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A mathematical programming techmigue is deseribed which minimizes the tolal average volume of stesl
reinforcement of a reinforced conerete frame for a specified failure probability. The structural material is
assumed to exhibit a perfectly-plastic behaviour so that plastic collapse is the only possibie failure mode.
Tt consists of solving alternatively a reliability assessment problem, which incorporates recent developments
in large-scale constrained concave guadratic programming and an oplimal sizing problem (convex
minimization) until the best reliability-based design against collapse 1§ found.
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I INTRODUCTION

This paper describes a computer reliability-based optimization design procedure as
a rational approach (o the design of frames. Loads and strengths are trealed as
random variables and failure is defined as the event that the load effect exceeds the
plastic resistance of the structure. The risk measure that corresponds to this event is
the global probability of failure by plastic collapse which is obtained from a
systematic analysis of the uncértainties in random variables and of their statistical
inter-dependencies. The reliability-based optimization procedure involves an iterative
process which is repeated until the best design against collapse occurs. Development
of models for reliabitity-based optimization was apparently initiated by Forssell* who
formulated the optimization as minimization of total cost. The term “total cost”
implies the initial cost (sum of all costs associated with erection and operation of the
structure during its projected design life without failure) and the expected cost of
failure {sum of all costs associated with the probability of failure, ¢.g.: expected cost
of repairs, expected cost of disruption of normal use, expected cost of loss of human
life). This total cost criterion governs nearly all of the work that Hourished during
the 19350s and is recorded in the papers by Johnson?, Ferry Borges®, Frendenthal®,
Paez and Torrojas, among olhers.

During the next decade (1960-1970) the importance of Bayesian decision theory
in structural optimization was recognized, and several devices aimed at improving
the value of the optimum reliability-based solutions were introduced by Benjamin®,
Cornell” and Turkstra®. In the same decade, the need to reduce structural weight
without compromising structural reliability, particularly in aerospace applications,
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was also recognized. The first major efforts along this line were led by Hilion and
Feigen® 30 years ago. Subsequently, other efforts in this category were carried out
by Kalaba'®, Moses and Kinser'! among others.

Nevertheless, by 1970 it had become apparent that the concepts and methods of
probability arc the proper bases for development of optimum criteria for structural
design. In present design practice it is usually assumed that structural systems are
as safe as their components. However, in recent years consideration of both ductile
and brittle behaviour including load and strength correlation has permitted consider-
able improvement of solutions to system reliability problems (Ditlevsen'”, Ang and
Ma'?®, Cou, Mclntosh and Corotis**). Developments in structural system reliability
have again revived interest in methods for generating multiple failure modes. Each
failure mode has a certain finite probability of occurring. Thus, it is necessary to
generate the most significant failure modes to estimate the reliability of frames. Three
basic procedures have been popular for generating failure modes: exhaustive enum-
eration, repeated structural analysis and optimization. Techniques for exhaustive
enumeration have been discussed by Bjerager'®. A number of recent procedures are
based on the strategy of using successive elastic analysis. The incremental load
method (Moses'®) finds an initial failure mode by incrementing a load and following
its path from the initial yield to the final failure criterion. Other modes are generated
either by simulation or by applying variations successively. The method has also
been used in conjunction with branching and bounding operations (Melchers and
Tang'”, Murotsu'®). Gorman'® used simulation for generating a set of values for the
basic variables which are then used with a traditional structural analysis procedure
to determine the failure mode. Repeated application yields other failure modes. The
B-unzipping method (Thoft-Chrisiensen and Sorensen??) is another similar approach.
Optimization techniques have also been used for failure mode generation. Simulation,
along with sensitivity analysis procedures for a static LP model of plastic analysis
have been proposed by Rashedi and Moses®'.

Alternatively, the problem was formulated as an unconstrained nonlinear pro-
gramming model and solved by a trial-and-error search procedure (Ang and Ma'®).
These procedures are not very approptiate because they may overlook stochastic
important modes. Nafday, Corotis and Cohon®* proposed an extreme point ranking
algorithm but in view of the NP-hard nature of the reliability assessment problem
it is not efficient for large systems. There remains the need for reliable algorithmic
procedures for the generation of failure modes of building frames. The solution
method for the inner problem described in this paper, which incorporates recent
developments in large-scale constrained concave quadratic programiming seems
ideally suited for this purpose. The computational technique is illustrated on a
two-storey two-bay frame.

2 PROBLEM STATEMENT

2.1  Formulation

The general multicriteria reliability-based optimization problem with collapse and
unserviceability as the failure criteria, may be stated as: find the vector of design
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variables d such that:

V=fld=<V° (la)
P_fa = Pfa(d) < Pﬂo or ﬁo = ﬁa(d) = ﬁg (]-bJ
Pfu = Pfu(d) = P?'u or ﬁu = ﬁu(f'ﬂ = ﬁﬂ (lc)

in which ¥ is the total volume(weight) of the structure; P,, is the probability of
plastic collapse; Py, is the probability of unserviceability (Le.: probability of first
plastic hinge occurrence); f, = ® — 1(1 — P, is the reliability index against plastic
collapse (in which @~ " is the inverse of the standard normal probability distribution);
B, = ® '(1 — P} is the reliability index against unserviceability; and the superscript
o denotes a prescribed value (e.g.: V7" = maximum allowable volume; P?%, is the
maximum allowable probability of plastic collapse; f2 is minimum allowable re-
liability index against the occurrence of the first plastic hinge).
Nine possible formulations could be used for finding the optimum solution:

A) Minimize the total velume of a structure, ¥, subject to reliability constraints
defined in Egs. (1b) and (lc).

B) Minimize the probability of collapse P, (maximize the safety index f;), when
the maximum structural volume F* and the allowable risk level against unservice-
ahility P, are prescribed.

C) Minimize the probability of unserviceability P, (maximize the safety index £,),
when the maximum stroctural volume V° and the allowable risk level against collapse
P9, are prescribed.

D) Minimize the probability of collaupse P, (maximize fi;), when the allowable
risk level against unserviceability P, is prescribed (V is of no concern):

E) Minimize the probability of unserviceability P, (maximize §,), when the
allowable risk level against plastic collapse P}, is prescribed (V is of no concern).

F) Minimize the total structural volume ¥, when the allowable risk level against
plastic collapse PY, is prescribed (P, is of no concern).

G) Mimimize the total structural volume V, when the allowable risk level against
unserviceability P}, 1s prescribed (P, is of no concern).

H) Minimize the probability of collapse P, (maximize fi,), when the maximum
structural volume ¥ is prescribed (P, is of no concern).

I) Minimize the probability of unserviceability P, (maximize f), when the
maximum structural volume V' is prescribed (P, is of no concern).

The preceding formulations A, B, and C are mulii-constrained optimization problems,
while D-T are single-constraint problems. The formulations D and E are useful when
weight is of no concern and the most reliable structure against the occurrence of one
limit state is desired, given the specified reliability level against the occurrence of the
other limit state. The formulations F and G are useful when the reliability level
determines the minimum weight structure so that the reliability level against the
occurrence of the other limit state will be equal to a preassigned value. These
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single-criterion formulations together with the formulations H and [ should be used
for comparison with constrained optimization solutions that for the case A can be
written:

Min ¥ = f(d) (2)
subject to
gild, m, 2, 8, u, 0%, u*) =10 (2b)
gald, m, A, w, 0%, u*¥) < 0 (20)
gx{d) <0 (2d)
Pi[Z, < 0] < P, k=1,....m (2e)

F’r[A (A< 0“ < Py, (20)
c=1.m |

where i, m, A, 6, u, 0%, u* are the vectors of design variables, random bending moment
resistances, random loads, eritical section rotations, nodal displacements, total critical
section rotations and total nodal displacemenis, respectively. The objective function
and the constraints (2b)~(2d) are linear. The above formulation is different from plastic
limit synthesis problems, owing to single mode failure probability constraints (2e)
and the system failure probability constraint (2f). To check whether the probability
constraint conditions are satisfied, an optimization problem called an inner problem
must be solved.

2.2 Assumptions

The following assumptions are made in solving the constrained optimization problem
(2):

1) The general struetural configuration including the lengths of all prismatic and
straight members is specified in a fixed (deterministic) manner.

2) Plastic collapse is the only possible failure mode. Safety against loss of
serviceability, which is defined in this study by the formation of the first plastic hinge,
is accessed by means of the simplified probabilistic procedure proposed by Parimi
and Cohn®2.

3) The effects of axial forces, shear and torsion are not considered.

4) The magnitudes of static loads, L, L, ..., L, which form the load vector L are
random but their positions are deterministic.

5) The statistical dependence between any pair of loads Ly, L, is accounted for
through the coefficient of correlation p(L;, L,,).

6) The ultimate (plastic) moment capacities in positive or negative bending for
both beam and column eritical sections are computed by the equation for flexural
capacity of members with an ideal elastic-plastic moment-curvature relationship.
Consequently, the actual plastic moments of the critical sections in positive or
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negative bending, m, «, My -, My, Ay, ..., Moo, -, are random variables which make
up vector m.

7) The statistical dependence between any pair of plastic moments m;-, M-, is
accounted for through the coefficient of correlation p(m;y, m,-).

8) The compenents of plastic moment vector m are statistically independent of the
components of the load vector L.

9) Coansistent with a first-order second-moment reliability approach, the minimum
statistical information required for the evaluation of the optimum solution is:

{2) The mean values of the loads prq, Hya, - -» L., Which make up the vector py,
the coefficients of variation of the loads L), (L), . ... (L;) which make up the
vector €., and the coefficients of correlation between pairs of loads which form a
square symmetrical correlation matrix denoted C,,.

{b) The coeflicients of variation of the plastic moments Q(m, ), Qm, -}, Qlm,-),
Qims-), ..., Qm,.), Qm,), which make up the vector Q, and the cocfiicients of
correlation between pairs of plastic moments which form a square symmetrical matrix
denoted Cj.

2.3 Single mode failure probability constraint

The probability of failure via the kth individual collapse mode p, can be obtained
from the probability that a certain performance [unction Z,:

Z,=U, — E,=m™#*" + m™'9* — Lu* (3)

is negative. In Eq. (3) U, and E, are the internal and external random work associated
with the &th collapse mode. Consistent with a first-order second-moment reliability
analysis, the failure probability may be measured entirely with a function of the first
and second moments of random parameters. It is assumed that safety with regard
to plastic collapse via the failure mode k depends only on reliability index f, that
is defined as the shortest distance from the origin to a failure surface in the reduced
random variables coordinate system.

b= #z-g‘fﬂ'zg. “4)

It is important to note that the standard deviation of the safety margin of an
individual collapse mode and the probability of oceurrence of this mode increases
as the statistical positive dependence between plastic moments and/or between loads
that are active in producing the mechanism increases and vice-versa.

2.4 Multi-mode failure probability constraint

Evaluation of the failure probability appearing in constraints (2f) is one of the major
concerns in the solution of reliability-based optimization problems. Since multiple
integration with respect to random parameters must be executed and correlations of
each failure mode must be known a priori, in a multi-mode failure probability, an
exact calculation of probability Pr[ ] is practically imipossible, without resorting to
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an approximation method. In general, the admissible failure probability for structural
design is very low. Hence, approximation by Cornell's first-order upper bound is
suitable for calculating multi-mode failure probability and it can be used for the
designer’s benefit, since it is conservative,

Max[PHZ)] < Py, <1— [] [1 —PrZ)] {5)
allk k=1/m
The lower bound, which represents the probability of occurrence of the most eritical
mode (dominant mode) is obtained by assuming the mode failure events Z, to be
perfectly dependent, and the upper bound is derived by assuming independence
between mode failure events. Since this multi-mode failure probability is a summation
of single mode failure probabilities, the consiraint (2f) can be stated as,

Y Pz, <0]= Y Pu<P, (6)
k=1Ll.m k=1,m
For o_pt_imization purposes and sinee the failure probabilities are very small compared
with other gunantities, the multi-mode probability constraint can be replaced by the
convex dpproximation,
In Y e <inp, (7)
k=1,m
where P, denotes an admissible system failure probability, ¢,, ¢, and ¢; are
constants. Cornell has shown that in the 10™* regions the value of ¢, varies from
about 0.5 to 1.5 for several common distributions. The value of ¢, depends primarily
on the skewness of the probability density function. For the normal distribution ¢,
would be about 2.

The bound (6) can be improved by taking into account the probabilities of joint
failure events such as P(F; » F;) which means the probability that both events F; and
F; will simultaneously occur. The resulting closed-form solutions for the lower and
upper bounds are as follows:

by PF)+ Y Mﬂ{[i"(ﬂl 'Y PEn Fﬂ]; 0} (8)
i=2 i=1
pr< 3 PF)— 3 Max P(F,r F) ©)

The above bounds can be further approximated using Ditlevsen’s method of condi-
tional bounding'?. This is accomplished by using a Gaussian distribution space in
which it is always possible to determine three numbers f,, f; and p; for each pair
of collapse modes F; and F; such that if p; > 0 (ie, if F; and F; are positively
dependent):

" Bi— By . B — Bipy
P(F;nFp) = Max{‘b(—ﬁj)q’(— %), G’(*I}f)d)( Q)} (10)
N = e \/l“ﬂv‘zj"

P(F,nF) < (IJ(—ﬁj.)-(I)(— ijﬁﬁj;j)jL ED[—[)’I-)WD(—%%) (11)
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in which 8; and B; are the safety indices of the ith and the jth failure mode, p;; is the
correlation coefficient between the ith and the jth failure mode, and ®( ) is the
standardized normal probability distribution function.

The probabilities of the joint events P(F; ~ F) in (8) and (9) are then approximated
with the appropriate sides of (10) and (11). For example, if F; and F; are positively
dependent, for the lower (8) and upper (9) bounds it is necessary to use the
approximations given by the upper (L1) and lower (10) bounds, respectively.

Moses and Kinser'? have shown that the overall probability of collapse of a system,
Eq. (6), can be expressed in the following way:
p;=PIF)+ Y aP(F) (12)

=2
where,
a=PE S, -8 | F) (13)

is the conditional probability that the first i — | modes survive given that mode i
occurs. Note that the failure modes are arranged so that P(F,) > P(F;)>--- >
P(F) > --- = P(F,) because the value of the conditional probability (13) depends on
the ordering of failure modes.
The method introduced by Vanmarcke* reduces in relation (13) the number of
survival events to one, such that:
i=1
a; < MinP(§,|F) =af (14)
=1
Therefore, af = a, = 1. a¥ = a, and,
P(F) + 3, @ P(F) (15)
i=2
is an upper bound to the overall probability of collapse (6). Using a first-order
approach, Vanmarcke introduced a useful approximation of the conditional prob-
ability P(S;|F;) in terms of the safety indices f; and f§, and of the coefficient of
correlation p;; between the fdilure modes F;and F; as follows:

- q)[MaX{ﬁjf’l'pUr-' 81

P(S;|F)=1
Si1F) B

(16)

in which it is assumed that the probability of occurrence of the ith mode P(F)) = ®(f,)
depends on f; only.

A different approximate method which avoids caleulating conditional probabilities
resulting from conditions leading to failure via pairs of failure modes is the PNET
method!?. This method requires the determination of the coefficients of correlation
between any two failure modes i and j and is based on the notion of a demarcating
correlation coefficient p, assuming those failure modes with high correlation
(p:.; = po) to be perfectly correlated and those with low correlation (p; ; < pg) to be
statistically independent.
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On the basis of one mechanism, Klingmiiller®® ¢valuated the failure probabilities
of large systems performing the theorem of total probability. Tt is stated that:
Pd)= 3 PA|B}P(B) (17)
=1,
where the event A represents the system failure and B; is the occurrence of mechanism
i respectively. From this theorem the following approximation may be derived:

_ max, P(A Bg (18)

PUA) = Pr2—rn

with max; P(A|B;) being the probability of failure of the deterministic most relevant
mechanism and P(B;) the probability that this is the relevant mechanism. This method
neglects the fact that the deterministic mechanism may not yield the highest failure
probability and therefore is not necessarily identical with the stochastic most relevant
mechanism. The mechanical model also umplies that all loads are mutually perfectly
correlated, since only 2 common toad factor can be introduced as a random variable.
However, il one replaces the deterministic by the stochastic most important mechan-
ism the selution given by this method can be a useful approach for large systems.

3 SOLUTION METHOD

The solution methed can be divided mnto two alternating subprocedures:

a) an optimization procedure for the nonconvex inner problem, thai finds the
stochastic most important mechanism and enumerates other relevant collapse modes
for a given value of the design variables (plastic moments of resistance).

b} an optimization of the convex outer problem on the design variables, that is
the solution with least cost satisfying serviceability and technological requirements
and the reliahility constraints (2e) and (20). In order to satisfy these. the number of
reliability constraints is expanded to include several stochastic dominant modes.

The procedure is repeated until the vector of design variables converges. Since these
two procedures are themselves mathematical programmes, any suitable techniques
can be applied. The probability constraints are checked by using the results of the
inner problem.

Bracken and McGill*® considered a mathematical program with optimization
problems in the constraints. They developed a criteria under which the problem is
conver, differing from the problem treated here. This form of reliability-based
optimization is similar to the parametric optimization problem treated by Kwak and
Haug?” except that the domains of subproblems are functions not only of random
parameters but also of design variables. This problem was overcome by Lee and
Kwalk?® for elastic trusses, but it was assumed that the solution of each inner problem
is unique. This is not true for structures with plastic behaviour, because each collapse
mechanism is a local solution of the inner problem.
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4 INNER PROBLEM

4.1 Srructural relations

A frame can be reduced to a determinate form in a variety of different ways. The
bending moments at the critical sections can be expressed in terms of the coordinates
of the influence diagrams asseciated with unit magnitudes of the loads I and the
indeterminate forces p.

m= Bp+ ByL (19)

If a mechanism is created by allowing flexural deformations, the kinematic relations
for the mesh description to ensure compatibility are:

0= B (20)

The rates of the displacements u which correspond to the loads L can be evaluated
in terms of the flexural deformation rates:

u = Byto (21)

Since the angular rotation at the critical sections are the independent kinematic
variables, scaling can be performed through the following normalization condition:

h=1=bhdr — bl =1 (22)

where the elements of b, are linear combinations of the rows of By.

The familiarity of structural engineers with respect to a determinate basis with
physical release systems may be responsible for the limited use that has been made
of mesh procedures in structural applications. With more complex frames, the
derivation of the basic matrices (B, B,) becomes very tedious. Therefore, the selection
of the most suitable release system becomes more important and also more difficult.
‘The most convenient basis for the frame of Figure 1 is that of the regional meshes
shown (Munro®).

3
g

Figure 1
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The B matrix can be assembled in terms of four submatrices and ihe elemerits of
B, can be obtained from any set of bending moments which are in equilibrium with
the unit loads.

4.2  Constitutive relations

The plastification in frames can be considered to be restricted to pre-located sections
and the yield criterion imposes bounds upon the values of the moments in all critical
sections. For example, if the plastic resisting moments, negative and positive, in the
critical section i are m¥, and m} . respectively, it must be:

—mt <m; < mk (23)
Since the variables @ are real and the standard algorithms of mathematical pro-

gramming work with nonnegative variables, the rotation in the critical section i,
0, is decomposed in the pair of nonnegative variables 8;, and 0;-:

B, =0, -8 (24)
Therefore, the section ¢ can be:
1) A paositive plastic hinge participating in the failure mechanism,
Gy =0; 0,=8,>0; m=mh (25a)
2) A negative plastic hinge participating in the failure mechanism,
b..>0; #,=—-0_<0 m=—mE (25b)
3) An elastic point or a plastic hinge not participating in the mechanism,

0. =0=6_; 0,=0; —m¥E <m;<mh (25¢)

4.3 Second moment approach

To represent explicitly the uncertainty in the strength of the structure and the loading
acting on it random variables need to be considered. The problem arises to evaluate
the conditional failure probability of the structural system given a certain load event,
and the program seeks the stochastic most relevant mechanism. For the uncorrelated
random variables m, L and positive [u 0% — pu*], the identification of the stochastic
most relevant mechanism consists of minimizing the reliability index f,
L% 1%
min = im0 — M) (26)
)P OFF 4 (o) (u*)?

subject to the compatibility relations (20), the linear incidence equations,

0 =TT +J, 07 uw*=J,u (27)

where the incidence matrices J,-, J,- ‘and J, are obtained by associating the rotations
of the element sides with the rotations of the members represented by the same
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random variables A* and the displacements of the point loads linked by the same
random variables w*. Sign constraints on the variables need also to be considered:

07 =0,8 >0 u=0,#>0,u*=0 28)

Il matrices C, and C, represent the correlations between the bending moments of
resistance and between the loads, respectively, the reliability index is given by.

L t* — ppn*]
SO0, Cy6,,0%) + u¥ch, C o, u*

= (29)

For random variables that are correlated, the original variates may be transformed
to a set of uncorrelated variables. The required set of uncorrelated transformed
variates can be obtained through an orthogonal transformation. If the probability
distribution functions of the random variables are not Gaussian, the Rosenblatt?®
transformation may be used. The identification of all the significant collapse modes
of a ductile structural system is necessary in the analysis and evaluation of the system
reliability, including the evaluation of the corresponding bounds.

These mathematical programs belong to the class of fractional programming
problems. The minimization of § shares its solutions with the quadratic concave
minimization:

max — 1/f% = —(a,)*(0%) — (o) (u*? (30a)
subject to,
d % — ¥ = | (30b)
0% =dg. 0" + Jp 07w = Ju (30c)
8 = Cu (30d)
' 20,0 =20,uz=00*>0u*=0 (30e)

This problem cannot be solved by convex programming techniques because of the
possibility of nonglobal local minima. The global eptimum of these programs gives
the plastic deformations for the stochastic most important mechanism and the
reduced random variables can be evaluated by using,

m* = —q, %" (31a)
hpe =G P (31b)

5 SOLUTION OF A CONCAVE QUADRATIC MINIMIZATION PROBLEM

This constrained optlimization problem is equivalent to other combinatorial optimi-
zation problems such as 0-1 integer programming and remains an NP-hard problem.
From a computational complexity point of view, this means that in the worst case
the computer time will grow exponentially with the number of nonlinear variables.
The most generdl methods for global optimization can be divided in two classes:
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deterministic and stochastic. Here we are going to consider only deterministic
methods. The most important approaches for concave quadratic programming are
enumerative techniques, cutting-plane methods, branch and bound, bilinear pro-
gramming methods or different combinations of these techniques.

5.1  FEnumerative methods by ranking extreme points

An important property of concave funictions is that every local and global solution is
achieved at some extreme point of the feasible domain. This property makes the
problem more tractable since the search for an optimal solution can be restricted to
the set of extreme points. Cabot and Francis®! presented the following procedure for
solving the quadratic concave programming problem: First a linear program 1s solved
where the objective functien is an underestimator to the original objective function.
Then the extreme point ranking approach developed by Murty*? is applied using this
underestimating function to obtain an optimal solution to the original problem.
Although this algorithm in the worst case will degenerate to complete inspection of
all vertices, this approach is computationally infeasible for large problems.

5.2 Cutting plane methads and partition of feasible domain techniques

Tuy's method®? is based on the use of cuts to exclude parts of the feasible domain
and a cone splitting procedure. The feasible set can be visualized as contained in a
cone generated by the edges coincident with a vertex. The method solves a sequence
of subproblems associated with subcones of this initial cone. The cone splitting
algorithm described by Tuy has been shown by Zwart** to be nonconvergent. In the
same paper, Zwarl gives a counterexample for a method developed by Ritter® in
which an infinite sequence of cutting plancs is needed to reduce the feasible domain.
Tohai and Tuy*® proposed a class of algorithms which are based upon a combination
of branch and bound techniques with Tuy’s original cutting plane method.

5.3 Branch and bownd methods using approximations of the objective function

Quadratic concave minimization belongs to the more general class of nonconvex
separable programming, Critical to the algorithm proposed by Falk and Soland*” for
nonconvex separable programming is the use of convex envelopes. The algorithm is
of the branch and bound type and solves a sequence of subproblems in each of which
the objective lunction is linear (or convex). These problems correspond to successive
partitions of the feasible domain. two different refining rules lead to convergence
of the algorithm under different requirements on the problem functions. Horst38
proposed a different approach for separable nonconvex programming: Instead of
considering convex envelopes and minimizing several convex subproblems he only
minimizes the objective function over suitable intervals. The efficiency of these
methods depend upaon the tightness of the underestimating functions.
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5.4 Bilinear programming approaches

A mathematical prograni with a bilinear objective function over 4 linear domain may
possess many local optima. Konno*? used the equivalence of the quadratic concave
minimization problem to the associated bilinear program. The method searches for
an optimal solution among those basic solutions with equilibrium points of the
problem. The bilinear programming algorithm for quadratic programming is greatly
simplified as a gonsequence of the problem structure and because of the fact that the
verification of necessary and sufficient conditions for the existence of an optimal
solution is reduced to the solution of a linear program.

3.5 Methods for large scale coneave quadratic programming

The motivation for considering this type of problem is similar to that for problems of
0-1 intcger linear programming. Large-scale 0-1 mixed integer programming can be
solved in a reasonable time (Marsten®®), providing most of the variables are contin-
uous. The computational method presented by Rosen*! for finding the global
minimum of 4 quadratic concave function over a polyhedral set takes advantage of
the ellipsoid-like level surfaces of the objective function to find a good initial vertex
and to eliminate a rectangular domain (enclosed in a level surface) from further
consideration. The basic step used is to initially detérmine a reciangular domain
which contains the projection of the domain on the space of the nonlinear variables.
This can be done by a multiple-cost-row LP with n objective functions. Then a linear
underestimating function is computed and a linear underestimating problem is solved
to give lower and upper bounds for the global optimum. This solution also gives a
bound on the relative error in the function value of this incumbent vertex. If the
incumbent is not a satisfactory approximation to the global optimum, a guaranteed
s-approximate solution is obfained by solving a single 0-1 mixed integer pro-
gramming problem. This integer problem is formulated by a piecewise linear
underestimation of the separable problem.

5.5.1 Reduction to separable form For simplicity of notation, the concave quadratic
program involving correlated random variables ¢can be written in the following form,

Min y(z, y) = —1/2:'Qz (32a)
over Q = {(z, y): Ayz + A,y =b, 220, y >0} (32b)

with (J a positive definite symmetric matrix and 4, and A, have m rows. z, y are n
and m vectors corresponding to the random variables and the rotations of the critical
sections, respectively. To carry out the reduction to separable form it is necessary to
compute the real eigenvalues 2,, 15, ..., 4, of 0 and the corresponding eigenvectors
Ups Ugyowoy . Then Q = U D U where U = [u,, ..., u,], D = diag[4,,..., 4]
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The multiple-cost-row linear program must be solved first,
max iz (33a)
subject to: (g, y) €€, i=1,2,...,n (33b)

Denote by j; the corresponding optimal values. The concave quadratic programming
can be formulated as a separable programming in terms of the new variables x;,

min @(x)= Y — 1/24;x7 (34a)

i=Ln
subject to: Ayx+ A,y =5, 0<x, <8, =0 (34b)
where 4y = A,U.
5.5.2 Linear wnderestimator and érvor bounds The smallest rectangular domain R,

in x-space can be constructed by using fi;. A linear function I'(x) which interpolates
o(x) at every vertex of R, and underestimates ¢(x) on R, is given by,

Fxy= Y —1/24x, (35)

i=l.n
and
Ry={x:0=gx;<B;i=1,...,n}

The following linear underestimating program, which differs from the multiple-cost-
row only in its objective function, must be solved,

min ['(x) over {x, y)e Q (36)

The solution to this problem will give a vertex v = (x, y) which is a candidate for the
global minimum * of the original problem and,

Mx) < ¢* < dx) (37
Therefore, the error at (x, X) is given by ¢(x) — * and this error is bounded by,
E(x) = ¢(x) — T'(n) (38)

Il E(x) is sufficiently small, (x, y) 13 an aceeplable approximation to the global
optimum ¢r*, It is necessary to obtain bounds on E(x) relative to the range of ¢(x) over
R.. The quantity,

Ad = —min ¢(x) 39
xe i,

is used as a scaling factor to measure £(x) on Q.
Assuming, without loss of generality that,

LW =AB i=2.n (49)
and defining the ratios,
pi=kBHLBL i=2...n @1
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the lower bound on Ad is given by
A= 1208, 3, o (42)

i=1t.r

E(x) attains its maximum at x; = §/2,i=1,..., n, so that for any xe R,

Ex)=¢()—T(x)=1/2 ) AB—x)x <184 3

i
i=1l,n i=1,n

An a priori bound on the relative error is given by:
(frlx, Y} — ¥*)/Ap < 0.25 (43)

3.5.3 Piecewise linear approximation and zero-onme integer formulation Using a
pigcewise linear approximation to each function —1/24,x? 4 mixed integer zero-one
LP can be formulated such that the finding of a solution (x, y) for which,

(. ) — Y*)AP <& (44)

can be guaranteed for any specified tolerance &.

Each interval [0, ;] is partitioned into k; equal subintervals of length i = 8,/k;
and the new variables w;; are introduced, such that the variable x; is represented
uniquely by w;;,

J=1k
where the variables w;; are restricted to the range [0, 1] and the vector (w;y,wis, .. .,
wy,) 18 restricted to have the form (1...., L, w;. 0,..., 0).
Assuming, without loss of generality, that:

0<pn£p",1£"‘£[ﬁ=] (46)

k; are the smallest integers chosen such that,

/ 1j2
fe; > [r‘:pa’(% Y p,)jl (47a)
i=1,a

where,
l<k, <k, <<k (47b)
By defining,
Ay = = 1247hF + 12447 — 1)7h]. i=lLoa,nj=1...,k (48)
It follows that the linear function,
Difx) = 21:* Ayiwig (49)

interpolates —1/24;x% at the points x; = jh;, j=0,1,...,k; and since — 1/24,x} is
concave, it satisfies I'(x,) < —1/24;x7 for x;€[0, B,]. That is T'{x;) is a piecewise
linear underestimating function for —1/2;, xZ.

Therefore, if the objective function W(x, y) is approximated by the piecewise linear
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underestimating functions ) T{x;), the separable quadratic concave minimization
i=L,n

can be approximated by the following 0-1 niixed integer problem in the continuous

variables wy; and the binary variables z;;:

Min Y ) Agwy (50a)
i=1,n j=1,k
subjectto Y ma; ¥, wy+ A,y (50b)
i=1.n =1,k
O<sw;<1,y=20 (50c)
Wi|j+1Sz,-_ijU,z,-jE{U, 1},j=l,...,k_i*]_.,l-':.],.,.,n (Sod)

where g, is the ith column of 4;.

5.6 Parallel branch and bound algorithim

An algorithm for concave quadratic minimization which is designed to be efficient
for problems with many design variables and can take full advantage of parallel
processing was recently presented (Phillips and Rosen*?). It considers linear under-
estimating functions and upper and lower bounds on the global minimum in the way
described above. Branch and bound techniques are then applied to reduce the feasible
region under consideration and decrease the difference between the upper and lower
bounds. The average computational performance for probiems with 25 nonlinear and
400 linear variables and a maximum error bound of £ = 0.001 using a four processor
Cray2 was 15 seconds. Results with problems with up to 50 nonlinear and 400 linear
variables have shown that an approximate solution with a minimum of computation
but with a relative large bound (e = 0.1) can be obtained in a computational time
depending linearly on the number of nonlinear variables.

6 ENUMERATION OF OTHER STOCHASTIC IMPORTANT
MECHANISMS

An appraisal of the current procedures for generating the stochastic most representa-
tive failure modes indicate that they are variously dependent on simulation, trial-
and-error, perturbation, human judgement, complex heuristic strategies, or ap-
proximations, either for choosing the appropriate starting poinis or for continuing
the method at different stages. Some of the methods generate the modes in random
order and thus many of the important modes may be missed without ever knowing
about them. The techniques described above to find the stochastic most representative
mechanism either by mixed integer linear programming or by the paralle] processing
algorithm are associated with branch and bound strategies that reduce the feasible
region to decrease the differences between upper and lower bounds. Both methods
can be employed to enumerate other stochastic important modes by assigning the
incumbent solution at a desired level of significance, larger than the global solution.
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Since the domain is partitioned with respect to the nonlinear variables only (random
loads and resisting moments), it remains the possibility that within the same range
of bounds other mechanisms may exist (and are not identified). Moreover, mechan-
isms with plastic hinges at different locations but associated with the same values of
the random variables might be overlooked. For this reason, after finding the
stochastic dominant mode over each of the subregions, one of the two procedures
described next must be employed to enumerate the remaining mechanisms.

6.1 Braonch and bound tree

Once some of the critical sections participating in the most representative mechanisms
over each subregion earlier detected are ruled out of the basis, other modes can be
identified by a branch and bound based strategy. A strong branching rule is
employed: the number of nodes created at each stage from an intermediate node is
equal to the number of critical sections participating in the mechanism associated
with the intermediate node. The result obtained at any node is a lower bound on
those obtained by branching from it and if the reliability index associated with that
node is larger than a prespecified value or is infeasible, then that branch of the
combinatorial tree can be terminated. Since a large number of problems created by
branching at intermediate nodes have no feasible solution or have a large lower
bound, the procedure is reasonably efficient.

6.2 Vertex enumeration and ranking

Murty’s method®® can be used for ordering the extreme points of a linear domain.
It 1s based on a theorem which states that if x',..., x" are » best points, ¥ ™1 will
be an adjacent point of one of the first extreme points. The new point is distinct from
the first r and maximizes the objective function giving 1/f* among all the remaining
extreme points. All the adjacent extreme points are found from the canonical tableau
corresponding to the linear domain A x = b by bringing one by one all the nonbasic
variables—only those corresponding to rotations in the critical sections and that do
not participate in the mechanism—into the basis. Denoting the entries in any
canonical tableau by the nsunal simplex notation gy, b, in which !'is the column index
for any nonbasic column, defing:

A, = min b,/a, ¥i, I such that a;, > 0 (51a)
A= +o0,ifa, <0 Vil (51b)

Variables corresponding to index i vielding the minimum value of A; indicate the
basic variable that will leave the basis when the variable corresponding to ! enters
the basis.

For each [ with finite A}, an adjacent point of x is given by,

*(A) = [x4(A) -~ xA)] (52)

EO—3
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whose basis vector is found from,

x! =b —ayA; (53a)

Xk = A, (53b)

where s denotes a basis. Note that at least one ol the x.’s'f will always be zero. The
procedure is repeated until either a prespecified number of extreme points is found
or all the extreme peints in the ranked sequence whose objective value gives a
reliability index which is less than a given value of f,,,, are obtained. On the basis
of plastic limit analysis, failure modes are generated in Ref. [22] by Murty’s method,
although they end up with a much larger number of degenerate mechanisms caused
by the larger number of state variables that correspond to the nodal description. The
smaller number of variables used in the mesh description reduces the likelihood of
such solutions. Moreover, since this procedure is carried out over the subintervals,
the number of adjacent feasible vertices is not very large.

7 OUTER PROBLEM
7.1  Objective function

The aim of reliability-based plastic optimum design is to determine the average values
of the bending moments at the critical sections for a specified failure probability of the
structure.

Min V = d = Py, (54)

where [ is the vector of member lengths. In the case of reinforced concrete frames
the object is to find the concrete cross-sectional dimensions and the corresponding
amount of reinforcing steel so that a specified reliability level against plastic collapse
is provided and an adopted objective function is minimized. The relevance of the
adopted objective function is an open subject with important consequences on the
optimum solution (Surahman and Rojiani*®). If the concrete section sizes are
assigned, the design objective is simpler: the minimization of the longitudinal steel
volume. The reinforcement for a critical section is assumed to be extended over a
definite length called equivalent length for the calculation of the volume of reinforce-
ment. The equivalent length of reinforcement adopted for beam and column sections
of the examples presented here are shown in Figure 2.

For under-reinforced sections of known lever arm, the area of reinforcement has
a linear relation to the plastic moment of resistance. The total volume of reinforce-
ment can therefore be expressed as the linear function,

Min V=¢"d =d' p« +a' p, - (55)

where @, and a_ are vectors of known constants whilsi u,,. and u,, are the vectors
of design variables: means of the plastic moments of resistance with respect to positive
and negative bending, respectively,
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7.2 Technological and serviceability constraints

Frequently, it is convenient to establish relationships between the design variables of
various members in order to satisfy requirements and simplify the calculations. These
are termed technological constraints.

Any design of a reinforced concrete frame based on the behaviour under ultimate
load must satisfy the serviceability requirements under working load. These require-
ments are that: (i) no yielding of a section occurs under working load; (i) the
deflections are within allowable limits; (iii) the width and spacing of cracks are within
desired limits. Investigations show that the serviceability requirements for members
subjected predominantly to bending depend mainly on the yielding of the critical
sections and hence depend on the yield moment factor. Safety against loss of
serviceability, which is defined by the formation of the first yield line can be checked
by means of a simplified probabilistic procedure. Thus, for practical design, additional
constraints will be required and these serviceability constraints may be most readily
included in the form of lower bounds on the design variables.

7.3 Reliability constraints

By fixing the design variables, the inner problem gives the yield line rotations 6* and
nodal displacements u* associated with the stochastic most important mechanism
and other relevant modes. Clearly, the reliability analysis for another set of design
variables (but the same mechanism) would give proportional yield line rotations and
nodal displacements. For a prespecified reliability index f,, the single mode prob-
ability constraints defined by i collapse modes will be satisfied if,

t 1 2D
Ml — g = ﬁs[ ] (56)

23 2 k2
aa 2t

+U'FU

where k= 1,...,m. It can be shown that these constraints are convex with respect
to the design variables. Since the convex approximation of the multi-mode constraint
(7)1s convex, the outer problem can be solved by any convex programming technique.
It has a linear objective function (19) and the domain is defined by linear (20) and
nonlinear constraints (7),(21). These nonlinear constraints could be linearized by
creating a first-order Taylor series expansion and the linearized problem could be
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solved by wsing linear programming. The design is updated and a new iteration
performed repeating the process uniil convergence is achieved. Since these move limits
are critical, the procedure can be made much more efficient by using either Sequential
Quadratic Programming or Sequential Convex Programming (Vanderplaats*4).

8 NUMERICAL EXAMPLE

It is intended to find the minimum volume of the rigid portal frame with fixed
geometry represented in Figure 3 which satisfies given reliability requirements. 5
design variables corresponding to average bending moments of resistance of the
columns and beams are considered. The random loads possess the following char-
dcteristics:

gyp = 169 kN Qyy =015 gy, =89 kN: 0, =025

pys = 116 kKN; Qg3 =025
i = 62 kN; Qg = 0.25; gy, = 31 kN; €y, =025
Several types of correlation between loads and between the design variables
are considered:

Case l—Perfect correlation within members and column—column correlation,
Statistically independent decision variables. Statistically independent random loads
except the horizontal loads which are perfectly correlated.

Case II—Perfect correlation among all plastic moments. Statistically independent
random loads except the horizontal loads which are perfectly correlated.
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Case TIT—Perfect correlation within members and column-column correlation.
Statistically independent decision variables. All loads are perfectly correlated.

Case TV—Perfect correlation among all plastic moments. All loads are perfectly
correlated.

As an illustrative example of the method consider an upper limit of 10~ in the
individual modes of collapse probabilities (Cornell’s lower bound) for Case 1. Take
as initial average plastic moment capacities the design variables given by the plastic
limit synthesis LP multiplied by 2.5.

d, dy dy d, d, Vol
140.5 5158 2430 1395 1943 8245

At least 5 mechanisms are needed to aveid miove limits becoming critical. The
inner problems pick up 9 modes with higher probabilities of failure, the highest of
which is 4 % 10~*. These mechanisms dre used by the ouier problem to produce a
new set of design variables:

d, d, dy d, ds Vol
1828 3233 2933  69.0 2910 7918

By solving the reliability assessment inner problem, another mechanism is added
to thiose chosen in the first iteration. The corresponding ouler problem leads to,

d, dy d, d, ds Vol
1918 3808 2990 1294 2048 8312

The stochastic most impoertant modes for this design are those given previously
and the convex outer problem has for solution,

d, d, ds dy d; Vol

191.,5 3858 2986 1226 228.7 8429

which is a good approximation of the final design. This design is 2% more costly
than the starting point, but the probability of failure of the stochastic most relevant
mode is only 1/40 of the latter. It is also important to analyze the contribution of
the dominant modes to the overall probability of failure.

Number of Cornell upper bound Varmarcke
dominant modes upper bound Ditlevsen upper bound
(24 mechanisms)

5 59% 68% 3%
7 83% 91% 96%

The same problem is solved by imposing an upper limit of 1072 on the maximum
probability of collapse of the individual modes. The starting point is obtained by
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multiplying the moment capacities of the design variables given by the plastic limit
synthesis LP by 1.5

d; d; ds dy ds Vol

845 309.5 1458 837 1165 4947

After solving the inner problem 10 mechanisms that exceeded the preseribed prob-
ability of failure—the highest of which is 6.4 x 10~ > —where chosen.
The outer problem gives,

dy d, d, d, ds Vol
1154 1638 1667 103.6 1254 4595

The reliability assessment of this design lead to consider another 8 mechanisms
with high probabilities of collapse. The solution of the convex outer problem
involving 18 mechanisms is,

d, ds dy dy ds Vol

1048 207.7 1725 771 1547 4896

‘The stochastic most important modes for this design are those given previously
and the convex outer problem has for solution,

dy d, ds dy ds Vol
1048 2139 1724 745 1578 4930

which is close to the optimum sizing. For a solution with approximately the same
volume, the reliability of the most important mode has been increased more than six
times.

The contribution of the dominant modes to the overall probability of failure 1s:

Number of Cornell upper bound Varmarcke
dominant modes upper bound Ditlevsen upper bound
(24 mechanisms)

5 355 48%% 49%
7 52% 61% 65%

Therefore, the contribution of the dominant modes becomes mote impartant by
increasing the reliability requirements.

Figures 4 to 12 show the influence of several parameters on the variation of the
optimum volume of the frame of Figure 3. In Figure 4 is represented the variation
of the minimum volume with respect to the overall collapse probability given by the
upper Ditlevsen bound. Cases I'and I are considered for the coeflicients of variation
{c.0.v) of the bending moments,

Q, = Q= Ry, = Ry, = Qy, = 9, = 0.15
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In Figure 5 is represented the variation of the minimum volume with respect to
the overall collapse probability (given by the upper Ditlevsen bound) for Case |
supposing the coefficients of variation of strength €, are 0.10, 0.15 and 0.20.

Figure 6 shows the variation of the minimum volume required to satisfy the overall
probability of collapse given by Cornell (upper bound), Vanmarcke (upper bound),
Ditlevsen (upper bound), Ditlevsen (lower bound) and Cornell (lower bound) for Case
I and a c.o.v. of the resisting bending momerits of ().15.
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For a specified correlation between plastic moments C,, bounds on the optimum
volume range can be obtained by means of upper and lower bounds on the system
collapse. All methods for estimating global collapse probabilities yield results within
the optimum volume range whose bounds are obtained by assuming perfect cor-
relation among failure modes (Cornell’s lower bound) and mutual independence
(Cornell’s upper bound), although they are much closer to the latter.

Figure 7 shows how the minimum volume varies with the probability of failure
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Figure 7
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when the constraints associated with individual modes of collapse only (Cornell lower
bound) are considered for Cases T, IT, TIT and IV and Q,, = 0.15,

The minimum volume increases with increasing correlation between loads and
between motent capacities. So an assumption of independent beam-column moment
capacities may be yery inappropriate and on the unconservative side.

By considering the constraints associated with individual modes of collapse only,
Figure 8 shows how the c.o.v. of the gravity loads changes the minimum sizing,
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Ounly plastic moment capacities and loads are assumed to be random variables.
Since the types of their distributions may have significant influence on the resulting
failure probabilities, the question of how to model their distributions is very
important. For example, a lognormal distribution shows the best fit to observed data
on ultimate stress of the most commonly used steel. Morgover available data on wind
loading are often given through maximum wind speeds which can only be realistically
described by an exireme value distribution. Figures @ and 10 show how the type of
probabilistic distribution function of the horizontal loads (Gaussian and Extreme

20000
v
fd
/
/
/
10000 /
g Gauss ; Om=010 —._
¢ Gauss ; Om=020 ——
B Lognorm ; Qme=h 1l ———
¢ Lognotm ; Lim=0.20 —--—
(8]




RELIABILITY-BASED PLASTIC FRAMES 201

16000
Y
14006
12004
10060
] g Gauss ; Om=0.10 —.—
ey & Gauss; Om=0200 ——
B Lognorm iQOm Wl ——=
| & Lognomm ;G 020 —=—
GO0
A0 T - " " s : , . . ,
w2 ig 3 w4 w106 Pp

Figure 12

type I) may affect the minimum sizing for Cases I and IV, respectively, considering
individoal collapse modes only.

In this particular example, the optimum solution is not very sensitive to the
distribution functions of the horizontal loads.

The sensitivity of the optimum volume solution with respect to changes in the
cov. of the strength are represented in Figures 11 and 12 for Cases I and IV,
respectively, considering individual collapse modes only. Gaussian and lognormal
distribution functions for the resisting moments are considered.

They indicate that the lognormal distribution results in upper values for the
minimum volume solutions. The influence of the type of disiribution decreases with
increasing values of correlation between loads and between plastic moments. The
influence of the type of distribution highly increases with the prescribed value of the
probability of failure.

9 CONCLUSIONS

The solution methed for the reliability-based design of frames can be divided into
two alternating subprocedures: a) an optimization of the nonconvex fractional
program giving the feliability index of the stochastic most important mechanism (and
also enumerating the remaining relevant local solutions); b) an optimization of the
convex outer problem that includes the cost function.

The proposed technique is illustrated on a two-storey two-bay steel frame. The
following remarks may be made regarding the influence of the parameters mentioned
in the optimum solution. As expected, the optimum volume increases with increasing
values of Q. Q, and/or increasing the correlation between plastic moments or
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between loads. The sensitivity of the optimum volume solution increases more with
increasing values of Q,, than with increasing values of Q, . For a specified correlation
structure between plastic moments, the rate of increase in the optimum volume range
is larger at high than at low values of the co.v. Q,, andfor ;. In addition it is
interesting to note that the optimum solution is not very sensitive to either the c.o.v.
of the lateral load Q,; or the siatistical variation between loads C,,. Preliminary results
ofi larger frames seem to agree with these conclusions.

The method presented in this paper provides a powerful tool to obtain a practical
optimum solution for large frames, offering the potential for application within a
reliability-based code context which is an important goal in structural design.
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