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further generalized. Thus, the efficiency of the shape choice can be measured under the
form of generalized cost, while the allowable stress state can be appreciated according to
a procedure similar to that of failure theory, by a function connecting the stress tensor
components.
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3.2 SEARCH FOR ARCH DAMS WITH OPTIMAL SHAPE
L.M.C. Simdes. JLA.M. Lapa & J.H. Negrdo

INTRODUCTION

There is an important class of structural optimization problems in which the shape of the
structure is to be determined. The exterior and interior boundary shapes of the structure
should be controlled in such an optimization algorithm. One of the applications of those
concepts is the design of a doubly curved arch dam.

Since within the design process the shapes vary contimuously, careful consideration
has to be paid to describing the changing boundary shape, in order to maintain an
adequate finite element mesh, enhance the accuracy of the sensitivity analysis, impose
proper constraints and use available optimization methods to solve the shape design
problem.

Arch dams were first given cylindrical shapes.! These were followed by constant angle
shapes where the arches become parabolic or elliptic. The arches were plotted three
centered, showing a decrease of curvature towards the abutments. This type of layout is
based on the discussion of arch load results, especially those of trial load calculations.®3
Early research investigations into the problem of design have dealt mainly with
membrane type solutions.* 5 These methods ignore foundation elasticity and bending
stresses and consider a single loading condition. However, membrane type solutions may
provide useful starting points for more comprehensive studies, providing these include
constraints on geometry such as minimum thicknesses, maximum overhangs, effects of
bending and foundation elasticity.

Some optimization work was carried out by employing membrane shell theory,® but
the results are only meaningful when applied to special dam shapes and boundary
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conditions. Difficulties in eliminating tensile stresses (even under a single loading case)
were also experienced using thin shell theory” to optimize a doubly curved arch dam. One
method of overcoming this difficulty is to create a hinged boundary condition.

In order to obtain accurate double curvature shell finite elements, the usual course is to
base the solution upon a relatively high order plate bending element coupled with a
membrane element of comparable accuracy? e.g. a quartic bending element (doubly
curved thin shell) with a linear strain membrane (membrane element), This element can
readily be applied to arbitrary shell shapes by integrating over the area given by the plane
containing the corner nodes. It uses a facet element transformation 1o map the global
displacement at each node to local values and the quadratic interpolation to define the
surface slope variation through the element.? Although sufficiently accurate, these results
show a slow rate of corvergence, as expected.

In the free form method!? (finite element based), a finite number of points located on
the surface is used to define the structure, and altemative shapes are obtained by simply
adjusting one or more coordinate points. Curve fitting techniques were required to
describe curves passing through the free-form points. As an optimality criterion, it was
found that subsequent shapes. based on the center line of thrust of the previous shape,
converged rapidly to a much improved solution. Parametric studies!! have been con-
ducted using a much simpier formulation, using the radial adjustment method for stress
determination (arch-cantlever).

Resulis from three-dimensional shape optimization of arch dams reported so far, use as
a method of obtaining a solution, a sequential linear programming algorithm associated
with either a 8 node' or a 20 node!® isoparametric element. An gutomatic mesh
generation and refinement has not yet been used and the shape function consists of either
cross-sectional shape control'? or polynomials.!2

It is the purpose of this paper to describe neglected aspects of the design in order to
point out areas where future enhancements should be made.
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MATHEMATICAL PROGRAMMING REPRESENTATION

1 Statement of the problem
The problem is to determine some or all of the following aspects of an arch dam:

(a) the shape and location (within a given area);

(b) the height;

(¢) the construction materials properties {e.g. elastic modulus, concrete strength);
in order to maximize a merit function expressing the cost (volume) and functional
usefulness of the strocture in the terms given, subject to practical constraints on the
behaviour and geometry.

The shape optimization can be stated in the standard form as:

min v(s) (0
stgfs)<0 ; i=1NBC (2)
spss<sy ; k=1.NSV (3)
dr <Xy i nsv by Sd) 3 j=1.NGC (4)

‘where v(s) is the objective function, g, the constraint function describing the i structural
response; s is a vector defining the shape of the structure and sf, s/ are the lower or upper
limits on the shape which may reflect fabrication requirements or analysis limitations.
The shape variable s may also be linked by linear explicit constraints which are
introduced to deal with various geometrical requirements such as boundary slope
continuity. NBC is the number of behavioural constraints, NSV the number of shape
variables and NGC the number of geometrical constraints.

To summarize the design process of the shape optimization of an arch dam, a simple
flow chart is given in Figure 1.

2 Objective function

The overall objective of an arch dam design is to achieve an economic and safe solution.
Itis difficult to quantify many of the factors on which the objective function depends. The
factor which is most readily and conveniently evaluated is the cost (directly associated
with the concrete volume). A cost-benefit analysis for an arch dam would include
consideration of some or all of the following:

(a) The value of the reservoir capacity. This is a function of the irrigation. domestic,
recreational and power generation demands and should also include the value of the dam
as an essential element in flood control. This function can be expressed as a function of
the dam height;

{(b) The cost of the reservoir (excluding the dam structure). This function may also be
formulated in terms of the dam height.

(¢) The cost of the dam structure. This functon includes the construction and material
costs, sometimes not easily defined, although they can be considered proportional to the
volume of concrete. In this study, it 1s not intended to include all the factors affecting the
economics of a design, e.g. construction material, discharge safety equipment (spillways,
outlet works, etc.). The objective in shaping the dam then reduces to the minimization of
the concrete volume. This objective is assumed to lead to the following benefits:
minimization of the concrete material cost, minimization of the excavation cost and
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reduction of the construction period. The volume of the dam 1s thus given by the sum of
the volumes of the finite elements and will be adopted in the sequel.

Alternatively, the stress field can be optimized: maximum compressive stresses in
most of the volume and minimum or nil tensile stresses. For reasons of foundation
security, the maximum overhangs of the dam and the angle of inclination of the arch
thrust could also be minimized. If this is done, care must be taken that the shell design is
nottoo shallow.

3 Constraint functions
Constraint functions must lead to a safe and functional design.
Thickness constraints are imposed in the form,

where pj, p.., and p_,  are the thickness of the dam at any point j, minimal thickness and
maximal thickness, respectively.

In order to limit the maximum overhangs of the dam or to confrol the angle of
inclination of the arch thrust, the following restrictions can be imposed on the design
variables:

ts5,—c=<0 or £5;15-—c<0 (6)
Stress constraints have the form,
0;+0C;, <0 or ¢;,-0,, <0 (7)

The stresses o, in the constraint function may be of any type, i.e. normal and shear stress
in global coordinates, normal and shear stress on a prescribed plane (defined through the
local parametric coordinate system) and principal stress.

Global load and overtuming moment constraints need to be introduced to ensure the
overall stability of the dam.

OPTIMIZATION METHODOLOGY

The convex approximation approach te structural synthesis is now widely employed to
solve optimal sizing problems, that is to find the design variables that minimize the
volume of a structure. When this mathematical programming problem is formulated in
the space of the reciprocals of the design variables, il converges much faster to a solution.
These properties are generally due to the tendency of the behaviour constraints to be
much less nonlinear in the space of the reciprocal variables, while the objective function
is strictly convex.

When dealing with shape optimial design problems, the intuitive choice of reciprocal
variables is no longer valid. There is indeed no reason why the constraints should be more
shallow with respect to the reciprocals of the nodal coordinates. Furthermore, the voiume
of the structure is no longer a linear function of the shape (design) variables. For these
reasons, various approximation schemes have been tested: 1

(a) first order expansion of the objective function and constraint functions, with
respect to the direct variables;
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(b} second order expansion of the objective function and linearization of the constraint
functions, with respect to the direct variables;

(c) second order expansion of the objective function with respect to the direct
variables and linearization of the constraint functions with respect o the reciprocal
variables;

(d) linearization of the objective function with respect to the direct variables and
linearization of the constraint functions with respect to the reciprocal variables.

Because it has been found that no major benefit can be gained from using a second
order expansion of the ohjective function, this paper will only consider the first and last
types of approximation.

1 Sequential linear programming

The sequential linear programming approach!? 13 proceeds by replacing the primary
nonlinear problem with a sequence of linear subproblems. Each problem is generated by
linearizing the objective function y(s) and the nonlinear constraints £, (8) about a design
points®, Using Taylor expansion and neglecting higher order terms,

V(s®+ 1) = p(s®) 4 (s*+ 1D — g7 V(s (8)
gls%+ 1) = gls®) o+ (s + D — sOYT Vg (s®) ©

where Vv(s®) and Vg(s®) denote the gradients of the objective function and constraint
functions with respect to all shape variabies at the design point s®.

Because the resulting explicit problem is a linear programming problem it can be
solved by using the Simplex algorithm. Since the optimal solution point corresponds to
each lincar subproblem necessarily lies at a vertex of the design space, the overall
optimization process may either converge (o a non-optimal solution of the primary
problem or it may oscillate indefinitely between two or more verticles, In order to avoid
this undesirable behaviour, the so-called move-limits strategy's can be implemented. Tt
consists of temporarily adding some artificial side constraints to the linearized problem
s0 that the design point will not move 100 far away from the current linearization point
5%, Ttis, however, very difficult, even for an experienced user, to define adequate rules for
setting the move limits and the way they should be adapted after each iteration.

2 Constraint linearization in the reciprocal space

This approach comsists of keeping the linear approximation of the weight objective
function in terms of the original design variables, while lingarizing the behaviour
constraints with respect to the reciprocals of the design variables:

z=lls; ; j=1,...NSV (10)
The approximate behaviour constraints take the following form:
8z 1) = g(ZW) + (k4 D 0)T V(20 (11)

where 2% denotes the current design point in the space of the reciprocal variables. This
technique generates at each iteration an approximate problem of the form:

min 2, Vs, (12)
52 gil5<g; (13)



104 Arch dam shapes

s5p<s sy (14)

where the g, coefficients represent first derivatives of the constraint functions with
respect to the reciprocal variables (i.e. components of V g(z%))). When restated in terms of
the reciprocal variable_s Z; the problem involves only linear constraints, and therefore can
be solved using a gradient projection algorithm, converging quickly to the solution.

Since the explicit problem is convex and separable, it lends itself to a solution by an
extension of the dual method approach.!® On the basis of the duality theory for convex
programming, the solution of the explicit problem is obtained very quickly by a min-max
two-phase procedure.

3 Global and local optima

The constraint functions form a hypersurface in the NBC design space. Any solution
must lie on the surface and the optimum solution lies at the lowest point on the surface.
However, the surface may consist of several peaks of varying height swrounded by
valleys so that the optimization may fall on a secondary peak. The only solution at present
is to take several starting points and choose the bestresult found.

SHAPE REPRESENTATION

In the geometrical representation of a three-centered arch dam,’ 2 the horizontal coor-
dinates x and y of the upsiream or downstream faces are given by mathematical
expressions in terms of the parameters @, g, b, R and m which are functions of the vertical
coordinate z (Figs 2,3 and 4):

Central arches:

2+y-a)=R? for < ®, (15)
Lateral arches:

(x+bsinB) +(y—g+bcos8)?=R? for®>P, (16)
Radii:

R=R, —a+m (17
Centers position:

a+f(z) ; b=£(2) (18)
Vertical profile:

m=F, 2) (19)

where normally polynomials are used for the functions £, f, and f,.

1t is thus necessary to find the following parameters:

(a) central angle defining the limits to the ceniral zone. This angle has been taken as
equal for all the arches and for the upsiream and downstream surfaces;

(b) four constants in the cubic parabola which defines the variation of a,, = a; with the
height z (the Oth degree term is R );

(c) constant value of b, for all the arches;
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R

(d)y constant C in the expression defining bj in the side zones of the dam
bj=b,—cz

(e) four constants of the third degree equation which defines the variation of the
thickness with the height;

(f) three constants of the third degree equation which defines the variation of the
thickness with the height.

This representation is not easy to implement in the optimization algorithm, since it is
not easy to establish analytical relationships between the parameters, therefore cansing a
numerical instability.

The way to describe the shape of the structure is the key element in the process of
obtaining the optimal shape. If the shape variables are not carefully selected, the
reliability of the results may be seriously affected.
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I 2 Figure 4.

3

Figure 5.
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Three methods for the shape representation are presented in this work:

1. boundary nodes are used for shape representation;

2. the boundary shape is described by piecewise polynomials;

3. the boundary shape is described by spline or spline blending functions.

1 Boundary nodes for shape representation
Use of coordinates for boundary nodes in the FE model as shape variables is the earliest
and simplest method used. This choice of design variables has, however, severe draw-
backs:

(a) The number of design variables becomes very large, which leads to a difficult
optimization problem to solve.

(b) Itis difficult toensure compatibility and slope continuity between boundary nodes,
which generally leads to inconvenient shapes.

(c) The finite element mesh may need to be chan ged during the optimization process in
order to give accurate results,
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2 Polynomial representation
Tn this formulation, a few boundary nodes may be used to control the boundary shape
coordinates or moving directions of the control nodes may be used as design variables.
Shape functions are used to define the shape of the boundary between control nodes.

In the geometrical form represented in Figure 5, polynomial coefficients are used as
shape variables in the system of polar coordinates (7, 6), 1.e.:

HO)=ry@) +2,_, %[ ; 050<8, (20)

Here f are smooth functions satisfying relevant end conditions, 7, is the reference shape
function and x; are the I design variables.
Defining the curves,

T (8) =Cprﬂ(6)+cp):£:1‘,x,. f10) (21)
0<8<8; ; p=1,...P

that together with the former equation, define the position of the nodal points by
intersection with lines of constant 8. The constants C, and ¢, which satisfy the require-
ments,

1<C,<C,<...<C, ; 12¢,2¢,2...2¢ 22)
1Sy P 1=z »

are chosen so that the finite element mesh will not degenerate.

Use of the polynomials with control nodes for shape representation can reduce the total
mount of shape variables, but may result in numerical instability if high order poly-
nomials are used.

3 Spline representation

Spline as a shape representation can climinate the problem created by using high order
polynomials to describe the boundary, because spline functions are composed of low
order polynomial pieces which are combined to maximize smeothness.

A Bezier function is associated with the vertices of a polygon which uniquely define
the curve shape. Only the first and last vertices of the polygon actually lie on the function
curve; however, the other vertices define the derivatives, order and shape of the function
curve. Thus, the curve is defined by an open polygon, as shown in Fig. 6:

PX=%; o, Pl (0 ; 0sx=1 (23)
where,

T 0 =1Z ] ¥(1—x)~f (24)

[Zioy ,]=ni/liln—i1] 25)

nis a degree of the polynomial and P, are the n+ 1 defining polygon vertices.

The Bezier function offers many interesting properties such as variation diminishing,
axes independence and multiple values, which increase the flexibility of the Bezier
function, But it possesses two drawbacks. First, the number of control points fixes the
degree of the polynomial which defines the curve. Second, they do not provide local
conirol: moving any control point will change the shape of every part of the curve.

B-splines share many of the characteristics of the Bezier curves. The main advantages
of the B-splines are their local control behaviour. They also allow the order of the
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resulting curve to be changed without changing the number of detining polygon vertices
(Fig. 7) and multiplicities of control points,

P(x)zzi=ﬂ,nPiNi:k(x) : Osxsxmax (26)
where,
. 1if X <x<N_.
Nl__l(x)= {Oothémﬁse ! @0
(x—X-)N-k_-l(x) (X; “X)N— 1 —l('x)
h,-i (}C)= |l 4 i+vk i+l k (28)
* Xive1—X; Xk X1

F; are the n + 1 defining polygon vertices, k is the order of the B-splines and N, ,(x) is
called the weighting function. X is an additional knot vector which is used for B-spline
curves to account for the inherent added flexibility. A knot vector is simply a series of real
integers X, such that X, € X, , for all X,. They can be used to indicate the range of the
parameter x used to generate a B-spline curve with O<x<x  (x .. =n—k+2). The
order of a curve is reflected in the knot vector.

4 Geometric relationship

A limited number of master nodes (Fig. 8), which control the shape of a subregion or a
design element, are selected. These master nodes may lie on the boundary or within the
design element or on a certain location outside the design element. The coordinates or
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mioving directions of master nodes are the shape variables. The connection of these
master tiodes with spline blending functions (polynomials, straight lines or other kinds of
curves) forms a coarse mesh and a set of design elements. Then each design element is
automatically subdivided into several finite elements. For the facility, two local parame-
tric coordinate systems are defined: one of them corresponds to a design element. another
to afinitc element.

The global coordinates of any point in a design element for the three-dimensional
elastic bodies are defined as:

X Xj
Y =% P END | Y (29)

z Z

where X, ¥ and Z are the global coordinates for any point: €, 1y, { are the local parametric
coordinate system comesponding to the design element; P (E,‘ M, {) are the shape
functions defined by the master nodes (X,, Y, Z) with spline blendmg functions or other
kinds of curved functions. NMN is the number of the master nodes.

The global coordinates for any point in 2 finite element for three-dimensional elastic
bodies are defined as:

X X,
Y | =2 anVirst) | 7, (30)
Z 7

i

where N{r, s, r) are the shape functions defined by the element nodes (X, Y, Z)which are
calculated using the former equation; r, s and ¢ are the local parametric coordmate system
corresponding to a finite clement and NEN is the number of the element nodes.

STRUCTURAL RESPONSE AND SENSITIVITY ANALYSIS

In a finite element displacement approach, the structural analysis consists of solving the
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following equilibrium equations
Ku=X (31)

where K is the structural stiffness matrix, formed by assembling all elements stiffness
matrices K,, u is the unknown nodal displacement matrix, and A the generalized load
vector including self-weight of the structure, hydrostatic pressure or thermal loads. Both
K and A are functions of the shape variables §- The major part of the cost of analysis is in
the solution of Equation 31 and various numerical techniques may be used to obtain the
nodal displacements. Once the nodal displacements are determined, all other structural
responses can be sequentially calculated.
A displacement d can be expressed as a linear combination of u,ie:

d=CTy (32)

where C is a constant matrix for all load cases.
The stress matrix at a certain point belonging to one of the finite elements can also be
written as;

6=C,u, (33)

where C7 is the element stress matrix depending on the element nodal forces and on the
element suffness matrix; u, 1s the element nodal displacements.

By using the isoparametric finite element technique based on Equation 31, the stiffness
matrix K, stress matric C# and nodal force vector A, are readily written. The globat
displacements U, V, W for any point in a three-dimensional finite element are expressed

as:
U U,
V I=Z i) | V,
w W,
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fie.

u=Nu, (34)
The strain in any point is:

e=LNu=8Bu, (35)
The element stress matrix 1s:

C;=DB (36)
where D is the elastic matrix.

The element stiffness matrix is:

K,=/[B"DBdv
=3, BI DB, detJ,w, (37

where & stands for the Gaussian integration points, det/, is the Jacobian determinant and
w, the weighting coefficient at . The nodal force vector is:

A =[INTbav+NTpds
=X, Nl b, detJ w,+ X, N p,det], w, (38)

where N, (V) denotes the shape function N at point k (), b, (p,) are the volume (surface)
forces acting on the point & ().

1 Sensitivity analysis

Design sensitivity analysis, that is the calculation of quantitative information on how the
response of a structure is affected by changes in the variables that define its shape, is a
fundamental requirement for shape optimization. The first partial derivatives of struc-
tural response quantities with respect to shape variables provide the essential information
required to couple mathematical optimization methods with structural analysis procedu-
Ies.

There are two basic approaches to the calculation of sensitivity derivatives. The firstis
based on differentiation of the discretized finite element system and the second on
variation of the continuum equations. This paper presents only the first.

By differentiating Equation 31 with respect to s,:

dg 9K \ .,

ask S b 9

where,
A BK ok, dK,

Ap= as,c u 2. 8.;',Z as,t ) “0)

represents a pseudo-load matrix.
Then, differentiating Equations 39 and 40 with respect to s,

A _ergip D)

s,

do _aCy" U +CT (K1 2p), (42)

as, Bsk
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Equations 41 and 42 can also be written in another form:

E =FpTV (43)
ds,
a6 aCcoT
30" 3 Mt (FTVa), 44
k 2
where:
V=K-1C ; Vs=K1(Co (45)

represent the virfual displacement matrices under virtual loads K~C and K-1C9, respect-
ively.

The pseudo-load technique uses the set of Equations 39, 41 and 42. The evaluation of
the derivatives requires the introduction of NSV (number of shape variables) x NLC
(number of load cases) additional pseudo-load vectors. Equations 43, 44 and 45 represent
the virtual-load technique, in which the evaluation of the derivatives needs NBC (number
of behavioural constraints) additional virtual-load matrices. The derivatives of the
structural responses obtained by pseude-load technique is more economical than by
using the virtual-load technique, because the number of NBC is much greater than NVS x
NLC.

AUTOMATIC MESH GENERATOR ANDREFINEMENT

The second main problem in the shape optimization is the finite element mesh generator
and reftnement. A fixed element model, as in the sizing optimization, is no longer valid to
assure the accuracy of the structural analysis as the shape of the boundary changes, since
the accuracy of various portions of the finite element mesh will change, First, it is

: !
J 1
! — I [
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1 ] |
% | \
| A b 1Y , Figure 9.

Figure 10.
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assumed that techniques exist for automatically generating a finite element mesh for the
initial model. Then, information from one structural analysis is used to identify regions of
the finite element mesh which need further refinement. The finite element mesh points
are relocated whenever the boundary shape changes, and thus individual element
distortion due to shape change during the organization process can be kept to a minimum,
A natural way of improving the quality of finite element solutions is to increase the
number of degrees of freedom. The process is normally performed afteran initial solution
is already available. Several schemes have been devised to introduce the new degrees of
freedom in a selective manner in order to produce the greatest possible improvement over
the previous solution. - This calls for the definition of a criterion to identify the regions of
the domain where the finite element approximation is poorer. The new degrees of
freedom are added in these regions either by increasing the order of the polynomial
approximation inside elements, the so-called r-method, or by subdivision of elements
(i-method). The process is continued until a specific accuracy is achieved. As a last
resort, regenerate the mesh in the whole structure,

1 rmethod

The r-method relocates nodes to satisfy the necessary conditions of optimality without
increasing the number of nodes and elements. Furthermore, element connectivities are
unchanged during adaptation and the continuity of interpolated functions is assumed
withont special consideration, while the A-method must introduce some methods to
maintain continuity. Element distortion in itself does not provide the cause of approxima-
tion error. [f a large distortion is accompanied by a high gradient of stresses, itisnatural to
generate a large amount of approximation errors. But if distortion occurs in nearly
constant stress fields, it would not generate a significant error. The relocation scheme is
not the only reducing deviation of error measures in the finite element model, but also
smooths given grids if error measures are almost constant.

2 h-method

There are two approaches to the implementation of the A-method. The first is without
regridding the finite element model. That refinement will be based on the initial grid. For
this approach, the important thing is to maintain continuity of the interpolated functions.
This leads either to the infroduction of linear constraint equations or to special
refinements for the transition from refined elements to coarse elements.

A more widely used approach is to introduce a special discretization to transite a
refined element to the remainder. New element connectivities must be reassigned in both
cases. Application of the i-method is realistic but must be done with care, because the
total number of degrees of freedom increases too quickly.

The refinement reduces the size of the element to 4/2, #/4, . . . /2 m from the original
size k1 where mis the mt adaptation.

Approximate applications of the r-method in general provide smooth resuits although
requiring much more computer time. The r~-methed provides almost the same stress
distribution as given by the A-method, which invelves much more elements. Although
the r~method may not reduce the total approximation error, it reduces the maximurm value
of error measures significantly.
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NUMERICAL APPLICATIONS

The following problem was chosen’-3 1213 to illustrate the shape optimization of an arch
dam. The dam is designed for combined water (depth 120 m) and gravity loading. The
foundation is assumed to have the same elastic properties as the dam (£ = 19,600 MN/m?,
Poisson ratio 0.15).

The type 5 dam’ was used as a starting shape.* The normal cross-section of the
idealized valley is shown in Figure 11.

Itis clear that the results reported differ quite substantially as can be seen in the table.

Volume G, o,

10#m® kN/m? kN/m?
Type 5 dam 43 4080 5600
Reference 7 50 2410 5580
Reference 8 52 2000 7000
Reference 12 200r 317 550 —7000
Reference 13 43 1428 —7428

1 There is an apparent different load-carrying behaviour in both designs. If the foundation properties
are assumed to be rigid, the arch action dominates in carrying the water load, whereas the cantilever
action dominates if the dam-foundation interation is considered (i.e. equivalent static earthquake load
and forces produced by fluid flow through the foundation medium are considered in the static
analysis).

CONCLUSIONS

The purpose of this paper was to survey shape optimization work with special emphasis

*The shape adopted by the CIRIA Committee on Arch Dams was taken from that of the Cabril dam,
Portugal (editors).
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on deubly curved arch dams. It was our aim to stimulate ideas leading to future advances
in this field. From the numerical examples reported, it is clear that this subject deserves
further work.
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3.3 OPTIMUM DESIGN OF ARCH DAMS
Zhu Bofang, Li Yisheng & Xie Zhao

Experience shows that shape has a great influence on the economy and safety of an arch
dam. At present, the shape of an arch dam is determined mainly by the method of ‘cut and



