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ABSTRACT

The available strategies, méthods and approaches of design sensitivity analysis
are reviewed They are classified inte the following systematical categories:
strategies, methods, ‘and solutions. The number of conbination is very large. For a
general problen, none of the combingtion is guaranieed 1o preference fo another.
However, g "good practical” way can be obtgined to an acvepied level The
advantages and disadvantages of Some combinations are discussed.  Variational
strategy. for sizing prablem and semi-anafvtic solution for general application are
strongly recommiended. Finally, Varational strategy, finite difference and seroi-analytic
solation are implemented with sommercial fimite element analysis (FEA) program
ADINA

INTRODUCTION

The development of commercial finite element analysistFEA) techuigues have
provided the engineer with a usefal tool. Tt is very important f6r the deésign engineer to know
design sensitivity information, ie. the siructural responses of a slight perturbing of the
structure. In the field of structural aptimization, most of the gradient-based optimization
algorithms usually require the design sensitivity: information in searching for the optirnum
design, and an efficient structural optimum design also uses the design sensitivity for avoiding
many detailed finite element analysis by creating an approximate optimization. Design
sensitivity analysis is theréfore an important ingredient in engineering design. Bvenmore and
more commercial FEA programs have provided a design sensitivity amalysis capability.
However, for the designer using commercial FEA programs without the capability, there is
a large catalog to chose a suitable way to calculate design sensifivity information. Therefore
implementation of design sensitivity analysis(DSA) integrated with FEA becomes a quite
complex problem. 1t is necessary to make a comprehensive study on the existing ways of
caleulation of design sensitivity information. '

In the paper, first of all, the existed ways to calculate BSA are classified inte the
following systematical categories: (wo strategics (difference of a discrete system and
variational strategy), two methods (direct éliminating and Lagrange Multiplier method}, and
three solutions (analytic, semi-analytic. and finite difference solutions). Then, the advantages




znd disadvantages of some combinations are discussed, The Variational Strategy is strongly
recommended in sizing optimization, as its FEA independence and easiness of implementanion.
Also, the combination of the difference of a discrete system strategy, the direct eliminating
method and the semi-analynic solution is recommended, based on the author's emphasis on
general application and implementation of DSA oufside the existing commercial FEA
program. Finally, Variational strategy, finite difference and semi-analytic solutions for a very
simple ten-bar problem were implemented with ADINA.

TWO STRATEGIES

The purpose of the design sensitivity analysis is to evaluate the derivatives of the
structural Tespanse with respect to the size and shape design variables. There aré two basic
saregies for sensiuivity deriyatives calenlation. The first is based on the differentiation of
discrete (FE) system and the second is usually called variational approach which based on
differentiating the continuum equations before discretized.

Stmategy 1. differentiation of discretized system

The structure had been discreted into a finite alement model, and stroctural respenses
were govemed by algebraic eqeations. The sensitivity is then equivalent to the mathematical
prablem of obtaiming the derivatives of the solutions: of those equations with respect o their
coefMicients. Under the strategy there are several popular methods md selution widely used,
which will be discussed later.

Strafeey 2: Variational znd continue-based sensitivity

Oppased 1o strategy of differentistion of discretized system, the Strategy consider the
differentiate the continoum equations before discretized, ‘The resulting sensitivity equations
can then be solved wirh the gid of a stmeetaral program.

For instance, we write the equation of equilibrium through the principle of vitual
work as:

[oseav- f £6udy+ Tuds ()
where ¢ and € are the stress and strain tensor, f is body force, T is a surface force
on & part of surface S.
Bquation (1} is complemented by a linear stress-strain law,
o= Dfec) g (2
where ' represents the initial strain and o' represents the initial stress field; and D is
the matrix of the generalized Hook's law: In finite element method, the displacemem field #
is replaced by the nodal displacement vector U as
= N (3]
The tincar strain-displacement relation is

¢ = L= LNU=BU ()

The following equilibrium equation is obtained by substiuting equation (2) -(4) into
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equaiton(l)

KUu=F 5)
where - f B Deiav - [B Toldv f NTEAV IN Trds (62)
K—f(B""DB)dV (6h)

The design varigble z; are assumed here not to influence 7, €' and ¢'. Taking the derivative
of equations (1)-(3) with respect to the design variable x;

[o, seav-[£, suav o
a, he,a’ (e}
’ ’ ’ (8)
F_XJ_:Bij (9)
Substituting equations (8)-(9) into equation (7) and considering 81U as arbitrary,
Kl fw 7E, AV j'_re "o, (€)dy (103
where the pseudodoad is
o~ ([87E dv- J'B--Tc"‘x'(e yav) {y

The pseudo-toad can therefore be compured by defining the fields of hedy foree f,
and initial stress o, The sensitivity information (/,, can be selved by equation (10} ance the
pseudo-load has been computed.

Ror sizing optimization as the geomgtry of mesh remains unchanged, the change of
design variable x, does not influence the bedy force f, therefore, the first part of squation {11)
is ml. Conceming the second pat of (11), the deviations of current stress field with fixed
mesh could be anologied by a initial strain field load. As most of commercial FEA programs
provided the initial strain {ield load, it is not difficult to implemem. Fer example, the imposed
pseudo-load for truss-lype structures is formulaied as follows,

n (R ,-7_?_‘ 5]
Fo[B 4z gz (12)
where A is the cross sectiong! area of the bar, the initial strain is given as -0/AE.

TWO METHODS
Urder the strategy of differentiation of discretized systems, mathematically there are
1w ways of caleulation of the derivatives of the selations of those equations with respect
to their coefficient, direct elimination and the adjoint (Lagrange Muliipliers) method.
Mathematically. we consider the equations of constraints and ¢ derivatives

efux) =0 (13

under the constraint of (he equations of eqmlibrium



Kx) U=F (14)
Method 1: direct eliminati gudo load) method
Differeritiating the equation above with réspect to 1, we obtain

KU, “F, K,

{15}
so that
diy

atK 1FF3:K 1[ij KXJ.U] (16)

is reached. We may obtain 1hé value of pscudo Toad Fj, with amalytic and semi-snalytic
iteration seiutions,

Method 2: the adjoint (Lagrange Multipliers) method
We may state the sensitivity problem as fellows: fo find an expression for the
differential change in a valued function

a1 x) (7

due to differential changes in x, it which u ix detennined implicitly by the design variables
x through the constraint relations

fx=-Kx)U-F=10 (18)
In the approach, g is adjoined fo the constraint, to form the Lagrangian
Lx UL = gUx) + AT (Ku-F) (EH

in which A,..A, are a set of under-determined multipliers' or adjoint varables. Then 2
differential change in L due to differential changes in x and [/ iz given by

diL=Ldx + LdU 20}
Since we are niterested in how L and, thus, g changes as x change, it is conventient to chocse
the A vector sa that
Lu =B =+ ;‘TK =0 (21)
AT =K'g) {22)
Since 7 was found from Kix) U-¥ =0
dg=dl Ldx g, 2 (F, Ku) {23

The adjolut niethiod 1 also known as the dininmy-load merhod because g, s often
described as dummy load. When g in Eq.(22) is a upper limif on displacement, the dummy



load also has a single nonzero compenent corresponding to the constrained displacement
component. Similarly, when g, is an upper limit on the stressin a truss member, the dummy
load is composied of a pair of equal'and opposite farce acting on the twa ends of the member.
It is suitable that when we can write he constraint explicitly in the term of nodal
displacement. The second pan of equation (23) could be solved by different solutions
discussed later.

Both methoeds require the solution for the additional loading ¢ases. In pseudo-load
method the aumber of additional loads is 7.¢, where n is the number of design varigbles and
¢ is the riumber of applied Toading case. With the adjoint method the number is m, where the
m is the total fiwmber of constraints. When (he problem has a large nuinber of design and
Jeading cases, the adjoint method has considerable advance.

THREE SOLUTIONS

Generally, the following three solutions are used under one of the methods discussed
before in structural optimization:

(1) the analytic solution

The psendo load £, in (16} is coded directly. The analyric method is popular due to
its accuracy, but it requires the users' access (o the detailed-level computation of each type
of element in a finite element program. Most commegrcial TEA programs unfortunately do nat
provide wer with that level of information.

(2) the overall finite difference method

The overall finite difference method uses the following equation

dy AU _K *(x-8x)F K Hx)F
dx Ax Ax (16}

Since it is very easy to implement, the overall finite difference method has s
advantage. However, the solution has two serious shotfcomings. First, its accuragy is very
dependent on {he chicice of size if perurbarion. the improper choice of periurbation may cause
truncation o conditionzl error in computation. Second, i is computationally expensive
especially for large scale problems which include a large number of design vanables.

(3) the semi-analyiic Solution

The semi-analytic method is considered as compronise between the other two. In the
solution, the equation (16) is caleulated by finite deference, ie

AU e jugtp AF 2K
dx Epsl =K1 1 5z Y] ()



NUMERICAL TEST EXAMPLE

The well-known ten-bar trass problem
is selected as an example, as shown in FIG.L.
i is subjected to a loading condition P. The

cross-sectional area of each member was \*\‘,
selected as design variables. The values L, P P
and E are 250cm;, 100N, and 200GPa, o

respectively. We  considered the design
sensitivity information of 8 nodal
displacements with respect to design x; at (x: ¥16.1 Ten-Bar Problem

¥ = = Xy = S0cm? ) for Numinatich.

The variational strategy, semi-analytic selution, and finite difference seludon under
the difference of discrete FE systen strategy, with the direcr eliminate method inegrated with
commercial finite element programs ADINA had been implemented, respectively. The
floweliarts of diflerent ways are shown in FIG.2.
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F1G.2 Flowcharts of difference Methods
Variational Sirategy:

We can casily obtain the design sensitivity information by first running a4 structural
analysis and then applying the initial strain by equatien (12) to the original structure of the
problem. The ADINA provide the initiul strain loads case. The design sensitivity of nodal
displacements with respect 1o design variable x, are shown in Table 1.

Fiite Difference Method:

A et of design sensitivity intormation is gaiied by employing forward finile
difference iterative method with step sizes from 107 to LO®, The design sensitivity of nodal
displacements with respect to design variable x, are shown in the tables. The biggest
disadvantage of this method is the truncated and conditional error problem. With the step
sizes of 107 and 107, the results are quite an accepteble comiparison with the variational
methed (Table.1). The solution is not reliable when the step size is more than orfand equal
10" as well gy less than. 107




Semi-Analytic Method:

The same problem is implemented by wusing ADINA on IBM/RISC6000 as shown in
the tables. First a perturbing stiffness matrix with defined step size was gained by using
ADINA internal opiion (TAPESTORE IKMATRIX=1). Then pseudc load was caleulated by
equation (17) with user support load cases. After that, the design sensitivity information was
gained by applying the pseude Joad to the orginal structure. In the problem, the solution is

reliable when the step size is from 10” to 107,

Table 1.

Variational | Semi-Analytic Method Finite Difference Méthod

Methed (SAM)x10° (FDM)»10°®

(VM)

10 Ax Ax/x,

0.001 0.0001 0.00 G.0001
du/dx, 210143 2.09940 2.10121 208790 2.19978
du/dx, -1.25920 -1.25799 -1:25908 -1.25674 -1.25987
dufdx, 2.11846 | 2.11441 2.11824 2.087%0 1.99980
dn e, (47425 147282 147410 145854 139986
dugdx, 7.97026 7.76276 7.76948 7.79220 7.99920
a’u_g/aix, -.124217 -124087 -124205 -. 124076 - 123988
diifdx, 626607 H28930 629538 639361 799920
duy/dx; 164454 164296 164438 163836 159984
Table 2. Ten-bar truss design sensitivity by FDM wath difference step size

Ax/x, duefedx; <107 duyde,x107 | dugd 2107 du fidx, % 107
il 175545 - 105185 176945 123145
107 206337 -123584 207723 144554
10# 2209790 - 125674 209790 145854
1w? 219978 - 125987 199980 136986
107 .199998 -.139999 199989 0
10* 0 - 199598 0 i
107 0 0 0 0
Relative emor(%) with VM [(y-v,i/y,]
ex -16:46 1647 1647 -16.47
10* -1.18 1.86 -1.95 -1.95




10° .17 0.20 097 1.07

16" 468 0,65 -5.60 5.00

10° 483 1118 560 -100.00
10° -100.00 58.83 -100.00 -100.00
107 _100.00 -100.00 -100.00 10000

Table 3. Ten-bar truss design sensitivity by SAM with difference step size

Axx; dupdx 107 duy/ehe x 107 du/dy, <107 ditfd = 10%
1 1904913 - | 14308 192460 .133934

10° 208048 - 124665 .209734 .145955

1072 .209940 -125799 211641 147282

10+ 210121 - 125908 211824 147410
100 210141 -125919 211844 147423

10° 210143 - 125920 211845 147424

107 210143 - 125920 211846 147425

10% 420284 ~251843 423659 294852

10 0 0 0 6

Relative error(%) with VM [{y-ya)/vl

' -9.15 -9.15 9.15 -G.15

16° -1.00 -0.99 =100 -1.00

1 0.0 -0.10 -0.10 0.10

10* .01 -0.61 -0.01 0.01

10* 06 0.0 0.0 0.0

Lo* 0.0 0.0 0.0 0.0

107 0.0 0.0 0.0 0.0

1r® 100.00 100.00 166.00 100.00

10 -100.00 -100.00 -100.00 -100:00
CONCLUSION

The numsrical results of test exanple have shown that finite difference method can
be easily implemented irto any commercial finite element programs, The finite difference is,
however, very inefficient for large-scale problem which have large numbers of design
variables. Furthermore, the accuracy of design sensitivity analysis is very dependent on thé
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magnitude of step size.

The varigtional strategy is very attractive for its numerical efficiency and absence of
the truncated error problem. Tt is easy to performt design sensitivity analysis in any
commercial finite element program with a snitable pseudo-load. However, the initial strain
of the new imposed psendo load for different kinds of elements, with respects to different
types of design varfables, require a Targe research effort to find its exact form. As for size
optimization, due to the geometry mesh unchanged, it is easy to achieve the simple form by

equation (11} Also, because most commercial finite element programs provide initial strain

field loads, it is strong recomnmended: to nse variational strategy with adequate formulation
i size optimization
The semi-analytic method is a practical compromise.
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