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ABSTRACT. In ¢alculating the failure probability of structural systems; the most important operation is
the search for the stochasticly most relevant failure mechanism, The nodal and mesh description for the
modelling of a flexural frame with fully plastic behaviour and slabs discretized into triangular finite
alements whose behaviour conforms the yield line theory are considered. The mathematical programming
method arising from these models can be formulated as the minimization of a quadratic concave function
over a linear domain,

1. Introduction

Most of the research into the synthesis of sfructures is based on models with deterministic
hehaviour. Using these models, itis only possible 1o guarantee that the structure resists the
most unfavorable static loading that is supposed fo act during its life for a given behaviour of
the constituent materials. Since neither  the loading nor the materials are deterministic, research
has been conducted to assess.the reliability of structures. To avoid the difficult numerical

integration of the probability density functions involved, the reliability index is obtained from

the limit state equation using the second moment approximation.

The characteristics of the algorithms used for mathematical programming require the
discretization of trusses, frames, plates and shells, The finite element method was choosen
owing to its versability in the autom atic generation of the stochastically most relevant failure
mechanism, that is the mechanism with the sthallest reliability index (> and the highest
“~srobability of failure p f.

The efficiency in obtaining the mechanism with the highest probability  of failure in2-D
structures has been impaired by difficulties in solving the corresponding mathematical
programming problem. Even in simple portal frames the algorithms for convex programming
used in the evaluation of the stochastically most important failure  mechanism may end up with
misleading results, because this problem is of nonconvex type. A mathematical programming
method that leads to the stochasticly most importarit failure mechanism is deduced and  strategies
that give the global optimum {eliminating suboptim a)and can be  used to enumerale local
solutions are presented. This formulation is linited to doctile structures such as steel frames  and
reinforced concrete slabs.

2. Fundamental Relations

There are two types of formulation available to describe the fundamental relations for the
problems to be discussed. One formulation reflects the finite element connectivity at their
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common ¢orner nodes and it 1s thereby called nodal description. Altematively, the finite element
connectivity may be reflected through their common sides leading to the formulation of meshes
and it is thereby called mesh description.

‘The suggested finite element model can be regarded as a direct extensionto  slabs of the finite
element modelling of flexural plane frames. Modal deformations are plastic rotations at pre-
located critical sections in the case of frames and at pre-located element sides in the case of
slabs. Nodes are positioned in between two or more critical sections in the case of frames and at
the intersection of two or more element sides in  the case of slabs. Futhermore, just as the bars
of a frame form meshes, the finite elements modelling the slab canbe  grouped together forming
also meshes as exemplified in Fig.1.

Figure 1

The frame shown in Fig,1.can be represenied through a mesh model where an external mesh
defines the frame in the two dimensional space. The slab can also be described through a mesh
model where the meshes referring to the boundary nodes define the slab in the two-dimensioned
space. Therefore, the structure (frame or slab) is replaced by a structural model which can be
described in two-dimensional space either through the nodes (Nodal Descrition) defined at the
intersection of the finite elements  or through the meshes (Mesh Description) defined by chains
of finite elements.

2.1. CONSTITUTIVE RELATIONS

The yield criterion for structures with perfectly plastic behaviour imposes bounds on the values
of the moments in all critical sections. For example, if the negative and positive plastic
resisting moments 4t the critical section i are m ;- and ms;+, respectively, then we have:
M Smy < m ot (1)

Similarly, the yield line method considers a very simple yield criterion involving solely the
normal bending moment and the normal anguiar disconfinuity at every element  side. The yield
conditions impose limit values on the magnitude of the resulting bending  moments at the
element side. Let the positive and negative bending moment capacities per unit length for  the
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ith element side be, respectively m#+ and m«;- and the bending moment per unit length  m;.
with:

-m £ omp S mthy @

Now, if such an element side hasa length 1;, the yield conditions in terms of total moments

for the whole element side are:

-magc=-m ;] S mj St lj =mty (3)

The mechanism deformation can only take place at the element sides where the normal

bending moment reaches one of its limiting values. That is to say the angular discontinuity
A 8, at the element side can only take a positive  value A ©;* when my is equal to m #;+ and it

can only take a negative value A 8;- when mj is equal tom s~

By neglecting the elastic - deformations, the deformations of the mechanism are equal to the
total deformations of the structure. Provided that at the incipient plasiic collapse the
disptacements are small enough for the plastic analysis to be based on the underformed geometry
of the structure, elastoplasiic deformations need not 1o be considered. Clearly, whereas the
plastification in frames can be considered 1o be restricted 1o pre-located critical sections, in the
slabs the plastic behaviour is not necessarly restricied to the sides of the finite elements. Thus,
the finite element modelling leads to a  correct representation of the frame, but leads to a
representation which is only approximate for the slab.

2.2. MESH AND NODAL DESCRIPTIONS

2.2.1. Mesh Description of Starics. The static indeterminacy number ( «) of the frame
represented in Fig.2 is 3 and the number of critical sections (¢ p) that have to be considered is 7.
This frame can be reduced to a statically determinate structure in many different  ways, one of
which is achived by introducing a cut adjacent to critical section 7.
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Figure 2
The bending moments at the critical sections can then be expressed in terms of the ordenates
of the influence diagrams associated with unit magnitudes of the loads (F 1,Fp) and the
indeterminate forces (py,pp.p3) in the following way:
m=Bp+B,yF )
With more complex frames, the derivation of the basic matrices (B,B ) becomes a more
important and difficult issue. This subject is discussed in Ref.1 where it is seen that the more
convenient basis for generating the mesh matrix B cannot  generally be derived from physical
release systems.

2.2.2. Mesh Description of Kinematics.  If a mechanism is built up due to the formation of
hinges in the critical sections of the reduced structure, the angular discontinuities Av can be
written in terms of the rotation A6 from the undeformed geometry of the frame, by means of
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the coefficients of the static matrix B:

Av =Bt Ae (&)
If the structure has a set of compatible displacements, then we have:
Av =0 = Bl As =0 (6

These equations are valid for every mechanism. Similafdy the displacements u corresponding to
the Ioads F can be written in terms of the rotations A e,

u =By Ae (N

Then the Kinematic relations for the mesh description in frames become:
[0 =[Btlae o [O0l=[B1 -BI][A6+] ®)

S i N el e
where the rotation in the eritical section i is decomposed in the pair  of nonnegative variables
As+and Ag-, asin the mathematical programming algorithms:

Ao = Aetr-Ae- srilitgl 2ections ()]

Figure 3

Acording to the yield line theory, the collapse is due to the formation of yield  lines along
which the slab folds when a mechanism is activated. In the mesh description compatibility
conditions for slabs can be established directly, if the finite element meshes are enforced 10
remain as closed ¢hains of elements during deformation. Such condition of compatibility may
be stated for every mesh which can be defined in the discretized slab. A set of linearly
independent meshes will be constituted by the meshes defined at each corner with the exception
of one. It can be seen from FFig.3 that the static indeterminacy number associated to the finite
element modelling of slabs is 2(NC-1), where NC is the number of comer nodes.

Taking one of these meshes, the corresponding compatibility conditions must ensure that
whien the collapse mechanism is activated, angular discontinuities develop along element sides
at yield, maintaining continuity of vertical displacements. That is achieved if the two agebraic
sums of the projections in two different directions of those angular  discontinuities developing
along a fixed sense around the mesh are set te zero. The two compatibility relations for the
mesh represented in Fig 4 and for the projectionin the two directions X and Y can be stated as
follows.

semix; SeNoep  SeNcy  seley  sences|[A 8 =[0] (10)
[c‘osocl €0Soxp COScxq  COScxy co's:x5:] ABy 0

584

Aey

Aos

where A @; is the total rotation  of the element side, that is the sum of the rotations of all
elemnent sides that share the same side.

Now, if these conditions are established for each mesh and they are all assembled, the
resulting compatibility conditions may be writien in the compact form:

AV=BlAg =0 (11
where the vector AV has 2 (NC -1) ¢lements, the vector A © has NS elements - NS is the
number of element sides - and the matrix B is called kinematic transformation matrix.

If all edges are clamped, the moments from which the matrix B ¢ can be built are easily
determined if the discretized slab is split into cantilever slabs formed by chains of finite
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elements. If all edges are either clamped or simply supported, the boundary can be considered 1o
be provided by fixed finite elements. The same cannot be said with regard 1o free edges, but such
a difficulty can be overcome if extra boundary finite elements are defined along them. New

simply supported edges are thus obtained whilst the original free edges become internal lines

along which the normal bending moment capacity is zero. In order to comsider supporting
columns, either provision is given to account for fixed external constraints or the contour

defined by the column in the slab is taken as a clamped edge.

Figure 4

2.2.3. Nodal Description of Kinematics. The mesh description has its origins in the concepi of
static determinacy and in the expression of any static field in terms of the  loading actions and of
the mesh foress. The nodal description may for the present case  be considered 10 have its bases
on the concept of mechanisms. The elementary mechanisms for a frame are a collection of all
the $way and joint mechanisms shown in Fig. 5 .

I
1T

Figure 5
Any set of compatible deformation rates is associated with parameters that play the role of
nodal displacements and can be written in the following form:
Ae =C Ag (12)
Equations similar to these can be written for any number ‘of eritical sections ¢ [ and any
nurber of independent mechanisms in the basis b=¢ ¢ - .

Similarly the displacement corresponding to the applied loads eaii be expressed in ierms of
the nodal displacements:
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u=C,4 Agq (13)
Hence the nodal kinematic relations become:

Ae|= C |Ag or Ag+- As-|= |C |Aq (14)

[ u l C.o u Co

According to the hypothesis of the yield line theory, when the collapse mechanism is
activated, the finite elements behave as rigid but angular discontinuities may  be generated across
the element sides whilst providing for continuity of vertical displacements  (Ref2).
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Figure 6

Taking one single fnite element of a slab, as represented in Fig.6, the three relations A gj¢of
the outward nonmals to the three sides can then be expressed in terms of the three comner vertical
displacements A ¢ in the following way:

Aegel= [ -h 1 b Mjhp alih)] [Ag 1s)

Aege apflahp)  -lmp  boflphp)) 1A

A gt baflzh3) a3fl3hz)  -l1hj3 Y]

For an interelement side the  total angular discontinuity A 8, is clearly the algebraic sum of
1he rotations A ;¢ of the two cutward normals with respect 1o the two finite elements sharing
such a side. The assemblage of relations (14) for all finite elements is thus readily performed and
may be wiitten in the following compact form:

Ae =C Aq (16)
where, Cis a (NS x NC) kinematic transformation matrix. Since these modal deformations are
obtained as functions of the lineatly independent modal displacements Aq it follows that such
deformations are necessarly compatible and the rotation/displacement relations may be taken as
the compatibility conditions.

3. Problem Statement
3.1. MATHEMATICAL PROGRAMMING FORMULATION

The identification of all the significant collapse modes of a ductile siructural system is Tiecessary
in the analysis and evaluation of the system reliability, including the evaluation of the
corresponding bounds. In this paper onty the mathematical programming method corresponding
to finding the most important mechanism is analysed. In the case of structures composed of
ductile members such as components with elastic-perfectly plastic behaviour, the structural
strength would be independent of the failure sequences of the components. Tt is usual to employ
an approximate procedute called second order method (Ref.3) that only requires the mean and
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loading and structural resistance. For statistically independent random normal variables, the
identification of the stochastically more important mechanism consists of finding the position
of the limit-state equation closer to the origin of the  reduced normal variables. ‘This amounts to
minimizing the distance - reliability index - B :
min B =V (m%2+A'p2 a7
By associating the rotations of Lhe critical sections (or element sides) with the rotations of  the
members represented by the same random variable through the incidence matrix J » and the
displacements (or deflections of the triangular elements centroids) corresponding to the lpads
linked by the same random variable through J |; , we have:
&9*:.]9 Ae++Je Ao H U*=Juu (18)
The limit-state function represents the  aptitude of the structure to suppor the loading equates
the extemnal and intemal work produced by each mechanism:

gmaA) = mwl Ay - AgTux = 0 (19)
The relationships linking the reduced normal variables to the normal variables are:
M+ = Ppyp + Opg m's H )\1:'=j.l._|:+0']: )\'F (20)

where py, i pand oy, o are the mean and standard deviation of the random variables m « and
Ap» respectively. Another bilinear equation is yielded by substituting m  and Ap for (20) in the
limit-state equation (19):
(O'MIII'*)TAG*-(O'F }\'F)Tll*+ ].lMTAe* —]J.FTLI* =0 21
In the limit-state equation (21) the  plastic deformations of the mechanism are present as state
variables. Since it is required to find the minimum distance from the origin of the reduced
normal variates to the yield surface, the values of A'p and m’ given by the minimum norm
solution of (21) are:
dM AB, [th ABs- ]..LF[ ]
m = (22)
(G2 (ABw2 =+ (OpRt (w2
opusx [ Uyt ABx-Upt Ux]
Np = (23)
(OMZL(AB2+ (TR (W2
Forpositive [1Ly¢ A &4 - gt the identification of the stocastic more relevant mechanism
consists of finding:

[J.MI A Bk - '[..L]:‘I U
min B = 24)
Vot (A0n2 +(op2t 2
subject to the linear incidence equations (18), the kinematic relations of the mesh deseription ©)
and the sign constraints:
Ae+20, AB-20,u=0. ABx20, ux20 (25)
in the nodal description, (14) is used instead of (9) to represent the kinematic relations  and
A ¢z 0 should be added o the sign constraint (25).
The solution of these quadratic fractional programming problems is obtained by minimizing
the quadratic concave function:

min- YR2 =-(oy Aga?-(opu? : (26)
subject to (9), (18), (25) in the mesh description - (14), (18), (25) in the nodal description - and
].iM AB*—uFu* = ] (27)

The global optimum of these  programs gives the plastic deformations for the stocastic more
important mechanism and the random variables can be evaluated using (22)-(23).
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3.2. SOLUTION ALGORITHMS

Finding of the global optimum in mathematical programming problems  with nonconvex
objective function and/or constraints is normally considered a NP-hard problem: The
computational effort required grows exponentially with the number of variables in the worst

case. One of the few cases for which there are algorithms available that work reasonably well is
the minimization of 2 concave quadiatic objective function subject to linear constraints.

3.2.1. Branch and Bound Technigues - The general nonconvex domain is iransformed in the
branch and bound (B & B) strategy into a sequence of intersecting convex domains by the use of
underestimating convex functions. The two main ingredients are a combinatorial tree with
appropriately defined nodes and some upper and lower boundsto the final solution associated
with each node of the tree.

Each node of the tree in the B & B strategy is associated with. - a linear programming problem.
For the concave function - x 2 defined in the interval [a, b] the convex underestimate is:

-(a+b)x+ab<-x 2 @
More details on the implementation of this technique can be found in Ref.4.

3.2.2. Cutting Plane Methods - Since the nonconvexity is restricted to the objective function,
it i¢ possible to solve this problem through techniques that exploit its special structure: its
local solutions are vertices of the domain. In Konnos's algorithm (Ref.5) a local maximum is
found and a cut is generated by the Simplex algorithm. In the next iteration, this procedure
either generaies a poinl which is strictly better than the last local maximum found, or generates
a cut which is deeper until the convergence criteria to a  g-solution is met. This algorithm
claims to be more efficient than the cutting plane methods suggested by Tuiand Ritter.

4. Discussion

Acording to the yield line theory, the collapse of the  slab is due to the formation of yield lines
along which the slab folds when a mechanism can be activated. An automatic procedure to
derive the trial mechanisms can be devised if the yield Iing method is formulated as a form of
triangular finite element representation in which the yield lines are restricted to element sides.
Numerical experience suggests that although cutring plane methods are more efficient than
branch and bound techniques when the number of constraints and variables is small, the latter is
easier to implement and more reliable. Simplex based algorithms were employed in each
iteration of the branch and bound sirategy. Since its efficiency is directly related to the number

of variables and the cube of the number of constraints, the mesh description should be used for
frames and the nodal deseription for slabs because they lead to smaller problems. =
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