was changed
by the application of matrix methods and the development of
electronic computers possessing tremendous storage
capacity,speed and accuracy. Opt imum design methods
replaced design and analysis procedures where the final
solution can be highly uneconomical even if the intuitive
solution satisfies behavioural constraints. Michell's
trusses underlined the {impoertance of fully stressed
structures for near optimal designs. More recently research
papers have been published which supplement this notion
with some newer optimality criteria. These developments
have paralled the progress of mathematical programming,also

a product of the last guarter of century of research.

These two fundamentally different approaches have been
commonly used in systematic structural synthesis,
Optimality criteria was shown by Templeman in 1975 to be an
indirect methoed based on obtaining a set of necessary
conditions for the optimal design problem, In mathematical
programming one starts with an engineering estimate of the
optimum design. A direction of search 1is then conputed
based on local pbehaviour of cost and constralnt

functions;this precedure can be considered a direct method.

1.4.1 Optimality criteria

The simplest type of optimality ctriterion is the fully

stressed member condition applicable to statically

determinate +trusses. For indeterminate structures this
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approach makes the assumption of a limited redistribution
of internal forces due to redundancy. The fully stressed
design criterion 1is relevant to the case when only stress
restrictions are taken into account. Its main assumption
says that in the optimal structare the maximum allowable
stress is attainsd in each member under at least one of the
applied loading cases. The stress ratio formulae is applied
recursively after each reanalysis phase as if the structure
was isostatic in which case this criterion was rigourous.
The main remark about this algorithm presented by Razanli
(1966) is that it leads te a vertex in the design space
which is not necessarly an optimal point and is independent

of the objective function (OF) .

Barnet (1958) by introducing a virtual load acting at the
point where a deflection is prescribed defines the minimum
weight design in terms of tne virtual strain energy. Chern
and Prager (1971) derived that the ratio of the strain
energy density to ths volume density is the same for all
members in a displacement constrained isostatic truss. In
the hyperstatic case this statement no longer applies.
Berke (1972) obtained & similar recursive relation to the
stress ratio formulae by intreducing Lagrange multipliers
into the eguality constrained problem. Since not all these
multipliers are positive the variables are divided into

active and passive groups.

By combining the foregoing design relations the problenm

consists of finding Lagrange mulcipliers after each
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reanalysis. Berke and Khot (1974) pointed out that the
major drawback associated with these methods consists of
the selection of active variables and constraints. To avoid
this last difficulty the optimality criteria can be derived
from a problem involving ineguality instead of equality
constraints. The stress ratio formulae can be efficiently
substituted by a better approximation of the stresses based
on the wvirtual load procedure as linear combination of
displacements, To the resulting problem that has to be
recurred iteratively the optimality criteria follows from
the application of the K-T necessary conditions. The dual
problem contains entirely the selection of active
constraints by assigning the Lagrange multipliers positive

values if the constraint is active and zero otherwise,

The solution of this approximate problem consists of
determining the optimal dual variables subject to sense
restrictions by maximizing the Lagrangian of the dual
probliem. Bartholomew (1978) found a dual bound on the
minimum weight based in this procedure. The dual proeblemn
partitions the dual space in several subregions
corresponding to different divisions in active and passive
design variables and accordingly to different definitions

of the OF [ Fleury (1979)] .

1.4.2 Mathematical programming

The mathematical programming approach attacksdirectly the

nonlinear problem definind the ninimum weight/volume

design. The classical minimization methods require
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reanalysis of the structure to evaluate the gradients of
the constraints that are nonlinear homogeneous functions of
the design wvariables. The earlier approaches have used
primal methods and were considered to be not efficient for
large scale systems since the number of iteration steps
would increase with the number of design wvariables. The
reader 1is refered to the works by Schmit (1953) Gellatly
(1966) and Brown's (1966) application of Rosen's projected

gradient method.

Moses (1954) and Reinschmit (1966) were some of the
pioneers in the use of penalty methods that replace the
initially constrained form into a sequence of unconstrained
problems by adding auxiliary functions reflecting the
behaviour of the constraints., This approach 1is also not
efficient since the number of iterations increases just as
in the primal methods. Geometric programming has also been
used to minimize weight of planar trusses [ Templeman
(1975)1 . Singary and Raoc (1975) have made an application
of optimal control theory by partitioning the original
problem into a number of smaller subproblems and solving

them in a sequential manner.

The next step has been the use of a segquence of linear
programs obtained by linearizing the objective function and
the constraints at the design point. The convergence to a
local minimum can only be guaranteed 1f it exists at a
vertex in the design space . Working 1in the compliance
design space in order to reduce linearization errors in the

constraints Schmit and Miura (1976) considered



approximations obtained by first order Taylor series
expansion., They are able to predict dependence relations
between state and design variables. Periodically constraint

approximations are updated by performing a reanalysis.

Arora and Haug (1976) wuses a function space gradient
projection technique. The gradient required is computed by
using adjoint design variable sensitivity methods and 1is
reported to converge gJuickly to a local solution of the
optimization problem. The future trend of research for
large structures is to combine both approaches. The
development of hybrid methods was Jjustified by Fleury
(198@) :"After the mathematical programming has identified a
set of constraints close to the optimum the optimality
criteria should then be used to find the precise optimum
due to its gquick convergence once the active set is
determined". Rajararam and Schmit (1981) integrated basis
reduction concepts to reduce the dimensionality of large

scale systems.

This work follows the lines of the latter approach because
it affords greater generality in casting the format of the

preblem.

1.4.3 Discrete optimization

The nonlinear optimization problem when expressed in
discrete design variables can be thought of as imbedded in
the space of continous solutions. Discrete optimization

techniques are relatively new when compared to automatic



design of structures and both linear and nonlinear
optimization methods. In this area Toackley (1968) and
Marcal (1968) have formulated the minimum weight problem
directly in discrete variables. Toakley formulated the
elastic design problem as a discrete programmming with @-1
variables but was forced to terminate the program and
resort to bounding procedures due to defficiencies of

Gomory's algorithm,

Cella (1971) wuses a Branch and Bound type of strategy to
optimize trusses in the elastic range. The B and B method
is capable of solving mixed LP but efficiency depends on
the the type of problem and particular scheme for branching
used. Reinschmidt (1971) focused attention on the pure
Integer Progamming problem. By using Plastic theory he

optimized the member sizes. Imal and Shoji (1981) created a

sequence of approximate optimization problems in the

compliance design space of the linear elastic range and

have solved each subproblem in the dual space, Convergence
to a local solution was met afer a small number of

reanalysis.

Saglam (1981) wused a cutting plane method providing
convergence again to a local solution. In order to increase
the chances of finding the global solution the procedure
should be restarted with different initial trial points and
the best solution found would then be selected.
Yates,Templeman and Boffey (1982) in their very recent
paper have justified the use of methods that approximately

solve the problem. They have also shown that they are
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equivalent in complexity to those used far seolving the
original problem. This conclusion is elusive because it is
possible to have problems such as linear Integer programmes
that theoretically have exponential complexity and there
are algorithms available for soalving them that wark well in

practice.

l1.4.4 Literature review

Substantial literature on the optimal design of elastic
trusses exists. Papers previously published have generally
been directed teo test problems invelving
bars,shafts,beans ,plates and trusses of variable section. A
variety of performance contraints have been placed on the
design problem which serve to segregate the class of
problems. The first literature review on stuctural design
appeared in 1963 by Wasiutynsky and Brandt. They presented
a review of literature though approximately 1952 citing 234
references. Shew and Prager continued with a thorougn
review until 1957 containing an additional 146 references.
They were the last comprehensive reviews that have appeared

in the growing field of stuctural optimization.

A discussion of optimal design and the mathesmatical
orogramming techniques used in this fieid was presented by
Prager (1971). Schmit (1971) pointed out the trend of
current and future research in this field by making a
distinction between single and multiple purpese structures.
In 1873 Nierdseon and Pedersen gave & critical and

analytical review of the literature that appeared between
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approximately 1968 and 1972. With primary emphasis on
finite stuctural optimization a review by Venkayya (1976)
and a survey by Krishnamoorthy and Mosi (1978} cover papers

appeared until 1977,

l.4.5 Books review

The most substantial text considering a variety of
performance constraints 1is the proceedings of a IUTAM
symposium held in Warsaw in 1973 edited by Sawczuck and
Mroz. Prager presented in 1974 a series of lectures that
provide a discerning introduction to the field of
optimality c¢riterion. Haug and Arora published in 1979 a
text on numerical metheds of structural optimization and
have solved the minimum weight design problem under a
number of different type of constraints by using a gradient

projection technique.

In 1981 a book edited by Haug and Cea as proceedings of a
symposium held in Iowa City 1in distributed parameter
optimization has a special emphasis both in shape optimal
design and design sensitivity analysis although it includes
a chapter in finite dimensional structural optimization.
The Russian school seems primarly interested in analytical
methods of structural optimigation as reported in a

monograph published by Banichuk (1938).



1,4.6 Present research

One particular aspect that appears to be significant is the
bilinear nature of some of the constraint equations and the
mathematical implications of this fact. Our aim was to seek
distinguishing features in the optimization problem of
hyperstatic trusses of fixed topology which would enable
statements of uniqueness to be made about the solution
under a combined set of constraints on deflections stress
and buckling loads. The ultimate goal of this work is to
find the set of either continuous or discrete variables
that minimize the wvolume of the truss. Due ¢to the
manifestation of nonconvexity a special emphasis is made on
the development of algorithms that permi i ing a better
handling of the nonlinearities of the problem will also
ensure convergence to the global solution. Some relevant

results on their comparative efficiency are also reported.
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CHAPTER TWO

BILINEARLY CONSTRAINED PROBLEMS

Introduction

Bilinear constraints are generally associated with
nonconvex behaviour but in special cases the resulting
problem may remain "convex" in the sense of having a unique
optimum. It is important to distinguish such special cases
in order to avoid costly algorithms more suited to convex
problems. In the following sections an attempt is made to

classify various bilinear problems from this viewpoint.

The bilinerly constrained problem 1is also related to a
class of mixed integer problems and thus complementarity
programming problems so that solution methods may be
applicable to both. These relationships are described
below. For comparative purposes the original least volume

truss problem is summarized in the prior instance.

Truss Optimization Problem

The minimum volume design of indeterminate structures of
fixed topology is a particular case of the broader class of
bilinear programs bilinearly constrained.
. it _
Min c x +d y+x Gy (2.1)
X,¥ -~ - “ =

st AiX'I‘xTH_jY‘FW

o ~

y > b, (2.2)
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special situations sucn as statical determinacy 1t was

possible to show that the above problem is after all ‘“convex".

Such considerations are left to Chapter 3 where the related work

m

of Bayer (1978) is sumarized.

2.3. Problem Characteristics. Multiple Optimal Solutions

The optimization problem is therefore one with a linear
objective function and possessing both linear and bilinear
constraints. ©Some idea of ths morphology of the feasible
domain may be gained by examining the domain in projection

on selected coordinate space.

The actual domalin defined by 9 < f < gsstands in the n.l
dimensional space (where 1 is the number of alternative
loading conditions and n the number of bars) forming a
domain with thne shape of a hyper rectangle. In addition the

linear constraint E, x > @ define a set which intersects ths

1 N
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domain along the n.l axes giving a set of curtailled
parallelopipeds. This set is now intersected by & linear
manifold given by §2§ = gzand the geometry is yet a convex
polytope. It may be embedded in a n+n.l dimensional
coordinate where the new axes are defined by g1‘i b4 £ f2
giving a prismatic figure. Finally this is intersected by a
subspace of bilinear eguations this being a curved manifold
on the account of the product term appearing in the

equations becoming a nonconvex finite sized domain.

In order to illustrate that the above problem 1is not
unlikely to have multiple solutions consider the following

problem (2.4)
i + oy .+
Min y1 y2 y3

st x1 y1 + X = 9

z¥ 3

31ncJI y1+ 1.2 x2y2~x3y3= 1@

.1 5.

IA
g
f s
w
N

-4
L ]

—
I A
B4
~
wn
.

w

-1£Y3£

B. < x, £ 2.5 ; 0. < x ¥ 2.5 ;7 -2.5 £ XB < 0.

This nonlinear problem presents three local optima namely

x1 = G.G;xz = 2.5;'){3 = ﬂ.ﬂ;y1 = @.1;vy o= 3.33;_}{.5 = f.1
OF = 3.53
= g = .} ==2 . H = . $ == _. 7 = .]_
x1 #.5 x2 2.5 x3 5 y1 5 y2 3.8 y3 2

OF = 3.64



X, = l.8;%x_, = 0.9; ==2.5; = 2.5; = .1 ; = 1,0
1 2 B IXB 2 5'Y1 IY2 Y3 )
wWhen we want to represent this nonconvex problem

graphically we are quickly limited by the dimensions of the
problem. In particular we cannot go beyond two equations 1in
three unknowns at least not without placing ourselves in a
subspace of the solution space. Fig 2.1 to 2.4 represent
a¥onometric perspective views where all objective function
values below a previously given level are printed . They
correspond to feasible points of the domain when
interpelating the x wvariables between any two 1local
solutions. The contour of the OF corresponding to the same

feasible points is drawn in Fig 2.5 and 2.6 .

Although having a low dimensionality when compared to real
iife structural synthesis problems this example 1is an
useful testbed for statements about the efficiency of some

of the algorithms considered in this work.
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The regions surrounding both local optinma

Now the maximum volume is limited to 4.5 .
are no longer connected.

Figse 2.2
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Thne optlmal design of & three bar truss gives physical

meaning to this nonconvex problem. If we let y represent

the vactor of member arszas and x the wvectar of aember

~

stresses the mwmatrix A of the constants appearing in the

bilinear eyuations represents the direction cosine matrix.

(see Chapter 3 )
s ==

ot
=

A compatibility type of constraint for this problem would

be given by

The remaining linear ineguality in problem (2.4) represents
a displacement restraining the structure. Adding the
aguality (2.5) to the mathematical program (2.4) we obtain

a single solution given by
X4 = B.88;% 5= 3.99;x %= —2.5;y1 = 3.@8;y2 = ﬁ.l;y?5= 7.99
OF = 4.1569

In Fig 2.7 and 2.8 the effect of the introduction of this
hyperplane is snown. In tne next Chapter further examples
of trusses exhibiting multiple optimality are presented. A
local sufficiency test checking whether a previously
determined local optima is unigque is also applied. But here
we proceed by giving another case of multiplicity in the

number of solutions that may occur in structural synthzsis.
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The following simple examples illustrate some of the
problems often encountered 1in grillage optimal design. A
: grillage is usually made up of orthogonal beams loaded
j normal to its plane. The geometry of the structure is

assumed to be known including the number of beams span

length and support conditions.

Fig 2.9 Grillage

Constraints are related with bending stresses at node B

T,m-3 and in critical sections between nodes AB m2 and BC

The optimal design problem (2.6) is to find the cross

m

m4.

sectional areas y such that

1Y 2

Min 11 vy, 1:2y 5
St S L8y = m/W S8y
Sp1 8 Sp = M/W LS oy
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By using the nodal stiffness method we first obtain the

bilinear equation for the deflection at B ,d B
6 E (I,/(1,/2)° + I,/(1,/2) °) dg= A (2.7)

in which E is the modulus of elasticity and j the vector

of nodal forces. The bending moments m and m3 are computed

by
m, =m., - (3 EI,/(L,/2)%) d
01 1/ (1 B
2
m., = mo3 - (3 E 12/(12/2) ) d B

where m and myy are end moments corresponding to a
propped cantilever. For the given bending moments the shear

forces

FA = FOA." m1/(l1/2)

)

Py = Foy = ms/(15/2)

s

can be determined and we may find the location of critical
section 2 and 4 and the corresponding bending moments. The

design spaces for the two following cases is shown in Fig

2.19 and 2.11

CABE 1

Sandwich beam possessing the following cross sectional

properties
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Here

A=5 (qqly+dplys)/8 + P




L2

Sl = [-15- -150 _15. -15-] 3 =-Sl

Y, = [ 5« 5.]

Critical section 2 and 4 are 1located at a distance

of Fﬁ/q1 from A and E‘C-/q2 from C respectively (but not

exceeding the respective member length)

2

2
m o4 Fc/(2 95)

Three local optima are obtained corresponding to

y = 5.8 Y, = 22.8 OF = 832.0
| S 4= -9.34 S, = 14.238 53 ==15.08 5 4= 15.008
|
| y 4= 9.9 ys = 15.1 OF = 765.1

Y 4= 22.4 Yo = 5.0 OF = 826.1
CASE 2

Assume the following relationships

qy = 95 = 1.2 P = 25.0
‘. 11 = 21o 12= 24-
wj 5. yJ Ij = 25. yj j= 1,2
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2.11 Design space — case 2

In this case we would obtain two distinct local minima

Y1 = 1.7¢ YZ-_-
yq = 11.88  yop =

=

5,08 55 =

In the remaifider of
extensions of LP

the nonlinearities

11.32 OF = 3B7.5
5-@';‘] 53= —& .78 3 4’= 4.748
1.9 OQF = 255.06
(4 £ 5 = {] o 2 = = .
5.049 S = 024 4 4,18

this Chapter we will review some of the
that exhibit the closest resemblance to

encountered in the least volume design.

43



2.4. Linear Programming

The linear programming problem (LP) in its inequality

standard form is defined by

. 13
Min ¢ “x (2.8)
st Ax >Db (2.9)
X > & (2.1@)

where x teRD;ceR®;bER Mand AcR™*™ are given vectors and

matrix. The Simplex algorithm (and its revised versions)

due to Dantzig (19563) solve this class of problems very

efficiently.

Problems capable of being expressed mathematically in the
form of a LP are many and varied. The economic
interpretation which is given here is not associated with a
particular problem but with a terminology that has beconme
guasi-universal language paralleling the more abstract
statements used in this work. Consider an entreprise wich
has in the general case several "activities" each one using
a certain number of “resources". These may be products

originated simu ltaneously by the several activities.

Each *commodity" is finally demanded in a quantity b'i P
Moreover to each one of the n activities j is attached a
cost ¢, depending on the intensity of this activity. The
implementation of these activities is accompanied by a cost
to be minimized while satisfying all the demands without

exceeding any availability. The aj are column vectors the m



components of which representing the proportions that the
activity j taken in its reference state uses the m
resources i . The intensity of the activity 3 may be
represented by the single parameter xj which will then be
called the level of activity j . A set of values of the xj
defines the program of the enterprise under consideration.

Duality in LP

Associated with every LP called the primal there is another
LP called its dual. These problems possess very interesting
and closely related properties: If the wunique optimal
solution to any one 1is known the optimal solution can
readily be obtained. A solution can be found by solving

either the primal or the dual whichever easier. Dual LP

Max b Ty (2.11)
o I

st A y<ec (2.12)
y > 8 (2.13)

¢

where yERInis a vector

It can be seen that

Max ﬁly = =Min (*bTY)

Let us reconsider the economic interpretation of the last
section, The implementation of the activities may be
accompanied either by a cost to be minimized or a profit to
be maximized. Formally the problem may always be reduced to

either case to consider a profit as a negative cost. 1In



order to assume homogeneity in the dual relations y must
be given the significance of a unit price. The dual problem

may then be expressed as :

Given a unit cost Cj for each of the n activities and a
demand b 5 for each of the m resources i what must be the
unit price of each resource bi_such that the total value of
the resources produced by j at level 1 should be less than
or equal to the cost and the total value of the demanded
commodity is maximal. The dual variables y 3 will then be
called prices. Consider an optimal basis for the primal.
The solution of the dual problem may then be interpreted as
a system of shadow prices which the resources i must have
so that the total value of the "goods" produced by each of
the m activities of the basis should be equal to the cost

of this activity .

Quadratic Programming

If the objective function is extended to include quadratic

terms le

Min ctfx + 1/2 xtBD % (2.14)

~ ~e

where DERlen

is a positive semi-definite square matrix
the mathematical program is termed guadratic programming

(QP) .

There are several efficient algorithms designed for
computing a solution satisfying the Khun Tucker (K-T )

conditions for this convex QP. The obtaining of a K-T point
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is done roughly speaking as easily as by solving a LP by
the Simplex method. Since this problem 1is convex the
solution 1is unique and any local solution is also the

global optimum under convexity.

For nonconvex QP that are defined whenever 9 is indefinite
a K-T point 1s not necessarly a global or even local
minimom and it usually requires substantially more effort
to determine a global minimum. Most algorithms capable of
selving a nonconvex QP employ some combinatorial pripnciples

such as Branch and Bound and Cutting Plane strategies,

Bilinear Programming [ Konno (1976)]

Among general QP a natural extension of the LP 1is to the
case where ¢ is not fixed but can be chosen from a certain

~

polyhedral convex set

T 4 . T

Min {Min ¢~ x} (or Min ¢ *x) (2.15)
g T 38

st AX >Db Cec>1 (2.16)
x > > 0 (2.17)

ts
tQ

If we vary b in the polyhedral convex set together with ¢

-~

the problem is still reducible to the previous one.

This extended linear program is a special case of the more
general problem having 1linear terms in the objective

function together with bilinear terms



4%

(2.18)

(2.19)

(2.20)

X >0 y > @

called bilinear programming (BLP) . It can be reduced to a

general QP where D is a copositive matrix (has symmetric
eigenvalues) what makes this problem nonconvex. Since the
feasible region defined is a polyhedral convex set methods
for finding its optimal solution may use with advantage the
knowledge that the optimal point will lie at a vertex of
the two separable constraint sets. However it should be
noted that whichever strateqy used the problem is a

nonconvex one and the sclution method must be enumerative.

Generalized Linear Program [ Dantzig (1963)]

Winen b is varied in the initial LP in a <convex (usually
polyhedral) set then the problem becomes a generalized
linear program (GLP) solvable by a Simplex based algorithm
(column by column sequential method). In the more general
case of Wolfe's problem the objective function 1is 1linear
and each column of the constraint set is a vector which is

to be chosen from a convex domain of its own.

This is an T"optimistic" strategy because it seeks the
optimal solution feasible for some ajE%j J=1,;4..,0n wWhere Pj

is a convex polvyhedron,

Min ¢ x (2.21)
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for some a jEP i and x > 0 (2.22)

Here the problem is convex despite the appearance of terms
such as ajxj (where both aj and Xj are unknowns). This is
most easily realized when reformulating the problem for a

Simplex solution.

2.9 Inexact Programming [ Soyster (1973)]

If a vector ¢ is constrained to lie in a given convex set C
a solution of the following program will be optimal againast

the worst possible outcome of c&C

Min { Max el x } (2.23)
3 ceC =~ -
st Ax >b (2.24)
x >0
The solution technigue approach is called inexact

programming (IEP) . Although superficially eguivalent to
Bilinear Programming this problem is convex on account of
Min Max instead of Min Min. Soyster studied a
generalization where the columns of A and the vector P were
assumed to lie in a given set., Although the feasible region
so defined is not of the standard form found in LP this
more general problem could be reduced to a problem having
the form of the IEP defined. It is interesting to note that

the latter is equivalent to the infinitely constrained

optimization problem used to idealize large scale systems.

Min t (2.25)
x
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st AXx >b £t > cx (2.26)

for all ceC and x > 0 (2.27)

Thuente (19808) had shown that a dual to the GLP is a IEP in

the usual sense of LP having the form

Max b L w (2.28)
st altw<e (2.29)
for all a jEP 3 and w > 0 (2.38)

2.10. Variable Factor Programming [ Geoffrion (1972)]

A generalization of GLP 1is Wilson's variable factor

programming (VFP)

Min x T £(z) (2.31)
st Ax>b Zx>c (2.32)

where z is a m-vector and Z is a n.m vector [zi...zn] and
each component of f 1is assumed strictly concave. This
problem gives a unique solution and has been solved by

Geoffrion as an extension of Bender's decomposition method.

2.11. Linear Integer Programming

A different type of extension of LP is to the case where X

is allowed to take only integer values

Min ¢ " x (2.34)
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st Ax >b (2.35)
X > § and integer

called linear integer programming (LIP) .

2.12. 9-1 Linear Integer Programming

If we let L to be an upper integer bound for log2 X3

j=1,...,n then it is possible to write
1 5 A
Xy =0, yy 2 yiEB =10,1} (2.36)
k= )
for any feasible integer x .
Therefore we can reduce a LIP to a linear program in -1

variables called binary programming or @-1 linear integer

programming

- ¥
Min g* y (2.37)
st Ey > e (2.38)
« L
Y E Bnk (2.39)

This program can be - shown to be equivalent to the real

concave quadratic program (QCM)

. T T i
Min (g + /M’a ) v - /k y Yy (2.40)

y £ a y > @ (2.42)

~ -~

where a is a n.L vector of 1's and/ﬂ¢ is a sufficientely

large positive number. This nonconvex minimization problem




- T

is eguivalent to a Complementarity Programming Problem
- . *

(CCP) . In fact (QCM) has an optimal solution y 1ff there

exists a vector (d*,z*,v*) that is an optimal solution to

the folﬁ%ing program [ Gilanessi and Niccolucci (1976)]

Min (?T +/¢?T ) X -/M gT X (2.43)

st - E/M'f + ? + f{f - fT ? + f - E = ? {(2.44)
ryree-yv =40 (2421
-y+a-w =0 (2.46)

Y T? =0 (2.47)

2 TY ol (2.48)

t Tw =9 (2.49)

YeZ,8,0,v,w > 4/

~ ~ . -~ ~ ~ ~

From (2.44) we have

y =1/2 (g + pp a - zUE + t - u) (2.58)

the OF of the latter program becomes

1 _
(9T+/LL .
T

aT) y - 1/2 (g +/4 a-z " E + t - uﬂ} y =
= T T T T
= 1/2 (g +/ba ) Y+ 1/2 27 Ey - 1/2 £t~y —ua~y (2.51)

But

Ty =tT(a-w)=tTa-tTw (2.53)

= £7 (2.54)
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(2.55)
(2.56)
(2.51) gives
|
172 (g7 + mat)y y+ 172 eTz - 172 a Tt (2.57)
That 1s a linear expression in the variables y,z and t. If
we make
- m
YT= (y*, 2t ' tT) (2.58)
uf= (uT, T, WD, (2.59)
‘ El= | 241 E -I
\
, -E g @
‘ - -~ -
f I e i (2.60)
- _ .
et= g+ g al ,=e®, a ¥y (2.61)
gt= 1/2 (9T + pat, eT, a} (2.62)
We obtain the following CCP
Min gl y (2.63)
st Ey+u-=e (2.64)
ylu = 2 (2.65)



CHAPTER THREE

TRUSS OPIMIZATICN WITH CONTINUOUS DESIGN VARIABLES

Statics and Kinematics of the Structural Model

From the reader's point of view it may be advantageous to
separate the structural and mathematical aspects of the
design problem. We therefore begin by summarizing the
standard equations of linear elastic structural theory in
order to conveniently refer to them in the seguel. When a
structure 1is discretized into a finite element model its
elements and nodes are oriented defining its topoleogy. 1In
analytical mechanics physical events are in general
described through discrete coordinates to which all
relevant quantities are refered called state variables.
There is a second set of variables called design wvariables
that describes the system according to the desigher's

purpose,

Nodal (Matrix Displacement) Method

From Hooke's law the member distortions uj can be expressed

in terms of the member forces n.j

o
il

[ 1 j/ (E jaj) i nj = fj nj (3.1)

or conversely as a function of member stiffnesses

n.=[E.a./ 1. ] u. = k. u. {3.2)



Assembling for the whole structure
u=Fn and n=Ku (3.3)

are obtained. The stress in each member must not exceed its

permissible limit. The stress constraints take the form
. =n, /a.=E.u./ 1 <s=s (3.4)

Assembling for the whole structure

f = ? 3 < fW (3.5)

The member distortions can be represented in any basis of
g Joint displacements ( 3 is the degree of kinematic
freedom) by a displacement transformation matrix for the

structure
u = A" d (kinematics) (3.8)

where d is the wvector corresponding to the deflections
under the external loads. The stiffness constraints relate
external loads with member areas. equating the work done by

the former to the work absorbed by the latter

le = nTu (3.7)

-~ ~ -~

where A is the vector of external loads.

~

By expressing distortions as linear combinations of joint

displacements

c
It
»
o

(3.8)

{



(statics) {(3.9)

It is therefore possible to express the Jjoint deflections
in terms of the external 1locads in the so called Nodal-

Stiffness Fformat

P
A =AKA d=kKd (3.10)

Mesh (Matrix Porce) Method

The equation of static equilibrium are not by themselves
sufficient for the evaluation of the member forces in a
redundant structure, The equilibrium equations can be
derived by expressing the member forces separately in terms

of the external loads and th2 unknown hyperstatic forces (p).

?=[BO.!B];}

P (statics) (3.11)

A general displacement matrix that is used is the direction

cosine matrix A. Its product by B will be singular ie :
A B =g (3.12)

The rows of A (or the columns of By) span a subspace of
dimension 3 whereas the columns of B span a subspace of
dimension { ¥ is the degree of static indeterminacy).

Mello (1980) has shown that A is related to B and to B, by

T 0 =1
A =B, (Boso+asl’) (3.13)

o~ - -

The stress in a member is obtained by dividing the force in

it by its cross sectional aresa



s. =n. /J a. < s, (3.14)

The flexibility equations are needed in order to evaluate

deflections

T

o
H

<
w

(kinematics) (3.15)

t
?

where v 1is a null vector in the linear elastic phase. The

-~

equation
u=Fn (3.16)

lists the extension and contraction of each member
(distortion) . 1If the design requirements 1limit some
displacements the constraints will be nonlinear involving

the reciprocal of the member areas

OFBJ\+B;FBpSA (3.17)
The o compatibility constraints that correspond to
annulled discontinuities can be integrated with the

equilibrium equations yielding the Mesh-Flexibility format

BTFBO/L + B

~ -~ ~

Tesp=ou (3.18)

Miscellaneous Methods

In elastoplastic and 1large displacement analysis it is
computationally more efficient to consider the Mesh
description combined with Stiffness relations requiring a

smaller up-dating effort (Mesh~-Stiffness format)
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-B * P * {(3.19)

~

We remark that v is no 1longer & when shrinkage or

elastoplastic hysteretic behaviour occur,

Structural Synthesis of Linear Elastic Trusses

Under the assumption that the cost of each section is
proportional to its area the problem to be solved consists
of the minimum volume design of an elastic truss subject to
bounds on nodal displacements , allowable stresses member
areas and buckling constraints. The topology of the truss
is assumed to be given. Therefore the nodes are fixed and
the member areas are not allowed to wvanish, It 1is alse
assumed that there will be no gecometry changes to be taken

into account. The truss is subjected to 1 loading cases.

Since we are minimizing the volume of the structure the
objective function will be a linear function of the member

aredas

Min lT a (3.248)

~

The B .1 equilibrium eguations can be represented in a
bilinear format involving design variables (cross sections)

and state variables (stress/displacements)

aT Hi sk= jzl; i=l,..oﬁ: k=1'n0.1 (3.21)

where H 3 is a diagonal matrix whose elements are the

constants of the ith row in the direction cosine matrix.
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The compatibility constraints are . 1linear relations in

the state variables

Bl L ¥ =3 . (3.22)

where L. is a diagonal matrix whose elements are the

guotient of the length of the members by the Young modulus.
The bounds on member areas and member stresses can be

written respectively

k k k
R 155 L8y (8223}

w

A linear relationship exists linking stresses and
displacements

k k

Ta* @" = 5 (3.24)

"
From this 1last overdeterminate system it is possible to

express displacements in terms of the stresses by

dk =D sk (3.25)

where D is the inverse of a square nonsingular submatrix of

L"1AT so that we can write the bounds on nodal

~ ~

displacements by

k ¥

d7 <D s <dy (3.26)

Buckling constraints may be defined by using Euler-Johnson
(Shechler ,E.E, and Dunn,L.G. (1963)) stability analysis

For long columns compressive failure stress is given by

2 2
S5 SoF (5 il Ey) / (15/ry) (3.27)

where c‘_j is the end fixity coefficient (cj=l for pin

joined frameworks) and Iy is the radius of giration of the
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cross section.

Buckling loads are therefore

_ r 2
p= (T 2Ej L) /1 (3.28)

" R _
since r:J 3/aJ

Assuming all cross sections changing by the same amount

_ 2 2 2
Pop = () T Ejdi) /15 (3.29)

In the compressed members the stress constraints can be
substituted by

s - z e
—as sy - (J?TZEjaj)/ 1j <P

or

1=

sE o (v %& a2
s:l (K JZLJaJ)/ 13 < 0

or

s¥-Eacu (3.39)

-~

We obtain a linear relation in both state and design
variableszs. The failure stress for short columns can also be

checked. The Johnson parabelic approximation gives

— *

* * %
Sy = Sy-s1dS1 5P /Ser (S dd)

* *
where s and spare specified stresses

Graphically it <can be represented by a parabola that

intersects the Euler curve at the point bf;TTZE (sji_1l S;i
and has its vertex at (04555. grirepresents the allowable
compressive stresses determined either by yielding or local
instability. s;i is taken 1/2 SE; Failure by skin wrinkling

is avoided following our assumption of proportional change
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of all member sections and choosing stable proportions at
the outset. If necessary stresses of this type could be
included without changing the nature of the problem but we

are not going to do it here.

The truss optimization problem has a linear objective
function in terms of the member areas. The equilibrium
equations are bilinesar in member areas and stresses the
compatibility equations are linear in the member stresses.
The bounds on areas stresses and displacements are linear
range constraints. The surface which spans in the simplest

way a twisted rectangle has the equation
2 = x.¥y /¢ (hyperbolic paraboloid) (3.32)

It reflects the behaviour of each term of the equilibrium
equations. In order to split this factorable term into a
separable form in thes sense that esach term would become a
function of one variable a rotation of J'/4 is induced to
the coordinate axes. The eguation of each term in the

equilibrium equations assumes the form

z=wW/(c) - vZ/(¢c) (3.33)
where u = (x+y)/2 and v = (x-y)/2.
It is clear from this that the equilibrium eguations are a

sum of strictly convex and strictly concave terms and

therefore nonconvex.

In statically determinate trusses it can be shown that

after a transformation of variables the problem can be



reformulated as a convex programming problem and hence

there will be a unique solution te it. When the truss has a
determinate layout the eguilibrium equations directly yield
the force wvector and this 1is an important piece of
information because it means that the basic bilinear
variables of the problem are known . Consider the
reciprocal of the member areas. These are nonnegative
variables and it is possible to express both stresses and
displacements as a linear function of them. We have
therefore a linearly constrained problem where the
objective function is a sum of convex functions and is
therefore convex. By contrast in a indeterminate structure
it is not possible to know the member forces before the
structure 1is designed. Taking 1/a type of wvariables
together with member stresses does not fully succeed in
making the problem 1linear although this is often done to
improve convergence. Alternatively to this variable
combination member force/area variable choice seems also to
work well [ Johson (1982)] if a convex problem is assumed

"a priori",

A particularly vexing problem in the solution of nonconvex
optimization 1s that algorithms for solving the problem
will converge to local as oppoesed to global solutions., In
the following section examples of multiple optima in
minimwn volume truss design will be discussed. Forthcoming
chapters are dedicated to examine two alternative proposals

that overcome this difficulty.
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3.6. Multiple Optimal Solutions in Trusses

3.6.1 Variable topoclogy solutions

A simple structural optimization problem that usually
serves as testbed for synthesis algorithms is the three bar

truss represented in Fig 3.1.

Fig 3.1 Three Bar Truss

The design objective is to choose a set of cross sectional
areas so that the truss has a minimal wvolume while
satisfying the constraints on stress. The cost function is

therefore

fﬁ'a1 + a, ¥ f51a3 (3.34)



By liberating the structure the matrix B is given by (Fig

3.2)
i
B =[-V2y2 1 V272 ] (3.35)
Fig 3.2 Unit Load Applied
to the Liberated Structure
The direction <cosine matrix can be obtained after

specifying a basis for displacements. Supposing they

coincide with the two remaining bars

B =1 g g
~ 0
] g 1 (3.36)

A can be obtained by simple matrix inversion,

_ T T i
f = B (B, B+ ? ?)

~ ~ P




i S22 6

>
"

0 \/51/2 1 (3.37)

Assuming the Young modulus 1is unity ie E = 1 the linear

elastic displacements can be written in terms of the member

stresses
a¥-BoLs ™ (3.38)
a%l=|10 02 F ) . I e
b 4 1 1
k k k
dy g 91 1 S5 ﬁs§
L J L _ L J
J2 | | ¥
i 1L 7]

Alternatively the member stresses can be written in terms

of the displacements

s Bo p1AT ﬂk (3.39)
. _ - o N .
k X k
sy | = 272 1 @ dl= J2/2 d
k o Kk k. .k
S5 1 J272 J2/2 dy J?/z(dxmy;
s% J2/2 @ 1 Sars d};
N L Jd L i L i

The compatibility constraints have the form

P k

B Ls =10 (3.48)
T2 1 —vEya |2 1785 =0
1 sg
| dijA ] s%_
=S 4+ s §~ s%?: 2



The B.l equilibrium eguations are bilinear expressions 1in

terms of stresses and areas

A (a.sK) — R]i (3.41)

s k B k

ap s 4+ V2/2 2y s - A g

g ‘ k k_ 4k

2/2 85 52 + 33 55- v
i _ . k k e . : s
wiere 4= 2 and {1 ,ﬂ y_are the load components in the
directions x angd ¥ respectively can be exXpressed

identicalliy in terms of displacements and areas

Kk gf = AF (3.42)
; k k& X
, dE v k_ A k
1/2 ay dy + (Y2/2 a5+ 1/2 ay) d = -

where K 1is the assembled stiffness matrix. The synthesis

problem subject to stress constraints only can be stated as

min V2 ay + ag + V2 asz (3.43)

st (V272 ay + 1/2 ay) dg+ 1/2 a2d§=)§ (3.44)
1/2 a, di + (V272 ag+ 1/2 a,) d §= R‘? (3.45)
5111c < V272 d}liﬁ sfé (3.45)
5,5 < V272 (@E+ a) < s o (3.47)
s57 < V272 dfji P (3.43)
a1,a2,a3 > 4 k=1, e0.sl

1 represents the number of loading conditions.
This small scale example can be solved analytically . It is

pased on Sved and Ginos (1968) and a fully nonconvex



behaviour is manifested. Haug,E. and Arora,E.J. (19793) also
solved a similar truss analyticaly but for different
loading conditions. In their case the problem turns out to
be convex after all.

The displacements are uniquely given by the inverse of the
assembled stiffness matrix times the loading vector. They
can be viewed as being determined by the structural

equations once the design variables are specified.

':k— -T 3 =
dX— (det)” '|(V2/2 ag + 1/2 a2) 1/2 a, (3.49)
I
d 5 -1/2 a, (V2/2 ay + 1/2 a,) (3.50)
Aﬁe_remark that the determinant of K
det = 1/2 ajaz +V2/4 aqa, +V2/4 258z > 0 (3.51)

for any two out of a1,a9,a3greater than @.

The constraints on the stresses can be written explicitly

in terms of the design variables

K c
sq1< [(V2/2 & + 1/2 a5) | £ 172 ay) ?
) _ k
[V2/(2.det)] < sy, (3.52)
sﬁi [V2/2 a5Pt l§+ V272 ag A ka]
y: k
[v2/(2.det)] < s o (3.53)
53%5 [-1/2 a 2/1 ;+ (Y2/2 ay + 1/2 ay) A }y{]
[V2/ x
(2.det)] < 5 5 (3.54)

However even in this simple problem such wanipulation is

impractical. In larger scale it is impossible.
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A simplification may occur if we subject the truss to a

symmetric loading corresponding to two alternative loading

conditions.

The constraints on the stresses corresponding to loading

condition 1

5,1 < 1272 ay + 1/2 a,) (15.72/det] < 5121 (3.55)
5,1 < [V2/2 aj] [15.V2/det] < " (3.56)
551 < 1-1/2 a,] (15.72/det] < 53111 (3.57)
sl =106 -5] s 1= 1520 0)
s2 = [-5 3 0] s 2= 10620 5)

Due to symmetry of layout loading and maximum allowable

stresses

a, = a._ (3.58)

We note that for any By y greater than ¢ the lower bounds

a
2
on the first two stresses and the upper bound on the third

stress are irrelevant. We can rewrite the eguivalent MP

Min 2V2 a, + a, (3.59)
st s,= (30 a + 152 a,)/(ay + V2 2, a) <5 (3.68)
s = (3¢ a, )/(ac + ¥2 a, a) < 20 (3.61)
2 1 1 ] TE =
= V- 2 o ; .
Sz (15V2 a2)/(a1 + VY2 a, ag) <5 (3.62)
a a > @
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The OF and the nonnegativity conditioens on the design
variables are represented by 1linsar functions and are
therefore convex. Tne second derivative matrices for the
constraint functions s, and s. are positive definite and

2 3

positive semidefi?ite respectively. Thus szzand s 3are both
convex . 51 is the sum of S5 and s3 that are convex
functions and it is therefore convex. The mathematical
minimization involves convex funcktions and any local
minimizer on the domain defined is alse the global
minimizer on that domain. Local minimizers are obtained by
selving the system obtained by considering the X-T
conditions, The minimum volume is therefore 15.824

corresponding to the following design variables

a = 4.725 a, = 2.460

state variables

Placing these results inte the original variables

member areas

= : = 45 = -
a 1 4.725 a2 2.459 dj 4,725
stress/displacement resultant
al=7.071 a l=-1.845 s! = s. s) = 3.656 s1=-1.32
X * ¥ 1 2 3
.2 2 _ : 2 2 s e <2 _
dj{— 1.845 d.y- 7.071 51 =-1.34 52 =3.5% 33 Bre

Wwe remark that although the expressions that give the
member stresses as a function of the design variables are
in general neonconvex the convex problem resulting from the

assumption a g = a5 posseses a unigue solutien.
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The three bar truss would seem to be completely solved in
this particular case. But 1f we set either ay or az equal

to § the resulting staticelly determinate two bar truss

(with a 3 = () is considerably smaller than the three bar
truss (OF = 1§.697) being able te withstand the same
loading.

.a1 = 5. asp = 2.12
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The multiplicity of solutions in this case is not due to
the nonconvexity inhsrent to the constraint functions, The

hypothetical stresses on bar 3 carresponding to the latter

2

design (and an infinitelly small bar 3} are s %=—5. s §=25.
limiting the

This stress would wviolate the constraint
maximum allowable stress in member 3. For the two bar truss
this is absurd since the member does not exist, If one
changes the upper limit on the stress in member 2 to into 5
the statically indeterminate design would give the global

solution.

This situation is eguivalent to the minimization of a
linear OF subject to a constraint discontinuity. This is to
say that the domain is composed of disjoint admissible
design sets. From this example it is possible to conclude
that all optimal designs will have this type of disjoint

solution.

one may ¢try to find 1if there exists a path joining ths

indeterminate solution and a statically determinate design.
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Consider the three bar truss represented in Fig 3.1
subjected to two symmetric alternative 1loading conditions

where the load angle has been modified

AV - ap. 197 A2 = [ 10. 481 T

Assuming a,=ag and if the stress/displacement in member 1
under loading condition 1 is at 1its upper value it is
possible to write the member areas in terms of the stress
in member 3 by using the nodal stiffness equations. For any
S, = X% and 53.= Y ¢S5 is determined by the compatibility

relations

52=S1+53

33,
0.F. -
values E
clod
2?_
24

|
:
_ I_l_lllr:‘l‘ll_|||;:r 1J_t: lllL\\!illl[FlLil‘ll rfl"cj
\12:?-33:1 3 2 1
A 9.3 4.58 2.83

Fig 3.3 Variation of the OF

with the stress in member 3
E] Igostatic’ Solution

(:) Hyperstatic Cpitimum



The optimal indeterminate truss is

o]
—_—
i
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If the stress in nember 3 is increased

active set for the stress limits we

represented in Fig 3.3 .

In this case the Statically
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We now charige the upper limit on the stress in member 2 in

order to show that this path may not
this happens, algorithms that find
the structural design problem have
separate domains gach of which

solution,
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Fig 3.4 Variation of the OF

with the stress in member 3

After this point the stress in member 3 under loading
condition 1 <¢an only be increased if Sy is also reduced
(with S5 at its wupper limit defining the active set)
( Pig 3.4] . It 1is not possible to increase S after the

point
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For bigger s3 the system of equations would give a negative

value for a, that has no physical meaning.

2

This situation can be viewed graphically in Fig 3.5 where




Th

there is a lingar path 1in the stress dowaln to which
corresponds a rionlinear feasible path in the area
hypercube. In the latter instance [Fig 3.6] the upper
stress limit at bar 2 becomes active and then the proposed
nonlinear path in the area domain is no longer feasible.
Therefore the statically determinate solution corresponding
te the elimination of a, cannot be reached by continuous
variation of the state variables throughout the feasible

set.
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The multiplicity of solutions described in this paragraph
is due to the change in topology caused by the addition of
a member. One sure way of avoiding this behaviour 1s to
suboptimize within each configuraetion thnat is admissible.
However such total enumeration is prohibitive in terms of
computational time and the further reguires more economical
methods of sclution . One such approach is introducing -1
variables and using & branch and bound strategy 1n tne way
described 1in Chapter 4 . Alternatively these varlables can
be integrated in a master problem that will be defined in

Chapter 5.

The n #-1 wvariables 'J\j will <denote wethsr a mamber is

present in wich case d\j = 1 or absent §\_ = @$. The
J

constraint on the upper bounds of the member areas becone
a<d a (3.63)
— . u

The upper and lower bounds on the stresses are respectively

k I _
f < €.~u + (E-§) fBIG- (3.64)
d éf - (1—5) SBIG < 5% (3.65)

- o =

whare S:BIGrepresents a Jlarge enouyh value.

In order to make the design structurally admissible the
number of members present in the structure must be not less
than number of degrees of kinematic fresdom

n

Z J . 2 8B (3.65)

J=1 !
This relation makes sure that there must be at least A

members in a truss and this means that any combination
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which has less than [ members will not be considered. When
there are § members or more in a truss however this does
not mean that the structure will always carry the loads
because it may still contain local mechanisms. Although
these combinations may be considered they are not valid

answers to the problem.

Changing topologies would lead to the the existence of
disjoint domains defined by the presence and absence of
pach member together constituting a nonconvex set. Such
problems are better treated combinatorially Dby introducing
-1 variables and transforming the general problem into a

@-1 mixed bilinear constrained program.

3.6.2 Curvature of the bilinear constraints

By introducing lower bounds on the design variables the
topology of the structure will remain fixed throughout the
optimization process., A question arises related with the
occurence of multiple optimal solutions due to the
curvature of the bilinear constraints. Consider the
following ten bar truss drawn in Fig 3.3 subject to a
single 1loading condition (the author is grateful to Dr.
Bartholomew for passing details of another wvariation of
this case by private communication). 1In fact multiple
loading cases do not alter the nature of the problem but

complicate notation.
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Fig 3.7 Ten Bar Truss
The degree of kinematic freedom in this system is [ = 8

Loading vector
T
l =18 o ¢ -18 @ 8 8 -10] (3.68)
Lower bounds on the areas
T
al= [cl -l ol cl -1 .1 sl ol .}. -1] (3.69)

-~

The stresses can be written in terms of nodal displacements
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Ba

3

4

%5

S6

=7

S8

dp - dyg
(dy - dg)/2
(dg + dg)/2
(dz = dg — d5 + dg)/2

(dq + dp - dq - dg)/2

(3.70)



The direction cosine fl.n matrix A is
_ra 1 8 6 & 8 9
g 0 @8 8 6 1 ] o
P B 9 1 2 @ B g V27
A=8 8 2 8 9 -1 ] g ~v2/
1-1 0 8 8 0 B v2/2 =2/
g2 0 0 1 ¢ g V2/2 V2
g & 1 -1 8 V2/2 2
g 8 8 8 -1 @ -vV2/2 9
L

The equilibrium equations can be

condensed Assembled Stiffness format

81

given by
.
B v2/2
6 V2/2
2 )
2 B
2 @
2 )
9 -v2/2
g -V2/2 (3.67)

presented in the more
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K d= A (3.71)

The problem with
subjected to the
single optimal

following design

a e 7.24 a2

2.5 s

Sy T 2
Sg = 1.55 57
d 1=4.®5 d2
d 5= 2.5 d6

Global Solution

a, =48.68 a

1.21 a

5 4= .42 s,

no displacement constraints considered and
maximum allowable stresses off2.5 gives a
solution of 44.25 corresponding to the

variables

I

8.06 a4= 3.94 a5= .1

il

-1 a3

5.57 a 9= 5457 a1o= -1

5.74 a8

The optimal stresses and displacements are respectively

= 1.6 83 ==2.5 54_=-2.5 s 5 = P
= 2.5 58=—2.5 s_9= 2.5 10 =—2.2
=-~18.45 d3 ==5. d 4=—29.

== 7.5 d7 ==2.5 d 8=w7.5

If the absolute value of the displacement is limited to 3.5
a fully nonconvex behaviour will occur. Indeed two optimal

solutions were obtalined

219.93

= . = - = . =g ]
1 a3 35.55 54_ 24.1 a 5

=9,37 a8 =34.35 a 9=34.®9 a 10—.1

=2.94 ?8 =-.B4 §9= .83 s 10—.72
= = 5 ==3.
1.26 6,7 «56 d a 3.58
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Local Solution 223.34

a =48.67 a = .1 & =38.09 a,=23.33 a_ =.l
1 2 3 4 5

a = .1 a =13.66 a =33.11 a_=32.9% =2, =.1
6 i 3 g 10
s =.41 s =.08¢ S =—.52 s =—.,42 s_ =1.29
1 2 3 4 5
s =.080 s =2.04 s _=-.87 s =.86 s, =.00
6 7 77 B 9 10
d =.41 4 =-3.5 d,=-.95 d,=-3.5
1 2 3 4
d =.41 4 =-1.28 4 =—-.52 d_=-2.5%
5 6 7 8
These points are solutions to the K-T eguations
corresponding to two different sets of Lagrange

multipliers. Both 1locally minimize the wvolume of the
structure ., Any feasible direction linking both solutions
would determine (at 1least ) one point having a greater
volume than the local optima. For a fixed set of lesign
variables the stress/displacement resultant is uniquely
determined. A infeasible displacement in d2 arises when the
member areas are linearly varied between the solution

points.

Stresses may also be continuously varied between the global
and local solution coordinates. It is known that for a
fixed set of stresses the minimum volume can be obtained by
solving an LP. The locus of minimal volumes will represent

a convex function starting at the coordinates
corresponding to the global solution wuntil the local
solution coordinates are attained. At this point the matrix
that is a function of the stresses and expresses the

equilibrium relations will become singular ie: the same set



of displacements (and stresses) is obtained by multiplying
the inverse of the assembled stiffness matrix by the load
vector for several realizations of a4 and keeping the
remaining member areas at their local golution coordinates.

a.,is free to assume any value so that it will be

2
considered at 1its lower bound in erder to minimize the
total volume of the structure. This type of nonconvexity 1is
truly due to the nonconvexity of the domain induced by the
bilinear relations. The manifestation of this behaviour
justifies the use of methods more approprlate for nonconvex
programming that will be discussed latter. But first
conditions will be given that verify the existence of an

isolated glebal minimizer of the structural synthesis

problem with continuous design variables.

Characterization of Logal Solutioens

Considerable theory 1s available that characterizes local
minima. Perhaps the most suitable theoretical development
far our purposes is that of McCormick (1984). Unfortunately
it happens to be rather abstruse. It has been quoted at
length in the following pages in order to reflect its full
scope,but sucessful applications of the theory depend on
problem specific simplifications. The approach in local

theory is to suppose that the problem

Min £(x) (3.72)
Bt g9ty = R i=1,¢4+q (3.73)
gj(x) >0 J=g+1,...0 (3.74)



has a local extremmyét point §?*and then to find conditions
among f(x) and g(x) that must hold at this point. In this
way many points in the constraint region can be eliminated
as candidates for a relative minimum. Such conditions are
therefore called necessary. 1In some problems it will be
possible to obtain a set of conditions that guarantee that
a point yields a local minima. Conditions of this kind will
be termed sufficient. Before meaningful results applicable
to our problem are given some conditions and theorems will
be stated next followed by their application to the least

volume design.

A feasible point X is called a regular point of the domain
if £ (§) is differentiable at X o and 1f the gradient
‘agj(fo} for only those 3j>g with gj(§$ = p. (active
inequality constraints) and all Vigj(fo) j=1,...9 (equality
constraints) are linearly independent. This definition is
equivalent to the requirement that the matrix of the active

¥
constraint derivatives %j(ﬁjl has full rank where j=l,...9

and will include those j>g with g (xo)=9.
THEOREM (Kuhn-Tucker Necessary Conditions)

Let the functions f(x) and gj(x) j=l,...9 be differentiable

and let X be a feasible regular point. For x to be a local
- therg

minimum of (P) it 1is  necessary that exist a multiplier

vector HERQ such that




Y20 J=q+1, .40 (3.75)

i
=

ngj (x) 521,409 (3.76)

VL
i

|
-

i=1,+..n (3.77)

where L(x,{) = f(x) - XT g(x) is termed the Lagrangian.

Define the function

o = VL

-C(x) (3.78)

where Z{D =[:xT;5?} and C?(x) is the k.n matrix derivative
- ~ LY -~

of the k-vector' whose elements are the active constraints

at the feasible point x. In order to satisfy the X-T

conditions at a local minimum it is necessary to havegzﬁ(z)

= @ and 55.j>q positive.

THEOREM (2nd order Sufficiency Conditions for Local Optimality)

Let ¥ (%) and gj(x);jzl,...q have two continuocus
Gerivatives. Let x be a feasible regular point satisfying

the K-T necessary conditions for (P); and for every v # 0

in R £such that ngj(i) V.= 8 /3=l,...q and ngj(ﬁ) .= 9
j=g+l,...0 for each j>g with 5i>ﬁ let
J
e
Y*VXL (Xef) v >0 (3.79)
2 - —_—
where ‘7XI_J(x,5) is the matrix representing the 2Znd

derivative of the Lagrangian. Then x is an isolated local

minlmum
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Buppose that S(x) denotes the continuously differentiable
n. (n=k) matrix function wich gilves the null space of Ckx).
A necessary and sufficient conditien for CL’(x) v = § is

that v = S(x) u for some u. It 1is therefore possible to

~ - -

express the condition
2
T == ==
v KKIJ(X,X) v > @ {3.880)

Z
as to have the natrix H(X,f) = B(%) TVKL,(:?,?) 8 (X)
positive definite (PD) .
It is also impeortant to investigate the effect of
variations of x on the solution wvaiue. This 1s done on the

basis of

THEQOREM (Implicit Function)

If at z = z there is a salutionﬁaké) = ? = ¢ and 1if the
(n+k) . (n+k) derivative matrix of Qﬁ(%) has an inverse at
every point z then there is a continuously differentiable
solution to the equations{z=£2ﬂz) in a neighbourhood of z.
The importance of this theorem is reflected in the next
theorem that was originally pro ved in McCormick’s paper
(1988) . Let % be any point in XCR™. Define for <t <1l
and § < s <1

T"'-!‘_.

y{t) = x (1-t) + % t (3.81)
A # #*
y(s,t) = ¥ f1-s) + [x (i1-t) + x t] s (3.82)

- ~ o



THEOREM (Isolated Glebal Optimality)

Let f£(x) and gj(x) j=1,...0Q have two continuous derivatives

* .
and ¥ be a feasible peoint satisfying both the K-T

necessary conditions and the 2nd order sufficiency
conditions. Assume further
(i) The wmatrix C,(y(t)) of the active constraint
derivatives has full rank.
~ #
(ii) the matrix H[y(s,t),) 1 is a positive definite

matrix
wher e
A % T Riz %
Hiy(s,t),f 1 = Sly(t)] _fZL[y(s,t),y ] ds dt S[y(t] (3.83)

Thgy{he derivative matrix of Qa(z)

Iz

| JNLysm a1 as ac [ty T ae

|
-—/c’[y(t)] dt 3 (3.84)

has an inverse

B T (3.85)
whiere
A =8 n-lgT
_1{qw-2 3
] 2 & 1 ‘“2 2
€= - Cg [(EKZ(—L:IJS dt :{{VXT?Ids dt S # %Vxﬂ"lda dt] CH#
and C§¢ is the n.k matrix generalized inverse ot

IJ . ) ?
C t dt 1e Cx C = T
o/ [g( )] \:jj; Loy

-~
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‘ (iii) The quantity

[' 3 * =1 T
Ll ey 4t 11 - sly(®)] HIy(s,t).y T SIy(9)]
. 2 " B s R ” N ”
’ fvxl_.[y(S.t) oY 1 ds delC Iy ()14
= -ff’[y(t)] dt B (3.83)

o

is positive component by componesnt. Then f{x) » f£(x ) for

~

any feasible x. If (i) (ii) (iii) held for all xeXcR and

m *
E’xciiﬂBQMUchen ¥ is the unigue global minimizer of f

over g

Proof

s -1
The existence of the inverse [§ZT(Z{] is 4guaranteed by

theorem hypothésis. The matrix inverse 1is invarlant with
the c¢hoice of particular null space matrix and generalized
5 bl

inverse C H .

We have

/. : * % 2
1;%quxfmtziﬁﬂ§ﬁ§) -%&p A%

—C(x) - i) A

]

v

(3.87)

J

Taking x from (3.87) with the help of the inverse (3.85)

and placing in the above expression
® %
A w and AX :)/ —X = g

%

Cx )

I
L]
f
»

[}
]

VL (x%,J*) = 4 (@(z*}= 3)

The difference between the OF wvalues at Lwo different
points may be found by integrating tne gradients of the OF

along the incremental path AxX.

Y
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f

E(x) - f(x*) =ff’{y(t)] dt Ax (3.88)
' s A 5 =1 T
= [ £ y()] de sty 13(s,0) .1 siy(e)]
| * rl s T
/V}(L[y(t),-b’ ] at - J£[y(t)] dt B C(x) (3.89)
Now
foc’[y(t)] dt S[y(t)] = @ (3.99)
so that
' o I ’ xL 9
JE [y(t)] at Sly(v)] = Z[fhﬂt)] =¥  Cly(t)lldt s[y(t)]
| ) ; ; .
=/VXL[y(t‘:),g/ ] dt sly(t)] (3.91)
4] -~ - -~

Finally
!
3 T 5 ~1 T
E(x) - E(x) =fVXL[y(t>,af*1 at sly(t)] RIY(s,t),¥ 1 Sly(t)]

! % j, T
/V;(L[y(t),g] dt - off[y(t)] dt B C (%) (3.92)

Since x is feasible g(x) > 0. This implies that C(x) > #.

~ ~

0]

thus both terms on th RHS are nonhegative. If

|
#* . 1 5y
j&iL(y(t),g ) dt 5 # @ the Eirst term above 1s posltive.
; b4 0 z
The second term is positive if C(x) > @ for one of 4 =
l,...k. The only way both terms can be egual to zero is 1f

|
]%ZL(y(t),y*) dt 8 = 8 and C(x) = 0. If both these

i *
condition hold 1t is gasy to show thatax = x = %2 = @ .

* *
Thus E£(x) > £ (x ) when x # 2 .

~ =Y ~ ~

QED

* :
Refering to expression (3.92) the difference E(x)—-£(x ) is
seen to consist of two contributions. The first 1s due to a

step from x to % which drives te @ the Lagrangian

- ~a

. . - * ;
derivative ;Ehe second from X to X seeks to Ssatisly

~ £
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the active constraints vioclated in the first step.

E() - E(x) = [£() - £(0] + [£(X) - £(0)]  (3.93)

-~ A

in terme of the inverse function approach x consists of the

.

o1 _
first n components of‘Qﬁ [87 ;9 (%) ]~. The exact difference

—m

can be computed by integrating from [xT,yT} to {ET,XL}

-1 m moom
along ﬁZ{ [tY&L(x,g)I;g{x)I] L . The exact second term

E(x ) = £(x) can then be obtained by integrating from
= - * = . -1 Mmoo

;KT] to [x i;bfxl] along the curve;Qa [UT:g(x)f]i.

in order to illustrate the meaning of the difference f(x) -

f{x ) consider the optimal solution (i1f there is one) of

the following problem

Min £(w) st g({w) = g(%),;weX (3.94)
Indeed the first term under the integral 1is an
approximation te L(x) =~ f(i) . The difference 1in the
optimal objective function value resulting from a

perturbation in the RHS of the constraints is approxlmated
by the sum of the Lagrange multipliers timss the
perturbationsy The wvector premultiplying g(f) is the
integral of the vector of 2nd order multiplier estimates
for the minimization of the Lagrangian function. This can
pe viewed as the appropriate vector of Lagrange multipliers

# -
needed to approximate f({x ) — L(x).
3.7.1. Minimum volume design

Consider the synthesis problem subject to

stress/displacement constraints and area bounds in the



nodal stiffness format. The only nonlinear equations of the
system correspond to the equilibrium between member forces
and loads. In the hypothesis of a single loading condition

they may be written as

Kd =1 (3.95)

we recall that 1 is a B-vector d is a JSwvector K is a [.8

matrix derived from
a kAl

where A 1is the direction cosine J.m matrix and K is a
diagonal m.n matrix whose elements are member stiffnéééés.

By operating in the subspace defined by these equality
constraints some properties of the problem may be derived.

The active constraint vector C{a,d) has [} elements. Its

derivative is the B.(m+}) matrix C'{a,d)

&
—~
]
-
&5
S
i

AV (3.23)

= K (3.97)

o
a
—
8]
o
St
\

where V 1is a diagonal matrix whose elements v j are member

stresses written as linear combinatiens of the nedal

displacements.
v=s=1L A g (3.98)
C(a,d) = [ A V | K] (3.99)

The matrix function giving the null space of C %a,d) is a
(m+3) .m matrix S(a,d) such that

1

C(a,d) S(a,d) = 8 (3.1649)
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-K AV (3.161)

S(a,d) is a choice of all solutions satisfying these
I equations

homogeneous~ and has rank m. The (m+3).(m+3) matrix giving

the second derivative of the Lagrangian is a copositive

matrix function of the wvalues assumed by the Lagrange

multipliers.
2
Vi L[(a,d),b’] & 2 —p Al (3.102)
{a,d) -

-A P 3 (3.103)

where P is a diagonal matrix whose elements pj are a linear
combination of the Lagrange multipliers corresponding to

the bilinear equalities.

-1 7
p=L Ay (3.104)

It is well known that a copositive matrix has a set of
symmetric eigenvalues so that convexity properties of the
points 1lying on the eguality constralined subspace will

depend on positive definiteness of the matrix
_ T 2
H(2,d) )] = S(2,4) V. L [(2,),)1 s(a,d) (3.165)
~ ke = (ald) - ~ ~ -

Now we will <check the regularity assumption for any
feasible point (a,d). The assembled stiffness matrix is a
B real symmetric positive definite matrix of rank fj . We

can infer that

c'(a,d) = LAV § K] (3.106)



has rank i for any feasible (a,d) .

1PD hecause the same holds true for K. In

[ ~

We also have K~
order to define the matrix H [(a,d),y] it is necessary to
have not only a feasible point but also a set of

multipliers (%,u) satisfying the K-T necessary conditions.
ﬁ ying

2
HI(2,d) /)] = 5(a,8) "7 [[(2,9) /] 8(2,9)

- {a,d)
- _ T w=y1 P
- [}m Y f ? ] 2 P& om
-A P 2 —15"‘1 AV
= v al gt T =1

AP+ PA K AV (3.187)

Q = fT‘g'1§ is a m.m symmetric matrix positive semidefinite
and singular of rank [ since ® = m - of its rows (or
columns) can be expressed as a linear combination of the

remaining rows (columns). The general element h ij°f H

[(a,d),y] can be related to the corresponding element q‘ij

of ¢ by

ij j_j ivj‘l’ pj Vi) i=l'-..m j‘:l’---m (3.1@8)

H [(?,?),K] is a symmetric matrix given by the sum of two
matrices w;ere the second is the transpose of the first.

A relationship linking the elements of V and p is found if
the Lagrangian is differentiated with respect to the design

variables

Va_ L [(ﬂ-d):gl = @ (3.109)

we have



T

1 u T . _ .
}"/fa“fa"ff \{f-:a (3.110)

a!

where/ml p.g'are the Lagrange multipliers corresponding to

the design variables touching their lower and upper

boundaries respectively.

if we suppose that no active bounds on the design varilables

would eccur at the local optima all/ i i/ig = § and

v ‘ATK= 1 (3.111)
ie u
VEL=L (3.112)
ar
P =-v -1 (3.113)
In this case
T oamla a ity ™ =1 ¢ (3.114)

H[(a,d),y] = VA K AV +

Al though both matrices result from similarity
transformation on Q sharing their eigenvalues with 1t the
symmetric matrix~ representing their sum need not Dbe
positive definite or even PSD. Besides,the case considered
above is unrealistic in the s2nse that it would lead to an
inconsistent set of relations (3.112) : These would e
eyuations for the unknowns in the V array with m >f and
it may be verified that the system 1s Iinsolvable. We now
consider the inclusion of a number of active constraints on
the design wvariables which make the system compatible and

we attempt to analyse their effect on the character of the

matrix H.With the hypothesis of a single



loading condition we would need to have at least XK active
bounds on the member areas in order to make soluble the
system given by the KT necessary conditions related to the

design variables.
We have

PV, = 1 _/ﬂ/l'_ 47%‘1/1 i=1,...m (3.115)
where//t %a’/u?az @

Suppose any 1 7M3%{l < @ ie at least one of the Lagrange
multipliers corresponding to active lower bounds on the
area exceeds the member length. A necessary condition £for
the positive definiteness of a real symmetric matrix states
that all diagonal elements must be positive. Following

the@assumption that h is negative , this is not met. H would

ii
become an indefinite matrix when restricting the domain to
the subspace defined by the equality equilibrium relations.
It 1is therefore necessary to investigate the effect caused
by the insertion of any active area bound inequality in the
derivative matrix C %é,g) of the active constraint wvector
C(g,g). Assume the columns of C‘(frg) numbered so that the
first m columns would correspond to derivatives with

respect to the design wvariables and the remaining B are

associated with the derivatives wrt. the state variables.

By including an active inequality corresponding to the lower
area bound l,CI(f,g) would be increased by one row from the
matrix previously defined. In this row the element of the
column 1 will be & unity and all other elements will be

zero. The rank of C %a,d} is increased by 1 since this new



row 1is 1linearly independent of the rows of the basis

defined by the XK matrix

C{a,d) = AV K
9.-1 9---. g (30116}
The matrix that gives its null space can be derived

from 5 (a,d) by suppressing its column 1

C(a,d) s(a,d) = 9 (3.117)
ie
al yl K I
N B B =g
g1 0 ; B3060
I
111
K AV (3.118)

where Al and v! are obtained from A and V respectively by

also deleting column 1 (and row 1 in V).
The matrix H [(a,d),X] is now a (m=1).(m=1) matrix given by

T -1 T =1

Hi(a,d),f] = vlial xalplyplal x Al vl (3.119)

where Pl is a diagonal matrix derived from P by suppressing
its row and column 1. In H the row and column corresponding
to the index of the active area constraint would wvanish.
Therefore the negative eigenvalue due teo the negative
diagonal element should no longer be considered. If more
than one lower bounds on the areas are active they can be
equally inserted in the active constraint derivative

matrix, The final matrix H is obtained from the one derived
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in the equality constrained subspace by deleting all the
rows and columns corresponding to indexes of active areas.
Let their number be r. For a single loading case H is a

square matrix whose dimension (m=r) is not greater than [ .

T -1 .
AY gAY is a symmetric positive definite (m-r).(m-r)

matrix of rank m-r < 3 whose rows and columns are linear

combinations of the rows and columns of K4.

We may recall Gershgorin's circle thesorem which states the
following :
Each eigenvalue of a n.n matrix B satisfies at least one of

the equalities

n
< . r, = E 3.128
.5 L ( )

J

.

l_l~b

& W b - =
ii ij

1
-

il

for i=1,..n

In other words every eigenvalue of B lies in at lest one of

the circles with centre b,, and radius r, in the complex R—
il 1

plane,

Since we are dealing with real matrices every eigenvalue
must 1lie within an interval of the real axes where the mid
point is defined by one of the diagenal elements of the
matrix and its length does not exceed the double of the sum
of the absolute values of the off-diagonal elements along
the corresponding row. In pracéée Gershgorin's theorem 1is
often used to estimate the eigenvalues of a matrix B where
the eigenvalues arz2 much smaller than the diagonal
elements., Instead of applying ths theorem directly to B

much more accurate bounds can often be found by first
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-1

applying a similarity transformation C

8 C where C is
diagenal.

Let

C

1
~

1 (3.121)

Suppose for r=1 the intervals are disjoint. By increasing r
the length of the first interval will decrease whereas the
length of the other intervals will increase. Clearly there
will be a value of r for which the length of the first
interval will be as small as possipble while still detining
a lower bound on the eigenvalue of the matrix B
corresponding to that diagoenal element. fhe same procedure
can be extended to determine lower bounds on the remaining

eigenvalues of thz matrix.

This procedure could be applied to the matrizx in (3.114) in

order to determine lower bounds on the wvalues of the
eigenvalues . Its diagonal elements will coincide with
thaose of Z(ATT K_1Ar) that 1s a symmetric positive definite
matrix while the remaining elements will suffer slight
changes. We may expect all +the eigenvalues to Dbe still
bracketed in the nonnegative real axes. While the abave
argument for the positive definiteness of H in general is
hot as rigorous as might be desired the property can at

least be checked numerically in particular instances and

this idea is followed up in subsguent sections.



The remaining assumptions of the theorem that ensures
uniqueness require that (for all set of wvarilables and
Lagrange multipliers,related to them by a first order
estimate Jthe matrix H [(9,?),J] to be positive definite. By
defining a set of design ~variables the set of state
variables is uniguely determined. The matrix P of Lagrange
multipliers 1is also wuniquely determined if the system is
soluble., In this case dus to Gershgorin's theorem we may
expect positive definiteness in g when C (a,d)

incorporates the constraints corresponding to lower bounds

on the member areas.

I1f the Lagrange multipliers corresponding to lower bounds
on the areas are smaller than the corresponding member
length this can be regarded as a special case of the H
matrix where negative eligenvalues are not apparent, Here
the active lower bounds on the areas should be also
considered in the matrix C¢ (a,d). We also remark that the
nature of matrix H 1is not Naltered if the structure is
subjected to a number of loading cases.
l T N T,
T»l[(a d),&(] = (VA K AP A K vk) (3.122)

._.1 - ~ - G =
We remark that the contents of this section are not
applicable to the general bilinearly constrained problem
unless it is cast in the special 1least wvolume design
format. Its special features are provided by the inclusion

of the compatibility constraints themselves depending on

the direction cosine matrix and on the member lengths.
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3.7.2. Convergence to nonoptimal sclutions

When primal feasible methods are applied to our nonconvex
problem a new sort of trouble may occur. It is the case
whan the algorithm converges to a solution possessing
negative Lagrange multipiiers corresponding to linear
inegqualities, For the ten bar truss possessing multiple

solution?@e will give an example of such behaviour:
member areas

=55.94 =,1 a _=27.11 a, =25.58 a_ =8.45
a1 A ! a2 & % 4 5 5

a = .1 = =53.78 =36.17 =.
6 a,7 1l a g a9 35.1 a1O 1

S =,45 s = .09 s =—.37 s ==,39 5 =1.17
1 2 3 4 5
5 =.86 s _=1.15 s =—.52 s =.39 =.08
6 T g 9 10
nodal displacements
d =.45 4= .00 d =.76 d =-3.5
1 2 5 "7y
d =,45 d ==1.5 4 =-,37 d =-2.68
5 6 7 8
i
objectve function ...254.755
The solutien would therefore correspond to a dual

infeasible problem where the multipliers coresponding to

active area ineguality bounds are:

1 1 1 1
/M'2a =1.yu 63.=l. VU Ta=—1.99 < B vﬂ 1Oa=l.414

The algorithm should be corrected by the introduction of an

alternative iteration up-date formula.




3.7.3. Multiple solution due to nonconvex behaviour

Much more serious is the manifestation of the fully
nonconvex behaviour exemplified in 3.6.. In the case of the
local solution 223.339 the Lagrange multipliers

corresponding to lower bounds on the areas are

1 2 1 1
/M gy =1 1/‘&% =5.87 '/“69,:1' r//lftma=1.414

whereas the global solution 219.929 is assoclated with
1 1 1
/u g =4+91 :/U 55 =2+93 /Ot 100 =12+47

By 1nspection the H matrix is in both cases indefinite when
restricting the domain to the equality constrained
subspace, By integrating in the active constraint vector
the inequalities corresponding te lower bounds on the areas
¥4 would become positive definite,

3.7.4. Ten bar truss with one member stronger

It is possible to have an indefinite matrix B in the
subspace defined by the equilibrium equations and the local
optimum to be unique in the domain of the problem. It is the
case when the displacement constraints are absent and the

iimit stress on bar 9 is increased to 3.75 (instead of

2.5) . We have
meampber areas

a,=7.9 a

1 2=.l a3=8.1 a4=3.9 35 =,1
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member stresses

5 =2¢5 52=205 %="'2-5 S4=—2-5 55 ='x:og£’}
s6=2.5 s7=2.5 §3=*2.5 59=3.75 s1o=—2.5

nodal displacements

d,=5. d.&-23. d3=*5. d4=—22.5

2

d.=2.5 dg=-7.5 d;=-2.5 dg=-7.5

corresponding to the minimum volume ... 41.56

The Lagrange multipliers corresponding to the lower bounds
on the variables are
1 1 1

/M g, =1.66 ;/M?ﬁ1=l';/i Ge=0-
The matrix H in the subspace defined by the egquilibrium
relations would have one negative eigenvalue corresponding
to a negative diagonal element in the 2nd row of this real
symmetric matrix. In order to check whether this minimum is
unigque we would increase the rank of the active constraint
derivative matrix by 3 by inserting the active inequalities
related to the IOfer bounds on a2,a5,a6. The result

[ (y(t)] BT at

4 = N

of the product of the constant

|
/f'[y(t)] at = (17 g7 (3.123)

0 5

by the matrix given by
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(I - sly(t)] Bly(s,t),J1 Sly(t)]
2 R * !
V, L vs,0),)0 cly)] (3.124)
is a (J1+3) wvector.
For t = § we have y(t) = x* and all components are

positive. We remark that the first I components can always
be taken as positive since they are related to equality
constraints so that only the inequalities giving a positive
value for Eﬁ should be selected. This wvector would
correspond to the 2nd order estimates used by Gill and
Murray (1977) to determine whether or not a constraint

should be considered binding at the local solution.

The same vector when multiple optima solution is exhibited
is no longer positive component by compenent. In fact the
components corresponding to a, and a10are negative whereas

the wvector obtained from the local solution has the

component corresponding to a negative. This appear to be

10
a necessary condition for multiple optimality.

3.7.5. Iterative procedure

A Lagranglan based iterative procedure for convex
programming problems with a fast rate of convergence (Gill
and Murray (1977)) will be briefly described in this
section. Suppose a current value of g* = (é'f} is % and %
is not x ¥ . An estimate of the multipliers corresponding to

the bilinear constraints could be taken as
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1o .
= f£(x)" C(xMt (3.125)

This could be wused in the computation of the Lagrangian

2
Hessian matri£57x[J[X;X]

The signs of the Lagrange multipliers will identify the

inegquality constraints whose removal from the active set

feasible ang descendent. A second estimate of the

’ will make it possible to compute a search direction both
F
| multipliers is therefore given by

{

Z
1 EGO I - Sx) Hx) 80 VLI COfE (3.126)

‘ This 1is the one which determines whether wor not a
| constraint should be considered binding at the local
solution since the only possibility of obtaining a better
estimate is to move off one or more of the active
constraints. When a local solution is finally computed
local optimality tests are carried out and statements about

unigueness can be made.

The range of applicability of this method is limited to
structures with continuous area variables and the problem
of £finding the global solution may become awkward whean
multiple solution are present. We will develop methods that
although more appropriate when the optimization 1is made
with respect to discrete design variables are also globally

convergent with continuous variables,.
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CHAPTER FOUR

BRANCH AND BOUND METHODS

Introduction

The existence of multiple solutions for the bilinearly
constrained problem lead us to consider methods of solution
more appropriate for this nonconvex behaviour. The Branch
and Bound strategy 1is a globally convergent procedure
consisting of the transformation of the general nonconvex
domain into a sequence of intersecting convex domains by
the use of underestimating convex functions. The two main
ingredients are a combinatorial tree with appropriately
defined nodes and some upper and lower bounds to the final
solution associated with each node of the tree. It is then
possible to eliminate a large number of possible solutions
without evaluating them., It is well known that & local
solution to a problem possessing a convex objective
function and being restricted by convex inequalities 1s

also its global solution.

Separable nonconvex programming by Branch and Bound was
initially described by Lawler and Wood (1966) but latter
Soland (1971) has generalized the method to include
nonconvex separable constraint functions. His algorithm 1is
applicable to the present study because the bilinear
constraint expressions can be converted into separable form
ie: a sum of functions of one variable possibly nonconvex.

If in the more general case of a contié%us function over a
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compact set one replaces the objective function by the
[Fig 4.1

largest convex function that fits below it"and the domain

by the convex hull corresponding to the compact set it is

known that the solution set of the latter convex problem

contains the solution set of the original problem

F(x)

X L

Fig 4.1 Convex Underestimate of F (X )

Reeves published in 1973 a different branch and bound based
algorithm for the minimization of nonconvex allguadratic
programming. The algorithm uses local minima and
elimination intervals surrounding them prior to branching
and bounding. His approach can be classified as "inside-
out" ie: for how large a region 1is a 1local minimizer
global. In c¢ontrast ; Soland's "outside-in" strategy
determines by how much can the region of possible
optimality be reduced by partitioning the domain defining

the hyper-rectangle of bounds on the variables.



We will start this Chapter by generally describing the
algorithm that historically was first and we will apply it
to the 1least volume design. Several underestimating
functions will be tried out and on the basis of
computational experience some conclusions will be drawn.
Reeves' algorithm is presented in the last section of this
Chapter and its advantages and drawbacks will be discussed

when compared with Soland's method.

Separable Programming

As it has been previously mentioned the factorable terms in
the equilibrium equations could be transformed into & sum

of functions of one variable by inducing & rotation of Tr/4

to the axis of the system. Let the new variables be <X and
Y1
_ .k k k_ k X
a; = Xg Vs SiT % 7Y te.5)
x5 = (a, + s59/2 K= (a, - s5)/2 (4.2)
1 1% %4 YiT T % .
i=l,...n k‘:l’.-‘l

we remark that for multiple 1loading we are therefore
penalized by an increase in the dimensionality of the
problem. Range constraints on the new variables will

correspond to the simple bounds on the variables a and sk.

k k
?1_S § + g < i11 (4.3)
k K__ ¥ k
spLxiyiLsy (84)

The bounds on the new variables (that will be necessary to

the definition of convex envelope) are equally obtained
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from the bounds on the variables a and S:kie:

k

K= lay ¥ SP/2 LKL RGS A+ §)/2 (il
k k k . :
yy = (a; - su)/z Ly < yzi= {au- %)/2 (4.56)

All the remaining linear constraints will be transformed in

expressions of the same type

B L (x -y )=0 Compatibility (4.7)
d%ﬁ D (xk— yk) < dg Displacements (4.8)
—xk+ yk- B xk— E y?ﬁ a Buckling (4.9)

~ -~ ~

Each separable equality equilibrium constraint will be
represented by a sum of strictly convex and strictly
concave functions. Only the convex envelopes of the latter
will be required. First we replace each equality bilinear

constraint by a pair of inequality constraints ie

» (fk - -_l,rk) = A% (4.10)
can Dbe written

A -y 1 (4.11)

A (yk'z - §k2) _<_—1k (4.12)

The convex envelope of a concave function of a single
variable is a linear function passing through the endpoints

of the graph of the given function [Fig 4.2]
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Fig 4.2 Convex Envelope of

a Concave Function

1l 2 . 2
CE = [(~y f; +Y ll‘r‘)/(yﬁ* y]ff)] (v - Y-,kl- -yi

2
_ k k k _ Lk
2
_ k k k k _k k
==(y, t¥Y]) Y *Y¥Y3Y¥yL-Y (4.13)
similarly
- K + x xk + k k:< - ;vzk:2 (4.14)
X xq) X7 %, 2 .

The convex envelopes corresponding to the egquilibrium
constraints would still be bilinear although strictly

convex

) . k :
A X = A (y}j_-i—yi) yki ;( —'y.iy]f (4.15)
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A yk— A (xﬁ + xk) ¥ ¢ - lk—- —{cﬁz(lf (4.16)

Tight convex underestimate subproblems although having
linear objective function would still present curvature in
the constraint set. A Newton iteration method using second
derivatives of the Lagranglan could solve each subproblem
sucessfully. Due to the fact that the number of subproblems
{ to be solved cannot be neglected and a Newton iteration
| procedure 1is necessary for each such problem the whole
process would become very 1inefficient. A more crude
approximation to the constraints is therefore justifiable

if the underestimating subproblem could be solvable by a

code for LP.

W.

U
xk
C.U.
kyZ |
k! k
X X X
L | u
x K
Fig 4.3 Convex Envelcope given by

Endpoint tangents

The envelope that gives the maximum over the two endpoints



tangents may represent a linear approximation of the
gquadratic coinciding with the function at its boundaries.
Such convex underestimate of the nonlinear convezxz terms
presents a big disadvantage: The problem dimensionality
will increase since a new constraint will arise from each

such term [Fig 4.3]

. 2 2
2xixk—x5 < xk (4.17)
¥ ¥ @ xf ¥
2xlx -—xl < X (4.18)
g .
2ZAx]‘f x]§+2£ A xkE xk—A{yk+Y;k)Yk
1 iu % i1 il jJ ~ ~u <1 <
. A Lk
< SxE > xE ykyky ) (4.19)
=" Ju ; 3L £ us L .
15 3?)‘(21 3:1
I i X ok b4 Gk k
A + 2 A A
2;:1 v = vE v¥ea o v A x
2 2 k
k Kk k. k
< ) — — -

.
where ; and Z are mutually exclusive subsets of {1,2,...n3

= 8

.= s w wi and
? LIT 1;2 n and x ilﬂ xju

Alternatively in order to avoid this increase in the number
of Gconstraints and variables in the linear subproblems the
quadratic terms may be approximated by mid-point tangents

(x¥ 4 xBH gk (x§+ x;;)/ti<xk (4.21)

In this latter case the linear underestimating constraints

become
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(4.22)

(4.23)

2
(xK)
L ]
B Kk k
x K
Fig 4.4 ° Mid-Point Tangent Approximation

4,3. Outline of the Algorithm

Let x P be the solution of the 1linear underestimating

subproblem (Pp) with k=1

e

Min cx (4.24)

st Ax >b (4.25)

1 < x < L (4,25)
“p= s =

1f %P is not a feasible solution of the original problem we

may try to strengthen the constraint or to restrict the



domain of optimization of the subprobleml%ﬂin order to make
the solution fp infeasible. Probliem (%?) is replaced by a
set WP of problems that bound the original problem in the
sense that there exist one optimal solution f% for at least
one problem jEWP Suppose an optimal solution to each
problem jEwP is obtained and let

S = Mmin & x? (4.27)

jew? "~

If x5 is not a feasible solution of the original problem we
replace one of the problems of the bounding set WP by a set

of new problems.

Make p=p+l. We replace problem s by a set WP such that
wp=(wp"1{s})L]wS contains an optimal solution of the
original problen 5*‘feasible for at least one problem W P
For each problem jeWP either §j is infeasible for j or
dej>ch*. This is a condition ensuring that some progress
towards the final solution 1is made. The seqguence of
subproblems generated yleld X ¥ a4t the 1limit so that a

convergence condition limiting the maximum infeasibility to

¢ may have to be employed.

The combinatorial tree has each node identified with a
subproblem j. The problems that replace j in the bounding
set WP are pointed to by the branches directed outward from
that node. At any intermediary point in the calculations
the set WP of current bounding problems is identified with
the set of nodes that are the leaves of the tree. We
associate with each node of the tree an incumbent bound v.

We say that any leaf node of the tree whose bound is



strictly less than v is active., Otherwise it is designated
as terminated and need not be <considered in any further
computation. The Branch and Bound tree will be developped
until every leaf can be terminated. Since all functions
that define the domain of the original problem are
continuous Scland's weak refining rule for splitting the
bounds on the variables will be used:

Choose the index 1 of the wvariable that maximizes the
difference between the quadratic form and the 1linear
approximation made out of the constraints that are violated

b=

by X~ in the original problem.

Now divide the corresponding interval [15'Li} into two new

intervals [1¢,x{] and [g ,Lq]. Therefore as soon as a node

is selected to be branched the partition of its intervals
is only dependent on its solution value and is not related

to other partitions at the same level of the tree.

5 ¢ %5
x! 1 x1 1
2
7 [ ] %
4%
& o b
J(3 4 X3u
Fig 4.5 Partition and its completion

Thus the relaxed algorithm not requiring completion of the

partition of thﬁﬁntervals at the same level of the tree
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will be used. It 1is based on a weaker form of Soland's

convergence thesorem [Fig.4.5] .

We remark that whenever the guadratic terms are
approximated by mid-point tangents the underestimate fails
to agree with the original function at its endpoints. Fig
4.6 shows how the underestimating function adopted may lead
to to a solution at the boundary of the original bounds. If
in this case the difference between a function and its
approximation is a maximum along the axis corresponding to
variable 1 a scheme to tighten up the underestimating
functions by subdividing the whole box close to the
solution point will fail to be interior so that another

splitting rule (eg:a mid-point subdivision} has to be used.

These partitioning rules are not fixed and there is room
for some heuristic alterations : the index of the wvariable
that maximizes the difference from the original function of
its approximation may be choosen not out of all violated
constraints but ta king the more violated constraint, In
fact the least volume design 1is restricted by bilinear
equalities and by doing so any solution of the subproblems

should be brought up closer to feasibility.

Upper Bounds (Incumbent Scolutions)

This is the value of the best feasible solution so far
which 1s recorded and wused as a thereshold value for
accepting or rejecting any subsequent solutions or nodeés of

the tree. One of the generally avallable upper bounds at
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/ /4 O.D.
S LS UD.
- g(x)
— . L i xi
! h — g
S LSS O.D.
/4/- S UD.
'~
g(x) ~ 1\
" N (TR ‘\.\_ L;
X |
0.D. - Original Domain r// 0.D.
U.b. = Lnoe%estlmatlng L, /4 uD
Domagin
-g(x)
| -~
U.Db. is reduced when —
a mid-point splitting — Xi
rule is used PO IPIOL. oD.
(L LA UD.

Fig 4.6 If the guadratic terms sre approximated by mid-point

tangents the maximum constrsint violation may lead

to the choice of a variable at a limiting wvalue and

the algorithm proposed by Soland would get stuck



the start of the procedure 1s the wvalue given by the
stress-ratio formula generally called fully stress design.
The subproblems created by the algorithm will be solved by
a LP routine whith will ensure that the optimum will be
approximated from below at all time. By fixing a set of
areas a stress/displacement resultant is uniquely
determined by matrix inversion. It is possible to scale the
design in order to make the state wvariables feasible., If
the scaled design wvariables are also feasible and their
volume produces a better solution than the current
incumbent they must be stored as new values for the

solution and their volume becomes the new incumbent.

Enumeration of Suboptimal Solutions

Once the global solution has been identified this strategy
can be reapplied to enumerate any other local solutions to
the bilinearly constrained problem. By terminating the leaf
corresponding to the optimal solution and resetting
incumbent with an  upper 1level, All (nearly) feasible
solutions possessing a smaller volume than a given value
should be esnumerated. 3ince nothing prevents a local/global
solution from existing at a boundary of the variable range
as can be seen in Fig 4.7 the K-T conditions will be wused
to test local optimality in any other point than the global

optima.
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local optiﬁ?uﬁ?

—

C.E(s) 1N /
global OPTimum
( X |

|
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f(x)
L. X . L.
| C ! I

Fig. 4.7 Case A — Local Optimumis an interior point

and has an higher value than th
ary of the varlble range

point at the bo

feasible

(what does not happen in Case B)
Cagse C -~ Local optima is a boundary point
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Branch and Bound Algorithm - minimum objective function

gselection

The minimum volume bilinearly constrained subproblem (P)

Min ¢ Ta (4.28)
st ak '4k = Ak Egquilibrium (4.30})
— S ~ 3
B sK =9 Compatibility (4.31)
a_< a < a Area Bounds (4.32)
I R T 5 |
k., o oK s .
d_1§ D s* < d 4 Displacement Bounds (4.33)
ke k k

s < s <58 Stress Bounds (4.34)

is transformed into the equivalent problem (P )

T
v = Min ¢ Tx + ¢ Ty (4.35)
2 2 i

st A <A yk = A £ Equilibrium (4.36)

BTlL - 8T L y¥= g compatibility (4.37)
%i D % k. p Y kﬁ 4 Displacement Bounds (4.38)

a_< % K+ % 1{< a Area Bounds (4.39)
-l = S ]
% b o4 yq= xi+-yﬁ ?ﬂf =P ;?ﬁ@,.JJ (4.40)
s 11{< X k_ ¥ Ke g X Stress Bounds {4.41)
P Bt . — -~
X k( xk < X k Bounds on thez
L1= . -
y’ig_y kﬁ Y ﬁ new Variables (4.42)

The linear convex underestimating subproblem (ﬁl) is in all

equal to (P ) but now the egquality bilinear constraints
T
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(4.35) are replaced by linear underestimates

Q X +

'3

y £ P (4.43)
1

Let UB =+ (if no information about any feasible solution
is available) and LB =-co be the initial wupper and lower
bounds on the optimal value of the objective function of

the program (P.) . Set a tolerance on the maximum

dl
infeasibility of the constraint underestimates c .
set IT = @ I8 = 1 IN = {
2
Solve (Ru) . Make IT =IT + 1
3
(1) If (Ru) has no feasible solution and
a) 1if IT = 1 there 1is no feasible solution to the
problem
b} Go To Step 7
(2) 1f (P,) has the optimal value v > UB Go To Step 7.
(3) If any ]A§k2~ A?ké— 3 kﬁ) £ Go To Step 4
where (f[?k,?k) is the optimal solution of (ql) p
Otherwise (f;?k,?k) iz a feasible solution to (3D) .
If ¥ < UR make UB = vV and store the solution point. The

)

last values recorded will give the global solution to (PT

when the algorithm ends. Go To Step 7.
4

k, ?k: that maximizes

Select the index j of the variables X
the difference between zach term of the violated constraint
in the original problem and its convex underestimate.

Increase the number of nodes (IB) by one : store the bounds

corresponding to each pending node ( VA and VB matrices)
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and the optimal soclution of the corresponding subproblem

(vector VE) and the index of the wvariable that has to be

il

branched (vector ID) - IN = IN +1 ; ID (IN) = J ; V (IN)
V ; VE (IN) = VC = X

VB (j,IN) (3 ,IN) = L for all j

]
o]
<
o

5

(1) 1If IB = 1 set paramsters for RHS branch

1

IND = ID (IN) ; VF =1 (IND) ; 1 (IND) = VvC ; IN IN - 1 ;
IB = 2

Go To Step 2.

(2) if IB = 2 set parameters for LHS branch

L (InNp) =1 (IND) ; 1 (IND) = VF ; IB = 3

Go To Step 2

(3) If IB = 3 Go To Step 5

~

)

i

Choose the minimum value v (1) for 1={ 1,...,IN})and set LB
v (1).

If LB > UB Terminate. All the nodes have lower bounds
greater than the optimal feasible solution taken as
incumbent., Reorder the sets ID,V,VE,VA,VB. Set IB = 1 and
Go Te Step 5

7

If IN = # and 1IB = 3 Terminate. The tree has been

exhaustively explored ., Go To Step 5

IP will record the number of problems that will be solved

until the algorithm stops.
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4.7. Computational Considerations

The total amount of computation is related to the number of
distinct subproblsms created and hence to the total number
of nodes in the fully developed tree., The amount of
temporary storage regquired 1is related to the maximum
cardinality of the bounding set WPie IN) and hence to the
maximum number of leaves at any intermediate stage in its
development. In order to try to accelerate convergence
several heuristic modifications were tried out. A penality
term taking 1into account the infeasibility of each
subproblem by multiplying the wvalue of each constraint
violation by the corresponding dual variable available from
the solution of the linear subproblem 1is added to the
objective function wvalue V. This modified solution value

will be used in the selection o©of the next node to be

branched. Unfortunatelly it cannot be used as a
justification to kill pending nodes since it would
correspond to a dual feasible (primal infeasible)

procedure. Several strategies were tried out in order to
avoid the idincrease in the amount of computation at the
expense of additional storage. A simple side branching
followed by backtracking as soon as a terminated leaf was
found depends heavily on the availability of a good

incumbent at the early stages of the algorithm.

A more involved deep branching srategy has also been run.
it requires only thne storage of the level of the tree, the
index of the wvariable to be branched and its solution

value. At the start (level 0) we solve a linear
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underestimating subproblem where all variables are allowed
to vary whithin their bounds. If the solution 1is not
feasible to the original problem the interval corresponding
to the variable that maximizes infeasibity is split into
two parts. Two new subproblams are then generated. If we
choose the solution giving the lower value and increase the
level of the tree by one we see whether the improvement 1in
the solution wvalue has made it feasible to the original
problem. If not another interval will be selected for
branching. The algorithm proceeds until a tail is reached.
There are three types of tail :(a) feasible solution to the
original problem (b) LP solution with OF value at least as
high as the best feasible solution found so far (c)

infeasible LP.

When a tail is reached the intervals not y2t considered
corresponding to pending nodes must be iInvestigated.
Starting with the level at which the the tail was found the
bounds on the remaining branch will be looked at. Any which
is no better than the incumbent solution or are infeasible
can bes deleted and the level of the tree is reduced. But if
a 1level 1is reached for which the remaining branch still
offers the possibility of a better feasible solution to the
original problem whithin its set this becomes the main
branch and the process of branching is restarted the level
will increase by one until a tail 1is reached. Eventually
the backing up investigation will get all the way to level
zero indicating that no subset has lower bound than the
best feasible solution so far. The incumbent will therefore

give the global solution of the nonconvex problem.
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Branch and Bound Algorithm - deep mainbranching strategy

1
Let UB =+ o (if no information is available about any
feasible solution of (P ) ) and LB =- & pe the initial

upper and lower bounds on the optimal value of the OF of

the program (P Set a tolerance on the max imumn

Y -
infeasibility of the nonlinear constraints of & .
Set IT =0 ; IB =1 ; LV =8 . Go To Step 2.

2

Make IT = IT + 1 . SBolve (Plg.

3
(1) IE (Eu) has no feasible solution and

a) IT = 1 there is no feasible sclution to the original

problem,
b) Go To Step 7

(2) If the optimal value of (P,) v > UB Go To Step 7
_kz -}\’2 k
(3) If any AXS-AF - 4 ®P>E Go To Step 4

(G,Ek,§k) is & feasible solution to (%E)

—

If ¥ < UB make UB = ¥V and store (?,?K,' )« The values

H

recorded in UB when the algorithm stops will give the
global solution of the problem (P ) . Go To Step 7.

4

k k

Select the index j of the variable X that maximizes

or ¥
the error derived from taking convex underestimates out of
the violated constraints in (RT)'

5

(1) If IB = 1 Set the bounds for the 1lst branch of the node
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to be split. IB = 2 . Go To Step 2 .

(2) 1f 1IB = 2 Keep a record of the solution corresponding
te the 1st branch. Set the bounds for the 2nd branch
emanating from the node that is being split. iB = 3 . Go
To Step 2

(3) 1f I8 = 3 Keep a record of the solution corresponding

to the 2nd branch. Go To Step 6.

Oy

Increase the level of the tree (LV) by one.
(1) If any of the branches is not a tail choose the node
giving the lower bound. LB = v ; IB = 1 . Go To Step 5.
(2) Backtrack. Reduce the level of the tree by one.
If LV = 4 Terminate. All the tree has been explored.
If v corresponding to the new main branch < UB set LB = V¥ 3
IB =1 . Go To Step 5.
Otherwise backtrack. Restart Step &6 (2)
9
A tail is reached . Set V =+oo corresponding to either
a) Infeasible subproblem.
b} baest feasible solution so far.
c) a solution of a subproblam with function value at
least as high as the best solution found so far.

Go To Step 6 (2)

Parallel Hyperplane Approximations

The bounds on the variables of the transformed problem are
based on the bounds on the state and design variables and
effectively increase the domain that has to be split and

thoroughly explored by the B & B strategy. The
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consideration of a number of loading cases greater than one
is penalized with an increase in the number of constraints
and wvariables in the problem where Soland's algorithm will
be applied. The bounds on both state and design wvariables
will not disappear in the formulation of (gp) and they
become range constraints in this problem heavily increasing
the computational effort needed to solve each subproblem.
After the linearization of {PT ) an inverse rotation was
performed in order to obtain a problem (%3) in terms of the
initial state and design variables. The linear expressions
that &re convex underestimates of each bilinear term when

the convex envelope 1s substituted by the maximum of the

two endpoints tangents in terms of xkiand yliare
k, o k_ k A . ek
[(? l+ ) s l+ z u éu) e * (gl + 3 fl §1A+ ﬁa)
2 2
_ <k k .k _ _ .k
S1/4 + I3y 8, - SyAR +Sgsy-ai-s)
k k -
= 3 *1/4 < = 4.44
a.s/i/a <z s ( )
k k _ k _ =k
[(Eu 3 §u * E;l él) s * (fu.+ 3 §11 §11+ ? ﬁ
2 2
%k - =X k _k _ - k
sHl/4 ¢ 8y 8, S8 a5 F S5y 9,7 Sy
- 3a s¥i/4 ¢a s® (4.45)
~ U~ -~ =
_ 3 <K _ Kk _ k _ S
[(a ;- 3s,-857-3)a+r(sy-3ay-s5-23a)
2 2
Id k kKsk 5 _ K
s R & [fl éu * §l.§u.+ §1.§u ~ 1l -
+3 a. sK1/4 < —a sE (4.45)
~1 ~10 - = e
i{a - 3 s k_ - sk) a + (sk;~ 3 a —a.-— sk)
. ~ 1 ~1 -~ o~ - 1L ~1m ~1 ~u
2
bis . k k, k_ I
Fi/a e faga +agsiesysioa -
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ke Z
+ 3 fu.fl]/d < —f s (4.47)

-~

If the mid point tangent are used as convex approximation

in xk and yk the corresponding linear expressions in terms
of a and sk have the form
5
I o
[(sq + 5y) a8 + (a1 + a,) ?lﬁ/z - Hay=-3)
2 _
+ (sﬁ-fjlf) 1/16 - ] als%f+al§i_{l
k 1 k
tay syt Yaysy/8as (4.48)
k k 2
[ T+ 5y 2+ (ap+ 2y 871/2 = (@, &)
K 2 K K
+ (s, - s%) 1/16 + [3 aj;sq+aqgs,
k - k
oy STt 3agsy/e Cas (4.49)

In this approximation each bilinear term defining &
hyperbolic line is substituted by the surface limited by
the wvariables range and by two parallel lines separated by
a width given by the sum of the squares of the range of

these variables divided by a constant [Fig 4.8] .

\
Slﬁ 77 77777,
K
k
|

a, a Ay

Fig 4.8 Tangent Hyperplane Approximation

P T T
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4.,1@. Factorable Programming

Bilinear expressions of the form p x + gy + Kk x y are
particular cases of the more general class of problems
termed Factorable Programming. Since the convex
underestimate of the 1linear part of the expression Iis
trivial (it 1is the 1linear function itself) we have to
determine the envelope of the product term. Let the

function f(x,y) = Xy defined in the rectangle of bounds
a <x <b c Ly <d (4.59)

We first note that the function values at the corners must
coincide with the underestimate taken. Since three points
are sufficient to define a plane in 3-D the convex
underestimate will be taken as the =z <coordinate on the
highest of the two planes defining a ridge through the two

intermediate function wvalues [Fig 4.9] .

21 =c (g -8a) +a (y —¢) +ac

=c x +ay-az=s {4.51)
Z, = d (x = b) + b {(y-4d) + b d

=dx +by-D>bd (4.52)
z = Max { 21,22}_<_f(x,y) = Xy (4.53)

These convex underestimate functions give constant slope

when either z1or zzare setbk gonstant.
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(ad) \(bd)
ridge
f(x’y) =Xy
chord
(ac) (be)
a b X
A
(ad) (bd)
(ac) (be)
a b X
B
(ad) (bd)
(ac) (bc)
a C b X
Fig. 4.9 Czseg A and B - Convex Envelopes

of the product term x.¥y
gaze ¢ - Concave Overestimate of
the same product function

R R e L S PSR
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It is also possible to show that the chords of f(x,y) match
the level curves of the planes defin=sd since they define
parallel lines that intersect along the diagonal ridge. The
concave overestimating functions are accordingly defined as
the 2z coordinate at the lowest of the two planes defining &
ridge through the corners having the higher and lower

function values

z? =d (x —a) +a(y—-4d) +ad
=d x +ay~ad (4.54)
zg =¢c (x - b) +b (y=¢c) +bec
=¢cx+ by -Dbec (4.55)
o]
2z = Min {z?,zg}ny (4.56)

When these underestimating functions are switched around
(ie when they belong to another guadrant) one may check how
these approximations are modified. Supposing f£(x,y)=-xy is
the function whose convex underestimate is required defined

over the rectangle of bounds
a<x <b -d £ -y £ -¢ (4.57)

The two planes determined are

z = -by-c%+ bec (4.58)

22 = -d x ~ay+ ad (4.59)

Let z7= m@n{ z1ﬁ:5}be the envelope of -xv.

P ppe—
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Therefore
z K -xYy (4.60)
or
27> x y (4.61)
But
z~ = Max { 2, 25 ] (4.62)
-z~ = Min { -z;,—zg}

= Min { z?, zg } = z© {(4.63)

The convex underestimate of-f(x,y) is the symmetric of the

concave overestimate of £ (x,vY).

We remark that the underestimating function z (and
overestimating z%) is not differentiable everywhere. There
are several ways of handling this by altering the problem
in order to create an equivalent 1linear programming
problem. The simplest way involves the addition of some
extra inequality constraints and variables . Considering

the problem

=]

Min ¢~ x (4.64)
st Ax2b (4.65)
£Tx + max { g?j‘-?gi‘} Ly (4.66)
.pT§+min {??z(,qu)n(} >r (4.67)

.

That is equivalent to
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Min c1 (4.68)
st A x >b (4.69)
i T
fl X + g#’x < h ED X + gg x < h {(4.78)
T ik ' T
P X + g4x >r P X + g x > r (4.71)

and can also be written

Min Sijf (4.72)
st ? f > ? (£4.73)
fT.§ + ? < P ? Tf + Y > E (4.74)
o> ?Qfx u g gf (4.75)
Vifil‘[l\f vf_iquc (4.758)

Both formulations may be employed. The introduction of more
variables is recommendable when the same nondifferentiable
term will appear in a number of constraints. The globally
convergent algorithms described in 4.6, and 4.8. can also
be used in conjunction with the convex envelope described
in this section. The solution of the bilinearly constrained
structural synthesis problem is also obtained by solving a
sequence of linear underestimating subproblems. The
effideﬂcyéf the method depends upon the tightness of the
underestimating problems. This is helpfull in eliminating
regions which cannot contain the global minimizer. The
convergence to the global sclution is ensured by the fact
that the rules for splitting the regions when a node 1is
branched 1leads to & nondecreasing monotone seguence of

jower bounds on the final sclution. In fact the feasible
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constrained set for a linear subproblem is larger than the

feasible region of the original subprobliem.

If the optimal solution of the subproblem is feasible in

the original domain and has an OF equal to the global
Jdt,

solution it indicates that is global minimizer. If not the

enlarged domain will be divided by choosing the product

term out of the violated constraints that maximizes the

difference with respect to its envelope and then selecting

the variable with larger range. The interval corresponding

to the selected variable will be split and the optimal

variables of the subproblem will define the new interval
bounds. This partition never fails to be interior when
using convex envelopes since if it would be at a boundary
no difference would occur. These partitions ensure that the
new feasible regions defining new convex envalopes will be
brought up closer to the value of the optimal solution

variable.

4.11. Applications

4.11.1. Determination of the global solution[ Appendix Al

The small scale problem 1in 6 variables described in 2.3
will be used to illustrate the strategy described in this

Chapter. When factorable functions are replaced by their

convex underestimates the problem betromes

R S e—



Min %X 4+ x _ + X
1 2

2 3
st X X X_x_=0
— 1 4 3 6
3 x x + 1l.23x_x_ - X =10
5 3 6
5 x +x_ 4+ x_ £ 2.5
1 2 3 =
(x )T ={.1 .1 .1 @g. 8. =-2.5]
1
(x )T = [5. 5. 5. 2.5 2.5 @.]
u
The convex envelope of x1 x4 in the rectangle of bounds
%, < ¥, < XK x <%, <X
11 1 — 1u A41= 4=  4u

is the maximum of two affine guantities and is defined

introducing the new variable x_ < x , X
X < x x +x x - X X

e < % b4 + ¥ X - X x
= 41 1 11 4 11 41

Similarly the convex envelope corresponding to -x 1x

represented by x_ < - % X
P Y Xg 2 1% 4

< - e + %
et T M T T T f 4l

K X, X + X X
8- 4u 1 11 4 4u 11

The underestimate of x3 ¥« and - x _x _are respectively

6 36

and
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g - +
100 a3 X386 *eu 31

—X X =X X + X

Xios Fer¥s Tl 5 61 3u

The first bilinear constraint is an equality and will be

changed in the standard fashion by a pair of inegualities

The constraint

3 X ¥ + 1.2 % _x - 2_%x < 18
1 4 2 5 76—

is replaced by a pair of linear expressions

3 x4+ 1.2 (2 _x _+ % ) + x 14

— <
54 2 26 57 Zsuoh 10~

=

+ 1.2 - + <
3 x7 1 (= Ef 2+-x Ef 5 XBIXB& X1O— 1

The same procedure is adopted for

-3 % x = 1,2 x%x % 4+ % _%Xx .< -1
1 4 2 5 B 66—
3 + 1.2 (= X - ¥ ¥ _+ x X + x < =18
X (= X o= X % gF %5 %54 9 =
3 x_ 4+ 1.2 (- %X % _—%_X _+ % _%x_) +x_ < ~-1§

8 5u 2 21 5 21 51 g -

The remaining expressions of the problem are linear and
therefore the determination of their envelopes is trivial .
Thus this simple example 1is reformulated as a linear

underestimating problem in 19 variables and 15 ineguality

P S i
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constraints. Por each set of bounds on the variables x to

1
% c a node 1is defined. We may remark that the structural
matrix corresponding to each subproblem has to be up-dated
whenever a new node is created. The results of the initial

iterations of the algorithm known as breadth first (choose

the node with lower bound) are reported next.

INITIALIZATION
STEP1
Let UB =-o0;LB = — 60
IT = & B =1 IN = 3 £ =5.91

Set X 1 and x at the wvalues defining the hyper-
u

rectangle of bounds of the original bilinesar problem

IT = 1

Solve the subproblem corresponding to the lst. node

Optimal solution ...1.545

¥ 0= 1l.34;x = J1l;x_= J1;x = ,64;%x_ = 1.82;%x, =-2,5
1 2 3 6

STEP 3 (3)

Max infeasibility ... 2.32 > .01

STEP 4

Index of the worse approximation ... 1



STEP

0p]
=]
=
e

STEP

STEP

STEP

STER
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IN =1 ID(1) =1 V(1) = 1.34

VB(J,1 = X VA(T,l) = X _VE(l) = 1.34 VvC = 1,34
(J,1) 71 { ) Jo (1)

J=1,..46

5

VE = VB(1,1) X11= VE (1) IND = 1 IN = 4 IB = 2

2 IT = 2

Optimal solution ... 2.502

X 1 1.9 5 3 x4 2 5

3 (3}

Maximum infeasibility ... 1.98 > .01

Index of the worse approximation ... 1

IN = 1 ID(1) =1 U(l) = 2.599

/B = X VA(J,1) = X_VC(1l) = 1.96
VB(J,1) 1 (J,1) g e 1)

5 (2)

X, = VF IB = 3

Optimal solution ... 2.846



STEP

STEP

STEP

STEP

STEP
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3 (3)

Maximum infeasibility ... 3.1 > .41

Iindex of the worse approximation ... 2

IN = 2 IB(2)= 2 V(2) =2.85

VE(2) = 2.2% VB(J,2) VA(JT,2) = X

X
J1l Ju

5 {3)

V(1) = MIN V{1l),V(2) N 1 IND = ID(1)

LB = V(IV)Y VC = VE(IV) X __= VB(J,IV) X = VA(J,IV)
X Ju

Reorder the remaining data <corresponding to pending

nodes

ID(1) = ID{2) VA(J,l) = VA(J,2) VB (J,1) = VB(J,2)
VE(1) = VE(2) 1IB =1

5 (1)

VE = Xypf® 437 wpL'C

IN =1 1B = 2

2 IT

I
1=



I =

Optimal solution ...3.13

p. 4 = 2-25;:‘( = -l;xr:—‘ -78;}( = l.;X Ha= .U'X ="2.5
1 2 3 4 5 ‘76

STEP 3 (3)

Maximum infeasibility ... .43 > €1

STEP 4

tndex of the worse approximation ... 1

IN = 2 ID(2) = 1 V(2) = 3.13 VE(2) = 2.25
VC = 2.25 VB(J,2) = %Jl VA(J,2) = XJu

STEP 5 (2)
X, =X X VF

1 11 ﬂf

and the algorithm proceeds until the combinatorial tree is

completely explored. The global solution is found to be

x1 = .1 x2 = 3,33 % 3= ol x_4= Ae X 5= 2.5 ¥ 6= [5 2

In Fig 4.1¢ the combinatorial tree concerning this

problem is represented.

4.11.2. Multiple optimal solutlons

Multiple solutions can be located by using the strategy.
The combinatorial tree wused 1in the last problem is
restarted by Ffathoming the branch corresponding to the
local optimum and keeping a record of all feasible nodes

until a certain level (3.68) and it is drawn in Fig 4.11 .
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For all such points the K-T necessary conditions will be

used to discard all solutions that are not extrema.
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4,12, Computational Experisnce

Wl

W2

W3

W4

A three bar truss subjected to two alternative loading
referred in 3.06.1

conditions was solved 1in order to compare relative

efficiency of the several wunderestimating functions and

algorithms. We start by reporting the results

corresponding to a search strategy known as breadth first

(always choose the node with lower bound) . The termination

criteria was determined by limiting maximum infeasibility

of the constraint functions.

Using a NAG LP routine the underestimating function as
given by the separable programming techniques and the
strictly convex terms are approximated by mid-point
tangents. The branching rule will consists of dividing the
interval «corresponding to the variable selected into half.
Each subproblem has 12 wvariables and 1Is subject to 31

linear ineguality constraints.

CPU 593 ieu [ instruction execution uniis )

As W1l but using Land and Powell (1973) subroutine to solve
each suproblem . It is assumed that no knowledge of any
basis for each LP is available.

CPU 275 ieu 137 stored nodes 925 problems solved

As W2 but restarting each subproblem with a basis not
necessarlﬁﬁeasible.

CPU 238 ieu 137 stored nodes 925 problems solved

As W3 but no accuracy checks are made for the LP solutions

CPU 204 ieu 137 stored nodes 912 problems solved



W5

W6

W7

B2

k5

As W4 but the branching rule reguiring that the index of
the wvariable to be partitioned has its cholice governed by
the terms belonaing to the more violated constraint.

CPU 156 ieu 131 stored nodes 728 problems solved

As W5 but wuses a feasibility test applied to tha
constraints whose coefficients are modified by the

branching operations.

CPU 143 ieu 129 stored nodes 697 problems solved

As WS but including a pseudo-cost in the objective function
that attempts to give measure of the infeasibility of the
approximation. This penalty term is the sum of the products
of the Lagrange multipliers of the subproblem corresponding
to the node to be branched times the infeasibility of the
violated constraints.

CPU 133 ieun 42 stored nodes 749 problems solved

(33 ieu and 172 subproblems until the first feasible

solution available)

Using an alternative search strategy such as right-hand
depth first (pick up the right hand sucessor of the current
node otherwise backtrack to the predecessor of the current
node and reapply the rule) tends to require less storage
space. The number of levels of the tree (partitions of the
intervals) until the termination criterion is met is 35. In
all other aspects the following vresults refer to the

peviously mentioned problems.

As W2 CPU 373 ieu 1367 problems solved
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B6
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As W3 CPU 248 ieu 1351 problems solved
As W4 CPU 234 ieu 1351 problems solved
As W5 CPU 174 ieu 1815 problems solved
As W6 CPU 160 ieu 993 problems solved

Consider now the convex underestimate corresponding to the
strictly convex terms made up by the maximum value out of
the two endpoints tangents . This penalizes the effort to
solve each subproblem that is now subjected to a larger
namber of constraints (61) . The results will refer to

breadth first strategy.

A5 W7

CPU 213 ieu 55 hodes stored 1835 problems solved,
(55 ieu 26 nodes stored and 169 problems solved wuntil the
first feasible solution is found)

wWe remark that in this case a mid-point splitting rule was
used after since if we were to use Soland's splitting rule
in order to find the first feasible point we would obtain

CPU 324 ieu 209 nodes stored 1337 problems solved

The smallest underestimating subproblem was obtained by
using the tangent hyperplanes approximation : L P in 9

variables and subject to 21 constraints

As W7

CPU 21 ieu 28 nodes stored 373 problems solved

(14 ieu 7 nodes stored and 71 subproblems solved until the
first feasible point is found)

These results show a marked improvement in the
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F2

F3

r4

F5

approximation made although the number of subproblems to be
solved is still high. Besides the difference might be

maximal when a variable is at its endpoints.

These drawbacks are overcome by the use of factorable
underestimating functions. The main disadvantage associated
with this approach lies in the higher dimensionality of

each subproblem : 13 variables and 26 constraints.

As W7 but partitioning the intervals according to Soland's

rule

CPU 11 ieu 7 nodes stored 50 problems solved

As W7 but using mid-point splitting rule

CPU 18 ieu 9 stored nodes 89 problems solved

As F1l but instead of nearly feasible values taken as the
incumbent a feasible set of areas is found by scaling the
nearly feasible desigqéefining a new upper bound

CPU 14 ieu 7 nodes stored 61 problems solved

As F3 but now the search strategy 1is of the type depth
first: choose the best sucessor when available otherwise
backtrack to the predecessor and apply the rule,

CPU 15 ieu & levels of branching 67 problems

solved

As F3 but the dimensionality of each subproblem is
increased to 21 variables and 34 constraints
CPU 42 ieu 9 nodes stored 79 problems

solved

referred in &101

The small scale example of multiple solution behaviour was



solved by the approach thought of being more efficient. The
optimum was 1located after solving 16 subproblems each
having 12 variables and 17 constraints ellapsing 3 ieu and
occupying a storage space corresponding to a maximum of 4
nodes. The multiple optimd solution until level 3.6 were

located after solving 22 subproblems and using 4 ieu since

the beggining of the tree.

The ten bar truss was alsc studied, Convergence to the
global solution is very slow when the displacement
constraints are active even if small intervals of variation
for each variable are considered . This is due to the fact
that the problem is ill-conditioned in the sense that small
variations in the design variables will lead to big changes
in the state wvariables and vice versa. It is therefore
necessary to guarantee the obtaining of a sufficiently
close wvalue to the true optimum by setting the maximimunm
allowable constraint violation to a very small number., This
would lead to both an increase in the number of problems to

be solved and of pending nodes.

The conclusions about the main components of the Branch and
Bound algorithm will be drawn next : The sesarch strategy or
node selection rule is the criterion needed to select a
subproblem ie: node of the tree to be examined. The best
strategy seems to be between the extremes of depth first
and breadth first. Choose the best sucessor node when
available but do not perform automatically backtracking
when no sucessor 1s available. Instead in such cases one

chooses the node with the best evaluation. In fact the node



4.13.

should take into account besides the lower bound given Dby

the solut

ion ©

f the LP the distance from a feasible

solution measured by the product of the dual multipliers by

the constraint infeasibility.

The branching rule is the device used for Dbreaking up a

subproblem

ie

: For generating sucessors of a node of the

search tree, Soland's weak branching rule was adopted. By

contrast

to th

e strong rule where 2" nodes are created at

each iteration in tnis instance only two problems are

originated., Since in all problems the maximum Infeasibility

has been

defin

@d with respect to a single variable the

branching rule subsumes the criterion for selecting that

variable.
rules like
constraint

constraint

1ts
the
s or

. The

choice may be governed by various heuristic
largest difference out of all wviolated
the largest difference in the most violated

latter scheme seems to be superior to the

usual one since the original domain is subject to bilinear

egqualities. Perhaps the single most important component of

all B & B methods from the point of view of its influence

on overall efficiency is the lower bounding procedure. The

envelopes

given

for factorable terms within a rectanyle of

bounds substantially reduce the gap between the nonconvex

and underestimating functions.

"inside-Qut"

Approach

In this

sectlio

n an alternative branch and bound algorithm

for the minimization of problems that may be reduced to

factorable

form

is presented. Each iteration takes place

over a subinterval of the original domainh given by the
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bounds on the variables and consists of three basic steps.
The first step of each iteration is to determine a base
point from which to branch and bound. Highly desirable
points are local optima of the mninimum volume design
although it is possible to start the algorithm with points
that may not be local minima or even feasible. If this
algorithm is used as a wverification procedure then the
local solution obtained by convex programming technigues is
an ideal starting peoint. Take as incumbent solution the OF
value that corresponds toc a base point if feasible or to

the best feasible solution found so far,

Once a base point is obtainsd the second step consists of
eliminating an interval surrounding 1it. For a feasible
point fv where V represents the iteration number of the
algorithm an interval 1s eliminated for which SV is global
for the least volume problem. It is composed of three basic
substeps. First we divide the interval under consideration
into subintervals around its base point. Next we define a
region of each subinterval over which the base point 1is
global to the original problem. Finally we form a total
elimination interval from the union of the regions
eliminated over the individual subintervals. For infeasible
gv we find and eliminate an interval surrounding it for

which the 1linear convex anvelope problem (LCE) and hence

also the least volume problem has no feasible solution.

In the last step we enter the branch and bound section.
Uneliminated regions are partitioned into subintervals and

a LCE problem is solved for each of them. These lower
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bounds are compared to the value of the best upper bound
(incumbent solution). All previously uneliminated intervals
with Dbowunds which equal or exceed the incumbent ars
eliminated from further consideration. If any subset of the
original domain remain a new iteration of the algorithm is
initiated over the uneliminated subinterval with the lower

bound around a new base point.

Soland's method partitions the original domain into two (or
more) m~-dim subintervals and the LCE are constructed and
solved over each subinterval and thelr respective minima
are recorded. At each subsgquent stage partitioning is
carried out on the subinterval with the smallest recorded
minimum and the process continues. In Fig 4.12 it is

represented the difference in strategies between both B & B

methods.

Q
TN \

X v

X

N\
Reeves Soland
Fig 4.12 Comparison of Reeves and Soland

Strategies
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The termination criteria for verifying a global minimum of
the minimum wvolume design for a fixed set of bounds
reguires that the solution point ?V given by LCE on the

same interval should also be feasible to the original

problem. This implies that all design wvariables are

endpoints ie:

oF ¥' = @& . (4.77)

ither y. = .
eitne %[ %51 i ju

We remind the reader that in our case the OF is linear and
for any interior point the convex envelope of the

constraint functions would give a lower bound on the true

values.

Since yg-is one endpoint of the region of each subinterval
for problsm r the other endpoint is a distance Al? away we

want to find zfl:gfor a particular r. By adding the
artificial variables g . the problem (VAF) of choosing;&zbg Eﬁf

B8 /La,'d
can be written

m
Min >, q 4 (4.78)
i=1 -
st L(d,Ar)Zfr— ca/ﬂz— 1 -qg=14 (4.79)
Kiaa)y®—c M7 ~q = 9 (4.80)

Jorfhet g 229

are the vector of member length and active

where },Sd
displacements at the local solution respectively. Csa is 1
; v . vV
is .= a_, and -1 if L= A
S Y37

There is always a feasible set of Lagrange multipliers that

solve (Viﬁ%. In particular when[l;r: i the problem (vzﬁﬁ
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reduces to the K-T equalities for the minimum volume
design. These subproblems are similar in structure over the

various subintervals.

Each problem (VZ%) is nonlinear since terms of the formZ{?-

J
particular AF. We should not attempt to solve them

A% are present but they become linear in jdi/i§/¢§for a
directly. Instead this problem is replaced by a sequence of
(ngﬁ with small adjustments in previous iterations. As we
move from a subproblem to another we never attempt to
eliminate more of either the upper or lower range of a

that was eliminated over previous subintervals. While th;s
decision tends to reduce the size of the overall
elimination interval it makes the total elimination

interval completely rectangular. This reduces the number of

({LCE) solved at Step 3.

The algorithm will be briefly stated in the sequel

INITIALIZE

STEP

STEP

Set V = ¢ and the bounds on the variables corresponding to

the supplied range .

1

Find a local minima to the bilinearly constrained problem
over the hyper-rectangle of bounds on the variables under
consideration.

V=V +1

2

_— ; ; v x v,
Eliminate an interval surrounding x over which x is
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global to the least volume design. We will consider only

thes areas as endpoints.

(1) For feasible x

(2)

a) Subdivide

Since each factorable term consists of the product of
a design variable times a state variable and thes
volume of the material depends solely on the wvalues

assumed for the areas.

For each component a .. < a ., < a. subdivide the
v i 4 v v 4 - V ¥
interval [a jllra iﬁ into [ajl'xj and [xj,aju] « If

There are r such elements this operation results in 2 ®
subintervals.

b) Investigate individual subintervals

Initialize the bounds for the total elimination
interval
If
v V W Y v ¥ W
x ' = a => e, = X. et =x" 4+ AN
J JAL Ji 3 Ju J d
Vv v V W 'l v v v
a ‘< x'<a."=>e.l =x.-=-IN a’ = K., + :
31 J Ju J4L J J ju J 4 J
x§{= a ‘V => e.v = XV *ﬁﬁv e.v—= xv
J ju 3l J J Ju J

Find 2N by solving (V/X) corresponding to each of the
subingervals defined. After all the subproblems are
solved for each 1 = 1,...m choose that corresponds
to the minimal wvalue of the range eliminated by all
relevant subproblems.

c) Form total elimination interwval

The total elimination interval is given by {ejg}ejﬁ
yJ=1l, 0ol W

For infeasible x this procedure is simplified. There

e
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is no subdivision phase and therefore only one elimination
interval to consider

Set the rectangle

vV _ VoY v v
X 5= ayy => & g =X o = ¥y + A\ ;
v, V., .V _ V_ T AV v o_ v v
agp < ¥y<ag e gAY ey = xy Ay
v V_ VAT v v
X, = a, => e ., = X ,- . e. = .
i~ i AT E3TA Gy G T X

defining the interval of variation of the design variables

V_ 4 v 4 are the bounds

and en+j,17 wy Tn+j,a “u

en the displacements.

Construct and solve the LCE over this elimination interval.
If it has no feasible solution increase each A ? by some
amount and adjust the bounds accordingly. Repeat this
iterative process until either the entire feasible region
of the original ©problem 1is eliminated or a feasible
solution is obtained. In this latter instance then the last
interval with no feasible sclution will be taken as the
eglimination interval.

3

Branch and bound

(1) Partition the remaining regions 1into subintervals.

Initialize the bounds on the remaining intervals [EXLEEJ

to [al,au]. Take a region remaining after the elimination
interval has been removed from the rectangle of bounds on

the areas and for each j=l;...m in turn (where m 1is the

number of members) partition it in intervals
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v v : v V
l. If a..< e.;, then form subinterval a..< x. < e,
%Jl il . J1="7 = TJu
and gj%i xjvﬁ éju for the remaining area bounds.
Set a.q= ejl
2. If e .'< a.'then form the subinterval e .'< x < a.’l
u =ju Jju— = = =ju
s .
and Ejii X £ ij; for the remaining area bounds.
Set a.v= e.V
=Jnt ju

(2) Construct and solve LCE over each subinterval.

(3) Examine LCE bounds.

Eliminate those subintervails that either make LCE
infeasible or with bounds greater than the incumbent
solution. Collect the uneliminated intervals together with
those remaining from previous iterations.

Terminate 1f there are no more pending nodes. Otherwise

(4) Branch to the interval with lowest bound.

Reset the bounds on the design variables to those of this

range. Go To Step 1

4.1 3.1. Applications

Reeves' algorithm was initially intended to solve all-
quadratic programming problems. All bilinear forms need to
be separated by an appropriate transformation involving the
addition of variables. In this paragraph an application of
these concepts will be made regarding the three bar truss
design problem acted upon by two alternative loading
conditions. In order to eliminate an interval surrounding
the 1local optimum at Step Z up to 2.125ubprob1ems would

have to be solved at each iteration.

It has been mentioned in 4.12., that a £factor of prime
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importance in wview of overall efficiency 1is the lower
bounding procedure adopted. Therefore we will approximate
the nonconvex functions with the envelopes obtained from
the factorable programming approach. ©Now only 2 E = 8
subproblems (Vﬂra need to be solved at Step 2. This is one
method for eliminating an interval surrounding a base
point. There are obviously many ways of adjusting the upper
and lower bounds on such an interval. For instance using
the factorable envelopes set the optimal design areas as
one of the bounds in each (LCE). This avoids the

elimination of a small &£ -interval corresponding to two

T
infeasible (V/\) subproblems defined for opposite [\°.

STEP 1

The first step of each iteration is to determine a
local optimum from which to branch and bound. This
base point may be determined by a convex minimizer

routine. Suppose we start with the optimal value

a; = 7.024 ap = 2.138 az = 2.756 OF = 15.969
1 1 1 _ ;
2
S-T =—1.252 Sg = 5,819 S% =T7.871
STEP 2
First we try to eliminate the entire range of a . ie:

J
[ajy »84,]1 for as many j as possible .The purpose of

this is to determine whether or not we c¢an reduce
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branching and bounding in Step 3 that is to minimize

the total number of (LCE).

The elimination interval was obtained after two runs
of 8 linear subproblemns where the max imum
infeasibility was 1limited to an  upper value for
solutions not coinciding with the base point. The
scaled feasible points corresponding to those
solutions would have a volume that exceeds the
incumbent. Thus the intervals they define can be

eliminated

A
5.00
3.14 Cerr
14 317

1.00 1.85 2.54 4.00 A 1.00 5.69 7.97 11.0O Ay
2

The total elimination interval is given by

eq = [ 5.69 1.85 2.,22]
e1 = [7.97 2.54 3.14]
u L] . L]

STEP 3

We now take the region remaining after the elimination

interval has been removed from the entire range and
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partition it into 3.2 = § regions. Subintervals
1,2,5,6 <can be eliminated (1 and 5 because their LCE
has no feasible solution 2 and &6 because their

lower bound will exceed the incumbent).

5.00 / éﬁw | 5;//

4

.\QS\
N

inft Sine

5.69 7.97 11 5,

5.4 774504

N\

|t

.00

1_
l_n
6]
n
(i
'
L
e,
s
)_L

For the next iteration of the algorithm we branch to

interval 4 with the lowest lower bound.

The base point

a, = 6.281 a,= 3.155 a,= 2.140 OF = 15.064
s' = 9.871 s!=5.85 s.l=—2.015

1 2 3

2 2 & o

s? =-1.461 s5=5.618 sZ= 7.071

is infeasible. The procedure is therefore simplified:
There 1is no subdivision phase and only one interval

should be considered. If we use the underestimate
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given by factorable underestimates we find the total
elimination interval by trial and error. We will also
limit the maximum infeasibility and eliminate any
interval giving a scaled feasible design greater than

the best local solution.

Aj
5.00
2.34 -
7777
L /’2
1. 6E /5y, 75,
1.00
2.54 2.00 3.51 400 5.69 6.13 6.99 7.97

Total elimination interval

il

[ 6.13 3.00 1.86 ]

[ 6.92 3.51 2.34 ]

g N

STEP 3

The branching and bounding section is entered. The
procedure is equivalent to the one described in Step 3

of the previous iteration.
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A3
5,00
X 777
/2,/
& 15.77 :,/
® 7
2.34 — 7 .
L inf >1nc 1na
P -
1.86 Z < ///
5 15.74 '
1.00 ‘

2.54 3.00 3.51 4.00 AZ 5.69 6.13 €.99 7.97 A1

We eliminate the regions corresponding to 3,4,5,6 and
choose the bound 15.680 obtained at Step 3 of the

previous iteration

STEP 2

Consider the infeasible base point

a = 6.940 a, = 1.689 ay = 2.897 OF = 15.600
s = 7.871 sl =5.732 sl=-1.339

1 L} 2 L ] 3 -

> > >



7777

® .3

IR

1.00 1.14 1.82 1.85 A
2

5.RY

The total elimination interval

STEP 3

.00

.58

.38

.00

ol

[ 5,94 1.14 1.38

[ 7.76 1.82 4.58

777,

zi

7

>ind

PQQ

715.9

5.94

7,7&7.97A1

is given by

\ \3
N\

inf

N\

N
N

l.eo 1.14 1.82 1.85

A

5.

69

162

5.94 7.76 7.97 A1
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The algorithm would proceed. It terminates after 8 cycles
comprising 78 linear underestimating subproblems and
elapsing 18 ieu. This wverification procedure does hnot
include the effort the local minimization routine has taken
to find out the first base point. The problem refered in
4.12. as F3 serves to compare the efficiency of this

strategy with Soland's scluticon method.

4,13.2. Further discussion

The main advantage of this approach lies in the convergence
to a f-optima ensured in a finite number of steps [ Reeves
(1973)] . Scland's method generally does not converge in a
finite number of iterations and intermediate solution
points generated are not necessarly feasible (although they
may be scaled in the least volume design). Also the local
minima provide good intermediate solution points. In many
instances the first found optimumwill be global. They also
tend to accelerate the remainder of the algeorithm in which
we either verify that the local is global or determine a
better 1local and repeat the process. Using local minima as
base points tends to eliminate larger intervals. Local
minima provide a good basis for comparison for the
elimination of entire intervals with greater LCE bounds .
Further obtaining a 1local minimum x* and eliminating a
region around it increases the likelihood that the LCE will

be either infeasible or with a solution value that will

exceed the incumbent.

Theoretically in wverifying a global minimum the number of
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elimination subintervals determined at Step 2 grows
exponentially with problem size while the number of LCE
grows linearly with the number of variables. This appears
to be a major drawback to the application of this

which
philosophy. A factg?*igads to lessen the importance of the

is that
growth rate in the number of elimination subintervafﬁ JEas
the problem size increases it is increasingly unlikely that
all such Sﬂ?intervals will be investigated ( we recall that

as i

as soon 1is not possible to eliminate any nontrivial
interval for a particular subinterval any remaining
intervals are not investigated). Another criticism of this
method 1is related to the triail and error procedure for
determining each set of A r. A  exponentially increasing

r
number of problems (VA) may need to be solved a number of

times.

There are many possible variations of the algorithm
conce rning elimination interval stategies (in the
formation of the total elimination interval) and
partitioning strategies at the last step (use of an hybrid
method to avoid the exponential number of subproblems

corresponding to increasingly smaller intervals) .



CHAPTER FIVE

RESQURCE-DECOMPOSITION APPROACH

Introduction

The publication of ths Dantzig-Wolfe decomposition
principle [Dantzig and Wolfe (196@)] initiated the work on
large scale mathematical programming that has followed. It
operates by forming an equivalent master program (MP) with
a smaller number of rows that link blocks of equations but
with wvery many columns that can be generated without being
tabulated. The resulting algorithm involves iteration
between a set of independent subproblems whose OF contain
variable parameters and the MP, The subproblems receive a
set of Lagrange multipliers from the MP and they send their
selutions back to the MP which connects them with previous
results in an optimal way and computes new multipliers.
These are again sent to the subproblems and the iteration

proceeds until an optimality test is passed.

It can be viewed as an instance of the GLP whose columns
are drawn freely from given convex sets. Such a problem can
be studied by an appropriate generalization of the duality
theorem of LP which presents a sharp distinction to be made
between those constraints that pertain only to a part of
the problem and those that connects its parts. The
decomposition principle has an economic interpretation
based upon viewing the Lagrange multipliers as shadow

prices. In this decision making scheme that is not truly
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de ¢ entralized the central agency makes the final decisions
by assigning optimal weights for subsystem proposals. 0ld

offers are never forgotten by the coordinating unit.

Consider the action of the ith subsystem and the way they
affect the overall objective =z viewed here as the total
cost to be minimized. If subsystem j chooses an activity
vector xj it incurs a direct cost cj xj « It also uses the
amount Aj ﬁj of the shared items thus denying them to other
subsystems and possibly increase their costs. In order to
make subsystem Jj take this indirect contribution to cost
into account a set of shadow prices is announced for the
shared items. The subsystem 1is then forced to pay for
whatever the gquantities of the resources they wuse. If a
particularly valuable item 1is assigned a high price then
this should discourage the subsystems from using excessive

guantities of it as they might if no penalty were imposed.

Bender's resource-decomposition algorithm initially used to
solve convex and partially convex problems involving two
types of variables was shown to be a dual wpair of the
Dantzig-Wolfe decomposition principle when applied to the
solution of a large scale LP [Lasdon (1978)] : If we have a
LP in which the variables are divided into two groups ¢to
solve the primal problem by Bender's decompesition is
equivalent to apply the Dantzig-Wolfe principle to the dual
LP. Of course when one considers nonlinear programs there
are important differences between both procedures. The most
important 1is that Bender' s algorithm can handle a much

wider variety of programmes than any extension of the
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decompositon principle.

If one set of the variables y in the bilinearly constrainad
optimization is held fixed the resulting problem in the X
set of variables becomes a much easier linear optimization
task. Although the former problem is not convex in the X

and y variables jointly by fixing y renders it so in ¥

Y
-~

(LP) . It is evident that there are substantial
opportunities for achieving computational economy by
somehow 1looking at the y-~space rather than in the x.y-
space. We expect the nonconvexities to be treated
separately from the convex portion of the problem.

The key idea that enables the problem (P)

Min cT % {5.1)
st gr x + x T H,_ .y > b, i=l,...m (5.2)
— i~ ~ 1. — i
g < < ie Y 5.3
PRY Y ox yE (5431
X. € x £ % ie XEX (5.4)
1—-. — .1

to be viewed as a problem in the x-space is the concept of

projection (sometimes also known as partitioning)

Min V(f) {5.5)
st ;E XNV (5.6)
where
vi{x) = infimum E{DE {5.7)
st gT x + xTq y — b _ > 2 (5.8)
- is - S i =
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? < F S—Y (5.9)

and

y - b, > @ for some y¢ Y}
(5.18)

Note that v(x) is the optimal value of (P) for fixed x and
evaluating v{x) is much easier than to solve the bilinearly
P

constrained problem itself.

Denote (P(X)) the optimization problem (5.11)-(5.13)

Min <o~y (5.11)

st gIx+%Tu_y-b_ >0 (5.12)
< .

PEYEY pax (5+13)

The set V consists of those values of X for which P(?) is
teasible and XNV can be thought of as the projection of the
feasible region of (P) onto X-space. It will be shown that
the projected problem (5.5)-(5.1%) is equivalent to the
original problem. The difficulty with the use of the latter
as a route for selving (P) is that the function v and the

set V are only known implicitly via their definitions.

In order to overcome this difficulty a cutting plane method
is devised that builds up approximations to v and V. The
central idea is to use linear duality theory applied to v
and V after projecting the original problem. The master
problem will be solved wvia a process of relaxation that

generates dominating approximations to v and V. This is
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accomplished by obtaining the optimal multiplier vectors
for P(x) corresponding to various trial values of x and

adding new cuts to the relaxed master problem as needed.

5.2. Formulation of the master problem

The master problem which is equivalent to (P) 1s originated
by a sequence of three manipulations.

(A) Project (P) onto x resulting in (P(?))

(B) Invoke the natural dual representation of V in
terms of the intersection of a collection of regions that
contain it.

(C) Invoke the natural dual representation of v in
terms of the pointwise infimum of a collection of functions

that dominate it.

(A) is based on the following projection theorem:

[Geoffricen (1972)]

Problem (P) is infeasible iff the same is true of (5.5)-

(5.1¢). 1If x*is optimal in (5.5)—-(5.10) and y achieves its
* * % -

minimum in (P(x)) with x=x then (x ,y ) is optimal in (P).

This theorem can be extended to cover f-optimal solutions.

(B) Assuming that the set

L m_ T i
L = { zZeER ggx +x Hyy-by > z; }

- — -~

8 <Y £ ¥Yoax i=l,...m (5.14)

is closed for each fixed XEX.
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The V-representation theorem states that a point Xg¢ X is

also in the set V iff it satisfies the system

m
[ inf (—Zu _(g_T.X +xTH_Ty~ bﬁ))] <8

yeyY  i=t Yt~ ¢
all ueu (5.15)
where
{ m m
U = UER u_ =1 5.16
VER i2=1 ;=11 (5.16)

Proof (1) =>

Let X be an arbitrary point in X. It is trivial to verify

-~

that if

(1]
Vo]
il

xev=1{x X +x"H. . y-b_ >0} (5.17)

for some 8 < vy < %ﬁ: i=1l,...m

~

and for all

I
ug 2 g ;2;; ¥, =1 ieu u
i=1
[i(—u g% +%TH_y -b))1 <2 (5.18)
= I R

Hence

m :
[ inf (=), u. (g?Y+§TH
1 ¥ oas ~ ~
ye¥ i=1 -
for all uge U {(5.19)

PTC A B
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(2) <=

Suppose that x£X such that

s T -
[ 1v€an (_.21ui (gsx +x Hsy =bs))] < 0
5 i= = S
for all ug U (5.20)

Then
m
, T- =
sup [ inf (~—ZJu__rL (gi.x + TH ¥ = bi)}] < @
el ye¥ 4i=1 - 2 = T
(5.21)
It follows that
N m
. -~ =T
sup [ inf (-—Zui (g;x +X THyy =B )] =B (5.22)

veEU yeT di=1 ; -

since sca 1 ing does not affect the sign of the bracketed

expression,

But this last expression is the dual with respect to the
bilinear constraints {(for a fixed walue of X) of the linear
program
. T
Min @# vy (5.23)
yex ~ °©

st gg?i + 28 .Yy = b .

H; s 20 (5.24)

having an optimal value of @. This condition together with
the wverifiable assumption that %yis closed for each xEX
(since it is affine) implies that the primal problem is

feasible and hence Eex.

I e - b
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QED

REMARK

If the primal problem obtained by fixing x = x is not

feasible
Min EEEX (5.25)
st g R+RH y-b >0 (5.26)
? < y i'fnmx (5.27)

then there 1s an extreme ray such that the dual OF
increases 1infinitely along a certain direction. This only
happens if the OF of the dual problem (Dr)

is positive when xeX is infeasible

m o nz
Max 21, u g (b g 9 %) = 20 vy Vg, (5.28)
1= Je=1
I _
st Shu, (X “H) - v, < 0 (5.29)
— . 1 N ._1 J —
=1
ij. i ugu (5.33)
or
> T
Max u . (b: = gz X) = V. Vo (5.31)
u,v  ict iYHs i 2 =1 i ¥ jmex
= 7
V20 utuy (5.33)
We have
B T n o _7 +
max éjiui‘(b - = g if) -2 124 i(f %i)} yjmax
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uecu (5.34)

where the notation [(...)]T means max [8,(...)]

Wolsey (1981) arrived at these cuts by using dual functions
in a general duality scheme. Let U be the solution to

problem (5.34). A cut function is defined such that

If x is infeasible

m n m .
_lewb_-ggm + 3 [&1L(xT%HTy, < 0
1 — L

1.q 104 - S=1 i il j Tjmax
(5.35)
For all feasible x¢ X
2 3 & Ui +
=T by =gl x) #2L02) B Oy >0
i=1 J:'] i=1 - - J JHa
(5.35)

(C) Assuming that v(;) is finite and P(E) possesses an
optimal vector for each fixed ;EXHV the v-representation
theorem states that the optimal value of P(;) equals that

of its dual on XNV ie:

: L e T7 .5 T
v(x) = sup [ inf c*y - 37, i(gix + x —H Y- %')]
) w0  yEY ” i=1 - T
for all XEXNV (5437)

Proof

The proof 1is a result of LP duality. Let u be a optimal
multiplier vector for the primal problem; then u is also an
optimal solution of the dual and the optimal values of the

primal and dual problems are equal e.g.
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For each fixed xgXnV the LP

T
Min ¢y (5.38)
T = =T )
st gy X + X Hyy - b >0 (5.39)

has the following dual

(g,

7 m
Max [ inf c” y - 3| u A

~ 1

Hyy = bp)l (5.40)
>0 VEY - ) iz1 ~1

REMARK

For each feasible Xt XNV consider the problem P(X)

Min QT y (5.41)
st gI X+ X' Hiy-b >0 (5.42)
PEY S Yy $54 431

ie
y > ¢ and -y > -y

R ~ ~ mnax

Using duality we obtain the following LP

m T _ I .
Max ;:1ui (by ~g3X) - jZ:. ¥ Yimg (5.44)
o =
st %ii ug (f Ei) - % Lc . (5.45)
u,v > 8
or
I T In
Max §1u1 (bs = g3x) —%vj . R (5.46)
= -
st v.>—c.+z,ui(x HJ (5.47)
— J Jd i o F R
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Thus

A 3
g 14 . 3

by ~ g Z{c +Z R SN

yjmax
(5.48)

Let the optimal multiplier vector (dual variables) of this

LP be u

A support function is defined for each feasible x such that

will give a lower bound on the solution of (P) ie:

J113 n
Z'ﬁi(bi %

m
- T +
) Z Uy (0 Bl Y VIX)

He

for all xeX (5.49)

and

- T

Ma
o
-

[N
I
e

™=
cl
]

ta
1l
—

; by =

lx|

-+ _ —
%i’% YimaX v(x)

I-'o

(5.50)

By wusing the three thesorems it is possible to define the

following master problem :

m
min [ sup [ inf c y'—.Ezlu -(gT + xJ‘Hi y - bi)]
XEX w20 yEY B =1
for all u®> @ (5.51)
Jiil
st [ inf Zug(gix+x Hsy - bs)] > 0 (5.52)
i=1 = -
vyeY
- m
for all u®> g and Z .= 1 (5.53)
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or using the definition of supremum as the smallest upper

bound
min 7 (5.54)
m
s oy
st (iy 1 - ;;%u ;(by = gi x)
= = s T ¥
+3§1 [~c s+ %u FRC N PRV e (5.55)
= [ Y
(ii) = > u (b, - 97 X)
1= - -
n m o +
+ Z [ Z u (X fli)j] yjma% P (5.55)
- c
8] S—>- @ U C—>- & and Z ui = 1 (5.57)
- - T=1

This master problem (MP) is therefore eguivalent to the
original problem (P). However (MP) 1is of theoretical
interest only since it has an enormous number of
constraints. But it can be solved wvia a series of
subproblems. At each iteration a relaxed version of the
(MP) containing only few of the constraints of type (i) and
(ii) is solved. The solution (%,g) will be tested for
feasibility in the initially unrelaxed master problem by
solving the subproblem (P(x)) or its dual) and either new
cuts or support functions will be added until a termination
criteria shows that a solution of acceptable accuracy has

been obtained.

Both the cut and support functions define a piecewise
concave region and each relaxed master problem (RMP) will
consist of a minimization over a piecewise concave region
ie: nonconvex programming. The disjuntive terms in both
support and cut functions can be reformulated by

introducing binary variables so that (RMP) becomes a
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standard mixed @-1 LP. Let L and U be the lower and upper

bounds on the affine expression in each term

L<fo+e£U

-~ ~

(5.58)
B <d <1 (5.59)

is the interval of variation for any binary variable Jd e B
= {ﬁ,l}. By introducing the new variable r the disjunction

can be linearized
r<é u (5.60)
r< (8- 1) L+ (fTx +e) (5.61)

A major drawback of this substitution is the increase in
problem size at each iteration due to the introduction of a

number of new variables and constraints.

Alternatively (RMP) can be written as a complementarity

programining problem by introducing two real variables r and

ik

g and a constraint for each of the terms [ £~ x + e ] such

that

TX

~~

g=r-f"x-e (5.62)

and the complementarity condition
r'qg = @ (5.63)

thus saving the number of constraints and avoiding the wuse

of integer variables.
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Relaxation process

In the following relaxed master problem only few of the

constraints (i) and (ii) of the master problem are included

Min 7 (5.64)

i T
L mo_ +
+Z[—C.+ZU?(XTH.).] y 2> 8 (5.65)
J=1 J =1 1 &~ "% jmax
m
(ii) => " u, (b, - g &)
i=1 -

N n m o + § s
o, (>, x"H )Ty 20 (5.65)
=1 i= jmax

XE X E=1;.6.kt §=1 ;.05 (5.67)

An optimal solution (f;Z-,;) of (RMP) is also optimal for

the unrelaxed (MP) and therefore the original program (PB)
iff (ﬁ;§) is feasible for (MP). Furthermore subproblem

(P(x)) is used to test (n’f,?q for feasibility in (MP).

A- X satisfies the constraint set (ii) of (MP) iff (P(x))
is feasible. The feasibility of (P(x)) implies that x &€ XNV
and hence satisfies the constraints (ii).

B- if (P(;)) is feasible then (/?,x) satisfies the

b

constraint set (i) iff i a v(x) .

Thus (»E,i) is feasible for (Mp) iff A- (P(x)) is feasible

and B~ m > v(X) .
b -~

First suppose (P(;)) is not feasible. This means that the

its dual problem (D(x)) increases along a certain direction
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ie: a cvombination of constraints that has no solution in Y.
Hence x does not satisfy some of the constraints of type (ii) in
(MP). To eliminate this inadmissible point x the multiplier

vectors corresponding to the dual of

T
inf 1 BT y : H_l y £ b, - gi

tox|

are used to build up a cut function (constraint of type (i1))

that is added to the (RMP).

Next suppose that (P{%}} is feasible but ﬁ < wv(X) . This
implies that some of the constraints of type (i) are violated.
In this event the dual variables u come close enough to be
optimal in the dual of (P(%)). Since v(%) > % ,these u are
called near optimal vectors. In order to satisfy the vielated
constraints we save 9 and add a support function (constraint of

type (i)) to the (RMP).

The relaxed master problem is solved by successively cutting off
solutions which do not satisfy all constraints. Both the cut and
the support functions are piecewise linear convex but because of
the signs of the inequalities 1involved they give rise to
nonconvex features. In Fig 5.1 the several subdomains on the x-
space represent the feasible region left after a number of such
cuts have been introduced and the function over these regions is
the lower edge of ﬁ, that 1s supported by a number of nonconvex

"kinks"®,
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Fig 5.1 Resource-decomposition Algorithm

The R-D algorithm

The Resource-Decomposition algorithm is stated below:
1
Let UB =+ and LB =-« be the initial upper and lower
bounds respectively on the optimal value of the OF ET y of
program (P). Set a tolerance value £ and k = 1 = §.
Generate %EX and Go To Step 3
2
Solve the (RMP)

(1) if (RMP) has no feasible solution there is no

fresible solution to (P).

(2) let (;L';” be optimal solution to (R¥P). Put L3 =M
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1f uUB - LB<E Terminate. (E,?) is the optimal solution to

(P).

3

Solve the dual D(x) of the projected problem (P(z))
(1) If the dual is unbounded Go To Step 5 .
(2) Let U be the optimal solution to (D(}E)). v(x) is
given by ¢ L E where y is the set of multipliers of
{D{E)). If V(E) - LB < £ Terminate : (3,2) is the
optimal solution to (P)

4

If v(X) < UB set UB = v(X)

b

Lette =t + 1 and E

Pt |

Add a constraint of type (i) to the (RMP) and Go To Step 2
5
Generate a dual ray via the LP (DI)
- -
= =
Letsf Sp + 1 and u u

2add a constraint of type (ii) to the (RMP) and Go To Step 2

Structural Synthesis Problem

The application of the algorithm described above to our

structural optimization problem is straight forward.

Let

X = 8 vector of member stresses

e -~

y = a - al_corresponding to a translation of

the axis corresponding to member areas
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c =1 member lengths defined in

the OF of P(x)

IS B PEIE HP R P
-} aias -AF
|/ (L ) K
o 2" %y
2 -0 * —d3
L _ “ B L |

are the matrix and vectors corresponding to bilinear linear

terms and the right hand side of the constraints

respectively.

Global optimality

If the algorithm is terminated with a feasible solution the

global optimum is reached.

When u is an optimal multiplier wvector it indexes a

constraint of type (i) that is most violated at (ﬁ,§). When

no such optimal multiplier exists how near u comes to

-~

indexing a most violated constraint depends solely on how

nearly it solves the dual problem. How <close u ® comes

indexing a most wviolated constraint of type (ii) depends

only on how close it solves the dual problem of

inf { Ty : g2 T

P
“ 1 0~

t %l

Hy y > by i=l,...m ;EIEY}
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(5.68)

Therefore (%,E) will be infeasible at the next iteration of

the algorithm.

(1) If g is feasible the new censtraint of type (i) will
cut-off (ﬁ;ﬁ).
(2) If ¥ is infeasible the new constraint of the type (ii)

will cut-off x.

To prove optimality it suffices to note that since (RMP)
is a relaxation of (MP) will always be a lower bound on

v(X).

QED
REMARK :
Although the sequence of LB is monotonic nondecreasing the

segquence of values for v (%) needs not be nonincreasing.

Acceleration Algorithm for Structural Optimization

One of the most basic properties of a trussed type of
structure is the scaling invariance of the stress resultant
vector . The internal forces in a statically indeterminate
structure are a function of the cross section . However if
all areas are multiplied by a positive scaling factorﬁ the
member forces remain unchanged and all member stresses
would be multiplied by 1/€ . The nodal displacements would
also be affected by a factor of l/e since they can be
represented by linear combinations of the member stresses,

These scaling properties will be wused to devise a

) AT il o
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simplified version of the R-D algorithm.The algorithm
previously presented requires +that each y variable : be
situated in the nonnegative half space and the
Corresponding nonnegative piecewise concave ternms will be
multiplied by the upper bound on y,which has caused x to

represent the vector of member stresses.

It is evident that a bar is subjected to either compression
or tension but not to both at the same time. Each member
stress may be restricted to vary 1in the half-space that
will be nonpositive if the member is compressed or
nonnegative if the member is tensioned. Now if we let vy
represent the state variables and x the design variables

~

1

=1 +
[ u H xj -C ]j yjmax Ly <y max (5.69)

<]

can be transformed into

=T “+
[ (u H x - c) (y . +y ) ]
~ =] Jjmin  gumax

YLy (5.78)

where either y or vy will be zero. The nature of each
jmin  jmax
plecewise concave term would therefore be maintained eg: in

the case of y = 9 we would consider only the nonpositive
-7 Jmax
factor (u H gj— ch

The projected problem (P(x)) onto y is

Min 1 =x (5.71)
~T E ok )‘ k|
st X H j_y = . 1=1,...0 (5.72)
- : i

-~ - -~
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dak¢<pykecagk 5.73
~1—-f¥ = ~1 ( )
T ok
B LyFk=g (5.74)
| P k
< < o7
fl‘”ﬂ —fu (5.75)
Therefore by fixing a set of areas ¥ a unique set of
stresses can be determined by matrix inversion from the

equality constraints corresponding to equilibrium and the

compatibility equations. Assuming that a feasible set of

state variables was determined by using a scaling factor of
the

g < P < 1 volume of the structure could be reduced

until it eventually touches the boundary of the space of
stress/displacements. Alternatively if the
stress/displacements are outside their rectangle of bounds

the design wvariables could be multiplied by€,> 1 and the
stress resultant vector would be linearly reduced until it

fits within its bounds.

The scaled wvector of areas Q % to be considered in this

version has at 1least one member fully stressed or a

displacement at a boundary. The solution of (P(P;)) is

unique. To avoid degeneracy a set of multipliers could be

determined by £finding the product of the matrix used to

find the set of stresses by a unit vector containing the

Lagrange multipliers of the stress/displacement at their

boundary . The dual ray corresponding to the previously

infeasible set of areas x can be obtained by mutiplying by

Q the dual wvariables corresponding to the equilibrium

equations while the multipliers related to the linear

active constraints would remain unchanged.
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Since the (RMP) gives a nondecreasing lower bound on the
final solution at each iteration the state variables
resultant will be located outside their bounds unless the
design is optimal. A scaling factor e > 1 would be
determined in order to make (P(Qf)) feasible. The

infeasible set of areas define the lower bound as 1T X

T

Min “E= 1 7% , (5.76)
m n m
st —Z]E?biw- . [E:'G§(QDH 3 * ff
— i=1 = A EI ~ - J
1T s ¢ 7"
(y i1t Yiu 1 >0 (5.77)
XE X S=21, 004 Bp

This relaxed accelerated master problem (RAP) can also be
converted either into a standard ©-1 mixed LP or a CCP that
has to be solved at each iteration of the following

algorithm:

1
T fog o
Let UB =+ 22 and LB = 1 xybe the initial upper and lower

bounds on the opimal soclutien of problem (P).,

Set the teolerance values f' . Let Sf = @ and % = X7

-~

2
Find a scaled feasible stress/displacement vector and the
corresponding factor-p using X .
(1) P < T + § Terminate : (X,y¥) is the optimal
solution to (P)
(2) Find a set of Lagrange multipliers corresponding
to the scaled vector of design variables p X .

: = 4 ofs q ; :
Let sy = 8p + 1 and ug= u for i corresponding to the
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e 0

constraints not involving f)} and u = Q Gi for the

remaining variables,

B ) - ) T —
1f 1Tx < UB and XEX set UB = p 1 x. Add a constraint to

4 -~ - -~

the (RAP).

3

Solve the (RAP)
(1) If (RAP) has no feasible solution there 1is no
feasible solution to (P).
(2) Let U%,E) be the optimal solution to (RAP). Put

LB="T_&
<

If UB - LB (f Terminate : (E;}) is the optimal solution
to (P). Otherwise

Go To Step 2

In this new formulation x,y,l represent vectors of member

areas,stresses and length repectively

R={asagcntng !

is the hyper rectangle of bounds on the design variables.

i w ] ee] o] b=[ A% |
_H? ? _Ak

4 D ay

; -D -a

@ I g‘i

) E
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= =Sk = —_'-sk
?l - X.min g Yu T fmax 1
Computational Considerations
The reformulation of bilinearly constrained problems

although leading to a nonconvex master problem may be of
some computational interest since it is possible to convert
this problem into a standard $-1 mixed LP for which Land
and Powell (1963) routines are applicable. This nonconvex
problem grows into a considerable size if the number of

iterations until the optimal solution is reached is high.

Alternative procedures to solve this problem are Branch and
Bound strategy based on Lagrangian relaxation and implicit
enumeration methods., Some results for the standard problems
tested will be reported in a forthcoming section. The @-1
mixed LP can also be converted into a real quadratic
concave minimization 1linearly constrained by using the
methods described in (2.12) This concave quadratic problem
can be solved by piecewise linearization. A translation

to the mid point along the axes corresponding to the #-1
variables (which would be allowed to vary from & to 1) lead
to a minimization of a piecewise 1linear <concave function

over a linear domain.

Applications

&

The bilinearly constrained problem possessing multiple
optima already solved by the Branch and Bound method will
be the subject of our study in this section. Since we want

the y-variables to vary within the nonnegative half-space
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but including the axes a translation becomes necessary
Min y1+y2+y3+ «3
st x1 Y4 + x3 y3 + .1 X4t -1 x 3 = @

3 X Yy + 1.2 xzyg-—x3y3+.3 X 4+ W12 X5~ .1 Xy = 14

5 x1 + X5 + xgwi 2.5
X1 = [6. 8. -2.5) E,E= [2.5 2.5 0.]
y1= (0. @. g.] f'§= [4.9 4.9 4.9]
INITIALIZATION
STEP 1
Let UB =4 o0 LB =— o0 be the initial upper and lower

bounds on the optimal solution.

set ¢ = .90l and t, =1 . Let xEX be
x1 = .7 x2 = 1.5 xj3=—2.5
STEP 3

Min y 1t Y oty 3+ «3
2.1 y 1+ 1.8 vy ot 2.5 yf =8.34

_y iz _4.9 yi > B izl,'ll3



STEP

has the dual

Max

.3 4+

.18 u

1

o7 u1+ 2J.u2+ u3- ug

—2s5 1

Uy ,us unrestricted and u3 to ug>

+ 9.39 u2""

< 1

4.9116~ 4.9 u

The solution of the dual is 4,588

problem

is

has a solution point.

£

. <177 8.

¢ el

rel

~ 4,9 u

fi 8

g

= v(Xx) . This means

geasible and the given

ge 0.1

T
(yq +¥,) = [4.9 4.9 4.9]

[}(1 3)\’.1 lo .ﬁo ﬂ- _1- go go]

G.

g

that the primal
vector ¥
-7 _

(2) u = [.8657 .457 G. @
v(X) - LB > &
4
Set UB = 4,588 Sf =
7
c =[l- ln lo]
(XTH)»i:

T H )= [B. 1.2%
(x= By = 18. 1.2%5

T _
% B g = Lxg =gl

1.

1.

&

8.

0.

GQ

'-1- Bc

""'lo}



(b =g Tx) = (--.1x1

—-lX

3)

» . e N
(12 1X2 12x2 lxs)

g

L .

We have to add a constraint to the (RMP) such as

—.3~[.057 .457 6. 177 @. @. 0.1 [(-.1lx e 1% 3_)

1@.‘.3X —-12x +'lx 0 g- ﬂ- —4-9 *4-9 —4a9
( 1 5 5 ) 1

+ ["‘l"’(-gS-} 0457 ﬂc 0177 ﬂ- B- B- EI-)

T +
(X1 3X1 lo g- ﬂ- —l- g- go}] 4.9

+ [=14(.057 .457 8. .177 0. 8. B. 0.)

T. .+
(@. 102X2 @t l. ﬂ- g. -1. g.) ] 4-9
+ [=1+(.957 457 0. 177 0. 0. 0. B.)
T 4

X - g- g. l. ﬂ. ﬁ- —lc ] 4.9
( 5 Xz )

1

91
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obtaining the following (RMP)

Min ’Q

st FZ—A_;.87—.@4x3+.@55x2+.143x1+[1.428x £ T e

+ [.548x,-.823]7 4.9 + [—.4x3~1]+4.9 > 0

g < x < 2.5

< ( -
g < x s < 2.5

"'2-5 < X < @n
i 3_

The first constraint makes the problem (RMP) a
nonconvex problem. Each term of the type [...]+ can be
linearized by introducing both a binary and a real

variable and adding two constraints to the problem

Let
x8u= —.4x3u-1. xgﬂ?"qxjgf'l'

(RMP) is transformed into a 8-1 mixed linear program

Min Y

st 72 4.87-.143 %, ~.055 X, +.04% o

4.9 X4—4.9 X5 -4.9 X e

X i % _ X

5  4du

X, £ {l—x5) x41f 1.428 x1 -1,



STEP

<
X _X7X6u

¥ < (l=x ) % __+ .548 x 2-.823

6 7 61

®
| A
b3
»

( - - - - -
x8_ U.xg x81 4x3 1

X > X X < %
s — o b W T e B

X X ,x9 are binary variables.

7
The optimal solution to the (RMP)
LB = 1.868 ¥ = .5 T = 2.5
Lo | 1 2
UB-LB > {
3

Solve the dual of

Min + + + .3
Y1 Y2 YB

- 2-5 y..,= 02
2

1.5y, + 3y, + 2.5y 9.3

The dual solution is finite

corresponding to

uls [1. .333 8. 0. 2.667 8. 0.

~

is 1.868

and

g.]

gives

The primal problem is therefore feasible.

Since 3.60 - LB > ¢

193

3.60
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STEP 4
3.6 < 4.59 = UB . Make UB = 3.60

Add a constraint of the type (i) to {(RMP) .

STEP 2

Solve {(RMP)

Min ”Z

st ) > 4.87-.143% - .055% +.04x, - [1.428x 117 4.9
<=

1

- [.548x,-.823] t 4.9 - [—.4x3—1]+4.9

. 3 ~ a p = e ”'..6 - R= + -
f“z_>_33 2 %) =.04%,~.067%, ~[2%-117 4.9
_ - + - Cfw — 771+
[-4x,-1] 7 4.9 .69)(3 1.657174.9
We obtain after linearization
(2) f‘Z= 1.912 X, =.395 %, = 2.5 X 3=~~1.972

LB =1,912 3.6 - 1.912 > &

STEP 3
Solve the dual problem

Max .3 +.158 u1+9.384 “;{4'9 %5—4.947—4.9u8

t «3 + 1.185 u_ + u_ - <1
st 95u1 5 3 u6-*
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-1.972 u +1.972 u _+ u_—-u <1
1 2 5

u ,u2 unrestricted and u_ to u _> @

5 6=

The dual solution is 3.67

ul = [1.537 .333 6. . 3.364 2. 8. 8.1

v(x) = 3.57 3.67 — LB > §
STEP 4
3.67 > UB
Let Sf = 3 and 33 = u in order to define the

constraint to be added to the relaxed master problem

The algorithm would proceed. As we have mentioned ”l form a
nondecreasing sequence of lower bounds while the upper
bounds obtained from finite solutions to the dual problem
need nat decrease, In fact at iditeration 5 the “l

obtained by solving (RMP) would give the smallest upper
bound recorded. After three more iterations the algorithm
came to an end since the values of the lower bound that
coincide with q; is higher than the incumbent upper bound .

the final solution is 3.533 corresponding to the point

Y . = fa Vv = 3.233 ¥, = . x_ =P, X, =2.5 %_=0.

1 2 3 ' 1 2 3
By applying =a translation inverse to the initial
transformation we get y1 =.1 y2 =3.33 yt5= .1
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5.18. Computational Experience

in
S~
As any implementation of Bender's method the computational

performance of the procedure described above 1is highly
dependent wupon the structure of the relaxed master problem
and upon the f-1 mixed LP algorithm to solve 1it. We have
used two alternative classes of methods for solving the
((RMP)). One is typified by the branch and bound algorithm
aimed at solving the general mixed integer programming and
uses LP ag its main wvehicle. Another is an implicit
enumeration algorithm that solves an LP for each mutually
exclusive set of @-1 wvariables deleting from further
consideration the combinations that would lead either to
infeasibility or to a scolution value that would not be able

to improve the incumbent.

Our considerations will refer only to the former routine
that was used in <conjunction with the R-D algorithm in
order to find the global solution of the small scale
problem possessing multiple optima. Three new 8-1 variables
the same number of real variables and seven constraints
would have to be added after each iteration 1in order to
replace the nonconvex terms that are a part of either
support or cut functions. After 7 iterations and ellapsing
73 ieu the algorithm terminated giving the global solution
stored as an upper bound. The same algorithm and same
routine was used to attempt to solve the three bar truss
subjected to two alternative 1loading conditions. The
convergence turned out to be very slow and due to the

number of variables and constraints generated by the



197

sucessive cuts the method failed.

The same problem was sucessfully solved after only 6
iterations and using 12 ieu when the (RAP) algorithm was
implemented in conjunction with Land and Powell's routine
(1973) for mixed LP. We note that in this case only two
binary variables and two real wvariables plus five
constraints were added after each iteration. The implicit
enumeration routine was used in the same problem consuming
36 ieu. If a smaller tolerance was set the (RAP) algorithm

would proceed and the CPU would increase accordingly :

6 iterations 7 iterations 1 iterations
Land & Powell 12 ieu 82 ieu 261 ieu
Implicit Enumeration 3% ieu 165 ieu

The transformation of the @0-1 mixed linear programming into
a pilecewise concave minimization in real variables lead to
an exponential growth in the CPU ellapsed and was aborted

after three cuts
1st iteration 2nd iteration 3rd iteration

1l ieu 11 ieu 113 ieu

This seems to indicate that although the Land and Powell
(1973) general purpose subroutine for mixed integer
programming while sophisticated in its LP counterpart is
more efficient it is time consuming and may not be used |if
the number of cuts is high., We also remark that early

master problems have too little information to be worth
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optimizing very strictly. It takes several Wolsey's cuts in
order to give accurate information conce rning minimum
volume design. This suggests the MP should be suboptimized
Se+

particularly wheﬁd;j%s small, There is a common contention
that cutting plane based methods (or their extensions) have
been a failure in practice. In fact there have been enough
sucess enough wuntried avenues and sufficientely many new
directions to ensure that the contention is disputable. The
developments of methods more appropriate to the solution of

the relaxed master problem deserve separate research of

its owne.

The study of complementarity in relation to mathematical
programming has been a prolific source of research in the
last fifteen years or so. The feasible region of the Cpp is
nonconvex and even disconnected and this causes
complications when solving this problem. If the MP is cast
in CPP format both branch and bound and cutting plane based
methods could be employed. Balas (1975) may be cited

exemplifying the school following the latter approach.

In general the idea of strengthening the LP relaxation of a
-1 mixed LP is thought to be very important for B & B
based methods. However a straight forward implementation
need not work well. 1In general a stronger LP is
important., Cuts could be wused in the OF in a Lagrangian
fashion but the need for preserving the structure of the

relaxed LP should be considered,

Bender's conventional decomposition procedure could be used

PR Ly R i et e
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te sclve each relaxed master problem. This method has the
advantage of splitting the size of the problem. Whenever
the binary variables are held fixed the remaining LP has
the number of wvariables and constraints considerably
reduced. Geoffrion and Graves (1974) reported that an
optimal solution could be found after a small number of
cuts. One of +the advantages of Bender's conventional
approach to solve the RMP (or RAP) is that 1t offers the
possibility of making seguences of related runs in much
less computer time as compared with doing each run
independently. The reoptimization capability is due to the
fact that cuts devised to solve one problem can often be
revised with 1little or no work so as to be valid in a

modified version of the sams problem.

5.11., B & B versus R-D

In many cases the solution of the structural synthesis
problemn with conti§EUS variables found by wusing an
algorithm which obtain local minimizers can be ssen to be
the glcbhal solution. Rather than an algorithm to solve the
problem one should regard these strategies as
verification procedures. Then its use which is longer in
computer time than an algorithm which directly ¢tries to
obtain 1local solutions can be made gré%er or lesser by
those who formulate the problem to be solved. The
improvement of R-D based methods is highly dependent on the
development of routines that will take advantage of the

special nature of the -1 mixed LP relaxed master problem.
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CHAPTER 51X

STRUCTURAL SYNTHESIS PRCOBLEMS WITH DISCRETE AREA VARIABLES

Problem Definition

Work in structural optimization with <continuous system
variables do not reflect well the real circumstances which
practical engineers have to face. In order to produce a
safe structure with minimum investment they may not be
conce rned with an indirect measure such as minimum volume,
In addition to this daily design work consists of selection
and allocation of appropriate cross sections from the
catalogue supplied by the material makers and not detailed
information on design variables. The minimum cost design is
obtained simply by assigning an available cross-section to
each independent structural member. If the fabrication cost
is not included the objective function will only consists

of the material needed to carry the loads.

Every available cross section will be assumed to have two
independent quantities defining an element of the set Qj.
(i) cross sectional area c

(ii) cost per unit length pj

The original truss optimization problem would now have

additional constraints



a -GQ jz{ Q1J'...erj_
= {(ey Py drennls 4pp )}
J J
j=1,..n (6.1)

These constraints can be substituted by the equivalent

formulation
3
= §
& y EZLCtj' 3 (6.2)
t=1
rj s
P g~ 2LPys¥ 44 (6.3)
t=1
3
s . =1 §=1,..n (6.4)
§=1 73

where 5\t5=g or 1 (&€ B) and rj is the number of sections

avalilable for the current member from the set Qj‘ The

constraints representing bounds on the design variables

would no longer be required.

In order to reflect the minimum cost criteria the OF would

become

Min 17T p (6.5)

—

ie: a 1linear function of the cost of each section. The
optimal truss design with fixed topology and discrete
variables is a ¢-1 mixed bilinearly constrained problem. It

is a problem having a set of disjoint domains defined for

and 1is
JL;:;?Eérefore liable to possess mnmultiple

optima. The only bilinear equations of the system are the

each set of

egquilibrium relations. The §~1 wvariables will appear as

linear constraints. Fixing th (t=1,...r , 3 =1,...n) each
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a jand pj can be determined and the bilinear equations
would become linearly dependent upon the state variables.
The resulting problem is therefore an LP. In order to avoid
an enumeration of all possible solutions some strategies

will be developed in the forthcoming sections that will

lead to the global solution of the original problen.

But first we will develop the standard formulation in order
to find out some special properties the problem may have.
Due to its special uncoupling nature it can be transformed

into another solvable by a standard programming code. From

P Y.

J
a K6 = c ,J\ . and E § = 1 (6.6)
I g5 ¥ t=1 °J

[}

where é\t_e B={@#,1}
J
a typical product term of the equilibrium equations ajSE

J
can be substituted by

J $ k
(> © &3 tj) s 3 (6.7)

Each term of this sum can be replaced by its convex
envelope. Under each loading condition the bars of the
structure will be submitted to either compression or
tension varying along one of the half-spaces. Assuming the
stresses are nonnegative the convex envelope over the

rectangle of bounds

k
<85, (6.8)

g < 3\ , <1 6 < s%
- %3~ = ]

is the maximum of the two expressions



2013

k
- Kk kK _ . k
v = Max J,s + s+ =g "
tj Lo Jucg‘cj i ju !
< 4 sk (6.9)
=7 %3 J
or
4
Vo>
t5=
Kk Kk
v > s J\ + 5 _ = 8 (6.18)

5% g T3 T30

Since the variable é‘t_will'only take binary values and the
J

convex envelope of V iJwill coincide with the product term
% J
Jt' s at 1its endpoints. When the convex underestimate of
J 4
the symmetric of the product function is reguired [(ie:

concave overestimate of the product function) in the rectangle

k k
B < é\ <1 -5, <=5 .< @ (6.11)
- gy ju-— i—
We have
v - k ( )
V _> -5 E 6.12
ti— J
-k I
v > - .13
2 " 95 P (613}

where 5}35 B={ 2,1}
o

By analogy we have

- k A“ k
3 == . (6.14)
t5°3 T
- k
so that V £ has a wvalue symmetric to the wvariable
J
previously considered V t?

The nonnegativity requirement for the wvariables is a

standard feature of most LP codes so that the product term

é\ s%can be substituted by the wvariable V % and the

i 3 t]
constraint
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k k + s - g K (6.15)

V32 % 5u %37 %57 % e

By symmetry the convex envelope on the rectangle of bounds

B < é: <1 s _kg s% <9 (6.16)
3 SR
for the factorable term géjsjis given by
A k
v'tj?- S 5 (6.17)
k é‘ (6.18)

tj—

But this new variable can be related with the nonnegative

variable
g < cg <1 8 < —S'ES ~s_k (6.19)
b J Ji
k k k k
!-tjz s 51 s j_(gtj s i1 (6.20)
k
!tjz 0] (6.21)
Thus
k k
_‘l.tj=‘v -ta (6..22)

fach term of the equilibrium eqguation can be written

. 2.
k J
Assembling for the whole equation
n n I.j
3 k k k
< h ija ij -j§=:‘§ Z}: hlJ c't:j thl = Ri (6.24)
that is a linear expression on thes variables

I . 5
Vi 3=lieeediksloeal 5 oisl,e..B
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Therefore the initial problem can be transformed into
(6,25)-(6.34 ),
another of increased dimensionality‘in which the eguations
are linear and a set of Vfﬁ variables will substitute every
area variable. All the functions involved in this problem
are linear. Since some of the variables are binary this
problem falls into the class of 8-1 mixed LP. It is of no
practical use because of its size. 1In subseguent sections

methods that also solve this problem will be described and

a comparison will be drawn between both formulations,

n r .
3
Min D L 1. D op a0 .. (6.25)
— d F=p 81Tt
J=1 t=1
i
st si= 1 (6.26)
= 3
£=1
ji 24K
n ] ;
| kK _ 9 k -
2L PO R WA - (6.27)
J=1 t=1
BLL s¥= g (6.28)
jid k k
EaliE L2y (6.29)
k k I ;
flﬁgi igu (6.30)
For
k k
0 < s%¢ s, (6.31)
= 3= " ju
k K k. k., k |
Vi s th+sj S iV 52 0 (6.32)
For
K K _
s £¢s¥cop 6.33
jptes 633
v.5c¢d s X & L K.y kg (6.34)
3= t3 T i1 7 Jj1° tj—
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and

5-. €B=420,1}

Some simplifications to the original problem will occur

when the areas are only allowed to take integer values with

constant step size and the cost is considered proportional

to the cross section. Supposing the step size unitary

{otherwise +the transformation of the area variables to the

ratio of these wvariables by the step size vyields new

variables differing by an integer along the feasible

domain) the synthesis problem for discrete variables is in

every way the same as for continuous variables but with the

additional constraint that the a variables should be
integer.
min 17 a (6.35)
st & on, skl i=l,...0 (6.36)
BTLsk= 0 (6.37)
214282y (6,381
STNTH
LR (6.40
? is integer
The discrete nature of the set of desian variables compels

the existence of multiple optima solutions. Any discrete

set of areas ©producing a feasible design with respect to

the stress resultant vector is a solution locally optimal.

It 1is more reasonable in the light of the current state of

b e S R Sl
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the knowledge to adopt methods for the solution of
nonconvex programming than to adept alternative stance and
commit considerable time only with a minimal expectation of

success.,

Branch And Bound Methods

65.2.1. Seqguence of LP

The Branch and Bound procedure previously developed based
on Seoland's algorithm for separable problems can be applied
to this problem. Now the design variables can only take a
finite number of values and it is possible to wuse as an
additional information the knowledge that no such variable
will have a value not coinciding with any available section
at the optimal solution. The splitting rule is therefore
modified to atommodate this fact. The design variables are
eligible to define the interval that will be partitioned
and instead of the solution coordinate the available section
immediately above and below this real value will be used to
define the new lower and upper bounds corresponding to the
two branches. A test on the integrality on all design
variables has to be introduced to perclude noninteger

solutions.

b.2.2. Beguence of LIP

wWhen the available sections differ by a constant step size

the minimum volume design becomes subjected to integrality

requirements in the design variables and possess bilinear
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constraints joining state and design variables. The
algorithm mentioned above can be used again to determine
the global solution of this nonconvex problem. If we

enforce the integrality requirements on the areas a

sequence of LIP instead of LP has to be soved. The advantage

of using a more sophisticated LIP code 1lies in the fact
that the solutions of the problem would be brought closer
to the set of feasible solutions to the original problem
and less problems with greater difficulty woud have to be

solved.

6.2.3 Analogy with an algorithm for piecewise convex

functions

The mathematical problem of finding the minimum of a
separable piecewise convex function has been solved by
Soland's B & B algorithm. The global optimum is obtained by
solving a finite sequence of convex programming problems
corresponding to sucessive partitions of the set defined by
the bounds on the variables on the basis of piecewise
convexity of the problem functions. The algorithm is almost
identical to those proposed for solving problems with
nonconvex constraints but in the latter case the
convergence can only be established at the limit of an
infinite sequence. The interval of definition of each
variablie 1is therefore partitioned into a finite number of
subintervals over each of which all the functions are
convex. They will form & disjoint union of the initial
interval. when each variable is restricted to a particular

partition the constraint set will become convex and so does
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the OF. Thus any local solution of each subproblem is also

the global solution over that partition.

In order to avoid solving all such problems explicitly a B
& B strategy is employed. The algorithm considers subsets
of the feasible solution of the original problem. Find
lower bounds on the optimal solution values in such subsets
by selving convex programming problems and identifies an
optimal solution. The piecewise convex problem is relaxed
by wusing convex underestimates of the original functions
and a lower bound on the optimal solution is obtained. TIFf
this relaxed solution is not feasible in the original
problem the index of the wvariable that presentéihﬁaximum
difference between the original function and its piecewise
underestimate out of the violated constraints/is picked up
in much the same way as previously described. The interval
of variation is now ready to be partitioned. 1In the next
stage a number of subproblems corresponding to the number of
subsets splitting the interval corresponding to the
variable thosen has to be solved (as opposed to the

branching in two new nodes that is a feature of all B & B

algorithms previously mentioned) .

The algorithm is finite. By the nth. 1level of the tree
where n represents the number of variables the lower bound
determined for an intermediate node will egqual or exceed
the solution vector found at that node. If the application
to stuctural synthesis problems is considered/we have to bear
in mind that each interval corresponding to a design

variable can be partitioned into a finite number of subsets

vl Ly et~ e
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(available sections) over each of which it is ©possible to
find a convex envelope to thes original problem. The convex
underestimating subproblem {that could employ the
factorable envelopes referred) can be solved by a LP code.
Each node would then be branched into n new nodes where n
would represent the set of available sections of the
selected design variable. This corresponds to a stronger

branching rule than the procedure described in 4.2.

Resource-Decomposition Methods

The acceleration algorithm (RAP) described in the previous
Chapter seems particularly suited to the structural
synthesis problems with discrete design variables. (RAP)
becomes either a @-1 mixed linear programming or a 2-1
mixed linear integer programming for the general 2-1 mixed
bilinearly constrained programming and the simplified
version where the available sizes differ by a constant step
size respectively. The injective relationship between areas
and their stress/displacement resultant will be used again
to define a design feasible with respect to the state
variable space. The dual variables u obtained from the same
matrix used to find the state variabless are appropriately
scaled and used to define the constraints added at each

iteration.

The discrete nature of the problem makes the scaled problem
generally infeasible in the design variables space. The
upper bounding stopping criteria 1is now meaningless. By

simple variable substitution (RAP) becomes
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r.
n n i
Min le p3.=_2 132 P 43 th (6.41)
r.,
st 9 Jt‘l i=1,... I (6.42)
- - 3
£=1
B
= _:] - » 1
aJ -tm‘]c 't"] Cs\.t:‘ (6.43)
T .
a Hy ’E':k= le{f J=1l,eee 11 (6.44)
k k k
d1<Ds - (6.45)
f]iﬁ ik_<_ 511; (6.456)
where 5tjes=~[ﬁ,1} #hieh

can be reformulated as the following relaxed master program

(RAD)
4T
Min / = 1 P {6.47)
m n m
e 1k e T
st z: Us A= + 22: [—EZLU' {a H,+ D)]
- :'iz1 - ll Jz']{ 1=1 4 ~ r\!j' ~ .‘]
_|_
k k
[sjr+spd 20 (6.48)
=
i d
aJ :§:1Cﬁ3 +3 (6.49)
=3
Ij g
_t_1 tj= l j=l,...n e"_‘l'--- ef (6.51)

_ +
By using @,1 wvaribles éSG each of the terms [+..] can be

linearized.
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Supposing

m
L, <[[—Zu¢(aTH,+ D) ] [§?+§?]£<u, (6.52)
Je — i Ja Jje

v, <d v. (6.53)

-
L.

(f:]l_{*’ EE)] j} (6.54)

The solution of the problem having discrete member sizes
can be obtained by solving a sequence of @-1 mixed LP each
creating a cut function wuntil the optimal seolution is
obtained, We remark that the discrete nature of the cross
sections makes (RAD) more efficient than (RAP) due to the
slugishness of the algorithm for continuous variables near
a feasible solution. The problem of higher dimensionality
mentioned in 6.1. was obtained directly from the §-1 mixed
bilinearly constrained problem. Although it has a similar
structure to (RAD) both problems are generated in a
different way. In the former the convex envelope of the
factorable bilinear terms was taken to rewrite the
constraints of the primal problem; the optimal solution of
that #-1 mixed LP would be the optimal solution of the
problem with discrete member sizes since the envelope

coincides with the value of the function at the boundaries.

When the member sizes differ by a constant step size and
the <cost 1is proportional to the cross sectional area the
(RAD) will be defined as a @-1 mixed 1linear integer

programming (RIM)
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T
Min “Z: 17 a (6.55)
m
: e k n m e B
st Zui s+ 2% {[-—_Zhui(a H3+ D) ]
- i=1 ;]:1 A= ~ ~ . ]
& 5F
[s +s1i>¢80 (6.56)
L jwl —
ajp<acay & =1l,...0p (6+57)

Some results conce rning the computational implementation

of (RIM) will be given latter in this Chapter.

6.4 Applications

6.4.1. Resource-decomposition algorithm —accelerated

convergence [Appendix B]

The wultimate goal of any theory is its application to
practical problems. A three bar truss subject to stress
constraints integrality requirements on the member areas
and undergoing two alternative loading conditions is solved
in this section by using a generalization of Bender's
algorithm . The nodal stiffness formulation of this problem

is as follows
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min V2 aT + a2 + V2 a3

1 i 1
st V2/2 ay dy + 1/2 a, (dy + dp)

4@-

1/2 a, (d} + d;) + Y272 az dy =0

Va/2 a,!'d12+ 1/2 a, (a7 +d3 = 0.

1/2 a, (d? + d22) + V272 a3d§= 20.

g < V2/2 cﬂgs.

-5. < V272 d12 < 6.

9
FaN

< V2/2 (d:} + 612) < 5.

o < 12/2 (45 + &3)

| A
u
L]

-5. < V2/2 'd12 < @.

@iﬁ/zdggs.

The equilibrium eguations can be written in the matrix form

as

K dk = XK k=1,2

where K is the assembled stiffness matrix of the structure.

~

By differentiating the Lagrangian of this problem with
respect to the displacement wvariables we get the following

set of eguations

(V2/2 ag + 1/2 3 ]+ 128, )} - Fz/z/u}- 12/2 p =0

1/2 a, bf ?‘+ (V2/2 az + 1/2 as) X ;,_— V2/2 M12+ ﬁ/2/«%= 3
2
1

/
(V2/2 a1 + 1/2 a2) 5’ ?+ 1/2 azjé-}- {f/p_/i - 5/2/,(.§= )



l/2a26$+(ﬁﬂ2a3+ljzaﬁ Xg—JZQ/A%xﬁyz %:ﬂ

and X%jM?are Lagrange multipliers refering to bilinear and
stress limit constraints respectively. These equations can

also be written as

e

If the set of areas give a feasible design in the stress
we
space would have

AMH

5* + s /M ) = §.

Otherwise in order to obtain a dual ray one may either
scale the Lagrange multipliers or assume a fixed wvalue
for/ﬂlicorresponding to the stress that is further apart
from the rectangle of bounds. In the latter case the vector
Jk‘is uniquely determined eg: supposing that the design has

member 2 fully stressed under loading condition 1 we have
1 T 2

= [”/f*2 81" ; /u (2 8 2] %/u;2> 0

The relaxed master program (RIM) may be restated here for

it

convenience
%
Min 7 =1 "% (6.58)
m n T
st EZLJibjj—E: {[ E,ui s Hy + £5)
1:1 j:"-1 3.21 e ~ j
"> (6.59)

(Y 41+ Yiu)]

XEX e zl'-‘.ef (6060)
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Let x = a ,:% = a,s X% = a represent e design
1 17% 2 23 ¥ 3 5 O eh I

variables

T T T _ 42
=al sy =gty =4 o d
Y4 1 Y5 > ¥z 1 Yy 5
INITIALIZATION

STEP 1

Let UB =+c0 ;LB = 3,828 corresponding to

and € = .p00 (since we will end up with a exact

solution).

-1
K = 1.201 .5 3k = 1.00 ~ 414
.5 1.201 — 414 1,60
ak_g-1 9% k=1,2

—~ 5

1 T, . 2 g
al= [40. -16.5697 5d 2= [-8.282 29.]

~

In order to find a feasible set of nodal displacements

the scaling factor
Q = max {49./5J§,24.43/5¢§,~16.57/—5fi
,-8.28/-5J§,11.72/545,23/5V5}
=5.657

would increase the design variables until the set of
stresses would fit within their bounds. The
consideration of this scaling factor corresponds to

having member 1 at its upper bound (fully stressed)
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under loading condition 1.

Let
1 i 2 i
Mo (V2 8 8] /M = (¢ 0 0]
We get
51 - [1. -.414] " X’2= (g 9] °
ef=l
1T
u' = [l. —.414 0 0 Y2 8 6 2 0 8]
T
b~ = [40. B. B. 28. =5. =5. S. 5. =5. =5.]
fT ?1 = [(V2/2 X4+ 1/2 %5) 1/2 %, @ 4]
fT ?2 = [ 1/2 X 5 (V2/2 x3 + 1/2 x2) F. Ba.]
fT He = [ 0. 0. (V2/2 xq + 1/2 %) 1/2 %5]
NT ;4 = [ 8. 6. 1/2 x2 (JE/Z xB + 1/2 x2}]
fg = [-V2/2 9. 8. 9.1

fg = [-12/2 -V2/2 9. @.1

f; = (0. -V2/2 9. G.]
fa = (8. 6. -Y2/2 8.]
£q = (0. 0. V272 -Y2/2]

f10= (0. 0. 0. -v2/2]
Y g1t ¥Yqu T
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The constraint that cuts off the initial solution

point is

~4¢. + 5V2 + [V2/2 x1 + 1/2 x 5

- 414,172 x, = V2 J2/21%597  + /28

,.},
- .414 (V2/2 Xy + 1/2 )] [-5V2] > @
or
-32,929 + (5 X, + 2.0871 X, = 7.671) t

. .!_
+ (2. + 2.
(<2871 x, + 2,871 x ) 7> 0

The nonnegative terms are linearized by introducing

two variables per term . We have

= +2. 1x =7.8 . = + 2.871 - Ta
X4u5x1u2 a7 x2u 71 ’xﬂl. 5 x11 @ X 21 G713

= -l 2-@ . = "'2- 7 + -
X > 2 G?lx1i 71x3u,x61 g71 % - 2.0871 % %1

This new constraint can be represented Dby

X 4+ x. > 32.929

4 & —
Ky = x5 x4u§ )
x4 - x5 x4u~ 5 x1 - 2,071 x2.§ 7.871 - % 1
x6 - xT xﬁui @
Xe = x7 x6l+ 2.0871 x1 - 2.6871 xzzi -% 61
where x5,x7 are binary and x4fx6 are real wvariables.

The nonconvex constraint is therefore replaced by a 4

new variables and 5 linear constraints



STEP 3 IT

It
=

(2)

The optimal solution of (RIM) is 13.728

LB =13.728 UB-LB > &
§? = 83 §2 = 13 §:5= 1
STEP 2 (2)
K= | 6.157 .5 — % ;_.168 -.070
.5 1.207 -.0870 .57
al = 16.724 -2.784]?9 £ ;;1.392 17.148) 7

so that e = 2.42 would correspond to a displacement d2

at its upper bound. We have

- T
u = [@d Be =87 «857 8. O. B e Be 2]

The new constraint is given by
20. (-.857) + 572 + (=07 (1/2x,+2/2x )

+ .857 1/2%,11-5V21" +

i
l/2x2+.857(1/2x2+ 2/2x5)

- 2 VY2721 521t > ¢

or

~16.069 + [.35 x, -2.784x,] ®

+ [4.235%5-2.784%,-7.0711" > 0

219

2

(-.07
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STEP 3 IT = 2 (2)

(16.142,7,2,3) LB = 16.142

~31
-

L3 |
il

STEP 2 (2)

E= 1.085 corresponds toc an upper beound on d}.

e:f= 3 and the new constraint that is added to RIM is
-.048 + [.84 x, + .427 x , = 7.071] ¥
+ [-.427 %, + 285 %175 @
2 % =
STEP 3 IT = 3 (2)
STEP 2

Q = 1.2086 will correspond to an upper bound on dl. In

order to cut off this point we will add a 4th

constraint (ef = 4)
~1.4289 + [1.£7 X, + 665 x 5~ 7.6711"

+
+ [=.665 X5 + .13 XB} >0

STEP 3 IT = 4 (2)

(7)%) = (16.728,7,4,2);LB = 16.728

STEP 2 (1)

G =.996 <1 TERMINATE
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is the optimal volume design with integer design

variables.

We observe that some of the constraints used in the early
stages of the algorithm will not be active at the optimal
point since the previous solutions were creating
constraints requiring a volume higher each timﬁithAlthough
nonactive constraints could have been dispensed it is not

possible to know in advance which will be needed to find

the correct solution to the relaxed master program.

6.4.2. Branch and bound trees

For the same problem we have taken as convex envelopes of
the bilinear expressions the underestimates of the product
terms. The problem is defined in stress and member area
variables in order to minimize the number of functions that
are bilinear. Fach node is again defined by the upper and
lower bounds in both state and design variables. These
bounds are required to determine both the structural matrix
and the RHS of the linear constraints that approximate the
nonconvex terms. By taking underestimates we are penalized
by an increase in the number of constraints and wvariables
enlarging the subproblem representing any node. The three
bar truss subjected to two alternative loading conditions
and bounds on the stress and area variables is a problem in

9 variables restricted by 4 bilinear constraints and two



linear equalities. is

variables

1%
transformed

and subject

into

linsar equalities that are not changed.

st
Let
SRR

-
X4 51

The linesa

factorabl

Min V2 a,+ a+ V2 a

a

problem

3

5.1

in

K.
s % X 9 s
the concept

3
a 31 + V272 a, s; = 40.
V2/2 ,312 s, + a3 513= 2.
a, s? + V2/2 a, s§= .
V272 a, sg + a3 s% = 20.
~st 4 s; = s% = @.
-s? + sg - s% = .
ay = (1. L. 1% e = (1. 4.
sl = (0. 0. -5.1T sl= (5. 5. 0. T
j = [~5. 0. 0.] " f’?f (6. 5. 5
Ky = a,3%y= a
X = s; X = s% R o= s? X o=
r problem obtained when using
e functions is given by
Min V2 x, + x .+ V2 x

1 xo 3

X102 ¥2¥ 5y "5%2u %2od 5w

> XX -
X.02 %51t *5¥ o1 Bl 51

224

13

to 24 linear inequalities plus two

of
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X191 2 "¥p X575 Xyt X501

Xpq > X5 RKgymXp Xoqt KXo Koy

Xy Xgut K g Ryo= Xy K ,o4 V2/2 X 10% 40.

X g Xgqt Xy Xyq= XqqX,qt V272 X 40% 40.
- x4 x1l+ x4ux”_+ \5/2 % 115 -4,

X1 *gu

Xqp 2 Xp Xgyt Xg Xoym Xowfey

|w

%1z X Xp Xgyt Xg Xpy- XgE gy

¥13 2 X2 Xgu¥g ¥t ¥aFon

X413 2 ~Xp XgyTXg Xyt X ga

\/5/2 Xy * x3 Xeat Xg xBu" xfui‘ gk, 1, 38
V2/2 Xqg * X3 Xgyt Xg Xz Xz1%1 £ @
6/2 Xqq = Xz Kgy~ Xg Xzqt x3lx6uf. @
5/2 Xqq = x3 Xe1~ Xg x3u+ x3ux615 B
R Xqy+ Xq Kgp= XqXogh V2/2 245 < 0.
X o Xyt Xy Xgg= XgqXpp + 272 x 125 0.
=Xy Ky~ X Xppd XX 71t V2/2 X4 3_3 a.
~Xg Xy~ Xyq Kot x7uX11+ V2/2 x 135 @
‘[2_/2 X 124« Xg x3u+ Xz Xgr xBux%_{ 20.

723
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V2/2 x 137 X g¥ 35 ¥ 3%q) x3u3913 -20.
V2/2 x 15— X 9 3i X 3x9u+ x31x9u§ -20.
-xd+x5—x6=ﬂ
- X _+ X 8— %« 9= g.

Each of these problems is defined for a set of xilénd b4 -
iv

for i=1,..9

Fig 6.1,6.2,6.3 represent combinatorial trees obtained when
solving the three bar truss by the several B & B strategies

described in this Chapter.



225

"ONI < mw._H

£
ﬂ\@ avm M~m 5
D NOH@ HOHQ
INFIWOONT -
HTATSYHA Ex aw samexboxd xesull Jo eousnbss
PILL mo T£°9T mo "ONT. mm .mmH e bufordwe Agq 7 9 UT poleis waTgoad a9yl IO
p'e X z'e £ N §'F X m\m X uotanTos sya Hurjussexdss oa3 TRTIOFRUTUOD T°9 *BTa
m.m_m H@Q \ Nm.ﬁm m._”& '
LNEEWADNT mmmmmomo
JTHISVHA ) )
@ﬂ.m.\u_HU o) mx mN a TYa0TD
mayw mx 07 91 £0°LT ﬁo "ANT A1 SYEA .mmH
Tl LhL TT'8 0% . Tt T It
Tx an Y% an Fx an
ST 9T %O 9T 9T mﬁo TL 791 .MO, ..EMH " ONI mA .ranHH
LA T'T X U s €1 1o 'y 0¥
&
S—
SLTST mm “x an
B cle ¢ 8L78T _mmb
X z'T ‘X
N@m .Q.AH
wN aw
FLYGT %O
T %
cig
.mx W

BETL .Tmm




226

*Absjeals suexboad
xebsaul xesur] Io sbusnbas v butlordws pue 7 {9 UT pe3eas
waTgoxd syl Jo ucTinTos Iyl burausssadsa 9813 TBTAOIBUTqUOD 779 °*HTJ

INZENAINT NA INEWNADNT NA
[7'z]13%% (711 3%
ihg TG4

@

7 =C% £L°91 40
BTo6T 0 TYWILJO
(srelsx e

o [g'zl3x

£

¢ =X OW
PLTOT O mumHmmmmﬂH
_HH.B_Wmm [9T]3 %
L ='% an
EL7ST mo mqumdmmmH
Hm~m_mwm _ﬁ_ﬂ_uix
d Hrﬁm



227

ANT HTEISY Hal A19ISVHA
- FLTLT 4O "ANT "INT CLT9T 40 "ANT A THNT
i =Yg £ me % HN% T HNN ¥ me 'S nwx z HMM T =%x
wﬁQ mvm Nwm Hﬂm wmm wm@ iS4 Hmm
QO
*SUOTIOUNT XDAUCDH SSTMID9TE Y3jtm AboTeuy 212
butfoTdw= pue 79 UT pojels WeTdgoxd oyl Jo
uoringos oyj burjussaider ssi13 TeTAOICUTOHOD ¢°9 BTa
“LAO< "Ld0 < _ ® W "LAO L
£5°8T mo EI°LT 4D GLTST HO BLTST 4O TANT L9787 40 "INT “dNI “aNT “dANT
g H.‘.N @HNN £ H.mum Z H.va T M@N Q Hw.vw ¥ o= mN € .UWN Z =% T HW
mmm. beg £g A2 T€ 5 STq 4 £lyq ttg LEg
Q Q Q
"LdO < "LdO < Ao fado< “x an % au
BC I 40 98761 40 ST 8T &0 SO°LT JO 65791 d0BSTFT 40 tANT "dANT TUNT
T
ﬁim. OTlg 6l 814 \ LTg Lz T4 €14 - g
Q ® Q Q O ® O O
¢
Tx an
6E°FT A0

LNEFWNONT TYHWILAO

g

(D ol

-2y

(ST



228

6.5. Computational Experience

The several strategies described in this Chapter were
applied to find the solution of a thresjbar truss subjected
to two alternative loading conditionzllimits on the maximum
allowable stresses and integer area variables. The global
solution given by the formulation described as sequence of
LP each 1in 13 variables and subject to 26 constraints was
found after solving 24 subproblems and spending 6 ieu. By
imposing the restriction that the design variables should
always be integer the solution was found after solving 11
mixed linear integer problems and using 5 ieu. In this case
the Lagrangian based Land and Powell subroutine has
provided the solution to the subproblems defining each
node. The strong branching rule described in the paragraph
refering to the analogy with piecewise <convex functions
yield the global solution after only 5 ieu but having to
solve 3¢ linear subproblems. The improvement in CPU time is

due to the fact that a number of subproblems is infeasible

and can easily be ruled out.

The (RIM) algorithm was proved to be more efficient than
the B & B based methods. Two binary variables plus two real
variables and five constraints were added to the relaxed
master problem after each iteration. Land and Powell
general purpese routine was wused again and the global
solution was found after 4 iterations and ellapsing 3 ieu.
The discrete nature of the design variables leads to more
efficient cut functions wsince only a limited number of

areas make (RIM) feasible. The same statem ents holds true
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in the case of B & B strategy. A number of feasible points
in the neighbourhood of the optimal solution are no longer

feasible and can be ruled out.

In conclusion from the accumulated practical experience the
introduction of discrete design wvariables renders the
methods described more tractable. the R-D methods rely on a
particular g-1 mixed LP and hope of progress is linked with
the development of more efficient purpose built routine to

solve this relaxed programe.

p A Tttt G )
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CHAPTER SEVEN

CLOSURE

To bring this work to a closure some conclusions and

indications for further research on the mathematical model

presented in this Thesis are considered necessary.

Classical optimization principles constitute most of the
setting for mathematical programming theory that has been
previously used in structural engineering. They have
introduced great simplicity into the design of perfectly
plastic models which parallels that of the linear elastic
analysis. The existence of multiple optima solutions even
in small structural deéign problems is the most striking
cause for the development of methods more appropriate for

nonconvex programming.

When member sections are allowed to vary continuously,in
special situations such as statical determinacy it 1is
possible to show that the least volume design of trusses is
after all Tconvex". Although the argument is no longer
valid when considering redundant structures convex
algorithms with a fast rate of convergence have been used
in the past to solve this nonconvex problem. Solution
values obtained by such an algorithm need not to be global
but uniqueness can be ensured if a sufficient condition is
satisfied. This 1local test was derived by considering a
curved path 1linking the 1local optima to any other
prospective candidate and it is easily carried out by

simple operations such as matrix inversion.
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If a fully nonconvex behaviour manifest itself then this
problem is better treated combinatorially. Several
strategies and approximations were tested and based on the
results the following comments seem to be appropriate.
Although Reeves' approach starting with a local minimum as
its base point averts the growth in nearly feasible
solutions that occurs in Scland's method the latter works
better in eliminating bigger intervals where no solution
exist. The use of an hybrid method combining Reeves'
algorithm for local optima and Soland's rules for
infeasible design points might constitute an interesting

hint for further research.

If the members have to be <chosen from a discrete set of
commercially available gauges Bender's algorithm has
converged faster to the global solution. As it has been
already pointed out further investigation should be carried
out on solution methods for the relaxed master program
constrained by Wolsey's cuts. Although Lagragian relaxation
based solution methods were the more efficient of all we
have tried by neglecting the results of previous iterations
it does not fully explore all the potentialities of this
route. A conventional Bender's decomposition applied to
each relaxed master problem yields a @-1 1linear integer

programming for wich more powerful tools are available.

These methods are also an invaluable framework for the use
in other bilinear problems arising from structural

engineering models such as reliability studies.
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