) RELIABILITY OF PORTAL FRAMES WITH
i INTERACTING STRESS RESULTANTS

" By Luis Miguel da Cruz Simées'

AuvsTRACT: A general formwlation based on mathematical programming and
structural reliability theory is given for the analysis and synthesis of portal frames
where vield with respect to plastic collapse is governed by several stress resultants.
The mechanism compatibility equations are formulated using the geoeralized mesh
description. The elasto-plastic material is assumed to satisfy Drucker's postulale
of stability. The stochastically most important modes of the reliability assessment
problem are found by minimizing a quadratic concave function over a linear do-
main., Mathematical programiming techniques that include recent developments in
concave quadratic minimization are presented. The: paper also describes a first-
order second-moment reliability-based approach ta the optimum design of ductile
frames. It involves an iterative process, which is repeated until the best reliability-
based design is obtained. This design has a preassigned relinbility level agajinst
plastic collapse and simultaneously minimizes the prescribed objective function.
Examples are solved by employing the proposed computational techniques.

INTRODUCTION

Structural problems are nondeterministic and, consequently, engineering
optimum design must cope with uncertainties. Clearly, the proper tool for
the assessment and analysis of such uncertainties requires methods and con-
cepts of reliability, Therefore, it is not an overstatement to affirm that the
combination of reliability-based design procedures and optimization tech-
niques are the only means of providing a powerful tool to obtain a practical
optimum' design solution. Most of the work on plastic reliability analysis is
founded on the upper bound theorem of plasticity. According to this, an
upper bound on the reliability can be evaluated on the basis of a set of plastic
mechanisms. If the set of mechanisms is complete, the upper bound coin-
cides with the exact reliability with respect to plastic collapse. For this rea-
son an aatomatic method to find all modes can be employed, but for very
large systems this procedure may become intractable. Most important in cal-
culating the failure probability of structural systems is the search for the
stochastically most relevant failure mechanisms. Variations of the parameters
of the probability distributions, the respective types of distributions, and the
correlation among the variables involved have guite a significant effect on
the results. Approaches yielding a lower bound on the reliability with respect
te-nlastic collapse were reported by Ditlevsen and Bjerager (1984). How-

, a close bound séems to be computationally expensive to obtain for
more complex structures. The formulation of the plastic dissipation for a
given mechanism in the case of yield surfaces of random shape can be rather
involved. For this reason, most works considered structures without force
interaction effects in the yield criteria. Bjerager (1989) considered force in-
teraction effects by solving a nonlinear optimization problem. His method
generates the failure modes in random order, and thus many of the important
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modes may be missed. There is no guarantee that the procedure will find
the global optimum and generate the most important suboptimal solutions.
This paper describes a mathematical programmipng—based procedure for
identifying the stochastically most relevant failure mechanisms. They are
feund by minimizing a qaudratic concave function over a linear domain.
Mathematical programming techniques that include recent developments in
concave guadratic minimization are presented. The generalized mesh de-
seription for frames of specified topology and geometry is used, leading to
simpler, more efficient formulation of the mechanism compatibility equa-
tions (Munro 1979). The elasto-plastic material is assumed to satisfy Druck-
er's postulate of stability—a convex yield surface (Drucker 1951). An il-
lustrative reliability assessment example is solved, showing the different
probabilities of failure that are obtained when the structure is analyzed con-
sidering single and interacting stress resultants. Methods of optimization based
-nn deterministic safety concepts, while minimizing the weight of an element,
say change its level of safety. This is a major limitation of deterministic
optimization formulations, in which the inherent random nature of both
structural loading and strength is not included, and consequently, the safety
criteria are not specified in terms of a risk value. This paper also describes
a first-order sccond-moment reliability-based approach to the optimum de-
sign of ductile frames. The solution is obtained by solving alternately a re-
liability assessment problem and an optimal sizing program until the best
reliability-based design is obtained. The proposed computational technique
is illustrated on a portal frame with interacting stress resultants and some
results are given concerning the sensitivity of the optimal solution to load
and resistance correlations,

STRUCTURAL RELATIONS

Plasticity Relations

Following von Mises (1928), a plastic potential function F(X) of the stress
resultants X will be defined such that the strain resultant increments u are
given by

aF

aX, A
4t critical section i where as many as six stress resultants may be interacting;
and N = a nonconstant parameter that is, however, the same for all stress
csultants at the section §. Supposing that an element of material is subject
to @ set of stress resultants X7, its stability may be tested by an external
agency that can vary the applied stress resultants. Drucker’s postulate for a
stuble material can be expressed by the following: (1) The plastic work done
by the agency during application of these additional stress resultants is non-
nesutive; and (2) the net work done by the agency during the application of
4 cvele of additional stress resultants is nonnegative.

For the material loaded by a single stress resultant X, these ideas are ob-
vious, as can be seen in Fig. 1. If this matenial is at state B, the addition
of X produces the triangle BCD of plastic work. The conditions

dXdu > 0 dXdu =0 AXcdw <O o e (2)

thus classify, respectively, a stable material, a perfectly plastic material, and
un unstable material. Secondly, if the material is at state A, the cycle of
loading X* — X — X + dX — X — X° produces net positive work dW,

25 By By v g B e sm mers e momis v sssmimes e waorh 508 B8 4 657 5 (1)

i,
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FiG. 1. Single Stress Resuitant Material Characterlstics: (a) Stahle Materlal; and
(b) Unstable Material

-which is substantially ABCDE (neglecting second-order work).
AW = (X = XU = 0o e e iean s SRied e s veen e (3)

A material loaded by several stress resultants (Fig. 2) may have some of

e increasing, while others may be decreasing, and yet the material may
Swil be stable under load. Drucker’s discriminant of stability adds together
the work contributions from all the stress resultants applied to the material
clement. Thus, for a perfectly plastic material

X-XYdu=0...,....... S B KA e SRS HRWE L4 P £4 Sels £ WET B (45)

If, corresponding to a resultant set X, the strain resultant increment du is
supposed known and a hyperplane H through X with du as normal is con-
structed, then Eq. 44 implies that the vector (X — X°) lies on the opposite
side of # from du for any admissible /°. Thus, H is a supporting hyper-
plane, so that the yield surface is convex and du follows the normality rule.
Drucker's postulate guarantees the existence of a potential function and iden-
tifies one as the yield function $(X). For this particular choice of potential
function during the mechanism, increment u is normal to &(X) and

d
= i A
ox;
is said to be an associated flow rule. A generalization due to Koiter (Smith

1974) allows the safe region to be bounded by a finite set of yield functions
& (X) = 0, whereupon Eq. 5 must be written
ady
Zi— M A Z 0 o e e s (6)
] BX, & k

Then, at a singular point like A in Fig. 2, a vector n must lic in the cone
of outward normals. At a critical section 7 several stress resultants may in-

LY

FIG. 2, Stress Resultant Space for Material Element
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EIG. 3. Interaction Diagram for Single Ciltical Section: (&) Yleld Hyperplane; and
(b} Yield Polytope

teriict, thus generating a safe polytope in a subspace X' that would have as
rrany as six dimensions. Usually, only two ot three of these stress resultants
nraduce significant interaction. Fig. 3 shows a subspace for the interaction
of moment X} and axial force X} approximated by eight planes with unit
normals mg.

Each such plane or, morc generally, hyperplanc, can be written in terms
of these normals and corresponding perpendicular distances Xl

GEKY = QUK = K = 0 s v emes s s s e (7

‘This information can be assembled into the plasticity relations for ali critical
sections

NISE. == T M0 jimvn e wooom v o wnein 57 WA 476 72 e o e v el fie (00 et (8a)
g W5 s s £ st siem v spa - SRTTS S Swm v s oly G ST HER S ven . (BB)
K = KL « o s se s e simie 3 S8 B0 B R a0 et 2 S e T (8c)
e =0 e 0 s T 0 (8d)

where U = the plastic encTgy digsipation. The number of hyperplanes being
used to effect a linear approximaton o the plasticity relations is h. Then
Xy lists the h components X', while the h rows of N' contain the compo-
aents of ni ordered to correspond with the siting of X' in the §-vector X of
stress resultants. Finally the A-vector uy of activation parameters represents
the amplitudes of activation of the corresponding yield hyperplanes, dx =
0 heing the parameters Ay in the associated flow rle, while N corresponds
to a‘bi/c)X}

Mesh Description of Statics and Kinematics

[t is necessary to consider a structure for which a set of collapse stress
resultants is X, and an associated collapse mechanism 15 .. At any eritical
scction several of the collapse strain resultants u, may be supported simul-
tancously. For this more general situation, Drucker’s postulate for stable
plastic materials is sufficient to ensure the convexity of this safe region and
also the normality of the flow rule for u,. Fig, 4 shows an approximating
yicld palytope in stress resultant space for the whole structure and illustrates
the fundamental inequality

D & N P (9
where u = another kinernatically admissible mechanism; and X = a set of

stress resultants. This set does not satisfy equilibrium in general, but it is
defined to be associated with u, i.e., from Eq: 8¢

Wig = U= Kl oas o soe ve mimoinn wiaslall dis e npne i SRS T R (1)



FIG. 4. Yield Polytope for Structure in Stress Resultant Space

If the flow rule is followed by v, from Eq. 8k

It is assumed that several of the stress resultants incident at a critical sec-
tion are sufficiently large that none of thetn can be considered to govern the
criterion of plasticity or yield condition. The dual descriptions of statics and
' =matics on a mesh basis are

5 = Blu
O B CeTtereeueeseseieesiiessiin

where B and B, = matrices containing the significant stress resultants caused
by unit magnitudes of indeterminate forces p and loading L acting upon the
released or determinate structure. The most convenient basis for planar portal
frames is that of regional meshes (Munro 1979). The B matrix can be as-
sembled in terms of a small number of submatrices, and the elements of B,
can be obtained from any set of stress resultants that are in equilibrium with
the unit loads. The kinematic relations for the mesh description to ensure
compatibility, then, are

BN = B vy vei m wesni s dvien s 0% 0 GRIE 03 E b6 ReEn R S B3 3 s o0 (13)

The displacement rates & that correspond to the loads L can be evaluated in
terms of the strain resultant rates uy

X = Bp + B.L

RELIABILITY ASSESSMENT

Assumptions

The following assumptions are considered: (1) The general structural con-
figuration including the lengths of all prismati¢ and straight members is spec-

4 in a fixed (deterministic) manner; (2) plastic collapse in which yield is
guverned by interacting stress resultants is the only possible failure mode;
(3) the effects of shear and torsion are not considered; (4) the magnitudes
of static loads thut form the load vector L are random, but their locations
are deterministic; (5) each vield surface has a deterministic shape with a
random size and is described by a single random variable. Without any com-
plexities, the random shape of each surface can be modeled by associating
a random resistance variable to each face of the surface; and {6) the ultimate
plastic capacities for both beam and column eritical sections, which form
the vector X, are random, but their position is deterministic.

Collapse of Ductile Structures
The probability of failure via the kth individual collapse mode p, can be
obtained from the probability that a certain performance function Z,

Zk = UR‘ - E}_— = X‘O-* - L‘S* .................................... (15)
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. acgative. In Eg. 15 U, and £, are the internal and external random works
sociated with the kth collapse mode. The strength of the structure with
sepect (o the kth mode, U, is represented by a linear combination of ran-
wrn phastic capacities X, and the load effect with respect to this mode, Eg,
, represented by a linear combination of random leads L. Consistent with
first-order second-moment reliability analysis, the failure probability may
« measured entirely with a function of the first and second moments of
andom parameters. It is assumed that safety with regard to plastic collapse
4u the failure mode k depends only on reliability index By, which is defined
. e shortest distance from the origin to a failure surface in the reduced
andom vanables coordinate system

Oy,

Onverall Probability of Failure
The cxact evaluation of the overall probability of failure can be based on
the Tollowing gencral result (Moses and Kinser 1967):

Pr= PO+ Bicam PFDPS N FoRTa T 1. P ' SRR R R R R an

in which P(F)P(S, N S ... N S JF,) = the conditional probability that
\he first i — 1 modes survive, given that mode i occurs, The numerical effort
for the evaluation of the conditional probabilities is exorbitant, even for small
systems, These difficulties can be overcome by limiting the scope of analysis
to bounds on Py, In general, the admissible failure probability for structural
design is very low. Commonly used approximations of the overall proba-
bility of failure are based either on the assumption of perfect statistical de-
pendence (Cornell's lower bound) or on that of their statistical independence
(Cornell’s upper bound). These upper and lower bounds may be widely dif-
ferent because the correlation between failure modes is not included in the
farmulation. Ditlevsen's method (1979}, which incorporates the effects of
the statistical dependence between any two failure modes, narrowed consid-
erably the bounds on the system failure probability. The method introduced
by Vanmarcke (1973} reduces the number of survival events in Eq- 17 to
one, obtaining an upper bound to the overall probability of collapse. Using
a first-order approach, Vanmarcke introduced a useful approximation of the
conditional probability P(S)|F;) in terms of the safety indices and the coef-

snt of correlation between the failure modes F; and F;. A different ap-
proximate method, which avoids calculating conditional probabilities re-
sulting from conditions feading to failure via pairs of failure modes, is the
PNET (Ang and Ma 1981). This method requires the determination of the
cocfficients of correlation between any two failure modes { and j and is bsaed
on the notion of a demarcating correlation coefficient, assuming those failure
imodes with high correlation to be perfectly correlated and those with low
correlation to be statistically independent.

Computation of Reliability Index
. For Guaussian random variables, the identification of the stochastically most
relevant mechanism consists of minimizing the reliability index B given by
(Shinozuka 1983)
;9* — b
_ e B0+ a8)

V8 akCxoxls + 801 CrLo B«
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Subj'ect to the compatibility relations (Eq. 13), the linear incidence equations
B* = J{;u:g; B* = Jsa ......................................... (19)

where the incidence matrices J, and J; are obtained by associating the strain
resultant-rales uy represented by the same random variables 84 and the dis-
placements of the point loads & linked by the same random variables HI
Sign constraints on the variables also need to be considered

W = 0,86 =0 .0t e T8 D s (20)

If the probability distribution functions of (he random variables are not Gaus-
sian, the Rosenblatt transformation (1952) may be used. This mathematical
program belongs to the cluss of fractional programming problems. The min-
imization of B shares its solutions with the quadratic concave minimization
(Simbes 1990)

-1

min pi = —BL0%CxoxBy — S0 CLoBy e e i b (2la)
subject to

B = B = b it e e e (21h)
Ou = Jolles B = J6B. it it e e e e e e o 2le)
iB’Nu* =10 B = BNty oniniini i e e S e e e e e 21d)
Uy =20,8.=0...... i i i S e WA S s SR 84 B3 56 .. 2le)

This problem cannot be solved by convex programming techniques because
of the possibility of nonglobal local minima. The global optimum of these
programs gives the plastic deformations for the stochastically most important
mechanism. The reduced random variables can be evaluated using

K = —0x04B% L = 08B o e (22)

SoLuTIoN oF CONCAVE QUADRATIC MINIMIZATION PROBLEM

This constrained optimization preblem is an NP-hard problem. From a
computational complexity point of view, this means that in the worst case
the: computer time will grow exponentially with the number of nonlinear
variables. The most general methods for global optimization that are appro-
riate 1o deal with nonconvexities can be divided in two classes: determin-
istic and stochastic. Among the former, the most important approaches for
concz  quadratic programming are enumerative techniques, cniting-plane
ethe. ., branch and bound, bilinear programming methods, or different
combinations of these techniques. Computational results on most of these
nethods seein to be limited to cases where the number of nonlinear variables
s less than 20. The few implementable approaches are for functions of a
pecial structure such as quadratic or separable concave, and employ branch
nd bound techniques in conjunction with underestimating linear (or piece-
ise lincar) problems (Falk and Soland 1969). The algorithm described here
$ more appropriate to solve concave quadratic minimization of large sys-
ems, solving reliability assessment problems very efficiently. It treats the
inear variables in a different manner than those appearing linearly and pro-
ides narrow bounds for the objective function values.

ethods for Large-Scale Concave Quadratic Programming
The motivation for considering this type of problem is similar to that for
roblems zero-one integer linear programming. Large-scale zero-one mixed
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inleger programming can be solved in @ reasonable time (Marsten 1987),
provided that most of the variables are continuous. The computational method
~ presented by Rosen (1983) for finding the global minimum of a quadratic
coucave function over a polyhedral set takes advantage of the ellipsoid-like
level surfaces of the objective function to find a good initial vertex and to
climinate a rectangular domain (enclosed in a level surface) from further
consideration. The basic step is to determine initially a rectangular domain
that contains the projection of the domain on the space of the nonlinear
variables. This can be done by a multiple-cost-row LP with n objective func-
tions. Then, a linear underestimating function is computed and a linear
underestimating problem is solved to give lower and upper bounds for the
global optimum. This solution also gives a bound on the relative error in
the function value of this incumbent verlex. If the incumbent is not a sat-
~isfactory approximation to the global optimum, a guaranteed e-approximate
olution is obtained by solving a single zero-one mixed integer programming
problem. This integer problem is formulated by a piecewise linear under-
estimation of the separable problem.

Reduction to Separable Form

This transformation is required only if the random variables are statisti-
cally dependent; Eq. 21 is already in the separable form if the nonlinear
variables are uncorrelated. For simplicity of notation, the concave quadratic
program can be written in the following form:

1
min Y{z,¥) = 3 20z over @ = [{z.Y)iAz+ Ay =b, 2= 0,y=0....... 23

with Q = a positive definite symmetric matrix; and A; and A, having m
rows. z and y arc p and m VECtors corresponding to the random variables
and rotations of the critical sections, respectively. To carry out the reduction
to separable form, it is necessary to compute the real eigenvalues Ay, Nas
..., A, of Q and the corresponding eigenvectors uy, Mz, .- - ;. Then Q =

UDU', where U = [i, ..., ), D = diaglhy, ... A.]. The multiple-cost-
row linear program must be solved first
max u'z; subjectto (z,¥) € (L, F=1, 2y v Hiaisns cain ot s n e (24)

Denote by B, the corresponding optimal values. The concave quadratic pro-
eramming can be formulated as a separate program in terms of the new
variables x;

) 1
min &lx) = Zimpu — E RGEE » v sree o8 HolE 5 w3 e Bie wrain e WER i SO e (25a)
subject to Asgx + Azy = b, 0 =x = B y= 0. (23b)
where A, = AU
Linesr Underestimator and Errer Bounds
The smallest rectangular domain R, in the x-space can be constructed using

B;. A lingar function T'(x), which interpolates $(x) al every vertex of R, and
underestimates ¢(x) on R,, 18 given by

1
%) = Ziciw — = NGB and R= (X D=y S Pi=1an)e (26)

The following linear underestimating program, which differs from the mul-
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tiple-cost row only in its objective function, must be solved:
min T(X) over (5, 3) Efl. oo i i e s e 2N
“The solution to this problem will give a vertex v = (X, y) that is a candidate
for the global minimum ¢* of the original problem and
TCX) S 0% S (XD wvve oo i sras e sa e s s e e s (28)
Therefore, the error at (X,y) is given by ¢(x) — ¢*, and this error is bounded
by B
EG) = BX) = TUK) 1 oas e eeeeeeecnoennnseses e g s sa e (29)
If E(x) is sufficiently small, {i(x,y) is an gcceptable approximation to the
global optimum *. Tt is necessary to obtain bounds on E(x) relative to the
range of $(x) over R,. The quantity

T 2 [P PP (30)

is used as a scaling factor to measure E(x) on (.
Assuming, without loss of generality, that

MPIZNPBY B =2, el e e 31)
and defining the ratios
B? 2 =
o= NP5 T S | e R R (32)
A

the lower bound on Ad is given by

1
A(b = 5 ?\jB] 2f=l,n Pl enreioeaennnedssssaarasg sl ansanirayyaan (33)

E(x) attains its maximum at x; = B/2, i =1, ..., 1, 50 that for any x €
R,

1 1
Ex) = ¢(x) - T = 5 Ticin NPy — x)% = '8' NBy Zimra

An a priori bound on the relative error is given by

Y(x,y) — ¥*
Ad
» ewise Linear Approximation and Zero-One Integer Formulation
Using piecewise linear approximation to each function —1/2 Axf, a mixed
integer zero-one LP can be formulated such that the finding of a solution
()_g,z} for which

Ab=e€
can be guaranteed for any specified tolerance e. Each interval (0, ;) is par-
titioned into k; equal subintervals of length h, = Bi/k,, and the new variables
wy; are introduced, such that the variable x; is represented uniquely by wy
X, = h; Ejﬂ;‘ki‘ Wij o vnesa s e s s e e (36)

where the variables w, are restricted to the range (0,1) and the vector
(Wi Wiy -« o2 Wa) is Testricted to have the form (1, .00 Lowy, 0, .., 0).
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“ Assuming, without loss of generality, that
_0<p55p,,_,s....<_p|=]- ..................................... 37
I is the smallest integer chosen such that

1/%

n 1 .

k= [@—s_z—p__p)] where 1=k, =ka= Y R (38)
=10 Pi

By defining
| 1
&, = —Ex,-fh%ax.-(j- W i=1 e j= Lok 09

It Tollows that the linear function
i) = i DWWy ite 2 300 52w v mie s wim e g S B R S e e (40)

.aterpolates —1/2 X.xf at the points x; = jhj = 0,1, ..., k, and since —1/
2 N is concave, it satisfies ['i{x) = —1/2 Aad for x; € (0,8:). That is,
[(x;) is a piecewise linear underestimating function for — 1/2 NeXo
Therefore, if the objective function Y(x,y) is approximated by the piece-
wise linear underestimating function -, . I',(x;), the separable guadratic
concave minimization can be approximated by the following zero-one mixed
integer problem in the continuous variables wy and the binary variables z;:

P B (i B LMW = 2 50575 55 2200 ou e simn e sy B3¢ W nie e w e s v (41a)
subjeet to 2o, ha Zm g Wiy T AnF aa e e e s (418
Qe g = 1, 0 2 00 a i s wmn s e we s e R e e S0 e s e (41c)
Wiy =2y = Wl 7z E{0.1h TS DRI S S e R (41d)

where @, is the ith column of A;.

Parallel Branch and Bound Algorithm

An algorithm for concave quadratic minimization that is designed to be
ellicient for problems with many design variables and that can take full ad-
vantage of parallel processing was recently presented (Phillips and Rosen
1988). It considers linear underestimating functions and upper and lower
vounds on the global minimum in the way described herein. Branch and
bound techniques are then applied to reduce the feasible region under con-
sideration and decrease the difference between the upper and lower bounds.
The average computational performance for problems with 25 nonlinear and
400 linear variables and a maximum rror bound of € = 0.001 vsing 2 four-
processor Cray2 was 15 sec. Resulrs for problems with as many as 50 non-
lincar and 400 linear variables showed that an approximate solution with a
mimimum of computation but with a relatively large bound (€ = 0.1) can be
obtained in a computational time that depends linearly on the number of
nonlinear variables.

ENUMERATION OF OTHER STOGHASTICALLY ImPORTANT MECHANISMS

An appraisal of the current procedures for generating the stochastically
most representative failure modes indicates that they are variously dependent
on simnulation, trial and error, perturbation, human judgment, complex heu-
ristic strategies, or approximations, cither for choosing the appropriate start-
ing points or for continuing the method at different stages. Some of the
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methods generate the modes in random order, and thus many of the impor-
tant modes may be missed without one’s ever knowing about them. The
techniques described herein to find the stochastically most representative
‘mechanism, either by mixed integer linear programming or by the parallel
processing algorithm, are associated with branch and bound strategies that
reduce the feasible region to decrease the difference between upper and lower
bounds. Both methods can be employed to enumerate other stochastically
important modes by assigning the incumbent solition at a desired level of
significance, larger than the global solution, Since the domain is partitioned
with respect to the nonlinear variables only (random loads and resisting mo-
ments), it is possible that within the same range of bounds other mechanisms
exist (and are not identified). Moreover, mechanisms with plastic hinges at
different locations but associated with the same values of the random vari-
ables might be overlooked. For this reason, after finding the stochastically
linant mode over each of the subregions, one of the two procedures de-
scnbed next must be employed to enumerate the remaining mechanisms.

Branch and Bound Tree

Once some of the critical sections participating in the most representative
mechanisms over each subregion detected earlier are ruled out of the basis,
other modes can be identified by a branch and bound-based strategy. A strong
branching rule is employed: the number of nodes created at each stage from
an intermediate nede is equal to the number of critical sections participating
in the mechanism associated with the intermediate node. The result obtained
at any node is a lower bound on those obtained by branching from it, and
if the reliability index associated with that node is larger that a prespecified
value, or unfeasible, then the leaf of the combinatorial tree can be termi-
nated. Since a large number of problems created by branching at interme-
diate nodes have no feasible solution or large lower bound, the procedure
is reasonably efficient.

Vertex Enumeration and Ranking

Murty's method (Murty 1969) can be used for ordering the extreme points
of a linear domain, If is based on a theorem that states that if x', ..., x" are
r best points, x™ will be an adjacent point of one of the first extreme points.
The new point is distinct from the first r and maximizes the objective func-
tion, giving 1/B* among all the remaining extreme points. All the adjacent
e*==me points are found from the canonical tableau corresponding to the
. ir domain Ax = b by bringing one by one all the nonbasic variables—
only those that correspond to rotations in the critical sections and that do
not participate in the mechanism-—into the basis. Denoting the entries in
any canonical tableau by the usual simplex notation g, b; in which € is the
column index for any nonbasic column, define

b, .
Ay =min— ¥, €such thata, >0, A= 4o, ifa, =040, € ....... (42)
G
Variables corresponding to index / yielding the minimum value of W, in-
dicate the basic variable that will leave the basis when the variable corre-
sponding to € enters the basis. For each € with finite A,, an adjacent point
of x is given by
XD = [ o XY o oo e s Pk 5 (43)

whose basis vector is found from



H, = b — @b R T (44)

where s denotes a basis. At least one of the xt will always be zero. The
procedure is repeated until we find either a prespecified number of extreme
points or obtain all the extreme points in the ranked sequence whose objec-
tive value gives a reliability index that is less than a given value of Bra.
On the basis of plastic limit analysis, failure modes were generated by Mur-
ty’s method (Nafday et al. 1987), although they ended up with a much larger
aumber of degenerate mechanisms caused by the larger number of state vari-
ables that correspond to the nodal description. The smaller number of vari-
sbles used in the mesh description reduces the likelihood of such solutions.
Moreaver, since this procedure is carricd out over the subintervals, the num-
ber of adjacent feasible vertices is not very large.

LMERICAL ExampLE

This example cansists of an unsymmetrical two-story two-bay frame tep-
l'CSCl‘lth in F!g 5. (xllaxii)= (Mij})' (MktNk)i (MhNn‘)r (Mm'Nm)i (Mn:Nn)
are independent random variables. The loads are also independent random
vuriables, except py, s, = 1.0 (Table 1). For the single stress resultant (bend-
ing moment) predominant action, the mathematical programming problem

H
z
v TaEm
3
2 13
W —
1 19
Zoem
14 16 18
i
i [} | L ke
T T ¥ F
Im Im im Im

FIG. 5. Two-Bay Two-Story Frame

TABLE 1. Two-Bay Two-Story Example Data

Cosfficient Coefficient
Variabie Mean of variation of correlation

(1) 2) (3) (4)
(M .N) = 14, 15.16,17,18,19) 95 kN-m 0.15 1.0
(M Nk = 1,2,9,10) 95 kN'm Q.15 1.0
M NO( = 6,7,8) 204 kN m 0.15 1.0
M N = 11,12, 13) 122 kN-m 0.5 1.0
(M, N = 3,4.5) 163 kN-m 0.13 1.0
vy 169 kN .15 —
Vs 89 kN 0.25 —_
Vy 116 kN 0.25 —
H| 62 kN 0.25 —
Hy 31 kN 0.25 —_—
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TABLE 2. Stochastically Most Important Mechanisms without Stress Rasultant
Interaction

_ Critical sactions particlpating Raltability Coliapse
= in machanfism Index § load (PLA)
B (1) 2} (3)

14, 15, 18,17, 18. 19 1.966 1702
4,7, 8,910, 14, 16, 17, 18, 19 1,994 1.324
2.4, 10 2.0%4 1.625
11,32, 1% 2.058 1.678
4,78, 10,12, 14, 16, 18, 19 2.060 1.308
L, 7.8, 14, 16, 17, 18, 19 2.090 1,404
6. 7.8 2.144 1.609
45, 7.8.9, 14,16, 17, 18, 19 2.200 1.348
3,4, 10 2.215 1727
2,4, 5 2.215 1727

tha, needs to be solved has nine nonlinear (random) and 19 linear (critical
section rotations) variables. Since the lower bounds on the random variables
is zero, il is necessary to compute narrow upper bounds. This is done by
solving nine muliiple-cost-row linear programs (Eq. 24). Many of the most
important mechanisms will be available in this stage. Each interval of vari-
ation is then divided into equal subintervals computed according to Eq. 38
for € = 0.01. The zero-one mixed LP (Eq. 41) is then solved by an appro-
priate code. The stochastically most relevant mechanisms are listed in Ta-
ble 2.

When the interaction between bending moment and axial force is consid-
ered, to reduce the size of the problem it is assumed that ali members are
in compression when the mechanisms are activated. A suitable approxima-
tion is obtained by four hyperplanes at each of the 19 critical sections, mak-
ing 76 hyperplanes in all. This formulation leads to an increase in the num-
ber of linear variables: 76 strain-resultant rates. The linearized interaction
diagram is represented in Fig. 6. The same type of interaction diagram ap-
plies to all the eritical sections.

The yield conditions become

NiX = X
that is
) !t‘k)l--
o ——=
249
L
s
=650
L]
240
HH assan

~Q 8441

FIG. 6. Linearized Interaction Dlagram for 15 x 6 x 35 I (381 X 152.4 x 15.89
kg) UB Section
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TABLE 3. Stochastically Most Important Mecharnisms with Stress Resultant In-
teraction

- Crltical sections paricipating Rellabllity Collapse
- n mechanism index B lead (PLA)
(1) (2) 3
12, 14, 15, 18, 17, 18,19 1435 1,399
14, 15, 16, 17, 18, 19 1.340 1437
4.7, 8.9, 10, 14, 16,17, 18 19 1550 1.243
1, 7. 8,9, 10, 14, 18, 17, 18, 19 1,640 1.355
1,5, 7.8, 9,14, 16,17, 18, 19 1.6 1.296
1, 7.8, 10, 12, 14, 16,17, 18,19 1 708 1.298
1, 5. 7. B 12, 1A, 16, 17, 18,19 1913 1.299
4,5,7.8,9, 14,18, 17, 18, 19 1.781 1.286
1,2, 7, 8. 11, 14,16, 17, 18,19 1.788 1322
4.7, 8, 9. 10, 12, 14, 16,19 1,792 1.264
1 i
0.9988 —0.0481 Xix
0.9862 —0.1655| |Xi| _ | Xox @s)
_0.9862 —0.1655 Xig = & Ga s sienmene P PEPC e e R Sl 5 D
—0,9988 —0.0481 i

If the interaction of bending and axial forces is according to the yield dia-
gram shown in Fig. 6, the stochastically most important modes become as
shown in Table 3.

This type of stress resultant interaction leads to mechanisms with a larger
number of plastic hinges activated. The increase in strength due to a larger
number of plastic hinges is opposed by the reduction of strength due to the
interaction of bending and compressive forces resulting in lower (higher)
reliability indices (probabilities of failure). The probability of failure of the
frame with and without stress resultant interaction given by Comell’s lower
and upper bound (CLB, CUB), Ditlevsen’s lower and upper bound (DLB,
DUB), and Vanmarcke’s upper bound (VUB) is represented in Fig. 7. The
number of mechanisms considered in the cases without bending moment and
with stress resultant interaction was 26 and 34, respectively. With the ex-
ception of Ditlevsen’s lower bound, the probabilities of failure are increased
by more than 80% when the stress resultant interaction is considered, The

. \2-’| ] —I

(R
a8
0.6
LB B wilkis=rmieraction
" * singloe-r
= *
a2
? .

R T

o5 Dls  pUs  vim CUE

FIG. 7. Probabifities of Failure of Example Frame
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“rate of increase of the frame’s probabilities of failure considering the lin-

carized yield criterion of Fig. 7, with respect to the case where bending
moment is the predominant action, gets smaller when the coefficients of
variation of the plastic capacities and loading grow. The rate of increase
becames smaller with increasing correlation of the random variables.

RELIABILITY-BAsSED DESIGN

Assumptions

Consistent with a first-order second-moment reliability approach, the min-
imum statistical information required for the evaluation of the optimum so-
lution is: (1) The mean values of the loads that make up the vector g, the
coefficients of vartation of the loads that make up the vector £,, and the
coefficients of correlation between pairs of loads that form a square sym-
metrical correlation matrix denoted Cy; and (2) the coefficients of variation
¢ e plastic capacities, which make up the vector £, and the coefficients
ou correlation between pairs of plastic capacities, which form a square symi-
metrical matrix denoted Cy.

Proportionality of Plastic Capacities
At any particular critical section, the allowable values of the interacting
stress resultants are specified by an interaction diagram. As in Fig. 3, the
curved yield surfaces can be approximated by suitable hyperplanes with out-
ward unit normal vectors n}. Now, synthesis is concerned with making com-
parisons between all members of a class of admissible designs. Clearly, the
most general class must allow the full plastic capacities of all stress resultants
at each eritical section to be varied independently. Naturally, the normal
vector m, will consequently be altered in such a class of admissible varia-
tions, and since n; then depends on the unknown plastic capacities, the prob-
lem increases its nonlinearity. However, suppose the class of admissible de-
signs is restricted by the condition that all the fully plastic capacities at any
particular section may only be varied in a preselected and fixed ratio to each
other. In other words, at each critical section there is only a single parameter
to be varied, and since for framed structures at least one of the interacting
stiess resultants will be a bending moment, its plastic capacity is conve-
niently chosen as the single design parameter at each critical section. The
other plastic capacities are then written in terms of these design parameters,
The imposition of proportionality of plastic capacities then produces the ¢f-
I~ * shown in Fig. 8.
<l the possible yield surfaces from which that for the optimal design will

i i
x! L
T
I/___l—__\
’/ ”-‘— h—.-\
P ,/—"l"\\ oS
,r e N ‘1\}
1 W A
L CS A
SO N LT L
.
LT N
‘\\-—__’f

FIG. B. Effect of Proportionality Condition on Interaction Diagram
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be chosen bound geometrically similar convex polytopes in the stress re-
sultant space of the ith critical section. From this follows the most important
result: the unit normal nf to the kth face of one of these polytopes is constant
for all admissible variations of the single design parameter associated with
the ith critical section. For the design of steelwork of commercially available
rolled sections, this proportionality condition is realistic (Smith 1974).

Formulation

The process of selection of the optimum solution is highly complex, in-
volving both gualitative and quantitative factors that must be considered si-
inultaneously. There are diverging opinions on many basic issues from the
very definition of reliability-based optimization, including the definition of
the objective function and the constraints to its application in structural de-
sign practice. The reliability-based optimization problem generally adopted
in the design process consists of member size selection for given detailing
arrangements and specified probabilities of failure against collapse and un-
serviceability. Assuming the plastic capacities are proportional to the volume
of material required, this problem can be stated as follows:

I V) = g oo e . e S 5 (46a)
SUDJECt t0 Py = PHX) S Prag v vnwvvnonrsn e s sinsn srnan se e 0 (46h)
By = PiK) 2 Pigtos s sairare o wwn vt viaws v samnis 13 558 53 942 50 0w e o (46¢)

where € = the vector of member lengths. The objective function is a linear
function of the mean values of plastic capacitites, but the reliability con-
straints are nonlinear. An alternative approach minimizes the probability of
collapse or unserviceability for a fixed volume of material. They are alter-
native formulations that give Pareto solutions to the general multi-objective
reliability-based optimization.

Keliability against Unserviceablity

Assuming that the vector X, represents the elastic envelape stress resultant
coefficients obtained by the deterministic analysis and that X is the roean
plastic capacities, the probability of unserviceability of individual sections
is given by

R I P B A 47)
For completely correlated plastic capacities, the probability of failure is

P = K g Plg o« ve vee e mien e s e s e s e (48a)
und for uncorrelated plastic capacities

B, = i8Ry i (g PU) o o wmion 38 558 18 wwis i o s v e 4 05 E (48b)

where u, represents the number of critica) sections corresponding to all con-
sidered loading schemes. Serviceability constraints obtained from Eqgs. 48a—
b are nonlinear and pose a mild convex behavior.

Reliability againsi Collapse

By fixing the design variables, the reliability assessment problem (Eq. 21)
gives the activation parameters 8, and displacement rates D4 associated with
the stochastically most important mechanism and other relevant modes. Clearly,
the reliability analysis for another set of design variables (but the same mech-
anism) would give proportional activation parameters and displacement rates.
For a prespecified reliability index B and n mechanisms, single-mode prob-
ability constraints will be satisfied if
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ll-'xa** = ll-;_,a*g = ﬁﬂ Vﬂia;;Cxﬂ'xﬂ* - ﬁ;dcl,ubﬁ* ................. (49)

where k = 1, ..., n. It can be shown that these constraints are convex with
. Iespect to the design variables. Under mild requirements, the multimode
constraints can be assumed to be convex.

Selution Method
The solution method is divided in the following two alternating subpro-
cedures,

1. An optimization procedure for the nionconvex inner problem (Eq. 21) (re-
lizbility assessment), that finds the stochastically most important mechanism and
enumerates other relevant collapse modes for a given value of the design vari-
ables (plastic capacities). An algorithm to solve the concave quadratic minimi-
zation, such as the zero-one mixed LP described here, must be used.

2. An optimization of the convex outer problem (Eqgs. 46a—c) (optimal de-
sign), that is the vector of average plastic capacities giving a least-volume so-
lution satisfying failure, serviceability, and technological requirernents. Any con-
vex programming technique can be employed (Vanderplaats 1984).

The procedure is repeated until the vector of design variables converges.

This form of reliability-based optimization is similar to the parametric op-
timization problem treated by Lee and Kwak (1987—1988) for elastic trusses,
but it was assumed in their work that the solution of each inner problem is
unique. This is not true for structures with plastic behavior, because each
collapse mechanism is a local solutiton of the inner problem.

NUMERICAL EXAMPLE

It is intended to find the minimum volume of the rigid portal frame with
fixed geometry represented in Fig. 9 that satisfies given reliability require-
ments. Five design variables corresponding to average bending moments of
resistance of the columns and beams are considered. The mean values of the
loads and the coefficients of variation of loads and plastic capacities are read
as input data

i = 169 kN; L = 0135,y = 89 kN; £, = 0.25; gy = 116 kN;
Qs = 0.25; = 62 kNi 4y = 0.25; g = 31 EN; ), = 0.25;

'I=ﬂx.;,=ﬁx3=nx4=ﬂx,=0.15‘..1 ............................. (50)
v,
3 4 5
H 5
2 d5 10
y ¥ 36m
dd 1 CI‘1 3
118 7l a 9/ 1 12 13
H
1 15 d 17 . 19
2 3 36m
dq dl 4
16 i
iz e K
1 . i " A
¥ T > F
3Im Im Im Im

FIG. 9. Frame Example
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TABLE 4. Probabilities of Failure of Deterministic Optimum Design

Type of pretiabllity: measure Prebabilities of failure
hh] 2)
- CLB I.16E-3
cys 29 B2
DLB 1.51E3
DUB 2.08E-3
VUB 1.54E-3

TABLE 5. Probabiiities of Fallure of Reliabllity-Based Optimum Design

Type of probability measure Propabilities of failure
1) {2)
CLB 6.6E-6
cCuB 6.2E-5
DLE 27E-5
(516):] 4.0E-5
vuB 4,0E-5

The lincarized yield diagram of Fig. 6 for which the plastic capacities may
vary proportionally is adopted whenever stress resultant irteraction is as-
sumed. For normally distributed load and plastic capacities, the following
two types of correlation among the design variables are considered. Case
I—perfect correlation within members and column-column correlation (sta-
tistically independent random loads, except the horizontal loads, which are
perfectly corrclated). Case Il—perfect correlation among all plastic moments
(statistically independent random loads, except the horizontal loads, which
are perfectly correlated).

1t wilt be illustrated next that the sizing given by deterministic plastic limit
synthesis can be very inadequate when, for a fixed volume of material, the
structural reliability is the major concern. By taking as average plastic ca-
pacities the design variables given by the plastic limit synthesis LP (with
sivess resultant interaction) multiplied by 2.5, the probabilities of failure given
by Ditlevsen’s lower and upper bounds (DLB, DUB), Vanmarcke’s upper
bound (VUB), and Cornell's upper bound (CUB) shown in Table 4 are ob-
tained for case L. For the same material consumption, the reliability-based
design leads to the solutions in Table 3. Therefore, the probability of failure
against collapse can be reduced from 50 to 150 times just by redistributing
the plastic capacities beiween the structural members according to the prob-
ability-based design.

The present investigation illustrates the influence of the statistical param-
eters of the random variables describing loads and strengths on the proba-
bilities associated with collapse derived from the proposed reliability-based
design solutions. Figs. 10--13 illustrate the results of the example frame with
stress resultant interaction (sri) or without bending moment (bm) stress-re-
sultant interaction. Figs. 10—11 are drawn for case 1 and show that the vol-
ume of material needed to satisfy the reliability requirements with increasing
values of P, is larger when the only stress resultant is the bending moment.
This is caused by the larger number of plastic hinges required to form mech-
anisms when the bending moments interact with axial forces.

Fig. 12 shows the influence of the coefficient of variation of the plastic
capacities on the probabilities associated with collapse evaluated according
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FiG. 13. Effect of Variation of Correlation on Optimum Solution

to Comnell’s lower bound for case I, The influence of £}y is more significant
with increasing values of P;. For a given probability of failure and small
coefficients of variation of the strengths, more material is required with in-
teracting stress resultants than that needed when the predominant action is
bending. When €2y increases, the graph indicates that the rate of increase
in V is larger when the axial forces are not considered.

Fig. 13 enables the study of the sensitivity of V for various sets of spec-
ified probabilities of failure (obtained by Cornell’s Jower bound) and dif-
ferent types of correlation among the plastic capacities (cases I and 1I). In-
creasing the correlation among the critical sections makes the minimum volume
of material required more sensitive o the effect of axial forces, so an as-
sumption of independent beam-column capacities is on the unconservative
side.

CONCLUSIONS

An upper bound theorem formulation of a discretized structure with in-
teracting stress resultants is derived, enabling the reliability assessment by
concave quadratic minimization within first-order second-moment reliability
theory. Two algorithmic procedures to solve this nonconvex program are
presented. The first employs a standard code for zero-one mixed linear pro-
gramming. An alternative approach that uses parallel processing can be rec-
ommended if the software is developed for parallel processing computers,
or transputers. The proposed technique illustrates that the stochastically dom-
inant modes differ and the resulting probabilities of failure may change con-
siderably, whenever the interaction of bending and axial forces is considered
instead of a predominant bending action. The use of probabilistic concepts
in structural design need not be restricted because of the ideal design prob-
lem’s complexity. The solution method for the optimum design of portal
frames with interacting stress resultants consists of two alterniating subpro-
cedures: (1) An optimization of the concave quadratic minimization giving
the reliability indices of the stochastically most important modes: and (2) an
optimization of the convex outer problem that includes the cost function.
The present investigation has also discussed the influence of design param-
sters on the minimization of the total expected volume of material for a
specified lailure probability. The writer believes that an approximate design
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method based on probability safety concepts may be closer to reality than
design methods based on deterministic safety concepts.
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ArpenDix Hl. NoTATION
The following symbols are used in this paper:
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M, N;
nj

P(Fy)

Pex - P
P(Xn )X,']a p(LiwLm)

b

Gy, Ty

ﬂxa‘Q‘L

It

It

Il

element of the static matrix B giving the stress re-
sultants at section i caused by the unit indeterminate
force p;;

element of the static matrix B, giving the stress re-
sultants at section i caused by the applied load Lj;
external work, error function;

potential function;

binary incidence matrix obtained by associating either
activation parameters or displacement rates sharing
the same random variable X or L;

applied loading;

vector of member lengths;

bending moment and axial force at section i}
element of the normal matrix N giving the kth nor-
mal to the linearized yield surface at section i;
probability of occurrence of mode Fri

probability of failure against collapse;

probability of failure against unserviceability;
indeterminate mesh forces;

plastic energy dissipation, eigenvectors;

strain resultant increments;

mechanism activation parameters;

real variable in zero-one mixed LP form;

stress resultants in critical section i

distance from the origin to the yield hyperplane k;
vector of the random plastic capacities and applied
loads, respectively;

vectors of reduced normal variables corresponding
to X and L., respectively;

zero-one variable in zero-one mixed LP form;
reliability index, upper bound on random variable;
linear underestimating function;

displacement rates;

vector of the sums of the displacement rates & as-
sociated with the same random variable Ly

plastic rotation at critical section i

vector of the sums of the activation paramiciers dx
sssociated with the same random variable X;
parameter, eigenvalues;

vector of the mean values of X and L, respectively;
coefficients of the correlation matrices Cy and C;.
respectively;

yield function; concave quadratic function In sep-
arable form;

vector of the standard deviations of X and L, re-
spectively;

concave quadratic function;

linear domain of the concave quadratic minimiza-
tion; and

coefficient of variation of the random vanables X
and L, respectively.
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