¢ STOCHASTICALLY DOMINANT MODES OF FRAMES
‘ J BY MATHEMATICAL PROGRAMMING

By Luis Migue! da Cruz Simoes'

ABSTHACT: Most important in caloulating the failure probability of struciural sys-
temns is the search for the stochastically most relevant failure mechanism of ductile
structural systems—particularly framed structures. For this reason an automatic
méthod for finding all modes can be employed, but for very large systems these
procedures ay become intractable. Mesh and nodal methods for frames are for-
mulated with particular attention to simple data preparation, The generalized mesh
description leads to the simpler and more efficient formulation of the mechanism
compatibility equations. Two nénconvex problems, one with bilinear constraints
and the other with & fractional objective function, have been derived. The latter
formulation ean be solved quite effectively when cast in the form of the maximiza-

= tion of a guadratic convex function over @ linear domain. This is foilowed by
mathematical programming techniques that are more appropriate for nonconvex
optimization problems. The paper concludes with a discussion of ‘the methodolo-
gies for finding other important modes.

INTRODUCTION

Assessment of the reliability of a structure has to take into account that,
during its design life, the structure is generally subjected to a number of
varying loads and their combinations and that its resistance may deteriorate
with time. In this context, there arises the problem of evaluating the con-
ditional failure probability of the structural system given a certain load event.
Variation of the parameters of the probability distributions, the respective
types of distributions, and the correlation among the variables involved have
a significant effect on the results. Most important in calculating the failure
probability of structural systems—as the number of failure modes for Jarger
systems is extraordinarily high—-is the search for the stochastically most
relevant failure mechanism. Three basic procedures have been popular for
generating failure modes: exhaustive enumeration, repeated structural anal-
ysis, and optimization. The dominant modes are easily selected if the failure
sivbabilities of all possible modes of ductile structural systems—in partic-
ular, framed structures, which are of primary interest for engineering ap-
plication—can be evaluated. The modes of a small system can be found by

imple investigation, but this may be very tedious, or even impossible, for
arge systems. For this reason an automatic method to find all modes can
be employed, but for very large systems these procedures may become in-
tractable. Ditlevsen and Bjerager (1984) have identified modes from the con-
sideration of lower-bound reliability analysis. Except for special cases, the
programniing problem becomes nonlinear in the coefficients of the linear
combinations. Ang and Ma (1982) developed a method for finding the sto-
chasticatly relevant mode directly by solving a nonlinear optimization prob-
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itm. The optimization procedure is performed to find the minimal safety
index P that can be interpreted as the shortest distance from the limit state
function. The constraints are formulated in terms of positive external work
4fid kinematic admissibility. Because of computational difficulties due mainly
to the nonconvexity of the problem, the method is limited to small systems
and is solved by a trial-and-error search procedure. Nafday et al, (1987)
identified this problem as NP-hard and proposed a method based on vertex
enumeration and ranking of a plastic limit analysis problem. However, since
an approach based on such algorithms has a tendency to grow exponentially
with the number of vertices, it does not appear very practical for large struc-
tures. Simulation together with a sensitivity analysis procedure for plastic
limit analysis has been proposed by Rashedi and Moses (1983). The nodal
description, extensively used in the literature (Watwood 1979), is much less
efficient than its mesh counterpart, formulated here with particular attention
t e simple preparation of data. This is followed by mathematical pro-
gramming strategies that are more appropriate for the bilinearly constrained
optimization problem, consisting of finding the stochastically most relevant
failure mechanism. This problem is also identified as a fractional program.
The latter formulation can be solved quite effectively when cast in the form
of the maximization of a quadratic convex function over a linear domain.
Some examples show the relative efficiency of the various algorithmic pro-
cedures. The paper concludes with a discussion of the methodologies for
finding other important modes and presents examplés using one of these
techniques.

MesH anD NopaL DESCRIPTIONS

Noda} Description of Kinematics

The nodal description for the present case may be considered to have its
origins in the concept of mechanisms: The elementary mechanisms for rect-
angular frames are the collection of all the beam, sway, and joint mecha-
nisms. They are associated with parameters that play the role of nodal dis-
placements, q. Any set of compatible deformation rates, 6 can be written
in the following form:

“ere C = a ¢ by bomatrix; g, b= ¢ —a,a = the number of critical
«__ons, the number of independent mechanisms in the basis, and the static
indeterminacy number, respectively. The displacement rates u can be ex-
pressed in terms of the nodal displacements g

T N S U b 2)

The nodal displacements, which are independent kinematic variables, can be
scaled by the following normalization condition:

Coll = Luncivo vais oe s ey me dis e S e B T (3)

where the matrix C, is reduced to the vector-column ¢,

Mesh Description of Statics and Kinematics _
A frame can be reduced fo a determinate form in a varicty of ways. The
bending moments at the critical sections can be expressed in termns of the

1041



F 7 J' -
=]

FiG. 1. Two-Story Two Bay Frame

_coordinates of the influence diagrams associated with unit magnitudes of the
sads F'(matrix B,) and the indctermindte forces p (matrix B).

m= (B B}

If a mechanism is created by allowing flexural deformations, the kinematic
relations for the mesh description to ensure compatibility are

The rates of the displacements u, which correspond vectorially to the loads
F. can be cvaluated in terms of the flexural deformation rates:

Since the angular rotation at the critical sections are the independent kine-
matic variables, scaling can be performed through the following normali-
zation condition:

BO =1 = BO" —BO =1 . i (7)

where the elements of b, are linear combinations of the rows of B,.

The familiarity of structural engineers with respect to a determinate basis
with physical rclease systems may be responsible for the limited use that
has been made of mesh procedures in structural applications. With more

omplex frames, the derivation of the basic matrices (B,B,) becomes very

tedious. Therefore, the selection of the most suitable release system becomes
more important and also more difficult. The most convenient basis for the
frame of Fig. 1 is that of the regional meshes (Munro 1965).

If the unit diagrams (b, ba, &;) of Fig. 2 are applied to each of the regional
meshes in turn, the B matrix then takes a particularly simple form. First,
with the critical section numbering in this particular example, the sign con-
vention for bending moments associated with the member orientation are
shown in Fig. 3. The B matrix is then assembled in terms of four submatrices
Bi: Bs, BSnIaﬂd B..

These submatrices are as follows:

0o -1 -l
B.~‘ b me=jo m2 -
o 0 -1
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FIG. 2. Unit Bending-Moment Dlagrams

kol A s1 0 0
B;=1+1 +1/2 0|: B,= 0 0 +1
+1 0 0
and the mesh matrix is:
B 0 O
B, 0 0
8, B, 0
B, 0 0O
B=l0v o B,
0 B, 0
0 B, B,
0 0 B,

The elements of the B matrix are independent of the dimensions of the rect-
angular meshes, provided that the critical sections are maintained in the same
relative positions. The elements of B, can be obtained from any set of bend-
ing moments that are in equilibrium with the unit loads.

Constitutive Relations
The plastification in frames can be considered restricted to prelocated sec-
tions, and the yield criterion imposes bounds to the values of the moments
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FIG. 3. Positive Bending Moment; Member Orlentation



in all critical sections. For cxample, if the negative and positive plastic re-
sisling noments in the critical section { are me and m*", respectively, then

1L el M~ 7T A C RO O (8)

Since the variables © are real and the standard algorithm of mathematical
programming work with nonnegative variables, the rotation in the critical
section |, €, is decomposed in the pair of nonnegative variables O; and
0, .

O, = B = B L i vt i e B ek s e e e e e e s st s e v ()]

Therefore, the section ¢ can be

|, A positive plastic hinge participating in the failure mechanism:

G S0 ©,=0" >0 mEaaE i e s (10)
2. A negative plastic hinge participating in the failure mechanism:

&G >0, ©,=-67<0;, m=—m¥ .. ... e e e e (an
3. An elastic point or a plastic hinge not participating in the mechanism:

OF =0=67: O,=0, ~Bs SASM ooar i ;2% 12)

MATHEMATICAL PROGRAMMING FORMULATIONS

Quadratic Programming Bilinearly Constrained

The simplest problem is concerned with a rectangular plane frame whose
topology and geometry are known a priori, whose members are straight and
prismatic, and whose material propertics contain a terminal phase that is
perfectly plastic. The member sections will be taken as symmetric with re-
spect to the bending axes and will have the same yield stress for both senses.
ft will also be assumed that the loading can be considered a single predom-
inant load state. In the case of structures composed of ductile members, such
as components with elastic perfectly plastic behavior, the structural strength
would be independent of the failure sequences of the component. Hinge mo-
ment capacities and loads are the random variables considered to represent
the uncertainty in the strength of the structure and the loading seting on it
If they are Gaussian, they may be characterized through their means and
standard deviations. The identification of the stochastically most important
mechanism consists of finding the minimum distance B from the origin of
the reduced normal variables m'*, A+ to a point in the failure surface (Shi-
nozuka 1983):

min B = VM9 + (AR o orin i i e (13)

soch that the performance function g(m*, X) is a bilinear equation expressing
the equality between the external and internal work produced by the mech-
anism:

glm#, A} = meO% =~ N =0 ..o e EeEas 3 (14)
Using the mesh description of kinematics, the set of eguations that guar-
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antees mechanism compatibility and the existence of a nontrivial solution,
respectively, are

BO=0 = (B -BY 9 0 (15)
Bi® =1 = (bl - b e S E g 0 % 55 55 50K 55 1B v acen ave srnce (16)
and:
u=1B0=@m -BY e ............... T, (7
+
=[J J] e ............................................. . (18)
O =0, 6720, O¥=0, W0 ... 0 orrr (19)

where J = the incidence matrix that relates the rotations of the critical sec-
tions with the rotations of the members represented by the same random
variabie.

Assuming that the random normal variables are s!aust]cally independent,
the relationship linking the reduced normal variables m'=, A} to the normal
variables m#, A, are

where Wy, o) and py, o = the mean and standard deviation of the random
variable m#* and Ag, respectively. Substituting m#* and X in the limit-state
equation:

(o *)O% — (o A + piO* —prun=0 ..., .o e s (22)

which is a bilinear equation.
If the nodal description of kinematics could be employed

O = 0 = g vttt e e e e e e e e e e (23)
Y san avenn GePen sE Vel 58 PG B Pe% b sieh PR e S (24)
W= 00 v e e 50 0 weswah elRe e Reh 55 PEE DS S L i o5 i pesas Taead oS

replace Eqs. 15-17. As o cannot exceed ¢,, the latter formulation always
bas a larger number of constraints and variables and, since for the same type
of programming problems the computational effort varies with the product
of the number of variables and the cube of the number of constraints, the
use of the mesh description of kinematics is always more effective. Another
important question concems the ease of data preparation. The regional meshes
discussed earlier are the more convenient basis, largely eliminating this prob-
lem.

Finding the stochastically most important mechanism consists of mini-
mizing B subject to Egs. 15-19 and 22. This mathematical programming
problem shares its solutions with the minimization of the quadratic function:
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subject to the same constraints. This is a bilinear programming problem named
problem A.

Solution Algorithm for Bilinearly Constrained Minimization—
Problem A
The existence of multiple solutions in the optimization of problem A caused
by the bilinear constraint Eq. 22, leads to the consideration of solution meth-
ods that overcome this nonconvex behavior. The general nonconvex domain
is transformied in the branch and bound (B & B) strategy into a sequence of
intersecting convex domains by the use of underestimating convex functions.
It is well known that a local solution to a problem possessing a convex
~abjective function and a convex domain is also its global solution. The two
iain ingredients are a combinatorial tree with appropriately defined nodes
and some upper and lower bounds to the final solution associated with each
node of the tree. It is then possible to eliminate a large number of possible
solutions without evaluating them.
Since the convex underestimate of the linear part of Eq. 22 is trivial, the
envelope of the product terms is nceded. Let the function f(x,y) = xy, rep-
resentative of a bilinear term, be defined in the rectangle of bounds:

a=x=Eh e=yEdiciiiai e et e ee e e s i vas (2T

The convex underestimate will be taken as the z-coordinate on the highest
of the two planes:

z{ = €x + ay — ac; zy=de+ by —bd. .o (28)
7= maK (Z),22) S XY S AV i e e s s e e e e (29)

The concave overestimates of product functions are also required and can
be obtained in a similar way. However, the underestimating functions z that
are used to build up the convex envelope of Eq. 22 are not differentiable
everywhere. There are several ways of handling this by altering the problem
in order to create an equivalent QP. The simplest way involves the addition
of some extra linear inequality constraints and variables. Considering the
problem

MNP = XX e e ros se symce o3 WES 5% WO e MRS D (30a)
subject to

P, e » TP e S e T S (305)
1'% + max @x.gl) =h......coooion ws 53 siee s isae 25y marm s mind £ (30c)

where Eq. 30a is equal to Eq. 26, Eq. 30b represents Egs. 15-19, and Eq.
30¢ is the convex underestimate of Eq. 22. This mathematical program is
equivalent to the QP:

nin Bz B o T R (3la)
subject to
=T | LU PP T I (316)
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Therefore, the underestimate of each factorable term requires the addition
of one variable and a pair of constraints. Each node of the tree associated
with the B & B strategy is a quadratic programming problem QP. In the
first iteration P, is a QP constrained by Eqs. 15-29 and the convex under-
estimate of Eq. 22 defined in the range (/,,L,). The solution x, of P, is a
lower bound to the optimum solution. If x, is not a feasible solution of the
original problem, one may restrict the domain of the subproblem P, in order
to make the solution xP feasible. P, is replaced by a set of problems that
bound the original problem inthe sense that there exists one optimal solution
x* for at least one of these problems.

“Tach node of the tree is associated with an incumbent bound ». Any leaf
nwde of the tree whose bound is strictly less than p is active. Otherwise it
is designated as terminated and need not be considered in any further com-
putation. Since the solution of each QP is a lower bound to the optimal
solution required, the domain is subdivided until a partial solution is found
that also satisfies Eq. 22. A partial solution is said to be fathomed if one of
the following situations occurs: (1) The solution does not belong to the do-
main of the original problem; (2) the subproblem has no feasible solution;
or {3) it is not possible to find a solution whose lower bound is less than
the incumbent. If a partial solution is fathomed, then all possible completions
of this partial solution have been implicitly enumerated and therefore need
not be explicitly enumerated. When the last node is fathomed the algorithm
terminates with the optimal solution. Backtracking in the tree is performed
so that no solution is repeated or omitted from consideration,

An alternative branch-and-bound algorithm originally presented by Reeves
(1975) and intended for all-quadratic programming can also be adapted to
programs in which the constraints can be reduced to factorable forms. It
consists of obtaining a local minimum and eliminating a region surrounding
it in which the minimum is global and is called the inside-out approach as
opposed to the outside-in strategy previously described. Computational ex-
perience shows that the latter is more efficient. Full details of these algo-
rithms can be found in Simdes (1987a).

. actional Programming

In limit-state Eq. 22, the plastic defermations of the mechanism are pres-
ent as state variables, Since it is necessary to find the minimum distance
from the origin of the reduced normal variates to the yield surface, the values
of A; and m’* are given for the minimum norm solution of Eq. 22. The
pseudo-inverse (Simdes 1987b) that gives the minimum norm solution of the
undetermined system of equations:

Ax=Db..........coiiiiiiinn V@ ST B ReR N BEE B GO BN e 0 R v (32)
is the product:
By = AARY ™. (i 20 i on wwn o3 i v wiavia s o ok bra s b S B v e (33)

By making x' = [m'# A}], the identification of the stochastically most rel-
evant mechanism consists in finding the minimum of the fractional pro-
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gramining (Schaibel and Ibaraki (1983):

‘i 10% — piu
inp = e TR (34a)
V{0:)" (04 + (o) @y’
for positive (y©* — pfu), subject to the linear constraints:
e+
! o —
(B — B o- P T RS B geY e (34b)
8+
w=BUO = (B) = B o] v .. (346)
e}
O = b 3 s o e o mama ae s o s i e 3
(Jn e (34d)
and sign constraints:
0 20, O =0, O*=0, UWZ0....0iieiiiiiiiimimeneminns (34e)

This mathematical formulation is équivalent to the bilinear programming,
Eq. 13, subject to Egs. 15-19 and 22, consequently sharing its solutions
with Eq. 26, subject to the same constraints. The global minimum of the
fractional programming Eq. 34 gives the plastic deformations for the sto-
chastically most important mechanism.

Solution Algorithm for Fractional Programming
A class of algorithms is based on the following parametric problem as-
sociated with Eq. 34:

max F (¥) = (0,)700% + (00)¥()? = y(ph©r — pp)® oo (35)

subject to Eqs. 16 and 345—¢, where y = a parameter. This parametric con-
vex quadratic maximization is more tractable than Eq. 34 because of iis
simpler structure. Thus solving Eq. 35 subject to Eqs. 16 and 34b—e consists
of finding the root of the quadratic equation F(y) = 0 with one variable .
This procedure, called the Dinkelbach method (Dinkelbach 1984), is essen-
tially similar to the convex quadratic maximization (problem C) described
_Jlater, although it is less efficient because of the larger number of nonlinear
:rms involved.

All-Quadratic Programming—FProblem C

Another way of solving the quadratic fractional programming problem
consists of replacing it by another whose objective function is linear and
nonnegative (problem B):

Min B = W% — PR oL e e e e s (36)

and its domain defined by the linear constraints (Eqs. 34b—¢) and the qua-
dratic equation:
(o YT £ TTPIE S T o wwsss sovnsn oa swm 0w wis st wes mivis 0 B8 37

To solve this nonconvex problem the enumerative technique just described
may be employed. The convex underestimate of Eq. 37 is required. This
equality will be replaced by the pair of inequalities:
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(@704 + (o) WP =1............ . e e s (38a)

- and
@) (0% = (@)@l s =1, e (38b)

A quadratic termn, for example, x*, can be linearized using a first-order Tay-
lor series expansion around & point (), belonging to the domain:

o= =R+ 2 SO TR S4B & e vte e o 4 i 39)

Since the linear constraint derived using this approximation is not binding
at the solution, Eq. 38 need not be considered.

For the concave function ~x* defined in the interval (Egs. 38z and b) the
convex underestimate is

b tabs Six wieiscen ssimieme HeRE (40)

Therefore, the convex underestimate of Eq. 37 is a linear inequality, not
involving the addition of extra variables and constraints, Each node of the
combinatorial tree is now associated with a linear program: The linzar ob-
jective function (Eq. 36) is considered instead of Egs. 31a and 34b—¢ to
define the linear constraints (Eq. 318), and 2 single linear inequality replaces
Eqs. 31c and 4.

Problem B is clearly much more effective than problem A. It has a smaller
number of variables because the reduced normal variables m'#, X} are ex-
pressed in terms of the rotations ©+ and displacements . Moreover, it no
longer requires the factorable functions’ underestimates that are associated
with a large increase in the number of constraints and variables. Unfortu-
nately, it leads to an increase in the number of iterations required to give a
feasible solution because the convex underestimates of the quadratic func-
tions are not very tight.

Convex Quadratic Maximization
An altemative formulation of the minimization of Eq. 34 consists in max-
imizing the quadratic convex function (problem C):

1 2, 2 e 82
max E =) O%) + (@)™ ) o 41)

sw.ject to the linear constraints (Egs. 34b—¢) and
PO — i =1 .. oo e e e (42)

The scaling condition in formulations B and € becomes Egs. 37 and 42,
respectively, and Eq. 16 is no longer required.

Branch-and-Bound Strategy for Solving Quadratic
Convex Maximization

The finding of the global optimum -of mathematical programs with non-
convex objective function and/or constraints is normally considered an NP-
hard problem. One of the few cases for which there are algorithms that work
well is the maximization of a quadratic convex objective function subject to
linear constraints, Since the nonconvexity is restricted to the objective func-
tion, it is possible to solve this problem through a technique that explores
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its special structure: The local solutions of Eg. 41 subject to Egs. 42 and
34b—e are vertices of the domain. This is not valid in the alternative problem
formulations A and B, Since vertex enumeration technigues are expensive,
other methods were considered. The branch-and-bound technique can be em-
ployed to solve this optimization problem in the form proposed by Falk and
Soland (1969). 1t only requires the concave overestimate of the quadratic
terms in the objective function (Eq. 41), since the domain defined by the
expressions Eqs. 34b—e and 42 is now linear.

Cutting Plane Based Method for Solving Quadratic
Convex Maximization

Cutting plane based methods can also find the global solution, In Konno’s

method (1976), it is defined as an associated equivalent program with bilin-

~zar objective function (BLP). The algorithm operates by keeping one set of
ariables fixed and partially duoalizing the BLP using linear duality theory.
A local maximum is computed and a cutting plane generated by exploiting
the symmetric nature of BLP. In the next iteration, this procedure either
generates a point that is strictly better than the last local maximum or gen-
erates & cut that is deeper, until the convergence criteria to an e-solution are
mel.

Tui’s cut (1964), which is devised using local information only, becomes
more shallow as the dimension increases and the results of numerical ex-
periments reported in Zwart (1974} were quite disappeinting. Konno com-
bined the Ritter (1966) and Tui methods, thus producing a much stronger
cut. It is'a common contention that cutting plane based methods do not wotk
well when the number of constraints and variables is very large. Compu-
tational results quoted in the literature seem limited to the case where the
number of nonlinear variables is =25. Nevertheless, the special nature of
this problem, in which the nonlinearities are restricted to the variables as-
sociated with the random variables, means that the possibility of obtaining
very deep cuts and generating suboptimal solutions corresponding to other
dominant modes at a small cost makes this algorithm attractive from a com-
putational point of view.

Fallk’s Linear Max-Min Problem

This nonconvex problem is shown in Falk (1973) to be equivalent to the
maximization of a convex function over a linear domain, and a method of
solution based on the branch and bound philosophy is proposed. The algo-
rithm will implicitly search all possible solutions that are vertices of the
polyhedron and select the best of these as the global solution. The simplex
methed is used to obtain the upper bound required in the branch-and-bound
algorithm and to select candidate solutions. Branching takes place on indi-
vidual variables and is affected by holding variables out of the basis. Al-
though better than explicit vertex enumeration, the procedure is not as ef-
ficient as those described here because it makes no use of the explicit
representation of the objective and constraining functions.

NUMERICAL EXAMPLES

Example 1
For the portal frame represented in Fig. 4, the random variables are the
loads H, V, and the member resistances M,, M,. Assuming they are not
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FIG. 4. One-Story One-Bay Frame—Example 1; Collapse Mechanisms

correlated and Gaussian, it is intended to find the stochastically most relevant
mechanism

v T50KND = 40KN; Oy =0 =030 e (43a)
Bage = 1155 kNmy; Birs = 161.6 kKNm: Qype = Ly =005 ... (435)

Two failure modes of this simple frame are compared. The combined mech-
anism is more relevant from a deterministic point of view because of its
minimum Joad factor A, = 1.74, whereas its probability is p;, =3 x 107
(B = 3.3487). However, stochastically most important is the sway mecha-
nism with pr, = 3 X 107° (B = 2.7014) and a load factor A; = 1.85.

The J matrix is:

Q011100
J j] 1 000 1 I‘ ..................................... (44)
and
0, o
[Gf] =(J D O ¥ i e s e s b s s e (45)
The generalized mesh matrix for this problem is
Bl |-t 0o o 0o 0 +1 o
Bi= 8| =(=1 -1 -4 =172 0 0 0| covivivivi ... (46)
By 0 -1 -1 ) =] 0 +1
and
e+
! — B =M s i siee o ey e weieiens e e B G e R 6T A0 0T TR S 47
(B’ — BY) ’9- 0 @7
The generalized static mesh matrix for the applied load is
=L 00 0o 000 -5 00 0 0 0 0
= : = 4
B“‘ooomooo) 0 002500 0 R4
b,=|-LO0O0L/2000/=|-50025000....cc00vvvve.... (48b)
and
+ +
I::’::l = (B, — B)) g_ (b}, — b) [g_] =1 [Continued]
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FIG. 5. Branch-and-Bound Tree—Example 1

0"'=0, 620, 0,20, 0.20, wy=0, =0 ........... (49)

The number of variables in problem A (nodal) are the 2¢, = 14 plastic ro-
tations ©' and @, b = ¢, — o = 4 independent displacements g, the four
random variables 8, ©., uy, 4y, and cight vanables giving convex under-
estimates of the bilinear terms. The constraints are the ¢, = 7 compatibility
gquations, the scaling condition, four incidence relations corresponding to
the random variables, eight inequalities giving the underestimates, and the
linear inequality that replaces the bilinear equation. The number of variables
in problem C (mesh) are 14 plastic rotations 6" and 6" and the four random
variables ©,, O, 1y, uy. The constraints are the ¢, = 3 compatibility equa-
tions, four incidence relations corresponding to the random variables, and
the linear equality (Eq. 42).

The branch-and-bound outside-in strategy was adopted to solve all these
problems. In problem A (mesh) and problem A (nodal), cach node of the
combinatorial tree was associated with a quadratic program, whereas prob-
lem B and problem C required a linear program routine at each node. Branching
was done by splitting the domain in which the random variables may vary.
The selection of the domain to be split was based on the constraint violation
or objective function difference with respect to the exact value (in the prob-
lem C setup). The collapse mechanism with lower reliability index is ob-
tained, regardless of the formulation employed, and the random variables

TABLE 1. Results of Reliabllity Analysis—Example 1

Number of Number of Iterations CPU time
Problem variables conslraints required (sec)
(1) (2) (3) {4) (5)
A (noddal) 30 21 35 58:4
A (mesh} 26 17 35 29.6
B {mesh) 18 B 90 10.7
C (mesh) 18 8 12 1.7
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FiG. 6. Two-Story Two-Bay Frame—Example 2; Collapse Most Important Mech-
anism

9,, 9., u;, and u, are directly available. The reduced random variables
M;, M., H', and V' will be ‘obtained from

M= 03a0uB% M. = 0O B e e (50a)
H = —oups V= —ounp......... e e e s (508)
The .combinatorial tree corresponding to the problem C (mesh) is represented
m'lf}t%'rgs‘ults of the reliability analysis are summarized in Table 1, Clearly,
problem C is much more efficient with respect to computer effort. In the

TABLE 2, Data for Frame in Fig. 6—Example 2

Coefficient Coefficient of
Variable Mean ‘of variation comelation

(1) (2) 3 4
M (i =1,2,11,12,18,19) 95 kN m 0.15 1.0
M, (j = 3,4,13,14) 95 0.15 1.0
M,k = 5,6,7) 204 0.15 1.0
M, (1 = 8,9,10) 122 0.15 1.0
M, (i = 15,16,17) 163 kN . m 0.15 1.0
Yi 169 kN Q.15 —
Va2 39 0.25 —
v, 116 0.25 —_—
H, 62 0.25 —_—
H, 31 0.25 —
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TABLE 3. Results of Reliability Analysis—Example 2

Number of Number of lierations CPU time
Problem variables constraints required (sec)
(1) (2) (3) (4} (5)
A (nodal) 75 38 52 420.0
C (mesh) 47 19 13 9.8

first place, it leads to smaller problems. This explains why problem B (mesh)

15 more efficient than Problem A (mesh), although it is associated with a

larger number of nodes. The number of nodes to be solved is closely related

to the tighthess of the underestimates. Moreover, the number of iterations

(nodes) is substantially reduced in problem C because the underestimates are
~=lose to the exact value.

Example 2

This example consists of an unsymmetrical two-story two-bay frame shown
i Fig. 6 is analyzed with the data given in Table 2. M, M,, M\, M,, and
M, are independent random variables. The loads are also independent ran-
dom variables, except py,u = 1.0

The same branch-and-bound strategy was employed to solve this problem,
but only two formulations were considered: problem A (nodal) and problem
C (mesh). The same conclusions as in example 1 can be drawn, The number
of underestimating subproblems does not grow exponentially with the num-
ber of independent random variables, thus making this algorithm competi-
tive. The results of the optimization algorithm summarized in Table 3 lead
to the mechanism of Fig. 6 that has a reliability index B = 1.966.

ENUMERATION OF REMAINING STOCHASTICALLY
IMPORTANT MECHANISMS

An appraisal of the current procedures for generating the stochastically
most representative failure modes indicates that they are variously dependent
on simulation, trial-and-error, perturbation, human judgment, complex heu-
ristic strategies, or approximations, either in the choice of appropriate start-
‘ng points or for continuing the method at different stages. Some of the
methods generate the modes in random order, thus many of the important
modes may be missed without ever knowing them. Three alternative pro-
cedures that can be used in a mathematical programming setup to enumerate
the remaining mechanisms are next described. Formulation C (convex max-
imization) was seen to be more efficient in finding the most important mech-
anisrm, and all these procedures are based on it.

Vertex Enumeration and Ranking

Murty’s method (1969) can be uséd for ordering the extreme points of a
lingar domain. It is based on a theorem that states that if x', ... 2" are r best
points, " will be an adjacent point of one of the first extreme points. The
new point is distinct from the first r and maximizes the objective function
giving 1/4° among all the remaining extreme points. All the adjacent ex-
treme points are found from the canonical tableau corresponding to the linear
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FIG. 7. Enumeration of Suboptimal Solutions—Example 1

domain Ax = b, that is, Eqs. 42 and 34b—e, by bringing, one by one, all
the nonbasic variables—only those corresponding to rotations in the critical
sections—into the basis. The procedure is repeated until either a prespecified
number of extreme points is found, or all the extreme points in the ranked
sequence whose objective value gives a reliability index, which is less than
a prespecified value of By, are obtained. This method amounts to an im-
plicit enumeration of the basis corresponding fo different collapse mecha-
nisms and is similar to the strategy used in Falk’s linear max-min problem
for holding variables out of the basis. On the basis of plastic limit analysis,
failure modes are generated in Nafday et al. (1987) by Murty’s method,
although they end up with a much larger number of degencrate mechanisms
caused by the larger number of state variables that correspond to the nodal
description. Moreover, the efficiency of the method decreases as the number
of kinematically admissible mechanisms increases.

Branch-and-Bound Tree

When formulation C is employed, the resulting convex maximization can
be solved efficiently. This leads to the consideration of 2 B & B strategy
that gives the stochastically most relevant mechanism, once some of the
critical sections participating in the mechanism earlier detected are ruled out
of the basis. This strategy is an adaptation of the algorithm for separable
piecewise convex programming problems of Soland (1973), where a strong
branching rule is employed: The number of nodes created at each Stage from
an intermediate nede is equal to the number of critical sections participating
in the mechanism associated with the intermediate node. The result obtained
at any node is a lower bound on those obtained by branching from it, and
if the reliability index associated with that node is larger than a prespecified
value, then the leaf of the combinatorial tree can be terminated. Nothing
prevents the same mode from beiog obtained by branching at different nodes.
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TABLE 4. Stochastically Most Important Fallure Modes—Example 1

Reliability Critical sections participating
Mechanism index @ in mechanism
(1) (2) (3)
1 2.7014 1,3,4,7
4 3.3347 1,3,5 7
5 3.3347 1,3,4,6
6 3.3487 1,2,3,7
7 3.9210 1,2,5.6
8 4.1904 1,2,3,6
2=73 5.6042 2, 4,7

TABLE 5. Stochastically Most Important Fallure Modes—Example 1

Reliability Critical sections participating
Mechanism Index B in mechanism
(1) (2 (3

I 1.97 14, 15, 16, 17. 18, 19
3 1.99 4,7,8,9,10, 11, 14, 16, 17, 18,19
2=4=5=6=17 2.05 2,4, 10
11 2,06 4, 7,8, 10, 12, 14, 16, 18, 19
g§=9=10=12=13 2.06 11, 12, 19
14 =15 2.09 1,7, 8 14, 16, 17, 18, 19
16 2.14 5.7, 8
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TABLE 6. Computational Effort Required to Enumerate Stochastically Most Im-
portant Fallure Modes

Number of Number of different CPU time
Example problems solved mechanisms found (sec)
(1) (2) . {3) 4
1 9 8 22
2 16 7 176

Nevertheless, the data available concerning mechanisms already obtained can
be used to predict the solutions of a large number of nonconvex problems
created by branching at intermediate nodes, which makes the procedure rea-
sonably efficient.

BLP-Based Procedire

Konno’s method for bilinear programming paititions the linear domain into
basic and nonbasic vectors. The selection of the incoming variable into the
basis is based on the information available from the dual linear problem, It
is potentially more efficient than enumerating all possible bases without tak-
ing into account the explicit form of the objective function, which is used
to define the domain of BLP’s dual problem.

NumeRICAL ExamPLES

The branch-and-bound tree is used in this section to find other dominant
modes of examples 1 and 2. Each node of the tree consists of a convex
quadratic maximization (problem C). The initial node corresponds to the
stochastically dominant mode. The branching operation from this node forces
all the critical sections participating in the collapse mechanism out of the
basis, one at a time. Each of the nodes created in this way is associated
with a relevant mechanism obtained by convex quadratic programming. The
branch-and-bound trees giving the stochastically most important modes for
examples 1 and 2 are given in Tables 4 and 5 and drawn in Fig. 7 and 8,
respectively.

In the latter problem some branches are not represented because they lead

already-known solutions and can be pruned. The computational time (Ta-
vse 6} is spent almost entirely solving the nonconvex problems associated
with the nedes of the combinatorial iree.

CONCLUSIONS

Most of the methods used to find system-failure probabilities require the
evaluation of the probabilities of failure associated with the stochastically
most representative mechanisms. This paper has dealt with the application
of various mathematical programming algorithms that can be used for find-
ing stochastically dominant modes of ductile frames. It has started with a
nonlinear model and solved it by algorithms more appropriate for nonconvex
programming. The mesh and nodal descriptions have been briefly summa-
rized and applied to the problem of finding the stochastically most relevant
mechanism of ductile structural frames. Some attention has been given to
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simplifying the data preparation for this mathematical program. Two non-
convex problems, one bilinearly constrained, the other a fractional program,
have been derived. Examples have been given, showing that the latter for-
mulation can be solvad quite effectively when cast in the form of the max-
imization of a quadratic convex function over a linear domain. The results
have shown that the number of iterations required in this method to find the
more important mechanism grows polynomially with the number of random
variables and the problem size, and not exponentially, as expected, in view
of the NP-hard nature of this problem. The CPU time also depends on the
particular choice of nonlinear variables’ range. The methods for large-scale
quadratic concave minimization described in Simdes (1989) are more effi-
cient, because they treat the nonlinear variables in a different manner than
these, appearing linearly, and use a computational procedure for finding non-
linear variables’ narrow bounds. The main advantage of these techniques is
that they ensure that the global solution is obtained (the stochastically most
important mechanism), as opposed to a merely local solution (any kine-
matically admissible mechanism). On the basis of the most efficient for-
mulation, algorithms that enumerate other dominant modes have been de-
scribed and examples of one of these strategies have been solved in order
to illustrate its applicability.
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Appenpix ll. NoTAaTION

The following symbols are used in this paper;

A; = matrix giving pseudo-inverse of matrix A;
B\,B,,B;,B; = submatrices derived from unit diagrams for regional
meshes osed to built up mesh matrix B;
b = number of independent elementary mechanisins;
b; = element of static matrix B giving bending moment at
section [ caused by unit indeterminate force pj;
by = -element of static vector b, giving bending moment at
critical section i caused by sum of applied loads F;
by = element of static matrix B, giving bending moment
at section ¢ caused by applied load F;
¢; = element of nodal kinematic matrix C giving defor-
mation al section { caused by nodal displacement g;
Cyj = element of nodal kinematic matrix C, giving dis-
placement u; caused by g,
¢, = number of critical sections;
F; = applied loading;
2(X) = limit state function;
jy = -element of incidence matrix J that is one if critical
section j has random: plastic moment capacity £ or else,
0;
m#,Ap = vector of random plastic moment capacities and ap-
plied loads, respectively;
m'#, X = vectors of reduced normal variables corresponding to
m# and Ay, respectively;
m*,m#% = positive and negative plastic moments of resistance
at section 7,
m; = bending moment at section i;
PF = probability of failure;
Pi = indeterminate forces, mesh forces;
g = nmnodal displacements;
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displacement corresponding to applied load F
discontinuity at release j of reduced structure;
indeterminacy number;

reliability index;

vector of sums of plastic rotations associated with
random variables m¥,

sum of plastic rotations at critical section of beam
and columns, respectively;

plastic rotation at critical section i

positive and negative plastic rotations at section i;
collapse load parameter;

vector of mean values of mx and Ay, respectively;
mean plastic moment capacity of beam and columns,
respectively;

mean horizontal and vertical applied loads, respec-
tively; _

vector of standard deviations of m#* and \g, respec-
tively; and

coefficient of variation of random variables »1,, .,
F,; and Fy, respectively.
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