OPTIMIZAÇÃO DA FORMA DE BARRAGENS SUJEITAS A ACÇÕES SÍSMICAS
SHAPE OPTIMIZATION OF DAMS FOR DYNAMIC RESPONSE

José A. M. Lapa I)
Luis M. C. Simões II)

SUMÁRIO
O objectivo deste trabalho é apresentar um algoritmo baseado no formalismo da entropia máxima para a
optimização da forma de barragens submetidas a acções sísmicas. Para efectuar a análise dinâmica da
barragem, utiliza-se o método dos elementos finitos associado quer à técnica de integração passo a
passo, quer à análise modal. O cálculo das sensibilidades é efectuado por via analítica com base na
nessas técnicas de integração no tempo. A resposta sísmica inclui as interacções barragem-reservatório
e barragem-fundação. Para optimizar a forma de uma barragem de gravidade define-se um conjunto de
objectivo: pretende reduzir-se simultaneamente o volume de betão, as tensões e aumentar a segurança
em relação ao deslizamento e derrube. As variáveis de decisão são os parâmetros geométricos que
definem a forma da barragem. Com base no formalismo da entropia máxima, obtem-se uma solução de
Pareto através da minimização de uma função escalar sem restrições.

ABSTRACT
The purpose of this paper is to show an application of the maximum entropy formalism to the shape
optimization of dams subject to seismic loading. The structural system is discretized by the finite
element method. The dynamic response analysis is computed by modal analysis or step by step
integration procedures. Emphasis is placed on the derivation of the sensitivity analysis equations done
by the analytic method and based on the dynamic analysis procedure to be employed. The earthquake
response includes dam-reservoir and dam-foundation interactions. The shape optimization of a
crrecto gravity dam is posed as a multiobjective optimization with goals of minimum volume of
crcrete, stresses and maximum safety against overturning and sliding. By using the maximum
entropy formalism it is shown that a Pareto solution may be found indirectly by the unconstrained
optimization of a scalar function.

I) Assistent, Departamento de Engenharia Civil
II) Professor Associado Agregado, Departamento de Engenharia Civil
Faculdade de Ciências e Tecnologia, Universidade de Coimbra
INTRODUÇÃO

Na maior parte dos trabalhos em otimização de estruturas, admite-se um comportamento estático destas. Contudo, os sistemas estruturais estão na prática sujeitos a acções dinâmicas induzidas pelos ventos, veículos ou sismos. Em virtude da resposta dinâmica das estruturas aos sismos ser ignorada o dimensionamento de barragens baseado no comportamento estático é deficiente. As tensões que surgem numa barragem de gravidade devidas a cargas estáticas pouco se assemelham com a resposta dinâmica ao movimento do solo. Por um lado os coeficientes sísmicos são muito reduzidos em comparação aos que seriam obtidos a partir das coordenadas do espectro de potência correspondente a sismos intensos para o período fundamental das barragens de betão. Além disso, ao supor um coeficiente sísmico distribuído de uma forma homogênea segundo o parâmetro montante, ignora-se a distribuição dos coeficientes sísmicos que correspondem aos modos de vibração mais baixos da barragem. Por outro lado, a análise estática dos monolitos não prevê tensões de tracção elevadas associadas à fendilhação do betão que podem surgir durante os sismos, bem como as regiões em que se desenvolvem essas tensões críticas.

A estrutura a ser optimizada é discretizada pela técnica dos elementos finitos. Para contabilizar a resposta da estrutura aos sismos podem utilizar-se as técnicas de análise modal e de integração passo-a-passo. O método de integração passo a passo é aplicável a estruturas submetidas a carregamentos de qualquer tipo e admitindo comportamento não-linear. O método de análise modal reduz substancialmente o tempo de computação, embora o seu campo de aplicação se restrinja a sistemas lineares. São dimensionadas barragens de betão sujeitas a acções sísmicas, onde se incluem as interacções barragem-reservatório-fundação. Para além das pressões hidrostáticas associadas aos sismos, considera-se o efeito hidrodinâmico da água através de aproximações das expressões de Yang, que consistem na modificação da teoria de Westergaard para paramentos inclinados.

Embora o custo de uma barragem de gravidade de betão seja função de vários aspectos, tais como cofragem, volume de escavação e volume de betão, admite-se que este último é um factor dominante. Além do volume de betão, pretende-se minimizar um conjunto de objectivos tais como tensões e melhorar a estabilidade da estrutura ao derrube e deslizamento. A optimização de estruturas submetidas a efeitos dinâmicos normalmente involve grandes dificuldades, porque os deslocamentos, velocidades e acelerações são funções implícitas não-lineares das variáveis de decisão. Para evitar efectuar a análise não-linear poder-se-ia tomar como um dos objectivos a minimização da(s) frequência(s) mais baixa(s). Contudo, apesar de ser mais dispendioso do ponto de vista computacional é preferível utilizar o método de integração de Newmark, que permite incorporar no módulo de análise da estrutura o comportamento não-linear decorrente do mecanismo de propagação das fendas e/ou critérios de cedência não-lineares.

Tendo por base o formalismo da entropia máxima de Jaynes, transforma-se o problema de optimização com objectivos múltiplos na minimização de uma função escalar implícita. Resolve-se esta optimização através de uma sequência de problemas aproximados explícitos que utilizam os resultados da análise dinâmica da estrutura para aquela forma e as sensibilidades determinadas. Cada um destes problemas é resolvido através de um algoritmo para minimização de funções de várias variáveis sem restrições, baseado no método de Newton. A derivação dos gradientes das respostas em ordem às variáveis de decisão é fundamental tendo em vista a sua aplicação no algoritmo de optimização. Indicam-se as expressões necessárias para efectuar a análise das sensibilidades quando se obtém as respostas dinâmicas por integração passo a passo ou através de análise modal, de acordo com o método de análise dinâmica utilizado.

FORMULAÇÃO DO PROBLEMA

Representação da Forma

Nesta formulação escolhem-se alguns dos pontos da malha de elementos finitos para controlar as coordenadas dos nós que definem os paramentos e as direcções segundo a que os estes nós se deslocam. Para definir o contorno da barragem utilizam-se polinómios ou segmentos de recta em que estão inscritos os nós de controle. Este modo pretende garantir-se que a malha de elementos finitos,
que é alterada durante o processo de optimização permita obter resultados com a precisão desejada. Em barragens de gravidade as variáveis de decisão \(x_1 \) são normalmente as coordenadas e tangentes aos nós de controle (Fig.1).

Figura 1

Análise Estática da Estrutura

Como a barragem a ser optimizada está submetida à ações estáticas (peso próprio, peso próprio e pressão hidrostática) e dinâmicas (peso próprio e sismo, peso próprio, pressão hidrostática, pressão hidrodinâmica e sismo), descrevem-se sumariamente as técnicas de análise estrutural utilizadas. Indica-se na Fig.2 a malha de elementos finitos que corresponde à configuração inicial da barragem de gravidade. Utilizam-se quadriláteros de 8 nós da família "serendipity" associados a um campo de deslocamentos quadrático.

Figura 2

Consideram-se 18 elementos, 8 dos quais são representativos da fundação e 154 graus de liberdade (90 na barragem e 64 na fundação). Formulando em termos de deslocamentos o método dos elementos finitos, a análise estática da estrutura consiste em resolver o sistema de equações de equilíbrio:

\[
K \mathbf{u} = \mathbf{P}
\]

onde \(K \) é a matriz de rigidez da estrutura, que é construída por agrupamento das matrizes de rigidez \(K_e \) dos elementos, \(\mathbf{u} \) é o vetor dos deslocamentos nodais que se calculam e \(\mathbf{P} \) é o vetor de carga genérico, que inclui o peso próprio da estrutura e a pressão hidrostática. Logo que os deslocamentos nodais sejam conhecidos, todas as outras incógnitas da análise da estrutura podem ser calculadas. Qualquer resposta da estrutura pode ser relacionada com os deslocamentos nodais através da matriz \(Q \):

\[
\mathbf{R} = \mathbf{Q} \mathbf{u}
\]
Análise Dinâmica da Estrutura

As equações de movimentos da análise dinâmica no instante \(t \) para uma estrutura discretizada em elementos finitos são:

\[
M \ddot{u}(t) + C \dot{u}(t) + K u(t) = P(t)
\]

(3)

onde \(M \), \(C \) e \(K \) são, respectivamente, as matrizes de massas, amortecimento e rigidez da estrutura. Estas matrizes são funções do tempo ou constantes em sistemas lineares e funções dos deslocamentos e velocidades em sistemas não-lineares. As quantidades indicadas na equação (3) são funções do vetor \(x \) (das variáveis decisão) cujos elementos são os parâmetros que permitem definir a forma de estrutura. Para efectuar a análise dinâmica de uma estrutura, utilizam-se métodos de integração passo a passo e análise modal. O método de análise modal só pode ser aplicado a sistemas lineares. Segundo este método, a eq.(3) para vibrações livres sem amortecimento reduz-se à equação de valores próprios:

\[
K \phi^T - \lambda \phi^T M \phi = 0
\]

(4)

onde \(\phi^T \) é o vetor próprio que corresponde ao valor próprio \(\lambda \). A expressão para a transformação modal é:

\[
\mathbf{u} = \phi \mathbf{q}
\]

(5)

onde \(\phi \) é a matriz dos modos e \(q \) o vetor das coordenadas generalizadas. Premultiplicando a eq.(3) pela transposta do vetor próprio \(\phi^T \) conduz a

\[
\phi^T M \phi^T q + \phi^T C \phi^T q + \phi^T K \phi q = \phi^T P
\]

(6)

As condições de ortogonalidade,

\[
\phi^T M \phi_s = 0 \quad r \neq s
\]

(7a)

\[
\phi^T K \phi_s = 0 \quad r \neq s
\]

(7b)

obrigam a que, com exceção do modo \(r \), se anulem todos os termos nas expressões da matriz das massas e de rigidez. Admitindo que as mesmas condições de ortogonalidade se aplicam a matriz de amortecimento, a expressão correspondente pode também ser simplificada:

\[
\phi^T C \phi_s = 0 \quad r \neq s
\]

(7c)

O valor próprio \(\phi^T \) é normalizado de modo a ter-se:

\[
\phi^T M \phi^T = 1
\]

(8)

Deste modo a eq.(3) pode ser resolvida através das \(r \) equações de movimento independentes,

\[
q_r + 2 \xi_r \omega_r \dot{q}_r + \omega_r^2 q_r = P_r
\]

(9)

onde \(\xi_r \) e \(\omega_r \) e \(P_r \) são obtidos a partir de,

\[
\omega_r^2 = \lambda_r = \phi^T K \phi_r
\]

(10a)

\[
2 \xi_r \omega_r = 2 \mu_r = \phi^T C \phi_r
\]

(10b)

\[
P_r = \phi^T P
\]

(10c)

Na prática só se considera a eq.(9) para os \(r \) primeiros modos onde \(1 \leq r \leq m \). Os deslocamentos \(u \) são obtidos a partir da eq.(5) depois de se calcular \(q_r \)

\[
q_r = 1/\omega_r \int_0^T P_r(t) \exp[-\xi_r \omega_r (T-t)] \sin[\omega_r (T-t)] dt
\]

(11)

onde,

\[
\omega_r = \omega_r \sqrt{1-\xi_r^2}
\]

(12)

e que corresponde a resolução de eq.(9).

Enquanto o método de análise modal só pode ser aplicado a sistemas lineares, a técnica de integração passo a passo pode ser utilizada quer em sistemas lineares, quer não-lineares. Na integração passo a passo calcula-se a resposta da estrutura para uma sequência de incrementos que distam entre si.
pequenos intervalos de tempo \(\delta t \), geralmente constantes por conveniência computacional. Os deslocamentos e velocidades no instante \(t + \delta t \) são:

\[
\begin{align*}
 u(t+\delta t) &= u(t) + \delta t \ u'(t) + (1/2 - \beta) \ \delta t^2 \ u''(t) + \beta \ \delta t^2 \ u'(t+\delta t) \tag{13a} \\
 \dot{u}(t+\delta t) &= \dot{u}(t) + \delta t/2 \ [\dot{u}(t) + \dot{u}(t+\delta t)] \tag{13b}
\end{align*}
\]

onde \(0 \leq \beta \leq 1/6 \). Para o intervalo \(\delta t \) escolhe-se 1/5 a 1/6 do período natural mais baixo da estrutura. Substituindo as eqs. (13a-b) em (3) tem-se no instante \(t + \delta t \):

\[
\begin{align*}
 \ddot{u}(t+\delta t) &= [M + \delta t/2 \ C + \beta \ \delta t^2 \ K]^{-1} \ [P(t+\delta t) - C[\ddot{u}(t+\delta t)] + K \ [u(t) + \delta t \ u'(t) + (1/2 - \beta) \ \delta t^2 \ u''(t)]]
\end{align*}
\]

OPTIMIZAÇÃO

Formulacro Minimax

O principal objectivo do dimensionamento é chegar a uma solução económica e segura. Um dos factores convencionalmente adoptados é o custo, directamente associado ao volume de betão \(V \). Este valor é obtido somando os volumes dos elementos finitos da barragem,

\[
V = \Sigma e_v c_e \tag{15}
\]

Um segundo conjunto de objectivos resulta da imposição de limites nos valores das tensões

\[
\sigma(x) \leq \sigma^u \quad \sigma(x) \geq - \sigma^l \tag{16}
\]

onde são as tensões admisíveis à compressão, respectivamente. As tensões podem ser de qualquer tipo: tensões normais, tensões de corte e tensões principais.

Para assegurar a estabilidade ao deslizamento, tem-se:

\[
c_1 F_h + c_2 F_v - c_o \leq 0 \tag{17}
\]

em que \(c_o, c_1 \) e \(c_2 \) são constantes e \(F_h, F_v \) correspondem à soma das forças horizontais e verticais, respectivamente. A segurança ao derrube é verificada em relação à base da barragem:

\[
c_3 \ [F_h (v-v_0) - F_v (h-h_0)] - c_4 b F_v \leq 0
\]

onde \(b \) é a espessura da base da barragem, \(c_3 \) e \(c_4 \) são constantes e \(v \) e \(h \) são as coordenadas das linhas de acção das resultantes verticais e horizontais. \((h_0,v_0) \) são as coordenadas do ponto na base da barragem no paramento jazente que se mantém fixo durante a optimização. Com base nesta expressão, é possível calcular a excentricidade das acções actuantes na base e impor-lhe limites:

\[
e(x) \leq e^u \quad \varepsilon(x) \geq - e^u \tag{19}
\]

O coroamento da barragem tem de possuir uma espessura mínima para resistir ao choque de objectos flutuantes, permitir a circulação de tráfego e para proporcional uma altura livre acima do nível máximo da água.

\[
l(x) \geq l_1 \tag{20}
\]

O método de optimização utilizado neste trabalho e descrito a seguir requer que todos estes objectivos sejam normalizados. Se \(V \) representar o volume de referência, melhora-se este objectivo se:

\[
V(x) = \frac{V}{V} - 1 \leq 0 \tag{21a}
\]

Os restantes objectivos serão alcançados se,

\[
g_2(x) = \frac{\sigma(x)}{\sigma^u} - 1 \leq 0 \tag{21b}
\]

\[
g_3(x) = - \frac{\sigma(x)}{\sigma^l} + 1 \leq 0 \tag{21c}
\]

\[
g_4(x) = c_1 F_h(x)/c_o + c_2 F_v/c_o - 1 \leq 0 \tag{21d}
\]

A.353
Para determinar o conjunto de incógnitas x que minimizam todos estes objectivos define-se o problema de optimização minimax:

\[\text{Min}_x \text{ Max}_j \{g_1(x), \ldots, g_j \ldots g_7\} = \text{Min}_x \text{ Max}_{j=1,7} < g_j(x) > \] (22)

Como o problema minimax é descontínuo e não diferenciável quaisquer destas características fazem com que a solução directa por meios numéricos seja difícil. Na referência 2 foi estudado o papel do formalismo da entropia máxima em optimização minimax. Demonstrou-se a partir da desigualdade de norma p que se pode obter uma solução de Pareto através da minimização de uma função escalar contínua e diferenciável:

\[\text{Min}_x \text{ Max}_{j=1,7} < g_j(x) > = \text{Min} \left\{ (1/p) \log \left[\sum_{j=1,7} \exp[p \cdot g_j(x)] \right] \right\} \] (23)

em ordem às variáveis x para uma sequência crescente de valores p\geq1.

Optimização da Função Escalar

Os objectivos \(g_j(x)\) indicados no problema de optimização escalar não tem forma algébrica explícita em ordem às variáveis \(x_i\). Por esse motivo o problema de minimização indicado no lado direito da eq.(23) é resolvido iterativamente com base em aproximações explícitas. Formula-se o problema explícito tomando os desenvolvimentos em série de Taylor de todos os objectivos \(g_j(x)\) truncados a seguir ao termo linear:

\[\text{Min} \ \left\{ (1/p) \log \left[\sum_{j=1,7} \exp[p \cdot g_j(x_o)+\sum_{i=1,N} \frac{\partial g_j}{\partial x_i}\left(x_i-x_o\right)] \right] \right\} \] (24)

Uma vez conhecidos os valores de todos os \(g_j(x_o)\) e \(\frac{\partial g_j(x_o)}{\partial x_i}\), pode resolver-se o problema (24) por um método qualquer para optimização de funções de várias variáveis sem restrições. Entre estes, é preferível utilizar um método gradiente. Resolve-se iterativamente (24), sendo \(x_o\) definido a partir da solução óptima da iteração anterior. O novo dimensionamento tem de ser analisado obtendo-se novos valores para \(g_j(x_1)\) e \(\frac{\partial g_j(x_1)}{\partial x_1}\) que substituem os que correspondem a \(x_o\). Repete-se este procedimento até que as variações em \(x\) de iteração para iteração sejam pequenas.

ANALISE DE SENSIBILIDADES

Método Semi-analítico

Para formular e resolver o problema de escolha de direções utilizada na minimização da função escalar é necessário calcular os valores numéricos das funções \(g_i(x)\) e das suas derivadas em ordem às variáveis de decisão. Como as matrizes \(Q\) e \(K\) e o vector \(P\) são funções das variáveis de decisão \(x_i\), a obtenção das expressões para \(\delta K/\delta x_j\), \(\delta P/\delta x_j\) e \(\delta Q/\delta x_j\) não é imediata. Utiliza-se o método semi-analítico para cálculo das sensibilidades das respostas obtidas para os carregamentos estáticos e consiste nos seguintes passos:

1- Obter o vector de carga virtual \(Q_p\) por diferenças finitas, fazendo \(\Delta x_i=(0,0,\ldots,\Delta x_i,0,\ldots,0)\)

\[Q_p = \sum_{e \in E} \left(-K_e(x+\Delta x_i)u + K_e(x)u + P_e(x+\Delta x_i) - P_e(x) \right) / \Delta x_i \] (25)

em que o índice e e o conjunto \(E\) só se refere aos elementos finitos que dependem da variável de decisão \(x_i\)

2- Calcula-se \(\partial u/\partial x_i\) a partir de,

\[\partial u/\partial x_i = K^{-1} Q_p \] (26)
3- Determina-se a aproximação linear para os parâmetros \(x + \Delta x_i \),
\[
 u(x + \Delta x_i) \equiv u(x) + \partial u / \partial x_i \Delta x_i
\]
(27)

4- Obtém-se as sensibilidades das respostas \(R \) por diferenças finitas:
\[
 \partial R / \partial x_i \equiv [R(x + \Delta x_i, u + \Delta u) - R(x,u)] / \Delta x_i
\]
(28)

Indicam-se em seguida as expressões necessárias para obter \(\partial u(t) / \partial x_i \) e que dependem do tipo de método adoptado para a análise dinâmica. As restantes respostas da estrutura provocadas pelo sismo são calculadas a partir dos passos 3 e 4 do método semi-analítico.

Análise Modal

Os gradientes dos deslocamentos são calculados diferenciando a eq.(6) em ordem a \(x_i \):
\[
 \begin{align*}
 \frac{\partial u}{\partial x_i} &= \frac{\partial \phi_r}{\partial x_i} + \frac{\partial q_r}{\partial x_i} \\
 \frac{\partial \phi_r}{\partial x_i} &= \phi_r \\
 \end{align*}
\]
(29)

Mas para calcular \(\partial q_r / \partial x_i \) são necessárias as quantidades,
\[
 \begin{align*}
 \frac{\partial \omega_r}{\partial x_i} &= \frac{1}{2} \frac{\partial \lambda_r}{\partial x_i} + \frac{\partial \mu_r}{\partial x_i} \\
 \frac{\partial \lambda_r}{\partial x_i} &= \frac{2 \mu_r}{(\lambda_r - \mu_r^2)^{1/2}} \\
 \end{align*}
\]
(30)

e,
\[
 \begin{align*}
 \frac{\partial \mu_r}{\partial x_i} &= \frac{\partial \phi_r}{\partial x_i} \frac{1}{2} \frac{\partial C}{\partial x_i} + \frac{\partial \phi_r}{\partial x_i} \frac{\partial C}{\partial x_i} \\
 \end{align*}
\]
(31)

O cálculo dos gradientes dos valores próprios e vectores próprios é indispensável para obter os lados direitos das eq.(29-31).

Para se obter os gradientes dos valores próprios, diferencia-se em primeiro lugar ambos os lados da eq.(4) em ordem a cada variável \(x_i \),
\[
 \begin{align*}
 (K - \lambda_r M) \frac{\partial \phi_r}{\partial x_i} + \frac{\partial K}{\partial x_i} \phi_r - \frac{\partial \lambda_r}{\partial x_i} \phi_r &= \frac{\partial M}{\partial x_i} \phi_r - \frac{\partial M}{\partial x_i} \phi_r \\
 \end{align*}
\]
(32)

Prémultiplicando a eq.(32) por \(\phi_r^t \) e utilizando a simetria de \(M \) e \(K \) conduz ao cálculo dos gradientes dos valores próprios,
\[
 \begin{align*}
 \frac{\partial \lambda_r}{\partial x_i} &= \frac{\partial K}{\partial x_i} \phi_r - \frac{\partial M}{\partial x_i} \phi_r \\
 \end{align*}
\]
(33)

Determina-se em seguida a expressão que permite obter as derivadas dos vectores próprios. Para,
\[
 B = K - \lambda_r M
\]
(34)

quando todos os valores próprios são diferentes (o que normalmente acontece), o traço de \(B \) é \((m-1) \). Isto permite partir Maur a eq.(6):
\[
 \begin{bmatrix}
 b_{11} & b_{12} \\
 b_{12}^t & b_{22}
 \end{bmatrix}
 \begin{bmatrix}
 \phi_{r1} \\
 \phi_{r2}
 \end{bmatrix}
 =
 \begin{bmatrix}
 \phi_{r1} \bigg| 0 \\
 \phi_{r2} \bigg| 0
 \end{bmatrix}
\]
(35)

onde \(\phi_{r2} \) é um escalar e \(b_{12} \) um vector coluna.
Diferenciando a eq.(35) em ordem a x_i dá:
\[
\begin{vmatrix}
\frac{\partial B_{11}}{\partial x_i} & \frac{\partial b_{12}}{\partial x_i} \\
\frac{\partial b_{12}}{\partial x_i} & \frac{\partial B_{12}}{\partial x_i} \\
\end{vmatrix}
\begin{vmatrix}
\phi_{r1} \\
\phi_{r2} \\
\end{vmatrix}
\begin{vmatrix}
B_{11} & b_{12} \\
B_{12} & b_{22} \\
\end{vmatrix}
\begin{vmatrix}
\partial \phi_{r1}/\partial x_i \\
\partial \phi_{r2}/\partial x_i \\
\end{vmatrix}
= 0
\]
(36)
Resolva-se a eq.(36) em ordem a $(\partial \phi_{r}/\partial x_i)$, obtendo-se uma solução em termos do escalar $(\partial \phi_{r2}/\partial x_i)$:
\[
\frac{\partial \phi_{r}}{\partial x_i} = \frac{\partial \phi_{r2}}{\partial x_i} = a + A_1 \phi_{r}
\]
(37)
onde,
\[
a = \begin{vmatrix}
-B_{11}^{-1} b_{12} \\
b_{22}^{-1} b_{12} B_{11}^{-1} b_{12}
\end{vmatrix}
\]
(38a)
e,
\[
A = \begin{vmatrix}
-B_{11}^{-1} \partial B_{11}/\partial x_i \\
b_{22}^{-1}(-\partial b_{12}/\partial x_i + b_{12} B_{11}^{-1} \partial B_{11}/\partial x_i)
\end{vmatrix}
\begin{vmatrix}
-B_{11}^{-1} \partial b_{12}/\partial x_i \\
b_{22}^{-1}(-\partial b_{22}/\partial x_i + b_{12} B_{11}^{-1} \partial b_{12}/\partial x_i)
\end{vmatrix}
\]
(38b)
Deste modo é necessário determinar a quantidade, $(\partial \phi_{r2}/\partial x_i)$. Para consegui-lo, diferencia-se em primeiro lugar a eq.(8) em ordem a x_i
\[
\phi_{r}^{T} M \partial \phi_{r}/\partial x_i + \phi_{r}^{T} \partial M/\partial x_i \phi_{r} = 0
\]
(39)
Por substituição da eq.(37) em (39) e rearranjando obtem-se,
\[
\frac{\partial \phi_{r2}}{\partial x_i} = 2 \phi_{r}^{T} M A_i \phi_{r} + \phi_{r}^{T} \partial M/\partial x_i \phi_{r}
\]
(40)
Utilizando a eq.(37),
\[
\frac{\partial \phi_{r1}}{\partial x_i} = \begin{vmatrix}
\partial B_{11} & \partial b_{12} \\
\phi_{r1} & \phi_{r2} + b_{12}
\end{vmatrix}
\]
(41)
Integração Passo a Passo
Para calcular os gradientes das acelerações diferencia-se a eq.(14) em ordem a cada uma das variáveis de decisão. Chega-se a:
\[
\partial \ddot{u}(t+\Delta t)/\partial x_i = [M + \Delta t/2 C + \beta \Delta t^2 K]^{-1}
\]
\[
\begin{vmatrix}
\partial u(t) \\
\partial \ddot{u}(t) \\
\end{vmatrix}
\begin{vmatrix}
A_1 u(t) + A_2 \dot{u}(t) + A_3 \ddot{u}(t) + K \ddot{u}(t) \\
A_4 + A_5 + A_6 \ddot{u}(t+\Delta t)
\end{vmatrix}
\]
(42)
onde $A_1 = \delta K/\partial x_i; A_2 = \delta C/\partial x_i + \delta t \delta K/\partial x_i$;
$A_3 = \delta t/2 C + \delta K/\partial x_i$;
$A_4 = C + \delta t K$;
$A_5 = \delta t/2 C + \delta K/\partial x_i$; $A_6 = \delta M/\partial x_i + \delta t/2 C \delta K/\partial x_i + \beta \delta t^2 K/\partial x_i$
Pode utilizar-se a eq.(42) diretamente para cálculo das sensibilidades. De facto, como os deslocamentos e velocidades podem ser calculados por substituição da eq.(14) nas eq. (13a) e (13b), os gradientes destas quantidades são obtidos por diferenciação directa em ordem a cada uma das variáveis de decisão.
Para a velocidade obtem-se:
\[
\delta u(t+\delta t)/\partial x_1 = \partial /\partial x_1 \{u(t) + \delta t/2 [u(t) + u(t+\delta t)]\}
\]
(43a)

Do mesmo modo as sensibilidades dos deslocamentos são:
\[
\delta u(t+\delta t)/\partial x_1 = \partial /\partial x_1 \{u(t) + \delta t u(t) + (1/2-\beta) \delta t^2 u(t) + \beta \delta t^2 u(t+\delta t)\}
\]
(43b)

É necessário ter em atenção que só se podem calcular as derivadas dos deslocamentos, depois de conhecidos os gradientes das acelerações e velocidades.

EXEMPLO

Escolheu-se uma barragem de gravidade para ilustrar o método de otimização descrito (Ref.4, para cargas estáticas). A geometria da barragem é definida a partir de 3 (Caso I) e 5 (Caso II) variáveis de forma. A barragem tem 100m de altura e 6m de espessura mínima. Tomam-se para tensões admissíveis a compressão e tracção do betão 10.000 kN/m² e 1000 kN/m², respectivamente. O módulo de elasticidade é 2,1 \(10^7\) kN/m², o coeficiente de Poisson \(\nu=0,2\) e o peso específico 2,4 \(10^7\) kN/m³. Para propriedades da fundação considera-se \(E=10^7\) kN/m² e \(\nu=0,15\). O coeficiente de amortecimento é 0,05.

Consideram-se os seguintes carregamentos: 1) peso próprio; 2) peso próprio e pressão da água; 3) peso próprio, pressão da água e sismo; 4) peso próprio e sismo.

A segurança relativamente ao derrube para as combinações de acções 1 e 2 verifica-se quando \(Vx0,8/H\geq 1,5\), onde \(V\) e \(H\) são, respectivamente, a resultante das cargas verticais e horizontais. Para garantir a segurança ao derrube \(lel\leq 1/6\) da largura da base, onde \(e\) é a excentricidade da resultante. Quando se consideram acções sísmicas, as expressões para a segurança ao deslizamento e derrube são \(Vx0,8/h\geq 1,2\) e \(lel\leq 1/3\).

Na Fig.3 são comparadas as geometrias determinadas pelo programa de otimização, quando os efeitos sísmicos são calculados através de coeficientes estáticos e por análise dinâmica.

--- solução estática --- solução dinâmica linear --- solução dinâmica não-linear

Figura 3

Gracias à maior flexibilidade na descrição da forma da barragem, o volume diminui à medida que o número de parâmetros aumenta. Nas soluções encontradas verifica-se que as geometrias são muito diferentes, bem como os objectivos críticos. Os objectivos mais importantes para o dimensionamento estático são o derrube e o deslizamento, em virtude de se desprezar a componente vertical da resposta da estrutura ao sismo, e a espessura mínima no coroamento da barragem. Quando se efectua a análise dinâmica da estrutura verifica-se que as tensões de tracção no paramento juzante são dominantes. Por outro lado, as massas no coroamento da barragem que não aumentam as tensões calculadas na análise estática, quando submetidas a sismos provocam um aumento substancial de tensões de tracção no topo...
estática, quando submetidas a sismos provocam um aumento substancial de tensões de tração no topo da barragem.

DISCUSSÃO E CONCLUSÕES

Quando se efectua a análise dinâmica da estrutura dimensionada com base em critérios estáticos, verifica-se que as tensões de tração no paramento juzante chegam a ser 2.5 vezes superiores aos valores máximos estipulados. Por esse motivo se afigura indispensável ter em atenção no dimensionamento os modos de vibração da barragem. Por outro lado, a optimização tendo por base a resposta dinâmica linear conduz a um aumento importante no volume de material utilizado. Como as tensões de tração no paramento juzante são dominantes, o módulo de análise deve contemplar o mecanismo de propagação de fendas, estudado explicitamente através da mecânica da fratura ou implicitamente por meio de critérios de cedência não-lineares. Deste modo será possível diminuir as tensões de tração instaladas nesse paramento, diminuindo o volume de betão necessário.

Por esse motivo o método que se propõe neste trabalho consiste na combinação de dois algoritmos, sendo um de análise estrutural e outro de optimização. Para a análise da barragem sujeita aos sismos utiliza-se a integração passo-a-passo de Newmark. Obtém-se soluções para o problema de optimização com objectivos múltiplos com base no formalismo da entropia máxima de Jaynes. Foi apresentado um método semi-analítico para o cálculo das sensibilidades, concebido para tirar partido das técnicas de integração no tempo utilizadas.

Normalmente consideram-se fenómenos hidrodinâmicos que se adicionam às pressões hidrostáticas. Esses efeitos são contabilizados através de fórmulas que dependem essencialmente da profundidade e do ângulo que o paramento faz com a horizontal. Segundo as hipóteses básicas dessas fórmulas admite-se que a água é incompressível e a massa rígida. Contudo, a deformabilidade da barragem e a compressibilidade da água são importantes na resposta da estrutura sujeita a sismos, aumentando substancialmente os fenómenos hidrodinâmicos, pelo que se justifica a sua modelação por elementos finitos. Muitas vezes a análise sísmica só entra com a componente horizontal. A contribuição da componente vertical no comportamento de barragens é significativa porque os efeitos hidrodinâmicos que actuam segundo a direcção horizontal no paramento montante e a interacção entre a água e a fundação provam resposta lateral. Em barragens de pequena altura a resposta a esta componente é muito importante, podendo mesmo exceder o efeito da componente horizontal. Embora essa importância diminua com a altura da barragem devem ser sempre considerados os efeitos da componente vertical dos sismos.

AGRADECIMENTOS

Os autores desejam agradecer o apoio financeiro concedido pela JNICT (Junta Nacional de Investigação Científica e Tecnológica, Proj. 87.230).

REFERÊNCIAS

A.358