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Abstract-This work describes a computer-based method for the optimum design of steel frameworks 
accounting for the behaviour of semi-rigid connections. The procedure explicitly accounls for both 
connections and members by taking connection stiffnesses and member sizes as continuous-valued and 
discrete-valued design variables, respectively. The optimization algorithm minimizes the cost of the 
connections and members of the structure subjected to constraints on stresses and displacements under 
specified design loads. Two examples are presented to illustrate the features of the optimization method. 
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1. INTRODUCTION 

Traditional approaches to steel frame design neglect 
the actual behaviour of connections. Instead, two 
idealizations are used: pinned and fully rigid. Although 
these models simplify analysis and design procedures, 
the predicted response of the frame may not be 
realistic. In practice most connections transmit some 
moments and experience some rotations that can 
contribute substantially to overall structure displace- 
ments. The term semi-rigid is commonly used to 
denote the connection behaviour between these two 
extremes. When a beam-column assembly is tested, 
for a given moment, a corresponding rotation is 
obtained for the beam plus connection. If the elastic 
rotation of the beam is subtracted, the applied moment 
may be plotted against the characteristic rotation of 
the connection. This is referred as the M/4 curve [l-3]. 
A selection of M/4 curves is represented in Fig. 1. 
It is apparent that the behaviour is nonlinear, as an 
initial stiff phase is followed by a second phase of 
much reduced stiffness and the shape of the curve 
depends on the exact form of connection. Flexible 
connection behaviour affects the internal force distri- 
bution in the members of a framework. By treating 
the connection as semirigid a more reliable prediction 
of frame behaviour is obtained. Additional economy 
can be achieved by making use of the stiffness and 
strength of connections that would otherwise be 
treated as pinned and also by avoiding the stiffening 
often required in rigid connections. 

In the past three decades, considerable research has 
been carried out to assess the actual behaviour of 
steel frameworks accounting for the effect of connec- 
tion flexibility. Although a semi-rigid connection 
framework design has been adopted by Eurocode 3 
and America Institute of Steel Construction specifica- 
tions, specific guidelines for the design of such frame- 

works are not provided or readily available. Current 
research interest in semi-rigid design in Europe and 
elsewhere is extensive. Research is ongoing and it is 
hoped that this will result in sufficient information 
being available to allow engineers full use of this 
method in the future. However, much of this research 
has been limited to the analysis problem, with little 
attention being paid to the important problem of 
optimization [4]. This work presents a systematic 
method for the optimum design of steel frameworks 
accounting for the behaviour of semi-rigid connec- 
tions. The design which has the minimum combined 
cost of members and connections is sought, while also 
ensuring that stresses and displacements are within 
acceptable limits. Members are sized using discrete 
standard steel sections, while connections are selected 
on the basis of their continuous-valued moment 
rotation stiffnesses. The segmental method [6-71 
which uses linear programming is adopted for optim- 
ization purposes. The sensitivity analysis is carried 
out by analytic means. Two steel frameworks 
examples are presented to illustrate the features of 
this design method. 

2. ANALYSIS OF FRAMEWORKS WITH 
SEMI-RIGID CONNECTIONS 

Sophisticated methods of frame analysis are already 
available. These enable all significant influences such as 
the nonlinearities resulting from material behaviour 
and the geometry of the structure. The connection is 
usually represented by fictitious structural elements at 
the ends of members. These elements are assigned pre- 
determined relationship between forces and displace- 
ments so as to simulate the behaviour of the joint as 
a whole. The most simple model to analyse frames 
with semi-rigid connections is a linear representation 
of the spring which in many cases will be quite 
adequate. The effects of connection flexibility are 
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Fig. 1. M/4 comparisons for various connection types. 
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modelled by attaching rotational springs of moduli S, 
and S, normally measured in kNm rad-’ to the ends 
1 and 2 of a member, as shown in Fig. 2. 

According to a first-order analysis, the stiffness 
matrix of a planar member with semi-rigid restraint 
at the ends can be represented by the stiffness matrix 
K, for the member with rigid connections modified by 
a correction matrix [5]: 
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Fig. 3. Variation of S, and a for a typical portal frame. 

where E is Young’s modulus, and L, A and I are the 
length, cross-section area and moment of inertia of 
the member, respectively. The parameters CI, and t12 in 
eqn (1) are defined as fixity factors at the two ends 1 
and 2 of the member, and are related to the corre- 
sponding rotational spring stiffnesses S,, and Sz as, 

I 1 

‘I= I +3EI/S,L’ “= 1+3EI/S,L’ 
(2a,b) 

The fixity factor TV defines the stiffness of the connec- 
tion relative to the attached beam and is perhaps the 
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most powerful and important concept for the analysis 
of frames with semi rigid joints. It relates quite closely 
to how the structure will behave in the context of the 
connection, far more so than the absolute value of S,. 
Figure 3 indicates a typical variation in S, against m,. 

As it can be seen, a real pin connection will always 
have some stiffness and will lead to significant 
restraint moments which could be of great benefit to 
a structure. Also, large reductions in stiffness from 
full fixity are seen to have little effect on the structure 
in that only a small change in c( will result in a very 
large physical change to S,. The fact that x, smooths 
the variations in 5” confirms that only an approxi- 
mately accurate M/4 curve is required, as the analysis 
is directly affected by I and not 5,. 

In the linear elastic analysis, the connection and 
members are assumed to have linear force-displace- 
ment relationships and the effect of deformation on 
the equilibrium of the frame is disregarded. In its 
usual form, the analysis requires the solution of the 
set of linear equations: 

Ku = P. (3) 

The advantage of this approach is that the overall 
procedure is the same as the conventional matrix 
displacement method commonly adopted for rigid- 
jointed frames. The end-moments for a semi-rigidly 
connected planar member of length L under uniformly 
distributed loading p are: 

M =pL23~,(2-~~,). 
’ 12 (4-a,a,)’ 

M PL’ 3a2(2-al) _ 
2 12 (4-a,a,) . 

(44 

3. STRUCTURAL OPTIMIZATION 

The optimization problem consists of finding the 
minimum combined cost of members and connections 
while accounting for the semi-rigid behaviour of the 
connections. The connection behaviour, as reflected 
through the fixity factor, has a significant influence on 
the response of the structure and, as such, will also 
have considerable effect on the cost of the structure. 
Herein, the cost of each member i is represented by 
its weight, while the cost of each connection k is taken 
to be directly related to the fixity factor. Therefore, 
the total cost of a member i with two end-connections 
k = I, 2 may be expressed as 

Z,=wiU,+C,=,,2(V0,+ V!kaik+ Viafk), (5) 

where ai and wi are the member cross-section area 
and weight coefficient (w, = pill, i.e. material density 
x member length), aik, Vjk and Vi are the fixity 

factor and cost coefficients and Vpk is the cost of a 
pinned connection having zero rotational stiffness. 

Although there is little or no information in the 
literature concerning the value of the cost coefficients 
for the various types of connections used in steel 
frameworks, representative values for V: and Vi will 
be derived in the following section. 

Each member i is to be sized using a commercial 
standard steel section and, as such, its cross-section 
area aj is a discrete design variable. On the other 
hand, each connection k may be fabricated anywhere 
in the range from being fully-pinned to fully-fixed 
and, as such, its fixity factor alk is a continuous design 
variable. 

a,oA,; OCa,k< 1, (60) 

where eqn (6a) requires the cross-section properties of 
member i to belong to the discrete set A, = {a, , a:, .} 
prevailing for the standard section shape specified 
(e.g. IPE shape), while eqn (6b) imposes specified 
lower and upper bounds. 

The optimal design of a framework of i = 1,2, 

‘.‘, n members having semi-rigid connections subject 
to stress and displacement constraints, may be 
generally stated as, 

Min Z = Xi= ,,n 

subject to: 

af<a,<a,L’, (7b) 

uf<u,<u;, (7c) 

0 < ad < I, (74 

a,eA,, (Tel 

where, from eqn (5), the objective function eqn (7a) 
is a measure of the combined cost of the members and 
connections. Equations (7b) and (7~) define constraints 
on stresses ak and displacements u1 for the structure 
and, from eqn (6), the constraints eqns (7d) and (7e) 
control the values of the continuous-valued fixity 
factors ay and the discrete-valued member sizes a,. 
respectively. 

3. I. Connection cost co@cients 

Published data suggests that the cost of a steel 
member with IPE section is increased by 20% if it 
has pin-jointed end-connections, and by 60% if its 
end-connections are bolted or welded. Therefore, this 
means the total member plus connection cost defined 
by eqn (5) is such that 

i.2WjUi~Wia,+~k=,,:!(VPk+ VI,a,,+ Via:) 

< I.~w,u,. (8) 
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Recognizing that the cost of a member with pin-jointed 
connections is 

function is known explicitly and the derivatives can 
be obtained by direct differentiation of eqn (I 1). 
The first order Taylor series approximation gives: 

w,a,+X:,=,,zV~= 1.2w,a,, (9) 
1.2w,a, - 0.8wi(a,,iai + a,croi - a,,q) 

and the fact that VP, = Vi, it follows from eqn (9) 
that the cost of a pin-jointed connection is Vi = 
0.1 w,a,. If a linear variation of cost between a pinned 
and a fully rigid connection is assumed, Vtl = Vi = 0 
and V,!, = Vfi = 0.2w,a,. 

A more accurate connection cost is obtained by 
considering a nonzero coefficient for the quadratic 
term in c(,~, reflecting the increase in cost to provide 
either a perfectly fixed or perfectly pinned connection. 
Average connection cost coefficients are given by: 

VP, = O.lw,a,, V), = Vk = -0.4w,a,; 

+ 1.6w,(a,u,f,, + 2aoic(,,cr, - 2aoia,$) 

= w,a, + w,(cp + cf ai + cfm,). (13) 

Although the fixity factors may vary between the 
perfectly pinned and the fully fixed cases, move 
limits should be imposed on E, to reduce inaccuracies 
associated with the computation of the explicit 
approximations on the stresses and displacements. 
Therefore the optimation problem expressed explicitly 
in terms of the design variables is: 

Vf, = Vf, = 0.6w,a,, (10) Min Z = Xi= ,,,[w,a, + w,(cp+ c,!a, + cfcc,)], (14a) 

and the total (material plus connection) cost of a 
member with semi-rigid joints in eqn (7a) becomes 
a nonlinear function coupling the design variables a, 

subject to 

and x,: 

w,a, + 0.2w,a, - 0.8w,a,a, + I.6w,aiaf. (11) 

3.2. Explicit approximation problem 
f i S(u,-a,,)<u:‘, 

i-1 aui 
To enable a computer solution of the design optim- 

ization problem posed by eqn (7) it is first necessary 
to formulate each stress rrk and displacement u, in 
eqn (7b) and (7~) as an explicit function of the design 
variables. Since stresses and displacements in frame 
structure vary inversely with the section properties 
(area, bending moment of inertia) and directly with 
fixity factors, a good quality explicit approximation 
of each stress c, is provided by the first-order Taylor 
series: (14d) 

(14e) 

while that for each displacement U, is: 

Wb) 

where the superscript zero (0) defines known quantities 
for the current structure, while a, (or Ii) and c+ are the 
variables to the design. 

Assuming that costs per unit volume are constant, 
the material cost of the steel frame is a linear function 

The continuous-discrete optimization problem, 
eqn (14) is solved at each design stage to find new 
values of a, (or I,) and tl, for which the combined 
member plus connection cost of the structure is 
reduced relative to that for the previous design stage. 
The stress and displacement gradients are then up- 
dated for this new structure and the design optimiz- 
ation is conducted again. This process is repeated until 
cost convergence occurs for successive design stages, 
at which point the minimum cost design has been 
found. Note again that the design optimization prob- 
lem involves both continuous-valued variables ui and 
discrete-valued variables a, (or I,). 

4. SENSITIVITY ANALYSIS 

of the sizing design variables and does not need to The derivatives of the stresses and displacements 
be considered further. The nonlinear connection cost with respect to the design variables are found by the 
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virtual load procedure. Given some design variable tinuous problem. The continuous optimum design 

values a full analysis of the frame will give numerical forms a lower bound to the discrete optimum and it 

values for all the nodal displacement under all load- is usually assumed that the continuous sizes should 

ing cases. The displacement derivatives au/a l/ai and somehow be rounded up or down to discrete sizes. 
au/al/l, are computed by implicit differentiation of This rounding process turns out also to be a combin- 
the equilibrium equations: atorial problem. The method described next introduces 

the artificial concepts of segmental members and 

KO$= +; auQ aKo segmental optimum design and provides a close 

a, a, 
KOalir,= -aljl,~o. (15) lower bound to the discrete-continuous optimum 

problem. 
Since u and K are known from the analysis of the Problem (14) assumes that each member is of known 

initial design, a solution for &/al/a, and au/a l/I, length Li and has unknown, but uniform cross- 
involves only calculation of the r.h.s. vector of eqn sectional properties (area A,, modulus W,, inertia I,). 
(15) and forward and back substitutions. To compute Consider replacing this assumption by a different one. 
aK/ax,, only elements of K associated with member Assume instead that each member of the frame is 
i must be considered and all are constants. Assuming composed of a total of D segments, each with a cross- 
that R, and R, are transformation matrices giving the sectional area equal to one of the discrete sizes S,,, 
axial and bending components of the normal stress, d = 1,. . , D, such that all sizes are represented 
respectively: among the segments. Let I,, be the unknown length 

of the segment of member i which has area S,,, d = 1, 

CT =rr,+cr,=R,,u +R,u, (16) . , D. This is shown in Fig. 4 for a member which 
has three discrete sizes. The areas of all segments 

80, au, -=R,-. 
d l/a, 

aao -R au,, 
al/a, al/I, “al/r, (17) 

are known, but the segment lengths are unknown. 
The ordering of segments along a member is im- 
material. Clearly, to replace a conventional member 

The derivatives au/&t, and &r/&x, are computed in a by a segmental one their total lengths must be 
similar way. However, it should be remembered that identical. Thus for member i, relationship (31) must 
the aP/acr, terms must be considered: 

K,%=(?po-i7Kgu0, 
&, aa, aa, 

and since 

IJ = Qu, 

the stress gradients are 

Z=Q,$. 
, 

5. SEGMENTAL OPTIMUM DESIGN 

hold: 

(18) 
Xd= ,,Dl,, = L.,; i = 1, , N. (21) 

If problem (14) is re-formulated with this segmental 

assumption in place of the uniform members the 
following problem is obtained: 

(19) 

(20) subject to 

+ p,(cYl, + cj.rJ,,,+ cZ4a,)l (22a) 

An algorithm for the direct solution of problem (14) 
must include provisions to overcome the stress and 
displacement constraints non-linearly and the discrete- 
ness requirement stated by eqn (14e). The rigorous 
discrete-continuous optimum design is a NP hard 
problem, significantly more difficult than the con- 

duo, 
+ acI (a, - ao,) < u: (22b) 

+ 'il e 42 + ‘i3 4 

4 ( 
Area Ai Area S, Area S2 Area S3 

Fig. 4. Conventional member and segmental member. 
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The design variables of problem (22) are the lengths 
Iid of all segments of all the members and the fixity 
factors. The stress and displacement constraints are 
linear in both types of design variables. The discrete- 
ness requirement, eqn (14e), has been removed and 
absorbed into the problem by defining segments which 
have only the discrete sizes of set S. The additional 
constraints in problem (22) which do not appear in 
problem (14) are constraints like eqn (21) one for 
each member, which ensure length equivalence of 
conventional and segmental members, and the non- 
negativity requirement for all segment lengths which 
are clearly necessary. Problem (22) is an LP problem 
which may be solved by any LP algorithm, and will 
yield what can be termed a segmental optimum 
design. 

Several features of the segmental optimum design 
can be deduced. Firstly, its weight will be globally 
minimum for the explicit approximations on the dis- 
placements and stresses. This is a property of linear 
programming problems. This indeterminate frame 
will be solved in an iterative fashion and each of the 
sequence of LPs will be solved globally, although 
the sequence of global minima will not necessarily 
converge to a global minimum weight. This is an 
inherent feature of the iterative process and applies 
not just to segmental optimum design, but to all 
methods which solve minimum weight frame design 
problems iteratively. Secondly, the weight of the 
segmental optimum design, eqn (22), is a lower bound 
to the weight of the discrete optimum design of 
eqn (14). 

5.1. Achieving a discrete optimum design 

The discrete optimum design for a frame must have 
only one segment of discrete size per member. In the 
segmental optimum design most members will satisfy 
this requirement, but there will be a few multi- 
segment members which do not. Some type of round- 
ing operation is necessary. An obvious scheme is 
simply to round up all the multi-segment members, 
i.e. increase the size of all the smaller size segments 
in each member until they are of the same discrete 
cross-sectional area as the largest discrete size within 
the member. If all multi-segment members are treated 
in this way the result will be a feasible discrete design 
which may be the discrete optimum design and will 
in general be an upper bound to the discrete optimum 
design. Because only a few members of the frame are 

concerned in this rounding up operation the percent- 
age weight increase should be small and the discrete 
design thus obtained, though perhaps not optimal, 
should have a weight only fractionally larger than 
the globally optimum discrete design. This rounding 
up can be done using the simplex table correspond- 
ing to the segmental optimum design. The round 
up operation is equivalent to setting the segment 
length variables of the smaller size segments within a 
multi-segment member to zero. 

Having achieved a rounded-up discrete design from 
the segmental optimum design this is often as far 
as the method will go. Occasionally however, further 
refinement of the discrete design may be possible and 
it is comparatively easy to check this. The check con- 
sists of determining whether any complete members 
in the discrete design .can be replaced by complete 
members of a smaller size without violating any 
constraints. The simplex table for the rounded up 
discrete design can be used for this. The slack variables 
of the displacement constraints will be in the basic set 
and must remain there with positive or zero values. 
The other basic variables are segment lengths, one per 
member with a value equal to the physical length of 
the member. The objective function coefficients will 
indicate several candidate segment length variables 
in the non-basic set which, if they entered the basis, 
would reduce the weight of the structure. Each 
candidate can be examined and pivoted into the basis 
provided that (a) it pivots a complete segment variable 
out of the basis, and (b) it does not violate the non- 
negativity of any other basic variable. These extra 
checks and pivots will produce a new discrete design 
even closer to the optimum. It should be noted here 
that only the optimality of the segmental optimum 
design is guaranteed. 

The rounding up and refinement processes are 
not rigorous and have no inherent guarantees of 
optimality. However, because the segmental optimum 
design is globally optimal and forms an almost 
discrete design, it is usually a close lower bound to the 
discrete optimum design. Because the number of mem- 
branes involved in the rounding is small, the rounded 
up segmental optimum design usually forms a close 
upper bound to the discrete optimum design. Any 
further refinements of this upper bound design will 
tighten further these already close bounds upon the 
discrete optimum design. 

5.2. Indeterminate structures 

Among the several ways in which the optimization 
strategy can be included in an iterative sequence of 
analysis-optimization cycles is to perform only a 
segmental optimum design in each iterative cycle 
until convergence of the sequence is almost complete. 
Rounding up and refinement are only added in at this 
late stage. This approach raises one small difficulty 
in that the structural analysis which separates each 
optimization must be carried out on a structure con- 
taining multi-segment members. For a multi-segment 



Optimization of frames with semi-rigid connections 531 

38 kN/m 

36 kN 
- 

18 kN 

Fig. 5. Example I: one-bay two-storey steel frame. 

member with different lengths, material properties 
and areas for each segment, the simplest way of 
accommodating this within the stiffness matrix K is 
to calculate an equivalent stiffness value for the 
member rather than to attempt to write Kin terms of 
individual segments. The equivalent stiffness ki of a 
multi-segment axial force bar will be simply 

k, = Z I=,. .L ,_D++ for all l,, # 0. (23) 
IdI 

Using eqn (23) for axial forces and similarly for 
bending, all elements of K corresponding to a seg- 
mental design can easily be calculated and the sub- 
sequent determination of the nodal displacement is 
straightforward. 

6. NUMERICAL APPLICATIONS 

6. I Example 1 

The one-bay, two-storey steel framework loaded as 
shown in Fig. 5 has semi-rigid connections of equal 
fixity factors at the two ends of each of the beam 
members. The two column members at each storey 

IPE 450 

r 

IPE 550 

IPE 450 

IPE 450 

IPE 450 

level are prescribed to be the same size. The frame 
is to be designed in accordance with the strength- 
stability (stress) requirements, while, at the same 
time, ensuring that the top storey lateral sway at 
node 6 does not exceed 18.28mm (i.e. h/400). The 
cross-section area a, of each member is to be selected 
consistent with the requirement that all column and 
beam members are to have IPE sections. Young’s 
modulus E = 206 kN mm-* and the material density 
p = 7.85 t mm3. As such, the weight coefficient w, in 
eqn (5) for each column member of length 3.65 m is 
w, = 28.65 t m-*, while that for each beam member 
of length 7.30 m is w, = 57.305 t m-*. A quadratic 
connection cost with respect to c( is adopted for each 
beam-to-column joint. 

A fixity factor c( = 0.9 is used to define the initial 
rotational stiffness of each of the four semi-rigid 
connections for the framework. Upon applying the 
previously described iterative design optimization 
procedure, the optimal design of the frame having 
minimum member plus connection cost is found after 
two design stages. The optimal member IPE-sections 
are depicted in Fig. 6. 

IPE 400 

IPE 400 IPE 400 

IPE SO0 

Fig. 6. Optimum solution fully rigid joints and optimum solution semi rigid joints. 
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31 kN/m 31 kN/m 

~-~66.10m.-~~6.10m 
q 

Fig. 7. Example 2: two-bay three-storey steel frame. 

The optimal fixity factors of the semi-rigid 
connections are a, = 0.59 (S, = 5.9 x lo4 kNm rad-‘) 
for the lower-storey beam and CQ = 0.66 (S, = 3.8 x 
IO4 kNmrad_r) for the upper-storey beam. Also 
shown in Fig. 6 is the optimum solution for the case 
when the connections are assumed to be fully rigid. 
Interestingly, the design that accounts for semi-rigid 
connections weighs 14% less than the design found 
when only fully-rigid connections are considered. 

6.2. Example 2 

The two-bay, three-storey steel framework loaded 
as shown in Fig. 7 has semi-rigid connections at the 
ends of the beam members. Connection fixity factors 
are specified to be the same for all semi-rigid connec- 
tions at each storey level. External column members 
at each storey level are prescribed to have the same 
IPE section, as are beam members at each storey 
level. The frame is to be designed in accordance with 
the strength-stability (stress) requirements, while 

WE 330 

IPE 330 

IPE 3S0 

IPE 360 

IPE 400 

IPE 450 

IPE 360 

IPE 240 

IPE 400 

IPE 330 

IPE 450 

IPE 500 

IPE 330 

IPE 330 

IPE 360 

ensuring that the top-storey lateral sway does not 
exceed 27.38 mm. 

The material density p = 7.85 t mm3 and, as 
such, the weight coefficient for each column member 
is wi= 28.65 t m-*, while that for each member is 
wi = 47.885 t m-‘. As for Example 1, the connection 
cost is also assumed quadratic in a. 

A fixity factor a = 0.9 is adopted to define the 
initial rotational stiffness of each of the semi-rigid 
connections for the framework. Upon applying the 
iterative design optimization procedure, the optima1 
design of the frame having a minimum member plus 
connection cost is found after four design stages. The 
optimal member IPE-sections are depicted in Fig. 8. 

The optimal rotational stiffness of the semi-rigid 
connections area a, = 0.6 (S, = 2.5 x IO4 kN m rad-‘) 
for the first storey, a2 = 0.575 (S, = 2.2 x lo4 kN m 
rad-‘) for the second storey and c+ = 0.55 (S, = 1.5 
x IO4 kN m rad-‘) for the third storey. Also shown in 

Fig. 8 is the optimum solution when all connections 

IPE 300 

IPE 330 

IPE 360 

IPE 330 IPE 330 

IPE 240 

IPE 360 IPE 360 

IPE 330 

IPE 360 IPE 360 

IPE 550 

IPE 300 

IPE 330 

IPE 360 

Fig. 8. Optimum solution fully rigid joints and optimum solution semi rigid joints. 
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are assumed to be fully rigid. As for Example 1, the 
fully-rigid connection design weighs 12% more than 
the design found when the influence of semi-rigid 
connections is accounted for. 

7. CONCLUDING REMARKS 

The described optimization procedure provides an 
effective means to account for the cost of both mem- 
bers and connections in the design of steel building 
frameworks. In fact, accounting for the actual semi- 
rigid behaviour of connections results in designs that 
are less costly than when, as is usually done, the 
connections are idealized as being fully rigid. This is 
because semi-rigid connections allow for a redistribu- 
tion of internal member forces (shear, moment, etc.) 
that results in a more economical use of material to 
resist the applied loads. This is an important result 
because it implies that accounting for the actual 
semi-rigid behaviour of connections in the design of 
steel frameworks is both realistic and economical. 
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