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Abstraet,  Virtually all styuctural optimization based on sys-
tem Teliability was conducted considening continucus design var-
akles. The solution of the reliability-based design problem is ob-
tained by solving alternatively a reliability assessment problem
and an oplimal sizing program until the best reliability-based de-
sign eccurs. The reliability assessment problem is formulated as a
linearly constrained concave guadratic program. By introducing
the concept of segmental members, the discrete optimum design
is achieved based upon linear programming. Examples are solved
by employing the proposed computationzl technique.

1 Intraduction

Reliability-based structural optimization has attracted inten-
sive attention of researchers in the past two decades and
considerable results liave been produced. It has been more
widely accepled that structural reliability should be taken
into account in such decision-making processes as struetural
optimization. While component reliability is still considered
in the design process, system reliability has been empha-
sized ‘more and included in structural systemis eptimization.
This hicludes trusses of uniaxial components and frames of
bending components. These studies have cverwhelmingly
dealt with slructural optimization involving centinuous de-
sign variables. It is however of practical importanee to con-
sider discrele design variables. The major purpose of this
paper is to describe a first-order second-moement reliability-
based approach to the discrete optimum design of ductile
frames. This design has a preassigned reliability level against
plastic collapse and simultaneously minimizes the preseribed
objective function. Most of the work on plastic reliability
analysis is based upon the upper bound lhieorem-of plasticity.
According to this an upper bound on the system’s reliabil-
ity can be evaluated an the basis of a set of collapse mech-
anisms. The solution of the reliability-based design prob-
lemn is abtained by solving alternatively a reliability assess-
menb problem and an eptimal sizing program until the best
reliabilily-based design occurs. The procedure for identify-
ing stochastically most relevant failure mechanisms consista
of the minimization of a quadratic concave function over a
lingar domain. The discrete optinmal sizing problem is com-
binatorial in nature and significantly mere difficult than the
continuens problem. This paper describes a method for dis-
crete optimal design based upon the cencept of segmental
members. The segmental optimum design is found by linear
prografmaing and its volume is a close lower bound to the
diserete solullon. A simple method for achiéving a discrete
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design from the segmental solution is described. Frame ex-
amples are given highlighting significant differences between
discrete and cortiniuous optimum solitions both for the cases
where yield is governed by asingle bending moment and when
the interaction of bending moment and axial force prevails.

2 Reliability-based design
2.1 Problem formulation

The process of selection of the optimum solution is highly
complex involving both qualitative and quantitative faciors
that must be considered simultanesusly. There are diverg
ing opinions on many basic issues from the very definition
of reliability-based optimization including the definition of
the objective function and the constraints to its application
in structural design practice. The reliability-based optimiza-
tion problem here consists of member size selection for given
detailing arrarigements and specified probabilities of failure
against collapse. If the plastic capacities are propartional to
the velunie of material required,
minV = {(x),
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where X, x4, u+ 8, 0;, 8¢ are the vectors of discrete design
variables, random plastic capacities, random loads, stress re-
sultanl rates, nodal displacements, total eritical section rota-
tions and total nodal displacements, respectively. The objec-
tive function and the constraints (1b)-(1d) are linear. The
above formulation is different from plastic limit synthesis
problems, owing to sitigle mode failure probability constraints
(le) and the system failure probability censtraint (1f). An
alternative approach minimizes ithe probability of collapse
ar unserviceability for fixed volume of material, which give

Pareto solutions to the general nwlti-objective reliability-
based optimization.
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2.2 Collapse of ductile structures

The probability of failure via the k-th individual collapse
mode pp can be obtained from the probability that a cer-
tain petformance fanction Zy

Zk: Uk—Ek :th*-—-lrag (‘2)
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Is negative. ITn (2) Uy and E) ave the internal and exler-
nal randoin works associated with the k-th collapse mods.
The strength of the structure with respect te Uie Ftl mode,
U1, 15 represented by a linear combination of randemn plas-
tic capacities x, and the load effect with respect fo this
mode, By, s represented by a linear combination of ran-
dom loads 1. The probability of aeeurrence of the k-th mode
Pl ) = P(Z), < 0) can be evaluated exactly if the distii-
butien functions of the plastic capacities are availablé, and
if the statistical correlation structure of the plastic moment
capacilies Cx and applied Ioads ©p is known. In practice (he
distribution functions of % and 1 ave rot kaown, and usually
only the first two statistical moments (means px, ) and a
measure of uncertainty: coefficients of variation Dy, 0y o
variances o2, crl?') are available. The correlation cosfficients
between pairs of plastic capacities p(z;, z;) and between pairs
of Tnads p0€p, {n) cam usually ouly be estimated by engineer-
ing judgment. Censistent with a first-order second-moment
reliability auvalysis, the failure probability miay be measured
entirely with a function of the first and second morments of
random parameters. It is assumed that safety with regard
to plasiic collapse via the failire mode b depends only on
reliability index Sy, that is defitied as the sliortest distance
from the orign to a failure suilace in the reduced randem
variables coordinate system,

B =wz, oz, - (3)
IL is imporkant to note that the standard devialion of the
safety margin of an individual collapse mede, Tz and the
probability of occurrence of this mode, P(F}.), inereases as
thie statistical positive dependence batween plastic monients
and for between loads that are active in producing the mech-
anism increases.

2.3 Overall prebability of fuilure

In general, the admissible f=ilure probability for structural
design is very low. Hence, approxitnation by Cornell’s first-
order upper bound is a conservative sslimate of the overall
probability of failure,

maxyy  [POFL)] < Prp £ 1= Hjq o[l = P(F)). (4)
The lower bound, which represenis thie probability of sceur-
rence of the most critical mode (dominant moeds) is obtained
by assuming the mode failure events Fy, to be perfectly de-
pendent, and the upper bound is derived by assurning inde-
pendence between mode failure events. Narrower bounds can
be obtained by taking into account, the probabilities of jolit
failure events such as P(F; N £} whick means the proba-
bility thal both events F; and F; will sinwltaneously oceur.
The resulting closed-form solutions for the lower and upper
bounds are as follows:
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The above bounds can be further approximated using
Ditlevsen’s method of conditional bounding (Ditlsvsen 1979).
This is accomplished by using a Gaussian distribution space
in which it is always possible to determine three numbers
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in which g; and f3; ave the safety mdices of tlhe -th and the -
th failare mode, p;; is the correlation coefficient betwesn Lthe
“th and the j-th failure mode, and @() is the standardized
normal probability distributicn function.

The probabilities of the joint events P{F; n ;) in (5)
and (6) are then approximated with the appropriate sides
of (7) and (8). Tor example, if F; and Fj ate positively
dependent, for Lhe lower bounds (5) it is necessary to use the
approximation given by the upper bound (7).

By rewriting (5) and (6), Moses and Kinser (1976) ex-
pressed the overall probability of collapse of a system in the
following way:

m
Pf:P(F])-I—ZCL"fD[]?{), (9)
i=2
where
u.:~:P(SlﬁS?ﬁ...ﬂSz_] IFl) (10)

is thie conditional probability that the first i—1 modes sarvive
given that made 4 oceurs. Note Lhat the failure modes are
artanged so that P(F) > P(Fy) > ... 2> P(F) > ... >
P(Fpm) because the value of the conditional probability {9)
depends on the ordering of failure modes.

The methed suggested by Vanmarcke (1973) reduces the
nurnber of survival events to one, such that

i—1 _
a; < r_rli:il P(S; | F) =], (11)
J:
Therefore, af =a = 1,08 = ay and
¥
Py=P(P1)+ > a;P(F) {12)
1=3

's an upper bound to the everall probability of collapse, Us
ing a first-order approach, Vanmarcke introduced a usefn)
approximation of the conditional probability P(5; | F}) in
lerms of the safety indices f; and &5 and of the ecocflicient
of correlation gy between Lhe failire modes F; and Iy as
follows:

Pl—max(B;/ | pij |, ;)]

P(Sj‘ [ Fy=1-—=
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in which it is assumed that the probability of oceurcence of
the i-th mode P(F;) = ©(—f;) depends on g only.
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2.4 Solution wnethod

The system’s reliability invelves the enuwieration of the
stochastically most important mechanisms for a given design.
Therefore the reliability constraints are not known explicitly
and the reliability-based design problem is a bi-level program.
The salution method for this class of problems is divided in
two alternation sub-procedures which are repeated until the
vector of design variables converges: (a) an optimization pro-
cedure for assessing the structural reliability (inner problem),
that finds the stochastic most irnportant mechanism and enu-
merates other relevant collapse modes for a given valie of
the design variables (plastic capacities); (b) an eplimization
of the discrete optimal design problem (cuter problem), that
finds the vector of average plastic capacities giving the least
volunie solution that satisfies failure requirements.

3 TInmer problem: reliability asséssment

3.1 Assumptions

The following assumptions are considered. (1) The general
structural configuration including the lengthsof all prismatic
and straight members is specified in a fixed (determinis-
tic) manner, {2) Plastic eollapse is the only possible failure
mode. (3) The effects of shear and torsion are iiot consid-
ered. (1) The ultirate plastic capacities for both beam and
colimn eritical sections, which formm the vector x are randor
but their position is deterministic. (5) Reliabilily analysis
with random variable loading has meaning only for one load.
When miore than one load exists, a load combination prob-
lem is invoked to produce an equivalent single load effect. (8)
The magnitudes of static loads which form the load vector 1
are random but their locations are deterministic.

3.2 Compulation of the relialility indes

For Gaussian random variables, the identification of the

stochastic most relevant mechanism consists of minimizing

the reliability index 8 given by (Shinozuka 1983)
[k 8+ -—;,:ié*]
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subjedt o the compatibility relations
BiNus=0, (15)
where B represents the mesh matrix, w+ the strain resultant
rates and N is a matrix containing the normals of the yield
polytope. The linear incidence zquations are
B = Jouw; S = Jzd, (16)
where the incidence matrices Jg aud Js are obtained by asso-
ciating the strain-resultant rates ux represented by the same
randotn variables G and the displacements of the point loads
& linked by the same random variables §%. Sign constraints
on the variables need also to be considered
wg >0, S+>0, (17)
and the displacement rates § that eorrespond to the loads L
are evaluated 1n terms of us
§=BLNu« (18)
If the probability distribution functions of the random vari-

ables are not Gaussian, the Reosenblati transformation may
be used.

(14)

This malhermatical program belongs to the class of frac
tional programming problems. The minimization of 3
shares its solutions with the gnadratic concave minimization
(Simces 1990)
max—1/5% = -0 +! oL Cxox B+ —54+' ofClayx,  (19a)
subject Lo

phl+ —pibe =1, (19b)
G = Jaus;, 5% = Js8 | (19¢)
BNus = 0; §=DBNux, (194d)
w20, Bx>0. (192)

This pteblem cannot be solved by convex pregramming tech-
miques beeause of the possibility of nonglobal local minima.
The global optimum of these programs gives the plastic de-
forrnations for the stochastic most impertant mechanism and
the reduced random variables can be evaluated nsing

S . (20a)
I'= o8+ 2. (20b)

8.3 Selution of a concave quadratic programmiing
Although thearetizally large-scale 0-1 mixed integer program-
ming are NP-hard problems, they can ke solved in a reason-
abletime (Marsten 1987), providing most of the variables are
continuous.

The motivation {or considering concave quadratic mini-
mization is similar to that for problems of 0-1 integer lin-
¢ar programming. The computational method presented by
Rosen (1983) for finding the global minimum of & quadratic
concave function over a polyhedral set takes advantage of the
ellipsoid-like level surfaces of the sbjsctive lunclign to find a
good initial vertex and to eliminate a rectangnlar demain
{enclesed i a level surface) from further consideration. Tlhe
basicsiep used is to initially determine a rectangular domain
which contains the projection of the domain on Lhe space of
the nonlinear variables. This ¢an be done by a multiple-cost-
tew LP with n objective functions. Then a linear underes-
timating futiction is computed and a linear underestiniating
problem is solved to give lower and upper bounds for the
global optimum. This solulion alse gives a bound on the
relative error in the functien value of this ncumbent ver
tex, If the incumbent is not a satisfactery approximation
to the global eptitmum, a guaranteed £-approximate solu-
tion is obtained by solving a single 0-1 mixed integer pro-
gramming problem. This integer problem is formulated by
a piccewise linear underestimation of the separable problem
(Simdes 1991).

3.4 Enumeraiion of olher stochastic tmportant mechasissms

An appraisal of the current procedures for generating the
stochastic most representative failure modes indicate that
they are variously dependent on simnlation, trial:and-error,
perturbation, human judgement, complex heuristic sirate-
gies; or approximations, either for chossing the appropri-
ate starbing points or for continuing the methed at differ
ent stages. Some of the wmethods generate the modes in
random order and thus many of the important modes may
be missed without ever knowing about them (Nafday ef ol




1987). Thare remains the need for a reliable algorithmic ap-
proach. The Lechniques used here to find the stochastic niost
representative mechianism were employed to enumerate other
stochastic important modes by assigning the incumbent so-
lution at a desired level af significance, larger than the global

solution. Sinecs the domain is partilioned with vespect to

ke tionlinear vagiakles cnly (random loads and resisting mie-
mizuts), it is possible thal within the same range of bounds
other mechunisms exist (and arée not identilled). Moreover,
mechanisms with plastic hinges at different locations but as-
sociated with the same values of the random variables ruight
he overloaked. For this reason, after finding the stochastic
derinant mode over each of the subtegions, either a brauch
and bound procedure or a verlex enumeration and ranking
must be employed to enumerate Lhe remaining stochastic rel-
evant mechanisins.

4  Outer problem: diserete optimumn desigu

hr Assumptions

Consistent with a first-grder second-moment reliability ap-
proach, the mininmm stalistical information required for the
evaluation of the oplimum solution is: (a) the mean values
of the loads which make up thie vector py; thie coefficients of
variation of the loads which make wjp the vecter 2y, and the
coelficients of correlation hetween paris of loads which form
a square syrmieizical corelation mairix denoted Cy; (b) the
spefficicnts of variation of the plaskic capdeities, which make
up the vector f2% and the coeMeients of correlation hetwesn
pairs of plastic capacitiss whiclh form a square symmetrical
matrix denoted Cx.

4.2 Rehabilily against collapse

By fixing the design variables, the reliability assessiment prob-
lern (19) gives the activalion parameters B+ and displace-
menl rate 6% associated with the stochaslic most nnportant
mezhanism and other relevant modes. Clearly, the rellabil-
ity analysis for ancther set of design variables (but the same
miechanism) would give proportional activation parameters
and displacement rates. For a pre-sperified reliability index
B and m mechanisins, single mode prohabilily constraints
will be satisfied if,

158 ey —pii6ag 2

> G [\/8 gl Cxoxf+—6 = a-{Clo'lsi*.] , (21)

where k = 1,...,m. li can be shown that these constraints
are convex with respect to the design variables. Under mild
reguizements, the multi-mode gonstraints arising from {4),
(5), (6) and (11] can be assumed convex and they can be
approximated by ihe aline terms of the Taylor series expan-
BT

4.3 Formulatien

If the plastic capacities are proportional to the volumie of
material requited and their cheice is limiled to a diserete set,
this problesi can be expressed as

min V(x) = ¢'x, (222)

subjeck to

Py = Pj-(x)' < Ppx, (22b)
jex €85 = {sgd=1,..., D}, (22¢)
where e is the vestor of member lengths, The objective fune-
tian is 4 linear function of the characieristic values of plastic
capacilies % which cau be direclly velated to the mean values
pex. The reliability constraints ate nonlinear. The direclion
solution of problem (22) is difficult biecause of its nonlinearity
and Lhe diseretencss requirement stated by (22¢).

The rigorous discrete optimum design is a NP-hard-
problem, significantly more difficalt than the conlinuous
preblem, The continuous optimum design forms a lower
Yaund to the discrete eptimurn and itis wsually assnmed that
the continuous plastic capacities should somchow be rounded
up o down to discrete sizes. This rounded process turns oub
also to be a combinatorial problem. The methad descrilied
next introduces the artificial eoncepts of scgmental members
and segmental optimum design (Templernan 1983), and pro-
vides & elose lower bound to the discrete reliability-based de-
SIEI.

4.4 Segmental optemum design

Problem (21) asswmes that each member is of known length
and lias an unknown average plastic capacity., Asswime in-
stead that each member of the frama is composad of 2 tolal
of I sesments, each with an average plastic capacily equal
to one of the discrete sizes such thal all sizes are vepresented
amaong segments.

|l iy hz 3
—— [
Ly Hsr  Hsz Hs3

(a) (b)
Fig. 1. (a) Conventional member, (b) scgmental member

The plastic eapacilies of all segments represented in Fig. 1
are knowa but the segment lengths are unknown. If problem
(21) is reformulatd with this segmental assumption i place
of unilarm members the follawing problem is oblained:

min'¥ (o) = Z Z 54T » (232)

i=1,nd=1,02
subjecl to,
Pe(XY+ Y > (@Pp/Bugalifeicia < Prs, (28b}
=1nd=1.01

Z eg =ty 1=1....m, (23¢c)
d=1,D
&a >0, (23d)
where Pg(X) is the struchiral reliability correspending Lo the
vector of plastic capacities x and (c’)Pf/'Op.Sd],; is the change
i Py when the plastic capacity of mermnber i is replaced by
(igq)i Therefore (8PpfOusali are ireplisll funictions of the
plastic capacities and will change as the design variables are
changed,

i R
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The variables of problem {23) are the lengihs ey of all
segmients of all mernbers. The additional constraints in preb-
lem (23), which donot appear in problem (22), ensure length
equivalence of conventional and segmental members and the
aon-negativity requirerient for all segmient lengths whicli &re
clearly niecessary. This problem may be solved by an LP al-
gorithm yielding what can be termed segmental optimum de-
sign. Several features of this problem can be deduced. Firstly,
its average volume will be globally minimum for the spéeified
values of (8P /8pgq);- Secondly, the average volume of the
segmental oplirmm design is a lower bound to the average
volume of the diserete optimum design, because the discrete
requirements are relaxed. Thivrdly, in the segmental optimum
design there can be at most one (m in the case of Comell’s
lewer bourd) multi-segrment member and at least n—1(n—m)
members composed of a single segment. It is clear from this
that the segrnental optirnum design forins a very useful lower
beund to the discrete reliability-baséd design.

4.5 Achienmg o discrefe optimum design

The discrete optimum design must have only one segment of
discrete size per member. Tn the segmental optimum design
most members will satisfly this requirement buf. there will
be eiic mulli-segment meinber which does not (a few, when
Cornell’s lower bound is considered). An obvious rounding
scheme is bo increase the plastic capacity of all the multi-
segment menibers unlil they have the same average diserete
plastic capacity within the memher. The result will be a fea-
sible discrele: design which miay be the required solution or
an upper bound ta the discrete sptinium. Becatse only ons
or ab most a {ew mermbets are concerned in this operation,
the design obtained should have an average velume fraction-
ally latger than the oplimum solution. A further refinement
of the rounded-up design miay be pessible. [t consists of de-
termmining whetlier any complete members in the dizsercte de
sign can be replaced by complete members of smallsr volume
without violating any constraints. The slack variable(s) of
the reliability constraint(s) will be in the basiec set and must
rernain there with pasitive or zero values., The other basic
variables are segment lengths with a value equal to the phys-
ical length of the member. The objective function coellicients

will indicate several candidate segment length variables in the
non-basic set which, if they entered the basis would reduce
the average valume of the structure. Each candidate can he
examined and pivated into the basis provided it pivots a com-
plete segment variable out of the basis and does not viclate
the reliability constraint(s). This procedure may tighten the
already close bounds on the reliability-based design, although
it. is not pessible to guarantlee convergence to the global op-
tirmarmn.

This solution can be found by using an alternative branch
and bound strategy. A large number of solutions with round-
up and round-down members generated by pivatal operations
can a4 priori be excliuded by enforeing the bounds provided
by the segmental method.

5  Numerical example and discussion

5.1 Two-bay, two-storey frime

The minimurn velume of the rigid portal frame with fixed
geomelry, tepresenied in Fig. 2, satisfying given reliability
requirertients is to be found. Five discrete design variables
corresponding (o average plastic capacities of the columing
and beams are considered for the discrete optimum design.
The mean values of the loads and the coeflicients of varia-
tion of loads and plastic capacitiés are read as input data as
follaws:

fyi =169 kN; £y =0.15; piyo =89 kN; Q212=0.25;

Mg =116 kiN; 1y =0:25;

Py =02 KNG 01 =0.25; p go=31 kN; Q9=0.25;
ﬂxl_:-ﬂXf-ﬂXfﬂXfﬂxa ={).15.

For (he purpose ol discrele design it was assumed that
cight different bar sizes were available for each member. The
fnember sections were chosen from a commonly available pre-
fabricated size (Parfuguese INP). For normally distributed
load and plaslic eapacities, statistic independernce between
random loads was assumed, except the horizantal loads which
were perfectly correlated. For normally distributed load and
plastic capacities, perfect corrélation within members and
column-column eorrelation was considered.

The sizing given by deterministic plastic limit synthesis
can be vary inadequate when, for a fixed volume of material
the structural reliability is the major cancern. It was shown
(Simdes 1991) that the probability of failure against collapse
can be reduced fromt 50 to 150 limes by just redistributing
the plastic capacities by the structural members according to
Lhe probability-basged design.

Figure 3 shows the least volurie material required to sat-

isfy reliability requiremeénts evaluated according to Cornell’s .

upper bound. The segmental solution (SC) is marginally
heavier than the continuous solution (CS) (1.3-2%) and is
represented by the same hine. As expected, because there
is only one probabilily constraint which i§ active, there is
only one multi-segmerit member in this segmental optirmum
design, Rounding up this segmental oplimum design to a
fully discrete design is a trivial operation (SLS) and leads to
a volume increase of (1.6-3.9%) increase with respect to the
continuous solution. By allocating the discrete size associated
swith the grealest length in the segmental members (SLI) re-
sults in a more unsale strueture: the probability of failure
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g, 4. Bifect of prescribed ¢isk Jevel on opfimum solution.

Jitlevsen’s upper bo ynd used to compule plastic collapse prob-
abilities

may be up o 90% higher with respect {o the probability of
failure of the segmental solution

Girmilar conclusions can be drawn when Ditlevsen’s up-
per bound is used to compube the structural reliability of
the frame (Fig: 4)- BM C meaning Lhe con tinuurn oplirmir
solution when the bending rmornent s the only stress resul-
tant. BM S and BN LS represent the segmental solutions
and the designs ohiained by rounding up sl segrmental mern-
bers, respectively. Bl SR is the selution given by allocating
the discrete size associated with the greatest length in the
segmental wembers.
Figure 5 shows the soltition obtained whien Lhe statistical cor-
relalion of mechanisms (Carnell’s lower bound) is assumed.
The segraental solution (BM 8) almast coincides wish the
continuous solution (BM C) and the nuniber of multi-segmient
rhembers equals the nurnber of desigh variables. The discrete
sohilion obtained by rounding-up (hsse members (BM LS)
leads to a 6-9% increase of the volume required. Moreover,
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Fig. 5. Bifect of preseribed i<k lovel o splimum solution. Cor-
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Fig. 6. Lffect of prescibed tisk level dgatnst plastic collapse with
slress-resultant interaclion on oplimum coliition. Cornell’s lower

bound

it yay not be possible to refine fucthier this discrete design
berause the collapse rechaniam nrobabilities ave strongly de-
pendent on the individual design variable values.

Figares 6-10 illustrate the results of the example frame with
(SRI) or without (BM) stress-resiltant interaction when the
slructiral reliability is evaliated according o (Carnell’s lower
bowid, Ditlevsen’s lower bound, Ditlevsen's upper hound,
Vaninarcke’s upper bound and Clornell’'s. nppeT Bound, 1e-
speclively. Tiven for this small scals example, the computa-
tion requived up Lo 94 and 40 mechagisms for the BM and
SRIT cases, respectively. The volume of material needed o
satisly the rellability requirernsn fs with increasing valus of
Py is lerger when the otly stress-resultant s the bending mo-
ment, This is caused by the lavger nurrler of plastic hinges
required to form nechanisms when Lhe bending momeris in-
teract with axial forees, The optimuim solutions also show an
inerease of the first storey solumn plastic capacily and are-
duction of the design vatiable requiretnents for {he remaining
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Fig. 8. Effecy of preseribed risk level agaiust plasiic collapse with
stress-resultant interaction on optimuim solullon. Ditlevsen’s up-
per bound

members when the SR ds considered.

6 Conclusions

The use of probabilistic concepts in structural design need
not be restricted because of the ideal design problem’s com-
plexity. The solution method for the optimum design of
portal framcs with interacting stress-resultants consists of
two alternating sub-procedires: (a) an oplimization of the
stochastic most important modes; (b) an optimization of the
convex outer problem that includes the cost function. The
present Investigation has discussed the influence of discrete
design variables on the minimization of the total expected
volumie of material for a specified Tailure probability. The
proposed technique illustrates that the stochastic dominant
modes difler and the resulting probabilities of failure may
change considerably, whenever the interaction of bending and
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Fig. 9. Effect of prescribed risk level against plastic collapse with
stress—resultaut inleraclion on eplimiim solution. Vanmarke's up-
per bound
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Fig. 10. Effect of prescribed risk level apainst plastic collapse with
stress-resultant interaction on optimum solution. Cornell’s upper
bound

axial forces is considered ingtead of a predominant bending
action. Preliminary results on larger scale examiples seem to
indicate that the allocation of more plastic capacities to the
lower storeys is more notorious when slress resultant inter-
action is considered.
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