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Abstract-This paper describes an analytical sensitivity analysis and optimization implementation for 
cable-stayed bridge design. The finite element software is based on the Vax/VMS version of the Modulef 
code [I MODULEF Reference Guide. INRIA (1992).] and was adapted to an IBM-PC compatible. The 
main focus of this research concerns the analytical sensitivity analysis developed on this platform. The 
cable-stayed bridge optimization is posed as a multiobjective optimization with goals of minimum cost 
of material, stresses and displacements. Cable anchor positions on the main girder and pylon and 
cross-sectional sizes of the structural members are dealt with as design variables. By using the maximum 
entropy formalism it is shown that a Pareto solution may be found indirectly by the unconstrained 
optimization of a scalar function. The validity and effectiveness of the proposed technique is examined 
by means of a three-span steel cable-stayed bridge. 0 1997 Civil-Comp Ltd and Elsevier Science Ltd. 

Il. INTRODUCTION 

Modern cable-stayed bridge construction involves 
the assembly of an almost unlimited variety of deck, 
pylon and cable elements connected together in a 
multitude of different ways. In order that an 
economical and functional design can evolve, it is 
necessary to carry out both static and dynamic 
analysis for the design loadings to ensure the 
structure meets thfe required strength and serviceabil- 
ity criteria. It is also necessary to determine the 
unstrained or fabricated geometry of the bridge 
elements, so that after construction they adopt the 
desired configura.tion with the designed control 
forces in the dead load conditions. The use of 
computers has become an essential feature of such 
structural analysis and it is therefore extremely 
important that the operations of data preparation, 
computer operation and the use of computer results 
are carried out in an efficient way. Cable-stayed 
bridges are statically indeterminate and their 
structural behaviour is greatly affected by the cable 
arrangement and stiffness distribution in the cables, 
deck and pylons. Some authors made parametric 
studies in which structural elements stiffness, 
anchorage positions, side-to-central span ratio, etc. 
were considered [2-4]. However, few attempts have 
been made to use optimization techniques. Some 
papers published in Japan by the end of the 1970s 
address the sizing problem either by optimality 
criteria or mathe:matical programming (sequence of 
linear programs). Fleury’s mixed variable method 
has been used on a two-dimensional model to 
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optimize the cross-section of the cables, the 
equivalent thicknesses of the upper and lower 
flanges of the pylon and deck box girders and the 
cable anchor positions on the main girder and 
pylon [5]. A multiobjective optimization coupled 
with semi-analytic sensitivity analysis was developed 
in Ref. [6]. 

Most time and resources consuming tasks of 
structural optimization problems based on finite 
elements approach are those of sensitivity analysis 
and code interfacing between the optimization and 
analysis modules, if an integrated process is to be 
considered. Each design stage involves: (1) the 
analysis of an initial or trial design by finite element 
analysis; (2) use of sensitivity analysis and approxi- 
mation concepts to formulate the performance 
constraints as explicit linear functions of design 
variables; (3) optimization by means of an efficient 
optimization algorithm to obtain a better solution. 
The new design then becomes the trial design for the 
next design iteration, and the process is continued 
until the change in design over a number of successive 
design stages is less than some specified tolerance. 
The original finite element program was the 
VAX/VMS-based Modulef source code, that has 
been adapted to an IBM-compatible environment by 
using Phar Lap memory extender. 

Two general approaches are used for computing 
sensitivities: differentiation of the continuum 
equations followed by discretization, and the reverse 
approach of discretization followed by differen- 
tiation [7]. The analytic method belonging to the 
latter class will be used here. This procedure provides 
accurate first-order derivatives and requires only one 
FE equation system assembly, at the cost of some 
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programming effort at the element routines and 
equation solver level. 

The cost of a cable-stayed bridge will be assumed 
proportional to the cost of material used. The 
constraints consist of nodal displacements and service 
and erection stresses. In order to ensure the desired 
geometric requirements throughout the optimization 
process, geometry coefficients which supply infor- 
mation related with the mesh discretization, ratios of 
variation of cable spacing on deck and pylons, etc. 
define another set of requirements. The use of 
envelope functions is one approach to reduce the 
number of constraints handled by the optimizer and 
making it more efficient. Finding the optimum 
solution can then be posed as a multicriteria 
optimization problem in which all the constraints and 
objective function are folded in a single envelope. The 
entropy-based approach to solving this minimax 
optimization formulates the problem as the minimiz- 
ation of a convex function with just one control 
parameter. The user-specified parameter controls 
how close the envelope is to the original constraints 
and the objective function. 

If a general purpose optimization package is being 
used, a new or adapted interface code must be written 
whenever a new problem is to be considered. The 
procedure suggested in this paper reduces the effort 
involved to a minimum, namely by pre-defining at 
code level a number of types of design variables and 
describing their relation with the FE mesh by a 
dependency matrix which totally controls and defines 
the optimization problem. This procedure is devel- 
oped in the context of three-dimensional non-linear 
cable-stayed bridges. 

2. ANALYSIS 

A radiating longitudinal arrangement of cables was 
considered in the present study, though the described 
methodology might be used with other models. 
MODULEF finite element open code was chosen to 
analyse the structure. 

The behaviour of many structures can be 
adequately determined by a linear analysis and 
indeed some aspects of cable-stayed bridge behaviour 
are linear. However, for some problems involving the 
cables and also for long or slender bridges, 
particularly at the construction stage, the results of a 
linear analysis are not satisfactory and nonlinear 
characteristics must be accounted for [8]. Nonlinear- 
ity is introduced because of: (a) the nonlinear axial 
force elongation relationship for the inclined cable 
stays due to the sag caused by their own weight; (b) 
the nonlinear axial force and bending moment 
deformation relationships for the towers and 
longitudinal girder elements under combined bending 
and axial forces; (c) the geometry change caused by 
large displacements in this type of structure under 
normal as well as environmental design loads; (d) 
nonlinear constitutive stress-strain relationships for 

the materials of structural elements. It is assumed 
that Young’s modulus considered for the stays in the 
analysis is the secant Ernst value corresponding to the 
expected stress level and stress variation range. Since 
the stress level in the stays for service load conditions 
is considerably high, this value differs very little from 
the instantaneous Young modulus and therefore 
nonlinear effects due to cause (a) may be expected to 
be very small. Also, reason (d) was discarded from 
our research, once only linear elastic material 
behaviour was assumed for structural (and, particu- 
larly, for stays-) steel. 

Consider a cable-stayed bridge in service con- 
ditions and a set of loading cases, and let u and P 
denote, respectively, the nodal displacement and the 
nodal load vector for each loading case. The problem 
of analysing the structure reduces to the solution of 
a system of nonlinear equations that, when assembled 
for the whole structure, can be represented in matrix 
form as 

Ku = -P+ R, (1) 

where K is the stiffness matrix containing coefficients 
of the unknown uj and R is a column residual vector 
corresponding to the difference between this nonlin- 
ear analysis and the results which would be obtained 
by a strictly linear analysis. The solution of these 
equations by a suitable iterative procedure will give 
values for u. 

Although some authors focused their investi- 
gations on two-dimensional static nonlinear analysis 
of cable-stayed bridges, very few attempts have been 
made to solve the tridimensional problem. Bearing in 
mind the complex design conditions that must be 
considered, namely those corresponding to transver- 
sally asymmetric load conditions, as well as the 
perspectives of increasing spans and complex 
geometries, a nonlinear tridimensional analysis is a 
fundamental step for a reliable design [9]. 

3. OF’TlMIZATION 

3.1. Cable-stayed bridge requirements 

The choice of the generic structural model among 
the various initial possibilities (cable-stayed or 
suspended bridge, multi or single span, steel, 
prestressed concrete or composite structure, etc.) 
reported in Ref. [lo] are not considered here. In this 
work it is assumed that the generic description of the 
bridge is known: main and side span lengths 
(depending on the selected erection site, geological 
conditions and clearance requirements under the 
deck) and deck height (depending on access 
conditions and clearance requirements). 

Structural topology is also assumed to be defined, 
although modifications such as cables being dis- 
carded are allowed. 

It is desirable that the integrated optimization 
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package meets the following requirements: (a) there 
must be a minimum need for the user intervention 
during the optimization process, except for con- 
trolling and selecting the improved solutions; (b) new 
goals and design variables must be easily included 
without changing the computer code; (c) specific 
features as intermediate erection-time substructures 
and nonlinear behaviour (namely of the stays) must 
be considered. 

3.2. Decision variables 

Span lengths, number of cables and material types 
to be used for each structural element are the 
preassigned constant design parameters. The 16 
design variable types presently available are shown at 
Figs l-5 and are as follows: 

Type l-height of full or hollow rectangular, 
symmetric I or plate cross-section; 

Type 2-width of full or hollow rectangular or 
symmetric I or cross-section; 

Type 3--crass-sectional area of the cables; 
Type 4-side-span cable-free length; 
Type 5-side-span cable anchorage zone; 
Type G-pylon cable anchorage zone; 
Type 7-mid-span cable-free length; 
Type 8-central span cable anchorage zone; 
Type 9-top flange width of asymmetric I 

cross-section; 
Type IO-bottom flange width of asymmetric I 

cross-section; 
Type 1 l-top flange thickness of symmetric or 

asymmetric I cross-section; 
Type 12-bottom flange thickness of symmetric or 

asymmetric I cross-section; 
Type 13-height of asymmetric I cross-section; 
Type l&-web thickness for symmetric or asym- 

metric I cross-section; 
Type 1 5-plate thickness for transverse-oriented 

faces of hollow cross-section; 
Type 16-plate thickness for longitudinal-oriented 

faces of hollow cross-section. 

If a structure with mechanical and/or geometrical 
characteristics provided by the optimized solution is 
to be executed, it must be guaranteed that the 
dimensions of the structural components and 
cross-sections are bounded between reasonable 
values. These bounds exclude the choice of in- 
adequate cross-sections, but, if element mesh and 
design variable set coincide, the optimized solution 
will probably be too discontinuous from the 
cross-sectional point of view. Furthermore, if 
geometrical design variables are to be considered, 
then some control must exist on the structural 
geometry evolution through the process to keep 
desired geometric characteristics, such as a certain 
fixed ratio for the variation of cables spacing on deck 
or pylons and to avoid cable crossing from occurring. 
In order to control the progress towards the optimum 

solution, design variable types are defined and the 
corresponding computational procedures are pro- 
grammed at the element routines level. Therefore a 
change of the design variable set implies no 
modification of the interface program between 
analysis and optimization. The correspondence 
between this variable set and the finite element mesh 
is initially defined through a dependency matrix 

C NEXN, (2) 

whose dimensions are the number of elements of the 
mesh (NE) and the number of design variables N. So, 
C(i,j) = k means that the element i is affected by 
design variable number j, which is from type k (0 if 
there is no dependency of the element on that 
variable). The desired level of continuity or 
homogeneity of the solution will be controlled by 
assigning the same variable number (column on C 
matrix) to the same variable type at the desired set of 
elements (rows on C matrix). This method allows 
geometry and load derivatives for the sensitivity 
analysis to be performed on an element basis, 
simultaneously with the normal computation of 
stiffness matrix and right-hand sides in the structural 
analysis. 

3.3. Erection stresses 

Cable-stayed bridges behaviour is highly depen- 
dent on the erection system used, where a detailed 
reference to the erection process for correctly 
modelling the structure is needed. Furthermore, 
intermediate erection stages correspond to temporary 
substructures which must be able to support the 
expected loads during that period. Therefore, a 
feasible optimum design must take into account the 
structural behaviour during the erection stages. A 
simplistic approach consists of optimizing the 
complete structure under service condition and 
checking each erection stage afterwards. If some 
constraint violation is detected, such as excessive 
stresses or deflections, the optimization process is 
repeated, imposing now more severe bounds on those 
design variables which more strongly affect the 
violated constraints. This process is very laborious, 
quickly becoming too complex to deal with when the 
number of design variables increases. 

In this paper all the intermediate structures are 
included in the optimization process, and the 
optimized solutions fulfil the erection conditions. The 
counterpart for this approach is the need for a bigger 
structural system to be analysed (with between two to 
four times the number of degrees of freedom of the 
final structure, depending on the number of erection 
stages being considered). This is reflected by the 
increase in the processing time spent to obtain the 
solution, and in some additional pre-processing and 
data entry effort. 

For this kind of formulation, a discontinuous 
fictitious structure is modelled, each of the indepen- 
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erection stages to be considered, or to the final 
structure. The finilte element problem so defined is 
composed of L +- 1 uncoupled subproblems, the 
simultaneous solution of which provides L + 1 
partial solutions equal to those that should be 
obtained by separate analysis of each substructure, as 
shown in Fig. 6. The advantage of this method is that 
final and intermediate information on the sensitivity 
analysis may be obtained in the same way that it 
would be by considering a single structure. Further- 
more, and once there is no subsystem coupling, 
different load conditions may be assigned the same 
right-hand side. For example, right-hand side number 
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Fig. 10. 
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Table 1. Design variables and their bounds 

Meaning 
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XL XU 

XI Side span beam upper flange width 
X2 Side span beam bottom flange width 
x3 Side span beam upper flange thickness 
X4 Side span beam bottom flange thickness 
X5 Side span beam cross-section height 
X6 Side span beam web thickness 
X7 Central span beam upper flange width 
x8 Central span beam bottom flange width 
X9 Central span beam upper flange thickness 
Xl0 Central span beam bottom flange thickness 
XII Central span beam cross-section height 
X12 Central span beam web thickness 
XI3 Pylon cross-section height (below deck level) 
X14 Pylon cross-section width (below deck level) 
Xl5 Pylon cross-section in-plane wall thickness (below deck level) 
Xl6 Pylon cross-section normal-to-plane wall thickness (below deck level) 
X17 Pylon cross-section height (above deck level) 
XI8 Pylon cross-section width (above deck level) 
X19 Pylon cross-section in-plane wall thickness (above deck level) 
X20 Pylon cross-section normal-to-plane wall thickness (above deck level) 
X21 Side span cables cross-section area 
X22 Central span cables cross-section area 
X23 Transverse beams flanges width 
X24 Transverse beams height 
X25 Transverse beams flanges thickness 
X26 Transverse beams web thickness 
X27 Cable-free deck length in side spans 
X28 Cable zone deck length in side span 
X19 Cable zone pylon length 
X30 Cable-free deck length at midspan 
X31 Cable zone deck length at central span 

0.500 
0.500 
0.20 
0.02 
1.00 
0.02 
0.50 
0.50 
0.02 
0.02 
1 .oo 
0.02 
1.50 
1.50 
0.02 
0.02 
1.50 
1.50 
0.02 
0.02 
IE-8 
lE-8 
0.30 
0.50 
0.02 
0.02 
1 .oo 
1 .oo 
5.00 
1.00 
1 .oo 

2.000 
2.000 
0.05 
0.05 
5.00 
0.05 
1.50 
1.50 
0.05 
0.05 
4.00 
0.05 
4.00 
4.00 
0.10 
0.10 
4.00 
4.00 
0.10 
0.10 
0.10 
0.10 
1.00 
2.00 
0.05 
0.05 

30.00 
50.00 
50.00 
50.00 
60.00 

3.4. Iterative anal_vsis 

An initial design is iteratively modified and 
analysed until it is acceptable. The modification 
element of the process consists of setting up a formal 
optimization model which redefines the design 
variable values in the way represented by the 
flowchart of Fig. ?. The geometry coefficients set the 
rules for mesh updating to keep discretization as 
smooth as possible. An analytical procedure was 
developed for the sensitivity analysis, because it 
provides greater accuracy on the derivatives and a 
lower processing time. Alternative semi-implicit or 
explicit (finite differences) sensitivity analysis 
methods are also available. 

Convergence checks can be formulated in a 
number of different ways. In this work a condition 
concerning the cost decrease within an iteration was 
imposed. 

If one wishes to change the optimization-related 
data, such as the design variable set, only the 
dependency matrix C needs to be changed by adding, 
removing or changing some of their columns. 

3.5. Multi-objective formulation 

Pareto’s economic principle is gaining increasing 
acceptance to multi-objective optimization problems. 
In minimization problems, a solution vector is said 
to be Pareto optimal if no other feasible vector exists 
that could decrease one objective function without 

increasing at least another one. The optimum 
vector usually exists in practical problems and is not 
unique. 

Cross-sectional (and geometric) design variables 
are considered, represented by x, and z,, respectively, 
and the global design variable vector is 

X=(x1,x*,x1 ,..., X”,Z,+I,z,+2 ,..., ZN}T. (3) 

Bounds must be set for these variables in order to 
achieve executable solutions and required aesthetic 
characteristics. 

The overall objective of cable-stayed bridge design 
is to achieve an economic, and yet safe, solution. In 
this study it is not intended to include all factors 
influencing the economics of a design. One of the 
factors conventionally adopted is the cost of material 
used. A second set of goals arises from the 
requirement that the stresses should be as small as 
possible. 

The optimization method described in the next 
section requires that all these goals should be cast in 
a normalized form. If some reference cost V0 is 
specified, this goal can be written in the form 

g1(x, z) = V(x, z)/Vo - 1 G 0. (da) 

A second set of goals arises from the imposition of 
lower and upper limits on the sizing variables, namely 
minimum cable cross-sections to prevent topology 
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Table 2. Initial and final (optimized) values of design values 

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1.500 
1.500 
0.4000- 1 
0.4000-I 
3.500 
0.4000-1 
1.200 
1.200 
0.2000- 1 
0.2000-1 
3.000 
0.2000- 1 
2.500 
2.500 
0.3000- 1 
0.3000-1 
2.500 
2.500 
0.2000- 1 
0.2000- 1 
0.2500-l 
0.2500-l 
0.5000 
0.2000- 1 
1.000 
0.2000- 1 

0.9872 
2.000 
0.2338-l 
0.2349-I 
4.448 
0.2000-J 
0.8569 
1.499 
0.2138-l 
0.3518-l 
2.256 
0.2000-1 
1.500 
2.577 
0.2000-1 
0.2000-1 
1.500 
1.500 
0.2000-J 
0.2000-I 
0.1457-l 
0.1196-l 
0.3000 
0.2000-J 
1.076 
0.2000-1 

12.24 
19.31 
12.97 
21.44 
52.28 

0.7428 
1.592 
0.2000-1 
0.2354-l 
2.501 
0.2000-1 
0.943 1 
1.500 
0.2662-I 
0.3681-l 
1.972 
0.2000- 1 
1.500 
1.500 
0.2000-I 
0.2000-J 
1.500 
1.500 
0.2000-1 
0.2000-J 
0.1076-l 
0.9685-2 
0.3000 
0.2000-I 
1.076 
0.2000-I 

I.733 
2.000 
0.2000-1 
0.2859-l 
5.000 
0.2000-1 
0.8967 

1.500 
0.2000-1 
0.3713-I 
1.384 
0.2000-1 
2.087 
1.877 
0.2000-1 
0.2003-l 
1.500 
1.500 
0.2000- 1 
0.2000-1 
0.1605-I 
0.1076-l 
0.3000 
0.2000-1 
1.083 
0.2000-1 
8.610 

37.22 
11.72 
21.44 
52.29 

1.034 1.094 1.951 
1.974 2.ooo 2.ooo 
0.2000-1 0.2000-1 0.2000-1 
0.2447-I 0.2373-l 0.3047-l 
5.000 5.ooo 5.000 
0.2000-1 0.2000- 1 0.2000-1 
0.9710 0.9148 1.104 
1.499 1.500 1.500 
0.2000- 1 0.2000-1 0.2099-l 
0.3767-I 0.3665-I 0.4012-I 
1.811 1.824 1.613 
0.2000-1 0.2000-1 0.2000-1 
1.500 4.000 4.ooo 
1.500 2.154 1.933 
0.2000-1 0.2000-1 0.2000- 1 
0.2000-1 0.2000- 1 0.2000-1 
1.500 3.412 3.405 
1.500 1.500 1.500 
0.2000-J 0.2000- 1 0.2000-1 
0.2000-I 0.2000- 1 0.2000-1 
0.1318-l 0.1828-l 0.1608-I 
0.1076-l 0.1076-l 0.1076-I 
0.3000 0.3000 0.3000 
0.2000-1 0.2000- 1 0.2000-1 
1.071 1.423 I .475 
0.2000-1 0.2000-1 0.2000- 1 

EXAMPLE 2 

INITIAL UPPER AND BOTTOM MAXIMUM STRESS DISTRIBUTION ON DECK 

FINAL UPPER AND BOTTOM MAXIMUM STRESS DISTRIBUTION ON DECK 

Fig. 14. 
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changes and exequible dimensions for the stiffness 
girder and pylons cross-sections 

g2h)= -x,/XL+ 1 <o 

g&i) = X,/X” - 1 < 0, 

(4b) 

(4c) 

where x, is the ith sizing variable and xL and xu its 
lower and upper bounds. Similar bounds must be 
considered for the geometric design variables 

g‘l(zk)= -zk/zL+ 1 GO (44 

g&i) = Zk/ZU - 1 < 0, (4e) 

where zk is the kth geometric variable and zu, ZL are 
its upper and lower bounds, respectively. Additional 
bounds are set wh.en geometric design variables are 
considered, to ensure that no geometry violation 
occurs when these design variables are updated. For 
example, when design variables of types 4 or 5 (Fig. 1) 
are to be considered, their total length cannot exceed 
the side span length. If i and j are the positions of 
those design variables in X vector, we write the 
condition 

k + z,)/Ls - 1 < 0, (4f) 

where Ls stands for side span length. 
Additional goals may be established in order to 

ensure the desired geometric requirements during the 
optimization process (mesh discretization, ratios of 
variation of cable spacing on desk and pylons, etc.). 
For these, the chosen approach was to initially supply 
all the necessary information, by means of a geometry 
coeficients set des’cribing such conditions. 

The objective is to minimize all of these objectives 
over sizing and geometry variables X. Different 
weights can be attributed to different goals just by 
changing the reference cost, stress or displacement 
limits. The objective of this Pareto optimization is to 
obtain an unbiased improvement of the current 
design. Simdes and Templeman [12] have shown that 
the solution of this multiobjective optimization may 
be found indirecfly by the unconstrained optimiz- 
ation of the convex scalar function 

F(x) = j .ln t ep(@)) I=! 1 
which is both continuous and differentiable and thus 
considerably easier to solve. 

3.6. Scalar function optimization 

Problem (5) is unconstrained and differentiable 
which, in theory, gives a wide choice of possible 
numerical solution methods. However, since the goal 
functions gi(x, z) do not have explicit algebraic form 
in most cases, the strategy adopted was to solve 

eqn (5) by means of an iterative sequence of explicit 
approximation models. An explicit approximation 
can be formulated by taking Taylor series expansions 
of all the goal functions g,(x, z) truncated after the 
linear term. This gives 

Min F(x) = b.1, 2 eP(pOH+,~,~dr, ‘I , (6) 
=I 

where N and Mare, respectively, the number of sizing 
plus geometric design variables and the number of 
goal functions. go, and ag,/ax; are the goals and their 
derivatives evaluated for the current design variable 
vector (x0, zO), at which the Taylor series expansion 
is made. Problem (6) is an approximation to problem 
(5) if the values of all the go, and ag,/ax, are known 
numerically. Given such values, problem (6) can be 
solved directly by any standard unconstrained 
optimization method. 

Solving eqn (6) for particular numerical values of 
go, forms only one iteration of the complete solution 
of problem (5). The solution vector (x,, z,) of such an 
iteration represents a new design which must be 
analysed and gives new values for g,, and ag,,/ax,, to 
replace those corresponding to (x0, zO) in eqn (6). 
Iterations continue until changes in the design 
variables become small. During these iterations the 
control parameter p must not be decreased to ensure 
that a multiobjective solution is found. In this work, 
a constant value for p of 100 was used. 

4. SENSITIVITY ANALYSIS 

Iterative optimization algorithms need to know the 
way a change in each design variable will affect the 
requirements expressed as goals. This is the task of 
the sensitivity analysis and represents most of the 
computational effort required for structural optimiz- 
ation. The evolution of the problem depends on a 
critical way on the accuracy with which these values 
are computed. 

The expressions for the discrete analytic method of 
sensitivity analysis are obtained by differentiating the 
equilibrium equations 

Ku=P. 

The following expression is obtained: 

(7) 

aK au ap - ax.U+Kz = & (8) 

which can be rewritten in the form 

au ap sic 
Kax, = G - ax,u=Qw (9) 

where QVi is the virtual pseudo-load vector of the 
system with respect to the ith design variable. 
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EXAMPLE 2 

INITIAL MAXIMUM STRESS DISTRIBUTION ON PYLONS AND STAYS 

/ -.- 

FINAL MAXIMUM STRESS DISTRIBUTION ON PYLONS AND STAYS 

Fig. IS. 

The stress derivatives are accurately determined 
from the chain derivation of the finite element stress 
matrix 

u = DB,u, (10) 

da d(DB,) 
-=,-u,+DB.%. 
dx; , (11) 

The first term of right-hand side may be directly 
computed during the computation of element 
contribution for the global system, on the condition 
that derivative expressions are pre-programmed and 
called on that stage. Those values may be recorded in 
the hard disk and recovered after the current design 
solution is analysed and the displacement vector u is 
obtained. 

The second term on the right-hand side is 
somewhat more difficult to compute because an 
explicit relation between displacement vector and 
design variable set does not exist. Pre-programming 
and storing the stiffness matrix and right-hand side 
derivatives in the same way as described for the stress 
matrix, the displacement derivatives may be com- 

puted by the solution of N pseudo-load right-hand 
sides. The stress derivatives are then computed in a 
straightforward way. This process involves the system 
solution of N + NP right-hand sides (where NP is the 
number of loading cases), such as in the finite 
difference method, but it has the advantage that the 
inversion of the stiffness matrix, which represents 
most of the computational effort, is done just once. 

Regarding the specific kind of structures to be dealt 
with, the following element sensitivities are now 
available: 
l two-dimensional bar element; 
l two-dimensional beam element; 
l three-dimensional bar element; 
l three-dimensional beam element; 
l four-node rectangular plate-membrane element; 
l eight-node rectangular plate-membrane element. 

5. EXAMPLES 

Several steel cable-stayed bridge optimization 
problems have been solved by the proposed method. 
Six different examples were studied, in each one a 
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different combination of design variables set, number 
of load cases and erection stages being considered, as 
follows: 

example 1 fixed geometry; 1 load case; no erection 
stages; 

example 2 changeable geometry; 1 load case; no 
erection stages; 

example 3 fixed geometry; 3 load cases; no 
erection stages; 

example 4 changeable geometry; 3 load cases; no 
erection stages; 

example 5 fixed geometry; 1 load case; 5 erection 
stages; 

example 6 fixed geometry; 3 load cases; 5 erection 
stages. 

Not much emphasis was put on a code of practice 
criteria because the essential goal was to check the 
integrated analysis-optimization computer code. 
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STAGE 4 

STAGE 3 

/ 
A 

/I \ Ejsil 
I 

i 
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STAGE 2 

STAGE 1 

FINAL STRUCTURE 
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INITIAL UPPER AND BOTTOM MAXIMUM STRESS DISTRIBUTION 
ON DECK - FINAL STRUCTURE AND ERECTION STAGES 

Fig. 16. 
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ON PYLONS AND STAYS - FINAL STRUCTURE AND ERECTION STAGES 

Fig. 17. 

The geometric description of the initial structure 
and cross-sections is shown in Figs 8 and 9. The deck 
was considered to be made of discontinuous 
folded-plates, simply supported by transverse beams, 
the deck width being of 20 m. The two side 
longitudinal beams are asymmetric I shaped, each one 
being supported by 4 in-plane cables both in the side 
and central spans. An hollow rectangular section was 
adopted for the pylons to ensure transverse stiffness. 

The criterion for selecting the initial design was to 
provide a nearly fully stressed design to show the 
improvement that can be made by using the proposed 
method. This leads to some oversizing in the 
examples with one load case only. For the pylons, a 
moderate oversizing was adopted to reduce the 
displacements of the midspan and at the top of the 
pylons. 

Structural self-weight, dead and live uniformly 
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distributed load and breaking forces were the con- For the deck-to-pylon connection, a hinged 
sidered types of load, the three load cases consisting support was considered on the left pylon, while the 
of live load being applied on the whole deck or only right side is simply-supported. The ends of the 
on central or side :spans, as shown in Fig. 10. A value deck were free to move horizontally. Cross- 
of 10 kN m-* was considered for the total uniformly sectional area of all cables was initially assigned 
distributed load value, 4 kN m-* standing for the live the value 0.025 m2. The allowable stresses were set 
load alone. For the erection stages a value 
4 kN me2 was taken for the erected deck. 

of at 200 MPa for deck and pylon elements and 
500 MPa for cable elements. All type of structural 

I 

EEI 
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Fig. 18. 
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STAGE 5 
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[u STAGE 1 
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Fig. 19. 

elements were assigned a cost per unit of volume of 
1 .ooo. 

The design variable set, its meaning and bounds are 
listed on Table 1. For examples 1, 3, 5 and 6 only 
cross-section related design variables were considered 
(x,--x& the additional five geometric design variables 
being used in examples 2 and 4. 

Erection stages considered on the examples are 
shown in Fig. II. At stages 4 and 5, tempor- 

ary back-staying was considered to reduce the large 
eccentricity of the resulting deck load with respect 
to the pylons. Temporary bending continuity 
between deck and pylon is assumed in stage 1, a 
hinged connection being further considered. 

The deck slab is supported by transverse beams 
spaced 5.00 m apart, which are in turn supported by 
the side girders. 

When geometric design variables are considered, 
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remeshing must ‘be done at the end of each 
optimization cycle because of the corresponding 
geometry changes. This remeshing ranges from a 
nodal co-ordinates adjustment under fixed discretiza- 
tion to a complete node and element regeneration, as 
in examples 2 and 4. In fact, the fixed positions of the 
transverse beams may require additional nodes and 
elements to be generated to fit the initially prescribed 
discretization. 

Convergence is set on the basis of the cost decrease 
in one iteration becoming smaller than 1% of the 
previous cost. In Fig. 12 the final cost reduction for 
each example is plotted, while in Fig. 13 the 
progression of the cost reduction towards the 
optimum can be seen. The introduction of geometric 
design variables produces a remarkable solution 
improvement. The consequences of considering the 
erection stages are strongly dependant on the 
construction sequence and temporary structural 
devices, such as those mentioned above. For instance, 
if temporary staying had been provided earlier in 
stage 3 instead of stage 4, that erection stage would 
not have been critical for the pylons cross-sections. 
This can be observed in Table 2, where the bottom 
pylons cross-section optimized height increases from 
the lower to the upper bound when erection stages 
are included. 

12000 

757 

The initial and optimized values of the design 
variable are written in Table 2, bold standing for upper 
bounds while lower bounds are assigned italic typing. 
Concerning the deck, it can be seen that when no 
geometry change is allowed, the side span beams 
cross-section height equals the upper bound because of 
the large downside reaction at the end supports, in 
particular with the live loading acting on the central 
span only. Moving the outer cables to a closer position 
from the ends greatly reduces the bending stresses, 
allowing for a smaller cross-section height, as the 
results of example 2 shows. A trend to pylon height 
decrease is detected, which seems somewhat unex- 
pected because it reduces the cables efficiency and 
increases the normal force in the deck. The effect of the 
erection stages may be seen in the drastic change of the 
lower pylon cross-section height, as was referred 
before. The wave pattern of the final stress diagrams of 
Figs 1419 shows the reduction of the relative 
deck/cables stiffness, indicating that the beam in the 
initial design is much more self-supporting that in the 
optimum. These figures represent the maximum stress 
distribution for initial and optimized designs of 
examples 2 and 6. 

The cables remain under moderate stresses because 
the same cross-section was assigned to all the side 
cables, and the same for the central cables, so the 

0 1 2 3 4 5 6 7 8 9 

ITERATION NUMBER 

+ EXAMPLE i -i6- EXAMPLE 2 + EXAMPLE 3 *EXAMPLE 4 *EXAMPLE 5 -@--EXAMPLE 6 

Fig. 20. 
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result is conditioned by the most tensioned one. 
Furthermore, its small contribution for the global 
volume and the low cost factor reduces their influence 
on the scalar global objective function and, so, their 
priority. 

Comparison between predicted stresses at the end 
of each iteration and those computed for the updated 
structure showed maximum differences of about 1 %, 
which shows that first-order sensitivity analysis is 
accurate enough for dealing with these problems, 
provided that moderate move limits are imposed on 
the optimization process. However, some unstable 
behaviour may arise when complete remeshing is 
required, because the evaluation points for stresses 
and sensitivities change from one iteration to another. 
This effect may be reduced by a closer discretization 
near the critical points which we know to occur at the 
cable anchorages, midspan and supports. Move limits 
of 10% of the current design values were considered 
in the examples. 

Figure 20 plots the processing time spent until 
convergence against the number of objectives 
(stresses), for each example. 

6. DISCUSSION AND CONCLUSIONS 

This paper has shown that the optimization of 
cable-stayed bridges can be carried out efficiently by 
the proposed design method consisting of the 
combination of two programs: a finite element 
analysis code and an optimization module. The 
sensitivity analysis is based on the analytic derivation 
of the response functions and provides the link 
between these two. 

The minimax formulation adopted here allows the 
simultaneous optimization and control of many 
different engineering goals. Pareto solutions were 
obtained efficiently for the multi-objective problem 
through the scalar minimization of a nonlinear 
convex function. 

The examples solved in the course of this work 
provided considerable insight into the behaviour of 
cable-stayed bridges. The total cost of the steel cable 
bridge is affected by the cable anchor positions on the 
main girder and pylon. Stresses due to the erection 
sequence change the optimum solution also and must 
be considered. Hence, the treatment of the cable 
anchor positions and the height of the pylon as design 
variables and the consideration of the stresses arising 
during construction are extremely significant. 

A compromise between a general- and specific- 
purpose program was sought by implementing, at the 
code level, the concept of design variable types, some 
of them common to a wide class of structures and 
some specific. The implicit part of the sensitivity 
analysis being independent of the design variable 
type, new kinds of problems or structures may be 
analysed by simply adding the specific design variable 
types code to the element routines. 

The software used for running the examples of the 
present paper is a PC platform-based finite element 
package running under DOS with Phar Lap’s DOS 
Extender, which allows for structural analysis and 
optimization of problems requiring up to 16 Mbytes 
of memory. The original finite element core was the 
VAXjVMS based MODULEF package, to which the 
first author is adding and developing the sensitivity 
analysis, interface and specific optimization code. 
The option for this platform was the wide use, 
portability and autonomy for the user, in addition to 
the existence of a great number of popular and 
affordable software tools for helping the post-pro- 
cessing task. In that context, an interface to Autocad 
was developed, from where the graphical data may be 
exported to other applications. 

Finally, this work has only touched the surface of 
optimizing the design of cable-stayed bridges. 
Nevertheless it has shown that there are potential 
savings to be made through the use of optimization. 
This algorithm can also be used with more complex 
structural modelling, namely the formulation of more 
complex constitutive laws (concrete stress-strain 
relationship, creep, etc.) as well different types of 
loading (dynamic and/or thermal effects, etc.). 
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