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Summary. This paper presents a procedure to determine the cable forces on cable-stayed 
bridges using an entropy-based optimization algorithm. It includes an analytic sensitivity 
analysis module, which provides the structural behaviour responses to changes in the design 
variables. A finite-element approach is used for structural analysis which includes the time-
dependent effects of creep and shrinkage of concrete, and the construction stages of the 
bridge erected by the balanced cantilever method. The main objective is to find the cable stay 
forces to correct errors during the erection stages to control the bridge dead load geometry 
condition by requiring the stresses in the structural elements to remain within allowable 
limits. 

 

1 INTRODUCTION 
Cable-stayed bridges are an elegant and efficient structural solution, and their use has been 

steadily increasing. While steel was the dominating structural material, prestressed and 
composite decks have increasingly been used. 

The design of cable-stayed bridges can be made iteratively. The engineer seeks, through 
the change of some parameters, the best solution that satisfies a set of criteria. The complexity 
of the task rises with the model dimension and the specific problems that need to be solved. 
Therefore, optimization naturally arises as a tool to aid in the design of cable-stayed bridges, 
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in view of obtaining economic and structural efficient solutions. 
Most of the work on cable-stayed bridge optimization dealt with steel bridges, concerning 

the prestressing forces on the cable stays1-5. Simões and Negrão presented an algorithm for the 
geometric and cross-sectional optimization of the structural members, using 2D and 3D 
modelling. They studied also the optimization considering a box-girder deck and the seismic 
action effect6-9. 

When the bridge is executed in prestressed concrete (PSC) it is necessary to include the 
evolutionary nature of the structure. This is due to the time-dependent effects, namely, the 
creep and shrinkage of concrete and the relaxation of the prestressing steel, and changes in the 
stresses and displacements during the construction stages. 

Khalil et al10 using step-by-step time integration studied the influence of the time-
dependent effects in the 2D structural analysis of cable-stayed bridges with PSC decks. Cluley 
and Shepherd11 analyzed the time-dependent effects and computed the equivalent nodal loads 
to implement in a finite-element computer program using 3D modelling. Cruz et al12 
developed a nonlinear step-by-step analysis model of planar frame concrete structures. The 
model simulates segmental construction processes and accounts for the nonlinear time-
dependent material properties, the structural effect of the delayed deformations and the 
second-order effects. Somja and de Ville de Goyet13 presented a method based on the fictious 
loading age method with improvements to take into account recovery. Therefore 
time-dependent effects are important to control the geometry and internal forces during the 
construction and service life of the structure. 

This paper outlines a method using an entropy-based optimization algorithm to find the 
prestressing forces in the stay cables of a PSC cable-stayed bridge so that the stresses in the 
stays and the structure remain in the allowable range during the construction process and a 
desired final condition is achieved at the time of completion of the structure. In the 
optimization process an analytical sensitivity analysis is used to evaluate the structural 
responses to changes in the design variables. The structural analysis accounts for the time-
dependent effects and stages of the construction where the balanced cantilever method is 
employed. 

2 GEOMETRY CONTROL AND CABLE FORCES 

2.1 Erection procedures 
The erection method used in the construction of a cable-stayed bridge clearly depends on 

the size of the structure, the structural system and the conditions found at the intended 
location. In general, there are four different construction methods possible: 

- Construction on temporary supports; 
- Construction by rotation; 
- Construction by incremental launching; 
- Construction by the balanced cantilever method. 
The balanced cantilever method is the most used method for the erection of cable-stayed 

bridges and for that is used in this work. In the cantilever construction method a form traveler 
is attached to the previously casted segment and carries the formwork for the new segment 
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that is to be cast. In each erection stage new segments are installed and then supported by new 
cables. 

In this method no falsework or centering is required, leaving traffic under the spans 
unobstructed during construction. If the bridge spans are too high above ground and if the 
terrain under the spans is inaccessible fast construction can be achieved with cantilevering. To 
obtain the forces on the stay cables, a detailed analysis of the construction stages by the 
cantilever method is required since the structural scheme changes in each construction stage 
affecting the stresses and displacements. 

2.2 Cable forces adjustment 
Cable tensioning is used to adjust and control the stress distribution and the geometry of 

cable-stayed bridges. Three different approaches to adjust the cable stay prestressing force 
distribution have been proposed in the literature: the “optimization method”1-9, the “force 
equilibrium method”14 and the “zero displacement method”15. Several of these solutions are 
based on the final configuration of the structure and do not take into account the actual 
construction process and/or the time-dependent effects, both influencing considerably the 
geometry and distribution of internal forces in the completed structure. 

In the “optimization method” the cable forces are determined based on certain functions 
related to structural efficiency or economy. Objective functions to be minimized are often the 
volume/cost of the starting trial design, the total strain energy, the work produced by the cable 
forces, the bending stresses and the tolerance deflection for the geometry control. 

In the majority of the research works the concept of influence matrix of cable forces is 
used. Analyzing the structure response of a unit prestress applied at each cable, the influence 
value of all the targets can be obtained. In other works the gradients of the objective function 
and the design constraints are computed using finite differences which require a great amount 
of computational time. 

In the present research work the objective is to apply to concrete cable-stayed bridges the 
strategy developed by Simões and Negrão6-9 to steel bridges, taking into account the 
construction stages and the time-dependent material behaviour of concrete. 

The optimization method used, besides the determination of the cable stay forces, allows 
the minimization of the structure cost and ensures that the stresses remain within allowable 
limits and the final desired geometry is achieved. The structural response to changes in the 
design variables is computed by a discrete direct sensitivity analysis which requires some 
programming work but is a computationally efficient procedure. 

2.3 Construction stage analysis 
The internal forces as well as the geometry of a complete cable-stayed bridge highly 

depend on the erection sequence of the structure. The cable forces at the time of installation 
clearly differ form those of the final dead load condition. Moreover, the geometric profile of 
the girder during the construction greatly changes and it is important to ensure that the 
cantilever ends finally meet at the bridge closure. Another reason for considering the erection 
process is that sometimes the structural behavior during construction might be much more 
critical than that of the final stage. In order to complete the design of the bridge, the stresses 



Alberto M. B. Martins, Luís M. C. Simões and João H. J. O. Negrão 

 4 

in the cables, the girder and the pylon need to be checked not only in the final but also in 
intermediate erection stages. Therefore, the internal forces in members of the bridge structure 
at each erection stage have to be known. The construction stage analysis can de performed by 
backward analysis or forward analysis. The forward analysis reflects the real construction 
sequence, whereas the backward analysis is performed by regarding the state of the final 
structure. 

To follow the time-dependent effects in the construction stages, a forward analysis is used 
here. 

2.4 Construction control and monitoring 
During the erection of cable-stayed bridges by the cantilevering method the initial cable 

forces may not lead to the desired final condition. Unexpected discrepancies between the 
predicted and the real structure in a given construction stage may occur caused by 
inaccuracies of model parameters. In order to avoid the accumulation of these discrepancies 
and to ensure a safe erection process, it is necessary to carry out a detailed simulation analysis 
and a continuous monitoring throughout the erection stages. This way the discrepancies can 
be detected and the erection can be controlled by certain cable stays adjustments. 

3 STRUCTURAL ANALYSIS 

3.1 Static linear analysis 
The structural analysis was done by means of a finite element computer program 

developed specifically for that purpose, because code availability was a fundamental 
requirement in order to the necessary further developments, namely, sensitivity analysis and 
structural optimization. The bridge was modelled as a two-dimensional structure using bar 
and beam (Euler-Bernoulli formulation) elements. A computer program developed in 
MATLAB was used to solve the structural analysis problem. By now, to simplify the problem 
formulation, cable-sag and other geometrical non-linear effects were neglected. Therefore, the 
algorithm will be improved in the future. 

3.2 Time-dependent effects 
In concrete cable-stayed bridges, the change of the stresses and deformations during the 

erection process is significantly influenced by time-dependent processes such as creep and 
shrinkage. 

The total strain at time t of a concrete specimen uniaxially loaded at time t0 can be written 
as the sum of the stress dependent,  0, ttc , and stress independent,  tcn , strains: 

               ttttttttt cTcscccicncc    000 ,,  (1) 

where  0tci  is the instantaneous strain,  0, ttcc  the creep strain,  tcs  the shrinkage strain 
and  tcT  the thermal strain. If the stresses are less than  045,0 tf ck  the principle of 
superposition is valid and the creep strain varies linearly with the applied stress: 
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where  0, tt  is the creep coefficient, 28cE  is the concrete modulus of elasticity at 28 days 
and  0, ttJ  is the creep function. So that (1) can be rewritten as: 

       ttttJt cncc   00,  (3) 

In a cable-stayed bridge the stresses continually change during both the construction phase 
and the service life of the structure. Under variable stresses and using the superposition (3) 
can be rewritten as: 
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Several approaches have been proposed to solve this equation, simplified methods, step-
by-step numerical integration and approximation of the creep function. In this work the creep 
function is approximated by a Dirichlet series16 leading to: 
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which corresponds to admit a rheological model composed by one Hooke model an n Kelvin 
models (Fig. 1) 

 
Figure 1: Rheological model of the creep function approximation by a Dirichlet series 

where the viscosity coefficients,  tcj , and modulus of elasticity,  tEcj , vary with time  
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To solve the integral in (4) the time is divided into several intervals 1 kkk ttt  and 
assuming in each one the following simplifications 
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and after several mathematical manipulations it is possible to write the incremental creep 
strain  
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and n is the number of terms of the Dirichlet series and the coefficients aj are obtained from a 
curve fitting using the least squares method. The coefficients j/1  are called retardation 
times and are chosen to cover the range of time values for the creep coefficients calculation. 

The incremental constitutive equation for the time interval kt  is given by 

 k
cn

k
cc

k
c

k
c

k
c E   *  (14) 

where *k
cE is the equivalent modulus of elasticity to consider in the time interval kt . The 

main advantage of the creep function approximation by a Dirichlet series with respect to the 
step-by-step time integration is that the storage of the entire stress history is not needed which 
saves computational time. 

In this work the Eurocode 217 creep model was used, where the creep function is calculated 
as 

   000 ,, tttt c   (15) 

where 0  is the notional creep coefficient and  0, ttc  is the time function describing the 
development of creep with time. The notional creep coefficient is estimated as 

   00 tf cmRH    (16) 
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The time-development function is described by 
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According to Eurocode 217 the total shrinkage strain,  tcs , which is also time-dependent is 
the sum of the autogenous and the drying shrinkage. The drying shrinkage can be computed 
by  
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The autogenous shrinkage develops due to chemical reactions during hardening in the early 
age of concrete and it can be expressed as 

      caasca tt   (27) 

where 
    610105.2  ckca f  (28) 
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   5,02.0exp1 ttas   (29) 

The aging of concrete leads to an increase in the strength and modulus of elasticity, and 
according to Eurocode 217 this can be expressed by: 
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Since the stresses in the stay cables in service conditions are limited to pkf45.0 , the 
problem formulation was simplified neglecting the relaxation phenomenon because it occurs 
for stresses higher than pkf50.0 . 

3.3 Simulation of the time-dependent effects 
The time-dependent effects can be simulated in the finite element (FE) analysis of the 

structure by equivalent nodal forces corresponding to the non-mechanical deformations that 
induce a displacements field from which is calculated the actual deformation state. The 
stresses are computed using only the elastic constitutive relationship between stresses and 
mechanical origin deformations. Knowing the strains due to creep and shrinkage, the 
equivalent nodal forces can be computed as initial deformations using the finite element 
formulation for each time interval kt . The equivalent nodal forces due to creep are given by  
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where B  is the deformation matrix and kD  is the elasticity matrix for the time interval, 
updated according to the value of the concrete modulus of elasticity. 

The temperature variation effect can also be included in the analysis  
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where T  is the linear thermal expansion coefficient and kT  is the temperature variation in 
the time interval kt . 

Knowing the incremental nodal forces due to the time-dependent effects is possible to 
write the incremental equilibrium equations for a given kt  
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where kF  is the updated force vector of the structure due to changes in the external applied 
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loading. 

3.4 Construction stages 
The modeling and analysis of the construction stages was performed using a forward 

analysis procedure. The forward analysis is performed following the sequence of erection 
stages in construction. In the first construction stage, only the pylon and the start of the 
cantilevers are activated and then in the following stages the other deck segments and stay 
cables are erected and the corresponding loads are applied. The analysis is carried out stage 
by stage until the bridge girder is completely erected and the results are continuously 
accumulated. Each new segment is installed tangentially to the existing one. 

The forward analysis allows the knowledge of the stresses and displacements of the 
structure throughout the construction which allows the direct consideration of the 
time-dependent effects. 

4 SENSITIVITY ANALYSIS AND OPTIMIZATION 

4.1 Sensitivity analysis 
Iterative optimization algorithms need to know the way a change in each design variable 

will affect the requirements expressed as goals. This is the task of the sensitivity analysis and 
represents most of the computational effort required for structural optimization. The evolution 
of the problem depends on a critical way on the accuracy with which these values are 
computed. Given the availability of the source code, the discrete nature of cable-stayed bridge 
structures and the large number of constraints (stresses and displacements) under control, the 
analytical discrete direct method was used for the sake of sensitivity analysis. The expressions 
for this method are obtained by differentiating the equilibrium equations 

FuK   (36) 

the following expression is obtained: 

iii dx
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  (37) 

which can be rewritten in the form 

vi
iii

Qu
dx
dK

dx
dF

dx
duK   (38) 

where viQ  is the virtual pseudo-load vector of the system with respect to the ith design 
variable. The displacement sensitivities can be expressed as: 

vi
i

QK
dx
du

 1  (39) 

which requires pre-programming and storing the stiffness matrix and right-hand side 
derivatives so the displacement derivatives may be computed by the solution of N pseudo-
load right hand sides. 

The stress derivatives are accurately determined from the chain derivation of the finite 
element stress matrix 



Alberto M. B. Martins, Luís M. C. Simões and João H. J. O. Negrão 

 10 

ee uBDσ   (40) 
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The first term of right-hand side may be directly computed during the computation of 
element contribution for the global system, on the condition that derivative expressions are 
pre-programmed and called on that stage. Since the displacement derivatives are known the 
second term on the right-hand side is easily computed. The explicit form of matrix derivatives 
depends on the type of element. For two-dimensional bar and beam elements their calculation 
is a straightforward task. 

4.2 Structural optimization 
An entropy-based optimization algorithm was used to found the cables prestressing forces. 

In minimization problems, a solution vector is said to be Pareto optimal if no other feasible 
vector exists that could decrease one objective function without increasing at least another 
one. The optimum vector usually exists in practical problems and is not unique. The design 
variables are the cables prestressing forces and are represented by ix , respectively, and the 
global design variable vector is  

 T
N,...,x,x,xxx 321  (42) 

Using an entropy-based multicriteria approach, the problem is formulated as the minimization 
of an unconstrained convex scalar function which may be solved by conventional quasi-
Newton methods, with which an optimal solution (in the Pareto sense) is achieved for each 
starting trial design. Representing the stress constraints by 
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where  , t  and c  are the acting stress and the allowable stresses in tension and 
compression, respectively, and the kinematic constraints by 
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δ
δ

xg j   (44) 

where 0  are limit values for the deflections or displacements in certain points of the structure, 
namely the cable anchor points on the deck and the horizontal displacement in the top of the 
towers, the optimization problem may be posed as 
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j
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This function depends only on one control parameter, ρ, which must be steadily increased 
through the optimization process. 

The goal functions  xg j  do not have an explicit algebraic form in most cases and the 
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strategy adopted was to solve Eq. (45) by means of an iterative sequence of explicit 
approximation models. An explicit approximation can be formulated by taking Taylor series 
expansions of all the goal functions  xg j  truncated after the linear term. This gives: 

 
 

 













 
 

















M

j

Δx
dx

xdg
xgρ

N

i
i

i

j
j

e
ρ

xF
1

1

0
0

ln1min  (46) 

where N and M are, respectively, the number of design variables and the number of behavior 
constraints.  xg j0  and   ij dxxdg /0  are the goals and their derivatives evaluated for the 
current design variable vector ( 0x ), at which the Taylor series expansion is made. Solving 
Eq. (46) for particular numerical values of  xg j0  forms only one iteration of the complete 
solution of problem, Eq. (46). The solution vector ( 1x ) of such iteration represents a new 
design that must be analyzed and gives new values for  xg j1 ,   ij dxxdg /1 i and ( 1x ), to 
replace those corresponding to ( 0x ) in Eq. (46). Iterations continue until changes in the design 
variables become small. Move limits are imposed to ensure the accuracy of the explicit 
approximation. During these iterations the control parameter ρ must not be decreased to 
ensure that a multi-objective solution is found.  

The sensitivity analysis and optimization processes were carried out using an optimization 
module implemented in MATLAB. 

5 NUMERICAL EXAMPLE 
To illustrate the features of the proposed method a numerical example of a cable-stayed 

bridge was developed. This example is composed by an asymmetrical concrete cable-stayed 
bridge with a total length of 84 m, with a main span of 56 m and a lateral span of 28 m. Pylon 
total height is of 30 m with the deck placed 10 m above the foundation. Fig. 2 shows the 
geometry of the bridge example. 

 
Figure 2: Bridge geometry 

A C30/37 concrete (fck = 30 MPa) was considered for the deck and the pylon. For the 
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cables prestressing steel an allowable stress corresponding to 40% of the ultimate tensile 
strength, fpk = 1860 MPa was considered. Self-weigh values of 25 kN/m3 and 77 kN/m3 were 
considered respectively for the concrete and the prestressing steel. A value of 6 kN/m2 was 
considered for the non structural dead load of the deck.  

Since the objective of this work is to find the cable prestressing forces, the overall 
geometry of the bridge and also the cross-section geometry of deck and pylon were 
considered fixed. A slab-type cross-section was adopted for the bridge deck and a rectangular 
hollow section was considered for the pylon.  

The considered construction stages are represented in Fig. 3. The deck-to-pylon connection 
is only vertical, except for the early erection stages in which structure stability requires 
additional links. 

 
Figure 3: Construction stages 
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