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ABSTRACT

Twao recently developed entropy-based algorithms for the optimization of elastic structures are
presented in this work. They are simple to operate and efficient, suggesting their potential use.
The first algorithm, which is applied (0 a structural sizing problem, consists of maximizing a
function of a single variable until convergence. Surrogate multipliers are obtained by
maximizing Shannon's entropy function. In the second case, the maximum entropy formalism
solves a multicriteria optimization via thie unconstrained minimization of a nonlinear convex
scalar function. Numerical results are given 1o illusirate the methods,

INTRODUCTION

Methods of optimization currently available seem to have entered a diminishing returns phase
in regpect of further research potential. Some radically different directions and new approaches
ar¢ needed for the further development-of engineering optimization techniques. Annealing is
the physical process of heating up a solid until it melts followed by cooling it down until it
crystallizes in a state with a perfect lattice. During the process the free energy of the solid is
minimized. Practice shows that the cooling must be done carefully in order not Lo get trapped
‘ocally oplimal lattice structures with crystal imperfections. Tn nonlinear optimization one
n define a similar process by establishing a correspondence between the cost function and the
“free energy and between the solution and the physical states. Entropy is a natural measure of
the amount of disorder (or information) in & system. Eatropy is viewed in information theory
as a quantitative measure of the information content of a system. In the case of optimization,
the entropy can be interpreted as a measure for the degree of optimality.

The main purpose of this paper is to present two tecenlly developed entropy-based
téchniques, The first method, based on the the maximum entropy principle, is applied to
structural sizing problems, Unlike optimality criteria and other more recent algorithms, it does
not require an active/passive set strategy. This methodology considers simultaneously all the
constraints, assigning to them different weights accordimg to the probabilities given by
Shanon's entropy function. The optimization phase reduces 1o the finding of the parameter
which maximizes the (concave) dual volume. The Lagrange multipliers and member sizes are
evaluated in terms of this parameter by using a simple algebraic expression.
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Entropy is used implicitly in another algorithm in which a group of objectives is
minimized. A Pareto solution of this véctor problem is obtained by the scalar minimization of
a nonlinear convex function involving one control parameter.,

Examples are given to demonstrate the potentialities of these methods. The first is a
grillage, demonstrating efficient size optimization for this type of structure, The second
example is a reliability based configuration optimizatipn of a truss showing the state of the art
in discrete ¢lement shape optimization.

ENTROPY IN OPTIMIZATION PROCESSES

Constrained Nonlinear Programming
Entropy can be used 10 deduse desired results when only limited information is available. The
general inequality constrained nonlinear programming problem,

Min f(x) i=1..0 (1a)

st gilx) £ 0 or gj(x) +§ = 0 j=Ll..m (1b)
was examined in Ref.[1]. An initial point was chesen and information is calcnlated about the
abjective and constraint functions, typically their numerical values and gradients at the design
point. This numerical information was then used in a mathematical programming algorithm
1o infer where the next irial poini should be placed so as to get closer lo the constrained
optimum of the problem. The new trial generates more information from which another point
is inferred and cventually the solution is reached by this process of gathering better
information and using it in an inference-based algorithm. The essence of the method consisted
in ransforming problem (1) into an equivalent surrogate form,

Min  [{x)} (2a)
st Tj=iM ANjglxh =0 (2b)
zj=1,'M )\-J— =1 (25)
Ajz0 @

and using maximem entiopy o obiain least biased estimates of the optimum values of the
surregate multipliers A i In this two phase method the absence of an explicit surrogate dual

objective function is overcome by introducing the Shanon entropy as a means of forging
iterations towards a saddle point. Each estimate lead to a new problem in the space of the x
variahles and generatsd information upon which 10 base an improved eséimate of the optimum
surrogate multiplices,

Truss sizing problem

An inttial sctof bar cross-sectional areas is chosen to form an initial design which is analyzed
w give bar fores and virtual forces for joint displacements. These forces are assumed to
remain constant and an optimization problem is set up and solved 10 give new bar sizes, The
structure is reanalyzed with the neéw bar sizes which are then scaled o ensure feasibility of the
new design. Convergence chiecks are carried out on bar sizes and forces and iterations terminate
if thie changes are acceptably small, If convergence is not achicved a new optimization is set
up with the new Bar forces and solution proceeds iteratively until convergence is achieved. The
opumization problens which must be solved in each cycle of iteration can be stated as:

min V= Ei=1 N tixi Ga)
st TiciN L FijER /Bixd € v o =10 (3b)
oil ¢ ojj=Fjlx oY o k=1.K (3¢)
%2 XiL % i=1,..,N (3d)
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- The N unknown bar sizes x;, i=1,...N comprise the design variable vector x. 1;, E; are the

length and &lastic modulus, respectively, of the i-th bar, In the displacement constraints (3b)
Fij and Elk are the force caused by the j-th load case and the virtual force canged by the k-th

joint displacement in the i-th bar and uy is the maximum permissible displacement of the k-th

joint. At each optimization all bar forces are known and are assumed to remain constant, so
problem (3) can be stated in a simplificd form as:

min V=2j=1,N li% {4a)
st LI NCik/x€l s k=1..M @h)
xfxye & i=1,..,N (4c)

The displacement consiraints (3b) correspond with Eq.(4b) with ¢; i . j=1,-..M representing
ger  displacement constants evaluated after each analysis, The stress and size constraints in
problem {3) have been merged into Eq.(4c); x; is the largest of either xiL or the minimym Size
necessary (o satisfy the stress canstraints (3¢). Problem (4} has the following Lagrangean
function,

Lepy=Limi Nlix
F et M g [Tt N Gl - 1+ Zja N W M i/ 1 O

Examining the stationarity of & (x,1L) with respect to all x;, i=1,..N yields equations in
x wiich may be solved algebraically to give:
xif0= (250 o Wi+ 2 1 msd) 1) ©

If an optimum set of multipliers W * exists, then theresulting bar sizes x* will also solvethe
probtem. Such a set of optimal surrogate multiplicrs 1 * is, of course, not known "a priori"
bul found ileratively. The problem then becomes onc of developing a methed whercby the 3
miy be iteratively updaled wowards 1=, thus solving problem (4), Very many engincering
oplunizalion problems essentially consist of iteratively sarting oul which ones of many
consiaints are active at the optimum and which are inactive and then of iteratively estimating
vales for the active constraint multipliers. Though such a strategy is thearetically valid,
churiges in the active set between iterations change the optimization problem being solved ina
discuntinuous way and lead to erratic convergence hehavior, The maximum entropy-based
algs - *“ms avoid these difficulties by relaining and updating all constraints at all times.

Pro. . discontinuities are not introduced and consequently convergence is smooth.
Asyaming thal the Lagrange maltiplicrs | jare given by,
'I..LJ' = >\,] Vj n

Wit A i is ‘@ entropy muliplicr and v; is a correction factor, lhese multipliers may be
inw:preted probabilistically with each b i representing the probability that its corresponding
cowatraint is active al the optimusm. With this probabilistic view of the multipliers it is then
enticly togical and sensible to calcutate most likely or izast biased values for them fram the
Tay4 08 maximum entropy formalism. An initial set of values for v and A is chosen such that

vjE*'?;l and )\j[°]=ll(M+N). j=1,...M+N ic: all constraints are equally likely 1o be active at

the optimum.The set of bar cross-sectional areas x obtained from (6} forms an initial design
which is analyzed to give bar forces and virwal fosces for joint displacements. All barareas are

g4 to ensure that no constraint is violated. The ¢orrection faclors veclor vI11 5 assumed a
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unit vector in this iteration. New estimates of the multipliers A '] are then obtained by
solving the maximum entropy mathematical problem:

Max 8§ = -KZJ':LM )\JU] }n},J“] ) @)

st, =M A =1 (8b)

' Ziam A g0l = e &)
)\j“] =1 [i:%)

S is the Shannon eutropy, X is a positive constant, Equation (8c), that represents the
constrainis:

gj(x) = ¢jpfxi - 1 for j =L..M (0a)
gj(x) = A% -1 for j =M+],...M+N (9b)
has ar expected vahe zero. If the left-hand side had contained gj(xm). then the right-hand side

would ke zero, but since gj(.vc[1 I) values are not yet known gj(x[ol) values are used as the best
currently available estimates and this introduces the error term € inlo Eq.(8¢). The entropy
maximization problem has an algebraic solution for A (.

explp gj(x[m)fi(]

AL = (10)
Tizim explB gxIO/K

in which (5, the Lagrange multiplier for Eq.(12¢), can be found by substituting resalt (10)
into Fg. (8c). However, since € is not uniquely known and K is an arbitrary constant, p=R/K
miy be viewed asa penalty parameter used to close the duality gap. Eq {10y with a selected p

vields new constraint activily probabilities N Ay each iteration, it is neccessary 1o search
for the value of p that maximizes the truss volume given by (6) and using the new correction
factor and multiptier values. The new design is analyzed by the matrix stiffness method and all
bar arcas are scaled 1o ensure that no constraint is violated. The correction factors vector are
given by:

viZl = F[l]# 1 = plt a;'[l] F[]][)-]. 1 an

where | represents the member lengths vector and the elements of the matix F are given by,
1] = 2 _ ;

Eij[_ 1= }\j Cij /X for j=1,..M i= 1N (122)

fjjll] = Amai%i/ 22 for j=M+l...MsN (12b)

Using g(x-[l]} in place of g(x [O]) in Eq.(10) with an appropriate p yields new multipliers
a2, Using v and A%, values of x[2] follow from Eq.(6) and the dual volume V(2 from
Eq.(42). Substituting x/23 into Eq.(4b) and (4c) yields values for the constzzint functions and
all bar areas are scaled to ensure that no constraint is violated. In stbsequent iterations, this
scaled design and the previcus scaled design would be compared and checked against
convergence criteria and iterations would be either stopped here or continved.

Alternative entropy-based formulation
In ref.1 it is proposed an alternative solution scheme which combines the (wo phases into a
single phase consisting of solving an nneonstraingd problem, The Lagrangean of problem (2)
is augmented with an entropy term and the stationarity conditions reduce to:

Min ,, f(x) + 1/p In Zj=1'm.cprP o gj(x)] (13)
that must be solved for an increasing positive parameier P &. A different entropy-based
procedure more appropriate for shape optimization will be proposed next.
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-

- MINIMAX OPTIMIZATION

Minimax probiems are discontinuous and non-differcntiable, both of which attributes make its
numerical solution by direct means difficult. Ref:2 explores the ielationships between the
minimax optimization problem and the scalar optimization function and extends the
equivalences to general multicriteria optimization. Specifically it is shown that a minimax
problem can be solved indirecily by minimizing a continuous differentiable scalar
optimization problem. The Shannon/Jaynes maximum entropy principle plays a keyrole in
these classes of problems, hence the characterization of these methods as entropy-based. In this
section some of the theory behind this approach to minimax optimization is briefly described.

For any set of real, positive numbers Uj, j=1, .., T, and real p 2 q 2 1, Jensen's
inequality staies Lhal, ‘
Pyl Ay 1

(Tjapm UPHIVP < (T U1 (14)
Tnequality (14) means that the p-th norn of the sct U decreases monotonically as its order, p,
increases. Anolher important property of the p-th norm is its limit as @ tends towards
infinity:

lim o, oo (Ej=1,rn Ujp) Vp - Max j=) m <Uj> (15)

Consider the minimax optimization problem,
Min , Max j=lm < gj(x) > (16)
and Jensen's incquality. Let U_j =exp [gj(x)]. j=1,...m thus ensuring that Uj > 0, for all
positive gj(x). Then,

(Zitm YPIVP = (Zjoym exnle gl Ve an
And from (14},
lim o, oo [ Zj=1'm explp g} M/P = Max =1 m < Ej(x) > (18
Taking logarithms of both sides and noting that,
log lim(D) = limlog() and log Max(f) = Max log(f) 19y
Eq.(18) becames,

limg, -, oa (1/P) log{ Zj=['m expip g(X)]} = Max j=) m < 8j(x)> (20
sult (20) holds for any set of veciors g(x), including that set which results from
minimizing both sides of (16) over x. Thus (20) can be extended to:

Min ; Max joq,m < gj(x)>=Min (1/p)log(Z i m e*pLP g;(x)) 2
with increasing © inthe range 1< p =< 00, Resuit {21) shows that a Pareto solution of the
minimax optimization problem can be cblained by the scalar minimizatian,

Min ; (1/@) log{Z g ;n exple g1 @2
with a sequence of values of increasingly large positive g = 1.

Truss configuration optimization

The Pareto optimal design of truss geomeiry and cross sections consisis of minimizing 2
whole set of goals by finding an optimal set of cross sectional areas %, joint coordinates y and
corresponding displacemients.d. All these goals (volume, nodal displacement, ete.) noed to be
castin a normalized form, If V represents a reference volume, the volume is reduced if,
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Iyt x

Iyx<y = gy = -1<9 (23a)

where the member lengths are funclions of joint coordinates. Lower bounds on cross-sectional
areas are imposed to aveid 10pology changes,
X "
gl = -—— + 1 <0 (23b)
xl

Similarly, one has for the upper and lower bounds on the: joint coordinates:

¥ } ¥
B = 7 -120 i o= +120 (23¢)
o -

The displacements d are computed for any given design by solving the disptacement
amalysis equilibrium equations, The clemients of the loud veetor R are constants and the
elements of the stiffncss matrix K are functions of both the variables x and y. The ¢riterium
conceming upper bounds on the nodal displacements is,

d(x.y)
qv

-120 23d)

g5 (xy) =

For the upper and Jower bounds on the stresses:

o = 5(y) ez o = 8(y) d(xy)
g6 (x.Y) = 120 gy = s +1<0(238)
g o :

whare e elements of the stress-transformation matrix S are functions of only the variables y.

Design variable linking is used to meet symmetry requirements and to reduce the number of
design variables. In general, upper and lower bounds on design varisbles and stresses are
assumed to be constant. If stability of members is considered, the lower bound & L can be
defined as,

O’L=max[dc,0b] 24
in which & . is the lower stress limitand Oy, is the allowable stress for Euter buckling. For
tubular sections with & nominal diameter to thiskness ratio of D/t=10, the huckling stress can
be given as,

101 1 E )(i

T = @s)

84m?
which depends on bath the sizing and geometric variables.

The problem of finding values for the the cross sactiona) areas x and joinl coordinates y
which minimize the maximum of the goals has the form,

Min 5y Max @qs o0 gj g7) = Min y Max jeT < gj(x,y') > (26)
and belongs to the class of minimax optimization.
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“Reliabiliy-based elastic design
Consistent with a first-order second-moment reliability approach, the minimom statistical
information reguired for the evaluation of the oplimum solution is: (a) The mean values of the
loads, the ceelficicnts of variation of the loads S?_L and the coelTicients of correlation between
nairs of loads; (b) The coefficients of variation of the admissible stresses S2 o and the
coofficicnts of correlation between pairs of admissible strosses. Assuming that the veclor &
represents tho elastic envelope stress-resultant coefficicnts obained by the deterministic
analysis and 1L U, 1L oL are the mean elastic capacilies, the probability of unserviceability
of individual secticns is given by,
P=P{ o Yj- 035501 or Ploj-olbjz01 j=1,.m @n
1 is assumed that safety with regard to unserviceability of the section j depends only on the
@l ity index 5 j= fb‘l(PSj), that is defined as the shortest distance from the origin to the
adrmssible stress surface in the reduced random variables coordinate system:

g U.i - B aj
B = @82)
\/(:g Uj @ 6.)2"'(11 9 QL)Z
or
Mg Holy
B = (28h)
Vin oL, 2 2+ 0t o) 207
For completely correlated elastic eapacities, the probability of failure is,
Pg = max j=1m Py (29a)

and for uncorrelated elastic capacities,
Pg=max j=] m (Zk=1,vj Pg) (29b)
where vj represents the number of critical sections correspanding to all considered loading

schemes.

ming that the nodal coordinates are dererministic, the Teliabiliy-based optimization
sroblem consists of member size selection for given probabilities of failure against
cnserviceability Pgx. If ¥ represents an (average) reference volume, (23g) becomes,

Wyt Wy
gixyy = —— -120 (304)
v

Similarly, one has for the bounds on design variables:

oy
ga(x) = 3 +1=0 (30b)
X
. d 120 0c
= = - = H = - = <
g3 T 1<0 g E + 1< (30c)
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By defining Bu= @ '1(PS*), individual stress bounds are given by,

By

g5 (xy) = - +1<0 (30d)

*

Similar expressions can be employed 1o satisfy the overal probability of failure against
unserviceability and the uppeér bounds on the nodal displacements specificd in probabilistic
tetms. This formulation give a Pareto solution to the multi-objective reliability-based
optimization.

Scalar Function Optimization

Problem (22) is unconstrained and differentiable which, in theory, gives a-wide choice of
possibie nurerical solution methods. However, singe the goal functions gj(x) ‘do not have
explicit algebraic form in most cases, the strategy adopted was to solve (22) by moans of an
iterative sequence of explicit approximation models. An explicit approximation can be
formulaled by taking Taylor series expansions of all the goal functions gj(x,y). truncated after
the lincar term. The quality of Ute approximation improves by considering the quadratic term
for the geomelric variables. This gives Eq.(31):

dg; g
. ]
Min (1/p) 10g{ Z j=1,5 &xp P Igj(xo¥o) ¥ Zi=I N Xt Zparp — kYo +
X o Yk ©
1 3 Zgj 52 g
GiY0k o) + Ticl N Lk=1,6 (%% o) (ieYo))

+—Z 121N Sk=1,p.
2 dyidyk o 3xidyk o
Problem (36) is an approzimation 10 prabjem (27) if values of all the gj(x.y}, (3 gjla %)
and (Jgjf 8 yy) are known numerically. Given such values, problem (36) can be solved directly
by any standard unconstrained optimization method. This problem must be solved iteratively,
X and ¥ being redefined each time as the optimum sclution to the preceding problem.

[terations continue until changes in the design variables x,y become small, During these
ilerations the parameter P must be increased in value to ensure that a minimax optimum
solution is found. In the presenl work, aconstant value of p = 100 was used.

The chioige of a large control parameter o for a very unfeasible design point may cause
gverflow problems, To overcome this situation (22) can be replaced by,
Min ( gyx)+(1/p) Tog(Ziny m explP [500-gp001) €
where g(%) 15 the largest of the goals gj(_x),j=] ,mand @ is.a positive constaii.

Sensitivity Anualysiy
To formulate and solve the scalar function minimization (31) used for the direct design,
numerical values are required for all the funetions gj(x,}-) and their derivatives with respect 10

the design variables, The truss volume is kngwn explicidy and its [irst derivatives are:
av av el
=} v o= RN 33)
a X3 d Yk d Yk
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~ in which 3li/3 ¥y is the direction cosine of the bar corresponding to the displacement yi.. The
second derivative of V with respect to yy, is given by ratio of the square of the direction sing of
the bar correspending to the displacement y, divided by the member length.

The derivalives of the reliability indices (> with respect Lo the design variables require an
approximation of the member stresses and nodal displacements which are implicit functions of
x and y. One way of evaluating the derivatives of ¢ and d is 1o calculate them from analytical

expressions, as follows. The displacement derivatives 3 d%3 x; are computed by implicit
differentiation of the equilibrium equations:

8d®  9K°
KO— = - i 349

Since d® and K@ are known from analysis of the initial design, solution for 8d%dx; involves
only calculation of the r.h.s. vector of Eq.(34) and forward and back substitutions. The stress
derivatives 8 @ 9/ 8x; are then determined direotly by explicit differentiation,

5ao ade
=38

@s)
8%

1 d x:

1

The derivatives 9d9%/3y), and 8 a8 ¥y are computed in 3 similar manner; however, it
should be remembered that the elements of § are functions of the joint coordinates y. The
expressions for 3% 3y and 8 9%/ &y arc:

ade aKoe
KO—— =-——¢° (36)
do0 8d0  8s°
=§—+—d° @7

dyg v By
To  ipute K3 x;, only elements of K associated with member i must be considered.
Furthermore, the elements of 8 K/a X, are constant, therefore the campuiation must not be

repeated, To find 8K/ 8y and 889/ 8y, only elements of K and § associated with the kth
joint coordinate must be considered.

The second order derivatives with respect 1o . can be calculated in a similar manner,
a0 a2%o KO Bdo

K° = - d® - 2 _— (3%)

It can be observed that the solution [or each of Lhe derivative veclors involves only the
calculation of the corresponding right hand side vector and Torward and back substitutions.
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NUMERICAL EXAMPLES

Least volume design of a grillage :

The éxisience of relative minima in grillage strugtures can easily be found in two-dimensional
design problems. Consider the grillage shown in Fig.1 subjected (o 2 uniformly distributed
load of 1.0 on longitudinal teams.The grillage has eight design variables. Moments of inertia
and section moduli are derived from the-arcas using the relationships of eq.(39). Lower bounds

on design variables are 5.0. Upper and lower bounds on normal stresses are 20
[=03563 205 0 Wi= 0.4899 x;1.82 ' (39)

The iteralion history is shown in Fig.2, where it can be seen that convergence is achieved
with agly six anatysis.

35000
Volume 1

34000 1

- B~ Minimax formulation
30000 4

¢ Dual Volume
~=— Primal Volume

26000 \,
a ___,.-—--'--F--—-_-.-‘... ——
o
24000 A s
° . b % Tterations
Figure 2

The sensitivity aualysis is required in the minimax formulation as opposed to the first
algorithm, that only needs the information concerning the current design point. On the other
hand, convergence is [aster in the second solution scheme. The grillage has several local
optimz and both methods lead to different solutions according to the starting point and the

schedule for the control parameter selection.
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Reliability-based truss configuration

Fig.3 shows a 47-bar planar tower subject to three independent loading conditions. This
siructure is designed for oplimum geometry and this reliability-based problem is formulated
based on probabilistic requirements for the sizing variables. The average loads are described in
Table 1, where @y = 0.20.

Load condition 1 Load condition 2 Load condition 3

Joint 17 22 17 22 17 22
Load, x direction 45 0. 0. 4.5 4.5 45
Load, y direction 2105 0. 0, -105 -105  -10.5

Avetage lower and upper bounds on stresses are | gl=-20, 1 gU=27 and @ 4 =
¢~ The members were assumed 1o be tubular with a constant ratio of diameter-to-wall
ti_wness of 10. Euler buckling was prohibited for all members, The modulus of elasticity
was taken as 3 X 10% and the material density, p =3 % 10-4. A minimum allowable area of
1070 was specified. Joints 15, 16, 17 and 22 were held stationary in space and joints 1 and 2
were required to Tie on the x axis. Symmetry is imposed and there are a tolal of 27 independent
area variables and 17 independent coordinate variables. The specified probability of failure
against unserviceability is 1.5 10°2 and the members are assunicd uncorrelaled.

300 ————|
p——ts0——+
-t

020,0,0,0,0

e

o

Figure 3

The iteration history is represented in Fig4, showing a smooth convergence. The solution
drawn in Fig,3 required a total of 9 iterations to converge, although results within a 6%
margin of error were reached after five analyses. The difference in the geometries obtained after
the fifth iteration show that the design space is rather flat in the vicinity of the Pareto
solution. As opposed 1o the algorithms more conventionally used, the minimax formulation
is not so heavily dependent on the specified move limits. Buckling constrained problems in
which the forces in the members with the minimum altowable areas change as & result of
geometry changes may lead to erratic convergence behavior, The minimax formulation
prevents this occurrence because it does not look for active constraints (such as the lower
bounds imposed on the sizing variables) but rather considers all objectives simud taneouskhy.
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Average
Volume

Figure 4

CONCLUSIONS

This paper présents a new class of optimization methods based on informational enwropy
concepts that are under current development. They are a radically different aliemnative 0
existing methods possessing distinctive features and advantages. One of these entropy-based
micthods, which is applied 1o structural sizing problems, is computationally extremely simple
1o implement, The optimization phase is reduced 1o calculating values for multipliers from an
algebraic expression similar in complexity 1o those used in stress ratio or optimality criteria
methods, Unlike optimality criteria and other more recent methods, it does not require an
active/passive set strategy. The assignment is done on the basis of the application of
Shanaon's maximum éntropy principle, used o measure the uncertainty in a random process.

Alternatively, the maximum eniropy principle is applied to vector and Pareto optimization.
Specifically it was shown that the minimax problem can be soived by minimizing a
conlinuous differertiable unconstrained functon. The number of iterations required 1o obtain
aptimum selutions is small, what makes this algorithm competitive with respect to other
more sophisticated methods.
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