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Universidade de Coimbra

para a obtenção do grau de
Doutor em Engenharia Informática
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Abstract

The main motivation of this thesis is the appealing, yet often controversial, goal of compu-
tational modelling of creativity. A cross-disciplinary study of the subject of creativity is the
mandatory first step and the synthesis towards an AI perspective its intended consequence.
From this perspective, we focus on a Model of Concept Invention and, more practically, on
a computational system, Divago.

The Model of Concept Invention is built over the expected principles for a creative
system. It is formalized, although in a computationally idealistic manner, i.e. its implied
complexity prevents it from a feasible implementation. Divago is the partial instantiation of
this abstract model and comprises the main technical substance of the thesis. Among other
aspects, it includes an implementation of the cognitive linguistics framework of Conceptual
Blending, as well as a mapping algorithm based on Metaphor work.

Divago was subject to experimentation in a range of applications and analyzed according
to methodologies that have been proposed with the area of Creativity and AI. Other valida-
tion procedures are followed, namely in the comparison to other works and to Conceptual
Blending literature.
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Resumo em Português

Introdução

De todas as capacidades comumente atribúıdas ao ser humano, a criatividade é segura-
mente uma das mais intrigantes, mistificadas e sedutoras. A palavra criatividade, de dif́ıcil
definição, está muitas vezes associada a grandes descobertas cient́ıficas, criações art́ısticas,
práticas ou filosóficas que formam pontos importantes na História. É em situações onde
métodos ou ideias convencionais se revelam insuficientes para satisfazer um dado objectivo
que aquilo a que chamamos criatividade se torna importante. Ou mesmo quando, por razões
de necessidade ou de satisfação pessoal, queremos ser surpreendidos com algo que se nos
acrescente como seres pensantes. Por estas razões, podemos dizer que a criatividade é fun-
damental para a evolução e que, no mı́nimo, existe uma relação próxima entre inteligência
e criatividade.

Dada a importância primordial da criatividade, ou pelo menos da capacidade de “pensar
diferente do habitual”, na resolução de problemas complexos, é notório que a Inteligência
Artificial (IA) tenha prestado pouca atenção ao estudo e modelação da Criatividade Com-
putacional. Mesmo tendo em conta um argumento de que o pensamento criativo é igual
aos outros, só que aplicado de forma diferente, ou de que a criatividade é apenas uma
manifestação de inteligência, é um facto que o caminho que une a IA à Criatividade Com-
putacional tem recebido muito pouca atenção, com excepção de alguns trabalhos, referidos
neste documento. A presente tese pretende contribuir para a diminuição desta lacuna com
um conjunto de ideias, modelos e resultados experimentais que emergiram através de um
percurso cujas principais direcções foram norteadas por várias questões. A primeira e mais
genérica prende-se com os sistemas de IA como os conhecemos. Que formas existirão de os
tornar mais criativos, quais serão as caracteŕısticas necessárias para uma máquina ser consi-
derada criativa? Enquanto que existem já vários trabalhos e mesmo sistemas implementados
que exploram as capacidades de paradigmas clássicos (por ex., Computação Evolucionária,
Racioćınio Baseado em Casos, Sistemas Multi-agente) para os tornar mais criativos, poucos
passos se têm dado no sentido de uma abordagem mais abrangente sobre a criatividade com-
putacional. Por outras palavras, existem vários “sistemas isolados”, dedicados a domı́nios
espećıficos, mas falta uma abordagem mais englobante sobre o assunto. É este tipo de
abordagem que seguimos, e que nos leva a estudar a criatividade segundo perspectivas da
Psicologia, Ciências Cognitivas e Filosofia, para além da IA. A tensão entre Criatividade e
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Inteligência coloca outras questões, sempre recorrentes ao longo da tese. Serão estas duas
caracteŕısticas independentes da cognição, ou, pelo contrário, são inter-relacionadas e inse-
paráveis? Se tomarmos a perspectiva da IA, será que a criatividade não se resume apenas
ao problema da procura num espaço de soluções para cumprir um dado objectivo (só que
mais alargado, ou transformado de uma dada forma), tal como é tradicional na análise de
sistemas inteligentes? Ou será uma abordagem diferente à inteligência? Sempre que se
revele oportuno, voltaremos a estas questões, bem como a outras que estejam relacionadas
ou que se demonstre importante referir.

O núcleo desta tese é composto por duas partes distintas, mas complementares. A
primeira consiste num modelo de Invenção de Conceitos, que resulta do estudo feito sobre
criatividade segundo várias perspectivas diferentes, nomeadamente o pensamento divergente
de Guilford e a bissociação de Koestler. O primeiro, centrado na capacidade de procurar
soluções não convencionais (ou não rotineiras) para um dado problema; a segunda, no
fenómeno de criação de novos conceitos através do cruzamento de domı́nios. Poderemos
dizer que são duas componentes do mesmo fenómeno: a capacidade de associar conceitos
aparentemente distintos, e que, a priori, não estão relacionados. A partir do modelo de
Invenção de Conceitos, que podemos considerar um modelo teórico ideal, que está forma-
lizado na medida do posśıvel, tenta-se então passar à segunda parte do núcleo desta tese:
o sistema Divago. Este sistema corresponde à componente prática desta tese e representa
uma proposta de implementação do modelo de Invenção de Conceitos. Esta implementação
é parcial, pois foca sobretudo alguns aspectos (bissociação, divergência) em detrimento de
outros (racioćınio no meta-ńıvel, re-representação). Sendo uma implementação computaci-
onal, resulta também de um conjunto de escolhas e compromissos que serão devidamente
explicados.

Dos trabalhos que influenciaram decisivamente a construção tanto do modelo acima
referido como da implementação, agrupamos três que são fundamentais para a compreensão
da tese:

• Pensamento divergente [Guilford, 1967] e bissociação [Koestler, 1964].

• O trabalho de Tony Veale sobre Metáfora [Veale, 1995].

• A Integração Conceptual (ou Conceptual Blending) de Fauconnier and Turner
[Fauconnier and Turner, 1998].

Existem, claro, outros fundamentos, e os enquadramentos para estes fundamentos, que
são apresentados na parte inicial da tese. Para o presente resumo, concentrar-nos-emos no
pensamento divergente e bissociação, Metáfora e Integração Conceptual. Depois passaremos
a descrever o modelo de Invenção de Conceitos e o Divago. De seguida, pretendemos dar uma
visão geral sobre os resultados obtidos, finda a qual passaremos à descrição das contribuições
e da estrutura do texto da tese.
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Fundamentos

Pensamento divergente e Bissociação

Embora sendo dois investigadores de épocas, áreas e páıses diferentes, J. P. Guilford e
Arthur Koestler apresentam-nos dois conceitos que se complementam no processo criativo:
o Pensamento Divergente e a Bissociação.

O pensamento divergente, segundo Guilford uma componente fundamental da inte-
ligência, corresponde a uma capacidade cognitiva comum de “gerar informação a partir
informação dada, em variadade e quantidade a partir de uma mesma fonte; possivelmente
envolvendo transferência [de ideias entre domı́nios diferentes]”[Guilford, 1967]. O Pensa-
mento Divergente compreende quatro capacidades fundamentais:

• fluência - geração de um grande número de soluções para o mesmo problema

• flexibilidade - geração de variedade de soluções

• originalidade - geração de soluções que são: raras numa população; remotamente
relacionadas entre si; respostas astutas (clever responses)

• elaboração - capacidade de pensar o detalhe

A partir de testes e reflexões sobre o seu modelo, Guilford propõe também outro conceito,
fundamental para a criatividade, que é o de “recolha por transferência” (transfer recall):
“Conceitos são recolhidos por associação a pistas com as quais não estavam associados
anteriormente [..]” [Guilford, 1967]. Por outras palavras, é a operação que permite que
conhecimento, por mais semanticamente distante que seja e aparentemente não relacionado
com o problema em mão, seja aplicado a uma dada situação. É a isto que chamaremos,
nesta tese, transferência de ideias entre domı́nios.

Para se efectuar a “recolha por transferência”, é necessária uma operação de integração
dos conceitos em causa (o que é recolhido com o que serve de pista para o recolher). É
aqui que a bissociação de Koeslter se complementa ao Pensamento Divergente de Guil-
ford. Segundo Koestler, a Bissociação corresponde ao fenómeno de associar duas matrizes
conceptuais diferentes (ou seja, dois conceitos, dois domı́nios, etc.), tendo como resultado
uma nova matriz, com caracteŕısticas emergentes. Koestler apresenta um extenso livro,
onde analisa o fenómeno da criatividade, através de várias áreas, desde o humor às artes
dramáticas, passando pela ciência. Aqui, procura demonstrar a recorrência do fenómeno da
bissociação e explicar, embora informalmente, como emergem novas ideias e comportamen-
tos a partir do cruzamento de domı́nios/conceitos aparentemente distantes. Como veremos,
esta ideia de cruzamento de conhecimento atravessa vários trabalhos teóricos e práticos
sobre criatividade, embora por vezes não seja reconhecida com a mesma designação, nem
siga exactamente a abordagem de Koestler, mas este terá sido certamente o primeiro a
apresentar um trabalho tão completo sobre o tema.
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Metáfora

Mais do que um simples recurso lingúıstico, a Metáfora é hoje entendida como um recurso
cognitivo fundamental sistematicamente presente na comunicação e no racioćınio. Uma
metáfora consiste na descrição, ou construção, de um conceito - o objectivo (ou target,
tenor, topic) - a partir de outro - o véıculo (ou vehicle). Por exemplo, a expressão “A
corrupção corrói” pretende trasmitir uma ideia abstracta, da “corrupção” (o objectivo),
através de um conceito f́ısico, de corrosão (o véıculo). As metáforas raramente se limitam
a casos singulares, a expressões ocasionais, pelo contrário tendem a relacionar estruturas
conceptuais ricas de uma forma coerente e continuada. Por exemplo, “A corrupção corrói”
será baseada na metáfora da SOCIEDADE como MÁQUINA, que origina outras expressões
como “Somos todos peças nesta engrenagem” ou “A famı́lia é o motor da sociedade”. Este
conjunto de associações sistemáticas derivadas de uma mesma metáfora respeita o chamado
prinćıpio da sistematicidade, que diz que uma metáfora engloba um conjunto de mapeamen-
tos entre dois domı́nios (do objectivo e do véıculo) de uma forma globalmente consistente.
Isto é, não podemos ter associações contraditórias (e.g. “A corrupção corrói” e “A cor-
rupção constrói”) ou incompletas (e.g. se temos “A famı́lia é o motor da sociedade” e “nós
somos peças na engrenagem”, então “seremos também peças do motor familiar” não pode
estar ausente).

Para dar ao leitor uma ideia geral de como a Metáfora está efectivamente omnipresente
na comunicação e racioćınio, nomeamos algumas situações:

• Ênfase. Ao enfatizar aspectos menos salientes ou comuns de algo recorre-se muitas
vezes a metáforas (e.g. “Ĺıngua viperina”, “Este cirurgião é um carniceiro”).

• Racioćınio. Por vezes, é mais simples ou produtivo recorrer a metáforas para resolver
problemas, nomeadamente quando se conhece melhor um domı́nio, o véıculo, do que
outro, o objectivo (e.g. a computação evolucionária segue a metáfora da selecção
natural para resolver problemas de optimização e procura na IA).

• Conceitos sem correspondência lexical. Existem por vezes conceitos que não têm
correspondência directa num léxico, pelo que a sua descrição verbal exige a criação de
associações entre as palavras dispońıveis, grande parte das vezes através de metáforas
(e.g. Perna da cadeira, Palm Pilot). É de notar também que é comum estas novas
associações serem gradualmente absorvidas e, acabando por fazer parte do léxico,
assumirem significados literais. São as chamadas metáforas mortas (dead metaphors).

• Arte, erudição. A Metáfora tem um papel fundamental na criação art́ıstica, pelas
suas caracteŕısticas de associação de domı́nios distintos, um literal (o véıculo) e outro
metafórico (o objectivo). Esta dualidade, junto com a liberdade nas associações esco-
lhidas (pelo artista e pelo destinatário), conferem à metáfora um potencial imaginativo
muito fértil.

Computacionalmente, a modelação da compreensão e geração de Metáfora está longe de
ser um problema trivial, desde a representação do conhecimento à algoritmia necessária.
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De um lado, coloca-se o desafio da representação formal do conhecimento necessário para
processamento de Metáfora, que deverá ser o mais completo posśıvel a respeito das relações
e conceitos implicados e, talvez a questão mais complexa, reflectir o enráızamento sensorial
que está subjacente em muitos domı́nios e que é extremamente importante na Metáfora.
Por exemplo, as expressões t́ıpicas “estar em baixo” e “estar em cima” respeitam a metáfora
MAIS é ACIMA, associada ao facto de termos uma posição erecta (se estivermos funcionais,
podemos estar de pé, mais alto, activos; se não estivermos funcionais, ou até mesmo mortos,
estaremos necessariamente numa posição inferior, deitados; mais ainda, quem chega mais
alto numa montanha tem mais capacidades de observar e controlar o que está abaixo, o
que terá dado vantagens evolutivas à nossa espécie). Em suma, representar o conhecimento
necessário para processamento de Metáfora implica muito mais do que simples associações
lexicais. Por outro lado, a algoritmia necessária ao processamento de Metáfora levanta
também grandes desafios, tanto ao ńıvel da complexidade (lidar com grandes quantidades
de conhecimento estruturado), como da associatividade, ou seja, a Metáfora baseia-se na
relação entre dois domı́nios, mas que tipo de relações, como escolhê-las?

Partindo do prinćıpio que o conhecimento é representado através de redes semânticas,
os trabalhos computacionais actualmente conhecidos sobre Metáfora (e.g. [Veale, 1995])
baseiam-se essencialmente em alinhamento estrutural (structure alignment), a procura do
maior isomorfismo entre subgrafos (na figura 1, vemos um exemplo da interpretação para
a metáfora “My Surgeon is a Butcher”). Deste alinhamento, resultam associações de iden-
tidade. Por exemplo, se “sociedade” é “máquina”, então “famı́lia” é “motor”, “pessoa” é
“peça de motor”, etc. Leituras directas podem então ser feitas, com modelos simples, do tipo
“X é o Y de Z”, em que X e Y são co-mapeados e Z é o domı́nio em causa (objectivo). Por
exemplo, “a Famı́lia é o Motor da Sociedade”. Historicamente, esta abordagem evolui do
trabalho sobre Analogia (e.g. [Falkenhainer et al., 1989]), em que se procura exactamente
um conjunto de correspondências entre dois domı́nios no sentido de transferir conhecimento
de um para outro na resolução de problemas (e.g. resolver problemas de fluxo de energia
a partir de conhecimento de mecânica dos flúıdos). Evidentemente, esta descrição sobre
Analogia tem largas intersecções com a Metáfora, dáı a distinção entre as duas ser motivo
de constante controvérsia na comunidade cient́ıfica.

Nesta tese, a Metáfora teve uma atenção particular sobretudo durante a fase inicial,
em que se procurou uma metodologia de transferência de conceitos entre domı́nios diferen-
tes baseada no projecto Sapper, de Tony Veale [Veale, 1995]. Mostrando limitações claras,
nomeadamente a rigidez do alinhamento estrutural, extremamente senśıvel às estruturas
semânticas em causa (por exemplo, um desiquiĺıbrio na árvore “isa” é suficiente para invia-
bilizar uma metáfora mais promissora), o papel dos mecanismos de processamento Metáfora
desenvolvidos no presente trabalho foi sendo restringido a um módulo opcional de geração
de mapeamentos entre domı́nios. É notório que o trabalho de IA sobre Metáfora (tal como
quaisquer abordagens que envolvam racioćınio figurativo - em oposição a racioćınio literal
ou aquele que se baseia no significado convencional das palavras ou dos śımbolos em geral)
exigirá ainda muitos esforços de investigação.
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Figura 1: Interpretação de ’SURGEONS are BUTCHERS’ (a partir de [Veale, 1995]
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Integração Conceptual

Durante o desenvolvimento deste trabalho, a Metáfora foi gradualmente dando lugar à Inte-
gração Conceptual (Conceptual Blending, ou ainda Conceptual Integration) como modelo de
transferência de conhecimento entre dois domı́nios, fundamental, na nossa opinião, para a
modelação do pensamento divergente. A Integração Conceptual, proposta por Fauconnier
e Turner [Fauconnier and Turner, 1998] pressupõe um conjunto de processos e prinćıpios
que, segundo os autores, subjaz a criação de conceitos novos. Esta criação baseia-se na in-
tegração de duas ou mais estruturas conceptuais numa nova estrutura, a mistura (ou blend),
que herdará estrutura e semântica provenientes das estruturas conceptuais originais (ou in-
puts) mas também terá a sua estrutura e semântica emergentes do processo de Integração
Conceptual. Podemos enumerar um conjunto de exemplos de misturas:

• Personagens da mitologia grega (Fauno, Pégaso, Unicórnio, etc.) e da literatura
fantástica (Drácula, Batman, Homem-Aranha, etc.)

• Publicidade. Desde a escolha de nomes para produtos (e.g. Swatch=Swiss + Watch)
à associação com conceitos atraentes, é normal vermos uma liberdade imaginativa no
mundo da publicidade, muitas vezes recorrendo a misturas.

• Design. Desde o canivete suiço até ao carro anf́ıbio, é comum observar-se a mistura
de várias funcionalidades, comportamentos ou estruturas num novo conceito.

• Artes. A actividade art́ıstica é eminentemente imaginativa e portanto proṕıcia a
associações entre conceitos distantes. Abundam exemplos de misturas conceptuais
entre conceitos de diversas formas de arte (e.g. alguns quadros de Kandinsky são
inspirados em música, por exemplo a série “The Improvisations”), vários conceitos
dentro da mesma forma de arte aparentemente distantes (e.g. aplicação da estrutura
da Suite Barroca ao serialismo por Shoenberg, por exemplo na Suite para Piano
Op.25), ou a pura e simples inspiração em conceitos não art́ısticos.

Podeŕıamos continuar com muitos mais exemplos e demonstrar como as misturas de
conceitos são omnipresentes na nossa cultura e representam uma necessidade prática e
também criativa. Podemos também verificar uma relação com o que falámos sobre Metáfora.
Aqui também se relacionam pares de domı́nios (ou pares de conceitos, dependendo da
granularidade com que se considera) e é desta interacção que surgem os novos conceitos.
A Integração Conceptual vem efectivamente de trabalho relacionado com Metáfora, mas
propõe-se como uma visão mais englobante, ou seja a Metáfora será um tipo de Integração de
Conceitos. De facto, a primeira etapa da Integração Conceptual consiste na determinação de
um conjunto de mapeamentos (não necessariamente isomórficos) entre os conceitos de input,
o que é também o primeiro objecto de estudo nas abordagens computacionais de Metáfora.
No entanto, a Integração Conceptual propõe os passos subsequentes, também válidos para
a Metáfora segundo os autores. Aqui, mais uma vez, há alguma controvérsia quanto à
validade destas afirmações, que discutiremos adiante. Independentemente da relação ou
não com Metáfora, Fauconnier e Turner propõem-nos uma metodologia de criação de novos
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conceitos a partir de conceitos potencialmente distantes que, defendemos, é extremamente
promissora para áreas como a criatividade computacional. De acordo com estes autores,
dado um mapeamento entre dois conceitos de input, a criação de uma mistura conceptual
atravessa três fases:

• Composição. [Consiste na] “projecção do conteúdo de cada um dos inputs na mis-
tura. Por vezes, este processo envolve a ’fusão’ de elementos dos inputs (...)”
[Grady et al., 1999]. Considerando todo o conjunto de projecções dos inputs, novas
relações ficam dispońıveis que não existiriam anteriormente em nenhum dos inputs in-
dividualmente. Os elementos emparelhados são projectados para a mistura tal como
as suas relações e elementos vizinhos. Esta operação chama-se projecção selectiva (ou
selective projection), pois alguns elementos são projectados, outros não. Por exemplo,
num véıculo anf́ıbio, há aspectos que são herdados de barco (casco) e de automóvel
(rodas).

• Completamento. [É o] “preenchimento de padrões na mistura, evocados quando a
estrutura projectada dos inputs ’encaixa’ com informação na memória de longo prazo.
Desta forma, o processo de completamento é muitas vezes uma fonte de conteúdo
emergente na mistura”

[Grady et al., 1999]. O conhecimento de background frames, modelos cognitivos e cul-
turais, permite que estruturas complexas projectadas na mistura a partir dos inputs
possam encaixar em padrões conhecidos. Estes padrões (que surgem pela confrontação
da mistura com a memória de longo prazo) são então “completados” dando potenci-
almente origem a estrutura emergente. Por exemplo, o véıculo anf́ıbio encaixa com o
padrão de objecto flutuante, logo deve-se ter atenção a pormenores como o isolamento
do motor, ou à estabilidade em ondas.

• Elaboração. [Consiste na] “Simulação mental da mistura, que pode ser efectuada
indefinidamente”[Grady et al., 1999]. A estrutura de uma mistura pode ser elabo-
rada. Este processo é chamado “correr a mistura” (ou running the blend). Consiste
em trabalho cognitivo efectuado de acordo com a lógica emergente da mistura. Por
exemplo, imaginando um véıculo anf́ıbio, poderemos deduzir que deverá ser extrema-
mente dispendioso, deverá ter uma forma arredonda na parte inferior. Podemos ainda
elaborar mais e imaginar posśıveis aplicações (marinha, recreio, etc.).

Estas fases não ocorrem necessariamente em sequência ou na ordem descrita, apesar
de ser aquela que aparenta ser mais intuitiva. Como poderemos verificar, cada uma está
descrita de uma forma genérica e, acima de tudo, permitiria, teoricamente, um conjunto
infinito de misturas a partir de quaisquer dois conceitos. É necessário restringir ou controlar
o processo de geração de misturas novas, por outras palavras, não deverá ser válida qualquer
composição, completamento ou elaboração, pelo menos se pretendermos a aplicabilidade
do novo conceito. Fauconnier e Turner propõem também um conjunto de Restrições de
Optimalidade (ou Optimality Constraints):
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• Integração - Uma mistura tem que constituir uma entidade fortemente coesa, que
possa ser manipulada como um todo. Por exemplo, um pégaso (cavalo com asas)
seria muito mais correcto, em termos de integração de um cavalo com um pássaro,
do que um pássaro que fosse cavalo ao mesmo tempo, com nariz e bico, cascos e
garras simultaneamente. O primeiro “encaixa” numa entidade única (um cavalo, mas
com asas), o segundo é extremamente amb́ıguo (será uma criatura, outra, as duas ao
mesmo tempo, nenhuma?).

• Completamento de Padrões - Caso “encaixe” parcialmente com algum padrão em
memória, deverá ser posśıvel completar a mistura de forma a torná-la um todo mais
coerente. Por exemplo, o conceito de pureza está associado a um conjunto de atributos
(leve, branco, virgem, etc.). Caso tenhamos um conceito C que seja compat́ıvel com
o conceito de pureza (em memória), este último tornar-se-á um padrão que poderá
trazer conhecimento extra para o conceito C (e.g. C é puro, logo C é leve, branco,
virgem, etc.).

• Topologia - Para todo o input e todo o elemento nesse input que seja projectado para
a mistura, todas as relações e elementos relacionados com esse elemento deverão ser
também projectadas para essa mistura, mantendo as mesmas relações de vizinhança.

• Maximização de Relações Vitais - Fauconnier e Turner nomeiam um conjunto de
relações que consideram “relações vitais”: change, identity, time, space, cause-effect,
part-whole, representation, role, analogy, disanalogy, property, similarity, category,
intentionality and uniqueness. Uma mistura deverá maximizar a existência destas
relações na sua estrutura conceptual.

• Intensificação de Relações Vitais - Quanto mais intensas sejam as relações vitais, mais
correcta deverá ser uma mistura.

• Rede - A manipulação de uma mistura como uma unidade fortemente coesa deverá
manter as ligações aos inputs sem ser necessária particular atenção nesse sentido. Por
outras palavras, deverão ser mantidas associações aos inputs de uma forma que não
exija particular esforço. Por exemplo, um pégaso é facilmente visto como um “cavalo
com asas”, ou seja existe uma ligação óbvia aos inputs (cavalo e pássaro).

• Descompactação - A mistura, só por si, deverá permitir, a quem a compreende, a
reconstrução de todo o processo, desde os inputs aos mapeamentos utilizados.

• Relevância - Qualquer elemento projectado para a mistura deverá ter uma relevância
própria. Por outras palavras, deve-se eliminar todo o tipo de conhecimento ad-hoc ou
aleatório da mistura.

Estas restrições comportam-se como “pressões que competem entre si” (competing pres-
sures), pois a satisfação de uma pode provocar a não satisfação de outra. Por estas razões,
o espaço de posśıveis misturas pode tornar-se extremamente complexo. Por outro lado,
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como veremos nesta tese, estas oito restrições talvez se possam reduzir a um número me-
nor. Todas estas questões enfrentam o problema de uma definição informal e vaga. Apesar
de muito já terem escrito sobre as Restrições de Optimalidade, em lado algum Fauconnier
e Turner definem formalmente qualquer das restrições ou explicam em detalhe suficiente
para tal ser feito por outrém. Assim, qualquer formalização ou redução no número de
restrições será também subjectivo. Nesta tese, tentaremos ser sempre fiéis aos prinćıpios
enunciados, mesmo que estes estejam descritos de forma vaga. Do nosso ponto de vista, a
Integração Conceptual sugere uma metodologia extremamente promissora para a invenção
de conceitos. No entanto é importante também referir algumas reservas relativas a vários
aspectos. O primeiro e talvez fundamental é o já referido carácter vago (por vezes até
evasivo) de algumas explicações, por exemplo sobre as definições de “espaço mental”1, de
algumas das Restrições de Optimalidade, das frames2. Uma consequência da ausência de
definições formais é claramente a dificuldade em classificar a Integração Conceptual como
uma teoria. Acaba por não se ter um método não amb́ıguo de distinguir uma mistura
de uma não mistura. No limite, qualquer coisa é uma mistura, ou seja uma consequência
da Integração Conceptual. Isto significa que a Integração Conceptual não pode ser falsi-
ficável, ou seja, de um ponto de vista cient́ıfico (segundo Popper [Popper, 1959]) não é uma
teoria. Esta ausência de uma abordagem estritamente cient́ıfica contrasta também com
algumas pretensões arrojadas sobre a capacidade da Integração Conceptual poder explicar
o surgimento da cognição como a conhecemos hoje, e mesmo da referência demasiado su-
perficial a teorias (ou dissertações) que foram claramente percursoras (como a de Koestler
[Koestler, 1964] ou Hampton [Hampton, 1987], para dar dois exemplos). Estas perspec-
tivas mais ambiciosas surgem efectivamente na última publicação, “The Way We Think”
([Fauconnier and Turner, 2002]), uma obra posterior à generalidade da construção da nossa
abordagem. Daqui, tiraremos alguns exemplos que servirão para uma das validações que
aplicaremos ao nosso modelo.

Modelo de Invenção de Conceitos

A abordagem seguida nesta tese para apresentação dos seus vários aspectos é “de cima
para baixo” ou top down. Ou seja, começaremos por um modelo abstracto de Criatividade
Computacional, que será instanciado por um modelo de Invenção de Conceitos e, finalmente,
por uma efectiva implementação, o Divago.

Sobre o modelo de Criatividade Computacional, não será mais do que a proposta de
um conjunto de prinćıpios que se deverá considerar para elaborar um sistema criativo.
Estes prinćıpios resultam essencialmente do estudo feito sobre Criatividade, que comporta

1Um espaço mental (mental space) será a estrutura de conhecimento sobre qual se efectuam as operações.
Uma mistura é um espaço mental, um input é um espaço mental. Imaginamos tal construção como um
programa em lógica, ou simplesmente uma rede semântica.

2Será dado particular ênfase às frames nesta tese. Por agora, o leitor deve reter que são estruturas
parcialmente instanciadas que representam conceitos abstractos. Por exemplo, “meio de transporte” pode
ser uma frame que descreve o conceito abstracto de meio de transporte - deve ter um contentor, um meio
de locomoção, um condutor, etc.
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abordagens da Filosofia, Psicologia, Ciências Cognitivas e Inteligência Artificial:

• Conhecimento. Um modelo de criatividade deverá considerar uma base de conheci-
mento grande e héterogenea, no sentido de que não deverá incluir exclusivamente o
conhecimento tipicamente utilizado na resolução de um dado problema, mas sim so-
bre vários domı́nios diferentes e perspectivas sobre mais do que um tipo de problema
[Weisberg, 1999].

• Re-Representação. Tal como ter acesso a uma larga abrangência de conhecimento,
é também importante ter a capacidade de compreender o mesmo conhecimento de
acordo com diferentes pontos de vista. Um modelo de criatividade deveria ser
capaz de mudar a representação de um conceito sem modificar o seu significado
[Karmiloff-Smith, 1993].

• Bissociação. Um modelo de criatividade deverá ser capaz de encontrar e explorar
associações entre estruturas de conhecimentos distintas, nomeadamente estruturas
aparentemente distantes e não relacionadas [Koestler, 1964].

• Racioćınio no Meta-Nı́vel. Tal como ser capaz de processar o conhecimento, um mo-
delo de criatividade deveria ser capaz de processar os seus próprios processos, preferen-
cialmente sem empregar técnicas diferentes em cada ńıvel de abstracção [Colton, 2001,
Wiggins, 2001].

• Avaliação. Um modelo de criatividade deverá ser capaz de se auto-avaliar e reagir a
avaliações externas [Csikszentmihalyi, 1996, Boden, 1990].

• Interacção com o ambiente. Num modelo de criatividade não se pode descurar o
ambiente que o rodeia, tem que se considerar a situação da actor da criação como
parte de um todo, eminentemente social [Csikszentmihalyi, 1996].

• Propósito. Embora por vezes extremamente subtil, existe sempre um propósito por
trás de cada criação. Desde a satisfação de determinadas preferências estéticas à
resolução de um problema espećıfico, a criatividade surge como uma necessidade, não
como uma actividade sem propósito [Amabile, 1983].

• Divergência/Convergência. Um modelo de criatividade deverá considerar tanto o pen-
samento divergente como o pensamento convergente. O pensamento divergente foi
identificado por J. P. Guilford como sendo a “geração de informação a partir de ou-
tra informação, onde a ênfase recai sobre variedade e quantidade de nova informação
para uma mesma entrada” [Guilford, 1967]. O pensamento convergente será então
o oposto, onde tendemos a seguir sempre os mesmos procedimentos e racioćınios, já
conhecidos expĺıcita ou implicitamente. Se pensarmos em termos de resolução de
problemas, enquanto o pensamento divergente necessita da abilidade de “saltar fora
das normas”, muitas vezes resultando em associações inesperadas, o pensamento con-
vergente investe todos os recursos em focar os pontos fundamentais, trabalhando-os
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através de procedimentos bem definidos, até obter uma solução satisfatória. Um mo-
delo de criatividade deverá ser capaz de efectuar estes dois modos de pensamento, pois
o pensamento divergente procura a novidade e a surpresa, enquanto que o pensamento
convergente permite um controlo em direcção à utilidade.

• Processos comuns. Não existe razão para acreditar que, subjacente a um modelo de
criatividade, é necessário um conjunto de processos fundamentalmente diferentes dos
que são aplicados em racioćınio não criativo [Guilford, 1967, Csikszentmihalyi, 1996,
Koestler, 1964, Boden, 1990, Finke et al., 1992].

Estes prinćıpios são mais condutores do que obrigatórios, pois certamente poderemos
considerar como criativo um sistema que cumpra apenas alguns em detrimento de outros.
Embora possamos a partir daqui idealizar um sistema de IA criativo (como faremos no
caṕıtulo 4), o centro desta tese prende-se com uma instanciação que considera alguns destes
prinćıpios. Esta instanciação, num modelo de Invenção de Conceitos, é ainda um modelo
teórico, ou seja não implementado. Nesta tese, faremos a sua formalização e discutiremos
alguns aspectos relacionados com Criatividade. Por agora, daremos uma visão geral.

O modelo de Invenção de Conceitos que apresentamos foca essencialmente bissociação,
uma base de dados heterogénea, racioćınio no meta-ńıvel, divergência/convergência e
propósito. Isto significa que nos concentraremos menos na interacção com o ambiente e
avaliação e que deixaremos de lado a questão da re-representação. A interacção com o
ambiente será reduzida ao estabelecimento do objectivo pelo exterior, bem como alguns as-
pectos da configuração. A avaliação será através de um método simples de auto-avaliação.
Estas escolhas resultam de uma focalização no sujeito em detrimento da sociedade, ou seja
nos processos internos, de cognição, em vez dos processos de comunicação e percepção.
Quanto à questão da re-representação, uma vez que esta seria, só por si, pretexto para uma
nova tese, decidimos deixá-la de parte. No entanto, sempre que justificável, voltaremos a
esta questão ao longo da tese.

Antes de progredir nesta explicação, convidamos o leitor a considerar um cenário onde
a um sistema é dado um dado objectivo a cumprir. Este objectivo pode ser algo como “a
especificação de um meio de transporte voador”. O tal sistema não terá conhecimento sobre
aviação, ou f́ısica, ou algo que o possa levar, por simples dedução, a atingir o objectivo. Ou
então, terá conhecimento suficiente, mas a complexidade do espaço de procura será tal que é
imposśıvel atingir o objectivo em tempo útil. Depois de algum tempo de procura, o sistema
poderia então entrar num “modo de divergência”, em que combinações entre conceitos em
memória ocorreriam, sempre verificando se algo similar ao objectivo é encontrado. Depois
de encontrar a ideia mais promissora (suponhamos, por exemplo, que depois de algum
tempo a divergir, teŕıamos encontrado um“pássaro ligado a uma caixa”), e caso não tenha
atingido o objectivo, este sistema passaria de novo a um “modo de convergência”, de forma
a elaborar a ideia até uma solução satisfatória. Se, mesmo assim, não conseguisse resolver
o problema, o sistema passaria então a tentar inventar novas formas de combinar conceitos,
elaborar, ou procurar, i.e. ele passaria a tentar melhorar os próprios processos. O nosso
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Figura 2: Um Modelo de Invenção de Conceitos

modelo de invenção de conceitos centra-se na parte de divergência deste cenário. Na figura
2, mostramos um diagrama. Temos seis módulos:

• Base de conhecimento multi-domı́nio. Conterá conhecimento de mais do que um
domı́nio, representado de várias maneiras (e.g. factos, regras, grafos, redes neuronais).

• Mecanismo de bissociação. Este mecanismo começa por procurar mapeamentos entre
conceitos. Depois, a partir destes mapeamentos, transfere conhecimento, a partir de
cada um dos conceitos co-mapeados, para o novo conceito, bissociativo.

• Mecanismo de racioćınio. Este mecanismo usa duas estratégias. A estratégia diver-
gente usa o mecanismo de bissociação para gerar novos conceitos e escolhe os que
obtenham uma avaliação melhor. A estratégia convergente usa o mecanismo de ela-
boração para gerar melhoramentos nos conceitos resultantes da estratégia divergente.

• Avaliação. O módulo de avaliação calcula a medida em que, de acordo com um
objectivo, um dado conceito satisfaz os critérios escolhidos (e.g. novidade e utilidade).

• Elaboração. Elaborar ou adaptar significa trabalhar um conceito de forma a corres-
ponder ao contexto bem como a restrições dependentes do domı́nio em causa. Por
outras palavras, o módulo de Elaboração dirige-se a eliminar inconsistências e a com-
pletar o conceito com conhecimento válido e coerente com o todo.

• Objectivo. O objectivo deverá ser dado externamente. Define o propósito do conceito
que está a ser procurado.

O funcionamento pretendido para este modelo consiste no seguinte: dado um objec-
tivo, o mecanismo de racioćınio envia ao mecanismo de bissociação um pedido para criar

13



associações entre conceitos da base de conhecimento3; o mecanismo de bissociação procura
mapeamentos entre conceitos da base de conhecimento (ou seja, pontos de transferência pro-
missora de conhecimento); é escolhido um mapeamento (ou conjunto de mapeamentos) e
feita a transferência de dados entre os dois conceitos co-mapeados, resultando num conjunto
de posśıveis conceitos bissociativos; este conjunto é passado de volta para o mecanismo de
racioćınio, que escolhe o conceito que melhor satisfaça os critérios de avaliação, passando-o
à estratégia convergente; a estratégia convergente consiste em procurar a melhor elaboração
do conceito novo, ou seja o conceito é passado para o módulo de elaboração, que devolve um
conjunto de posśıveis elaborações; o Divago escolhe então o que melhor cumpre os critérios
de avaliação, que será o conceito devolvido pelo sistema.

Sabemos que esta explicação peca por ser um pouco abstracta, pelo que sugerimos ao
leitor interessado a leitura do caṕıtulo respectivo na tese, onde apresentamos uma forma-
lização do nosso modelo, bem como explicações mais detalhadas dos vários aspectos aqui
mencionados.

Podemos agora passar ao Divago, desenvolvido a partir de uma instanciação do modelo
agora descrito.

Divago

A motivação principal para o projecto Divago consiste na instanciação, o mais aproximada
posśıvel, do modelo de Invenção de Conceitos acima descrito. Naturalmente, o seu desen-
volvimento exigiu um conjunto de compromissos entre o objectivo de ser um modelo de
invenção de conceitos e as especificidades decorrentes da construção de um modelo compu-
tacional. Este factor levou a transformações nas ideias base, nomeadamente nas estratégias
(convergente e divergente) e na escolha das restrições.

Na figura 3, mostramos a arquitectura do Divago. Daremos agora uma breve explicação
de cada módulo bem como do fluxo de dados (representado por setas no diagrama).

A base de conhecimento contém um conjunto de conceitos, cada um definido de acordo
com diferentes tipos de representação (mapas conceptuais, regras, frames, restrições de in-
tegridade e instâncias). O primeiro passo para a invenção de um novo conceito consiste na
escolha dos inputs, neste caso um par de conceitos. Uma vez que, para o desenvolvimento do
Divago, focámos os mecanismos de divergência e bissociação, dedicámos poucos recursos a
esta escolha. Por conseguinte, ela é actualmente dada por um utilizador ou escolhida aleato-
riamente. Dado um par de conceitos, o módulo Mapper constrói um alinhamento estrutural
entre as definições destes conceitos (mais especificamente, são co-mapeados elementos dos
dois mapas conceptuais). Passa-se então o mapeamento escolhido ao módulo Blender, que
então produz um conjunto de projecções que implicitamente definem o conjunto de todas as
posśıveis misturas (blends) para o respectivo mapeamento. Este corresponderá ao espaço

3Aqui assumimos que se começa por um modo divergente, quer por já ter sido explorado externamente
um modo convergente, como no cenário proposto acima, quer por se pretender deliberadamente inventar
novos conceitos.
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Figura 3: A arquitectura do Divago

de procura utilizado pela estratégia divergente, no módulo Factory. Na figura 4, podemos
ver um exemplo de um conjunto de projecções, a partir dos domı́nios “horse” e “bird”.

A Factory é baseada num mecanismo de procura paralelo, um algoritmo genético (AG),
que procura pela mistura que melhor corresponde à avaliação dada pelo módulo Constraints.
Antes de enviar cada mistura para este módulo, a Factory envia-a para o módulo Elabo-
ration, onde é sujeito à aplicação de inferências dependentes do contexto ou do domı́nio
em causa. Portanto, o AG interage com os módulos Constraints e Elaboration durante a
procura.

A avaliação de uma mistura, efectuada pelo módulo Constraints, é baseada numa imple-
mentação das Restrições de Optimalidade (descritas acima). Além da própria mistura, esta
implementação tem também em conta a própria base de conhecimento. É aqui que procura
as restrições de integridade e as frames necessárias a esta avaliação, tal como a árvore on-
tológia (a isa tree) ou outro conhecimento genérico. Posto este conhecimento e um objectivo
dado pelo exterior na forma de uma query, o módulo Constraints calcula o valor de uma
mistura a partir de uma soma pesada com oito parcelas (uma para cada Restrição). Note-se
que os componentes da avaliação enumerados (objectivo, restrições de integridade, frames,
etc.) participam no cálculo do valor de várias Restrições de Optimalidade.

O módulo Elaboration aplica essencialmente inferência sobre a lógica interna da mistura
(que pode ter ou não caracteŕısticas emergentes) e sobre a lógica da base de conhecimento
aplicada à mistura. Por exemplo, se um input conter uma regra “tudo o que é branco e leve
voa”, e outro uma regra “tudo o que voa tem que ter asas”. Se estas regras forem projectadas
para a mistura e, por exemplo, esta consistir num objecto “branco e leve”, então passa a
“voar” e “ter asas”. Esta operação é efectuada no módulo Elaboration. Evidentemente, se
estas regras estivessem na base de conhecimento (não na mistura), o efeito seria idêntico.

Depois de atingir uma solução satisfatória ou um número especificado de iterações, a
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Figura 4: Um exemplo de geração de mistura. Os arcos com etiqueta M identificam um
mapeamento e os arcos com etiqueta γ′ correspondem a projecções.

Factory pára o AG e devolve a melhor solução encontrada. Em alguns casos, este re-
sultado é enviado a um módulo Interpretation, que produz uma interpretação do novo
conceito segundo um método bem definido. Em colaboração com outros investigadores,
desenvolvemos módulos de interpretação que geram imagens 2D (o “house-boat experi-
ment” [Pereira and Cardoso, 2002]), imagens 3D (o jogo actualmente a ser desenvolvido,
[Ribeiro et al., 2003]), descrições textuais ([Pereira and Gervás, 2003]) e som sintetizado
(actualmente em desenvolvimento, [Martins et al., 2004]). Cada um destes módulos foi de-
senvolvido para uma aplicação espećıfica, resultando numa linguagem de conceitos bem defi-
nida. Não é de esperar um módulo Interpretation genérico, que consiga gerar interpretações
em qualquer representação. Pelo contrário, este será sempre um módulo de contacto do Di-
vago com o exterior, que varia consideravelmente com o contexto e os objectivos de cada
aplicação.

Tanto o módulo Mapper como o módulo Elaboration são opcionais, por diferentes razões.
Os mapeamentos produzidos pelo Mapper são baseados em trabalhos sobre Analogia e
Metáfora (que serão apresentados na secção 3.4). Talvez por esta ser ainda uma área em
desenvolvimento, em algumas situações, os resultados obtidos são algo restrictivos pelo
que, sem termos implementado procedimentos alternativos, permitimos também a definição
manual dos mapeamentos. O módulo Elaboration pode também ser ignorado caso seja
necessário na experimentação. Quando se analisam os resultados, pode acontecer que a
elaboração esconda os verdadeiros resultados, i.e., este módulo pode ter corrigido problemas
ou alterado a mistura tornando dif́ıcil a tarefa da validação do sistema.

Em comparação com o modelo de invenção de conceitos apresentado acima, surge uma
diferença primordial respeitante às estratégias de divergência e convergência pois estas não
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se apresentam separadas no Divago. Pelo contrário, trabalham de uma forma entrelaçada:
o método de divergência (que consiste na exploração do espaço de misturas pelo AG) utiliza
o método de convergência (que consiste na aplicação do módulo Elaboration) de cada vez
que examina uma mistura. Esta “nova” visão acaba por ser coerente com a ideia (corro-
borada por muitos investigadores) de que há constantes mudanças de modo no processo
criativo (divergente/convergente, high/low level of arousal, geração/exploração, etc.). Ou-
tra diferença é que o Divago não processa os seus próprios mecanismos internos. Por outras
palavras, deixamos o racioćınio no meta-ńıvel para desenvolvimentos futuros. A principal
razão para esta ausência é, naturalmente, a complexidade que dáı adviŕıa. A implementação
computacional de um modelo de bissociação cred́ıvel é, só por si, um problema abrangente,
trabalhoso e complexo, como veremos nesta tese.

Resultados

O sistema Divago demonstra ser capaz de gerar “misturas” (blends) de pares de concei-
tos que lhe são dados como entrada (input concepts), sendo estas misturas, com alguma
frequência, consideravelmente diferentes dos conceitos de entrada. Este facto é relevante
na fase de experimentação e validação, em que se pretende atestar as capacidades criativas
do Divago. Esta avaliação da criatividade do sistema não é, naturalmente, simples nem
paćıfica, pois é necessário definir critérios precisos e, na medida do posśıvel, universais. Os
prinćıpios seguidos, também dados pelo estudo sobre criatividade, baseiam-se no prinćıpio
de que algo criativo deverá ser novo (e portanto não ser uma solução t́ıpica para um pro-
blema) e útil ou valioso de acordo com o contexto pretendido. Consideramos que algo é
novo (ou não t́ıpico) para um sistema quando este não tem na sua base de dados nada seme-
lhante. Na maioria das experiências feitas, isto corresponde à comparação de cada mistura
com os conceitos de entrada. Consideramos algo valioso quando, em face de um problema a
resolver, consegue satisfazer os requisitos mı́nimos. Na maioria das experiências feitas, isto
corresponde à aplicação de uma medida de satisfação de restrições. Aplicando formalismos
e metodologias recolhidas da Criatividade Computacional, referentes à avaliação e caracte-
rização da criatividade de um sistema, o Divago demonstra ser capaz de gerar resultados
não t́ıpicos e valiosos, atingindo valores que atestam que é capaz de divagar em relação aos
conceitos de entrada e ao espaço de procura, mesmo que de uma forma por vezes simplista.
Como veremos, este espaço é extremamente grande e complexo.

Foram feitas experiências em vários contextos diferentes, com objectivos e em fases di-
ferentes. Daremos uma visão geral seguindo uma ordem cronológica, discutindo o objectivo
e resultados de cada uma.
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“House-Boat”

A primeira experiência com o Divago, denominada house-boat experiments, consistiu na
criação e observação de todo espaço de procura gerado para dois conceitos muito sim-
ples, de casa e de barco. Foi implementado um Interpretador de linguagem Logo (uma
mini-linguagem de programação com poucas palavras chave para fazer desenhos a duas di-
mensões). Era dado a este módulo cada um dos conceitos gerados, convertido para um con-
junto de instruções nesta linguagem. Esta conversão era feita a partir de re-interpretações
das instâncias de casa e barco utilizadas4. O conjunto de instâncias corresponderia então
ao que chamamos o espaço de procura – o conjunto de conceitos dispońıveis para um sis-
tema procurar a solução de um problema. O contexto aqui assumido seria o de um sistema
cujo objectivo seria propôr desenhos de novas casas. Tendo apenas um desenho de uma
casa, recorrendo a uma base de dados heterogénea (com outros conceitos diferentes de casa,
tais como de um barco) e a um processo de bissociação, seria então posśıvel gerar casas
contendo novas ideias (por exemplo, um ćırculo como janela - note-se que, no desenho da
casa, só existem quadrados, triângulos e rectângulos). Na figura 5, mostramos as instâncias
originais. Nas figuras 6, e 7 mostramos alguns dos resultados.

Figura 5: A casa e o barco, segundo a interpretação dos respectivos programas em Logo.

Figura 6: Alguns resultados da experiência house-boat.

Nesta experiência, não se utilizaram os módulos Factory ou Constraints, porque foram
desenvolvidos posteriormente e também porque se pretendia obter o conjunto de resultados
completo, sem qualquer método de procura ou seriação.

4Existiam duas instâncias de casa e de barco, com correspondência directa com um programa em Logo.
Para novas associações de conceitos, eram substitúıdos os subprogramas em Logo correspondentes a essas
associações - por exemplo, se circle era co-mapeado com square, substitúıa-se o código de um por outro em
cada uma das instâncias.
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Figura 7: Alguns resultados da experiência house-boat.

A partir dos dois inputs de casa e barco, o Divago gerou uma larga proporção (acima
de 90% num total de 1300 misturas) de misturas consideravelmente diferentes de desenhos
t́ıpicos de casas e barcos. Naturalmente, estamos a incluir conceitos mal-formados de casas
e barcos (e.g. com elementos em falta, violando prinćıpios básicos como da sobreposição).
Avaliar a correcção dos resultados (em termos do domı́nio em causa) não era objectivo
desta experiência pelas seguintes razões: pretendia-se estudar a complexidade e variedade
de resultados; pretendia-se verificar a capacidade de transferência de elementos entre os
dois domı́nios diferentes; grande parte das mal-formações deve-se a questões laterais a esta
investigação (precisão nos programas Logo, questões subjectivas). Conclúıu-se, portanto,
que muito mais do que reinventar (i.e. convergir para) os inputs, o Divago é capaz de gerar
soluções novas (i.e. divergir), apesar de potencialmente erradas ou defeituosas.

Analisando as misturas das figuras 6 e 7, podemos observar algumas transferências (e.g.
a escotilha quadrada no primeiro barco da figura 6; a janela circular na casa abaixo deste
último), misturas que partilham claramente conhecimento de ambos inputs, tanto de uma
forma visualmente aceitável (e.g. o barco com vela rectangular) como infeliz (e.g. a casa
com porta triangular e um mastro em cima).

Voltando ao contexto dado acima (de um sistema que procura criar um novo conceito),
imaginemos então que tal sistema não consegue criar conceitos satisfatórios de “casa”. Pas-
sando a um modo de divergência, este sistema começaria a afastar-se gradualmente do
domı́nio original, e entraria num “espaço de misturas” (ou space of blends), onde os concei-
tos não pertencem a um só domı́nio, mas sim partilham conhecimento de vários domı́nios
diferentes. Na figura 8, apresentamos esta ideia graficamente.

Em geral, sobre a house-boat experiment, podemos dizer que, embora os dois conceitos
de casa e barco estejam próximos um do outro (são ambos estruturas f́ısicas, utilizadas por
humanos), este pode ser um exemplo razoável de modelação computacional de pensamento
divergente porque uma quantidade grande de novas instâncias foi gerada a partir de apenas
dois inputs.

“Horse-Bird”

As experiências de geração de misturas a partir dos conceitos de cavalo e pássaro (horse e
bird) incluem já o modelo de geração de misturas completo. Aqui, pretend́ıamos estudar este
modelo sob vários aspectos: o efeito individual de cada uma das Restrições de Optimalidade;
o efeito das frames; a previsibilidade do sistema. Para estudar o efeito individual das
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Figura 8: Uma procura num ambiente multi-domı́nio

restrições, executou-se o Divago utilizando isoladamente cada uma. A partir de um conjunto
estatisticamente significativo de execuções para cada uma das configurações, analisámos o
espaço de procura, bem como o efeito resultante nas misturas. Podemos sumarizar esta
análise, para cada uma das oito Restrições de Optimalidade:

• Integração. As frames funcionam como estruturas agregadoras, como pontos atrac-
tores no espaço de procura. Quando uma mistura instancia uma frame, a procura
tende a fixar-se na vizinhança do respectivo ponto no espaço. As frames com maior
abrangência (que são instanciadas por mais elementos do conceito) tendem a ser pre-
feridas, embora quando demasiado grandes acabem por ser abandonadas. A comple-
xidade do espaço de procura aumenta com a dimensão do mapeamento (o número de
associações dadas pelo algoritmo de mapeamento). Finalmente, verifica-se também
que, com as frames utilizadas, o Divago produziu resultados distantes dos inputs, i.e.
o sistema diverge dos seus conceitos de entrada.

• Completamento de Padrões. Esta restrição leva ao completamento parcial de
padrões na mistura. Por outras palavras, se temos uma frame (e.g. “meio de trans-
porte”), o sistema instancia parte desta frame, deixando outra parte por instanciar
(e.g. a mistura “é um contentor” mas não “tem um condutor”). Isto verifica-se por-
que, se instanciasse inteiramente a frame, seria a Integração a ter valor máximo (não
haveria já nada a completar). Isto significa que, isoladamente, esta restrição terá
pouco valor, levando apenas a estruturas dispersas e incompletas. Por outro lado,
pode-se tornar muito útil em combinação com a Integração pois pode ter um papel de
“acelerar” o processo de procura, trazendo gradualmente para a mistura as relações
e elementos necessários para a instanciação de uma dada frame. Quanto ao espaço
de procura, é muito rico em máximos locais e, tal como na Integração, os resultados
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distam consideravelmente dos inputs.

• Topologia. Esta restrição tem um papel de “força inercial”, pois leva a que o conhe-
cimento contido na mistura mantenha exactamente as mesmas caracteŕısticas que nos
inputs. No limite (em variados máximos locais), a mistura consistirá na simples união
dos inputs. Evidentemente, se olharmos para a mistura e compararmos com cada um
dos inputs, verificamos que a única diferença é o conhecimento extra pertecente ao
outro input.

• Maximização de Relações Vitais. Esta restrição tem um comportamento elemen-
tar. O Divago é levado a escolher a mistura que tem o maior número de relações vitais,
o máximo global, de uma forma rápida (o espaço de procura não tem máximos locais,
mas sim um conjunto grande de máximos globais). Por outro lado, os resultados são
muito variados e incontroláveis, pois a única preocupação é conter as relações vitais,
independentemente dos seus argumentos. Nesta variação nota-se a ausência de coesão
nos conceitos (por exemplo, não se evitam violações de restrições de integridade, como
um cavalo ter simultâneamente cabeça de pássaro e de cavalo, ou quatro e duas patas
ao mesmo tempo).

• Intensificação de Relações Vitais. A aplicação desta restrição depende do algo-
ritmo de mapeamento, como iremos ver. Uma vez que só se aplica uma algoritmo
de mapeamento (do Mapper), os resultados são triviais (qualquer escolha dará valor
máximo). Por esta razão, esta restrição acabou por não ser testada.

• Descompactação. Esta medida leva a resultados algo similares aos da Topologia,
sendo a principal diferença que as relações na mistura acabam por se agregar em sub-
grafos que são projecções dos inputs. I.e. a Descompactação copia apenas as relações
que não provoquem ambiguidades (por exemplo o conceito leg torna a descompactação
amb́ıgua pois existe em ambos os inputs). Tem, tal como a Topologia, um papel de
“força inercial”. Outra observação é que as misturas resultantes tendem a ser similares
a um dos inputs.

• Rede. Esta restrição foi por nós definida em função da Topologia e Descompactação,
pois estas duas garantem a integridade das ligações aos inputs. Por outras palavras,
caso a Descompactação ou a Topologia sejam altas, seguramente a Rede também será.
Sendo então uma restrição dependente de outras, o seu estudo individual deixa de fazer
sentido, por isso acabámos por não voltar a considerar esta restrição nas medidas de
avaliação de misturas.

• Relevância. Esta restrição tem, no Divago, uma importância primordial, pois é
aquela que tem em conta os objectivos fornecidos ao Divago. Dado o mundo de
possibilidades para tal escolha, resolvemos utilizar duas queries simples. A primeira
consiste em “algo que voe”, ou seja a mistura deverá conter a relação (ability( , f ly)).
Sem surpresa, o Divago conseguiu atingir esta relação em todas as execuções, o espaço
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de procura era trivial (à semelhança dos espaços de Topologia e Descompactação) pois
era apenas pedido que construisse uma relação sem mais pré-condições (por exemplo,
não era necessário ter asas ou pernas, ou qualquer outra coisa, poderia ser simples-
mente a relação ability(bird, fly)). A segunda query é mais complexa, pois tem
também uma frame, ability explanation, que exige que o objecto voador tenha
suporte causal que explique a abilidade de voar (ter um meio de locomoção que per-
mita voar). O espaço de procura manteve-se similar, pois existe também um máximo
global (que consiste na máxima satisfação das condições da frame) e nenhum máximo
local. Como veremos nas experiências seguintes, caso existam várias frames simul-
taneamente na query, haverá vários máximos locais e o espaço de procura pode se
tornar extremamente acidentado.

O teste seguinte, efectuado ainda à mistura cavalo-pássaro, consistiu em percepcionar
quais as configurações (pesos dados às Restrições de Optimalidade) e conhecimento (frames,
restrições de integridade) necessários a criar um pégaso, a figura mitológica do cavalo que
voa, com asas de pássaro. Foi definido formalmente este objectivo (qual o conjunto exacto de
relações e elementos que participam na definição do pégaso) e testadas várias configurações.
Conclúıu-se que o papel de cada restrição é muito diferenciado e surgiu, pela primeira vez,
a noção de que, para o funcionamento do Divago, as Restrições de Optimalidade se podem
reduzir a um menor número. Mais, as restrições de Integração e Relevância e, em menor
grau, as de Topologia e Descompactação, são fundamentais. Para as duas primeiras, é
necessário também um conjunto de frames, algumas das quais se revelaram universais ao
longo da tese, pois passaram a ser utilizadas com frequência em qualquer das experiências
seguintes. Haverá muito mais a observar sobre estes aspectos, que exigem um conjunto de
detalhes técnicos não adequados a um resumo, pelo que convidamos mais uma vez o leitor
interessado à leitura da tese.

O problema da interpretação dos resultados para além da representação interna (que se
resume sobretudo a redes semânticas) foi uma constante desde o ińıcio do desenvolvimento
deste trabalho. Falámos já de uma interpretação 2D (nas casa-barcos). Para a experiência
do pégaso, desenvolvemos um trabalho em parceria com o Dr. Pablo Gervás, da Universidad
Complutense de Madrid, cujo objectivo seria a utilização de métodos de Natural Language
Generation para gerar descrições textuais das misturas [Pereira and Gervás, 2003]. A me-
todologia usada consistiu na comparação de caracteŕısticas (features) com cada um dos
inputs. Alguns resultados foram:

(1) A horsebird is a horse. A horsebird has two wings and feathers. It can fly,
and it moves by flying.

(2) A horsebird is a horse. A horsebird can fly, it has feathers, a beak, and wings
for flying and it moves by flying.

(3) A horsebird is a horse. A horsebird can fly. It chirps, it has wings for flying
and it moves by flying.
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“Noun-noun compounds”

Um dos problemas na experimentação de sistemas como o Divago (que utilizam repre-
sentações de conhecimento simbólicas) prende-se com a construção da base de conhecimento.
Esta deverá ser o mais isenta e menos subjectiva posśıvel. Para um sistema com afinidades
com o Divago, o C3, desenvolvido por Fintan Costello [Costello, 1997], foi constrúıda uma
base de conhecimento com mais de 170 substantivos, cada um descrito como sendo um
conceito (num formato compat́ıvel com uma rede semântica). Sendo-nos dado acesso a esta
base de conhecimento, bem como a experiências com vista à análise da criatividade do C3,
as presentes experiências (publicadas em [Pereira, 2003]) têm então dois objectivos princi-
pais: testar o Divago com uma base de conhecimento de dimensão grande (lembramos que
até aqui, teŕıamos feito experiências com apenas dois conceitos na base de conhecimento);
testar o Divago com os mesmos inputs que foram dados ao C3 e comparar os resultados.
Destas experiências surgiu também uma metodologia de experimentação para o Divago,
que foi seguida em diante, que compreende duas fases: afinação, que consiste em, dado um
conjunto de resultados esperados (targets), construir as frames necessárias e determinar
as configurações adequadas (determinar os pesos das Restrições de Optimalidade); livre
geração, que consiste em, dado um objectivo, executar o sistema variando os inputs dados.

Também nesta experiência se passou a analisar os resultados através dos critérios de
Ritchie [Ritchie, 2001], que pretendem avaliar a criatividade de um sistema a partir de um
conjunto de parâmetros. Estes critérios serão descritos em detalhe no caṕıtulo 2.

Cada substantivo, na base de conhecimento do C3, é descrito por um conjunto de pares
atributo-valor, tal como abaixo para necklace (colar).

Necklace

name: (necklace)

feature-set: (solid inanimate static)

color: (silver gold)

shape: (small circular)

structure:

made of: metal

parts: (pendant)

found:

function: ((wears person3 necklace neck)

(decorates necklace person3))

A correspondência para uma rede de conceitos é trivial, se usarmos os atributos como
relações e os valores como elementos, bem como o substantivo necklace (por exemplo, “color:
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Frame Descrição
bframe A mistura tem as mesmas relações que o segundo substantivo (embora os argumentos

possam variar)
bcore A mistura tem as mesmas relações e argumentos (excepto as relacionadas com

função) do segundo substantivo
analogy transfer Na mistura, existe uma transferência de todas as relações e elementos vizinhos

de um elemento do primeiro substantivo para o elemento co-mapeado
function substitution Na mistura, uma função do segundo substantivo é substitúıda por uma função do

primeiro
single differentiating feature Primeiro e segundo substantivos diferem apenas numa caracteŕıstica,

que, na mistura, é transferida para o contexto do segundo
function transfer Na mistura, o segundo substantivo ganha uma função que fazia parte do primeiro

substantivo
shape transfer Na mistura, o segundo substantivo ganha o forma do primeiro
structure transfer Na mistura, o segundo substantivo ganha a estrutura do primeiro
slot set completion Na mistura, os atributos do segundo substantivo que não tinham valor são preenchidos

com os correspondentes valores do primeiro substantivo
feature set contrast Na mistura, o conjunto de caracteŕısticas do segundo substantivo é substitúıdo pelo

conjunto correspondente do primeiro

Tabela 1: As frames usadas nas experiências

(silver gold)” passará a corresponder a “color(necklace, silver)” e “color(necklace, gold)”).
O conjunto de afinação consistiu então em 30 pares de substantivos escolhidos aleatori-

amente. Para cada um, foi construida uma solução esperada (o tuning target). O processo
de afinação consiste então em obter as configurações e frames do sistema de forma a obter
o tuning target para cada par de substantivos. A partir desta fase, obteve-se um conjunto
de 10 frames novas (na tabela 1).

Quanto à fase de livre geração, estabelecemos a seguinte query como objectivo:

property(A,[animate, inanimate]),

property(A,[liquid, solid]),

property(A,[static, mobile]),

made of(A, ),

shape(A, ), color(A, ),

actor(F, ), actee(F, )

Os parentesis rectos representam disjunção (o conceito A tem quer ser ou animate

ou inanimate). As relações actor e actee representam a função do conceito. Ou seja,
nesta experiência, queremos gerar conceitos animados ou inanimados, liquidos ou sólidos,
estáticos ou móveis, feitos de algo, com forma e cor definidas. Também deverão cumprir
alguma função. A livre geração foi aplicada usando 33 pares de substantivos escolhidos
aleatoriamente (o free generation set). Todas as frames da tabela 1 estavam dispońıveis
para que o sistema procurasse a selecção de frames que melhor se classificasse em relação à
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função de avaliação (uma soma pesada com as Restrições de Optimalidade).
Na figura 9, mostramos exemplos da geração das misturas “fish tail1 desk” e de “fish

spider”, com os respectivos inputs (“fish tail1”, “desk”, “fish” and “spider”) e frames apli-
cadas.
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Figura 9: Frames usadas na construção de “fish tail1 desk” e “fish spider”

Em comparação com as experiências anteriores, verificámos que agora se obtiveram
resultados menos distantes dos inputs. Para além das diferenças decorridas de contextos
diferentes e objectivos diferentes, este facto representa um maior controlo sobre o Divago
(graças à metodologia seguida de afinação+livre geração) ao ńıvel das configurações. Há,
pois, menos divergência, mas a troco de uma maior satisfação do objectivo.

Tal como referido anteriormente, tivémos também acesso a experiências relativas à
análise de criatividade do C3. Nestas experiências, os autores executaram o sistema para
10 pares de substantivos escolhidos aleatoriamente (e.g. “eagle” e “tulip”). O C3 gera
interpretações sobre o que é que a composição dos dois substantivos (e.g. “eagle tulip” e
“tulip eagle”) poderá significar, em Inglês (e.g. “An eagle tulip is a tulip that grows on an
eagle”). Dadas as diferenças entre os dois sistemas e toda a subjectividade sobre a avaliação
de criatividade, abstivémo-nos de avaliar “qual o mais criativo”, mas sim se o Divago seria
capaz de atingir, pelo menos, “o mesmo grau de criatividade”. Ou seja, quais os parâmetros
para atingir os mesmos resultados (e com os mesmo parâmetros se, mesmo assim, é capaz
de divergir, ou seja criar mais variedade do que o C3).

Demos as mesmas entradas ao Divago, e obtivemos os mesmos resultados com pequeno
erro, sem ser necessário criar novas frames. Surpreendentemente, o Divago precisa de poucas
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frames (essencialmente acore, bcore, e analogy transfer) para obter os mesmos resulta-
dos. Quanto à variedade, não temos dados para avaliar com precisão sobre as capacidades
do C3, pelo que podemos apenas dizer que, com os mesmos parâmetros dados, o Divago é
capaz de gerar mais do que um resultado diferente.

A conclusão a que chegámos nesta comparação, apesar de ser estatisticamente frágil
(poucos exemplos de teste, muitas diferenças entre os sistemas), foi que podemos configurar
o Divago para o mesmo tipo de tarefas do C3 (interpretação de “noun-noun compounds”)
se escolhermos o conjunto correcto de frames. Por outro lado, se considerarmos também
as outras aplicações nesta tese, podemos argumentar que o Divago oferece uma mais larga
gama de possibilidades, apesar de claramente não ser tão especializado em cada uma (como
é o caso do C3).

Geração de criaturas 3D

A realidade virtual, e mais especificamente o mundo dos jogos, é sem dúvida um atractivo e
promissor campo de testes e aplicações para sistemas como o Divago, pois este pode partici-
par como um gerador de conceitos, que acreditamos importante para aumentar a dinâmica
e imprevisibilidade de tais aplicações. Em torno desta motivação, um motor de blending
para jogos está a ser desenvolvido [Ribeiro et al., 2003] que será uma versão do Divago es-
pecificamente para tais ambientes, que são claramente mais exigentes em termos de recursos
computacionais do que as restantes aplicações que aplicámos nesta tese. No sentido de verifi-
car a viabilidade deste projecto e de obter uma primeira incursão neste problema espećıfico,
fizémos um conjunto de experiências de geração de criaturas com o Divago. Genericamente,
usámos a mesma metodologia da experiência anterior (afinação+livre geração). Agora,
usando conhecimento de origem diferente nas duas fases. Na primeira, constrúımos uma
bateria inicial de 12 criaturas, baseadas no conhecido jogo de cartas Magic c© The Gathering,
que contém centenas de criaturas diferentes, cada uma com as suas caracteŕısticas f́ısicas,
valores de ataque, defesa, côr, custo de energia e funcionalidades.

Mais uma vez, no sentido de evitar a criação enviezada (biased) de resultados, pedimos
a outro investigador, não familiar com a metodologia ou com a Integação Conceptual, a
escolha de 14 pares de criaturas, propondo a invenção de 3 novas criaturas que resultassem
da mistura dos pares escolhidos (dando um total de 42 criaturas). A partir deste conjunto de
dados, foi-nos posśıvel fazer a fase de afinação, donde sáıram algumas novas frames. Excepto
nalgumas situações, não foi dif́ıcil encontrar combinações de frames que dessem origem à
mesma mistura ou a misturas parecidas. Para alguns casos, no entanto, não foi posśıvel obter
uma combinação de frames estável (o espaço de procura torna-se extremamente sinuoso,
pois para integrar algumas frames, a mistura deixa de integrar outras), levando-nos a um
compromisso entre frames genéricas (mas por vezes instáveis) e frames espećıficas (mas
limitadas).

Para a fase de livre geração, aplicou-se o sistema a criaturas com interpretação em 3
dimensões (num racioćınio análogo ao dos desenhos 2D das experiências casa-barco). Ou
seja, cada mistura que o Divago produziu foi enviada para um módulo Interpreter que gerou
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Figura 10: As criaturas dispońıveis na base de conhecimento.

Figura 11: Algumas misturas de horse|dragon, horse|werewolf e werewolf|dragon.

um objecto 3D. Na figura 10, mostramos as criaturas originais (um lobisomem, um dragão
e um cavalo) e na figura 11 mostramos três exemplos das misturas obtidas. Tal como nas
outras experiências, o leitor interessado deverá ler o caṕıtulo 6, pois áı poderá ter acesso às
questões técnicas não abordadas neste resumo.

Exemplos clássicos da Integração Conceptual

Uma das principais contribuições desta tese é uma implementação computacional da In-
tegração Conceptual de [Fauconnier and Turner, 1998]. Como tal, é importante validar o
modelo implementado com os exemplos dados por estes autores.

Na secção 3.3.2 e no apêndice A, apresentamos o que chamamos de exemplos clássicos
de Integração Conceptual. Tratam-se de case studies recorrentes na literatura (sobre Inte-
gração Conceptual) e que pensamos dever ser considerados quando se propõe um modelo
de Integração Conceptual. Restringimos este conjunto de casos aos que satisfazem três
condições: ser completamente especificados (discriminar, por exemplo, os mapeamentos);
considerar apenas dois inputs; e ser explicitamente descritos como exemplos de Integração
Conceptual.

Para cada um dos exemplos, a tarefa de validação consiste então em determinar se o
Divago consegue gerar a mistura em causa tendo os mesmos inputs e mapeamentos descritos
nos exemplos. Uma segunda tarefa consiste em estudar as configurações necessárias, ao ńıvel
das Restrições de Optimalidade e das queries (com respectivas frames).

Embora o Divago não tenha pretensões de ser um modelo exaustivo de Integração Con-
ceptual, o que implica que validamos não a Integração Conceptual como um todo, mas sim
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as capacidades do nosso modelo de responder a alguns tipos, mais restrictos e menos vagos,
de tal mecanismo. O Divago foi efectivamente capaz de atingir os objectivos propostos a
este ńıvel, em qualquer dos exemplos dados, o que, tanto quanto sabemos, acontece pela
primeira vez ao ńıvel de implementações computacionais. Sendo assim, acreditamos que este
sistema será também muito valioso para a investigação na área da Integração Conceptual.

Destas experiências, várias conclusões gerais surgiram, latentes: o conjunto de Res-
trições de Optimalidade pode ser reduzido (no limite, propomos apenas três: Integração,
Descompactação e Relevância); a representação simbólica de conhecimento utilizada (tanto
da nossa parte, como do projecto C3 ou da literatura em Integração Conceptual) é muito
limitativa, talvez um passo a seguir envolva outra abordagem (não simbólica?); com inputs
de tamanho médio (mapa de conceitos com entre 15 e 30 relações), o espaço de procura
pode-se tornar extremamemente complexo.

O Divago foi testado com preocupações de validade cient́ıfica, sempre debatendo-nos
com a relatividade inerente à área da criatividade. Por isso, as conclusões tiradas sobre
alguns aspectos poderão envolver subjectividade, sempre que se torna imposśıvel de seguir
uma via mais objectiva. Em suma, o Divago demonstrou não só ser capaz de divergir,
uma vez que consegue com facilidade não reinventar inputs, mas também de cumprir os
objectivos que lhe são propostos sob forma de queries sempre que a solução exista, ou seja
alcançável em tempo útil, no espaço de procura.

Outros projectos estão a ser desenvolvidos que aplicam o Divago, mas que estão ainda
em estado inicial, nomeadamente sobre śıntese de som [Martins et al., 2004], geração de
piadas (puns) e recursos para criatividade lingúıstica [Pereira and Gervás, 2004].

Contribuições

Esta tese pretende trazer as seguintes contribuições:

• Uma reflexão, visão geral e estado da arte acerca da investigação sobre criatividade,
de acordo com diferentes perspectivas, tais como Filosofia, Psicologia, Ciências Cog-
nitivas e Ciências da Computação.

• Um modelo formalmente especificado de Invenção de Conceitos, baseado em processos
e prinćıpios que são coerentes com a pesquisa sobre criatividade efectuada.

• Um modelo computacional de Integração Conceptual, integrado no Divago. Esta é
a primeira abordagem computacional à Integração Conceptual (Conceptual Blending
[Fauconnier and Turner, 1998]) que inclui todos os aspectos fundamentais deste me-
canismo.

• Um sistema, o Divago, que instancia parcialmente o modelo de Invenção de Conceitos.
O Divago é aplicado a diferentes domı́nios e demonstra ser capaz de gerar resultados
que respeitam os critérios de análise de criatividade utilizados.
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• Uma análise de criatividade dos resultados do sistema. Analisamos a criatividade do
Divago através dos formalismos e metodologias de Graeme Ritchie [Ritchie, 2001], Ge-
raint Wiggins [Wiggins, 2001, Wiggins, 2003] e Simon Colton et al [Colton et al., 2001].
Sendo ainda raros (ou mesmo inexistentes) os trabalhos na área da Criatividade Com-
putacional que efectuam este tipo de análises, pensamos que a presente tese poderá
trazer resultados e valores que serão úteis para futuras comparações e estabelecimento
de benchmarks.

Estrutura da tese

Este documento está estruturado da seguinte forma:

• No caṕıtulo 1, faremos uma introdução em que descreveremos quais as principais
questões que nos propomos investigar, quais as contribuições que trazemos, bem como
uma visão geral e resumida da tese.

• O caṕıtulo 2 versa sobre criatividade, em que fazemos uma pesquisa perante vários
pontos de vista diferentes. Tal como se pretende fazer com esta tese, começamos pelas
Ciências Humanas e terminamos nas Ciências da Computação, mais especificamente
nas abordagens correntes dentro da Inteligência Artificial. Deste caṕıtulo, o leitor
receberá as bases que lhe permitirão compreender a elaboração do modelo de Invenção
de Conceitos (caṕıtulo 4) e a metodologia e formalismos de avaliação aplicados aos
resultados do Divago (caṕıtulo 6).

• Sendo o conceito a estrutura de conhecimento básica nesta tese, o caṕıtulo 3 começa
por definir o que se entende por conceito no actual contexto. Aqui, também definire-
mos a noção de Invenção de Conceitos, contrapondo à Formação de conceitos, duas
metodologias de criação de conceitos. Neste caṕıtulo, também nos dedicaremos à apre-
sentação da Integração de Conceitos, um ponto fundamental desta tese, bem como um
tema relacionado: a Combinação Conceptual. Neste último, focaremos um sistema
com semelhanças com o Divago, o C3, que será motivo de atenção no caṕıtulo 6, de
experimentação. Para terminar, será dada atenção à Metáfora e à Analogia, que têm,
nesta tese, um papel de mecanismos de transferência entre domı́nios. Domı́nios estes
que, nas abordagens computacionais correntes, são normalmente representados por
redes de conceitos. Após este caṕıtulo, o leitor terá obtido um conjunto de definições
sobre mecanismos de construção, mistura e relacionamento de conceitos, que serão
fundamentais para compreender nomeadamente os aspectos práticos deste trabalho.

• O caṕıtulo 4 é dedicado à descrição e especificação formal do Modelo de Invenção de
Conceitos. Este será um modelo teórico, no sentido em que não será implementado
ou especificado ao ńıvel de detalhe de implementação computacional. Será, pois, um
modelo ideal, uma vez que compreende um conjunto de módulos e funcionalidades
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que deveriam estar presentes num qualquer sistema cujo objectivo seja a invenção de
conceitos.

• A descrição detalhada do Divago é feita no caṕıtulo 5, um sistema que implementa
parcialmente o modelo apresentado no caṕıtulo anterior. Esta descrição seguirá a
estrutura deste modelo (sendo necessárias redefinições da formalização ou aprofunda-
mento das mesmas), bem como do modelo Integração Conceptual, que é a base do
mecanismo de bissociação do Divago. Deste caṕıtulo, o leitor poderá perceber, em
profundidade, o sistema Divago, nomeadamente a sua representação de conhecimento,
mecanismo de procura e modelo de integração conceptual.

• No caṕıtulo 6, toda a experimentação efectuada com o Divago é relatada. Mostram-
se cinco diferentes experiências: house-boat, que envolve a geração de misturas de casas
com barcos, cujo objectivo primordial é a análise do espaço de procura; horse-bird,
que consiste em misturar os conceitos de cavalo e pássaro, para o estudo do comporta-
mento do Divago com atenção às restrições de optimalidade (optimality constraints);
noun-noun, que se baseia na geração de combinações de nomes (noun noun combina-
tions), à semelhança do projecto C3; creatures generation, para testar as capacidades
do Divago de, integrado num ambiente de jogos, ser um motor de geração de criatu-
ras (e potencialmente outros elementos do jogo: cenários, objectos, comportamentos);
classical blending examples, para a validação do modelo de Integração Conceptual
do Divago. O leitor terá então uma ideia mais precisa do comportamento do sis-
tema nestas diferentes situações, nomeadamente em relação à novidade e utilidade
dos resultados obtidos. Aqui, analisaremos, sempre que posśıvel, os resultados de
acordo com os formalismos e metodologias de Ritchie [Ritchie, 2001] e Colton et al
[Colton et al., 2001].

• As conclusões serão reservadas para o caṕıtulo 7, bem como uma reflexão sobre as
contribuições e trabalho futuro. O leitor encontrará aqui um conjunto de direcções
posśıveis para investigação, tanto ao ńıvel de aspectos genéricos sobre criatividade,
invenção de conceitos ou integração conceptual, como especificamente relacionados
com o desenvolvimento de versões futuras do Divago.

Este resumo pretendeu sintetizar em poucas páginas os tópicos orientadores da tese,
por forma a dar uma visão geral dos seus objectivos, contribuições e resultados. Como
focamos apenas os pontos principais, de uma forma superficial, o leitor interessado não
deverá dispensar a sua leitura. Todos os dados aqui referidos estão descritos no apêndice
E, que acompanha este documento.

Por razões práticas relativas às bases de conhecimento usadas, aos artigos publicados,
bibliografia utilizada, e evidentemente também à projecção internacional deste trabalho,
esta tese está escrita na ĺıngua Inglesa, pelo que pedimos a compreensão ao leitor menos
familiarizado.
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Chapter 1

Introduction

It is obvious that invention or discovery, be it in mathematics or anywhere else,
takes place by combining ideas... (Hadamard)

Pour inventer il faut penser à côté (Souriau)

The useful combinations [of ideas] are precisely the most beautiful. (Poincaré)

1.1 Motivations

One of the most common criticisms made to Artificial Intelligence methods of problem
solving is their rare ability to deal with situations not predicted in the specification. The
search space is normally strictly defined, however flexible, complex and adaptable the system
shows to be. When facing a problem with no satisfactory solution in its search space, an AI
system simply returns, at best, the least unsuccessful result that exists in that search space.
Even when the solution is achievable via the simplest operation of changing perspective,
relaxing a constraint or adding a new symbol. In other words, such systems are hardly
capable of performing what we normally call creative behaviour, a fundamental aspect of
intelligence.

However, the recognition of the deficit of creativity within AI systems does not by itself
bring new solutions more than it reasserts that computers, as we known them, are formal
machines that are limited to their closed worlds. The question arises then about what can be
done to make them more creative or even if, with the current computational architectures,
it is possible at all. Up to some extent, some of the current state-of-the-art paradigms (such
as Evolutionary Computation, Multi-agent Systems or Case Based Reasoning) have been
responsible for much of the developments regarding the first part of the question. Indeed,
we have been developing systems less rigid than some years before and sometimes even
producing striking results. Nevertheless, when any of such a system finds a situation for
which it was a priori not specified to solve, it is definitely not able to cope with it.
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Chapter 1. Introduction

The second half of the question concerns primarily to what the essential components of
a creativity model could be and whether these can be present in a formal machine. There is
no definitive answer for this, yet we can allow ourselves cross-fertilization from other areas,
such as cognitive sciences and philosophy, in the speculation and building of a possible
solution.

The relationship between Intelligence and Creativity poses further questions. Are these
two independent properties of cognition or, on the contrary, are they interrelated and in-
separable? More specifically, if taking a traditional AI perspective: isn’t creativity about
search? Is it a different approach to intelligence?

These questions are present throughout the length of this thesis, which is an attempt
to approach them according to a perspective that, centered on computer science and AI,
grabs contributions from other areas.

1.2 Overview

There is general agreement that the ability to find relations between apparently unrelated
knowledge is a creative activity. As can be found in many writings from the area of cognitive
psychology, the creative faculties of the human mind are very much dependent on the ability
to search through spaces or “viewpoints” that are different from the ones immediately or
more obviously involved. For example, according to [Marin et al., 1991], our capacities of
abstraction, symbolic analysis, of finding not-so-obvious relations, among others, are asso-
ciated to creative production. Indeed, many important discoveries, great music pieces or
paintings were reportedly achieved in moments of wandering in domains not directly related
to the actual problem (e.g. the famous dream of Kekulé, the discoverer of the structure of
the Benzene molecule, who was dozing by the fire and dreaming of self-biting snakes when he
made his major discovery [Boden, 1990]). One of these psychology theories [Guilford, 1967]
concentrates itself on the idea of divergent thinking. Arthur Koestler [Koestler, 1964] also
wrote about a related phenomenon, naming it bisociation. From the computer science point
of view, the modelling of divergent thinking and bisociation seems extremely difficult mainly
because it is far from formally specified and, even if it was so, it would certainly demand
cognitive capacities that are still not achievable by computers. Yet, this does not mean
the impossibility of building models, perhaps less ambitious, that are capable of achieving a
smaller degree of divergence, in which a computer is able to reason in a multi-domain knowl-
edge base, eventually solving problems via transferring knowledge from different domains.
Since different domains will contain different knowledge and possibly different symbols and
representations, a model for reasoning in a multi-domain environment must have transla-
tion mechanisms, such that the transferred knowledge will still have meaning in the new
context. There are well known cognitive mechanisms that establish cross-domain relation-
ships, namely Metaphor and Analogy, which have been studied to some depth within AI,
and which are certainly good candidates for plausible cross-domain transfer.

A perfect cross-domain transfer mechanism will be futile if the new knowledge is not
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integrated into its novel context in a meaningful way. This integration demands processes
and principles able to generate knowledge structures that can be considered as a whole
rather than the sum of its parts. In other words, the transfer of new knowledge should not
be condemned to result in a pastiche or a concatenation of the parts, instead emergence of
new structure, function or behaviour is to be favoured. Two research trends from the Cog-
nitive Sciences aim to solve this problem, namely Conceptual Combination and Conceptual
Blending (also known as Conceptual Integration). The former traditionally deals with the
understanding of linguistic combinations (such as “pet fish” or “mountain stream”) while
the latter aims at a much broader goal of explaining cognition in general. Despite their
differences, they both share the intent of understanding the cognitive ability of integrating
knowledge from distinct sources. Both have been subject to computational modelling so
far.

Finally, the unavoidable question of evaluation could justify a research programme on
its own, with worries regarding expertise, intentionality, complexity, aesthetic judgement,
constraint satisfaction and novelty, to name a few topics. In the current context, the eval-
uation should be primarily concerned with whether the knowledge structures just created
are worth considering further use and treatment within the domain it was designed for. In
other words, if it is both novel and useful within this domain. The computational approach
to novelty assessment has been based on similarity metrics or clustering techniques while
determining usefulness is normally done via application of rules or checking constraint sat-
isfaction. Conceptual Blending proposes a set of generic Optimality Constraints that aim
to govern the generation of a blend. However, these are not explained formally, raising the
challenge of their computational modelling.

We have just summarized some of the components for a Model of Concept Invention
from cross-domain transfer. By concept invention, we mean the generation and adding of
a new concept (or knowledge structure) to a domain in which this new concept could not
be obtained by any internal means (e.g. deduction) and still it can be accepted as valid
concept for the domain. For example, before the invention of the airplane, the domain
of “transport means” did not have the entire knowledge to lead to it. It was necessary
to observe physical laws that were not taken into account for any other transport means
before (even the balloon) in order to create different concepts of propulsion and sustaining
structure.

1.3 Contributions

The main contributions of this thesis are:

• A reflection, overview and state-of-the-art about creativity research, according to dif-
ferent perspectives such as Philosophy, Psychology, Cognitive Science and Computer
Science;

• A formally specified Model of Concept Invention, based on processes and principles
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that are coherent with the current research on creativity;

• A Computational Model of Conceptual Blending, which becomes integrated within
Divago. This is the first computational approach to Conceptual Blending
[Fauconnier and Turner, 1998] that includes all the fundamental aspects of this frame-
work.

• An implemented system, Divago, which partially instantiates the Model of Concept
Invention. Divago was applied to different domains and demonstrated to be capable
of generating results that pass the criteria of creativity assessment used.

• An assessment of the creativity of the results and of the system. We analyze the
creativity of Divago with the frameworks suggested by Ritchie [Ritchie, 2001], Wiggins
[Wiggins, 2001, Wiggins, 2003] and Colton et al [Colton et al., 2001].

1.4 Structure

The remainder of this thesis is structured as follows:

• Chapter 2 is about research on creativity. It provides the necessary background re-
garding theories of creativity, computational approaches to creativity and frameworks
for creativity assessment. From this chapter, the reader will also receive the generic
guidelines that underlie the rest of the thesis, namely at the level of the Model of
Concept Invention (chapter 4) and of assessment of the results of Divago (chapter 6).

• Chapter 3 starts by defining what a concept is in the context of this thesis. It
also defines concept invention and compares it with concept formation, two kinds of
concept building processes. Working with concepts is fundamental for this thesis, and
specifically the framework of Conceptual Blending, which is also presented in this
chapter. Conceptual Combination, a related area, is also presented, with particular
focus to C3, a system that will later on (in chapter 6) be compared to Divago. The
chapter ends with an overview of computational approaches to Metaphor and Analogy,
which deal with concept networks and from which we developed a part of Divago (the
Mapper). After this chapter, the reader will have obtained a first insight on the
practical aspects involved in this work (in chapter 5) and a clearer impression of the
necessary notions regarding concepts.

• Chapter 4 is dedicated to the description and formalization of the Model of Concept
Invention. There, the reader will find a theoretical model, in the sense that it has not
been totally implemented or specified up to the detail of computational implemen-
tation. This model provides a set of modules that we argue should be present in a
system that is meant to invent concepts.

• Chapter 5 describes Divago in detail, a system that partially implements the model
presented in chapter 4. This description will take into account the modules of that
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model (with redefinition of the formalizations when necessary) and the framework of
Conceptual Blending, which is the basis for the bisociation mechanism of Divago. Af-
ter finishing this chapter, the reader will know Divago in depth, namely its knowledge
representation, search mechanism and blending model.

• Chapter 6 is dedicated to the experiments made with Divago. We show the five
different experiments made: house-boat, for analysis of the search space; horse-bird,
for the study of behaviour of Divago with regard to the Optimality Constraints; noun-
noun, for the generation of noun noun combinations and comparison to C3; creatures
generation, for the testing of Divago as an engine for generating concepts in a game
environment; and classical blending examples, for the validation of the Blending model
implemented in Divago. The reader will get an idea of the behaviour of the system
within these different situations, namely with attention to the novelty and usefulness
of the results. Throughout this chapter, we will analyze the system according to the
frameworks of Ritchie [Ritchie, 2001] and Colton et al [Colton et al., 2001].

• Chapter 7 is dedicated to the final conclusions and discussion of future directions to
take. There, the interested reader will find a multitude of research directions, some
related to the generic aspects of creativity, concept invention and Blending, some more
specifically directed towards the further developments of Divago.
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Creativity

In the first half of this chapter, we present approaches to creativity within Psychology,
Philosophy, Cognitive Sciences and AI. The second half is specifically dedicated to the area
of computational creativity, where we will show the state-of-the-art both at the level of the
theoretical foundations and at the level of implementations.

2.1 Creativity theories

Creativity has been the motivation for many written lines throughout human history, for it
is such an appealing and mysterious aspect of our existence. However, it is also noticeable
that its study, from a scientific perspective, has been neglected until reaching the second half
of the twentieth century [Albert and Runco, 1999]. The early twentieth century scientific
schools of psychology, such as structuralism, functionalism and behaviorism, were devot-
ing practically no resources at all to the study of creativity [Sternberg and Lubart, 1999].
The often cited foremost turning point was when Joy Paul Guilford, in his American Psy-
chological Association presidential address, challenged psychologists to pay attention to
what he found to be a neglected but extremely important attribute, namely, creativity
[Guilford, 1950]. The once called first golden age of creativity then took place, with many
newly founded research institutions. However this revolution did not last for long. In fact,
from 1975 to 1994, only about 0,5% of the articles indexed in Psychological Abstracts con-
cerned creativity [Sternberg and Lubart, 1999]. Today, it seems that the subject has gained
another burst (the second golden age). Indeed, unprecedented resources are being directed
towards creativity research in many areas.

In the next sections, the reader will be introduced to some of the works on creativity
that influenced this thesis. These works come from the areas of Psychology (section 2.1.1),
Philosophy (section 2.1.2) and Cognitive Sciences (2.1.4). Without having direct influence
to this thesis, the work of Csikszentmihalyi is also presented in section 2.1.3 for three
special reasons: it is often cited in works of Creativity and AI1; it is also a respected and

1Particularly in multi-agent systems approaches.
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referential work within the area of Psychology; it reasserts some of the conclusions given by
the previous sections, attesting their current acceptance. In section 2.1.5, we will complete
the state-of-the-art of creativity with an overview of other works. Finally, a synthesis will
be made in section 2.1.6, with particular emphasis on the aspects relevant to this thesis.

2.1.1 Divergent Production

Until J. P. Guilford introduced the operation of divergent production in his Structure of In-
tellect(SOI), creativity was generally considered a phenomenon separated from intelligence,
a state of mind that was common for the gifted ones and a blessing for the occasionally
fortunate. Until Guilford, the prominent works could be roughly summarized to three:
Catherine Cox ([Cox, 1926]), who argued that creativity was a complex, multivariate be-
havior (as opposed to a single ability or trait)2; Helmholtz [Helmholtz, 1896] and Wallas
[Wallas, 1926], the latter two being the creators of the four steps model3 (preparation, incu-
bation, illumination and verification) that became the classical stance, within Psychology,
of what a creativity model should involve. This model is not contradicted by Guilford and
is still in agreement with many current views of the subject. In section 2.1.3, we will take
a closer look to this model. Now, we are interested in giving the reader a short overview of
SOI, with particular focus on divergent production, the operation more linked with creative
production.

The major aim of SOI was to give to “the concept of ’intelligence’ a firm, compre-
hensive, and systematic theoretical foundation” [Guilford, 1967]. This very ambitious goal
must be viewed from a historical perspective: during the first part of the twentieth century,
many mental measuring tests appeared, many times motivated for quantifying “intelli-
gence”. This was potentiated by the advents of the first and second world wars, when
fast and effective processes of selection were fundamental for recruitment (mainly in areas
such as the air force or intelligence services). The overstated relevance of testing to the
conception of intelligence justified the sarcastic sentence of E. G. Boring: “... intelligence
as a measurable capacity must at the start be defined as the capacity to do well in an
intelligence test” [Boring, 1923]. Guilford himself, who also made significant contributions
to this area of psychometry, pointed out the lack of a coherent psychological theory be-
hind tests in general, this becoming the general motivation for the SOI. His more specific
intentions were to provide SOI as a frame of reference for the study of the “intellectual
factors”. An intellectual factor corresponds to an aspect of intelligence represented by a
triple operation/product/content (see figure 2.1).

For each factor, Guilford proposes tests, the majority of them implying correlations of
many factors. For example, for cognition of symbolic classes (CSC), he suggests tests like:

2As cited in [Martindale, 1999]
3As cited in [Albert and Runco, 1999]
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Evaluation

Memory

Figure 2.1: The Structure of Intellect (SOI) (from [Guilford, 1967]).

Which number pair does not belong with the others?

A. 1-5

B. 2-6

C. 5-8

D. 3-7
answer:C (in all other cases the difference is 4)

This test has correlations with CSR (cognition of symbolic relations) and CMS (cognition
of semantic systems). With SOI, there would be no single value to represent the intelligence
of a subject, instead a set of values would represent its main intellectual qualities and defects.

Perhaps the major contribution of SOI to the area of psychology and more specifically to
the notion of intelligence has to do with the demonstration, supported by a very large variety
and quantity of empirical work, that intelligence is not monolithic, there is a multitude of
factors to take into account and one cannot find a unique and definite measure (as Catherine
Cox had claimed before). However uncontroversial and obvious this may seem today, the fact
is that only during the last decades of the twentieth century there was general acceptance
that single measures like the IQ are just very fragile indicators for the whole behavior and
capacities of people.

Another important contribution, the one that most interests us, has to do with the
inclusion of creativity as a fundamental aspect of intelligence. More specifically, Guilford
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considers creative production as a general ability that humans have, and which depends
on many different intellectual factors, but, most of all, on an operation: that of divergent
production (DP). His formal definition of divergent production reads: “generation of infor-
mation from given information, where the emphasis is upon variety and quantity of output
from the same source; likely to involve transfer. ” [Guilford, 1967]. DP comprehends four
fundamental abilities:

• fluency - generation of a large number of solutions for a problem

• flexibility - generation of varied solutions

• originality - generation of solutions that are: rare within the population; remotely
related; clever responses

• elaboration - ability to think of details

As with the rest of SOI, Guilford proposes a series of tests. In DP-tests, subjects
are asked to exhibit evidence of divergent production in several areas, including that of
semantic units (e.g. listing consequences of people no longer needing to sleep), of figural
classes (finding as many classifications of sets of figures as is possible), and of figural units
(taking a simple shape such as a circle and elaborating upon it as often as possible). For
example, the following test should measure divergent production of semantic classes (DMC):

From the list of words at the left, make some small subclasses of objects:

1. arrow

2. bee

3. crocodile

4. fish

5. kite

6. sailboat

7. sparrow

alternate classes

1,2,5,7 (found in the air)

3,4,6 (found in the water)

2,3,4,7 (animals)

3,4,5,7 (have tails)

etc.

From these tests and reflections on the whole model, Guilford also proposes another
concept as fundamental for creativity, that of transfer recall : “Things are recalled in con-
nection with cues with which they were not experienced before. Transfer recall is retrieval
of information instigated by cues in connection with which the information was not commit-
ted to memory storage. ”[Guilford, 1967]. In other words, transfer recall is the operation
that allows knowledge in memory, however semantically distant and apparently unrelated
to the problem at hand, be brought and applied to a current situation. This is what we call
cross-domain transfer throughout this thesis.

39



Chapter 2. Creativity

To summarize, the operation of divergent production is the very basis for the set of
phenomena that are commonly associated to creativity in people, although, as Guilford
himself points out,

‘...creative potential is not a single variable, any more than intelligence. Cre-
ative performances in daily life are enormously varied in the demands that they
make on intellectual resources. The performances singled out for their more
obvious signs of creativity - novelty, ingenuity, inventiveness - probably involve
one or more divergent production abilities as key aspects, or transformation
abilities, outside the DP-operation category as well as within it.’

Although creativity is normally more linked to free-association, unconstrained reasoning
or unexpectedness than to method, constraint satisfaction or inference, it has been clear
throughout many studies (many described or referred along this document) that a great
deal of knowledge mastering, expertise within a domain and focus is fundamental. Thus,
although not so much enhanced by Guilford, the converse operation of DP, convergent
production (CP), is also fundamental (as pointed out by Csikszentmihalyi, in section 2.1.3),
since it provides deductive reasoning or compelling inferences. “Convergent production
rather than divergent production is the prevailing function when the input information is
sufficient to determine a unique answer.” SOI tests for evaluating convergent production
essentially measure the ability to solve puzzles, equations, classification tasks, problems in
general that yield a logically sound unique solution.

Guilford makes a thorough comparison between DP and CP:

‘[In DP], the problem itself may be loose and broad in the requirements for
solutions; or the problem, if properly structured, may call for a unique solution,
but the individual may have an incomplete grasp of it; or he may comprehend
the problem fully, but he is unable to find the unique answer immediately.(..) In
CP, an answer can be rigorously structured and is so structured and an answer
is forthcoming without much hesitation. In the former, restrictions are few; in
the latter they are many; in the former, the search is broad; in the latter it
is narrow. In the former, criteria for success are vague and somewhat lax and
may, indeed, stress variety and quantity; in the latter, criteria are sharper, more
rigorous, and demanding.’

Thus, according to Guilford, CP and DP are two complementary facets of our productive
capacity. This capacity, along with cognition (which he considers a more specific operation:
that of comprehension and understanding), memory and evaluation, make part of a model
of problem solving and creative production that the author proposes as an operational in-
tegration of all the aspects of SOI. Although this model is essentially a speculation, it is
interesting to reproduce the original diagram to the reader (figure 2.2).
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Figure 2.2: Guilford’s model of problem solving and creative production (from
[Guilford, 1967], pp 315).

It is far out the scope of this thesis to present this model in detail. Since Guilford did
not explore it deeply himself, it is an abstract suggestion for how things should happen
when solving problems. Two aspects, however, should be retained: Guilford argued for
problem solving and creative production being the same, thus building a common model for
both; he considers a heterogenous memory with many kinds of representation, perspectives,
domains, all cohabiting together, in an organized whole. This is what we call multi-domain
environment throughout this thesis.

We would like to finish this section with some considerations about Guilford’s work,
taking into account, obviously, that this is a work with almost 40 years old. The first
issue is the supremacy of verbal versus non-verbal representation, which sometimes seems
to imply that thought is defined by (verbal) language and not the opposite. Allowing some
speculation from our side, we believe this is due to the dualist tendency of the time, where
mind is detached from matter, as opposed to the current view, of embodiment, where some
cognitive scientists see consciousness and mind as a result of interaction of cognition with the
whole physical experience. In other words, today, Guilford’s symbolic and semantic contents
would be as much connected with verbal symbols as with any other kinds of symbols, such
as social or behavioral symbol systems (e.g. politeness rules, traffic lights).

Another criticism relates to the vagueness of some definitions, such as cleverness or
generation of logical possibilities. Being all these related to divergent production, it is of
much importance to clarify them. Here too, we must allow ourselves some speculation
bounded by context. By cleverness, or clever solutions to a problem, the author means
solutions that both respond more effectively to a problem (than the usual, convergent,
ones) and are rare to find in a population. When defining divergent production (as opposed
to convergent) as being able to generate logical possibilities, Guilford meant the creation of
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unsound logical facts (or rules) that, however, reveal not to be inconsistent with the rest of
the knowledge (e.g. facts that are not deducible, but do not contradict existing knowledge).
Here, too, we would like to add that sometimes inconsistencies do raise and the creativity
comes out of the confrontation between the inconsistencies and the theory (e.g. Kepler’s
discoveries about elliptic versus circular orbits4). Guilford would certainly agree with this
opinion.

As a conclusion, the Structure of Intellect is now certainly outdated, and its contribution
is now seen from a historical perspective. However, in which regards to the psychology of
creativity, Guilford’s legacy about divergent and convergent production is still a constant
reference. For us, it became a modelling inspiration.

2.1.2 Bisociation

Before going into further details about Arthur Koestler’s work, we would like to add that
the “Act of Creation” is a rich philosophical and psychological reference that encompasses
ideas that are still currently accepted and explored, as we can observe in current trends such
as embodiment or conceptual blending. Written during the early sixties, when behaviorism
was the dominating trend within psychology, this book takes an oppositive position (which
is close to a structuralist view) and aims towards the explanation of the act of creativity and
tackles this challenge from several different fronts. While it certainly misses many aspects
and perhaps fails in depth to favor the breadth, it proposes a set of ideas that we will try to
synthesize here and which will be taken by us for the argumentation of the present thesis.

In the “Act of Creation”, Arthur Koestler presents a theory that unifies three sides
of human behaviour commonly deemed creative: humor, science and arts. According to
him, the underlying processes are the same, but applied in different contexts, subject to
different intentions and perspectives. In order to support his theory, Koestler proposes a set
of definitions regarding knowledge and problem solving, namely matrices of thought, codes
of rules and strategies.

A matrix of thought (or simply, a matrix) is “any ability, habit, or skill, any pattern
of ordered behaviour governed by a ’code’ of fixed rules” [Koestler, 1964]. In his example
of chess playing (as an ability), he proposes a matrix as being “the pattern before you,
representing the ensemble of permissible moves. The code which governs the matrix can
be put into simple mechanical equations which contain the essence of the pattern in a
compressed, ‘coded’ form”. A code of rules is then what defines the matrix, which means
that both represent the same entity from different perspectives, one intensional, the other
extensional. A strategy corresponds to the selection of elements within the matrix in order
to achieve a goal or pattern of behaviour. In the case of chess, this would be the choice of
the “next move”.

4This example will be further explained in the next section.
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We find several obvious correspondences to AI problem solving, namely a matrix corre-
sponds to the set of all possible solutions for a given problem (the solution space), defined
by the code of rules, a set of constraints that define what a valid solution must be like. The
strategy is then the search procedure, the method used to choose solutions.

According to Koestler, the creative process is connected to what he terms bisociation
of matrices, a phenomenon that occurs when two (or more) matrices become intersected:
a reasoning is being followed in one of the matrices and, for some reason (e.g. external
stimulus, need, dream, or trance-like state), a “clash” happens with another matrix and
there is a leap to this other reality.

Humor

In humor, for example, bisociations introduce the sudden association to the unexpected,
the illogical that triggers laughter, sometimes via double-meaning, phonetics, caricature,
satire, to name a few. Let us quote a short example:

Two women meet while shopping at the supermarket in the Bronx. One
looks cheerful, the other depressed. The cheerful one inquires:
’What’s eating you?’
’Nothing’s eating me’
’Death in the family?’
’No, God forbid!’
’Worried about money?’
’No...nothing like that.’
’Trouble with the kids?’
’Well, if you must know, it’s my little Jimmy.’
’What’s wrong with him, then?’
’Nothing is wrong. His teacher said he must see a psychiatrist.’
Pause. ’Well, well, what’s wrong with seeing a psychiatrist?’
’Nothing is wrong. The psychiatrist said he’s got an Oedipus complex.’
Pause. ’Well, well, Oedipus or Shmoedipus, I wouldn’t worry so long as he’s a
good boy and loves his mamma.’

Here, we see a clash between the matrices of Freudian psychiatry pathologies and the
logic of common sense: if Jimmy is a good boy and loves his mamma, there can’t be much
wrong. Koestler even arrives to an extreme claim that “any two matrices can be made to
yield a comic effect of sorts, by finding an appropriate link between them and infusing a
drop of adrenalin” [Koestler, 1964].
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Science

In his extensive analysis of scientific discovery throughout the history of science, Koestler
points out several observations that converge to the idea that “each basic advance was ef-
fected by a more or less abrupt and dramatic change; the breaking down of frontiers between
related territories, the amalgamation of previously separated frames of reference or experi-
mental techniques (..) All decisive advances in the history of scientific thought can be de-
scribed in terms of mental cross-fertilization between different disciplines” [Koestler, 1964].
In other words, all the major advances observed resulted from bisociative thinking and
these include examples like the discoveries from Archimedes, Copernicus, Kepler, Galileo,
Darwin, Poincaré, Kekulé, Einstein, to name a few. In sum, in each of these situations, the
knowledge so far proved inapplicable; none of the various ways of exercising a skill, however
plastic and adaptable, led to the desired goal. The solution came out of a new synthesis
of previously unconnected matrices of thought; a synthesis arrived at by “thinking aside”.
For example, Kepler’s laws of planetary motion represent a first synthesis of astronomy and
physics which, during the preceding two thousand years, had developed on separate lines.
Kepler served his apprenticeship under Tycho de Brahe, who had improved the astronomy
observation instruments and methodology, then allowing hitherto unequalled abundance
and precision. Given the new data, there were clear inconsistencies in the traditional as-
tronomy predictions, mainly because they were based on very entrenched dogmas such as
that “all heavenly motion must be uniform and in perfect circles”. Still keeping much of the
metaphysical and theological basis that Kepler himself believed in, he was able to postulate
the existence of a physical force acting between the sun and the planets, thus leading to a
revolution in astronomy. Planets no longer move in circles, but in elliptic orbits.

Koestler also points out to the fundamental aspects of the ripeness of the discoverer,
i.e. he must be prepared, predisposed to the discovery5, and have the ability to find hidden
analogies (i.e. to find relations where no one has found before) within different matrices.
Another interesting observation is that “verbal thinking plays only a subordinate part in
the decisive phase of the creative act (..) as the creative process of discovery depends
on unconscious resources and presupposes a regression to modes of ideation which are
indifferent to the rules of verbal logic”. The conclusion is that words are essential, but
sometimes become snares, decoys, or strait-jackets.

An interesting quotation we also reproduce here comes from the mathematician Henri
Poincaré:

Among chosen combinations the most fertile will often be those formed of
elements drawn from domains which are far apart... Most combinations so
formed would be entirely sterile; but certain among them, very rare, are the
most fruitful of all.

5There are countless examples in which the solution appeared but the scientist wasn’t able to understand
it or to see it as such.
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Arts

The third perspective that Koestler analyzes is that of the artist. As with humor, he starts
by focussing the physical manifestations connected to it, the many sensuous phenomena
we feel in moments of self-transcendence, from goose flesh to weeping, so arriving to the
emotive potential of a matrix, its capacity to generate and satisfy participatory emotions
(e.g. by identification, aggression, tension, relax). Perceiving a form of art, of illuding
oneself without loosing track of reality, is then exploring this matrix with higher emotive
potential, transporting from the trivial present to a plane remote from self-interest while
forgetting preoccupations and anxieties: “The capacity to regress, more or less at will, to
the games of the underground, without losing contact with surface, seems to be the essence
of the poetic, and of any other form of creativity”. The author thus proposes the act of
interpretation as being also bisociative, and thus creative from the point of view of the
recipient.

As in scientific discovery, so does metaphor and imagery come into existence by a process
of seeing an analogy where no one saw before, its aesthetic satisfaction depending on the
emotive potential of the matrices involved. According to Koestler, discoveries of art derive
from “the sudden transfer of attention from one matrix to another with a higher emotive
potential”. In other words, as with science, the greatness of an artist rests in creating a
new idiom - a novel code which deviates from the conventional rules. The outstanding
turning points result from a new departure along a new line, where we can find bisociations
in the grand style - cross-fertilization between different periods, cultures, and provinces of
knowledge. Once a new idiom is established, “a whole host of pupils and imitators can
operate it with varying degrees of strategic skill”. Here, Koestler clearly shows his view
on “true creativity - the invention of a new recipe” as opposed to “the skilled routine of
providing variations for it”. This dichotomy also corresponds to the transformational and
exploratory creativity that Margaret Boden discusses, which will be approached in section
2.1.4.

To conclude, Koestler argues that bisociation is active in those three aspects of human
creativity. In humour, by the collision of matrices; in science by their integration; and in
arts by their juxtaposition.

Although rarely presenting it in a formal or algorithmic fashion, Koestler provides an
insight on one of the most certain phenomena behind the creative process, that of com-
bining knowledge from different domains. More than describing in detail what happens in
cognition, he identifies the consistent existence of what he calls bisociation within a very
wide range of situations commonly deemed creative, and while it may be arguable that not
every creative act complies this description, it is certainly true that many of them result
from association of apparently distant sources, which, for some reason, combine in such a
way that novel and useful knowledge emerge so naturally that then no longer those sources
seem so distant. From the perspective of Guilford’s theory, the notion of bisociation takes
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many intersections with that of transfer recall, although the latter seems reduced to the act
of retrieving unexpected elements from memory, and the former to the actual processes of
combination involved.

2.1.3 The Systems Model

The work of Mihaly Csikszentmihalyi on Creativity is the most recent of the ones reviewed
in detail here. This does not mean, however, extremely different perspectives as we will
see. Indeed one of the purposes of bringing here this widely referred study relates to
demonstrate the current validity and acceptance of the works of Koestler and Guilford,
apart from providing some other remarks that we believe of importance to the present
thesis.

From a study that took several years, in which the author and colleagues interviewed and
analyzed ninety one people widely deemed creative, Csikszentmihalyi proposes a description
on how creativity works and how culture evolves as domains are transformed by the curiosity
and dedication of a few individuals. He proposes a systems model of creativity that takes
into account the interaction of three elements: the domain, the person and the field. The
domain consists of a set of “symbolic rules and procedures. Mathematics is a domain, or at
a finer resolution algebra and number theory can be seen as domains. Domains are in turn
nested in what we usually call culture, or the symbolic knowledge shared by a particular
society, or by humanity as a whole.” [Csikszentmihalyi, 1996] Csikszentmihalyi defines the
creative person as designating individuals who, like Leonardo, Edison, Einstein or Mozart
have changed our culture in some important respect. The field includes all the individuals
and institutions that act as gatekeepers to the domain, the peers that will judge the person
and the ideas. It is the field that selects what new works of art, objects or theories deserve
to be recognized, preserved and remembered. Each of these three elements is necessary for
a creative idea, product, or discovery to take place.

Thus the author proposes a very strong definition of creativity, let us call it creativity
with a big C : “Creativity is any act, idea, or product that changes an existing domain, or
that transforms an existing domain into a new one (..) A creative person is someone whose
thoughts or actions change a domain, or establish a new domain (..) So, in a sense, the most
momentous creative events are those in which entire new symbolic systems are created.”
[Csikszentmihalyi, 1996]. In order to understand the process behind these transformations
that shape civilization, Csikszentmihalyi analyzed and interviewed individuals that were
able to create or change drastically one domain, at least once in their lives. The list included
renowned artists, politicians, economists and scientists, some having been awarded nobel
prizes or other important field recognition awards. Although assumedly not providing sta-
tistical validity (e.g. there is no control group or objective measures in general), the author
identified a set of traits that were common among the individuals [Csikszentmihalyi, 1996]:

1. Creative individuals have a great deal of physical energy, but they are also quiet and
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at rest.

2. Creative individuals tend to be smart, yet also naive at the same time.

3. A third paradoxical trait refers to the related combination of playfulness and discipline,
or responsibility and irresponsibility

4. Creative individuals alternate between imagination and fantasy at one end, and a
rooted sense of reality at the other. Both are needed to break away with the present
without loosing touch with the past.

5. Creative people seem to harbor opposite tendencies on the continuum between extro-
version and introversion.

6. Creative individuals are also remarkably humble and proud at the same time.

7. In all cultures, men are brought up to be masculine and to disregard and repress those
aspects of their temperament that the culture regards as feminine, whereas women
are expected to do the opposite. Creative individuals to a certain extent escape this
rigid gender role stereotyping.

8. Generally, creative people are thought to be rebellious and independent. Yet it is
impossible to be creative without having first internalized a domain of culture (...)
hence it is difficult to see how a person can be creative without being both traditional
and conservative and at the same time rebellious and iconoclastic.

9. Most creative persons are very passionate about their work, yet they can be extremely
objective about it as well.

10. Finally, the openness and sensitivity of creative individuals often exposes them to
suffering and pain yet also a great deal of enjoyment.

On his explorations concerning the creative process itself, Csikszentmihalyi follows the
traditional description of five steps (that descends from the four step model of Wallas,
with Verification split into Evaluation and Elaboration): Preparation, Incubation, Insight,
Evaluation and Elaboration. He then frames these steps within the systems model of
domain, person and field.

As confirmed in each of the studied individuals, there is the need of a tremendous
amount of information about the domain and the field, normally achieved after years of
hard work. This preparation depends as much on external factors (e.g. family, education,
socioeconomic factors, political issues within a field) as on internal factors (e.g. curios-
ity, persistence, talent). The incubation is generally described as the process of solving a
problem in the underground of cognition, after the creative person senses a blockage on a
problem of his or her expertise: “Cognitive theorists believe that ideas, when deprived of
conscious direction, follow simple laws of association. They combine more or less randomly,
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although seemingly irrelevant associations between ideas may occur as a result of a prior
connection”[Csikszentmihalyi, 1996]. This mysterious and often controversial step was also
confirmed by the studied individuals, who many times reported to have found the solution
for a problem in unpredictable or consciously unprepared situations, sometimes after years
of working on the problem (or even having left it apart). As the author points out, this
insight, also found recurrently in the literature of creativity, is only possible when the per-
son (in fact the whole system) is prepared to identify it. This corresponds to the idea of
ripeness, as described by Koestler. For such to happen, the person must be in the right
place at the right time, with a significant amount of confidence, knowledge and luck, as
many times confirmed by the interviewed individuals.

Evaluation and elaboration are steps that become gradually more dependent on the
whole system and less on the individual, as the act, idea, or product is confronted with the
domain and the field, although the person also becomes part of this evaluation, particularly
in less objective domains.

Two important aspects to raise from Csikszentmihalyi’s observations are the duality of
divergent/convergent thinking and integration across and within domains, both consistently
reported and analyzed. From the observations, creative persons are able to perform well
(and with constant switches) the two opposite ways of thinking reported in section 2.1.1:
divergent and convergent.

People who bring about an acceptable novelty in a domain seem able to use
well two opposite ways of thinking: the convergent and divergent(..). Divergent
thinking is not much use without the ability to tell a good idea from a bad one
- and this selectivity involves convergent thinking.

Divergent thinking is extremely important for the phases of Preparation and Incubation,
since these phases are characterized by curiosity and search. On its hand, convergent
thinking is determinant for the Elaboration, Evaluation and also Insight, since it brings the
ability to tell a good idea from a bad one, to follow the established rules of the domain and
confront them with the new knowledge. However, the boundaries must not be so strict.
Indeed, the creative process has much of intertwining between divergent and convergent
thinking, as well as any of the five steps just described.

In the same way that Guilford’s contribution (divergent and convergent thinking) has
been accepted and reassured by the work of Csikszentmihalyi, so appears Koestler’s biso-
ciation as also “the norm rather than the exception”. Although rarely identifying the
phenomenon with the name of bisociation, the author repeatedly provides examples and
reports of situations that involve cross-domain transfer of ideas, the bringing together of
domains that appear to have nothing in common and integration or synthesis both across
and within domains. As he points out, “creativity generally involves crossing the boundaries
of domains, so that, for instance, a chemist who adopts quantum mechanics from physics
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and applies it to molecular bounds can make a more substantive contribution to chemistry
than one who stays exclusively within the bounds of chemistry.” [Csikszentmihalyi, 1996]

The work just reported suggests many important issues for the modelling of creativity
and of creativity supporting tools. From a system’s perspective, one should not simply
focus on one single element (person, domain or field), for it is from their interaction that
creativity emerges. It also raises many traits and conditions that should be present for the
creation of novel and useful ideas, however we must point out that this study lacks many
of the scientific bases necessary to assert with large confidence some of these more abstract
conclusions, namely because the individuals come from a very specific class: successful,
recognized, well established people, in general happy with their own accomplishments, and
normally in an advanced phase of their lives (over sixty years old, in general). This means
that many creative and non-creative people have been left out, some of which may so far
be unsuccessful, struggling for being recognized, and still be extremely creative. In other
words, indeed the set of individuals corresponds to the class of creative persons that the
system (person, domain and field) has brought to the world, but the system is too much
dynamic not to confront data with other systems (e.g. a control group) or other states of
the system (e.g. different ages).

Another aspect that Csikszentmihalyi himself has raised is that, according to these crite-
ria, children can be talented but never really creative, because “creativity involves changing
a way of doing things, or a way of thinking, and that in turn requires having mastered the
old ways of doing or thinking.” He thus leaves space for two other classifications: personal
creativity, the experiencing of the world in novel and original ways; and talent or brilliance,
the ability to express unusual thoughts, who are interesting and stimulating. Any of these
three classifications associated to the word “creativity” (true creativity, personal creativity
and talent) provides interesting challenges to computational modelling and also lead us of
Boden’s taxonomy (h-creativity and p-creativity), thus providing similar analyzes in which
regards to AI and computational creativity.

2.1.4 Boden’s taxonomies

Of the works and authors presented in this section, there is no doubt that Margaret Boden
[Boden, 1990] is the most read and cited within the field of AI and Creativity. The simple
reason for this strong influence is the fact that she pioneered the effort of analyzing some of
the work that had been done (in AI) from a perspective that takes into account philosophical
and psychological issues traditionally regarding phenomena deemed creative. In so doing,
she proposes a set of classifications for analyzing a program (as much as a human). These
classifications themselves have been raising much debate, of which we will give some echo
here.

The first classification proposed by Boden concerns the reference to which there is nov-
elty in an idea or discovery: Whether it is novel for a single person or for the whole human
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history. In principle, every new and useful idea or discovery is creative for its producer.
This is called psychological creativity (or p-creativity). The other reference is history. When
an idea is novel and useful for the whole human history, then we are in face of historical
creativity (or h-creativity). This is perhaps the less controversial classification, although
many authors argue that true creativity cannot exist without an external evaluation (e.g.
[Csikszentmihalyi, 1996], [Lubart, 1999]). Another aspect is that one can never determine
h-creativity in absolute because an idea can be h-creative and not be regarded as so for
years. And the reverse also happens, when an idea and an author are regarded as h-creative
by the society, but indeed the original idea should have been credited to a preceding author.
There are countless examples of these misjudgments in human History. This view does not
remove the validity of h-creativity as it is presented, but it testifies how complex the prob-
lem can be. It is also important to refer that p-creativity is the main focus of Boden’s
analysis, as she is mainly centered in the personal perspective.

The other classification brought by Boden [Boden, 1990] pertains to the process needed
to produce the novel idea or discovery. She thus presents two kinds: combinational creativ-
ity and exploratory-transformational creativity. The combinational creativity results from
“unusual combination of, or association between, familiar ideas. Poetic imagery, metaphor
and analogy fall into this class.” [Boden, 1999]. Differently, exploratory-transformational
creativity (ET-creativity) concerns to how a subject deals with a conceptual space. Her
definition of conceptual space is: “an accepted style of thinking in a particular domain
- for instance, in mathematics or biology, in various kinds of literature, or in the visual
or performing arts...” [Boden, 1999]. There is a clear similarity with Koestler’s matrices
throughout the many descriptions that Boden provides for conceptual space, although nei-
ther provide a formal definition. ET-creativity has a further subdivision into two distinct
categories: exploratory(e-) and transformational (t-). E-creativity deals with the explo-
ration of the conceptual space without jumping out of its boundaries, without breaking
strong constraints, it is normally based on the mere “tweaking” of the most superficial
dimensions. Sometimes it is capable of achieving p-creative or even h-creative outcomes,
but still without changing the (well defined) conceptual space. T-creativity involves some
transformation “of one or more of the (relatively fundamental) dimensions defining the
conceptual space concerned” [Boden, 1999]. In other words, it demands changes in the
conceptual space, such as re-representation, change in the evaluation or integration of new
concepts. Boden also sees this kind of creativity as impossibilist, “in that ideas may be
generated which - with respect to the particular conceptual space concerned - could not
have been generated before (they are made possible by some transformation of the space).”
[Boden, 1990]:519-520. Thus, there is a clear opposition between e- and t- creativity, al-
though for some authors, it is a matter of level of abstraction. Indeed this taxonomy has
raised many points of debate.

The first point is that transformational creativity is also exploratory at a meta-level
[Wiggins, 2001, Colton, 2001, Ram et al., 1995]. In other words, given the nature of t-
creativity, the only possibility to transform a conceptual space is to change its own defining
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rules. This would involve being aware of own defining rules, in other words, being able to do
meta-level reasoning. Following this argument, it leads to the conclusion that this change
of meta-level rules would necessarily be (at some point, even if at a meta-meta-level, and
so on) exploratory. This argument has been formalized in [Wiggins, 2001].

Another criticism concerns to the vagueness of the definition of conceptual space
([Wiggins, 2001], [Ritchie, 2001]). Although she provides many examples, such as the broad
areas of expertise like music, writing or physics, it is never sufficiently clear from a com-
putational modelling perspective what it actually comprises. More specifically, should it
correspond to a solution set, i.e. the set of solutions to a problem? Is there any ordering,
so it becomes then a search space? This issue may become important in considering the
computational modelling (and analysis) of t- and e-creativity. For example, changing the
ordering of concepts would correspond to a transformation of the search space, but not
of the solution set. Since in the latter case there is no introduction of new concepts, one
cannot say it could not have been generated before (therefore it should be e-creativity).
On the other hand, many discoveries and art revolutions (i.e. h-creative events) may have
been more based on this kind of restructuring the space than on the generation of impossible
concepts, which would mean that t-creativity is not necessarily a superior kind of creativity.
We think that these issues could be much more clarified with a more precise definition of
conceptual space.

The final point to present here regards the distinction between combinational creativ-
ity and ET-creativity [Ritchie, 2001]. Although not having raised as much debate as the
previous issues, this one has particular interest for our work. If one sees the problem of
combinational creativity as the generation of a new concept from the association of previ-
ous ones (as the definition says), one can also accept a conceptual space containing all the
possible combinations. In doing so, there is no difference between the act of exploring the
conceptual space of possible combinations, and the act of generating a combination (which
would exist in that conceptual space). Similarly, if, with the novel association, a novel
concept emerges that could not have been generated before, then we could have achieved
t-creativity. In other words, although combinational creativity may be regarded as a par-
ticular kind of creativity (which is also the one approached in this thesis), it should also be
included in and not distinguished from the set of ET-creativity phenomena.

It is unquestionable that Margaret Boden brought a comprehensive analysis of creativity
and AI that has been used and applied in many works. We too will use some of the ideas
described. Above all, she contributed with a successful attempt on the provocative question
about whether computers can be creative. Indeed they can be so, though perhaps at a very
limited level in comparison to human creativity, at the least in a level that does not demand
self-awareness. This may be a very mechanistic, unromantic, level, but clearly able to
surprise humans with outcomes that we ourselves have normally no problem in considering
as the result of creative behavior. In section 2.2, we will give an overview of some of these
systems.
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2.1.5 Others

Given the recent increase in creativity research, it is not a simple task to contribute with
a meticulous overview leaving out no fundamental works. There is a great variety of ap-
proaches and therefore we will provide a summary of the most cited works from those
approaches that are most prominent and field-covering: cognitive psychology (Finke, Ward
and Smith); confluence theories6 (Sternberg and Lubart); neuroscience (Martindale and
Greenough); motivation and intention (Amabile) and biographical case studies (Weisberg).

Finke and his colleagues have proposed what they call the Geneplore model, accord-
ing to which there are two main phases in creative thought: generative and exploratory
[Finke et al., 1992]. Many candidate ideas or solutions are created, followed by their exten-
sive exploration. From laboratory experiments, these researchers concluded that subjects
generate a set of “preinventive structures, in the sense that they are not complete plans
for some new product, tested solutions to vexing problems, or accurate answers to diffi-
cult puzzles” [Ward et al., 1999]. From these partial structures, a phase of exploration and
interpretation takes place that attempts to construct a feasible solution to a problem, by
focusing and expanding these structures. Constraints can be imposed at any time during
the generative or exploratory phase. This model “acknowledges that a range of factors other
than cognitive processes contribute to the likelihood of any individual generating a tangible
product that would be judged to be ‘creative’ ” [Ward et al., 1999]. From a broad perspec-
tive, the Geneplore model falls into the class of divergent-convergent models, as proposed
by Guilford and agreed by Csikszentmihalyi.

The investment theory of Sternberg and Lubart falls into the category of confluence
theories (theories that offer the possibility of accounting for diverse aspects of creativity).
It suggests that “creative people are ones who are willing and able to ’buy low and sell
high’ in the realm of ideas. Buying low means pursuing ideas that are unknown or out of
favor but that have growth potential. (..) The person persists in the face of this resistance
and eventually sells high”[Sternberg and Lubart, 1996]. From extensive experimentation,
Sternberg and Lubart developed a model that presupposes the interaction of six distinct
but interrelated resources: intellectual abilities, knowledge, styles of thinking, personality,
motivation, and environment.

At a different level of research, Martindale and Greenough studied the variability of
level of arousal and attention in the performance of creativity tests (e.g. Remote Associ-
ations Test, Similarities Test of divergent thinking), by observing galvanic skin response
fluctuations, heart rate variability, cortical activation, among other biometrical measures
[Martindale and Greenough, 1974], [Martindale, 1999]. One interesting conclusion was that
creative individuals have a highly variable level of arousal, rather than a basal (i.e. stable
in this context) level of arousal, which means that “creative inspiration occurs in a mental

6Csikszentmihalyi’s systems model also falls into this category
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state where attention is defocused, thought is associative, and a large number of mental rep-
resentations are simultaneously activated” [Martindale, 1999]. Moreover, the authors also
meet their work with the primary-secondary process thesis [Kris, 1952], which says that
creative individuals are better able to switch between two modes of thought (primary and
secondary) than less creative individuals. Primary process thought is found in states such
as dreaming and reverie (as well as in psychosis and hypnosis), it is autistic, free-associative,
analogical. Secondary process is the abstract, logical, reality-oriented thought. Martindale
found supportive evidence confirming Kris’s proposal, meaning that creativity is not just
based on primary process thought, but on its systematic intertwining with the secondary
process. Again, we find a clear similarity to the ideas of divergent thinking (the primary
process) and convergent thinking (the secondary process), as discussed before.

The work of Teresa Amabile on motivation and intention is also often cited in litera-
ture. She proposes a two-pronged hypothesis about how motivation affects creativity: “The
intrinsically motivated state is conducive to creativity, whereas the extrinsically motivated
state is detrimental”[Amabile, 1983]. Intrinsic motivation is associated with the enjoyment
of the work by itself, while extrinsic relates to engaging in an activity in order to meet some
goals external to the work. She also proposes a confluence model with intrinsic motivations,
domain-relevant knowledge and abilities, and creativity-relevant skills. These include: “ a)
cognitive style that involves coping with complexities and breaking one’s mental set dur-
ing problem solving; b) knowledge of heuristics for generating novel ideas, such as trying
a counterintuitive approach, and c) a work style characterized by concentrated effort, an
ability to set aside problems, and high energy (..)”.

The issue of re-representation is emphasized by some researchers (e.g.
[Karmiloff-Smith, 1993], [Oxman, 1997]), who propose that a process of representa-
tional re-description precedes creative domain exploration, in which previously implicit
knowledge is more clearly perceived. New patterns thus emerge and novel inter-domain
connections may be made.

Finally, in a totally different direction (essentially based on biographical case stud-
ies), Robert Weisberg challenges many of the works just described above by arguing
against what he calls the tension view of the relationship between creativity and knowl-
edge [Weisberg, 1999], which says that: since knowledge about a problem is not complete,
and in face of a blockage, the person is left to its abilities to discover new solutions via
free-association, divergent thinking, etc. This discontinuous view of knowledge evolution
is a “dominant one in modern theory” [Weisberg, 1999]. Weisberg proposes a continuous
view, by arguing that new discoveries and revolutionary artworks are resultant of a state of
maturity and knowledge richness. This foundation view thus concludes that creativity and
knowledge are positively related: “The reason that one person produced some innovation,
while another person did not, may be due to nothing more than the fact that the former
knew something that the latter did not.”[Weisberg, 1999]

As pointed out at the beginning, there are certainly important works that were left out.
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Yet, for the present thesis it is more important to provide the reader with its fundamental
bases and their synthesis than with giving exhaustive knowledge about lateral issues. The
idea here was two-fold: to suggest that, from a computational modelling perspective, many
different approaches can be taken; but, nonetheless, there are common aspects across almost
all of the approaches. We will attempt to include these aspects in the next section.

2.1.6 Synthesis

Amongst the presented works, there is an undisputed agreement that creativity involves
the creation of a novel and useful product. We may find different words for creation
(generation, production), novelty (originality), usefulness (value, appropriateness, utility,
significance, adaptability) and product (idea, concept, solution to a problem), but there is
no doubt that these are either synonymous or different perspectives on the same subject.
Even though not as much uncontroversial, the majority of the works also agree that the
cognitive processes that bring about a novel and useful product consist of a pair of oppo-
site styles of thinking: divergent and convergent. The former is characterized by allowing
ideas that defy logical reasoning (e.g. unsound conclusions, contradictory associations, in-
consistent sets of facts) or that correspond to unprecedented associations7. In opposition,
convergent thinking corresponds to logical reasoning, which follows well-defined constraints
and is normally associated to methodic, purposeful thought8. We have presented already
these two concepts in section 2.1.1, but, as often equalled, they have been associated, when
not synonymous, to primary/secondary-process [Kris, 1952] and generative/exploratory
[Finke et al., 1992] (also, to a lesser degree, to bisociation [Koestler, 1964], transforma-
tional/exploratory [Boden, 1990] and incubation/elaboration [Wallas, 1926]), and therefore
needed to be put in a more actual context. The other motivation for this redefinition is
to claim that, if a creative product must be novel and useful and its creation involves the
process of divergence and convergence, then one cannot build a creative system without
modelling both divergent and convergent processes. Moreover, divergence would be the
main responsible for granting novelty, and convergence for usefulness. We will come back
to these issues later in this thesis.

It has also been recurrently emphasized that knowledge has central importance in cre-
ativity. Nearly every author in this study argued that no important discovery or major
artwork is likely to transpire without its creator having acquired deep knowledge about the
domain in question. Furthermore, some also claim that having broad knowledge is also

7Here we emphasize the originality aspect of divergent thinking, as it was defined by Guilford, giving
flexibility, fluency and elaboration a secondary role. In our opinion, flexibility would solely depend on
originality, for we can only get varied solutions if each one is sufficiently different from the others, i.e.
original. On the other hand, we see fluency as a characteristic of the thinker, not of the thought itself (a
thought can be original, but never fluent). Finally, analyzing past work, elaboration has been considered
belonging to the convergent side.

8This definition of logical reasoning comes from a psychology perspective, therefore it may be incomplete
from an AI logician point of view. However, we cannot describe these concepts more formally than allowed
by the literature itself.
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fundamental, so as to potentiate transfer across domains and awareness of the environment.
Here we have described two perspectives: in-depth and in-breadth. Again, we are tempted
to associate these two categories with convergence and divergence, respectively. This means
that knowledge from the domain in question would in turn benefit the convergence towards
useful solutions, helping to discern the good from the bad, while knowledge from a variety
of domains would promote divergence in problem solving.

The existence of different levels of creativity have also been claimed by many authors.
Some arguing for a continuum (e.g. [Koestler, 1964]), some for a clear distinction (e.g.
[Boden, 1990]). On one extreme, we have the creativity with a big C, transformational
creativity or true creativity. On the other side, we have the personal, exploratory, or
mundane creativity. We intend not to say that these are synonymous concepts, but to
emphasize the bipolarity of the analyzes made.

A final and more controversial issue pertains to the role of society in creativity. Some
authors (e.g. [Csikszentmihalyi, 1996]) argue that there can be no true creativity9 without
the society, i.e., something does not exist as creative unless it is externally judged as so. It
is a dynamic ascription that depends on the interaction of several entities (in the case of
Csikszentmihalyi, the person, the domain and the field). Others (e.g. [Finke et al., 1992])
argue for the existence of creativity for its own sake, i.e. an individual can generate a
creative idea, without having feedback from the society. These two standpoints correspond
to what Boden called h- and p-creativity, respectively, and thus reflect more a difference of
perspective than of the essence of creativity.

9We remind that Csikszentmihalyi allows a kind of personal creativity, which is though secondary for the
system and for what he calls true creativity.
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2.2 Computational Creativity

In this section, we introduce the area of computational creativity, which aims to build
computational systems that are able to exhibit creative behaviour. Since this is not a
peaceful definition (how can we know, after all, when the behaviour is creative?), some
works carry on to the field of Artificial Intelligence the debate that we have presented in the
previous section. One of the immediate effect is the need for formal accounts for creativity,
while the other is the experimental implementation of such systems.

2.2.1 Two formal accounts

The legacy left by Boden’s descriptive hierarchy sparked off the attention towards ana-
lyzing AI systems from a creativity perspective (e.g. [Ram et al., 1995], [Bentley, 1999],
[Pereira and Cardoso, 1999]). Notwithstanding the many fragilities, some of which already
named, the point was made for the need of such analyzes or, at the least, for the con-
sideration of Creativity within AI. However, the lack of formal approaches and of stable
epistemological and methodological settlements condemns this research to circle around un-
solvable issues. While it seems currently impossible to say that a system is creative, or even
intelligent, without any controversy, it may be possible to classify it according to criteria
that are based both on formal computational accounts and on theories such as Boden’s.

We now present two formal approaches towards characterizing the creativity of AI sys-
tems. The first one derives from an assumed attempt of formalizing Boden’s theory and
is centered on the process, while the second one deals with evaluation and focusses the
product. We will apply these works in analyzing our system in chapters 4 and 6.

Characterizing Creativity in AI

According to [Wiggins, 2001, Wiggins, 2003], exploratory creativity (in Boden’s terms) may
be abstractly represented by a septuple:

〈U ,L, J.K,¿ ., ., . À,R, T , E〉

where:
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U a universe of possible concepts, both partial and complete

Al an alphabet comprising a set of symbols

L a language, the set of all sequences of symbols from Al, that enables the

definition of constraints and construction of rules

J.K a function generator, which maps a subset of L to a function

which selects elements of U
¿ ., ., . À a function generator, which maps three subsets of L to a function

which generates new elements of U from existing ones

R a subset of L
T a subset of L
E a subset of L
U is an abstract set that contains all possible concepts of the domain (e.g. in the music

domain, it would be the set of all possible sequences of sounds)10, R is a set of rules that,
when applied to U , returns the set of acceptable elements: Boden’s conceptual space11. It
would be formally defined as:

C = JRK(U)

In the domain of music, a conceptual space would comprise the set of pieces of music
that are members of a style.

T corresponds to the set of rules that define a strategy for traversing the conceptual
space. The function for obtaining the next concept (co) in the space, from a concept ci, is
thus:

co =¿R, T , E À (ci)

A further useful mechanism is the function ¦, defined such that

F¦(X) =
∞⋃

n=0

Fn(X)

where F is a set-valued function of sets. Thus, starting from the empty concept (⊥), the
complete set of concepts obtained by traversing the search space would be:

¿R, T , E À¦ (⊥)

It is not guaranteed, though, that all elements from this set belong to C. In other
words, the application of T may return non-acceptable outcomes. This aspect is extremely
important in terms of creativity, as we shall analyze later.

10Wiggins includes the empty concept, denoted ⊥.
11In Wiggins’ formulation, this space is extended to contain partial elements
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The rule set E defines the evaluation of the outputs, appropriately contextualized. This
context is not specified (it would be essentially domain dependent) and it can be taken from
the point of view of the producing system (or agent) or external systems. JEK obtains the
set of “valued” elements. Thus,

JEK(¿R, T , E À¦ (⊥))

corresponds to the set of “valued” elements obtained from traversing the space with T .
Using these formalisms, Wiggins demonstrates that transformational creativity is equivalent
to exploration at the meta-level [Wiggins, 2001].

Creativity Assessment

While Wiggins centered his formalization on the several aspects of the process (the con-
straints, the strategy, the conceptual space), giving less attention to the product, Ritchie
proposes a set of criteria for assessing creativity on the basis of the results of the system (i.e.
the product), its initial data and the items that gave rise to its construction (the inspiring
set) [Ritchie, 2001].

Prior to describing the criteria, we have to give a set of definitions. The first one regards
the notion of basic item, an entity that a program produces. “This is not a definition of
what would count as successful or valid output for the program, merely a statement of the
data type it produces”. Another notion is that of a rating scheme, a method for evaluating
an item (e.g. a weighted checklist of properties, an Euclidean distance, a grammar). A
rating scheme rat is applied to an item by the operation APPLY to return a value in the
interval [0,1]. In order to simplify we denote this operation by rat(X)12. There are two
rating schemes to consider in this analysis: typical ratings (typ) and value ratings (val).
The inspiring set corresponds to a selection S on the set B of basic items, with attention
to typ and val and is denoted by SB(typ, val). The definition of this set is fundamental to
measure how successful a system is in obtaining novel ideas, but it is often hard to find, since
the designer of the system is rarely conscious of all the influences beneath her own choice.
For example, a system for composing a certain style of music may have been designed via
analysis of a set of pieces (which would be its inspiring set), while if it were made from
musicology theories, defining that set would be a hard task.

Finally, we need to define four notation conventions:

12Instead of APPLY(rat)(X).
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Tα,β
def
= {x ∈ X | α ≤ typ(x) ≤ β} : The subset of X falling in a given

range of normality.

Vα,β
def
= {x ∈ X | α ≤ val(x) ≤ β} : The subset of X falling in a given

range of quality.

AV (F,X)
def
= (

∑
x∈X F (x)/ | X |) : The average value of a function F across

finite set X.

ratio(X, Y )
def
= | X | / | Y |: The relative sizes of two finite sets X, Y.

Ritchie proposes fourteen criteria to assess the creativity of a system’s output, R. Al-
though it is assumed that R corresponds to the result(s) of a single run, it is also suggested
the generalization of these criteria to a set of runs, in order to cover the general behaviour
of the system. Thus, in this case, we invite the reader to consider R as the set of results
that a system has been able to produce until a given point in time. The criteria intend to
measure the behaviour of the system in terms of average quality of results, their typicality
and of their ratios with regard to R and to the set of typical and valued items.

criterion 1 AV (typ,R) > θ, for suitable θ.

The first criterion says that the average of typicality of items should be suitably high
(depending on θ). The following says that typical items should form a significant proportion
of the results:

criterion 2 ratio(Tα,1(R), R) > θ, for suitable α, θ.

criterion 3 AV (val, R) > θ, for suitable θ.

criterion 4 ratio(Vγ,1(R), R) > θ, for suitable γθ.

Criteria 3 and 4 follow the same reasoning as the first two, but applied to value (val).
Differently, the fifth criterion classifies the success of a system as its ability to obtain a high
proportion of highly valued items, within the set of the typical ones:

criterion 5 ratio(Vγ,1(R) ∩ Tα,1(R), Tα,1(R)) > θ, for suitable α, γ, θ

The following three criteria compare the set of highly valued, yet untypical results, to
the output, to the whole set of untypical results and to the set of typical highly valued
outcomes.

criterion 6 ratio(Vγ,1(R) ∩ T0,β(R), R) > θ, for suitable β, γ, θ.

criterion 7 ratio(Vγ,1(R) ∩ T0,β(R), T0,β(R)) > θ, for suitable β, γ, θ.

criterion 8 ratio(Vγ,1(R) ∩ T0,β(R), Vγ,1(R) ∩ Tα,1(R)) > θ, for suitable β, γ, θ.

A program might be essentially replicating its inspiring set, in which case it might be
said it is not creative:
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criterion 9 ratio(SB(typ, val) ∩R, SB(typ, val)) > θ, for suitable θ.

Conversely, the system may produce outcomes that do not belong to the inspiring set:

criterion 10 ratio(R,SB(typ, val) ∩R) > θ, for suitable θ.

If a system is to be deemed creative, then it should satisfy criteria 11 and 12, i.e., their
results not belonging to the inspiring set should be typical (criterion 11), but most of all,
valuable (criterion 12):

criterion 11 AV (typ, (R− SB(typ, val))) > θ, for suitable θ.

criterion 12 AV (val, (R− SB(typ, val))) > θ, for suitable θ.

Finally, the highly typical and valued novel results should also be a significant proportion
of the results:

criterion 13 ratio(Tα,1(R− SB(typ, val)), R) > θ, for suitable α, θ.

criterion 14 ratio(Vγ,1(R− SB(typ, val)), R) > θ, for suitable γ, θ.

These criteria pose two obvious problems for their application. The first one has to do
with the rating schemes val and typ, namely the former would demand a compromise that
is rarely explicitly made in everyday observation of creativity, of what a valuable outcome is
exactly about. The second problem regards the variables involved (α, β, γ and θ). Finding
acceptable values will depend on experimentation in different contexts. Yet, until now,
there has been no application of these. Furthermore, their scales will differ among criteria
(e.g. criteria 4 till 9 yield values in the interval [0, 1], criterion 8 can give any positive real
number, criterion 10 always results in values higher than 1). In this thesis, we will assume
α, β and γ to be 0.5.

Another issue is that Ritchie considers typicality and value, rather than novelty and
usefulness. While usefulness and value are often meant as synonymous (in the sense that
something is valued when it accomplishes a purpose), typicality runs opposite to novelty.
Assuming the risk of oversimplifying these notions, we consider, in this thesis, that typicality
is converse to novelty (i.e. novelty(x) = 1−typ(x)) and value equals usefulness. This is
important for the analyzes made in chapter 6.

In the next subsection, we will give an overview of the followups of both Wiggins and
Ritchie’s proposals. In terms of direct application to computational systems, there has been
almost no examples, and therefore empirical values and considerations for the criteria are not
available. There may be three reasons for this happening: the frameworks are still wounded
of some immaturity and therefore demand further work; there have been no practical need
for systems to measure their creative potential and to compare with their peers, a fact that
contrasts with the claim that some make as being creative systems; they may be considered
wrong or useless for analyzing computational creativity. Regarding this latter possibility, it
is clear that these are the only accounts so far for the formal analysis of the creativity of a
computational system (except for even less developed formalizations, such as the serendipity
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equations of Figueiredo and Campos [Figueiredo and Campos, 2001] or work on measuring
surprise [Macedo and Cardoso, 2001]). Since it is imperative to determine, even if not in
an absolute fashion, the creativity of the model we propose, we will apply these ideas to
analyze our system.

It is also patent that these two approaches share much in common. For example, Wig-
gins R and E may correspond to Ritchie’s typ and val respectively. There is however a
fundamental difference: while Ritchie looks inside the system’s results and their evalu-
ative schemes and is dependent on them to define every criteria, henceforth considering
only exploratory creativity13, Wiggins’ formalism confronts the system with the universe
(U) of possible items, thus allowing for meta-level analysis and therefore transformational
creativity. In figure 2.3, we summarize a classification of concepts within the framework
of Wiggins, also taking into account the inspiring set, the notions of typicality and value
and the criteria presented. Notice that reachable concepts are only the ones that belong
to ¿ R, T , E À, the set of concepts that can be obtained by the strategy T . Transforma-
tional creativity would thus have the effect of changing the set of reachable concepts. The
set “reachable creative concepts” has been named after the description of the criteria 10,
12, 13 and 14, but it can be argued that this label should be given to the set of “valued
untypical concepts”, since the latter favors novelty and value.
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Figure 2.3: The classification of concepts within the universe U according to the sets ¿
R, T , E À, JRK, JEK and I, the inspiring set. Remember that C = JRK. Inside parenthesis
are the criteria associated with each set.

13He proposes t-creativity as the situation described by criterion 6 (high val, low typ), but for which there
is a (yet to be defined) rating scheme typ′ that highly classifies the items.
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2.2.2 Followups

Uninspirations and Aberrations

In [Wiggins, 2003], the author explores further his formalism to characterize circumstances
that, by their nature, may trigger (or avoid) creativity. He divides them into two major
classes: uninspiration and aberration.

The first kind of uninspiration is hopeless uninspiration, when there are no valued con-
cepts in the universe:

JEK(U) = 0.

Such a system is incapable of creating valued concepts, and therefore it is ill-formed, in
terms of creative capabilities. Differently, it can happen that, although the universe U may
have valuable concepts, the system’s conceptual space doesn’t:

JEK(JRK(U)) = 0.

This is called conceptual uninspiration. Conceptual uninspiration can only be solved by
transforming R, by modifying E or by aberration (shown below).

The final classification for uninspiration is generative uninspiration, which is when the
technique of the system does not allow it to find valued concepts:

JEK¿R, T , E À¦ ({⊥)}) = 0.

This kind of uninspiration may be the less serious in the sense that it does not indicate
that the system is ill-formed: it is merely looking in the wrong place. Wiggins proposes
that the general solution to generative uninspiration would be transformation of T , but
that transformation of R or E may also be a valid response.

A more interesting notion that Wiggins proposes [Wiggins, 2003] is that of aberration.
An aberration happens when the system finds objects that are not acceptable members of
the conceptual space (i.e. they are excluded by JRK). In this case, the set A of these objects
is given by:

A =¿ R, T , E À¦ ({⊥)}\JRK(U)

The problem essentially lies on the evaluation of A. The aberrant but valued subset,
VA, is calculated thus:

VA = JEK(A).

Wiggins classifies aberration sets into three types: perfect (VA = A), productive (VA ⊆
A) and pointless (VA = 0). When faced with an aberration that for some reason is valued
(perfect or productive), a system may be triggered to revise the notion of acceptability (as
constrained by R), so as to include novel data. Another operation would be to change the
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technique (T ). We add that an alternative choice would to be to exclude the aberrations
by constraining more the evaluation (E), this seeming a priori more conservative, therefore
less creative, however it could lead to the learning of better evaluation technique, depending
on the context.

The effect of input knowledge

One of the main problems in evaluating computational creativity (and of AI systems in
general) relates to the extent to which the system’s knowledge is fine-tuned, i.e. the sys-
tem essentially replicates known items to a greater extent than it causes the generation of
novel high-valued items [Colton et al., 2001]. As with the rest of the works in this section,
Colton, Pease and Ritchie propose a set of criteria for evaluating creativity, now with special
attention to the effect of input knowledge.

Let OK be the set of output items corresponding to input knowledge K. We define VK

as the set of high-valued items in OK ; RK are the reinventions (the items that belong to
the inspiring set I); and CK is the creative set (the items in VK which were not in RK).

In order to determine the effect of a subset K ′ of K (the input knowledge), let us first
examine the possible effects on V(K−K′):

• K ′ is creatively irrelevant if VK = V(K−K′).

• K ′ is creatively useful if V(K−K′) ⊂ VK .

• K ′ is creatively destructive if VK ⊂ V(K−K′).

For the creatively useful K ′, Colton et al. define the dependency set D′
K , such that D′

K =
VK −V(K−K′), which corresponds to the set of items that will not be obtained if we remove
K ′ from input knowledge. We can now say that K ′ is fine-tuned if [Colton et al., 2001]:

|D′
K ∩RK | > 0 and |D′

K ∩ CK | = 0

This means that the presence of K ′ in input knowledge only contributes to the replication
of high-valued items, without having influence in the production of creative outcomes. For
cases where K ′ still contributes to creativity (i.e. |D′

K ∩CK | > 0), we can obtain a measure
of how fine-tuned K ′ is:

ft(K ′) =
|D′

K ∩RK |
|D′

K ∩ CK |

Naturally, when ft(K ′) is greater than 1, it means that K ′ is used to rediscover more
items than to generate new ones of value. In order to determine whether a program P

is fine-tuned when using knowledge K, Colton et al. propose the following two measures
(assuming P was constructed using inspiring set I):
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• m1(P, I,K) = |Kft|
|K| , where Kft =

⋃
K ′

K ′ ⊂ K : K ′ is fine-tuned

• m2(P, I,K) = max(ft(K ′)) over K ′ ⊂ K

If m1 is greater than 0 or m2 greater than 1, we can claim that P using K has been
fine-tuned to some extent. If m1 is 1, P using K is completely fine-tuned. If m2 is greater
than 1, then there is at least one such subset of K which is used more to replicate known
artifacts than to find new ones [Colton et al., 2001].

Some of the measures presented in this section will be applied to the work presented in
this thesis. Maybe due to being quite recent and still demanding refinements of many sorts,
these measures have not been applied in practical computational systems, with the exception
of the analysis of Pablo Gervás to his poetry generation system, WASP [Gervás, 2002], who
applied Ritchie’s criteria, and of Colton’s HR fine tuning analysis [Colton et al., 2001].

2.2.3 Creative sytems

What is a creative system?

Before proceeding, we must define the necessary and sufficient conditions for a computa-
tional system to be included in the list we study here as being creative:

• Independently of the task it proposes to solve, it should aim to produce solutions that
are not replications of previous solutions (known to it).

• It should aim to produce solutions that are acceptable for the task it proposes.

Of course, these correspond to the classical definition of novelty and usefulness, from
a perspective of p-creativity, in Boden’s terms. Thus, we are allowing for the classical
extremes: a random process that can find good items; a system that explores the whole
search space with a brute-force blind method; a system that generates each time different
outcomes, but all very similar to humans eyes. All these are creative systems, according to
this classification, but we intend primarily to rule out the (much larger) set of AI systems
that focus solely on the second condition: to accomplish a well defined goal. As with
intelligence, there is a continuum of creativity degree in such systems, and some dimensions
can be inspected in order to sort out further classifications:

• The complexity it is able to treat, without breaking the necessary and sufficient con-
ditions above.

• Its ability to reason at different levels of abstraction.
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• Its ability to process different levels of representation.

• Its ability to work in more than one domain.

• Its ability to evaluate its own productions.

Some systems and models

Of all the surveys presented in this thesis, the overview of the field of creative systems is
the most difficult to make for two particular reasons: there has been a surprisingly high
proliferation of such systems during the past five years, spreading across a variety of areas
and approaches; only a few identify themselves as “creative systems”, preferring different
classifications such as “cyber art”, “generative systems” or “creative design”. Moreover,
from these, only a few follow consciously an underlying “computational model of creativity”.
Thus, in order to analyze the models that have been used so far, it is necessary to abstract
them from the existent implementations.

The list of systems chosen for the overview obeys three conditions. Each system should
have its implementation description available somewhere (ruling out many commercial im-
plementations), it should also have been published recently14 (except for some classical
examples), and it must satisfy, even if only assumed informally, the definition above for
creative systems.

The approaches presented range all over the traditional AI paradigm classification spec-
trum of Symbolic, Sub-symbolic and Hybrid systems. This division could therefore be a
starting point to structure this overview. Nevertheless, we prefer to organize it according
to issues that have been discussed so far regarding the theme of creativity.

The first issue regards the opposition of perspectives cognition/society, which were
also observed in section 2.1. Some works follow the systems perspective of Csikszent-
mihalyi, via multi-agent environments in which creativity emerges as a result of mul-
tiple interaction. Examples of this approach are the Hybrid Society [Cardalda, 1999],
The Digital Clockwork Muse (TDCM) [Saunders and Gero, 2001], Design Situations (DS)
[Sosa and Gero, 2003] and SC-EUNE [Macedo and Cardoso, 2001]. On the other side,
there are the systems that follow approaches centered on a cognitive perspective (i.e.
the machine is one single agent) by applying domain-dependent rules (e.g. Lothe’s
Mozart Minuets [Lothe, 2000], Aaron [Cohen, 1981]), statistical models (e.g. Craft and
Cross’s fugal exposition generation [Craft and Cross, 2003], the Postmodernist generator
[Bulhak, 2000]), reusing past experience (e.g. the Case-Based Reasoning approaches of
ReBuilder [Gomes et al., 2002] and ASPERA [Gervás, 2000a]), evolutionary computation
(e.g. NevAr [Machado and Cardoso, 2002] and Poevolve [Levy, 2001]), modelling specific
cognitive phenomena like Metaphor (e.g. Sapper [Veale, 1995]), Analogy (e.g. Copycat,

14We conventionalize “recently” to comprehend the past four years, for it is since 2000 that events exclu-
sively dedicated to the subject have been held yearly.
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[Hofstadter and Mitchell, 1988]) or Conceptual Combination (e.g. C3 [Costello, 1997]). Of
course, individual agents in multi-agent systems need to have individual processes, and
therefore these two perspectives are not totally incompatible.

A second issue regards evaluation: is the system performing self-evaluation by any
manner in order to obtain the final product, or is there the participation of a user, the
generation of the product being a result of the interaction (in this case, the general system -
human plus machine - could be seen as a two agent system)? In general, multi-agent systems
presuppose a built-in evaluation strategy, normally becoming part of the interaction between
agents (agents reward other agents for positive evaluation, as happens in TDCM), being the
Hybrid Society an exception (humans can be part of the egalitarian multi-agent system and
produce and/or evaluate). In single-agent architectures, some kind of self-assessment is also
built-in, either via probability, rules, or pre-trained mechanisms (like a Neural Network).
These self-assessments rely more on appropriateness of the product according to a style
or goal than on aesthetic judgment. Yet, one should not read this too strictly since we
can find a variety of self-evaluation methods that consider aesthetics (e.g. NevAr allows
the application of aesthetic principles based on perception; HR contains interestingness
heuristics). Some systems rely on the active participation of the user in the generation
process. A typical example is the interactive genetic algorithm (IGA), where the algorithm
generates items that are evaluated by the user (e.g. NevAr and [Sims, 1991]15), and this
evaluation is used to produce the subsequent items. Max [Campos and Figueiredo, 2001] is
an agent that searches the Web for interesting pages (according to a user profile) in order
to trigger serendipitous insights in the user, who has to give Max appropriate feedback to
continue the cycle. MuzaCazUza and ReBuilder are two Case-based reasoning systems on
music and software reuse (respectively), which rely on the user for the adaptation of cases
(in the case of ReBuilder, it also provides an analogy mapping method of adaptation).

A third issue has to do with the use of memory. Does the system keep track of past runs,
and therefore is able to profit from past experience? This can be seen as an instantiation
of the preparation phase discussed earlier. A few systems have this property, namely SC-
EUNE, NevAr, ReBuilder, Max, Metacat and Sapper.

Being able to do meta-level reasoning, i.e. to reason about the method of reasoning,
could only be found in two systems: HR and Metacat. The former [Colton et al., 1999],
named after Hardy and Ramanujam, was designed by Simon Colton to perform discovery
in pure mathematics. It performs a complete cycle of mathematics, including building its
own mathematical concepts, making conjectures about the concepts, attempting to prove
the true conjectures and to find counterexamples for the false ones. It builds new concepts
according to seven heuristics and nine production rules. All these are conceived the most
generic across the field of mathematics as possible. It has a meta-level reasoning version
[Colton, 2001], in which it builds a high-level theory that contains concepts and conjectures
about the concepts and conjectures of the lower-level theory. For example, it is able to form

15These two cases are more specifically interactive genetic programming (IGP) systems
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the high-level concept of “function” (there is a unique second object for each first object
found in the pairs which make up the examples for these concepts). Examples of low-level
functions are definitions for prime numbers, perfect numbers, pairs and so on. The HR
project has also a multi-agent version with four HR’s based agents with different strategies
running in parallel [Colton et al., 2000], which cooperate by exchanging new concepts and
conjectures.

Metacat [Marshall, 2002] is the latest evolution of Copycat
[Hofstadter and Mitchell, 1988], which is a system for solving puzzle analogies (such
as “abc→abd::xyz→?”) that applies a bottom-up parallel strategy to find mappings
between the source and the target, as well as explanatory relations within them, and
associate these mappings and relations with concepts in a Slipnet. This Slipnet is a
semantic network with variable distance between concepts (examples of concepts are the
letters of the alphabet, relations like opposite or predecessor, and attributes like rightmost
or first letter of the alphabet) where a spreading activation algorithm is used to determine
the plausible mappings (e.g. “c” corresponds to “z” - both are rightmost - and “c” is
predecessor of “d” - in the alphabet). When a set of concepts is activated, a candidate
solution is projected. If it fails, Copycat will slip to concepts that have short distance to the
activated ones (e.g. rightmost to leftmost) and try other activation patterns. Metacat is a
sibling of Copycat and it adds a set of meta-level features. It keeps traces of the run and
creates abstract themes, which consist of pairs of Slipnet concepts. For example, a theme
for representing the idea of alphabetic-position symmetry between “a” and “z” would have
the Slipnet concepts alphabetic-position and opposite. It keeps this new information in
an episodic memory that is used to compare analogies between different runs (it outputs
texts like “this reminds me of the problem X...”). It is also able to justify the reason
behind a puzzle solution by the analysis of its trace. However, it uses this meta-level
knowledge (traces and themes) superficially in the sense that, unlike HR, it only uses it
for communicative purposes (with a user) and does not improve or change its own internal
knowledge, or even use previous solutions to solve present problems.

In spite of being recurrently asserted throughout the creativity theories in section 2.1,
the ability to do cross-domain transfer of ideas is absent in the majority of the systems.
Even worse, the majority is tailored to work with its own single domain. In this matter,
again and surprisingly, HR presents itself as the only one able to do cross-domain transfer
[Steel, 1999] and work with different domains. However, these two capabilities hardly come
together. The cross-domain version of HR was built with special attention to concepts from
mathematical fields16, while its application to domains different from mathematics (e.g.
animal classification [Colton et al., 2000]) has been made in an isolated manner. Other two
systems are capable of cross-domain transfer, normally at an abstract level. Sapper is a
metaphor interpretation system that will be thoroughly presented in section 3.4.2, since it
is important for this thesis, while Drama will be briefly described in section 3.4.3. Both find

16For example, the use of triangular number (from number theory) to predict the order of the duplicated
node (in graph theory).
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cross-space mappings between semantic networks, which can be used to transfer knowledge,
i.e. problem solving by analogy.

From the analysis just made, we may now abstract a taxonomy for computational models
of creativity:

• Systems model (SM). Creativity results from the interaction of a society of agents.
Each agent may have a similar or different role, and be implemented according to the
methods below, but its interaction with others is essential to find creative items.

• Evolutionary model (EM). Creativity emerges as a result of evolution of the artifact.
This evolution is made in parallel with concurrent streams of candidate artifacts that
eventually converge to a maximum. The judgments (fitness functions) are either given
by a user (IGA’s) or via algorithmic methods such as neural networks or heuristic rules.

• Domain-centered model. Creativity results from expertise on a specific domain. Dif-
ferent domains invite different specific methods or knowledge structures (even if the
general approach remains the same). This model can be divided into three sub-types:

– Expert Systems model (ESM). Items are generated by following well established
constraints and methodological rules of the domain of application. Creativity is
stimulated by allowing randomness in well-bounded decision making points.

– Case-Based Reasoning model (CBRM). Creativity is the result of reuse and adap-
tation of past experience with attention to the present context. According to
[Ram et al., 1995], this is achieved in five steps: problem interpretation, prob-
lem reformulation, case and model retrieval, elaboration and adaptation and
evaluation.

– Statistics model (STM). Creative items are generated from non-deterministic
automata that result from analysis on selected data17. When it is well-trained,
issues like evaluation or memory are embedded in the automaton, which rarely
produce wrong outcomes or outcomes that differ considerable from the initial
data.

• Cognition-centered model (CCM). Creativity results from mental processes that can
be computationally modelled. It is domain-independent and therefore items are repre-
sented at a conceptual level that needs to be reified at application level. This reification
may be made externally, but it must be consistent with the concept description.

In tables 2.1 and 2.2, we give a summary of the characteristics of the systems analyzed.
Some systems are not described in detail here because their description would not add
pertinent facts for this thesis. Many more systems were left out (let alone the commercial
ones), so this is a very small sample of the state-of-the-art which hopes to cover the generality
of the approaches.
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Chapter 2. Creativity

Perhaps due to the youth of the area of creative systems or to the different purposes
of each system, few provide formal analysis of the creativity involved. The formalisms of
Wiggins, Ritchie and the others have scarcely been applied, which is understandable given
the problems raised by determining the inspiring set or the value for the many variables
involved. Only WASP [Gervás, 2002] has been analyzed so far with those formalisms, and
still it is complicated to compare it with other systems. In this thesis, we hope to give
another contribution to this fundamental aspect of evaluation of creative systems.

We would like to conclude this section by noting that, in spite of the current proliferation
of creative systems, the large majority is exploratory. One can say that transformational
creativity has been so far achieved by systems such as HR and Metacat, although only at
an elementary level. These systems deal with meta-knowledge but are still far from actu-
ally transforming their conceptual space, strategy, knowledge representation or evaluation
function.

17It should be said that these systems are many times built with an analytical intention (e.g. for prediction
or classification) rather than for generative purposes, although becoming able to be used as both.
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Chapter 3

Working with Concepts

As this thesis proposes a model for concept invention, it becomes imperative to define what
exactly is meant by a concept and by concept invention. Furthermore, we have to present
and explain in detail the cognitive and computational basis applied at the level of working
with those concepts. Thus, in this chapter, we define Concept and Concept Invention (and
oppose it to concept formation). We introduce also Conceptual Combination, Conceptual
Blending, Metaphor and Analogy, which participate in different parts of this thesis. All
these work at the level of concepts or networks of concepts.

3.1 What is a Concept?

Perhaps the most specific definition we can give is that a concept is an abstraction that
refers to ideas, objects or actions. Concepts can be dynamic entities, i.e. they can change
with time (e.g. the concept of “phone” has evolved with its technology), person (e.g. for
some people a “crocodile” is a “pet”, while for others it is not) or context (e.g. the concept
of “giant” will differ radically when comparing an “elephant” with a “human” and with a
“dinosaur”). In some domains, normally scientific, they can also be formal and static (e.g.
the concept of “prime number” is not supposed to change). More than about the definition,
plenty of debate has been taken about how concepts are represented in cognition. There
are three main views:

• Prototype view [Rosch, 1975]. Concepts are represented in the mind by prototypes,
rather than by explicit definitions, which can be used to differentiate when an in-
stance is or is not an example of the concept. Concepts are represented by an “ideal”
prototype, which has the “average” characteristics of the concept (e.g. the prototype
of “bird” would have “has wings”, “has feathers”, etc.). Of course, this view raises
problems because concepts are not necessarily static entities, definable with a fixed
set of properties.

• Exemplar view [Medin and Schaffer, 1978]. Concepts are represented by their most
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Chapter 3. Working with Concepts

common exemplars. Therefore, classifying an instance consists in determining which
remembered exemplars are more similar. This view implies that we organize experi-
ence in an episodic memory. If considered in isolation, the exemplar view fails in many
aspects. Although it is agreed that knowledge is dependent on individual experiences,
the ability to do abstraction, to generalize from experience, is fundamental, other-
wise memory would be insufficient for reasoning. Moreover, the exemplar view would
face the highest problems when processing unfamiliar concepts, since these would be
unclassifiable.

• Theory view [Murphy and Medin, 1985]. The representation of concepts is based on
micro-theories. A micro-theory describes the concept with facts about the concept
(or related concepts) and causal connections between them. For example, the concept
“bird” would have the facts that “it flies”, “it has wings“, etc., but also rules that
explain causality (e.g. Why do birds fly? Why do they nest in tress?). Thus, a micro-
theory can be seen as comprising a concept network (with causal links) and rules about
the concept. This view also poses some problems of which we name two: what should
be the limits of a micro-theory (e.g. should we explain flight by physical rules, or with
common sense; to which level of detail)? Since concepts can be dynamic, representing
it with a theory would raise all sorts of problems of non-monotonic reasoning (how to
represent change? how to maintain consistency and tractability?).

In AI, these three views have been applied. To name a few examples: the prototype
view is common in systems that represent concepts as attribute value sets, such as in some
machine learning systems (e.g. version space learning, decision trees); the exemplar view
is typical in Case-Based Reasoning systems, where episodic memory is used to compare old
to new problems; the Theory view is common in Logics (for example in Inductive Logic
Programming) and in systems that use semantic networks, such as Sapper and Copycat
(presented in sections 3.4.2 and 2.2.3).

Throughout this thesis, whenever we refer to concepts, we assume the Theory view,
both in relation to our work and to the work of others, except when explicitly pointing an
alternative.

3.2 Building concepts

Throughout the literature, there seems to be some confusion with the notions of concept
discovery, formation, invention, generation, design and creation. Sometimes they are syn-
onymous to each other, sometimes they are considered different. We propose a distinction
into two ways of building concepts: concept formation and concept invention. We provide
a consensual definition for concept formation, from Psychology, which coincides (also con-
sensually) with concept discovery. The definition for concept invention (or generation or
creation) may be less peaceful since it is based on less formal principles.
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Chapter 3. Working with Concepts

The distinction between formation and invention could be reduced to a problem of
constraint satisfaction: formation has stronger constraints to satisfy than invention, which
is more ill-defined. However, a clearer distinction is needed since these correspond to two
distinct, yet inter-dependent, steps of creativity: rationality and imagination. Once again,
convergence and divergence. While rationality is more constrained, thus more limited but
computationally implementable, imagination allows a world of possibilities that for a formal
machine are hardly feasible, or even possible at all. Indeed, it can be argued that, for
more undetermined and randomized it may become, AI modelling is ultimately formal and
deterministic, so a paradox arises here: shouldn’t it be all concept formation, when dealing
with machines? We propose that, at least philosophically, we should consider these two
forms of working with concepts. And, even if at the limit we are doomed to determinism
and formalism, we must not ignore imagination when attempting to model computational
creativity.

3.2.1 Concept Formation

In Psychology, Concept Formation (also known as concept learning or concept discovery) is
associated with the development of the ability to respond to common features of categories
of objects or events. In forming a concept, the subject must focus on the relevant features
and ignore those that are irrelevant. In AI, this task is normally taken by machine learning,
in which patterns are abstracted from analysis of data. In fact, the goal of machine learning
systems is to form (or discover) concepts. In this sense, if they happen to favor deliberately
the discovery of novel concepts (as opposed to systems built for well-defined goals, such
as a pattern detection ANN, or a decision tree for classification), they can be classified
as creative systems. A good example of this is the scientific discovery field. Again, HR
[Colton et al., 1999] is the reference we give for it is the most recent one of a series of
systems centered on mathematics discovery (e.g. AM and EURISKO [Lenat, 1984]) that
use machine learning.

We can see from these definitions that concept formation is more concerned with anal-
ysis than with synthesis. In other words, works about concept formation deal more with
discovery than with invention of novel concepts1. There is a fundamental difference between
these two processes: the former is based on finding sound explanations for data regularities,
while the latter on producing concepts without concerns of soundness. I.e. the former is
logically falsifiable2 and based on deduction, while the latter may have undetermined truth
value. However, this does not mean that concept formation is necessarily not creative.
Quite the opposite, the capacity to perceive regularities and associations that no one has

1Thus the name “conceptual invention”, given in some contexts (e.g. the Learning Cycle of Lawson-
Abraham [Lawson et al., 1989] contains a step in which “the students and/or teacher derive the concept from
the data, usually a classroom discussion (the CONCEPTUAL INVENTION phase)”) seems now unfortunate.
Words such as “discovery” or “formation” are clearly less ambiguous.

2Being logically falsifiable means that a formed concept (e.g. “the prime numbers are 1, 2, 3, 5, 7, 9...”)
can be proven false and the concept revised (e.g. “9 is not a prime”).
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found before is definitely behind many of the major achievements of humanity. To conclude,
we must stress that, in practice, there is not such a strict separation between formation and
invention. Every discovery involves conjecturing, i.e. inventing (or speculating about) new
concepts yet to be proven, a process that has a great deal of its power in unsound processes,
like aesthetics, intuition and free-association. In the systems above referred (HR, AM and
EURISKO), the conjecture generation step is fundamental and it is achieved with the ap-
plication of production rules and heuristics to evaluate interestingness of yet-to-be-proven
concepts.

3.2.2 Concept Invention

A concept has been invented (as opposed to discovered or formed) when its validity cannot
be predicted from its generative process and when it did not exist before, intensionally or
extensionally. In other words, the process of concept invention is unsound (e.g. abduction3).
This definition covers a very broad range of possibilities, from randomness to heuristics-
based search.

In concept invention, evaluation becomes a fundamental issue. Since there is no a priori
notion of validity, criteria must be met for the assessment of the generated concepts. These
criteria can coincide with those discussed for creativity (i.e. novelty and usefulness) or to
problem solving (i.e. satisfying a goal). Since these are, again, difficult criteria, concept in-
vention is normally applied as a generative phase to feed other sound procedures, which can
guarantee validity. For example, in scientific discovery systems (e.g. HR, AM, EURISKO),
conjectures are generated from the application of heuristics; in conceptual design the pro-
cess of concept invention (or generation) commences by establishing structural relationships
and searching for regularities and combining them into concept variants [Reffat, 2002]. In
AI systems in general, concept invention has been implemented based on heuristics (e.g.
in HR), parallel processes (e.g. in Copycat), evolutionary techniques (e.g. in NevAr), to
name a few. The main argument here is that in neither case the novel concept is the logical
conclusion from data analysis, but merely a bounded guess to be later explored.

3.3 Mixing concepts

3.3.1 Conceptual Combination

Conceptual combination is the process of combining two or more concepts together, often
resulting in a novel concept with emergent structure of its own. Although regarded as a

3Abduction can be roughly described as the assertion of premises, given the truth of the conclusion. For
example, with the rule A ∧ B → C and facts B and C, one can abduce (or assert the truth of the fact) A,
which is not necessarily true.
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universal cognitive process, the main motif of study in the conceptual combination com-
munity is language compositionality, more specifically interpretation of noun noun (e.g.
“pet fish”) and adjective noun (e.g. “blue cup”) combinations. In this context, the first
word (“pet”, “blue”) is called modifier, while the second is the head (“fish”, “cup”). Four
types of combination are proposed (see e.g. [Hampton, 1997], [Keane and Costello, 2001]):
relational, property mapping, conjunctive and known-concept. Relational combinations es-
tablish some relationship between the modifier and the head (e.g. in “bed pencil”, “a pencil
that you put beside your bed for writing some messages” [Keane and Costello, 2001]); prop-
erty mapping involves a property of one concept being asserted to the other (e.g. in “bed
pencil”, “a pencil shaped like a bed” [Keane and Costello, 2001]); conjunctive combinations
conjoin both concepts in some way, the interpretation being both the modifier-concept and
the head-concept (e.g. in “bed pencil”, “a big, flat pencil that is a bed for a doll”); known-
concepts or lexicalized compounds are those that are commonly used and established in
communication (e.g. “pencil case”), sometimes effectively forming a single lexical unit (e.g.
“railway” or “lipstick”).

There are four main theories for conceptual combination: Abstract rela-
tions [Gagné and Shoben, 1997]; Dual-Process [Wisniewski, 1997]; Composite Prototype
[Hampton, 1987]; and Constraints [Costello, 1997]. The abstract relations theory says that
only some combinations apply the modifier as a predicate to the head noun. They list a plau-
sible set of relations that can hold between the noun and the modifier, including CAUSE,
HAS, MAKES, MADE OF, FOR, IS, USES, LOCATED, DERIVED FROM, ABOUT,
DURING, and BY. The dual-process theory proposes two kinds of processes for conceptual
combination, structural alignment and scenario construction. Structural alignment explains
property and conjunctive interpretations (there is an alignment of attributes of both con-
cepts), while scenario construction explains relational interpretations (e.g., “a night flight
is a flight taken at night”).

The other two theories are important for this thesis, so we will pay them more attention.
The composite prototype model of James Hampton focusses on conjunctive combinations
(e.g. “pet bird”) and proposes that, when forming a concept such as “pets” that are
also “birds”, people take their prototype representations of “pet” and “bird” and combine
the prototypes into a composite to represent the conjunction. This new concept will then
inherit its own attribute values from one or the other constituent parent according to certain
principles. For example, the location slot for “pet” has the value in the home, while the
same slot for “bird” has the value in the wild. “Pet bird” inherits the value from “pet”
rather than from “bird”. On other attributes, the opposite might happen (e.g. the slot
covering - feathered - is inherited from “bird” rather than from “pet”, where its most
common value is furry) [Hampton, 1997]. Two influences on attribute inheritance are: the
centrality of the attribute (e.g. the location of “pet”, as staying at home, is central,
while color is not); its possibility in the composite (e.g. the value migrates could not be
possible in a “pet bird”). Another important aspect of the composite prototype model
is emergence: attributes which are considered true of the conjunction, but not true of
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the either constituent. It appears that a major source of emergent properties is simply
knowledge of the world - or “extensional feedback” [Hampton, 1987]. Although the author
argues that “we can not expect any model of conceptual combination to account directly
for such effects” [Hampton, 1997], he presents two specific sources of emergence: exemplar-
based, in which typicality of items in conjunctive categories can vary as a function of the
kinds of exemplar found in those categories (e.g. a “small spoon” is typically made of
metal, while a “large spoon” is not); theory-based, a background theory is applied to infer
emergent attributes (e.g. a “beach bicycle” must have particularly wide tyres). All these
ideas from James Hampton are also explored in Conceptual Blending, presented in section
3.3.2.

The Constraints theory of Fintan Costello and Mark Keane [Costello, 1997] describes
conceptual combination as a process which constructs representations that satisfy the three
constraints of diagnosticity, plausibility and informativeness. Diagnosticity requires the
presence of diagnostic properties from each of the concepts being combined. The diagnostic
properties of a concept are those which occur often in instances of that concept and rarely in
instances of other concepts (similar to salience [Milosavljevic and Dale, 1996]). The plausi-
bility constraint requires the preference to semantic elements which are already known to
co-occur on the basis of past experience. This constraint would predict that the interpreta-
tion “an angel pig is a pig with wings on its torso” would be preferable to “an angel pig is a
pig with wings on its tail”. Informativeness requires an interpretation to convey a requisite
amount of new information. Informativeness excludes feasible interpretations that do not
communicate anything new relative to either constituent concept; for example, “a pencil
bed is a bed made of wood” [Keane and Costello, 2001].

Costello and Keane implemented a computational model of their theory. The system is
named Constraints on Conceptual Combination (or C3) and will be subject to a comparison
with Divago in chapter 5.

As could be seen, conceptual combination is viewed as a cognitive process, although
its analysis is usually constrained to a particular language, mainly to English. There are,
however, aspects which are specific to some language or family of languages. Indeed, while
Dutch and German also allow the same kinds of combinations, other languages such as
Portuguese or French don’t. In Portuguese, the use of prepositions (e.g. de, para, etc.) in
combinations guarantees non-ambiguity. In principle, two consecutive nouns in Portuguese
correspond to a conjunctive interpretation (and, rarely, to a property interpretation). Of the
four theories presented, only the composite prototype model seems to be totally language
independent, perhaps because it is directed to conjunctive combinations. This does not
mean that the other theories are less valid or unrelated to cognition or creativity, rather we
say that they favor problems at the level of language rather than at the level of concepts. In
this sense, they are models of interpretation and natural language understanding, without
attending to other domains like visual arts, music or scientific discovery. In these domains
too, conceptual combination is constantly present, many times shared across different fields
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Figure 3.1: The classical, four-space model, of Conceptual Blending.

and media (e.g. in the Baroque style, abstract concepts such as ornamentation or luxury,
travel across the several fields). Thus, we conclude that these models are a priori limited
as models of creativity (except for Hampton’s model, since it focusses on generic concepts
and considers emergence).

3.3.2 Conceptual Blending

The framework of Conceptual Blending (CB), also known as Conceptual Integration, was
developed by Gilles Fauconnier and Mark Turner, initially motivated towards specific cog-
nitive phenomena such as Metaphor, Metonymy and Counterfactual Reasoning (Fauconnier
and Turner, 98). Blending is generally described as involving two input knowledge struc-
tures (the mental spaces) that, according to a given mapping, will generate a third one,
called Blend. This new domain will maintain partial structure from the inputs and add
emergent structure of its own.

More recently Fauconnier and Turner propose CB as an explanation for various cog-
nitive phenomena and, ultimately, for the emergence of cognition as we know it (Fau-
connier and Turner, 2002). These latter claims raised the voice of the critics, of which
we will give echo after we explain CB in some detail. Most of all, we think that CB
is a model for creativity (that follows a conceptual combination philosophy, such as pro-
posed by James Hampton, briefly described above [Hampton, 1987]) with a sufficiently
detailed set of principles and processes to make a computational model. This is not to
say that it is formally or algorithmically described in its fundamental details. In fact, as
far as we know, there are only a few formal accounts of this subject, apart from our own
[Goguen, 1999, Veale and O’Donoghue, 2000, Lee and Barnden, 2001] and its formalization
is clearly not given priority within the mainstream CB community (see discussion about
computational modelling in [Fauconnier and Turner, 2002, p. 110]).
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The computational realization of this model is definitely a big challenge since Conceptual
Blending has many particularities that vary according to the situation, complex components
like intuition, social behaviour, expectation or common sense. In other words, there are
several issues clearly hard to model. Yet, the intersection of AI and CB may bring, if not
the computational model of the framework, at least methods or algorithms that may extend
the power of AI in problem solving. In our opinion, this is especially true for the field of
Computational Creativity, as we hope to demonstrate in this thesis.

The framework

A blend is a concept or web of concepts whose existence and identity, although attached to
the pieces of knowledge that participated in its generation (the inputs), acquires gradual
independence through use. We often find a blend as being a concept that has structure
of other concepts, yet having its own (emergent) structure. We find examples of blends
in many sorts of situations. People have been making blends at least from the times
of Greek mythology (e.g. Pegasus) till today (e.g. the Pokemon creatures). They are
present throughout our daily communication (e.g. “John digested the book”), techno-
logical evolution (e.g. “Computer virus”, “Computer desktop”), arts (e.g. Mussorgsky’s
“Pictures of an exhibition”; Kandynsky’s “Improvisations”), advertising (e.g. Swatch is
a blend of “swiss” and “watch”). Many more examples and situations could be listed
and studied in detail, demonstrating the ubiquity of CB. The works of [Mandelblit, 1997],
[Sweetser and Dancygier, 1999], [Coulson, 2000] and [Veale and O’Donoghue, 2000] are ex-
amples of how CB is an important contribution to Linguistics, Creative Cognition, Analogy
and Metaphor.

The first fundamental element of Conceptual Blending is the mental space. A men-
tal space is “a partial and temporary representational structure which speakers construct
when thinking or talking about a perceived, imagined, past, present or future situation”
[Grady et al., 1999]. “Mental spaces are small conceptual packets constructed as we think
and talk, for purposes of local understanding and action. (..) [they] are very partial. They
contain elements and are typically structured by frames. They are interconnected, and can
be modified as thought and discourse unfold. Mental spaces can be used generally to model
dynamic mappings in thought and language” [Fauconnier and Turner, 2002, 40]. From a
symbolic AI perspective, a mental space could be represented as a semantic network, a
graph in which we have nodes identifying concepts4 (corresponding to the elements of a
mental space) interconnected by relations. The definitions of mental space still allow many
other representations (e.g. cases in Case-Based Reasoning, memes in Memetics or even the
activation pattern of a Neural Network in a given moment) but these would certainly de-
mand more complex computational treatment, namely in what refers to the mappings. In
figure 3.2, we show two possible mental space representations for “computer” and “virus”.

4In this context, a concept is identified by a node, but its definition comes from its relationships with the
other concepts, which is consistent with the Theory view given in the beginning of this chapter.
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Figure 3.2: Two simple mental spaces for computer program and for virus.
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Figure 3.3: Cross-space mapping between the mental spaces of computer and virus.

In order to generate a blend, we must find mappings between the two mental spaces. To
these, we call cross-space (or cross-domain) mappings. They connect elements of one mental
space to others, in the other mental space. A mapping may be achieved through different
processes (e.g. identity, structure alignment, slot-filling, analogy) and doesn’t have to be
1-to-1, i.e., an element may have more than one counterpart or it can have no counterparts
at all. A possible mapping for the “computer virus” blend is shown in figure 3.3.

Another important notion is that of frames. When “elements and relations are organized
as a package that we already know about, we say that the mental space is framed and we
call that organization a frame” [Fauconnier and Turner, 2002, 102]. A frame is therefore a
kind of abstract prototype of entities, actions or reasonings. For example, the mental space
of “bus” could be organized according to the frame “transport means”, while the mental
space of “Mary’s wedding” could be organized by the “marriage” frame. Of course, this
reminds the frames and scripts from early AI research but, in this case, these frames may be
dynamic (they can change with time, individual and context, as with concepts in general) as
well as compositional (there are many layers of abstraction for frames). We call organizing
to the principal frame underlying a mental space (e.g. “transport means” is the organizing
frame of “bus”, while “container” is not). In figure 3.4, we present two organizing frames
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Figure 3.4: The organizing frames of the mental spaces of computer and virus.

of the “computer” and “virus” mental spaces (the program frame and the virus frame).

The frames preserve order in the blend, in the sense that they guide the process of
blend construction to recognizable wholes. This does not mean, however, that the blend
will integrate one single frame. Sometimes, as in the example of “computer virus” (in figure
3.5), the blend will inherit structure from both frames. As we can see in this example,
some elements may not be projected. In this case, the “input” and “output” elements of
computer viruses are normally a lot more subtle (or hidden) than in the usual programs.

In CB, the generation of a blend takes three (not necessarily sequential) steps:

• Composition.

“Projection of content from each of the inputs into the blended space. Sometimes this
process involves the ’fusion’ of elements from the inputs (...)” [Grady et al., 1999].
Taken together, the projections from the inputs make new relations become available
that did not exist in the separate inputs. The paired elements are projected onto
the blend as well as other surrounding elements and relations. This is a selective
projection, i.e., some elements get projected to the blend, some don’t.

• Completion. “The filling out of a pattern in the blend, evoked when structure pro-
jected from the input spaces matches information in long-term memory. In this
way, the completion process is often a source of emergent content in the blend”
[Grady et al., 1999]. Knowledge of background frames, cognitive and cultural mod-
els, allows the composite structure projected into the blend from the inputs to be
viewed as part of a larger self-contained structure in the blend. The pattern in the
blend triggered by the inherited structure is “completed” into the larger, emergent
structure.

• Elaboration. “The simulated mental performance of the event in the blend, which
we may continue indefinitely” [Grady et al., 1999]. The structure in the blend can
then be elaborated. This is called “running the blend”. It consists of cognitive work
performed within the blend, according to its own emergent logic.
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Figure 3.5: The computer virus blend.

We illustrate the process of blending construction with another classical example, the
“Riddle of the Buddhist Monk”, which comes from Arthur Koestler’s Act of Creation:

A Buddhist Monk begins at dawn one day walking up a mountain, reaches the
top at sunset, meditates at the top for several days until one dawn when he
begins to walk back to the foot of the mountain, which he reaches at sunset.
Make no assumptions about his starting or stopping or about his pace during
the trips. Riddle: Is there a place on the path that the monk occupies at the
same hour of the day on the two separate journeys?

Fauconnier and Turner suggest that solving this riddle involves blending two different
input spaces, one concerning the upward trip (day ’d1’) and another one concerning the
downward trip (day ’d2’). A generic space holds the commonalities between the two input
spaces (a moving individual, his position, a path linking foot and summit of the mountain,
a day of travel, and motion in an unspecified direction) [Fauconnier and Turner, 2002, p.
45]. The reasoning thus goes: first, composition of elements from the inputs makes relations
available in the blend that do not exist in separate inputs. Only in the blend we have two
individuals instead of one. Second, completion brings additional structure to the blend
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Figure 3.6: Blended spaces for the Riddle of the Buddhist Monk

(e.g. the frame of “two people starting a journey at the same time from opposite ends of
a path”). At this point, the blend is integrated: it is an instance of a familiar frame (“two
people starting a journey...”). By virtue of this frame, we can now run the blend, i.e., do
the elaboration. In this case, it coincides to applying intuitive movement laws in opposite
directions, which will make the two imagined monks, a1 and a2, eventually meat each other
at some point, thus answering the riddle. This is what Fauconnier and Turner call emergent
behaviour. This reasoning is schematized in figure 3.6 [Fauconnier and Turner, 2002, p. 43].

In general, the projection of data to the blend is not exhaustive or predetermined in
any way. Each element may be projected “untouched” to the blend, it may be “fused”
with other concepts, it may be projected to another element (usually the projection of its
counterpart) and it may even not be projected. This selective projection brings considerable
complexity to the blending process because it raises the number of possible combinations to
an extremely large number. This space of potential blends will certainly not be completely
traversed for a new blend construction. Quite differently, projections are selected through
a constraint-guided process of accommodation towards satisfying a set of Optimality Prin-
ciples [Fauconnier and Turner, 2002]:

• Integration - The blend must constitute a tightly integrated scene that can be manip-
ulated as a unit.

• Pattern Completion - Other things being equal, complete elements in the blend by
using existing integrated patterns as additional inputs.
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• Topology - Other things being equal, for any input space and any element in that
space projected into the blend, it should be optimal for the relations of the element
in the blend to match the relations of its counterparts.

• Maximization of Vital Relations - Other things being equal, maximize the vital re-
lations in the network. Turner and Fauconnier identify 15 different vital relations:
change, identity, time, space, cause-effect, part-whole, representation, role, analogy,
disanalogy, property, similarity, category, intentionality and uniqueness.

• Intensification of Vital Relations - Other things being equal, intensify vital relations.

• Web - Manipulating the blend as a unit must maintain the web of appropriate connec-
tions to the input spaces easily and without additional surveillance or computation.

• Unpacking - The blend alone must enable the understander to unpack the blend to
reconstruct the inputs, the cross-space mapping, the generic space, and the network
of connections between all these spaces

• Relevance - Other things being equal, an element in the blend should have relevance,
including relevance for establishing links to other spaces and for running the blend.
I.e. it should have a good reason to exist.

These constraints work as competing pressures and their individual influence in the
process should vary according to the situation; when the value of one grows, others may de-
crease. As far as we know, there is no work yet towards an objective study of the optimality
pressures, measuring examples of blends or formally specifying these principles. This, we
believe, inhibits considerably the appreciation and application of Conceptual Blending in
scientific research, thus a lateral motivation for the work presented here becomes that of
testing and specifying a formal proposal of these optimality pressures.

Among the many possible classifications of blending networks, Fauconnier and Turner
particularly stress three kinds: mirror networks, single-scope and double-scope networks. A
mirror network is one in which both input spaces share the same organizing frame, and so
does the blend. In single- and double-scope networks, input spaces have different organizing
frames. In a single-scope network, the blend has the organizing frame of only one of the
input spaces, while, in a double-scope network, the organizing frame of the blend results
from a combination of the inputs. The latter, is argued [Fauconnier and Turner, 2002], is
fundamental for human modern cognition and are deemed more creative. In the examples
above, “computer virus” can be considered a double-scope blend, since its structure comes
from a combination of the input’s structures, while the “Buddhist monk” is a mirror network
because both input spaces share the exact same structure (both have a path, a monk, a
direction, a mountain, etc.), the direction being the only difference.

CB is a promising model for creativity since it consists of the generation of new
concepts from integration of previous knowledge, with its own emergent structure (the
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whole is bigger than the sum of its parts); it has a domain independent evaluative
methodology (e.g. the optimality constraints); it is consistent with processes undoubtedly
deemed creative like Metaphor and Conceptual Combination [Fauconnier and Turner, 1998,
Veale and O’Donoghue, 2000, Coulson, 2000]; and, finally, it is not, by itself, a deterministic
process, rather it is a context-sensitive process that considers in parallel a set of constraints
that may interact and yield a (potentially large) varied space of equally valid solutions. In
other words, with the same starting conditions, we may get many different results, all with
the same overall value.

Since, in this thesis, we develop a computational model of Conceptual Blending,
we will also apply some classical examples. We call these classical because they have
been often cited in various articles or represent classical situations approached in Blend-
ing literature. They were taken from the main literature references (namely from
[Fauconnier and Turner, 2002] and [Coulson, 2000]). In section 6, we will apply them for
purposes of validation of our blending module. All the examples are described in Appendix
A.

So far, there is little work yet towards computational Conceptual Blending. We
can only name three examples: Joseph Goguen’s Algebraic Semiotics’ approach
[Goguen, 1999]; Veale and O’Donoghue’s extension of Sapper to account for Blending
[Veale and O’Donoghue, 2000]; and Barnden and Lee’s approach to Conceptual Blending
with counterfactuals [Lee and Barnden, 2001]. Joseph Goguen proposes to describe blend-
ing using the algebraic semiotics formalism. Algebraic semiotics is a formal theory of
complex signs addressing interface issues, in a general sense of “interface” that includes
user interface design, natural language and art. In the context of Semiotics, there are two
views of what a sign is, from Saussure [Saussure, 1983] and Peirce [Peirce, 1958]. Goguen
follows mainly Peirce’s definition5:

A sign (..) [in the form of a representamen] is something which stands to some-
body in some respect or capacity. It addresses somebody, that is, creates in the
mind of that person an equivalent sign, or perhaps a more developed sign. That
sign which it creates I call the interpretant of the first sign. The sign stands
for something, its object. It stands for that object, not in all respects, but in
reference to a sort of idea, which I have sometimes called the ground of the
representamen. [Peirce, 1958, p. 2228]

According to this model of sign, the traffic sign for “stop” would consist of: the red
light facing traffic (the representamen); vehicles halting (the object) and the idea that a red
light indicates that vehicles must stop (the interpretant). In the work of Goguen, a complex
sign (or a sign system) is a sign that may have several levels of subsigns with an internal
structure. He thus developed Algebraic Semiotics as being a computational treatment of
sign systems. “Building on an insight from computer science, that discrete structures can

5As cited in [Chandler, 2002]
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be described by algebraic theories, sign systems are defined to be algebraic theories with
extra structure, and semiotic morphisms are defined to be mappings of algebraic theories
that (to some extent) preserve the extra structure” [Goguen, 1999]. Describing blends as
being semiotic morphisms of sign systems (the input spaces), Goguen thus applies Algebraic
Semiotics as a way to formalize Conceptual Blending. More specifically, he argues that two
category theory constructions, 3

2pushouts and 3
2colimits, give blends that are “best possible”

in a sense that involves ordering semiotic morphisms by quality. Some examples of how this
quality can be measured are:

• The most important subsigns of a sign should map to correspondingly important
subsigns of its representation (more technically, this calls for preserving important
sorts and constructors).

• It is better to preserve form (i.e., structure) than content, if something is sacrificed.

• The most important axioms about signs should also be satisfied by their representa-
tions.

We presented Goguen’s work rather briefly and informally for it would be needed plenty
much space and reader’s effort to learn algebraic semiotics as well as its application to
Blending, an effort that we think would not be rewarding in which respects to understanding
this thesis. However, when presenting our model of blending, we will return to Goguen’s
formalization whenever there are similarities and discrepancies. There, we hope, the reader
will also gain a better insight into Goguen’s approach. As a final remark, we have to say
that although this formalization should be credited as the first attempt to clarify some of
CB’s aspects with as much accuracy as possible, it leaves out some important issues, such
as the optimality constraints, the actual processes of construction (composition, completion
and elaboration) or selective projection. Some of these are theoretically accounted for (or
indirectly implied by the formalization, such as the quality constraints example above, which
can be seen as optimality constraints), but they are not realized in any specific way (e.g.
with specific processes for generating mappings and doing selective projection), which would
certainly unravel many more problems. Finally it is noticeable that, in spite of efforts in
this direction, the formal notation for blending given by Goguen has not been applied by
the cognitive linguistics community, perhaps because it is too complex, or, more probably,
because the community still finds it ineffective in studying blends.

Veale and O’Donoghue present a computational model which relies on the metaphor
interpretation system, Sapper (presented in the next section), to establish a dynamic blend
between two domains. This blend, rather than being an independent new domain, corre-
sponds to a unifying set of correspondences of concepts from both domains, built according
to a constructor space. Therefore, although the authors argue the contrary, this work misses
the actual creation of the fourth space, the blend, which should have the same sort of struc-
tures than the inputs. It ends up being the set of awakened dormant bridges that are raised
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during the process (this will be thoroughly explained in section 3.4.2) and which correspond
to a mapping rather than being an independent new domain. Perhaps the weakness of this
work is that the authors did not elaborate more than one or two papers, neither give any
practical results or detailed demonstrations. There is no account for optimality pressures,
selective projection or emergent structure. As we will see, Sapper, more specifically its
cross-space mapping mechanism, will also be useful for the work presented here.

Lee and Barnden focus the problem of reasoning with counterfactuals from the point of
view of their ATT-Meta system [Barnden, 1998] (which will be briefly described in section
3.4.3), further analysing it from a perspective of Conceptual Blending. A counterfactual is
the reasoning associated to expressions of the form “If S1 then S2” (e.g. “If John had sold
his shares then he would have made a profit.”) and it implies a priori contradictions when
making straight truth assertions of the constituents S1 and S2 (it must be true that “John
did not sell his shares”, otherwise the “if” condition would not be necessary). Thus, to check
the truth value of a counterfactual, one has to reason by hypotheses (for which ATT-Meta
is well suited). Starting by a simple example, such as the one just given, and explaining
how it could be processed via ATT-Meta’s mechanisms, the authors then proceed to more
complex situations that would imply a conceptual blending, such as “If Julius Ceasar was
in charge of the Korean War then he’d have used the atom bomb”. This would imply the
blending of “Roman Empire” and “Korean War” domain knowledge into the same space
prior to analysing the counterfactual in the same fashion as the simpler examples. The
authors do not explore in depth any of mechanisms of Conceptual Blending described here,
as it becomes not the focus of their work. Conversely, we will not focus on counterfactual
reasoning throughout this thesis since it would imply a deviation from its main objectives.
However, there is no reason to believe that its results should not be extended towards this
type of reasoning.

Some criticisms

We will now give special attention to the weaknesses and problems of the Conceptual Blend-
ing framework. It is noticeable that the Conceptual Blending framework is an ongoing re-
search, possibly still in its early versions. Naturally, it has been subject to some criticisms
and its evolution to next stages of the cycle of research life certainly depends on searching
for valid answers to them.

The first and most obvious illness of Conceptual Blending is its vagueness and lack of
formality all across its many aspects. Starting from the notion of mental space, it is unclear
what it is exactly, to which extent it is cognitively plausible (it should be plausible, given
the claims of CB as fundamental to cognition). Indeed, the reader might have felt some
discomfort with the definition we gave, to which we tried to clarify with AI examples. This
problem of definition of mental spaces becomes clear when discussing about domains and
frames. In some examples, we see the blending of domains, in some others (as happens in
Seana Coulson’s book [Coulson, 2000]) of frames, without understanding why these are not
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just named as “mental spaces”. If there were a more clear notion of mental spaces, perhaps
the Optimality Principles would become less vague (see, for example the explanation for
“Intensification of Vital Relations”6 above). This obscurity is carried over to the whole
methodology that the authors use to deconstruct blends. There seems to be no specific set
of rules for analyzing a blend other than intuition. A clear sign of this can be observed in
the generic space shown in our examples (see Appendix A), which sometimes is a set of
generalizations, others it represents specific knowledge, and other times it is just absent.
Each new example may yield different analysis from different persons, which compromises
the predictability of this framework. This, of course, shows more in complex blends, which
we tried to reduce to a minimum in the examples given (in fact, being less subjective as
possible was one of the main restrictions for selecting examples for experiments). In simpler
blends, when it is clear that we are indeed in face of a blend (e.g. “computer virus”, “Riddle
of the Buddhist Monk”, Pegasus, Dracula), the framework seems not so much controversial.
Nevertheless, it is still not clear how to distinguish a simple from a complex blend and, even
worse, it is not clear how to distinguish a blend from a non-blend. Ultimately, it seems that
everything that has a symbolic meaning is a blend (e.g. sign language, money, machine
dials, etc.), which of course leads to very extreme claims. This reasoning falls into the same
category as the claim that “every language is metaphoric”, also a relativist perspective that,
although maybe philosophically interesting, only risks to sterilize its development unless a
valid paradigm shift is made (i.e. “since every language is metaphoric, let us develop a
different theory of language, and demonstrate its validity”).

All these problems lead to the issue of falsifiability. Since the Conceptual Blending
framework does not predict the more complex blends and the distinction between what is
and what is not a blend is obscured, it is in principle not falsifiable, and therefore not a
theory, in a modern science sense7. Assuming the different perspective of research programs
from Lakatos8, the framework of Conceptual Blending could be considered a research pro-
gram, although its belt of auxiliary hypotheses needs to be more formally defined. In other
words, these auxiliary hypotheses still need to be falsifiable.

These criticisms intend to motivate work that, from our point of view, is fundamental
and to support our own motivation for the present thesis. We do not promise to give
any perfect blending machine or even to demonstrate that ours is the formalization of
the whole Conceptual Blending framework. To do so, it would be necessary to solve the
problems described above (what is a mental space, a frame or a projection; what should

6Of course, in [Fauconnier and Turner, 2002], this constraint is more explained, but from the beginning
to the end we keep confused with the lack of clear difference to Maximization of Vital Relations.

7A fact or a theory being falsifiable means that it can, in principle, be proven false. According to Karl
Popper [Popper, 1959], a theory that explains a phenomenon must be falsifiable through an experimental
result that is implied by the theory. One can justify a theory rationally if it is not (yet) falsified.

8A research program consists of a theoretical core which is protected by a belt of auxiliary hypotheses.
When the theory is falsified, an auxiliary hypothesis should be reconsidered, not the theoretical hard core.
A revolution is explained as a change in the theoretical hard core [Lakatos, 1978]. Lakatos elucidated the
activity of science not as the project of trying to refute one theory but as investigating empirical phenomena
within the theoretical frame of a research program (in [van den Bosch, 2001]).
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the optimality principles and the selective projections be about) prior to dedicate an entire
thesis to it. Here, we will propose a computational level answer to some of them. Although
this is not the main theme of this thesis, it comes as a result of the implementation of the
computational model of creativity, which will be described in the next chapter.

In spite of all these criticisms, it has been claimed that Conceptual Combination theories
(such as presented before in section 3.3.1) cannot predict more than Conceptual Blending
does, i.e., the same level of predictions with noun noun combinations can be done with CB
(see [Coulson, 2000]). Indeed, as said by James Hampton, only a small set of emergent fea-
tures can be predicted by theories, which limits predictability to the more constrained and
closed world situations (i.e. in an ideal, yet unrealistic, scenario, we have two concepts de-
fined with a universally accepted and stable representation). As an analytical model, it can
become productive, as the examples of [Mandelblit, 1997], [Sweetser and Dancygier, 1999],
[Coulson, 2000] and [Veale and O’Donoghue, 2000] show how CB can contribute to Linguis-
tics, Creative Cognition, Analogy and Metaphor.

To conclude, Conceptual Blending comes as an elaboration of other works related to
creativity, namely Bisociation (in section 2.1.2), Metaphor (in the following section) and
Conceptual Combination9. As such, it attracts the attention of computational creativity
modelers and, whether or not being how Fauconnier and Turner describe its processes and
principles, it is unquestionable that there is some kind of blending happening in the creative
mind.

3.4 Metaphor and Analogy

Metaphor and analogy are two cognitive mechanisms that have been recognized as under-
lying the reasoning across different domains10. Because of so, they play an indomitable role
in creativity and must be approached here. Although no consensus has been reached in the
current literature regarding a clear distinction between metaphor and analogy, it is clear
that their mechanics share many commonalities. It is widely accepted in analogy research
that many of the problems of metaphor interpretation can be handled using established ana-
logical models, such as the structure mapping approach [Gentner, 1983]. Thus, we present
a set of works that involve mapping across distinct domains, namely SME (section 3.4.1)
and Sapper (section 3.4.2). Although only the latter has brought direct influence on this
thesis, SME deserves particular attention for it has been the main reference in Analogy for
the past years and was the starting point and the benchmark for other systems, which will

9Another common criticism is that the authors of Conceptual Blending have not given fair credit to
preceding works, such as James Hampton’s Composite Prototype Model [Hampton, 1987], which, as can
now be understood, stated the same general lines followed ten years later by Conceptual Blending, although
it is also fair to acknowledge that Fauconnier and Turner have made much deeper explorations into the same
issues.

10This claim is nowadays widely agreed, as metaphor is seen as a cognitive rather than a linguistic device.
For an extensive figurative versus literalist analysis, we redirect the reader to [Veale, 1995]
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also be the subject of an overview (section 3.4.3).

3.4.1 Structure Mapping Engine

The Structure Mapping Engine (SME) of Dedre Gentner, Kenneth Forbus and Brian Falken-
hainer [Falkenhainer et al., 1989] was initially built as a computational implementation of
the Structure Mapping Theory (SMT) of Dedre Gentner [Gentner, 1983]. In this theory
(as generally accepted in the field), analogy consists of a mapping of knowledge from one
domain (the base) into another (the target) and may be used to guide reasoning, to gen-
erate conjectures about an unfamiliar domain, or to generalize several experiences into an
abstract schema. Moreover, SMT is based on the intuition that analogies are supported
on relations: “No matter what kind of knowledge (causal models, plans, stories, etc.), it
is the structural properties (i.e., the interrelationships between the facts) that determine
the content of an analogy”. Thus, analogical processing is decomposed into three stages
[Falkenhainer et al., 1989]:

1. Access: given a current target situation, retrieve from long-term memory another
description, the base, which is analogous or similar to the target.

2. Mapping and Inference: construct a mapping consisting of correspondences between
the base and target.

3. Evaluation and Use: estimate the ’quality’ of the match. Three kinds of criteria are
involved: the structural criteria include the number of similarities and differences; the
second criteria concerns the validity of the match; the third criteria is relevance, i.e.,
whether or not the analogy is useful to the reasoner’s current purposes.

SME deals only with the Mapping and Inference stage (although providing also a
domain-independent structural evaluation). In terms of knowledge representation, it dif-
ferentiates between entities, predicates and dgroups. Entities correspond to the lower level
objects or constants; predicates are higher-level primitives of three sorts (functions, at-
tributes and relations); and dgroups correspond to a collection of entities and predicates
about them. Below, we give an example of a dgroup named simple-heat-flow.

(defDescription simple-heat-flow

entities (coffee ice-cube bar heat)

expressions (((flow coffee ice-cube heat bar) :name hflow)

((temperature coffee) :name temp-coffee)

((temperature ice-cube) :name temp-ice-cube)

((greater temp-coffee temp-ice-cube) :name >temperature)

(flat-top coffee)

(liquid coffee)))
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1. Run MHC rules to construct match hypotheses.
2. Calculate the Conflicting set for each match hypothesis.
3. Calculate the EMaps (collections of entity matches) and NoGood

sets (collections of conflicting entity matches) for each match
hypothesis by upward propagation from entity mappings.

4. Merge match hypotheses into gmaps.
(a) Interconnected and consistent.
(b) Consistent members of same base structure.
(c) Any further consistent combinations.

5. Calculate the candidate inferences for each gmap.
6. Score the matches

(a) Local match scores.
(b) Global structural evaluation scores.

Table 3.1: Overview of the SME algorithm

To clarify, we give an example of each kind of representation: coffee is an entity, flow is
a relation, temperature is a function and liquid is an attribute. It is clear that an attribute
can be represented as a relation (e.g. (property coffee liquid) is the same as (liquid coffee)).

SME establishes potential cross-domain linkages via match hypothesis construction rules
(MHC). These rules are externally programmable and specify the conditions that must be
met in order to create a cross-domain linkage (known as match hypothesis(MH)).

SME constructs the cross-domain mapping by calculating the largest, maximal collection
of MH’s. “A collection is maximal if adding any additional match hypothesis would ren-
der the collection structurally inconsistent”[Falkenhainer et al., 1989]. Being structurally
consistent means that (i) the MH’s do not assign the same base concept to multiple target
concepts; (ii) if a match hypothesis MH is in the collection, then so are MH’s which pair
up all of the arguments of MH’s base and target concepts11. Collections are called gmaps,
each containing, apart from a set of MH’s, a set of candidate inferences (new relations that
will be projected to the target, if the gmap is chosen) and an evaluation score.

SME was able to solve many classical analogy problems, such as the Solar-System
- Rutherford Atom analogy or the Heat-Water flow analogy. In figure 3.7, we show its
interpretation for the Heat-Water flow analogy. It can be seen that Gmap#1 produced the
correct inference that temperature causes heat flow.

The major problem with SME is its intractability with unstructured representations
as pointed out in [Veale and Keane, 1997]. As the authors of SME acknowledge, “worst-
case performance occurs when the description language is flat (i.e., no higher-order struc-
ture) and the same predicate occurs many times in both the base and the target”

11I.e. if we have MH(A,B) and a relation r, with (r A C) and (r B D) then the collection must also contain
MH(C,D)
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[Falkenhainer et al., 1989]. There are two major reasons for this last problem: the knowl-
edge representation is predicate centered and therefore, when predicates are not hierar-
chically structured, it becomes flat, even when entities are themselves structured (e.g. a
description of a multi-part object); SME makes an exhaustive search to obtain the largest
mapping.

Rule File: literal-similarity.rules Number of Match Hypotheses: 14

Match Hypotheses:

(0.6500 0.0000) (>PRESSURE >TEMP)

(0.7120 0.0000) (PRESS-BEAKER TEMP-COFFEE)

(0.7120 0.0000) (PRESS-VIAL TEMP-ICE-CUBE)

(0.9318 0.0000) (BEAKER-6 COFFEE-1)

(0.6320 0.0000) (PIPE-8 BAR-3)

o o o

o o o

GlobalMappings:

Gmap#1: (>PRESSURE >TEMPERATURE) (PRESSURE-BEAKER TEMP-COFFEE)

(PRESSURE-VIAL TEMP-ICE-CUBE) (WFLOW HFLOW)

Emaps: (beaker coffee) (vial ice-cube) (water heat) (pipe bar)

Weight: 5.99

Candidate Inferences: (CAUSE >TEMPERATURE HFLOW)

Gmap #2: (>DIAMETER >TEMPERATURE) (DIAMETER-1 TEMP-COFFEE)

(DIAMETER-2 TEMP-ICE-CUBE)

Emaps: (beaker coffee) (vial ice-cube)

Weight: 3.94

Candidate Inferences:

Gmap #3: (LIQUID-3 LIQUID-5) (FLAT-TOP-4 FLAT-TOP-6)

Emaps: (water coffee)

Weight: 2.44

Candidate Inferences:

Figure 3.7: Complete SME interpretation of Heat-Water flow analogy(from
[Falkenhainer et al., 1989])

3.4.2 Conceptual Scaffolding and Sapper

Tony Veale developed a model of metaphor interpretation centered on the contemporary
theory [Lakoff and Johnson, 1980], which describes metaphor as the act or process of struc-
turing one concept (the tenor) with knowledge from another concept (the vehicle), with
the purpose of (i) emphasizing certain associations of the tenor over others (“my dentist
is a barbarian‘”); (ii) enriching the conceptual structure of the tenor by analogy with an-
other domain (“the CPU is the brain of the computer”); (iii) conveying some aspect of
the tenor which defies conventional lexicalization (“the leg of the chair”, “the neck of the
bottle”)[Veale, 1995]. The most revolutionary assumption from the contemporary metaphor
theory is that metaphors belong to conceptual classes variously referred to as our commu-
nication and are deeply entrenched in our world experience. Examples of metaphorical
concepts include ’ARGUMENT is WAR’ (“I will defend myself against his claims”), ’TIME
is MONEY’ (“She wasted hours in solving it”), or ’SAD is DOWN’ (“Don’t let yourself
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Figure 3.8: Example of the scaffolding construction with four localist primitives (Actual
and Attempted Causality, Connect and Disconnect)

down”). Moreover, most non-trivial metaphors can be reduced to complexes of simpler core
metaphors, grounded in our spatial understanding of the world (e.g. ’ABSTRACT STATES
as LOCATIONS’: “Bill went mad”, “Suzie went to sleep”; ’TIME as a LOCATION’: “at 5
o’clock”, “in March”).

In his model, Veale proposes two different, subsequent, steps for metaphor interpreta-
tion: extraction of a conceptual scaffolding between the ideas evoked by a metaphoric ut-
terance, by identification of underlying core metaphors; establishment of relations between
those ideas for extensive explanation of the metaphor, involving cross-domain transference
(Sapper). The former works top-down, while the latter, bottom-up.

The essential role of conceptual scaffolding is to build a skeleton that will be the basis for
Sapper in the search for plausible relations using domain knowledge. Therefore, the relations
built during scaffolding are not intended to capture all the subtleties and nuances of meaning
in a metaphor, rather, they are generic guidelines for constraining the interpretation. The
scaffolding model takes two distinct phases: scaffolding construction followed by scaffolding
elaboration. Scaffolding construction is spatial in nature, interrelating the elements of the
utterance through the use of localist principles, which act as the primitive building blocks
of the representation (see figure 3.8). The composition of this structure is obtained from the
verbs involved, but other elements, such as adjectives (e.g., Big versus Small, Lightweight
versus Heavy), and explicit conceptual relations (e.g., Father, Partner and Manufacturer)
also contribute to the scaffolding.

Scaffolding elaboration labels the associations just described with particular inter-
concept relation, such as Colour for connect(Porsche, Black) and Manufacturer for con-
nect(Macintosh, Apple-inc). These relationships are derived from the interaction of the
concepts governed by the scaffolding structure (see figure 3.9). The appropriate relation-
ship or case is thus dependant upon the nature of the concepts involved.
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Figure 3.9: Example of the scaffolding elaboration

Thus, conceptual scaffolding builds a network of relations and concepts that correspond
to the skeletal interpretation of an utterance. The metaphor interpretation is only completed
after the creation of cross-domain links between the concepts, which will allow the transfer
of knowledge and finally, the explication of the metaphor. This is done by Sapper.

Sapper works with a semantic network that contains the information brought from
the conceptual scaffolding, also enriched with background domain knowledge. It applies
a spreading activation based process in order to determine novel cross-domain relations,
thus reproducing much of the connectionist philosophy in a symbolic framework. These are
normally called localist networks, since a distinct unit, or fixed cluster of units, is assigned to
each concept, and an activation-carrying inter-unit linkage is assigned to each inter-concept
relation (of the appropriate conductivity to capture the salience of the relation). There are
two generic aspects regarding Sapper memory that matter the most for our purposes:

• The representation of all knowledge is equal. If not given a specific context, all
concepts and relations are equally relevant (or irrelevant), i.e. there is no built-in
hierarchy or ordering to organize the memory.

• Activation flow is entirely opportunistic. The most activated concepts will be those
that happen to be placed in the spots where the activation waves are higher and
in larger number, independently of what the concept actually is or means. In other
words, again, there is no a priori preference for concepts or relations.

Since concepts are intrinsically dynamic, their representation should also be dynamic
and impartial. In other words, one concept can play a central role and have a particular
meaning in one context and be lateral and have a different meaning in another context, thus
it is the situation that shapes it, not its representation. This is a well-known problem in
AI, and it is clear that Sapper does not solve it but at the very specific level of cross-space
mappings, as we will see below.

Sapper has two modes of processing, which interchange constantly as the cross-domain
bridges are established:

• Structural inference is performed in a symbolic mode of processing,
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Figure 3.10: Example of the triangulation rule. Dashed arrow represents a dormant bridge
(from [Veale, 1995])

• Opportunistic activation flow occurs in the connectionist mode of processing, in which
particular relations (the dormant bridges, as laid down in the symbolic mode) are rec-
ognized to represent domain crossover points between the tenor and vehicle schemata,
and are thus awakened.

The structural inference is based on two rules12: triangulation and squaring. The trian-
gulation rule states that: “whenever two concepts share an association with a third concept
(the associations may be of different strengths), this association provides evidence for a
plausible (i.e. dormant) bridge between both schemata”[Veale, 1995]. In figure 3.10, we see
a double application of this rule: cleaver and scalpel share an association with both blood
and sharp, leading to the establishment of a dormant bridge.

The squaring rule states that, when two concepts A and B linked by a cross-domain
bridge (i.e. an already awaken dormant bridge) share the same association with two different
concepts C and D (resp.), then this association provides evidence for a plausible (i.e.,
dormant) bridge between C and D. This rule depends on previous awakening of the bridges
(under the connectionist mode), thus it is considered second order. In figure 3.11, a dormant
bridge is created between general and brain surgeon by the application of the squaring rule,
since there is a cross-domain bridge between command centre and brain.

In the Sapper model, activation travels in waves, each wave-form having an amplitude
(encoding the activation energy, or zorch) and a unique signature frequency. Each localist
concept node is considered to possess a unique prime resonant frequency, which is used to
modulate any activation waves that pass through this node (see fig. 3.12).

This propagation strategy therefore allows activation waves to be deconstructed via
prime factorization. This deconstruction reveals not only the original source node of the
wave (representing either the tenor or vehicle of the metaphor), but also the path through

12There is also the incremental rule, which is only applied in successive runs of Sapper, taking advantage
of previous traces, and which is a lateral subject here.
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Figure 3.11: Example of the squaring rule. The bidirectional arrow with ’M’ label represents
a cross-domain bridge (from [Veale, 1995])

Figure 3.12: Activation Waves in Sapper possess both amplitude (or Zorch) and frequency.
This signature frequency of an activation wave is the product of the resonant frequencies of
those nodes encountered by the wave in the conceptual space. (from [Veale, 1995])
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Figure 3.13: A conceptual linkage is deemed to provide a plausible match hypothesis when
it becomes a cross-over path for competing activation waves from the tenor and vehicle
concept nodes. (from [Veale, 1995])

0.98 If General is like Surgeon
0.76 Then 18th-Century-General is like Saw-Bones-Doctor
0.95 and Soldier is like Patient
0.81 and Casualty is like Corpse
0.91 and Bombing-Raid is like Surgery
0.93 and Atomic-Bomb is like Radiation-Therapy
0.75 and Nerve-Gas is like Disinfectant
0.88 and Enemy-Army is like Cancer
0.78 and Enemy-Soldier is like Cancer-Cell
0.5 and On-Target is like Precise
0.7 and Snub-Fighter is like Scalpel
0.5 and Military-School is like Medical-School
0.17 and Battlefield is like Operating-Theatre
0.17 and Military-Uniform is like White-Smock

Table 3.2: Output from Sapper for ’GENERALS are SURGEONS’

conceptual space travelled by the wave. When two activation waves cross over at the same
inter-concept bridge, Sapper is thus in a position to determine whether the waves originate
at different source nodes in the network. If this is indeed the case, Sapper awakens this
bridge as possibly constituting a valid domain crossover point (see fig. 3.13). [Veale, 1995]

There is one final point to add to this description of the Sapper algorithm. Inter-
concept linkages also exhibit a certain resistance (the inverse of conductivity) to the flow
of activation energy. This provides an attenuation effect in the amplitude of the waves at
each node they encounter. When this amplitude drops below a predetermined threshold, it
ceases to propagate. Dormant bridges have the highest (infinite) resistance, until they are
awaken and attributed a resistance consistent with the structural evidence brought by the
wave.

Finally, we give an example of the interpretation of “My surgeon is a butcher” generated
by Sapper (figure 3.14) and the returned output for “The General is a Surgeon” (in table
3.2, figures on the left represent the conductivity of the cross-domain linkages).

To conclude, while Conceptual Scaffolding is knowledge dependent and needs detailed
specification and coding of the core metaphors it analyzes, Sapper is an algorithm that
finds a 1-to-1 mapping between two domains which, although not guaranteeing the optimal
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Figure 3.14: Interpretation for ’SURGEONS are BUTCHERS’ (from [Veale, 1995])
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solution (whatever the criteria chosen), is computationally tractable and does not demand
big compromises regarding knowledge representation or configuration.

From the comparison of Sapper with SME, we conclude that, although the former does
not guarantee the optimal solutions, it seems a less demanding model to apply as a cross-
domain mapper. As we will see in our model implementation (in chapter 5), we apply an
even lighter version of the Sapper model.

3.4.3 Others

As with other surveys (e.g. [French, 2002]), we classify systems on metaphor and analogy
into three types: symbolic (ATT-Meta, SME and MIDAS), connectionist (LISA) and hybrid
(Drama, Copycat and Sapper). Once again, this overview certainly leaves out many systems.
Our purpose is to provide a broad picture of the field, and eventually lead to a synthesis of
the features and problems that characterize it.

ATT-Meta [Barnden, 1998] is a rule-based system for metaphorical reasoning about
mental states in discourse. It therefore focuses on a specific type of metaphor, such as
’MIND PARTS as PERSONS’, and applies built-in commonsense models in order to inter-
pret sentences like “One part of John was insisting that Sally was right”. ATT-Meta then
triggers rules that propose possible interpretations for the metaphor, according to different
pretences13. It isolates pretences (thus avoiding logical inconsistencies) within cocoons, en-
abling the simultaneous consideration of several different, possibly conflicting, hypotheses.
This system allows representation of uncertainty in its knowledge, which will then serve
to evaluate the truth probability of a pretence (and propagating this probability to other,
dependent, pretence cocoons) and propose a plausible interpretation. ATT-Meta does not
itself deal with natural language input directly. Therefore, a user supplies hand coded logic
formulae that are intended to express the literal meaning of small discourse chunks (two or
three sentences)[Barnden, 1999].

Another work on metaphor reasoning is MIDAS [Martin, 1990]. As with Conceptual
Scaffolding, MIDAS approaches interpretation with the assumption that there is a set of
universal core metaphors. These are stored in a knowledge base that is continually aug-
mented with extended metaphors, which derive from the core metaphors. Each metaphor is
represented by a structure called metaphor-sense, which contains a source, a target, and a
set of associations. An association is represented by a metaphor-map, which links a source
concept to a target concept. MIDAS interprets a metaphoric utterance by retrieving the
most similar metaphor and adapting it to the current situation. In this sense, it works as a
Case-Based Reasoning system, whose learning ability relies on the storing of newly adapted
cases.

John Hummel and Keith Holyoak proposed an artificial neural-network model

13The system pretends that a given interpretation, however ridiculous (e.g. John having literally one
person in each part of the mind), can be real. In doing so, the system is said to be “semantically agnostic”.
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of relational reasoning, LISA (Learning and Inference with Schemas and Analogies)
[Hummel and Holyoak, 1997], which uses synchrony of firing to bind distributed represen-
tations of relational roles (e.g., the roles of opposite-of(X, Y)) to distributed representations
of their fillers (e.g., black and white). Thus, a proposition corresponds to a pattern of ac-
tivation. LISA has a Working Memory (WM) containing the target (and the source, after
retrieval) being investigated; and a Long Term Memory (LTM), which holds the candidate
sources. When a target is specified in WM, its pattern of activation triggers the retrieval of
the appropriate source proposition from LTM, which is the one that is better synchronized
with the pattern of activation of that target. These two memories have distinct representa-
tions. WM comprises a distributed representation (as is traditional on pure connectionist
system), while the LTM is localist (as with Sapper). For example, if the WM contains the
target proposition “Beth sells her futon to Peter”, then it may retrieve an analogous source
proposition (e.g. “Bill sells his car to Mary (and so Mary owns the car)”). When two anal-
ogous propositions are met in LISA’s WM, their co-mapped constituents are co-activated
in synchrony (Bill to Beth, car to futon, etc.) and it is possible to transfer inference from
the source to the target (i.e. “Peter owns the futon”), following the same activation proce-
dure (“Peter” is co-activated with “Mary”, who “owns” a “car”, which is co-activated with
“futon”). LISA’s main limitations concern to the WM memory sizes and LTM representa-
tion issues. Indeed, the WM can only store one proposition at a time, which forbids solving
complex analogies. Moreover, the built-in representation of LTM makes LISA an uncreative
system with low flexibility, since it demands the explicit coding of eac proposition.

Drama is a system that aims to integrate semantic and structural information in anal-
ogy making [Eliasmith and Thagard, 2001]. It has a set of particularities that make it
unique among its peers. The foremost is its application of holographic reduced representa-
tions (HRRs) [Plate, 1994] memories, which allow the distributed, vector-based, represen-
tation of concepts and relations in Drama. The storage operation of a vector in a HRR
is called convolution, while the retrieval operation is called correlation. HRRs allow the
convolution of large amounts of information in the same memory space, but the more they
store, the lower reliability they will provide in correlation. It is then necessary an error-
cleaning mechanism. It is claimed that HRRs are cognitively plausible models of memory
[Eliasmith and Thagard, 2001]. Other systems also apply distributed representations such
as neural networks (e.g. LISA), so a thorough comparison should be made to understand
which one is better in analogy contexts. In Drama, each ground concept is attributed a
random vector that is then stored in a HRR, along with its semantic information (proper-
ties and ISA relations, each defined as an independent vector). Domain structure (relations
between different concepts) is also stored in the HRR in the form of vectors. Given the
source and a target proposition vectors, Drama starts the analogy-mapping by obtaining
their similarity (via vector dot product). When they are sufficiently similar (higher than
a threshold), it then proceeds to the constituents. For each pair of similar constituents,
Drama builds a node in a network (the mapping network), and establishes links between
nodes that participate in the same relation. This latter process is the same as ACME’s
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[Holyoak and Thagard, 1989] algorithm for analogy mapping: in ACME, the algorithm
starts by establishing a network of mapping pairs, each node containing a pair, each pair
linked to other pairs. Using the LISA example above, ACME (or Drama) would initially
build nodes for “sells” with “sells” then for “Beth” with “Bill”, “car” with “futon”, etc.
each of these nodes being co-activated. It could also generate competing mapping nodes
in the network (e.g. “Beth” with “Mary” - both are women) which would have little co-
activation with the former nodes. Then, with a spreading activation process (as in Sapper),
it would select the mapping sets that best satisfy the constraints of similarity, structure and
purpose, as defined in [Eliasmith and Thagard, 2001] and [Holyoak and Thagard, 1989]. In
theory, Drama can integrate both structure and meaning, which would be a major break-
through in analogy research, but, since the ground concepts are given random vectors, the
meaning is entirely dependent on the property and ISA relations, which end up as being
structural knowledge as any other relation. Indeed, although the authors treat these rela-
tions differently, they by far do not correspond to the notion of meaning they advocate.
More specifically, the problem lies in the randomness of ground concepts encoding and their
resulting similarity (e.g. in one run, “dog” and “cat” can be more similar than “dog” and
“freedom”; while in the following one, the opposite can happen without any particular rea-
son). The authors claim that this is coherent with the psychological differences between
people, but it does not seem that randomness is a good model for it. A proper solution
would be to learn the meanings, as also suggested in [Eliasmith and Thagard, 2001]. How-
ever, this learning algorithm is by itself a challenge.

Also unique in many aspects, Copycat [Hofstadter and Mitchell, 1988] is a system for
solving puzzle analogies (such as “abc→abd::xyz→?”) as already presented in section 2.2.3.
This system has many nuances and has been deemed an example of computational creativ-
ity, as well as its related family: Tabletop, Letter-Spirit and Metacat [Hofstadter, 1995].
Nevertheless, it has been criticized as being only able to work on a very specific, exhaus-
tively defined domain. In fact, while an omnicompetent Slipnet is theoretically plausible,
in practice, serious resources are necessary even for simple domains.

The issue of knowledge representation has been evoked constantly as a central problem
in any of these systems. Some approach it by focusing on specific domains (ATT-Meta,
Copycat), some try to cover generic knowledge (Sapper, SME, MIDAS, LISA, Drama).
Some rely on structure (SME, Sapper), some on semantics (ATT-Meta, MIDAS), some try
integrating both (Drama, Copycat). Nevertheless, it is clear that each one is ultimately
dependent on built-in domain representations (the exception being Drama, which solved
the problem with randomness). The path now taken in the area seems to lead to hybrid ap-
proaches, both in terms of paradigm (symbolic and connectionist) and in terms of knowledge
level (semantics and structure).

The majority of the works (with the exception of Copycat) allow only 1-to-1 structure
alignment between domains, but it has been pointed out that many-to-one mappings may
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be useful, both in metaphor and in analogy [Falkenhainer et al., 1989]. Even more, struc-
tural alignment easily falls prey of the representation of domains. For example, having a
source with “isa(dog, pet)” and “isa(pet, animal)”, and a target with “isa(cat, animal)”
and “isa(animal, entity)”, it would not yield the analogy of “dog” with “cat”, rather “cat”
would be mapped to “pet”, and a possible analogical inference could be “isa(dog, cat)”.
This once again raises the problem of representation. As we will see in chapters 5 and 6,
the same questions can be raised for this thesis.

To conclude, there is general agreement in that metaphor and analogy rely on cross-
domain mappings and that, from these mappings, we are able to exhibit creative behaviour:
by focussing on aspects unforeseen, by bringing knowledge from one source to a target
and thus making predictions or solving a problem, by expressing concepts that have no
conventional meaning.
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Chapter 4

A Model of Concept Invention

A Top-Down approach

In this chapter, we will take a top-down approach, presenting and discussing the require-
ments for an abstract creativity model, and then progressing towards a formal model of
concept invention that will be the subject of an implementation presented in the next chap-
ter. The reader should understand that, in the way, and particularly when arriving to the
actual implementations, many choices have to be made, both in terms of what aspects to
focus on (e.g. bisociation vs re-representation) and in terms of practical decisions (e.g.
implementing algorithms, choosing representations). We will try to justify each decision
whenever any of these choice points is crossed.

4.1 A Creative General Problem Solver

In chapter 2, many aspects regarding creativity were raised. In doing so, we intended to
provide the reader with the set of principles followed in the construction of the model for
computational creativity proposed here:

• Knowledge. It has been emphasized that there hardly is creativity without knowledge
and that both quantity and quality should be treated as equally important. A model
for creativity should consider a heterogenous knowledge base, in the sense that it
should not include solely the typical knowledge for solving a specific problem, but
instead many different domains and perspectives towards more than one problem.

• Re-representation. It is also important to be able to understand the existing range
of knowledge according to different points of view. A model for creativity should be
able to change the representation of a concept without loosing its meaning.

• Bisociation. The notion of bisociation is connected with cross-domain transfer, to the
ability to find unprecedented associations. A model for creativity should be able to
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find and explore associations between distinct knowledge structures, namely structures
that seem apparently distant and unrelated.

• Meta-level reasoning. The ability to reason about reasoning is also a trace of creativity.
This aspect is perhaps the most difficult to specify, but should also be taken into
account. As well as being able to process the knowledge, a model of creativity should
be able to process its own processes of processing knowledge, preferably without having
to employ different techniques for each level of abstraction.

• Evaluation. An indisputable part of the creative process has to do with evaluation,
both in terms of the self and of the society. A model for creativity should be able to
do self-assessment and react to external evaluation.

• Interaction with the environment. No model of creativity should be designed without
taking into account the environment. Indeed, some researchers have emphasized that
creativity can only be perceived against a context, which includes the individual (as
a producer and recipient), the society, the History, the motivations, in other words a
set of aspects that lie outside the scope of the new concept or idea being considered.

• Purpose. There is always a purpose towards any creation, even though it may be
sometimes extremely subtle. We do not agree with the argument that a creative
system does not have to be goal-oriented. Creativity happens as a necessity rather
than as a purposeless activity, whether for satisfying some fuzzy aesthetic preferences
or for solving a practical problem.

• Divergence/convergence. One of the main conclusions brought from chapter 2 is the
existence of two modes of thinking, the divergent and the convergent, both important
to creativity in different aspects. Thus, a model of creativity should consider both
divergent thinking, which is when free-association is sought, less controlled search is
allowed, constraints can be broken and inconsistencies may be generated; and conver-
gent thinking, which is methodic and driven by rationality.

• Ordinary processes. A final aspect to raise is that there is no reason to believe that,
underneath a creativity model, there need be processes that are special or fundamen-
tally different from the ones applied in non-creative reasoning. Furthermore, there is
no reason to argue that bisociation and divergent thinking are not grounded on the
same cognitive processes as any other cognitive phenomenon or mode of thought. In
other words, all these are manifestations of intelligence, with divergent thinking and
bisociation being the ones that are more commonly identified with creativity.

From these eight principles, we propose a Creative General Problem Solver (after an
analogy to the General Problem Solver of Ernst and Newell [Ernst and Newell, 1969]). In
doing this purely philosophical exercise, we have two intents: to provide a model that
summarizes all aspects and to focus the relationship between Creativity and AI.
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Figure 4.1: The Creative General Problem Solver

In figure 4.1, we show a model that considers the many aspects referred above. The rea-
soning mechanism, perhaps the least obvious part in terms of its internal workings, should
be responsible for controlling the whole system and for doing the search according to the
goal, preferences and evaluation given by the pragmatics and environment modules. The
working mode of the system (either divergent or convergent) should depend on the use that
the reasoning mechanism makes of the bisociative mechanism and re-representation mod-
ules. A purely convergent mode would not use any of these modules while a purely divergent
mode would apply them for every step in the search. The re-representation module provides
different alternatives of representation of the knowledge in the multi-domain knowledge base,
while the bisociative mechanism is expected to find and propose associations between any
two distinct structures in that knowledge base. A particular aspect of the knowledge base
(not explicit in the diagram) is that it should also contain the specification of every other
modules; in other words, all the model is itself part of the knowledge base. This is definitely
the most complex aspect and relates to meta-level reasoning. Indeed, if the system is to
reason about its reasoning, its knowledge base must also consider, directly or indirectly, the
representation of all its processes. The question is how this can be implemented and where
this recursion ends.

Now, analyzing this model from an AI perspective, the basic question arises: Why do
we call it creative? Is it not yet another AI model? Is it not just search over a complex
space, which contains the solutions given by the plain knowledge base, added with its several
different re-representations, the associations that result from the bisociation method, and
the description of the processes themselves? The direct answer is that we call it creative
when, from this search over a complex space, novel and useful ideas tend to emerge. And
we argue that, if the set of principles listed above are indeed connected to creativity, then
such a model should produce more novel and useful solutions to a problem than if the same
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problem was given to a classical AI model (which would essentially have no bisociative
mechanism, meta-level reasoning or re-representation module, and would have a much more
focussed knowledge base). This argument seems impossible to demonstrate formally, so we
are left to explain what exactly does such a model bring new to the area. Its possible
contribution to AI is that it explicitly incorporates for the first time all those aspects
mentioned, and, most of all, the assertion that creativity should be considered as one side
of problem solving and, therefore, of intelligence. To clarify some more, such a model
could solve a problem in a convergent manner, i.e. recurring to the knowledge specifically
directed towards the problem (let us call it problem-specific knowledge), independently of
how many times the same problem and solution had been brought up. It could also try
to find a different solution, also with problem-specific knowledge, possibly seeming more
creative. Solving in a divergent manner would imply the search for other associations
and/or representing knowledge differently or even changing its own processes. In this case,
when finding previously unseen solutions, the result may have a higher probability of being
deemed creative by an observer. In any of these cases, we deal with a classical view of
intelligence as problem solving, in some cases resulting in creative solutions.

The model just presented is very abstract and consists essentially of a set of guidelines
to be explored further either by us (some get more detailed in this thesis) or by others in
future work. Thus, it became essentially a motivation to develop the rest of this thesis.

In the next section, we descend one level more in our top-down approach to develop a
creativity model. More specifically, we focus on a set of features already considered, namely
bisociation, an heterogenous knowledge base, meta-level reasoning, convergent/divergent
modes of thinking and purpose. These are the foundations for our model about concept
invention.

4.2 Description of the Model

We now present our model of concept invention. It is focussed essentially on bisociation, an
heterogenous knowledge base, meta-level reasoning, convergence/divergence and purpose.
Therefore, we pay little attention to the aspects of interaction and evaluation and leave out
re-representation. Interaction will be reduced to goal statement and processes configuration,
and evaluation will be based on self-assessment. These choices result from a priority given
to subject versus society, and therefore focussing on its inner processes. Because the issue
of re-representation deserves by itself another thesis, we decided not to consider it further.
Nevertheless, we will return to it whenever justifiable throughout this text.

Before entering in details, we would like the reader to imagine an ideal scenario where
a system is given a goal to reach. This goal could be something like “the specification
of a flying transportation object”. The system has not enough knowledge of airplanes, or
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physics, or something that could lead by sound processes to reach directly this goal. Or it
has indeed the necessary knowledge, but the complexity of the search space is too big to
reach the goal in a reasonable amount of time. It could then enter a mode of divergence,
in which combinations between concepts in memory would be made, always checking if
something similar to the goal is achieved. After reaching the most promising idea (say,
after spending a while in divergence, it had found “a bird with a box connected”), and if
still not achieving the goal (e.g. “the box is too heavy”), this system would then return to a
convergent mode, in order elaborate the idea to reach a satisfactory solution. If, in the end,
still no good solution was found, the system could also try to invent new ways of combining
concepts, of elaborating, and of searching i.e. it would try to improve its own processes.
Our model of concept invention is concerned with the divergent part of this scenario. In
figure 4.2, we show its diagram. It has six modules:

• Multi-domain knowledge base. The knowledge base follows the exact same principles
as described for the Creative General Problem Solver.

• Bisociative mechanism. The bisociative mechanism starts by finding mappings be-
tween concepts. Then, from these mappings, it transfers knowledge from each of the
co-mapped concepts to the new, bisociative, concept.

• Reasoning mechanism. The reasoning mechanism applies two strategies. The diver-
gent strategy makes use of the bisociative mechanism to generate new concepts and
picks the ones that get better evaluation. The convergent strategy makes use of the
elaboration mechanism to generate better concepts from the ones resulting from the
divergent strategy

• Evaluation. The Evaluation module returns the measure in which, according to a
goal, a given concept satisfies the criteria of novelty and usefulness.

• Elaboration. Elaborating or adapting means reworking a concept to comply with
context and domain-dependent constraints. In other words, the Elaboration module
is concerned with eliminating inconsistencies and completing a concept with valid
knowledge.

• Goal. The Goal should be given externally, it defines the purpose of the concept being
sought.

This model was first sketched and presented, with slight but irrelevant differences, in
two papers: “Modelling Divergent Production: a multi domain approach”, presented at
ECAI’98 [Pereira, 1998], and “Wondering in a Multi-Domain Environment with Dr. Di-
vago”, presented at CSNLP’99 [Pereira and Cardoso, 1999]. In neither it was formalized in
detail, which will be done in the next pages.

In this formalization, we will borrow some definitions from Geraint Wiggins [Wiggins, 2001],
namely the universe, U , of concepts, the language L and the traversal strategy, T .

107



Chapter 4. A Model of Concept Invention

Multi-domain Knowledge Base


Bisociative mechanism


Elaboration


E

v
a


l
u

a


t
i
o

n


Goal


Reasoning Mechanism


Divergent Strategy


Convergent Strategy


Mapping function


Transfer operation
 N

o


v

e


l
t
y



U

s


e

f
u


l
n

e


s
s



Figure 4.2: A Model of Concept Invention

Thus, let the alphabet A contain all possible atomic symbols (constants and variables)
conceivable. Let us also define a process, p, by which we can compose elements of A in order
to get higher order knowledge structures, the language L, which may comprise predicates
and functions (a predicate P would take the form P (x1, x2, ...xn), with P, x1, x2, ...xn being
symbols of the alphabet A). To simplify, we assume that these higher order knowledge
structures have the form of facts and rules (as in a logic program, e.g. [Leite, 2003]) and
that the process p is a generative grammar that allows the generation of all possible concepts
(i.e. logic programs) of language L. Therefore, this will be our universe U , of concepts,
which will contain, as well as other concepts, all the rule sets T , E and R, and their
associated sets, ¿R, T , E À, JRK and JEK. Remember that, according to section 3.1, each
concept is defined as a micro-theory (formally, a logic program).

Following the principles in section 4.1, our model must consider a knowledge-base with
many different domains and, in order to allow meta-level reasoning, the description of its own
controlling processes, this meaning that, ultimately, the knowledge base should comprise
the entire universe, U .

To sum up, the knowledge base in our Model of Concept Invention should contain
concepts from the domain for which we intend to invent concepts and from other domains,
namely the model itself. The logic program that describes a concept specifies its relationship
with other concepts as well as its inner characteristics. The set of concepts contained
(intensionally or extensionally) in a knowledge base KB is defined as UKB, with UKB ⊆
U . A knowledge base corresponds to a set of concepts that cohabit the same physical or
virtual memory space. It should be a model of an individual’s own complete knowledge. A
knowledge base is multi-domain if it contains concepts from more than one domain.

Let a domain D correspond to a set of concepts from KB (so D ⊆ UKB) such that all
of them relate to a unique, underlying concept. Of course, this invites the extremes that
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the KB itself is a domain (“everything is member of KB”); and that each concept is a
domain (“Each piece of knowledge that describes the concept is related to that concept”).
The notion we intend to bring is that a domain incorporates knowledge related to the
same subject. For example, a set of musical pieces, along with style rules corresponds to
a domain of music, while a set of recipes with data describing available ingredients is a
domain of cookery. As with our own knowledge, domains can encode different levels of
expertise, detail, and so on. This notion of domain is rather imprecise and it is not decisive
for the model we are presenting. We introduced it mainly to assert that the knowledge base
comprises potentially disparate kinds of data that are commonly associated to knowledge
about different subjects.

According to Koestler, Guilford, Fauconnier and Turner, and many other theorists al-
ready referred to in this document, the associativity between concepts is fundamental in
creativity. This takes us to the next definition, the mapping function:

φ : U × U −→ {0, 1}
This definition implies that any element from U can be mapped to an undetermined number
of other elements. φ should obey the following axioms:

1. φ(x, y) = φ(y, x) ∧ x, y ∈ U , i.e. φ is symmetric.

2. φ(x,1) = 1 ∧ x,1 ∈ U , where 1 is the identity concept.

3. φ(x,Ø) = 0 ∧ x,Ø ∈ U , where Ø is the empty concept.

To the function that maps elements from two domains, we call a cross-domain mapping
function:

φD1,D2 : D1 ×D2 −→ {0, 1}, where D1 and D2 are distinct domains.

The act of bisociation is not completed until a novel concept emerges. In the many
examples given (of bisociation, blending, conceptual combination), knowledge is transferred
from each co-mapped element to the novel concept. This is where, in Koestler’s model, the
act of creation happens, and where, in Conceptual Blending and Conceptual Combination,
emergence starts to happen:

ω : U × U −→ U
ω, the transfer operation, can be defined as:

ω(x, y) =





Ø : φ(x, y) = 0,

k otherwise, with k ∈ U .

There is no way to specify this function in more detail, since there are many different
accounts for how concepts are combined together. In the next chapters, we will propose a
possible version whose results will also be demonstrated. ω is not necessarily deterministic,
i.e. k may correspond to a set of probabilistic choices. Some other axioms for ω also follow:
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1. ω is not symmetric. I.e., ω(x, y) = ω(y, x) is not necessarily true.

2. ω(x,1) = x (∧ φ(x,1) = 1)

3. ω(x,Ø) = Ø

The set Ω contains all possible bisociations within U . We call it the bisociation set :

Ω = {k : k = ω(x, y), x, y ∈ U}

When ω is applied to two entire domains, we obtain the set ΩD1,D2 . We call it a domain
bisociation:

ΩD1,D2 = {k : k = ω(x, y), x ∈ D1, y ∈ D2}
The bisociation set thus contains all possible bisociations for a knowledge base KB. In
our model, this set contains the structures that result from what Guilford called divergent
production, also to which [Finke et al., 1992] called the pre-inventive structures, in the
Geneplore model.

The choice or ordering of the bisociation set can only be made in face of a goal. The
agent should be seeking for something, otherwise there would be no particular reason for
picking one element from the bisociation set, i.e. to explore pre-inventive structures or to
converge to something interesting. Thus we define the set Ug of all possible expressed goals,
based on Lg, such that Lg ⊆ L. A goal can range from very specific requirements for a
problem (e.g. a set of design requirements) to abstract (e.g. achieve balance in a picture)
and vague requirements (e.g. need for joy). Underneath any of these goals, there must be
evaluation functions associated, which test whether a concept does or does not fulfil it, and
verify its novelty. Thus, we have two functions, novelty and usefulness:

nov : U × Ug −→ [0, 1]

The function nov returns the novelty of a concept w.r.t. a goal g. In the typ function of
[Ritchie, 2001], which should be the inverse of novelty, the goal was implicitly considered,
but we think goals should not be singular or encoded in functions, they should also be seen
as concepts and be members of U . This means, in the notion of concept here followed,
that goals should also be expressed as micro-theories. Another implication is that goals
themselves can be bisociated. The usefulness is given by the other function:

use : U × Ug −→ [0, 1]

Again, the accomplishment of a goal is as fundamental as the concept itself in order to
assess its usefulness. Something is only useful (or appropriate) in face of a context.

Now examining the bisociation set, its size may become extremely large and the novelty
and usefulness of its members may be very much varied. In other words, the search space
for getting good concepts can become extremely complex. Following [Wiggins, 2001], we
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also propose the traversal set, T , which embeds the strategy used by an agent to traverse a
search space. We assume that T ⊆ U , i.e. the strategy is also defined as a set of concepts
from the universe U , also implying that the same operations could be applied to the strategy
itself. We propose no practical realization for this meta-level reasoning in this thesis, but we
want to stress that it is a fundamental aspect if we want to reach the limits of computational
creativity.

The bisociation set is traversed by a strategy Td. In the traversal of these pre-inventive
structures, definitive values for novelty and usefulness are sometimes hard to assess, so
priority to other interestingness measures (not necessarily driven by the goal) may also
be applied, such as diversity, simplicity, re-representation potential, etc. In other words,
although we only count here with the functions of novelty and usefulness, other factors may
be of importance in the selection of elements from the bisociation set. Td should thus be
understood as the divergence strategy, which should cognitively correspond to the act of
wandering for possible solutions, or inspirations, to a problem.

Also following Wiggins approach, we suggest the function operator, ¿ ., ., . À, which
selects elements of U from existing ones. Remember that the arguments proposed by Wig-
gins were ¿ R, T , E À, under the assumption that a search strategy T would traverse a
space (partially) ordered by the rule sets R and E . In our case, we propose the traversal
of the bisociation set, Ω, partially ordered by the functions of novelty and usefulness. The
implied correspondences (use ↔R and nov ↔ E) are no coincidence, rather we can assume
them as instantiations: from JRK, we select those that are useful for a goal; from JEK, we
prefer those that are novel1. In so doing we avoid some of the vagueness implied by the
definitions of R and E and redefine the step of the space traversal to be:

xi+1 =¿ use, Td,nov À [xi]

Thus, the ordered set of concepts retrieved by the divergent strategy corresponds to:

¿ use, Td,nov À¦ [Ω]

Notice that we apply the function directly to the set Ω, instead of giving the “starting
symbol”, the empty concept ⊥. The intent is to explicitly assert that this search is made
within the set Ω, instead of the whole universe U .

We have reached the point where a (set of) concept(s) is found, still in its “pre-inventive”
state. In other words, it would be expected that further exploration is needed in order to
arrive to a proper answer to the goal(s). This corresponds to the convergent phase, also
previously referred. Let us now have the function θ, called elaboration function:

θ : U × U −→ U
1The reader may have noticed that we have a clash here: in section 2.2, we associated R to Ritchie’s typ

and E to val. This would imply the correspondences use↔typ and nov↔val. An alternative would be to
map R to nov and E to use. This is incoherent and demonstrates the ambiguity in the meaning of R and E .
The problem seems to be that E should not be independent of R, as much as it shouldn’t be independent of
purpose (or usefulness).
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This first argument of this function is the concept to be elaborated, while the second
corresponds to the method used. Below, there are three kinds of elaboration:

• θR : C × R −→ C ′, where R ∈ UR is a rule. This is called rule-based elaboration,
which happens when a rule or a set of rules (external to the concept) is applied for
elaboration. These rules can be heuristics, causal rules, whatever kind of production
rules available.

• θC : C × C −→ C ′, where C is a concept. This internal-logic elaboration consists
of applying reasoning methods exclusively taking into account the concept’s micro-
theory. Examples of these reasoning methods are deduction, induction and abduction
within the micro-theory of C.

• θCC : C × C1 −→ C ′, C 6= C1 such that C,C1 are concepts. This is the cross-concept
based elaboration, where the first concept is elaborated by association/comparison to
other concepts in the knowledge base. Sometimes, new knowledge or structure is
added or removed to a concept by comparison to other concepts. A special case of
this is the cross-domain based elaboration, when C is elaborated by concept(s) from a
domain that is different from that in which C is integrated. This kind of elaboration
is often used in analogy, when knowledge from one domain gets projected onto the
other.

We also add two axioms for θ:

1. θ is not symmetric. I.e. θ(D, K) = θ(K,D) does not necessarily hold.

2. θ(C,1) = C. The identity concept does not change any other concept in elaboration.

We can now define the set Θ of elaborated concepts:

Θ = {θ(C,K) : C ∈¿ use, Td,nov À ¦[Ω] ∧K ∈ U}

As with the bisociation powerset, the set of elaborated concepts can be ordered by the
functions of novelty and usefulness, yielding the search space that is to be traversed by
Tc ⊆ U , the convergent strategy. The final result, the ordered set of concept inventions, is
given by:

¿ use, Tc,nov À¦ [Θ]

4.3 Discussion

This model implies the interaction of three concept sets, all belonging to the universe U : the
set UKB, consisting of all the concepts implicitly or explicitly defined in the available knowl-
edge base; the set Ω, which contains all the bisociations generated; the set Θ, comprising
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all the possible elaborations of the elements from Ω. Two more sets should be considered,
regarding the definition of the search strategies, UT and the goals, UG . In figure 4.3, we
depict all these sets as well as the directions taken by the search strategies. We remember
that, since this is a purely theoretical analysis, one should not read too much of the exact
position and size of the sets. What we intend here is to relate our model to each of the sets
and their intersections.

��� � � � � � � � � � � � 	 
 � � � 


���

Figure 4.3: An analysis of the model presented

We defined two sorts of strategies, the “simple” strategies (Tc and Td) and the “ideal”
strategies (Tc

′ and Td
′). They should represent a continuum of possibilities. The “simple”

(or rather computationally “realistic”) strategies consider a clearly bounded concept space.
The path depicted show what would be expected of a plain application of the model just
described. It starts from the universe of known concepts, UKB, then applies bisociation,
thus inspecting the set Ω with the divergent strategy. The convergent strategy will then
take the search towards the set Θ. The “ideal” strategies should be able to diverge more,
considering the sets UT and UG , as well as having the freedom to jump off the bisociation
space as it was defined (e.g. due to a change on its own goal and strategy). Again, this is
more a dissertation than a practical proposal. Indeed, this takes us to consider the “simple”
strategies as a realizable step towards that ideal. The intuition behind the two sides of this
continuum is the range between day-by-day creativity and the revolutionary creativity, or
the big “C”. We suggest that divergence as well as convergence are constantly present in
daily problem solving, although only in special situations it becomes necessary to diverge
considerably, i.e. to apply a Td

′ kind of strategy.
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A somewhat different analysis can be made regarding the expected weight of novelty
and usefulness in the application of the strategies (figure 4.4). Here, we match closer with
the diagram proposed for Wiggins’ formalization, in section 2.2.
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Figure 4.4: An analysis of the model presented by applying the framework of Wiggins,
modified by instantiating R with use and E with nov.

We have placed the universe of concepts defined by the knowledge base, UKB, in the
center of ¿ use, T ,nov À. In fact, as well as being totally available for the search method,
UKB should contain a variety of concepts, ranging from the useful to the non-useful, from
the novel to the typical. We could consider UKB as the inspiring set, since it is given a
priori. However, applying an element from the inspiring set (i.e. a known concept) in an
untypical way (e.g. using an apple as a weapon, instead of food) would thus be a reinvention
by some criteria of Ritchie. Moreover, it is common to have elements in the inspiring set
that are not part of UKB, as well as conversely. We also assume that Tc would be directed
towards usefulness and Td towards novelty, although there is no formal indication for that
on the Model. We are intuitively led to this suggestion, and empirical results (in chapter
6) will indeed confirm this reasoning.

In the imagined scenario given in section 4.2, we arrived to a point where, when the
system had not the sufficient knowledge or the search space was too big to reach a goal in a
reasonable amount of time, it would enter a divergence mode. However, it is clear that the
complexity of this mode could (and possibly would) be higher than the convergent one. In
other words, in the case of our model, if there was a mapping between each pair of the n

concepts from KB, we would have n× n− 1 bisociations, if the transfer operation, ω, only
produced one new concept for each pair. Since we are assuming a large and varied knowledge
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base, this value would be extremely big, even in an optimistic perspective. Indeed, if we
also consider the possibility of changing T and G, then soon we reach the conclusion that it
is unrealistic to search but a little portion of this (new) search space. Thus, the purpose of
presenting and discussing this model is not to implement it entirely, but to state our position
on what modelling concept invention with bisociation is about and to lay the foundations for
practical implementations such as the one we will describe in the next chapter. A question
thus arises: Why is this concept invention?

As we can observe, even if an outcome given by this model is logically deducible from
KB, its generation is not based on soundness2, in the same way that someone solves a
problem without having followed a conscious sequence of steps. This does not mean that this
is the way unconsciousness works, or even how humans invent concepts, rather it is a model
for how it can be computationally simulated. Thus, we call it a model of concept invention
because it produces new (and potentially useful) concepts from an unsound process, which
agrees with the definition we gave in section 3.2.2.

Again, we would like to raise the question about search. After all, isn’t this just search
in a (complex) space? What have we got more than any other AI model? The answer is
simply yes, it is search. And this is an AI model which, as many other AI models, aims
to simulate a specific kind of human behaviour that has been rarely approached before. In
this case, creativity, more specifically concept invention. Would this mean that creativity is
part of (or is a kind of) intelligence? The answer we give is that they are definitely related
and, in order to invent a concept, rationality (an indisputable component of intelligence) is
necessary.

Apart from raising philosophical questions, what can this model be for? In other words,
what could be its applications and what is the degree of implementability of its components?
Such a model could be applied in situations where the generation of new concepts is impor-
tant, such as in design, architecture or games, to name a few. Ideally, it could be applied as
a meta-level reasoning engine to help on situations where a lower-level system, dedicated to
a specific domain, could not find a solution, as suggested in the imagined scenario described
before. Any of its modules can be implemented up to some extent, however the capability of
meta-level reasoning is, perhaps, the hardest to construct, since it demands self organization
and assessment, two capacities that machines lack by nature. For this reason, meta-level
reasoning has not been implemented in ours system, Divago, which will be described next.
In this system, we will provide some suggestions for how other aspects of this model can be
implemented, namely cross-space mapping, bisociation, the knowledge base, the reasoning
engine, the evaluation and the elaboration.

2Of course, this depends on the mapping functions and transfer operations used, but we are considering
any kind of functions or operations, even randomness, which would likely produce many inconsistencies.
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Divago

We will now present our system. It is called Divago, after the Portuguese expression “(Eu)
divago”, which means “I wander”1. In the previous chapter, we explained our Model of
Concept Invention, which comprehends the main theoretical substance of this thesis. For
the present chapter, we seek to provide a practical instantiation of its modules. The con-
struction of Divago demanded many compromises between the overall goal of instantiating
the model of concept invention and the specificities that appeared during the development
and reflection upon each of the modules. For this reason, there are some points of conflict
between them, namely in the implementation of the search strategies and in the choice of
constraints. Where the reading becomes harder to follow (due to formalization or algo-
rithms), we will try to synthesize the message in a manner as fluent as possible.

5.1 Overview of the Architecture

In figure 5.1, we show the architecture of Divago. Before entering into details, we prefer
to give a superficial overview of how it works, with attention to the role that each module
takes and to the data flow (represented by arrows in the diagram).

The knowledge base contains a set of concepts, each one defined according to several
different kinds of representations (concept maps, rules, frames, integrity constraints, in-
stances). The concept maps, rules, frames and integrity constraints follow the Micro-theory
view, while the instances agree with the Exemplar view.

The first step for the invention of a new concept is the choice of the input knowledge,
in this case a pair of concepts. Since, in Divago, we are focusing on the mechanisms of
divergence and bisociation, we provide no specific algorithm for this selection. This choice

1In its first sketch in 1998 [Pereira, 1998], the system was actually baptized as “Dr. Divago”, as a
connection to Boris Pasternak’s novel “Dr. Zhivago”, whose main character was a doctor and poet, the
story itself carrying a constant degree of tension and uncertainty until the end. Since the verb “to divagate”
(synonymous to “to wander”) is not commonly used in English, this name became misleading, therefore we
reduced simply to “Divago”.
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Figure 5.1: The architecture of Divago

is either given by a user or randomly generated. After given a pair of concepts, the Mapper
builds a structural alignment between (the definitions of) them. It then passes the resulting
mapping to the Blender, which then produces a set of projections that implicitly define the
set of all possible blends. This will be the search space for the reasoning mechanism, the
Factory.

The Factory is based on a parallel search engine, a genetic algorithm (GA), which
searches for the blend that best complies with the evaluation given by the Constraints
module. Prior to sending each blend to this module, the Factory sends it to the Elaboration
module, where it is subject to the application of domain or context-dependent knowledge.
The GA thus interacts both with the Constraints and Elaboration modules during search.

The evaluation of a blend given by the Constraints module is based on an implemen-
tation of the Optimality Principles (in section 3.3.2). Apart from the blend itself, our
implementation of these principles also takes into account knowledge that comes from the
Knowledge Base (namely integrity constraints and frames), as well as the accomplishment
of a goal that comes in the form of a query. Any of these issues will be described shortly.
The Elaboration module essentially applies internal-logic elaboration and rule-based elab-
oration. The rules involved are also part of the knowledge base.

After reaching a satisfiable solution or a specified number of iterations, the Factory
stops the GA and returns the best solution it achieved. In some cases, this result is also the
input of an Interpretation module, which produces an interpretation of the new concept.
In collaboration with other researchers, we developed Interpretation modules that generate
2D images (in the house-boat experiment), textual descriptions (horse-bird experiments)
and 3D images (creatures experiment).

Both the Mapper and the Elaboration modules are optional, for different reasons. The
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mappings provided by the Mapper are essentially based on the Analogy and Metaphor
works presented in section 3.4. However, in some situations, these mappings are very
much restrictive. Thus, without having implemented alternative procedures, we allow an
externally defined mapping (which, in some experiments, is user-defined). The Elaboration
can also be bypassed for experimentation reasons. When analyzing results, the elaboration
can hide the real results, i.e. it can fix problems by itself that we may need to watch in
order to assess the functioning of the system.

In comparison with the model presented in the previous chapter, a difference immedi-
ately arises that the mechanisms of divergent and convergent search (Td and Tc, respectively)
are not separated in Divago. On the contrary, they work intertwined: the method for diver-
gence (the GA) uses the method of convergence (which applies the Elaboration) once for
every blend found.

Another difference is that Divago is not processing its own internal specifications. In
other words, we leave meta-level reasoning, which might support transformational creativity,
for future developments. As discussed before, this is per se an extremely complex task.

We will now describe in greater detail each of the six modules: the Knowledge Base, the
Mapper, the Blender, the Factory, the Constraints and the Elaboration.

5.2 Knowledge Base

All representation in the Knowledge base follows a symbolic approach (as opposed to sub-
symbolic ones, such as neural networks or genetic algorithms). Nevertheless, we see no
reason to doubt that the same mechanisms could also be applicable with other representation
paradigms. There are many different kinds of structures in the knowledge base of Divago,
namely the concept maps, the rules, the frames, the integrity constraints and the instances.
The syntax used in the knowledge base (and in the whole system) is the same as in the
Prolog language.

We call concept maps to the semantic networks that are used in Divago to describe a
concept or a domain. A Concept Map is a graph in which nodes represent concepts and arcs
represent relations. A concept is thus defined in association to other concepts, which will
therefore also intervene within the concept’s definition. For this reason, some confusion may
arise so we ought to clarify now the notions of domain, concept and element2. Whenever
we have a concept map in which there is no central concept, rather many different concepts
participate with the same degree of importance, we call it a domain. Examples of domains
could be “biology”, “computers”, “music”. In any of these, we focus on many concepts

2This classification has been brought for this thesis, as the use of the names “domain”, “concept” and
“concept map” has raised some ambiguity in preceding papers. We will follow the present definition through-
out this thesis and future publications. It is also important to inform that the notions and underlying
rationales maintain the same.
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rather than only one (e.g. in “music”, we have “harmony”, “melody”, “rhythm”, etc.).
When the concept map is focussed on a single concept x, we say it is the concept map of
the concept x. For example, the concept map of the concept “horse” will have associations
to “snout”, “legs”, “mane”, etc. in order to define what a horse is. Of course, each of
these are also concepts, but as they get farther away from the main concept (the one about
which the concept map is built - in the example, “horse”), they get less specified (e.g. the
concept “human”, from the concept map of “horse” has no associations to “intelligence”,
“face”, “society”, etc. and therefore it is only superficially specified, possibly with relations
such as “owner-of” or “rider”). In order to avoid confusion, we adopt the convention that
each of these nodes of a concept map will be named element3, instead of concept. We will
call concept to the whole definition comprising the concept maps, rules, frames, etc., as
proposed in the previous chapters, and following essentially the micro-theory view.

The difference between a domain and a concept is subjective and depends on the level
of granularity. Every domain is by itself a concept and every concept can be seen also as a
domain (even if it is a micro-domain). Throughout this thesis, unless explicitly stating the
contrary, we assume that a concept map is defining a single concept, rather than a domain.
To sum up, Divago follows the micro-theory view of concepts (presented in section 3.1), in
which a concept is defined by facts and rules. We will see that Divago also allows the use
of instances, which agrees with the exemplar view.

The choice of symbols for elements and relations in our concept maps is arbitrary, yet,
mainly after the horse-bird experiment, we followed two normalization principles. The first
one is that relations must belong to (or descend from) the Generalized Upper Model hier-
archy (GUM) [Bateman et al., 1995], a general task and domain independent linguistically
motivated ontology that intends to significantly simplify the interface between domain-
specific knowledge and general linguistic resources. GUM occupies a level of abstraction
midway between surface linguistic realizations and conceptual or contextual representations.
Being split into two hierarchies, one containing all the concepts and the other all the roles,
GUM gives us a large set of primitive relations to standardize our choices in the concept
map. It is important to notice that, in our maps, the members of the concept hierarchy
of GUM (e.g. “color”, “ability”, etc.) are used as relations (e.g. “color(mane, dark)”,
“ability(horse, run)”). In Appendix B, we reproduce a copy of the whole GUM hierarchy
used.

The second principle that we follow in the construction of the concept maps is that
elements in our knowledge base may only be represented as nouns, adjectives, preferably
in the singular form, or numerals (in the particular case of numbers). As we said, these
are only normalization principles for the construction of the concept maps, so, in theory,
the model itself doesn’t take into account the lexical categories of the words used, following
only the principle that “the same word corresponds to the same element”.

3The name element is also used by Fauconnier and Turner to refer to the same entities inside mental
spaces.
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Given the importance that the concept maps have for Divago, we developed another sys-
tem, Clouds (which was the subject of an MsC.), which had the goal of helping a user build
her own concept maps and prevent from hand-tailoring. The system led the user towards dif-
ferent areas of the concept map and, as it gets expanded, she can no longer keep track of the
whole, leaving to Clouds the task of leading the construction. Clouds was used to generate
the maps for some of the experiments presented here. It is far from the theme of this the-
sis, so we redirect the interested reader to [Pereira et al., 2000, Pereira and Cardoso, 2000,
Pereira, 2000]).

Let us now define formally a concept map. We will use the same definitions and symbols
given in the previous chapter.

Let AE ⊆ A be a set of symbols, to which we call the elements and let AR ⊆ A be
another set of symbols, to which we call the relations. A Concept Map CM is a set of
binary relations with the form:

X(Y,Z), X ∈ AR, Y, Z ∈ AE

We also define the exhaustive closure CM+ as the concept map with all elements AE
and relations AR between them, i.e.

CM+ = {X(Y, Z) : X ∈ AR, Y, Z ∈ AE}

Therefore, CM ⊆ CM+.

In tables 5.1 and 5.2, we show examples of concept maps for “horse” and “bird”(made
with Clouds). These maps are necessarily arbitrary in the sense that each person would draw
her own maps, a result of the different conceptualization and points of view one can take
individually. Some relations such as “pw”(part-whole), “taxonomicq” (taxonomic quality),
“isa”, “sound” are either shorter words for the same relations of GUM or extensions made
to this hierarchy.

isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(hoof, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(hoof, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) quantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) quantity(ear, 2) ride(human, horse)
pw(mouth,snout) purpose(eye, see) motion process(horse,walk)
isa(farm, human setting)

Table 5.1: The concept map of horse
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isa(bird, aves) existence(bird, house) isa(aves,oviparous)
lay(oviparous, egg) existence(bird,wilderness) purpose(bird, pet)
purpose(bird, food) purpose(eye, see) smaller than(bird, human)
pw(lung, bird) motion process(bird, fly) purpose(beak, chirp)
purpose(lung, breathe) quantity(eye, 2) quantity(wing, 2)
isa(owl, bird) isa(paradise bird, bird) quantity(claw, 2)
ability(bird, fly) pw(wing, bird) conditional(wing, fly)
pw(feathers, bird) pw(beak, bird) purpose(wing, fly)
purpose(beak, eat) purpose(claw, catch) sound(bird, chirp)
isa(parrot, bird) ability(parrot, speak) pw(straw, nest)
pw(eye, bird) pw(leg, bird) purpose(leg, stand)
pw(claw, leg) role playing(bird, freedom) quantity(leg, 2)
isa(nest, container) isa(house, human setting)

Table 5.2: The concept map of bird

We often represent concept maps graphically, in which the relations are arcs and elements
are nodes. Figure 5.2 shows an excerpt of the concept map for “horse”.

The concept map corresponds to the factual part of the micro-theory of the concept.
The inferential part comprises rules that explicit the inherent causality, frames that have
the role of providing a language for abstract or composite concepts and integrity constraints,
particular rules that serve to assess the consistency of the concept.

Rules have the form:

A0 ∨A1 ∨ ... ∨Ai ←− B0 ∧B1 ∧ ... ∧Bj , Ai ∈ K

with K = {not R ∨R, R ∈ CM+}
This allows for the use of negation as well as a disjunctive set of atoms (Ai) in the head,
although with specific constraints: Ai ∈ K and Bj can be any atom or logical expression
(e.g. a comparison). For example, a rule for inferring that something is at the gaseous state
(and not at the solid or liquid state) could be:

state(X, gaseous) ∨ not state(X, solid) ∨ ←− ebulition point(X,N)∧
not state(X, liquid) temperature(X,T ) ∧ T < N

The syntax followed by Divago for rules is defined by a predicate rule/6:

rule(Domain, Name, PosConds,NegConds, AddList,DelList).

where Domain corresponds to the domain or concept with which the rule is related, PosConds
and NegConds correspond to the (positive and negative, resp.) sets of conditions of the rule
and AddList and DelList correspond to the (positive and negative, resp.) sets of conclusions
of the rule.

The frames have the role of describing abstract concepts, situations or idiosyncracies.
A frame consists of a set of conditions that the concept map must satisfy. When a concept
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Figure 5.2: Concept map of horse (an excerpt).

c satisfies all the conditions of a frame f , we say that c integrates f . Frames are formally
very similar to rules but they are applied differently in the process:

frame(Name) : A0 ∨A1 ∨ ... ∨Ai ←− B0 ∧B1 ∧ ... ∧Bj

where Name is an identifier of the frame. A frame should be a meta-level concept that
is tightly integrated according to a situation, structure, cause-effect or any other relation
that ties a set of elements onto one, abstract or broad, concept. For example, the frame
of “transport means” (below) corresponds to a set of elements and relations that, when
connected together, represent something that has a container and a subpart (e.g. an engine)
that serves for locomotion.

frame(transport means(X)) :

carrier(X, people) ←− have(X, container) ∧ have(X, Y )∧
purpose(Y, locomotion) ∧ drive( , X)

When a concept map integrates the “transport means” frame, then we can either say
that it is itself a “transport means” or one of its constituents is a “transport means”. For
example, the concept map of school bus would integrate this frame, while the concept map
of classroom wouldn’t.

The syntax for representing a frame is the following:

frame(Domain, Name, PosConds, NegConds, AddList,DelList).

An extremely important aspect to retain about frames is that they allow the inclusion of
Prolog scripts inside any of the sets PosConds, NegConds, AddList and DelList. This offers
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great power to frames since these scripts will be ran whenever the frame is inspected and
integrated. In other words, in order to check whether a concept map integrates a frame,
it will execute the scripts included in the sets PosConds and NegConds and, during the
elaboration phase, the frames that are integrated will have their sets AddList and DelList
also executed. We will clarify each of these mechanisms during this chapter. The frames
can thus become externally defined scripts or programs, executed whenever their conditions
apply.

We propose to consider several types of frames according to their degree of abstraction
and functional aspects. A very specific frame comprehends a well defined set of relations
and elements, such as in “transport means”. A highly abstract frame is one that considers
many different types of elements and relations. For example, when a concept map satisfies
a “noun-noun combination” frame, it means that it consists of a combination of two nouns
(e.g. “pet fish”, “gun wound”).

In terms of their function, frames can be classified as organizing, pattern identifying or
transforming. An organizing frame is a frame that determines the general structure of a
concept map. For example, in the concept map for school bus, “transport means” could
be an organizing frame. A frame is pattern identifying when it allows the identification of
a pattern within a larger concept map. For example, in a school trip concept map, one
could find a “transport means” frame, this time becoming pattern identifying. Normally,
organizing frames are a lot more abstract than the pattern identifying ones, although some-
times the same frame can take both functions. Transforming frames may only make sense
within a bisociation context (and thus will get clearer as we progress through this thesis).
A transforming frame identifies a transformation that occurs during the blending of two
input concepts. For example, if the new concept map integrates a “new ability” frame,
it means that there were new “ability” elements and relations transferred from one of the
input concepts to the context of the other (e.g. in Pegasus, wings are transferred from bird
to horse, giving it the ability to fly). The specification for “new ability” could be something
like:

frame(new ability(d1)) :

new ability(X, A) ←− ability(X, A) ∧ not rel(d1, ability(X, A))∧
purpose(P, A) ∧ pw(P, X)∧
projection(blend, d1, X, X)∧
projection(blend, d2, A, A)

Reading this informally, it says that if some element X has, in the concept map of the
blend (that is to say, the new concept map), the ability A, which was not present in X’s
input space, d1, then we are in face of a “new ability” given to X. It also says that this
“new ability” should have a minimal justification, i.e. there must be a subpart P of X whose
purpose is to provide ability A (e.g. if something flies, it should have wings). Furthermore,
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we can also require that X and A be projected from different inputs (d1 and d2, resp.) to
the blend.

Thus, a frame will serve, in the process of concept invention, as a tool for pattern
identification, for providing directives for the construction of concepts, and for elaboration.
As we will see, frames are essential to control the system. In Appendix C, we provide
a thorough description of these knowledge structures, their specific keywords and some
examples.

The integrity constraints serve to specify logical impossibilities. Each integrity con-
straint consists of a set of propositions that should not be simultaneously true. Let Ai be
any atom or logical expression, an integrity constraint ic is defined as:

false ← A1 ∧A2 ∧ ...not An−1 ∧ not An ∧ ...

Two examples of integrity constraints could be for specifying that something cannot be dead
and alive at the same time and for avoiding part-whole recursion, i.e. something cannot
have a part-whole relation (pw) with itself:

false ← state(X, dead) ∧ state(X, alive)

false ← pw(X,X)

In the Prolog syntax that we use, an integrity constraint is represented by the predicate
integrity/3:

integrity(Domain, Pos,Neg)

where Domain is the concept or Domain to which the integrity constraint belongs and Pos
and Negs are the positive and negated conditions of the constraint.

Finally, we can define a Concept Micro-Theory (or a Domain theory), CT , as being a
tuple (CM,R, F, IC), where CM is a Concept Map, R is a set of rules, F a set of frames
and IC a set of integrity constraints.

The micro-theories may be compared to Joseph Goguen’s sign systems [Goguen, 1999].
In a sign systems, we have sign and data sorts, partial orderings on each of these, relations
and functions, constructors to build upper level signs, priorities on these, and axioms. In
our micro-theories, we have no formal distinction between sign and data sort. In principle,
every element is equal, thus its classification and partial ordering can only make sense in
a concept map (e.g. an isa ontology with animal classification would correspond to a sign
sort ordering, while another one with colors or numbers would be a data sort ordering),
which also contains the relations and functions. Frames are our constructors, but there
is no ordering or priority over them. Only goal frames, used in the Constraints module,
have priority over the other frames. Finally, rules and integrity constraints can be seen as
Goguen’s axioms.

Another level of representation allowed in Divago is that of the instances. Along with
the micro-theory, one can add also instances to the concept definition (this corresponds to
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Figure 5.3: An instance of a house

the Exemplar view, as in section 3.1). Instances are represented as structures of knowledge
that apply (some of) the elements present in the micro-theory.

Let AA ⊆ A be a set of symbols (the arguments) and let AF ⊆ A be a set of relations
(the functors). Let LC be a set of compositions such that:

c ∈ LC : c =





x ∈ AA
I(y1, y2, ..., yn), yi ∈ LC, I ∈ AF

Thus an Instance can be represented in the form I(x1, x2, ..., xn), where I ∈ LF , and
xi ∈ LC. xi is compositional, i.e. it can be used as an argument to another xj . An example
of an instance of the concept “house”, as used in the “house-boat” experiment, could be:

case(1,0, house, [sons=2, size=small, type=simple, son name=roof, son name=body]).
case(1,0:0, roof, [shape=triangle(30)]).
case(1,0:1, body, [sons=3, in=[left/90,off/25, right/90],son name=structure,
son name=window, son name=door]).
case(1,0:1:0, structure, [shape=square]).
case(1,0:1:1, window, [shape=square(5), in=[off/20, right/90, off/15, left/90]]).
case(1,0:1:2, door, [shape=rectangle(4, 10), in=[off/3]]).

Using the functors ’case’, ’:’, ’=’ and ’/’, this instance describes the several parts of a
house, starting from its top-level element (“house”) to the smallest constituents (“door”). It
associates each of the elements (that are also part of the theory) to a 2D drawing language
(Logo). Its interpretation generates the image in figure 5.3.

Since the details of these instances and their syntax are not central for this thesis, we
redirect the description of the language used to the Appendix D.

Instances are useful for interpreting a new concept in the sense that they can attach
a semantics to a concept and its constituents. For example, with a visual instance of a
house, one can know an example of what a door can look like. This will be observed in the
house-boat and creatures experiments.

Finally, in Divago, a concept is defined by the pair (CT , I), where CT is the theory
and I is a set of instances. The Knowledge Base can have simultaneously many different
concepts, from different domains. However, during concept invention, Divago only considers
a pair of concepts (or domains) and a special domain, the generic domain.

The generic domain contains all knowledge that is applicable to all concepts and to the
process of concept invention. It has encoded the hierarchy of GUM in a predicate arc/5,
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which can be used to generalize/specialize the relations found in a concept map. This
facility is used by some frames. The generic domain also contains an isa ontology, which
is used mostly by the Mapper (shown in next section) to build correspondences between
elements of different concepts. The majority of the frames used by Divago also belong to
the generic domain. In table 5.3, we show some of the frames from the generic domain that
were used in the experiments.

Frame name Conditions
aframe The blend contains identical structure from input 1
aprojection The blend contains the same elements of input 1
bframe The blend contains identical structure from input 2
bprojection The blend contains the same elements of input 2
new ability An element has an ability relation not existent in any of the

inputs
function transfer An element in the blend has a function that was not present in its

input.
analogy transfer Transfer all neighbor elements and relations of an element of one input

to the projection of its mapping counterpart from the other input.

Table 5.3: Some frames of the generic space

In the generic domain, we find also integrity constraints and rules. An entire copy of
the generic domain is given in Appendix E. In fact, the generic domain holds most of the
knowledge for Divago, while each specific concept has encoded only the essential, most of
the times consisting solely of the concept map.

5.3 Mapper

The Mapper defines the mapping function φ of the model presented in this thesis. In the
definition we gave, this function is oversimplified, since it only provides a binary association
between pairs of concepts. In Divago, a concept is itself a structure with many different
sub-structures, thus the mapping becomes somewhat more complex. This justifies a revised
version of the mapping function, φ:

φ : U × U −→M

where M is the powerset (set of all sets) of all possible pairs of sub-structures from concepts
of U . In this module, we propose to use exclusively the concept maps. To state this more
clearly, for any pair, CM1 and CM2, of concept maps, the Mapper will find a set of mappings
between their elements, each pair having one element from CM1 and one from CM2.

In his formalization of Conceptual Blending, Goguen introduces the semiotic morphisms.
A semiotic morphism is a structure preserving mapping, as it should map sorts to sorts, sub-
sorts to subsorts, data sorts to data sorts, constructors to constructors, etc. [Goguen, 1999].
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However it is assumed that these should only be partial maps. As far as we are aware,
Goguen does not suggest any specific algorithm for building semiotic morphisms. We be-
lieve that an algorithm such as the one implemented for the Mapper could be a viable
solution.

The Mapper uses a spreading activation algorithm to look for the largest isomorphic
pair of subgraphs (contained in the concept maps). In this context, two graphs are con-
sidered isomorphic when they have the same relational (arcs) structure, independently of
the elements (nodes). There is potentially more than one structure matching between any
pair of concept maps and this complexity grows worse than exponential with the number of
elements (nodes)4. However, since it only allows alignment when it finds equal relations in
both graphs, the number of possible solutions can be drastically reduced, yet still demand-
ing Mapper to make the search in a huge space. Furthermore, the algorithm starts with a
randomly selected pair of elements, so the “perfect choice” (or even the same choice) is not
guaranteed every time we run it.

The Mapper uses an algorithm of structure matching inspired in Tony Veale’s Sapper
framework [Veale, 1995]. We have already presented Sapper and therefore the differences
will now be enhanced. While Sapper needs two cycles to obtain the mapping (one for laying
down dormant bridges with the triangulation rule and one for finding the mapping), our
Mapper uses three cycles: one for laying down dormant bridges (with both triangulation
and squaring rules); another one for spreading activation (in our case, a flood fill algorithm);
and a final cycle for finding the mapping. In the first cycle, Mapper builds new dormant
bridges whenever two elements from the two input concept maps share the same relation
to the same element (the triangulation rule). Here, the generic domain (and particularly
the isa-ontology) is extremely important because it is a source of shared knowledge. The
Mapper also adds a dormant bridge between every two elements that share the same rela-
tion to two different elements that are connected by a dormant bridge (the squaring rule).
Thus, while Sapper adds dormant bridges as the mapping is found, the Mapper creates all
possible dormant bridges in the first cycle. The second cycle in Mapper spreads activation
throughout the concept maps. Differently to Sapper, this activation has no prime factor-
ization or wave. It has only an activation value that decays as it passes by elements. This
activation starts at 100 and is reinforced when passing near a dormant bridge. Below a
threshold (the default value is 20), it stops spreading. After this second cycle, the network
will have a set of sub-graphs with activated elements, centered in the dormant bridges. The
final cycle starts with the random (or user-given) choice of one of the dormant bridges,
the seed mapping. This dormant bridge is awakened, and thus becomes the first mapping.
Then it progresses in parallel in both concept maps, such that each new pair of elements to
be mapped (i.e. each dormant bridge visited) is connected by a pair of equivalent relations

4Assuming n as the number of elements of the largest (in number of elements) of the two concept maps,
we will have a search space of n! possible mappings. So, with an exponential kn, as n approaches infinity,
kn

n!
will be 0, meaning that the search space will expand more than exponentially as the number of elements

grows.
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to a previously awakened dormant bridge.

As a result of the algorithm, the Mapper returns a set of mappings between the two
concept maps. This module was born over an idea to implement a version of Sapper that
would not worry to return the best (widest?) mapping or bias the mapping towards the
highly activated nodes (for instance, in Sapper, the choice “Scalpel: Snub-Fighter” beats
out “Scalpel: B-52” [Veale, 1995, chapt. 6] due to higher activation; in Mapper, any could
be selected). The principle was that, if it became clearly less effective (slower, with smaller
mappings, etc.) than Sapper, then we would use directly Veale’s algorithm. However, we
gradually found out that the Mapper had limitations that would not be resolved if changing
to Sapper. As we will see in the experiments, restricting mappings to structure alignment
narrows the potential of the system, thus we gave the Mapper a secondary (i.e. optional)
role in Divago. On the other hand, the behavior of the module was sufficiently satisfactory
to be kept in some situations. In spite of the complexity involved, this module is fast in
returning a mapping and it achieves the same results as Sapper in the majority of times.

As an example, we show in figure 5.4 the three different mappings produced for the
concept maps of horse and bird (from tables 5.1 and 5.2). It is important to understand
that every relation has the same weight in the graph and there is no domain knowledge or
special heuristics considered in the mapping construction. This means that the results may
contain non-intuitive associations (e.g. “4” associated with “2”; “snout” with “bird”).

5.4 Blender

In Goguen’s algebraic semiotics Blending formalization [Goguen, 1999], a blend is some sign
system that results from the semiotic morphisms from the input and generic spaces (the
injections). These morphisms should be mutually consistent. The “best blend” (to what
he calls 3/2 pushout) would thus result of an ordering of semiotic morphisms by quality,
e.g. they should be as defined as possible, should preserve as many axioms as possible,
and should be as inclusive as possible (i.e. contain the maximum number of mappings
between concepts). Although this author considers this “best blend” as the best result
over a conjunction of compromises between criteria, again it is not clear what exactly these
criteria are, apart from structure mapping. Generically, we follow some of the same ideas
of Goguen, namely the application of criteria for ordering a set of candidate blends, and
having in structure a fundamental index for quality. The Blender is the first part of this
approach (which will be completed with the Factory, the Constraints and the Elaboration
module) and focuses on calculating the set of all possible blends.

Assuming a mapping m, generated by the mapping operation φ, as defined by the
Mapper or by an external source, we must specify the transfer operation, ω, which will
transfer knowledge from two concepts onto one (as in chapter 4). As with the mapping
function, so the transfer operation works with the concept maps.
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ear ↔ wing
snout ↔ bird

eye ↔ lung
mouth ↔ feathers

2 ↔ 2
hear ↔ fly

1

mouth ↔ beak
snout ↔ bird

eye ↔ lung
ear ↔ feathers
eat ↔ eat

2

vegetable food ↔ vegetable
food ↔ food

horse ↔ bird
equinae ↔ aves
animal ↔ animal

human setting ↔ house
wilderness ↔ wilderness
ruminant ↔ oviparous

run ↔ fly
cargo ↔ pet
neigh ↔ chirp
snout ↔ lung
mane ↔ feathers

tail ↔ beak
leg ↔ eye

hoof ↔ wing
4 ↔ 2

eye ↔ leg
ear ↔ claw

hear ↔ catch
grass ↔ grass

3

Figure 5.4: The three mappings
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First, we have to define what a blending projection is. A blending projection of an
element x from concept map CM is a non-deterministic operation that maps x to another
element which is either x, ∅, x|y or y (y is the counterpart of x, i.e. (x, y) ∈ m). The symbol
x|y is called a compound and can be read as being both x and y at the same time. In order
to consider this symbol, we must have the alphabet AB, which contains the alphabet A
plus every combination of pairs x|y that are possible to obtain from symbols of A. Thus,
given A and AB, two concept maps CM1 and CM2 (the two input concepts), a mapping
m (given by φ), a blending projection γ is the function γ: A −→ AB, such that:

γ(x) =





x ∨ x|y ∨ y ∨∅ if x ∈ CM1,∃y ∈ CM2 : (x, y) ∈ m

x ∨ y|x ∨ y ∨∅ if x ∈ CM2,∃y ∈ CM1 : (y, x) ∈ m

x ∨∅ if (x ∈ CM1,@y ∈ CM2 : (x, y) ∈ m)∨
(x ∈ CM2,@y ∈ CM1 : (y, x) ∈ m)

Informally, a blending projection determines, for each element of a concept map, what
its correspondent will be in the blend. When such an element (x) has a counterpart in the
mapping, then it can be projected as a copy (x), as a compound with the counterpart (x|y),
directly as its counterpart (y) or have no projection at all. For example, from the third
mapping in figure 5.4, “wing” could be projected to “wing”, “hoof|wing”, “hoof” or be
absent in the blend. In figure 5.5, we sketch all possible projections from two little concept
maps. Notice that “human” has no mapping counterpart, therefore it can only map to its
copy or to ∅.

A blend is defined by the blending projections. The transfer operation, ω, is defined
by an algorithm that composes the blend by transferring knowledge from the inputs to
the blend, according to the projections. It corresponds to the step of Composition of the
Conceptual Blending framework. The algorithm follows:

Input:

Two input concepts, C1 and C2, defined by the pairs (CT1, I1) and (CT2, I2),

respectively, with CT1=(CM1, R1, F1, IC1) and CT2 =(CM2, R2, F2, IC2).

Algorithm:

Let Blend ←− {}
For i=1,2 do

For each relation r(a, b) in concept map CMi do

Add relation to Blend with the form

r(γ(a), γ(b)), iff γ(a) and γ(b) are not ?

EndDo

For each rule r from Ri, in the form
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Figure 5.5: The blending projection applied to two small concept maps.

r = c1(x1, y1) ∨ c2(x2, y2) ∨ . . . ∨ cm(xm, ym) ∨ {Codec} ←− p1(z1, t1)

∧p2(z2, t2) ∧ . . . ∧ pn(zn, tn) ∧ {Codep}, do

Add new rule to Blend such that each cm(xm, ym) is substituted by

cm(γ(xm), γ(ym)) (when γ(xm), γ(ym) 6= ?) and pm(zm, tm)

is substituted by pm(γ(zm), γ(tm)) (when γ(xm), γ(ym) 6= ?)

Copy Codep and Codec (the scripts) directly to the new rule.

EndDo

For each frame f from Fi do

Apply the same process as with rules

EndDo

For each integrity constraint ic from ICi do

Apply the same process as with rules

EndDo

For each instance s from Ii, in the form

s = I(x1, x2, ..., xn), do

Add new instance to Blend with the functor I and apply the same process as

with relations (but with arity n and recursively)

EndDo

EndDo
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Figure 5.6: A blendoid.

This algorithm basically creates a blend by applying the projections to all the con-

stituents of the input concepts. As the projection operation is non-deterministic, when this

algorithm is applied without selecting specific projections (i.e. without restricting to only

one projection for each element of the concept maps, as will be done by the Factory mod-

ule), it does not produce a single blend, rather it generates what we call a blendoid. The

blendoid contains all possible constituents (relations, rules, frames, instances and integrity

constraints) that can be present in any blend of two specific input concepts. In other words,

it implicitly includes all the search space of blends (see example in figure 5.6).

Taking a close look over the search space of blends, we notice that, for an input concept

1 with a concept map with m different elements and an input concept 2 with n elements, we

may have the maximum of
∑k

i=1[
(
m
i

) · (n
i

) · i!] different mappings (if we use the isomorphic

mappings, as in the Mapper), with the largest mapping having a size k = min(m,n). To

understand this formula, let us consider the extreme case in which all relations (in both

concept maps) are equal. Counting all mapping sizes (from 1 to k), we have, for a mapping

size5 i, all combinations of m elements matching all arrangements of n elements. In reality,

5A mapping of size i will have i correspondences between input concept 1 and input concept 2.
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the number of mappings is extremely lower since there is a variety of different relations

in both inputs. Furthermore, we may also assume that the Mapper will normally produce

only the largest mappings (smaller mappings are generated only when the Mapper looses

activation prematurely when doing the spreading activation process)6.

Assuming each blending projection is independent, we will have a total of l = m + n

different projections in the definition of every blend. So, in the “least complexity scenario”,

the size of the mapping is 0, meaning that we have only two choices for each of the l elements

(either it gets projected to the blend or it is not projected), thus we have 2l different blends.

If the size of the mapping is k (the maximum possible), we have four choices for each of 2k

elements (k elements in each of the domains) because each element x mapped to y can be

projected either to x, y, x|y or ∅. Apart from these 2k elements, the rest (l− 2k) has only

two possibilities. This leads us to the conclusion that, for a mapping of size s (0 ≤ s ≤ k),

we have 42s × 2l−2s different possible blends to choose, which is a very large search space.

For example, for m = n = 20 (an “average” sized pair of networks), we have at least 240 (if

s = 0) and at most 420 (if s = 20) different solutions. If we remember that the Optimality

Principles are mutually competing pressures, then we may guess that this is a very complex

search space. Obtaining a good blend is the main motivation for the Factory module, which

will be the subject of next section.

The Blender module provides two fundamental services to the Factory: it generates the

blending projections (only once and before the Factory starts searching); it provides the

transfer operation, which is used by the Factory each time it needs to create a blend.

5.5 Factory

The Factory is the processing core of Divago. It corresponds to the reasoning mechanism

of our model of concept invention and is responsible for applying the divergent strategy, Td,

which is, as we will see, encoded as a genetic algorithm.

In our context, the output of the Factory, i.e. the invented concept, will correspond

to a blend. Since a blend is primarily defined by a string of projections, then searching

6This helps to understand why, in spite of this combinatorics analysis, the actual number of different
mappings generated is rather small (e.g. for the concept maps in tables 5.2 and 5.1, the Mapper generates
only three mappings, see fig. 5.4).
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Figure 5.7: A possible selective projection from the example of figure 5.5.

for an invented concept becomes searching for the string of projections that originates the

best blend. To a string of projections that comprises one and only one projection for each

element from the input concepts, we call a selective projection. Therefore, as discussed in

the previous section, for a pair of input concept maps, and a mapping of size s, we have a

number of 42s × 2l−2s different possible selective projections.

Assuming γ′(x) as a function that returns at a time one and only one of the possible

projections allowed by γ(x), and the pair of concepts C1 and C2 (containing concept maps

CM1 and CM2, respectively), a selective projection, λ can be defined as:

λ(C1, C2) = {γ′(x1), γ′(x2), . . . , γ′(xm), γ′(y1), γ′(y2), . . . , γ′(yn)},
with xm ∈ AECM1 ∧ yn ∈ AECM2

with AECMi corresponding to the set of elements that are present in CMi.

Given the complexity of the search space, we decided to implement a parallel search

algorithm, a genetic algorithm (GA): a framework inspired by evolutionary theories in which

we have a sequence of populations of individuals, each individual having a fitness value that

represents its survival and reproduction possibilities. Each individual has a genotype, its

birth given genetic code, and a phenotype, the actual interpretation of the genotype (in

nature, the animal itself). A genetic algorithm works as follows:
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Figure 5.8: The genotype of the individual corresponding to the selective projection of figure
5.7.

1. N individual genotypes are randomly created (sometimes the researcher might have

an idea as to what is a good genotype and would direct the creation of the initial

population). These individuals are the initial population.

2. Each individual in the population is evaluated by a fitness function. This evaluation

is normally based on the phenotype, as is our case.

3. The best individuals are chosen for reproduction. This choice can be based on aspects

other than fitness value (e.g. biodiversity).

4. The genotypes of the chosen individuals reproduce using the methods of crossover and

mutation and a new population is formed. Other operators are also used. In our case,

we also use assexual reproduction (direct copy of the genotype)

5. Steps 2 - 4 are repeated for a set amount of times or until a halt condition is met.

This well-known framework has had much success in problems with a search space with

the complexity characteristics that we described. Further explanation of GA’s is far out of

the scope of this thesis, so we direct the interested reader to [Goldberg, 1989].

In our GA, the genotype corresponds to a “selective projection”. The individual is thus

an ordered sequence of projections (the genes), each one with one of the allowed values

(from the set x, y, x|y and ∅). The phenotype is constructed with the transfer operation,

as given by the Blender module, and elaborated by the Elaboration module. In figures 5.8

and 5.9, we show examples of the genotype and the phenotype (generated with the transfer

operation).

The initial population has 100 individuals selected randomly. The evaluation of an

individual is made by the application of the Optimality Principles, which then participate

in a weighted sum, yielding the fitness value. This work is performed in the Constraints
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Figure 5.9: The phenotype - a horse|bird has wings and is ridden by humans.

module. The selection of the individuals is elitist, i.e. the ones with higher fitness have

greater probability of being chosen. Our algorithm uses 3 reproduction operations: assexual

reproduction (the individual is copied to the next population); crossover (two individuals

exchange part of their list of projections) and mutation (random changes in the projections).

It also allows the random generation of a new individual, which can be useful when the

current population has low biodiversity. The system stops when a predefined number of

iterations of this process has been done, when it stabilized around an acceptable maximum

for more than a predefined number of iterations or when an individual was found that has

a satisfactory value.

With this process, Divago is able to search in a huge space of blends according to the

preferences of the user. The best solution is not guaranteed, but it is reasonable to expect

that the higher the number of iterations, the more likely it is to find a good blend, if one

exists in the search space.

5.6 Constraints

The Constraints module implements the Optimality Principles. It makes a preprocessing of

each blend (checking frame satisfaction and completion, integrity constraint violation, vital

relation projection, etc.) and then obtains a value for each of the eight measures. These

values then participate in a weighted sum, which yields the value of the blend (normalized

to fall into the [0,1] interval) that is returned to the Factory. The weight attributed to each

optimality pressure is defined by the user. Our proposal for a computational realization

of the eight Optimality Principles concerns totally to the representation and scope of this
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Figure 5.10: The blend satisfies (or accomplishes) the frames “Equinae” and “Flying thing”

model7. This doesn’t mean that this proposal should not be verified or tested with regard

to cognition and the blending phenomena in general, rather we state that we didn’t make

our measures based on cognitive experiments, but mainly tried to follow the philosophy

behind the description given by Fauconnier and Turner in the context of our formal model.

While these constraints consider usefulness, as well as many other aspects, it is clear

that they lack any explicit concern to novelty. Instead of adding an extra constraint for

novelty, we decided to face it as an effect rather than as a construction principle. In other

words, we intend to verify if, with the present architecture and constraints, Divago can

produce novelty. In the experiments, we will be able to see that it is capable of some degree

of novelty.

We will now present our computational version of the eight optimality principles.

5.6.1 Integration

Frames gather knowledge around abstractions, tightening the links between elements. They

organize a concept into a more understandable whole. For example, in figure 5.10, two

specific frames integrate the blend into a more broad concept of “flying equinae”.

Assuming the set F of frames that are satisfied in a blend, we define the frame coverage

of a blend to be the set of relations from its concept map that belong to the set of conditions

of one or more frames in F . The larger the frame coverage of the blend, the higher the

integration value should be. Yet, a blend that is covered by many frames should be less
7A first approach was published in [Pereira and Cardoso, 2003b], while the current version, published in

[Pereira and Cardoso, 2003c], is a revision with some differences in Topology and Unpacking
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integrated than a blend with the same coverage, but with less frames. In other words, if

a single frame covers all the relations of a blend, it should be valued with the maximal

integration, whereas if it has different frames being satisfied and covering different sets of

relations, it should be considered less integrated. The intuition behind this is that the unity

around an integrating concept (the frame) reflects the unity of the blend. The Integration

measure that we propose varies according to this idea. It also takes integrity constraints

into account so that, when a frame violates such a constraint, it is subject to penalty.

Definition 5.6.1 (SingleFrameIntegration). For a frame f with a set C of conditions,

a blend b, with a concept map CMb, its blendoid with a concept map, CMB+ , and V I,

the set of integrity constraints that are violated in the frame, the integration value, If is

defined by:

If =
#C

#CMb
× (1− ι)#V I × (1 +

#CMb

#CMB+

)/2

being ι a penalty factor between 0 and 1, a value that penalizes a frame for each violation

of integrity constraints. An integrity constraint is violated if its premises are true. In the

context of the integration measure of frame f above, f violates integrity ic if the conditions

Cic of ic are verified and Cic
⋂

C 6= Ø. In other words, f needs to violate ic in order to be

integrated.

We would like to clarify the above formula further more: the first factor represents

the ratio of coverage of b w.r.t. f ; the second factor means that each integrity constraint

violation implies an exponential discount; the third factor serves the purpose of maximizing

the size of the blend (if two frames have the same ratio of coverage, the one that contains

more relations should have higher integration); the division by 2 aims to normalize the

result between 0 and 1.

While the value for a single frame integration is described above, the integration measure

of a blend w.r.t. a set of frames is not necessarily straightforward. At a first sight, it is

appealing to just sum the values of integration of all frames, or of the union of them. Or

even their intersection. But this would lead to wrong results, because a set of frames can not

be reduced to a single frame from the point of view of integration. In this measure, we want

to stimulate unity, coverage and take into account the strength of each frame individually.

In terms of unity, we argue that the set of relations that make the “core” of all the frames

that are satisfied (i.e. the intersection of the sets C of conditions of all frames) should be
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highly valued. On the other side, the coverage of this “core” will be smaller than the overall

coverage (or equal, if the frames have equivalent C sets), which leads us to take into account

the disjoint sets of relations of the frames. Finally, the integration of each individual frame

(as defined above) should also be present in the overall measure. These last two issues (the

overall coverage and the integration of individual frames) are subject to a disintegration

factor because they reflect the existence of different, not totally intersected, frames. We

propose this factor, α, to be a configurable value from the interval [0, 1]. It is now time to

present our proposal for the Integration measure of a blend:

Definition 5.6.2 (Integration). Let Fb = {f1, f2, ..., fi} be the set of the frames that have

their conditions (Ci) satisfied in the blend b, α, the disintegration factor, and Ifi
, the single

frame integration value, as in 5.6.1.

Integration = ITi
0 Ci

+ α× Uncoverage×
i∑

0

Ifi

The Uncoverage value consists of the ratio of relations that do not belong to the inter-

section of all frames w.r.t. the total number of relations considered in the frames:

Uncoverage =
#

⋃i
0 Ci −#

⋂i
0 Ci

#
⋃i

0 Ci

We think that the integration measure is a fundamental brick of the blending process.

It leads the choice of the blend to something recognizable as a whole, fitting patterns that

help to determine and understand what a new concept is.

In order to illustrate this reasoning, in figure 5.11, we show 4 blends and the respective

frame coverage. Blend A gets clearly the highest Integration value (all the relations are

covered by a single frame); B is also totally covered, but by two different frames; Blend

C should get lower Integration value than B because it does not cover every relation (Un-

coverage is higher than 0); finally, blend D would possibly get the lowest value (depending

on the value of α) because, although covering every relation, there is a high dispersion of

frames.

5.6.2 Topology

The Topology optimality pressure brings inertia to the blending process. It is the constraint

that drives against change in the concepts. This so happens because, in order to maintain
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Figure 5.11: The role of frame coverage in Integration value

the same topological configuration as in the inputs, the blend should maintain exactly the

same neighborhood relationships between every element, ending up being a projected copy

of the inputs. In practice, this pressure is normally one that is disrespected without big loss

in the value of the blend. This is due to the imagination context that normally involves

blends, i.e. novel associations are more tolerable.

In our Topology measure, we follow the principle that, if a pair of elements, x and y,

is associated in the blend by a relation r, then the same relation must exist in the inputs

between the elements from which x and y were projected. If so happens, we say that r(x, y)

is topologically correct. Thus, the value of Topology corresponds to the ratio of topologically

correct relations in the concept map of the blend.

Definition 5.6.3 (Topology). For a set TC ⊆ CMb of topologically correct relations, such

that

TC = {r(x, y) : r(x, y) ∈ CM1 ∪ CM2)}

where CM1 and CM2 correspond to the concept maps of inputs 1 and 2, respectively, the

topology measure is calculated by the ratio:

Topology =
#TC

#CMb

Intuitively, this measure represents the amount of relations from the inputs that got

projected unchanged to the blend. At the moment, the only way to violate topology is

by having a pair of concepts projected to the same one (e.g. “horse” and “bird” pro-

jected to “horse”), bringing a new relation that was exclusive to one of the domains (e.g.

ability(bird, fly) projects to ability(horse, fly)).
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5.6.3 Pattern Completion

The Pattern Completion pressure brings the influence of patterns either present in the

inputs or coming from the generic space. Sometimes a concept may seem incomplete but

making sense when “matched against” a pattern.

At present, in the context of this work, a pattern is described by a frame, i.e. we

don’t distinguish these two notions, and therefore pattern completion is basically frame

completion. The act of completing a frame consists of asserting the truth of the ungrounded

premises (which is done in the Elaboration module), a process that happens only after a

sufficient number of premises is true. We call this the completion threshold, a value that is

externally configured in Divago. To the measure regarding the conditions that are actually

satisfied by a frame f in a blend b, we call the completion evidence of f , e(fi, b). Therefore,

completion can only happen when the completion evidence is higher than the completion

threshold.

Definition 5.6.4 (Completion Evidence). The completion evidence e of a frame fi with

regard to a blend b is calculated according to the following.

e(fi, b) =
#Sati
#Ci

× (1− ι)#V I

where Sati contains the conditions of each fi that are satisfied in b, ι is the integrity

constraint violation factor and V I the set of violated integrity constraints.

As in the Integration constraint, we have the problem of taking into account multiple

frames. This time, given that we are evaluating possible completion of subsets of relations,

instead of sets of relations that are actually verified in the blend, it is difficult to find such

a linear rationale (e.g. would two patterns each with individual completion x value higher

than three having each slightly less than x?). As a result, we propose to find the union of

the patterns and then estimate its own completion evidence:

Definition 5.6.5 (Pattern Completion). The Pattern Completion measure of a blend b

with regard to a set F with n frames is calculated by

PatternCompletion = e(∪n
0fi, b)

This measure has a very important role in increasing the potential of the blend, for it

brings the “seeds” that may be used in the Elaboration module. In figure 5.12, we illustrate
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Figure 5.12: Pattern Completion examples

Pattern Completion with two examples. Assuming a frame with three conditions, on the left

it has an completion evidence of 66,6% (two relations are already accomplished), whereas

on the right the completion evidence is only 33,3%. For both, since we consider only one

frame (i.e. one pattern), the value of Pattern Completion is the same as of the completion

evidence.

5.6.4 Maximization of Vital Relations

Fauconnier and Turner propose a set of vital relations that should govern the blend creation.

By default, we allow the same vital relations8 between and within two concept maps, some

being rarely used (e.g. change, disanalogy, intentionality). Divago also accepts the definition

of other relations as being vital. For example, in inventing concepts for a game, one may

decide that the vital relations are “strength”, “defense”, “ability” and so on. The effect of

this choice may be that, when giving a higher weight to Maximization of Vital Relations,

the resulting blends will contain the maximum possible number of these relations.

For implementing this measure, we estimate the impact of the vital relations to the

blend calculated by the ratio of vital relations w.r.t. the whole set of possible vital relations,

contained within the blendoid.

Definition 5.6.6 (Maximization V R). Let Υ be a set of vital relations. From the concept

map of the blend b, we may obtain the set of vital relations in b, BV R:

BV R = {r(x, y) : r(x, y) ∈ CMb ∧ r ∈ Υ}

From the blendoid (the largest possible blend), B+, we have B+
V R:

B+
V R = {r(x, y) : r(x, y) ∈ CM+

B ∧ r ∈ Υ}
8Change, identity, time, space, cause-effect, part-whole, representation, role, analogy, disanalogy, prop-

erty, similarity, category, intentionality and uniqueness.
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Finally, the Maximization of Vital Relations measure is calculated by the ratio

Maximization V R =
#BV R

#B+
V R

5.6.5 Intensification of Vital Relations

From our point of view, Intensification of Vital Relations is the principle that maximizes

the concentration around a specific vital relation. I.e. while the Maximization of Vital

Relations favors the creation in the blend of vital relations in general as opposed to “regular”

relations, Intensification is based on focussing a specific vital relation. The former relates

“new” vital relations with “new” relations in the blend; the latter relates vital relations with

themselves. Another difference, perhaps the most important to keep, is that this measure

is applied to the mapping itself, rather than to the relations within the concept map of the

blend. In other words, when there is more than one mapping algorithm (currently there

is only one, from the Mapper, that can correspond to the vital relation of analogy from

Fauconnier and Turner), it measures how much “intense” it is in the definition of a blend.

For such, we argue that a vital relation is considered more “intense” when there is more

evidence of its strength. This evidence should be dependent on the kind of vital relation

that we are dealing with. For example, an “analogy” vital relation between two concepts is

stronger when there is also a systematical association between the neighborhood concepts

(the systematicity principle). For example, the analogy between Electricity laws and Fluid

Mechanics laws is known to comprise a systematic set of correspondences (e.g. Intensity ↔
Flow; Resistance ↔ Pressure). Conversely, other analogies with Electricity Laws are less

systematic (e.g. with Kinematics, Nervous System). Thus, currently our only “intensity”

measure, Intanalogy, is based on this principle of analogical systematicity, for it estimates

the strength of the analogy.

Definition 5.6.7 (Intanalogy). For a mapping (of size n)

Intanalogy =
#analogical transfers

n

where an analogical transfer consists of a projection of an element x from input concept

map 1 to y in the blend where y is the analogical counterpart of x in the input concept map

2.
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Figure 5.13: Intensification VR examples

Considering several different “intensity” heuristics, the evaluation of this pressure takes

the point of view that a blend that applies only one vital relation (in this case, only one

mapping algorithm), with intensity x, should have higher measure than a blend with n vital

relations, each with intensity x/n (the sum would thus be x). It is important to notice that,

when there are many mapping algorithms (and thus many possible projections), it is the

GA that decides which ones prevail and it is this choice that is measured by Intensification

of Vital Relations.

Definition 5.6.8 (Intensification V R). For υi ∈ Υ, the set of vital relations, and assum-

ing a value Intυi of intensity of the vital relation υi, the measure of Intensification of Vital

Relations is calculated by:

Intensification V R =
∑n

0 Int2υi

(
∑n

0 Intυi)2
, n = #Υ

Intensification is thus higher when there is more “concentration” (e.g. IntV1 = 2,

IntV2 = 2 ⇒ Intensification = 8/16; IntV1 = 4 ⇒ Intensification = 1). In figure 5.13,

we intend to illustrate the reasoning behind this measure. On the left, we see that the only

mapping function (vital relation) used in building the projections of A and B is analogy,

whereas on the right there are two kinds of connections (analogy and property), thus yielding

a smaller value for the latter.

5.6.6 Unpacking

Unpacking is the ability to reconstruct the whole process starting from the blend. In

our view, such achievement underlies the ability to reconstruct the input spaces. I.e. the

reconstruction of the input spaces from the blend demands the assessment of the cross-space

mappings, the generic space and other connections. Thus, what we are proposing is that
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Unpacking can be reduced to the ability to reconstruct the inputs. This is so because there

is no way to properly reconstruct the inputs without a reconstruction of the cross-space

mappings, generic space and the connections between spaces.

Unpacking should take the point of view of the “blend reader”, i.e. someone or some-

thing that is not aware of the process of generation, thus not having access to the actual

projections. Being such, this “reader” will look for patterns that point to the “original”

concepts. Once again we use the idea of frames, more specifically the defining frame of an

element, which comprises its immediately surrounding elements and relations. For example,

if the element “wing” was projected onto x in the blend, the defining frame with regard to

the “bird” concept map would consist of purpose(x, fly), conditional(x, fly), quantity(x, 2)

and pw(x, bird). The more of these relations are found in the blend, the more likely it is

that the “reader” will find easy to understand the relationship between x and “wing”.

Definition 5.6.9 (DefiningFrame). Given a blend b and an input space d, the element

x (which is the projection of the element xd of input concept map d to b) has a defining

frame fx,d consisting of

fx,d = C0, C1 . . . Cn −→ true

where Ci ∈ {r(x, y) : r(xd, y) ∈ CMd}. Assuming that k is the number of conditions (Ci) of

fx,d that are satisfied in the blend, the unpacking value of x with regard to d (represented

as ξ(x, d)) is

ξ(x, d) =
k

n

We calculate the total estimated unpacking value of x as being the average of the un-

packing values with regard to the input spaces. Thus, having input concept maps 1 and 2,

we have

ξ(x) =
ξ(x, 1) + ξ(x, 2)

2

Definition 5.6.10 (Unpacking). Let X be the set of m elements of the blend b, generated

from input concept maps 1 and 2. The Unpacking value of b is calculated by

Unpacking =
∑m

i=0 ξ(xi)
m

,xi ∈ X
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Figure 5.14: Unpacking examples

In Figure 5.14, we present the defining frame for “horse”, in the “horse” concept map.

In Blend 1, the element “horse|bird” (the projection of “horse”) will have the highest Un-

packing value (w.r.t. “horse” concept map) because it fits exactly its defining frame. In

Blend 2, the value is lower because there are two new relations (with “fly” and “wings”),

meaning that it is not the exact same element. Blend 3 will get the lowest Unpacking value

of all three because it also lacks some relations (e.g. with “run” and “grass”).

5.6.7 Web

The Web principle concerns to being able to “run” the blend without cutting the connec-

tions to the inputs. In our opinion, this is not an independent principle, being co-related

to those of Topology and Unpacking because the former brings a straightforward way to

“maintain the web of appropriate connections to the input spaces easily and without ad-

ditional surveillance or computation” and the latter measures exactly the work needed to

reconstruct the inputs from the blend. This is not to say that Web is the same as Topology

or Unpacking. Differently, on one side, Topology provides a pressure to maintain the most

fundamental connection to the input: the same structure; on the other side, Unpacking

evaluates the easiness of reestablishing the links to the inputs. These two values combined

in a weighted sum yield, we propose, an estimation of the strength of the web of connections

to the inputs:

Definition 5.6.11 (Web).

Web = α× Topology + β × Unpacking

with α + β = 1.
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Since this is not an independent variable, making independent experiments with the

Web measure would not add any valuable conclusion and thus it will have little attention

in this thesis.

5.6.8 Relevance

The notion of “relevance” or “good reason” for a blend is tied to the goal of the blending

generation. A blend, or a part of it, may be more or less relevant depending on what it is

for. Once again, frames take a fundamental role as being “context” specifiers, (i.e. the set

of constraints within a frame describe the context upon which the frame is accomplished).

Therefore, having a set of goal frames, which can be selected from the ones available in the

Knowledge Base or specified externally, a blend gets the maximum Relevance value if it is

able to satisfy all of them.

An aspect of the goal frames is that they become queries. For example, if we want to

find a concept that “flies”, we could build a goal frame with the relation ability(x, fly).

The blends that satisfy this frame would have high relevance.

Definition 5.6.12 (Relevance). Assuming a set of goal frames, Fg, the set Fb of the

satisfied frames of blend b and the value PCNF for the pattern completion of a set of

frames F in blend b, we have

Relevance =
#(Fg ∩ Fb) + #Fu × PCNFu

#Fg

where Fu, the set of unsatisfied goal frames, consists of Fu = Fg − Fb. This formula

gives the ratio of satisfied and partially satisfied goal frames w.r.t. the entire set, Fg of goal

frames.

From the point of view of creativity, we propose the use of Relevance as a “usefulness”

measure, an idea that will be applied in some experiments.

5.7 Elaboration

The Elaboration module is responsible for the application of several methods of elaboration

and completion to the blend. It is where the rules and frame conclusions are triggered and
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where the completion of uncompleted frames (or patterns) is done. Hence, it encodes the

elaboration function, θ, of the model presented in the previous chapter. It allows the three

different kinds of elaboration explained: rule-based, internal logic and cross-concept based.

The rule-based elaboration, θR, is based on the application of rules from the generic
domain. Whenever the premisses of any of these rules are proven true, then their conclusions
are inspected and the corresponding effects are processed to the blend. As an example, we
have the rule below, where we say that, if an x lives in a house, and its habitat is water,
then it must live in a water tank, placed in the house:

rule(generic, water tank, [lives in(X, house), habitat(X, water)],

[],

[lives in(X, water tank), in(water tank, house)],

[lives in(X, house)]).

If the premises are found to be true, then the Elaboration module will add the relations

lives in(X, water tank) and in(water tank, house) to the concept map of the blend and

also delete the relation live in(X, house). Another, more complex example, is a rule that

applies the movement laws to determine the meeting point of two objects X1 and X2

moving on the same line:

rule(generic, meeting time, [starting position(X1, P0X1), starting position(X2, P0X2),

{X1\=X2}, speed(X1, SX1), speed(X2, SX2), day(X1, D),

day(X2, D), starting time(X1, T0), starting time(X2, T0)],

[],

[{Dif is SX2-SX1, Dif\=0,T is (P0X1-P0X2)/Dif}, meet(X1, X2),

time(X1, T), time(X2, T)],

[]).

The internal-logic elaboration, θC , in this module inspects the frames that are accom-

plished by the blend and in turn applies their effects, as with the rules. In the special

case of rules that are part of the blend (as a result of projection from one of the inputs),

we can consider also internal-logic elaboration, although the procedure that controls their

application is the same as of any other rules.

The cross-concept based elaboration is probably the less explored elaboration method

used. It is based on pattern completion. When the completion evidence of a frame (as

calculated in the Pattern Completion measure) surpasses a minimum specified value (the
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completion threshold), then the Elaboration module will add the missing relations that can

be fully defined. For example, in figure 5.12 (left), if the completion threshold was below

66%, then the Elaboration module would add the relation ability(horse|bird, fly). In this

case, the relation is fully defined because both arguments (horse|bird and fly) are known. If,

on the contrary, the instantiation of the frame’s premises had yielded ability(horse|bird, )

or ability(horse|bird,∅), then no new relation would be created. We call this cross-concept

elaboration because it is based on the transfer of knowledge from an external concept (the

uncompleted frames) to the concept map of the blend. We are aware that this may be

both an unsafe and incorrect way of doing cross-concept based elaboration. It can be

unsafe because, apart from the completion evidence, there is no other method for ensuring

correctness or meaningfulness of the added knowledge. Only if dealing with goal frames

(i.e. when there is an external motivation to accomplish the frame), this completion reveals

consequent. It can be an incorrect perspective on cross-concept based elaboration because

the source concept (the frame) is created from an analysis of internal logic (the Pattern

Completion measure), rather than being another different concept that, by some reason,

appears to be a good source of knowledge.

The rules and frames applied in this module may mutually influence each other. For

example, the new knowledge added by a frame may in turn trigger a rule and so on. This

means that the system is sensitive to their order of application. To reduce this effect, the

Elaboration module applies the rules iteratively until no change to the concept map is made,

i.e. until it stabilizes around a set of relations. The drawback of this approach is that it

becomes sensitive to cycles. For example, suppose the following list of rules, with r1, r2 and

r3 being relations, and a blend containing the single relation r1.

r2 ∨ not r3 ←− r1

r3 ∨ not r1 ←− r2

r1 ∨ not r2 ←− r3

After running the first rule, the Elaboration module would start by adding r2, then would

trigger the second rule, which would remove r1 and trigger the third rule, which would

return to the initial state, indefinitely. We are aware that this is far from an unknown

problem in the area of Logic Programming, and thus we believe that good solutions may
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have already been found. However, for this thesis, and for the current version of Divago,

the rules must be coded with attention to avoiding cycles, since we have not investigated

farther in this subject.

This module is very useful when one knows well the domain for which Divago is inventing

concepts. For example, for the creatures experiment, designed for a game project, we added

some specific rules and frames related to solutions to problems (e.g. adding a wooden leg

for a creature when there is one leg missing) and for calculating values (e.g. calculating a

new strength value when there are conflicts between two possible candidates).

The Elaboration module could have been applied after the GA cycle, to the resulting

best blend produced by the Factory, but this choice would imply that the generation of

the best blend itself could not take into account the improvements from the Elaboration.

In other words, the system would tend to avoid generating solutions where, in spite of

being originated from a low valued non elaborated blend, the result after elaboration would

compensate its previous imperfections. This was the main reason for integrating it within

the GA of the Factory.

As with the Mapper, so the Elaboration module is optional for it can obscure the

inner workings of the blending mechanism in hiding imperfections of the blend. Since this

is important for the validation of the system, we also allow the selection of the specific

elaboration methods to apply.

Getting back to the model of concept invention that was the subject of previous chapter,

we said that the elaboration function, θ, should be used to define the space that would be

traversed by the convergent strategy. Differently, the Elaboration module is being (option-

ally) applied by the genetic algorithm of the Factory, which we described as our divergent

strategy. In this case, to be coherent with ourselves, we ought to acknowledge that, when

the Elaboration module is used, we have a strategy that shares both the divergent and con-

vergent perspectives of the model. Thus, we present here no pure convergent strategy. This

may be a flaw in Divago and results from the deliberate compromise of focusing divergence

and bisociation and disregarding other issues. A possible future development in Divago

could be to use another GA to explore the space generated by the elaborations, where an

individual would be defined by the rules, frames, and completions applied, in which case

we could have an independent convergent strategy.
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5.8 Divago as a creative system

To finalize this chapter, let us analyze Divago with the same criteria of section 2.2.3, where

a classification of creative systems was proposed:

• Architecture. Single agent. As we have explained before, the approach that we are

following is centered on a single isolated system. In future steps, a natural development

would be to include it in a multi-agent environment.

• Model. Divago fits entirely the Cognition Centered Model (CCM) paradigm, as it

was developed from analyzes of creativity from Cognitive Science, Psychology, Philos-

ophy and AI, and most of all it partially integrates a computational implementation

of a proposal for a cognitive mechanism, named Conceptual Blending.

• Episodic Memory. Divago has NO true mechanism of Episodic Memory. Although

its implementation may possibly imply little more than a feedback loop (the outputs

would become part of the KB), we dedicated to a feedforward version, as it showed

sufficiently complex by itself.

• Evaluation. Divago has a built-in evaluation made by the Constraints module. The

only active participation of an external entity happens in the beginning of the process

(by setting the query and the weights, and possibly also the input concepts and a

mapping).

• Theme. The theme of this project is Concept Invention.

• Reasoning paradigm. Divago is clearly a Hybrid system, in that it makes use of

rule-based reasoning, genetic algorithms and, to a much lesser degree, connectionism

(in the Mapper module).

• Domain. As we will see in the next chapter, Divago has been applied to a variety of

domains, namely 2D drawings, 3D creature design and linguistic creativity. During

the writing of this thesis, an approach to Sound Synthesis is also being developed

[Martins et al., 2004].
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Experiments

Ever since its first sketches, Divago has been subject to experiments with several domains.

Perhaps taking the risk of making experimentation itself divergent, we decided for this in-

breadth approach for two reasons: we have been arguing in this thesis for the consideration

of multi-domain environments in computational models of creativity; with an in-depth

approach, we would focus gradually more on specific domain issues than on Divago itself.

Whatever the approach, validating this system in which respects to creativity is a goal that

we have been pursuing, without finding so far definitive and uncontroversial solutions. For

this is a fragile issue, we must follow principles the most solid as possible. First, avoid

building ourselves the input knowledge structures involved, the only exceptions being the

first two experiments, the house-boat and the horse-bird. Second, we try to read as little as

possible from the results except when there is a well-defined interpretation mechanism. In

other words, we try to avoid putting ourselves subjective meaning into ambiguous events.

Third, we seek to provide the most statistically significant data as possible to support the

claims and conclusions achieved. We follow the Central Limit Theorem, which says that

“the distribution of means from repeated samples from a population will be approximately

normally distributed if sample size is large (> 30) and exactly normally distributed if

the population itself is normally distributed”. Therefore, without knowing in advance the

distribution of the populations involved, we will rely on the condition that each sample must

be large. For example, each of the optimality constraint weight configurations tested was

subject to 30 runs with the same starting conditions. Fourth, we apply some of the criteria

for creativity assessment, as presented in section 2.2, which will allow us to follow the same

evaluation framework throughout the experiments, which will be useful for comparing the
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behaviour of Divago within its own domains, as well as providing benchmarks for future

comparisons with other systems.

The experiments are presented in chronological order and so the reader will also perceive

the evolution of the system in terms of the modules used, the control over the results, the

methodology and the interpretation of the results. In the boat-house, we generate the

whole set of possible combinations (of boat|house drawings), using only the Mapper and

the Blender. Only in the horse-bird experiments we were able to apply an objective analysis

of the results, when we applied the Factory and the Constraints modules for the first time.

There, we made the definition of novelty (the nov function) that was applied for the rest

of the experiments. The noun-noun experiments intended to test Divago with a large

Knowledge Base and to compare it with C3, a Concept Combination system (see chapter

3). The creature generation experiments are a study for the application of Divago to game

environments and also the first experiments with the use of the Elaboration module. Finally,

we apply Divago to some classical blending examples in order to validate it as a Blending

model.

It will be noticeable that, as we experiment the system, some Optimality Constraints get

preferred over others, leading eventually to the elimination of some and to the conclusion

that one could reduce the list to a subset of fundamental Optimality Constraints.

We will not hide the difficulties in analyzing Divago, namely in which respects to the

value (or quality or usefulness) of the results, the evaluation of the fine-tuning of the system

or the individual effect of each of its components in the results. Nevertheless, we hope

to provide a set of objective conclusions and benchmarks that may be useful for future

comparisons.

6.1 The Boat-House

The first extensive experiment we made with Divago, published in

[Pereira and Cardoso, 2002], had the goal of generating and analyzing the entire search

space from two input concepts. The context then given would be that of a system with

a specific goal (e.g. draw a “house”), but with a limited set of possibilities (e.g. only

one drawing example available), that would ask Divago to extend its knowledge base of
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isa(house,physical structure) isa(human,mammals)
isa(physical structure, physical entity) isa(night, time object)
isa(time object, information entity) isa(skyscraper, physical structure)
isa(door, physical object) isa(window, physical object)
isa(roof, physical object) isa(observation, task)
purpose(roof, protection) isa(protection, task)
isa(body, physical object) isa(container, physical object)
isa(room, house part) isa(house part, space location)
isa(day, time object) isa(water proof, property)
isa(tree, vegetable) isa(vegetable, living entity)
live in(human, house) color(night, black)
have(house, door) have(house, window)
have(house, roof) have(house, body)
purpose(body, container) purpose(window, observation)
purpose(door, entrance) property(skyscraper, very big)
purpose(body, container) have many(skyscraper, house)
have many(house, room)

Table 6.1: The house domain concept map

possible drawings.

In this experiment, the knowledge representation was restricted to concept maps (built

using Clouds [Pereira and Cardoso, 2000]) and instances. Such a limited representation

was then chosen because, apart from practical reasons (this was the first experiment with

Divago), an important decision was to come about which view on concept representation

would be the center of further developments (either micro-theory or exemplar view).

The choice for a “house” and a “boat” was made after some blending and concept

combination works (e.g. [Goguen, 1999, Andersen, 1996]). We intended to blend these two

concepts and interpret the newly generated instances according to an unambiguous process.

In this case, we decided to define them according to a simple language (very similar to Logo

[Abelsson and diSessa, 1981]), which enabled us to draw simple objects (a house and a boat)

and see the generated space without heavy computational work. In this language, examples

of commands are on/5, meaning “draw line for 5 pixels”, off/5 meaning “move 5 pixels

without drawing” or left/45, meaning “turn left 45 degrees”. This language as well as the

syntax of the instances are described in Appendix D.

The tables 6.1 and 6.2 show the concept maps of “house” and “boat”. A short inter-

pretation of these concept maps tells us facts like “a boat has a sail, a hatch, a mast and

a vessel, the vessel is the floating structure that serves as container” or “humans live in
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isa(boat, physical structure) isa(sailing boat, boat)
isa(sail, physical object) isa(movement, task)
isa(triangle, geometric form) isa(geometric form, information entity)
isa(water proof, property) isa(hatch, physical object)
isa(observation,task) isa(mast, physical object)
isa(vessel, physical object) shape(sail, triangle)
shape(hatch, circle) have(sailing boat, sail)
have(sailing boat, hatch) have(sailing boat, mast)
have(sailing boat, vessel) have(vessel, floating structure)
purpose(sail, movement) purpose(hatch, observation)
purpose(mast, support) purpose(vessel, container)
property(sailing boat, slow) property(hatch, tiny)
property(boat,water proof) place(sailing boat, sea)
use(human, sailing boat) sail(human, sailing boat)

Table 6.2: The boat domain concept map

Figure 6.1: The boat and the house, as drawn from the instances

houses, that have many rooms, a roof, a window, a door and a body1”.

The Mapper generated 4 different mappings. In table 6.3, we show the two mappings

that were the most common to appear. While some concept mappings come naturally (like

“window-hatch” or “body-vessel”, in mapping 1), others, less intuitively acceptable, appear

as consequence of the exhaustiveness of the mapping function. For example, “water proof-

slow” appears because both can be “properties” of something (e.g. “physical structure can

be water proof”, and “boat can be slow”).

In table 6.4, we can see an excerpt of the blendoid corresponding to mapping 1. Accord-

ing to it, possible relations in a blend could be that “a house|sailing boat has a window|hatch

that serves for observation, a door|sail that serves for entrance|movement and has the shape

of a triangle”, etc. Notice the combinatorial explosion that results from the choices given

by the blending projection operation.

Apart from definitions of shape that emerge in the blend (like, shape(door|sail, triangle)),

we don’t know exactly how to produce the visual re-interpretation of objects (e.g., what is

1We are calling body to the four walls that hold the house

155



Chapter 6. Experiments

entrance ↔ movement
task ↔ task

protection ↔ support
roof ↔ mast
door ↔ sail

house ↔ sailing boat
physical structure ↔ boat

window ↔ hatch
body ↔ vessel

water proof ↔ slow
container ↔ container

observation ↔ observation
1

body ↔ sail
container ↔ movement

door ↔ hatch
entrance ↔ observation

house ↔ sailing boat
physical structure ↔ boat

window ↔ mast
roof ↔ vessel

water proof ↔ slow
protection ↔ container

observation ↔ support

2

Table 6.3: Two mappings for the house-boat experiment

the visual shape of door|sail?). In other words, how can we read a blend? Since there is

a (visual) precise semantics for some concepts involved (such as roof , sail or door), in the

form of Logo procedures, we must decide how to use them to produce the new drawings. In

the case where these concepts are found alone, their interpretation is straightforward (just

read the corresponding Logo procedures in the potentially new context), but in the case of

compounds (e.g. door|sail), the problem becomes difficult. The ideal solution would be to

find a way of getting one degree of abstraction down and blend also the Logo procedures

themselves. However, the explorations done in this direction were leading to a degree of

complexity unjustifiable for the goals of the experiment. For this reason, the interpreter

made for these drawings ignored the compounds and produced both alternatives (e.g. for

door|sail, a drawing with door and another with sail), thus producing the same results

as with separate projections. Perhaps the most important conclusion from this experi-

ment was that the interpretation of a compound opens itself another blending problem,

recursively until a terminal and definitive answer is found (a possible solution in drawings

could be to apply visual morphing). In spite of reducing the search space considerably by

not proposing a different interpretation for compounds and only taking into account the

mappings that would have visual effects, a large set of new drawings was produced. The

mappings presented in table 6.3 generate respectively a set of 240 and 408 drawings with

repetitions (giving approximately 80 and 100 different images, resp.). From mapping 1, we

found drawings such as those shown in figure 6.2.

By analyzing these house|boats, we can see some subtle transfers (e.g. the square hatch
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isa(entrance|movement, task) purpose(door|sail, entrance|movement)
isa(entrance, task) purpose(door, entrance|movement)
isa(movement, task) purpose(sail, entrance|movement)
isa(roof|mast, physical object) purpose(door, entrance)
isa(roof, physical object) purpose(sail, entrance)
isa(mast, physical object) purpose(door, movement)
purpose(roof|mast, protection|support) purpose(sail, movement)
purpose(roof, protection|support) shape(door|sail, triangle)
purpose(mast, protection|support) shape(door, triangle)
purpose(mast, protection) shape(sail, triangle)
purpose(mast, support) have(house|sailing boat, body|vessel)
purpose(roof, protection) have(house, body|vessel)
purpose(roof, support) have(sailing boat, body|vessel)
have many(house|sailing boat, room) have(house, body)
live in(human, house|sailing boat) have(sailing boat, body)
live in(human, house) have(house, vessel)
live in(human, sailing boat) have(sailing boat, vessel)
have(house|sailing boat, door|sail) have many(skyscraper, house|sailing boat)
. . . . . .

Table 6.4: The blendoid concept map for house and boat

in the first sail boat; the circular window in the house) and some blends that clearly share

knowledge from both inputs, either visually fortunate (e.g. the boat with rectangular sail)

or unfortunate (e.g. the house with the triangular door and a mast on top). It is also of rel-

evance to say that these unfortunate instances appear as consequence of not having specific

domain-knowledge for generating a drawing or just because of unfortunate combinations

(second, third and fifth images).

When applying mapping 2, the results are as shown in figure 6.3. Notice for example

Figure 6.2: Images that result from mapping 1.
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Figure 6.3: Images from the mapping 2.

Figure 6.4: Images from the body ↔ vessel, door ↔ mast and window ↔ sail blend.

the different placement of the circle (and door). With the mapping 3 (body ↔ vessel,

door ↔ mast and window ↔ sail), Divago produced drawings such as in figure 6.4. Finally,

the fourth mapping, which has a different variation (body ↔ vessel, door ↔ hatch, roof ↔
mast and window ↔ sail), gave rise to images such as in figure 6.5.

The visual quality of the results would vary considerably depending on the application of

domain specific knowledge, such as guiding the result to what a house or a boat should seem

like or which physical/structural rules they should fulfill. Our goal with this experiment

was to assess the generativity of the system, regardless of any aesthetical judgment. Let

us return to the context given in the beginning of this section, a system with the goal of

drawing a house, and imagine the situation in which this system searches for house drawings

in the house domain, but cannot find any satisfactory solution. It can then try to diverge

Figure 6.5: Images from the body ↔ vessel, door ↔ hatch, roof ↔ mast and window ↔
sail blend.
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Figure 6.6: A search in a multi-domain environment

gradually from the original domain (where novelty is minimum), and get into a space of

blends, where novelty increases, a sort of middle space where concepts do not belong to a

specific domain, but share knowledge from more than one. In figure 6.6, we present this

idea graphically.

Since we cannot have any precise measure of novelty or usefulness for the drawings (that

is not obscured by the subjectivity of the image) we cannot do a thorough analysis of these

results with regard to the criteria presented in chapter 2.2. However, we can say that Divago

produces a big proportion (over 90%) of drawings that are definitely different from typical

drawings of houses or boats (they lack some parts or violate basic drawing principles, like

non superimposing objects) in a total of more than 1300 drawings (with repetitions), if

counting from all the mappings. This basically corroborates that, far from reinventing (i.e.

converging), it rather generates novel, yet potentially pointless, results (i.e. diverging).

In general, we can say that, although the two concepts of a house and a boat are close

to each other (both are physical structures, used by humans), this can be an example

of computational modelling of divergent thought because a big amount of new instances

was generated from the blending of two different concepts. According to this perspective,

Divago could serve as a meta-level engine for helping another system with extending its

search space. This is particularly feasible in situations where the search space consists of a
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set of independent knowledge structures, such as in Case-Based Reasoning.

6.2 The Horse-Bird

The Horse-Bird experiment (presented in [Pereira and Cardoso, 2003a]2) was the first to

assess the behavior of the Factory and Constraints module. Actually, it consists of two dif-

ferent kinds of experiments, each with a distinct goal: assessment of the individual effects

of each measure on the final results; qualitative evaluation and tuning of the model. After

several preliminary GA parameters tuning tests, we decided for 100 individuals as the pop-

ulation size, 5% of asexual reproduction (copy of an individual to the following population),

80% of crossover (combination of pairs of individuals), 14% of mutation and 1% of random

generation (to allow random jumps in the search space)3. We have three different stopping

conditions: appearance of an individual with the maximum value (1); achieving n popula-

tions (n = 500); being stalled (no improvements in best value) for more than m populations

(m = 20). We kept these GA configurations throughout the whole experimentation related

to the Horse-Bird blending, here described.

As a result of the problems related to the interpretation of compounds in the house-

boat experiment (e.g. window|hatch), we decided to drop this kind of projection, thus

reducing the search space, now having from 2l to 32k × 2l−2k different blends. Notice that

the concept maps of horse and bird (already given in tables 5.1 and 5.2) have (m=) 29 and

(n=) 33 different concepts, respectively, which gives an l=m+n=62. The three mappings

used (already given in figure 5.4) have sizes k=6, k=5 and k=21, thus the search space will

have a minimum size of 262 and a maximum size of 342×220. Even if discounting the concepts

and relations that are repeated in both concept maps (e.g human), this corresponds to a

very large set of blends.

This experiment also brings the criteria for defining novelty (the nov function, converse

of Ritchie’s typ function) that will be followed throughout the rest of this chapter. This

2In the experiments reported in this thesis, we applied the revised version of the constraints, therefore
the results here may slightly differ from the ones given in the paper.

3These rather large values for mutation and randomness result from the fact that some mutations have
a null effect in the projection scheme (e.g. if an element projection is mutated to nil, it won’t have effects if
its surrounding elements are already projected to nil). In order to stimulate diversity, these values seemed
appropriate.
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function is based on the comparison of the concept map of the blend with those of the

inputs. The exact value of distance between an input x and the blend b corresponds to the

sum of the relations that belong to b and that are missing in x with those that belong to

x and are missing in b. Let us call it d(b, x). This can be seen as an edit distance - the

set of delete and insert operations needed to transform one into the other. Since this value

becomes proportional to the sizes of the concept maps involved, we divide it by the size of

the blend concept map (the number of relations), thus getting a normalization that allows us

to compare among different experiments and assess the behaviour of the system. Following

one of the measures of comparison to an archetype (novelty2(x)) by [Pease et al., 2001], we

define the function distance as returning the normalized minimum distance to one of the

inputs:

distance(b) =
min(d(b, x1), d(b, x2))

sizeb

such that x1 and x2 are the input concepts for generating b and sizeb is the size of the

concept map of b. The larger the distance to inputs, the higher is the novelty, therefore,

the function nov is defined as:

nov(b) =





1 distance(b) > 1

distance(b) otherwise

Determining usefulness (use) presupposes the existence of a purpose. Therefore, we

will only apply it when this is explicit in the experiment. In the second part of these

experiments, we have the goal of finding a pegasus, and the distance to this point in space

will give us an estimate to use. When analyzing the set of values for nov and use given

in a sequence of runs, we tend to prefer the median since it is not sensitive to outliers, as

happens with the mean, and it normally represents a specific blend that is representative

of the mean and that we can inspect. Whenever this assumption becomes unsafe, if there

is a large difference between the median and the mean and a large standard deviation, we

will also consider other indicators. In any case, the reader will find the values for median,

mean, standard deviation and mode in the result files (found in appendix E). Therefore,

unless stated otherwise, the statistics presented refer to the median of the results for 30

runs. The inspiring set (following section 2.1) will comprise the two creatures, horse and

bird, as well as the pegasus, since the latter was also explicitly defined by us.
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6.2.1 Evaluating the Optimality Pressures

This experiment serves to observe the effect of each pressure in the final results, bringing up

a way to predict and control the system. For the first part of these experiments, we isolated

each optimality pressure, by attributing zero weight to the remaining criteria. Since one

of the optimality pressures is not independent (Web) and another (Intensification of V.R.)

only applies one mapping algorithm (given by the Mapper), we did not test them, so we

had six different criteria to take into account.

The input domains applied were the domains of horse and bird (in tables 5.1 and 5.2),

meaning that the expected results range from the unchanged copy of one (or both) of the

concepts to a horse-bird (or bird-horse) which is a combination of selected features from the

input domains. The generic domain consists of the general ontology, integrity constraints

and a set of frames (already given in table 5.3; see also Appendix E).

We applied the three mappings presented in figure 5.4. For each mapping, we tested

the six optimality pressures, each of these comprising 30 runs4. The Elaboration module

was not used. Each blend was examined by the Constraints module without being subject

to any transformation after the projections.

We present now an analysis of the individual effect of each of the measures:

• In Integration, frames behave as attractor points in the search space. Moreover, the

frames with a larger coverage tend to be preferred, although when too large (like apro-

jection or aframe) they are dropped away. The evolution is directed to a compromise

of coverage and satisfiability. The complexity of the search space grows with mapping

size (the number of cross-space associations found by the mapping algorithm). In fact,

when we have a mapping of size 5, it returns six different blends, the best choice being

retrieved 43% of the times, while with a mapping size of 21, it finds eight different

solutions, being the best choice retrieved only 6% of the times. This confirms the

complexity and dimensions of the search space we discussed in section 5.5. A good

compensation for this apparent loss of control is that the returned values are clearly

higher (0.68, for the best) than in the small mappings (0.22), suggesting that, with

4A run is an entire evolutive cycle, from the initial population to the population in which the algorithm
stops
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larger mappings, the probability of finding a better solution is higher than in smaller

ones. Finally, the novelty was 0.71, meaning that the set of frames used does not lead

naturally to any of the inputs, i.e. the system diverges from its input concepts.

• Pattern Completion drives the blend to partially complete (i.e. satisfy some con-

ditions but not all) the highest possible number of frames, leading, in each case, to

several sets of relations that fit into those frames without satisfying them completely.

This means that, isolated, Pattern Completion only leads to disperse, non-integrated

results and so it is not very useful. Interestingly, it can be useful when combined with

Integration because it brings gradually to the blend the concepts and relations that

are needed to complete the frames and so it speeds up the process of finding frames

with high Integration value. In which respects to the search landscape, it seems to

be very rich in local maxima. The most constant results came from mapping 2 (of

Figure 5.4), with the best results obtained in 13% of the times and the second best in

20%. An interesting remark is that the local maxima always fall within a very strict

range of values (of maximum amplitude 0.11, in mapping 3). The median value for

nov was 0.79, which confirms our expectancy that Pattern Completion would be close

to Integration, in these terms, since they use the same set of frames.

• From the experiments with Topology, we can observe that there is a tendency to bring

all the relations from both concept maps to the blend, without being transformed.

This means that, at the limit, the blend will comprise the union of the two concept

maps from the inputs, thus (if the inputs have both the same size) the novelty will tend

to be 0.50 (half the concept map of the blend would have to be deleted to become

an exact copy of one of the inputs). This prediction is corroborated by the result

(nov= 0.51).

• The influence of Maximization of Vital Relations in the results is straightforward,

given that its highest value (1) reflects the presence, in the blend, of all the vital

relations that exist in the inputs. As the evolution goes on in each run, the value

grows until reaching the maximum reasonably early. For each set of the 30 runs, it

reached the value 1 a minimum of 93% of the times, and the remaining 7% achieved

at least a value of 0.95. As in Topology, the search space of Maximization of Vital

Relations is very simple since there is a global maximum in the neighborhood of
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(almost) every point. However, differently to Topology, this measure results in very

high novelty (0.99), explainable by the fact that the number of vital relations in the

concept maps is relatively small and that there is no constraint on the arguments of

these relations. In other words, it does not matter what the vital relations actually

associate, only their simple presence in the blend is important in order to get the

maximum value in this measure, yielding an apparently random choice of elements

projected.

• The results of the Unpacking measure show that it drives towards similar results as

Topology, with the main difference being that the relations in the blend are clusters of

copies of subgraphs from the inputs. I.e., Unpacking copies only those relations that

do not imply conflicts (e.g. some concepts that belong to both domains, such as leg,

can become problematic because its Unpacking is unambiguous). It is therefore a force

of inertia. The median value for nov was 0.63, testifying that, whatever was present

in the concept map of the blend, it was similar to one of the inputs yet missing some

parts that would make it an exact copy, which intuitively agrees with its definition.

• The first part of the test on Relevance focussed on making a single relation query.

In this case, we asked for “something that flies” (ability( , f ly)). The results were

straightforward in any mapping, accomplishing the maximum value (1) in 100% of

the runs, although the resulting concept maps did not reveal necessarily any overall

constant structure or unity, giving an idea of randomness in the choice of relations

other than ability( , f ly). In other words, the evolution took only two steps: when

no individual has a relation ability( , f ly), therefore with value 0; when a relation

ability( , f ly) is found, yielding a value 1, independently of the rest of the concept map.

The second part of the test on Relevance, by adding a frame (ability explanation)

to the query, revealed similar conclusions. There was no sufficient knowledge in any

of the input domains to satisfy this new frame completely, so the algorithm searched

for the maximum satisfaction and reached it 100% of times in every mapping. So

the landscape seems to have one single global and no local maxima, reflecting the

integration of the two parts of the query. It would be expectable the existence of local

maxima if there were separate frames. Intuitively, the search landscapes of Integration

and Relevance seem to be similar. As with Integration, the novelty is dependent of
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the available frames, more specifically of the frames used in the query. With the ones

used, the value for nov was 1. This is consistent with the observations just made

of the apparent randomness of the choice of relations for complementing the concept

map.

6.2.2 Finding the pegasus

For our concerns, we define a pegasus as being a “flying horse with wings”, so leaving

out other features it may have (such as being white). These extra features could also be

considered but would need knowledge concerning to the several aspects of ancient Greece,

Greek mythology and some ontological associations (e.g. purity is white). Moreover, they

would make the generation of the blend considerably more complex, although possibly more

interesting. Formally, the pegasus we want to generate has the same concept map as the

horse domain augmented with 2 wings and the ability to fly (so, it should also have the re-

lations ability(horse, fly), motion process(horse, fly), pw(wing, horse), quantity(wing, 2)

and purpose(wing, fly)).

For validation purposes, we started by submitting a query with all the relations of the

pegasus, so as to check if they could be found in the search space, and the results reveal that

only the mapping 3 (see figure 5.4) respects such constraints. This led us to use exclusively

this mapping throughout the rest of the experiment. Knowing that the solution exists in

the search space, our goal was to find the minimal necessary requirements (the weights,

the frames and the query) in order to retrieve it. From a first set of runs, in which the

system considers a big set of different frames and no query, we quickly understood that it

is not simple (or even feasible) to build the pegasus solely by handling the weights. This

happens because the optimality pressures provide control regarding to structural evaluation

and general consistency, but only by pure chance we can find the exact weights to match

the same relations of the pegasus, a very specific blend that fails to follow only a few of

constraints, but a combination of them. This drives us to the need of queries.

A query may range from specific conditions that we demand the blend to respect (e.g.

the set of conditions for flying, enumerated above) to highly abstract frames that reflect our

preferences in the blend construction (e.g. the frame aprojection: elements from input

concept map 1 should all be projected). Intuitively, the best options seem to comprise a
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combination of the different levels of abstraction.

Since a query is only considered in the Relevance measure, its weight must be large if we

intend to give it priority. In fact, using only Relevance is sufficient to bring to the blend the

concept map of the solution, when the query is specific enough, as we could test by using

a query with aprojection and the flying conditions. From a creativity point of view, it is

not expected to have very specific queries and we are more interested in less constrained

search directives. In table 6.5, we show the parameters we used, as well as the nov and use

values obtained. use is calculated as:

use(b) = 1− d(b, target)
sizeb

with target being the concept map of an optimal blend (in this case, the Pegasus).

The weights we present correspond to Integrity (I), Pattern Completion (PC), Topology

(T), Maximization of Vital Relations (MVR), Unpacking (U) and Relevance (R). The fly

conds. are the relations that the blend must have in order to be a flying creature, and

aframe, aprojection and new ability are frames as described before (and detailed in

appendix E).

Exp. Weights Query nov use Best blend
# I PC T MVR U R (nov/ use)
1 0 0 0 0 0 100 fly conds. + aprojection 0.59 0.53 0.40/0.74
2 0 0 0 0 0 100 fly conds. + aframe 0.86 0.26 0.0/a

3 0 0 0 0 0 100 fly conds.+ aprojection + aframe 0.59 0.53 0.40/0.71
4 50 0 0 0 0 50 fly conds.+ aprojection + aframe 0.51 0.62 0.19/0.97
5 33.3 33.3 0 0 0 33.3 fly conds.+ aprojection + aframe 0.78 0.34 0.82/0.32
6 33.3 0 33.3 0 0 33.3 fly conds.+ aprojection + aframe 0.60 0.52 0.49/0.66
7 25 0 25 25 0 25 fly conds.+ aprojection + aframe 0.70 0.28 0.45/0.58
8 20 0 20 20 20 20 fly conds.+ aprojection + aframe 0.62 0.33 0.47/0.51
9 34 0 16 10 4 36 fly conds.+ aprojection + aframe 0.43 0.70 0.44/0.95
10 34 0 16 10 4 36 new ability+aprojection+aframe 0.26 0.71 0.35/0.73
11 20 0 0 0 0 80 fly conds. +aprojection+aframe 0.16 0.76 0.21/0.90
12 20 0 0 0 0 80 new ability+aprojection+aframe 0.58 0.47 0.18/0.92

aNote: In configuration 2, there is more than one highly scored blend, none with use higher than 0.59.

Table 6.5: The 10 different configurations used.

An observation that must be made is that the target is very similar to one of the inputs

(the “horse”), being its novelty exactly of 0.26, a very low value that was only acknowledged

after the first experiments. Since making it less typical would imply artificial changes in the

concept map (actually the Pegasus is a horse with wings), we decided to leave it untouched.

Furthermore, it is theoretically possible to generate a blend that is close to the pegasus, yet

far away from the horse (if it falls in the opposite direction of similarity). As we can see
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from the experiments, there are useful results that nevertheless fail the threshold of novelty

and there is no linear relationship between nov and use, although when use gets high scores,

the opposite happens with nov.

The first eight configurations were dedicated to understanding the effect of gradually

adding optimality pressures to the fitness function. In the first three, where only Relevance

was used, we verified that, although it was easy to have all the concepts and relations

we expect for a pegasus, often it was complemented by an apparently random selection

of other relations. This results from having no weight on Integration, which we added on

the configuration 4, yielding the result most close to our pegasus: the projection of the

entire horse domain, and the selective projection of wings and the fly ability from the

bird domain. There were a few extra knowledge bits, such as having two claws, feathers

or chirping. In the majority of times, the extra knowledge results in blends that become

distant to the inputs and to the pegasus, i.e. the pegasus found was more a singularity

than the average situation. The straight explanation is that the weight of Integration leads

Divago to satisfy frames that compete with the pegasus (e.g. bframe, which would project

the bird’s concept map structure) in many different ways. In configuration 5, the influence

of Pattern Completion led the results to minimum incompleteness (e.g. a pegasus with

everything except a mane, wings or any other item), which revealed that, by itself, it is

not a significant or even positive contribution to the present goal, a reason for dropping its

participation in the subsequent configurations.

Adding Topology (conf. 6) brought essentially two different kinds of results. As with

configuration 4, it returned the “correct” pegasus with extra features like having feathers

or a beak, either of each apparently selected at random. These were also given the highest

scores in the fitness function. However, in some of the runs (10%), the results contained

both creatures (horse and bird) in the same concept map, as if they were connected (e.g.

having the same legs or ears). This is a rather unwanted result, and it suggests that the

weight of Topology should be relatively small in comparison to others.

The following configuration, the inclusion of Maximization of Vital Relations, confirmed

the same conclusions as from Topology, but with more control over the kind of extra relations

transferred to the blend. For example, the blend may have 2 wings (from the relation

quantity), a beak and feathers (from pw), but it is never an oviparous (from taxonomicq).
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On the other hand, we can sense a gradual lack of focus on the overall results (no two runs

returned the exact same result) complicating considerably our goal of controlling the system.

There is a simple explanation for this: Relevance, Integration, Topology and Maximization

of V.R. all have the same weight and some (like Maximization) are more easily satisfied,

thus driving the evolution towards their maxima, from wherever the evolution started. This

same phenomenon happened in configuration 8, although Unpacking had brought a more

stable set of results.

An immediate conclusion we took from these experiments was that each pressure should

have a different weight, correspondent to the degree of influence it should have in the result.

In our case, we are seeking for a specific object (the pegasus), we know what it is like, what

it should not have and some features not covered by the query conditions that we would

like it to have. This led us to a series of tests for obtaining a satisfiable set of weights, used

in the configurations 9 and 10. Given the huge dimension of the problem of finding these

weights, they were obtained from a generate-and-test process, driven by our intuition, so

there is no detailed explanation for the exact choice of these values and not others. Yet,

a qualitative analysis can be made and we see a clear strength given to Relevance and

Integration. The former serves to “satisfy what we asked” and the latter guarantees overall

coherence (centered on the query frames) and consistency (e.g. it prevents the solution from

having 2 and 4 legs simultaneously). There is also a more discrete presence of Topology,

Maximization and Unpacking, to allow the transfer of extra knowledge. The configuration 9

revealed, possibly, the “richest” pegasus found, in the sense that, although failing largely the

target, it contains all of its relations as well as a selection of other relations (having lungs,

feathers, a pair of claws). Still, although this result appeared consistently throughout

some runs, there is a high variability of results (for configuration 9, the mean of nov was

0.64 with standard deviation σ = 0.17; for conf. 10, the mean for nov was 0.57, σ = 0.17)

testifying the difficulties in controlling the system.

Finally, from what we had learned in the first configurations, we decided for reducing

only to two constraints (Relevance - 80% and Integration - 20%), predicting that we would

find the best approximation to the target. Indeed, this was confirmed by the results,

particularly for configuration 10. Although still not avoiding very bad outliers in two runs

which seriously affected some indicators (it yielded meannov = 0.24, σnov = 0.08 and
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Criterion Value
1 0.443
2 0.273
3 0.504
4 0.636
5 1.000
6 0.364
7 0.500
8 1.333
9 0.000
10 N/A
11 0.406
12 0.483
13 0.273
14 0.636

Table 6.6: Ritchie’s [Ritchie, 2001] criteria results.

meanval = 0.70, σval = 0.30), the results were very stable (if removing the 6% outliers, we

get meannov = 0.16, σnov = 0.06 and meanval = 0.77, σval = 0.10). We will use this specific

configuration later on when we know with some confidence the kind of output to get (and

we have the necessary frames). Now, for a more detailed analysis, we will calculate the

values for Ritchie’s criteria. As we have referred before, we assume a mapping between the

pairs novelty/usefulness and typicality/value, such that novelty is the opposite of typicality

(typ=1−nov) and usefulness equals value (val=use). The latter may become controversial,

yet it may be the best method for applying Ritchie’s criteria in this context and, above all,

it is our conviction that, for a formal setting such as the one we are describing, one can

only measure the value of something as much as it accomplishes a goal or satisfies a set of

conditions. In other words, it must be a solution to a problem, i.e. be useful. According to

this philosophy, we obtain the values in table 6.6. We remember that we have assumed the

value 0.5 for the parameters α, β and γ

From the first four criteria, we can say that Divago is producing typicality and value

near the half scale (criteria 1 and 3), but clearly produces more valued than typical items (2

and 4). From criterion 5, we can see that all typical results were valued, which is clearly due

to our target falling within the range of typicality. However (from 6 and 7) there are some

valued but non-typical outcomes, which is a good indication of creativity. The proportion of

valued non-typical outcomes with regard to the typical ones (criterion 8) can be misleading
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since we are comparing results with different configurations - the last 4 configurations clearly

yield more typical, valued results than the others. Reinventions only occurred in occasional

runs, which do not fall into the statistical validity, therefore we cannot say that Divago

has made consistently reinventions, as can be seen by the criteria 9 and 10. This fact is

important to understand why criteria 11 to 14 are reproductions of the first four. Indeed,

there is such a correlation between these eight criteria that we suspect they can be reduced

to a smaller set.

For determining the fine-tuning of the system according to [Colton et al., 2001], we can

at most determine an estimate, given the participation of so many variables in the definition

of each result. From the experiments so far, we can say, for example, that Relevance and

Integration are creatively more useful than Pattern Completion, and that aframe is less

creatively useful than aprojection (compare configurations 1 and 2). However, we can

also notice the high complexity involved. Compare, for example, configurations 11 and

12. The former produced normally better results than the latter, but the latter has a best

blend with higher scores. It seems, therefore, that configuration 11 earned more stability

at the cost of loosing better singularities to the configuration 12. To check the individual

influence of the frames in configuration 11, we applied the same weight configuration of

80% Relevance and 20% Integration to all possible combinations of the query (see table

6.7). Notice that the first two queries (void query and fly conds.) fail completely to achieve

anything useful. This results from not having applied an organizing frame (such as aframe

or aprojection). In this case, Divago was directed towards satisfying anything (empty list)

or just a small set of relations (fly conds.), preventing it from using an organizing frame and

therefore make a coherent whole. From this, we can conclude that aframe and aprojection

are important to organize the blend (in this case, towards the same organization of the horse

concept map).

We can also notice that, when using only aframe and aprojection (aframe alone or

combined with aprojection), Divago produces either an exact copy of “horse” or a very

similar result. However, when put together with the flying conditions, it makes a whole

that can lead to (very near) the pegasus. This may indicate a high fine-tuning towards

the pegasus, however we can also notice that the same combination can lead to other

results depending on the weights applied (e.g. configuration 5) and other combinations
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Best Blend
Query nov use nov/use
empty list 1.00 0.00 1.00/0.00
fly conds. 1.00 0.00 1.00/0.00
aprojection 0.36 0.56 0.19/0.74
aprojection, fly conds. 0.35 0.81 0.21/0.95
aframe 0.00 0.74 0.00/0.74
aframe, aprojection 0.15 0.67 0.00/0.81
aframe, aprojection, fly conds. 0.16 0.76 0.21/0.90

Table 6.7: Checking the fine-tuning of Divago.

(e.g. configuration 12) can lead to the same results with the same weight configurations.

To conclude, if, on one hand, the frames are a method for controlling/tuning the system, it

is also true that their application does not guarantee valuable results and that, in this sense,

fine-tuning the system is an extremely difficult task. This results from the complexity of

the space and from the specificities of frame combinations (some may be compatible, some

others may be competing).

It is clear that the results in this section were subjectively driven by us in the choice of

the concepts and frame design, but the argument we try to bring is that we can lead Divago

to produce novel and useful outputs. Nevertheless, it is a difficult system to control, a good

aspect on one side - it can hardly be fine-tuned -, but bad on the other side - it is extremely

difficult to test all its potential.

We also developed (in collaboration with Pablo Gervás [Pereira and Gervás, 2003]) an

Interpreter for generating textual descriptions of the blends, based on Natural Language

Generation techniques. This system made descriptions by comparison with the input con-

cepts of “horse” and “bird”. Examples of automatically generated descriptions of blends

are:

(1) A horsebird is a horse. A horsebird has two wings and feathers. It can fly,

and it moves by flying.

(2) A horsebird is a horse. A horsebird can fly, it has feathers, a beak, and wings

for flying and it moves by flying.

(3) A horsebird is a horse. A horsebird can fly. It chirps, it has wings for flying
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and it moves by flying.

The example (1) corresponds to a result from configuration 4. Examples (2) and (3) are

interpretations from configuration 9.

6.3 Noun-noun combinations

In the experiments with noun-noun combinations (published in [Pereira, 2003]), we show

the behaviour of Divago with a dataset constructed independently by other researchers

([Costello, 1997]) and make a comparison to C3 (see section 3.3.1). Each noun is represented

with a syntax that is equivalent to the one adopted for Divago. Here, we apply for the first

time the two-step methodology that will be followed in the subsequent experiments, which

starts by “tuning” the system with preferred outcomes and then allowing it to do free

generation, constrained by a given query. Also for the first time, we define a more precise

criterion for usefulness (use), which will correspond to the score obtained for the Relevance

principle. The rationale is that a blend is useful (i.e. valued) if it accomplishes a set of

pragmatic conditions that may be specific to a situation (e.g. it should be a clay object that

serves to cut food) or a generic demand for an application (e.g. it should be an object with

a single color and a single shape), which can be given as a query to the system. Thus, use

will now correspond to the value of Relevance. This may seem contradictory with the choice

for use in the previous experiment, but the only difference is that now use will participate

in the search, which goes in agreement with the model of creativity presented, in which

the invention of new concepts should be purpose-driven. The value for nov will be given

exactly as before.

The dataset used in these experiments comprises 179 noun descriptions borrowed from

Fintan Costello’s PhD thesis [Costello, 1997] on noun-noun conceptual combination. In

this thesis (and in subsequent publications e.g. [Costello and Keane, 2000]), the author

describes each noun by a set of attribute-value pairs, as shown below (for “necklace”)

Necklace

name: (necklace)
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feature-set: (solid inanimate static)

color: (silver gold)

shape: (small circular)

structure:

made of: metal

parts: (pendant)

found:

function: ((wears person3 necklace neck)

(decorates necklace person3))

The conversion to our concept maps is straightforward: each of the “features” becomes

a property relation; the attributes color, shape and made of become relations with the

respective name; each of the parts is converted into a pw (part whole) relation; each “func-

tion” is converted into a set of actor and actee relations (with third arguments, such as

place or instrument). The actor is expected to be the first argument of the function, while

actee is the second. Therefore, our concept map representation for “necklace” is as follows:

property(necklace, solid) made of(necklace, metal)

property(necklace,inanimate) pw(pendant, necklace)

property(necklace,static) actor(wears, person3)

color(necklace,silver) actee(wears, necklace)

color(necklace,gold) place(wears, neck)

shape(necklace,small) actor(decorates, necklace)

shape(necklace,circular) actee(decorates, person3)

In the original dataset, there are interrelationships between nouns. For example, there

is also a representation for pendant, person3 and neck, so, along with necklace, these

nouns can be seen as a small graph representing the knowledge about people and necklaces.

Within this small graph, there is normally no repetition of function specifications (e.g. in

neck or person3 representation, there is no wears function, although it exists implicitly).
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For this experiment, we converted directly and separately each noun to a concept map, and

there is no communication between our concept maps, which means that many nouns in

our knowledge base lose their original implicit data. This was necessary since automatically

converting that implicit network into our concept maps would not be a trivial exercise in

terms of programming and would fall clearly away from the goals of this project. Another

aspect of the dataset is that some concepts have several different instantiations (e.g. person3

is the third representation of the noun person). We also converted these directly and

separately to our knowledge base, without merging them.

The main goal of these experiments was to observe how Divago behaves with respect

to criteria of novelty and usefulness when applied to knowledge from another noun-noun

combination system. Another intention was to improve the control over Divago in which

regards to these measures.

The noun-noun interpretations we consider in the experiments are either hybrid inter-

pretations or property interpretations (see section 3.3.1). In some tests we made prior to

these ones, the Mapper (which is based on structure alignment) was clearly unable to al-

low other types of interpretations such as relational and known-concept interpretations,

which corroborates the thesis that conceptual combination cannot be reduced to structure

alignment [Keane and Costello, 2001].

In order to provide a pragmatic background for the experiments, we invite the reader to

consider a situation where one wants to obtain combinations with a specific set of charac-

teristics, we can thus define this set via scripts with the same syntax of the nouns described

above. A useful concept must have specific values for the slots of the script and respect a

set of integrity constraints. The slots and values required can thus be grouped together in

a query. In all experiments (except in the tuning set), this query consisted of:

property(A,[animate, inanimate]),

property(A,[liquid, solid]),

property(A,[static, mobile]),

made of(A, ),

shape(A, ), color(A, ),
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actor(F, ), actee(F, )

Square brackets mean disjunction (e.g. the concept A must be animate or inanimate).

The presence of actor and actee relations means that the concept should have a function.

Beforehand, we could not know exactly which kinds of frames were needed to build

“good” combinations, leading to the need of a tuning phase that helped us find a set of

appropriate frames. Only after this tuning, we are able to test the system, leaving it to

construct its own concepts.

6.3.1 Tuning

The tuning set we used consisted of 30 pairs of randomly selected nouns from the list. For

each one, we constructed a solution (called the tuning target) correspondent to our own

interpretation of the noun-noun combination. This hybrid interpretation considered exclu-

sively the knowledge contained within the selected noun representations and was centered

on the head noun, which means that, in any pair A-B of nouns, the interpretation was that

“an A-B is a B with such and such A characteristics”. In other words, the concept B, the

head, is always the focal concept in our interpretations.

Each experiment consisted of making 30 runs for each pair (each run with the exact

same starting conditions), having in the query the set of frames we expect could achieve the

target. The weight configuration followed was 90% for Relevance and 10% for Integration,

which reflects our intention to test the frames. When the results were missing largely the

target, we either selected other frames or designed new ones and made the 30 runs again.

More specifically, this happened when there was an error of more than 2 relations to the

target or when this error was due to fundamental relations (i.e. without them, the result

would not be novel or valued). In table 6.8, we show a sample with the tuning combinations,

target descriptions, resulting difference to the target, novelty score and frames used in the

query. It is important to remember that the target interpretations are obtained using

only the existing knowledge representation of both nouns, which justifies the appearance

of awkward interpretations (e.g. “head hammer handle”, “pen person”). We can also see

that the frames were initially tailored to fit the target interpretations and reused later when
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Combination Tuning Target Error Frames nov
bullet potato small and cylindrical potato 2 bcore. shape transfer. 0.08

slot set completion
cow vehicle body black and white vehicle that eats grass 0 bcore, function transfer, 0.44

slot set completion
eagle shirt brown, bird-shaped shirt 1 bcore, structure transfer, 0.46

shape transfer
engine ball self-mobile ball 0 bcore, feature set contrast 0.29
flower bloom plant spherical plant 0 bframe, shape transfer 0.12
fruit1 paper1 paper with fruit-seeds that humans eat 0 bcore, structure transfer, 0.40

function transfer
head hammer handle1 mobile and animate (living) hammer handle 2 bframe, feature set contrast 1.00
neck instrument a small and straight instrument 0 bcore, shape transfer 0.25
necklace paper circular paper that people use in the neck for 1 bcore, function transfer 0.45

decoration
patient paper1 paper that has illness 0 bcore, function transfer 0.14
pen person thin, long person, that is used (by others) to 2 bcore, function transfer 0.67

write on paper
pencil pendant thin, long pendant, used to write on paper 0 bcore, shape transfer, 0.46

function transfer
potato acorn brown, spherical acorn 1 bframe, function trasnfer 0.30
potato herring tail spherical herring tail 2 bcore, shape transfer 0.12
pottery spoon spoon made of clay 1 analogy transfer 0.56
skin stem thin stem 0 bcore, shape transfer 0.14
spoon1 frame brown frame 1 bframe, single 0.00

differentiating feature
spoon1 handle lens straight and long lens 0 bcore, shape transfer 0.25
thorns hammer1 small and sharp hammer 0 bcore, shape transfer 0.13
tool boxcar a boxcar used to make other objects 2 bcore, function transfer 0.08
torso pencil1 small, animate and mobile (living) pencil 0 bcore, feature set contrast 0.36
utensil web a metal web, used to make food 0 feature set contrast, 0.40

function transfer
vegetable person3 static, inanimate person 0 feature set contrast 0.37
vegetable spoon a thing with spoon shape that grows on earth 1 bcore, function transfer 0.50
vehicle body vessel1 vessel made of metal 1 bcore, slot set completion 0.14
vessel1 food concave shaped food in which one can put 0 bcore, function transfer, 0.37

something shape transfer
victim projectionist projectionist that was damaged by a gun 0 bcore, function transfer 0.25
wheel sitting room circular sitting room 0 bcore, shape transfer 0.25

Table 6.8: Excerpt of the tuning set (average distance to target (average error)=0.67,
standard deviation=0.994)

effective (e.g. the “shape transfer” was created for “bullet potato”, and used often in the

succeeding experiments).

The table 6.9 presents the frames that were obtained (or selected from the already

existing ones in the generic domain). For the rest of the experiment, this became the set of

available frames.

It is clear though that both the target interpretations and the frames were made by us,

so introducing a subjectiveness component in these experiments. Since there does not seem

to be any simple automatic frame generation mechanism and given that the language itself

demands some expertise, the frames had to be constructed with the method described. On
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Frame Description
bframe The blend has the same relations of head noun (although the arguments may

differ)
bcore The blend has the same relations and arguments (except those related to

function) of head noun
analogy transfer Transfer all neighbor elements and relations of an element of modifier to the

mapping correspondent of head
function substitution A function from head is substituted by a function of modifier
single differentiating feature Head and modifier differ only on one feature, which is transferred to head
function transfer The head gains a function that was part of the modifier
shape transfer The head gains the shape of the modifier
structure transfer The head gains the structure of the modifier
slot set completion The slots in head that did not have a value are filled with modifier’s corres-

ponding values
feature set contrast The feature-set in the head are replaced by the feature-set of the modifier

Table 6.9: The frames used in the experiments

the other hand, it would be possible to use other people’s interpretations of the random

generated pairs, requiring a reasonably large set of participants with some expertise to

understand the constraints (interpretations are confined to the specific representation).

This was made for the next two experiments (classical blends and game creatures). Not

having done so for this experiment, we tried to follow our intuition and imagination in each

case. At the worst, the experiments reflect our specific ways of noun combination on the

tuning set applied to the free generation set.

The mappings used in all the experiments were automatically generated by our structure

alignment algorithm, with the seed dormant bridge connecting the individual identifier

symbol of the nouns (for example, in “necklace paper”, the seed dormant bridge is necklace

and paper, which then goes to the made of relations, establishing a mapping between metal

and paper and so on). It typically established mappings between elements with the same

role in both nouns (color value with color value, made of value with made of value, etc.)

6.3.2 Free generation

The free generation of noun-noun combinations consisted of selecting randomly a set of 33

pairs of nouns (the free generation set) and using the above described query to generate

new blended concepts. Every frame shown in table 6.9 was available to the system so that it

could find itself the selection of frames that suited the highest scores of the fitness function.

The optimality constraint weights were chosen from what we had learned from the previous

experiments. In this case, we wanted to give a central role to the frames (thus giving high
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value to Relevance and to Integration), also allowing little control to Topology, Maximiza-

tion V.R.2 and Unpacking. The latter receiving higher weight to reinforce inheritance of

input noun’s main characteristics. The values were: Relevance, 45%; Integration, 30%;

Topology, 5%; Maximization of V.R., 5%; Unpacking, 15%. We also added an integrity

constraint for having at least two frames being accomplished so to stimulate knowledge

transfer. Apart from these, parameters were equal to those used for tuning.

In figure 6.7, we show examples of the generation of the “fish tail1 desk” and “fish

spider” blends, with the inputs (“fish tail1”, “desk”, “fish” and “spider”) and the frames

that were applied.
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Figure 6.7: Frames used in the construction of “fish tail1 desk” and “fish spider”

In table 6.10, we show the results achieved. For each pair of nouns, we show the best

result (in terms of the fitness function) of the 30 runs and describe it textually by enhancing

the differences to the head. The use score corresponds exactly to the resulting Relevance

value. Therefore, a 100% means that every condition of the query was satisfied and no

integrity constraints were violated. Other values indicate that either some condition was

not satisfied or that integrity constraints were violated (or both).

For example, in Figure 6.7, we can observe that both blends satisfy all requirements of

2The vital relations chosen were isa, pw, purpose and quantity
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Combination Interpretation use nov Frames
barrel spoon1.00 Spoon 1.00 0.09 bcore
bed pips Oblong pips 0.53 0.25 bcore, shape transfer
bird1 sea A bird shaped sea, with wings, and 1.00 0.67 bcore, shape transfer

head and made of flesh structure transfer,
slot set completion

bird head clothes Curve shaped clothes 0.81 0.12 bcore, bframe,
slot set completion,
shape transfer

cow head torso Conical torso 0.60 0.14 bcore, shape transfer
desk ornament Brown, wooden, ornament one can put1.00 1.00 bcore, function transfer

paper on slot set completion
desk1 spoon bowl Spoon bowl besides which one puts a 1.00 0.31 bcore, function substitution

chair (and is not used to put food in)
engine apple tree Oblong, long and large apple tree 0.43 1.00 bcore, shape transfer
fish spider Spider with fish tail that lives in sea, 1.00 0.69 bcore, function substitution,

but does not make webs structure transfer
fish tail1 desk Thin, triangular desk 1.00 1.00 bcore, shape transfer
flower bloom hammer A spherical hammer 1.00 0.13 bcore, shape transfer
food body part A body part that serves to be eaten 0.35 0.33 bcore, function transfer
herring instrument A silver, fish-shaped (with fin and tail)1.00 0.87 bcore, shape transfer,

instrument that lives on sea and is not function substitution,
used to play music structure transfer

horse head insect Insect 0.04 0.00 bcore
insect rodent A small rodent 1.00 0.12 bcore, shape transfer
mattress knife1.00 A long knife that is on a frame 0.00 1.00 bcore, shape transfer,

function substitution
oak horse A horse that grows on earth, it has a 1.00 0.58 bcore, structure transfer,

trunk and a crown, but keeps its horse function transfer
shape

paper1 chair seat White chair seat 0.50 0.17 bcore,
slot set completion

patient fruit Human shaped, skin-colored fruit that 1.00 0.60 bcore, shape transfer,
is ill function substitution

patient plant Human shaped, skin-colored plant 1.00 0.28 bcore, bframe,
shape transfer,
slot set completion

person5 paper Paper that sleeps in bed 1.00 0.14 bcore, function substitution
person5 stem Stem that sleeps in bed 1.00 0.50 bcore, function substitution
potters wheel desk A flat and circular desk 1.00 0.38 bcore, shape transfer
pottery neck A neck made by a human 1.00 0.37 bcore, function transfer
rose bloom desk1.00 Desk 1.00 0.42 bcore
sole bird1.00 A black bird 1.00 1.00 bcore,

slot set completion
spider legs carriage Carriage 0.67 1.00 bcore, bframe
stem vehicle A straight, green vehicle 1.00 0.18 bcore, shape transfer,

slot set completion
train building1.00 A building with the shape and 1.00 0.54 bcore, function transfer,

structure of a train, and which serves structure transfer,
to transport people shape transfer

utensil pottery Pottery 0.04 0.50 bcore
victim potters wheel Potters wheel 0.05 0.00 bcore
wheel machine Black and circular machine 1.00 0.22 bcore, shape transfer,

slot set completion

Table 6.10: Results (average usefulness=78%; standard deviation=35%; median=100%)
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the query (therefore scoring 100%). If, say, there were no values for made of and color,

then use would be 75% since two (in eight) conditions were not satisfied. Another situation

could be an integrity constraint violation (e.g. “Something cannot be black and made of

flesh at the same time”), which would lead to a penalty (e.g. supposing integrity constraint

violation penalty was 20%, “fish spider” usefulness value would be 80%). The frames listed

correspond to the frames found in the construction of the best result for each combination.

We notice that every experiment ended satisfying a bcore frame. This is not surprising

considering the query we used, which comprises a set of relations that coincides almost

with the bcore frame relations. Still with regard to frames, we can also see that the re-

sults used essentially 6 different frames (bcore, slot set completion, shape transfer,

structure transfer, function transfer and function substitution). A possible ex-

planation may be that the other 4 were either too specific (single modifying feature) or

too generic (bframe) to achieve stability in the runs.

Results show that there is no correlation between novelty and usefulness, which seems

intuitively plausible. Yet, use may contrast with our intuition in some examples (e.g. there

is no apparent reason why a “horse head insect” is so less useful than a “rodent insect”)

and its explanation is simply that, for the context we are dealing with, the new object may

lack some fundamental conditions.

Probably because the query is too much centered on the “core” of the object (every

aspect except its function), it may loose its function during the blend generation, even

when it is vital. For example, in blending “herring” and “instrument”, the result says it

is an instrument, but it lost its musical function, so leading to an empty concept. We also

point out to the blends “train building1” and “bird1 sea”. Both reveal inconsistencies (“a

train building1 is a building that serves to transport people” and “a bird1 sea is a sea with

wings...it is made of flesh”). These inconsistencies may reveal creative if explored from a

metaphoric perspective, a very complex computational challenge although sometimes trivial

for humans. Preventing the existence of these extreme examples depends on adding integrity

constraints (e.g. “something that serves for transportation cannot be made of bricks”) but

these will go against the creative potential of the system.

From the observation of the use scores, it should be clear that the average of 78%

obtained is highly dependent on the specific query and on the specific knowledge contained
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Criterion Value
1 0.543
2 0.563
3 0.782
4 0.781
5 0.778
6 0.344
7 0.786
8 0.786
9 0.036
10 16.000
11 0.513
12 0.831
13 0.500
14 0.781

Table 6.11: Ritchie’s [Ritchie, 2001] criteria results.

in the dataset. If the query was less constrained (e.g. having just half of the conditions), the

score would certainly be higher, whereas if we added conditions that could not be satisfied

within the dataset, use would never achieve 100%. What these numbers show is that the

model is able to search for the query satisfaction when it is (the knowledge base, the query

and the factory) properly configured, thus providing useful outcomes for the context in

question.

Calculating the criteria from Ritchie, we obtain the results in table 6.11

If comparing with the previous experiments (of horse-bird) shown in table 6.6, we notice

an increase of scores for typicality and value (1-4), with or without considering the inspiring

set (11-14). Apart from the inherent differences of both experiments, this also reflects a

higher control over Divago, due to the methodology followed (tuning+free generation) and to

acquired experience in weight choice. This experiment also shows a more realistic setting.

For example, not all typical items are valued (criterion 5) and a few reinventions were

made (9), although these were a very little proportion of the results (10). Interestingly,

Divago produced almost exactly the same proportion of untypical and valued items as in

the previous experiments, with regard to the whole set of outputs (6). It even increased, if

only considering the untypical items (7).
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6.3.3 Comparison to C3

We had access to a set of analogous experiments that Costello and Keane did with C3.

In these experiments, the authors randomly generated 10 pairs of nouns (e.g. “eagle” and

“tulip”) and, for each pair, generated interpretations for the two possible combinations

(e.g. “eagle tulip” and “tulip eagle”). This gives 20 combinations, for which C3 provided

interpretations (e.g. “An eagle tulip is a tulip that grows on an eagle”). These experi-

ments intended to model the creativity of concept combination and therefore it makes sense

to compare with Divago. However, we cannot do a comparison that survives subjectivity

because the values both referred here (of novelty and usefulness) and by C3 output (plausi-

bility, informativeness and diagnosticity) are not aligned in the same perspectives. Surely,

C3 interpretations would many times fail in the use measure suggested by our script, and

Divago would not necessarily do well with C3 constraints, and any of these conclusions

would lead nowhere in terms of saying which one is more creative. We can do a different,

perhaps more interesting, experiment: check if Divago can arrive to the same results of

C3 (thus proving possible to achieve the same creativity, whatever it is); and determine

which frames would be needed (would they have to be different?). First of all, to level both

systems in terms of representation, we had to allow Divago to have access to the implicit

relations with other concepts.

In order to check if Divago could find the same results as C3, we applied the process

described above as tuning phase and found that Divago is able to achieve the same results

with an average error of 2.4 and median 1. This means that the normal error was either

0 or 1 and so the average was strongly affected by two outliers, of errors 8 and 10. These

latter cases, in which Divago failed, were interpretations that included knowledge from third

nouns, i.e. when there are attributes that do not belong to any of the inputs and come from

other elements in the knowledge base. In the rest, it normally achieved the same results

of C3. Another remark is that it tended to include knowledge (e.g. that “an eagle tulip

is solid”) that C3 had excluded via the informativeness constraint. Whatever which one is

more correct in this issue, it was also clear that, by declaring the diagnostic features of each

noun, the features that differentiate the noun in relation to other nouns (an information

that is actually available in C3), Divago could reduce drastically this extra knowledge.

Perhaps the more striking conclusion from this experiment was that Divago could achieve
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the same results of C3 (with the error just described) with a very small set of frames. Indeed,

only two frames were needed in about 85% of the times: acore (or bcore, depending on

whether the focus was the modifier or the head) and analogy transfer. This means

that, essentially, C3 picked one of the nouns (head or modifier), built the combination

centered on it - which means it has the same structure and the same “core” attributes-,

and transferred also the attributes directly related to the other noun. By directly related

we mean attributes with distance 1 in its graph representation. This seems to indicate

that combinations generated in C3 were essentially of the property type. The other 15%

of the results used also the bframe (or aframe, depending on the focus). The results,

representations and C3 results are listed in appendix E.

To conclude, Divago is able to achieve the same results of C3 by using a proper set

of frames (aframe, bframe, acore, bcore and analogy transfer) as goals in the search.

This means that, if wanting to configure it as a noun-noun combination interpretation

system, only a smaller set of frame combinations should be considered, at least for hybrid

and property types, and attention to other factors should be payed, namely to diagnostic

features. On the other hand, considering the other experiments in this thesis, we conclude

that Divago offers a much larger set of possibilities, without focusing specifically on the

linguistics of combinations. In other words, C3 models noun combinations3 and Divago

deals with concept combinations, being more open to other problem solving situations. We

cannot answer the doubt about the limits of C3 (could it achieve also the same results of

Divago, with a proper configuration?), but it is clear that these are internally very different

systems that tackle the same cognitive problem from different perspectives.

6.4 The creature generation experiment

We now invite the reader to imagine the following context: a game with a knowledge

base of objects (creatures, physical objects, scenarios, etc.) coded according to Divago

representation. Instead of having a specific object pre-determined for each game situation,

let us suppose only a partial specification is given (e.g. for situation x, the game needs a

3An aspect to refer is that the combinations, as modelled in C3, are specific to a set of human lan-
guages (English, German, Dutch...). Others, like Portuguese and French, are less ambiguous because of the
obligatory use of prepositions.
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friendly creature that belongs to the blue team and should have a strength y). Depending

on the size of the knowledge base, on the abstractness of these specifications, and on a

competent engine for retrieving these objects, such a game could become more unpredictable

and surprising, which is one of the current challenges in the area of game development.

We are developing a blending engine for games [Ribeiro et al., 2003] that would fit the

context just given, which will partly be a re-implementation of Divago with attention to the

specific domain of games and to performance issues, always vital in game development. In

order to assess the feasibility of the idea and have a first insight on the problems involved,

we made some experiments with generating creatures in Divago.

6.4.1 Tuning

We built an initial battery of 12 creatures, based on the Magic c© The Gathering game,

which comprises hundreds of different creatures, each one with a strength and defense value

pair, a team color, and a mana cost (interpreted by us as food consumption). They could

also have functionalities (e.g. protect another creature) and abilities (e.g. fly). Below, we

show an example, the pajem angelical (all used creatures are in Appendix E):

isa(pajem angelical, human) pw(wing, pajem angelical)

isa(pajem angelical, bird) pw(left leg, pajem angelical)

taxonomicq(pajem angelical, creature) pw(right leg, pajem angelical)

strength(pajem angelical, 1) actor(strength enhancement, pajem angelical)

defense(pajem angelical, 1) actee(strength enhancement, creature)

food consumption(pajem angelical, 2) points(strength enhancement, 1)

team color(pajem angelical, white) cost(strength enhancement, 0)

color(pajem angelical, human colored) actor(defense enhancement, pajem angelical)

made of(pajem angelical, flesh) actee(defense enhancement, creature)

ability(pajem angelical, fly) points(defense enhancement, 1)

pw(head, pajem angelical) cost(defense enhancement, 0)

pw(left arm, pajem angelical)

pw(right arm, pajem angelical)

pw(torso, pajem angelical)

For this stage, we had to obtain blends of creatures (to become the targets). In order to

avoid our own biasing, we asked another researcher, not aware with Divago’s inner processes

and having little knowledge of Conceptual Blending, to select randomly pairs of creatures
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Figure 6.8: Least possible error achievable by Divago for each of the blends (mean values
over 30 runs)

and invent three different combinations for each of them. He chose 14 pairs of creatures,

thus making 42 combinations. It was then our task to obtain the set of frames that could

help Divago generate the same set of combinations.

Prior to start testing and designing frames, it was necessary to check whether the solution

actually existed in the search space, as we did in previous experiments. In other words,

given a query with the exact relations of the target, the mapping applied by the designer4,

no integrity constraints (so that, whatever inconsistencies the target may have, it will not

be less valued), and a configuration of 90% weight on Relevance (and 10% on Integration),

Divago should be able, after a sufficient number of generations (aprox. 30, for the Horse-

Bird experiment), to generate the same exact blend. In such a configuration, the search

space has only one maximum, containing either the set of relations of the target or the

subset that can be achievable by Divago.

In figure 6.8, we can observe that only five of the combinations are completely contained

in the search space. The reason for this apparent failure is simple when we inspect the

combinations that produced bigger error. Let us analyze one of these combinations, the

second combination of field surgeon with pajem angelical, which has an error of 5. The

concept map of pajem angelical has been given above and field surgeon is represented as:

4In this step, we had to extract this mapping ourselves from the 42 combinations, which was not difficult
since every creature has a relatively small set of relations and concepts.
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isa(field surgeon, clerical) pw(head, field surgeon)

taxonomicq(field surgeon, creature) pw(left arm, field surgeon)

strength(field surgeon, 1) pw(right arm, field surgeon)

defense(field surgeon, 1) pw(torso, field surgeon)

food consumption(field surgeon, 2) pw(left leg, field surgeon)

team color(field surgeon, white) pw(right leg, field surgeon)

color(field surgeon, flesh colored) actor(healing, soltarian priest)

made of(field surgeon, flesh) actee(healing, creature)

size(field surgeon, medium size) points(healing, 1)

The designed combination for field surgeon|pajem angelical2 was:

taxonomicq(field surgeon, creature) pw(pajem angelical right arm, field surgeon)

strength(field surgeon, 2) pw(pajem angelical torso, field surgeon)

defense(field surgeon, 1) pw(pajem angelical wing, field surgeon)

food consumption(field surgeon, 1) pw(field surgeon left leg, field surgeon)

team color(field surgeon, white) actor(defense enhancement, field surgeon)

color(field surgeon, human colored) actee(defense enhancement, creature)

made of(field surgeon, flesh) points(defense enhancement, 2)

pw(field surgeon head, field surgeon) cost(defense enhancement, 1)

pw(pajem angelical left arm, field surgeon) moves(field surgeon, jumping)

As we can see, there was a scrambling of all numbers involved (strength, defense,

food consumption, points and cost). This would be no problem if the substitution was

consistent with the projection mechanism of Divago, but this was not the case: sometimes

the number 1 becomes projected to 2 (both projection of strength), sometimes to 1 (in

defense), the case complicates even more because 0 projects also to 1 (in cost). The prob-

lem we are raising is that, by definition, a selective projection can have one and only one

projection for each concept in the input concept maps, thus even if, by the mapping func-

tion, 1 is mapped to 0, 1 and 2, it can only be projected as one of these in the blend.

This now seems to us a serious limitation, which we are focusing in the development of the

game engine. Another problem in this blend is that there is one completely new concept,

jumping, which did not exist in any of the inputs. The reasoning followed by the designer

was that, since the new creature has only one leg, then it can only move by jumping.

This was an important information, since it gave rise to a rule in a knowledge base. After

determining the least possible error, we may proceed to determining the frames.

We can see that some of the previous frames (aframe, bframe, acore, bcore) were
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creature(X) The name of the creature is the same as the name of the creature X
frame(X) The creature maintains the same set of relations of input X
core(X) The creature contains the core (all attributes) of input X
shape amputation(L) The creature has not any of the shape items(arms, legs, etc.) in list L
shape transfer(S, X) The creature inherits from X the shape S
function transfer(X) The creature inherits a function from input X
fightAttr(X) The creature inherits the fight attributes (strenght and defense)

from input X
shape(X) The creature inherits the overall shape from input X
attr transfer(L, X) The creature inherits from input X the set of attributes in list L

Table 6.12: List of frames used in the creature blends

Figure 6.9: Best possible + frame results (mean values)

simplified with parameters (frame(X) and core(X), respectively), although maintaining

the same reasoning. In figure 6.9, we show the best performance achieved and in figure 6.10

we show the difference to the best possible result. The weight configurations remained the

same (90% Relevance, 10% Integration). In Appendix E, we list the generated blends.

Except for a few situations, it was not difficult to find a combination of frames that

would give us the best result or a result that was very close to it. Since we tried to avoid

tailoring the frames to the specific blends, for some (namely the ones with error bigger than

2, in figure 6.10), it was difficult to find a set of stable combinations of frames. Whatever

combination of frames given, the search space became too much convoluted and, in order

to accomplish some frames, Divago had to drop others, eventually achieving many different

local maxima throughout the 30 runs. An example of such incompatible frames are the

frames for shape amputation(List) and shape(X) (in table 6.12). The former removes a
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Figure 6.10: Efficiency of Divago (mean values)

Figure 6.11: The creatures available in the knowledge base.

piece of the creature, while the latter tries to make it as a whole.

6.4.2 Free generation

In order to see the capacity of Divago of generating novel creatures, we applied several

different configurations and creature combinations. Given the game context, this time we

want to apply elaboration and produce a visual output. Due both to copyright obligations

and to the availability of a set of three completely defined 3D creatures (a werewolf, a

dragon and a horse, see figure 6.11), the content of the knowledge base was changed to

include only these latter objects, coded in a similar manner as the creatures from Magic c©

The Gathering used above.

By changing the knowledge base and keeping the frames and rules obtained, we may
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verify that Divago has some degree of versatility. In fact, since we maintained the same

kinds of relations in the concept maps, only a few rules and integrity constraints had to be

created. We added rules for stating that something that has wings should have ability to fly,

something with an odd number of legs should get a wooden leg in the missing connection

and it should move by jumping. Another rule calculates the mean when there are two

different numerical values for the same attribute (and replaces them for this mean). We

also added a rule stating that, when something is dangerous, very strong and very large

(strength > 5 and size > 3), then it should get an ogre head and loose the original one.

The new integrity constraints state that a creature should not have two different values for

the same attribute, they should be symmetric, they should not have two heads, two torsos,

or two members in the same place (e.g. two left arms)5.

We only applied a single query throughout this experiment. To determine this query, we

analyzed the history of frame combinations used to build the 42 creatures in the previous

stage. We concluded that each one had two or three abstract frames such as creature(X),

frame(X) or core(X). Since core(X) can be too specific, we decided to have creature(X)

and frame(X) (the former forces to have only one creature name in the blend, the lat-

ter to follow its relational structure). There is also some regularity in the transfer of

shape parts from each of the inputs, so we decided to have shape transfer(E1, Y),

shape transfer(E2, Y), {E1 \= E2}, with X different from Y. Thus, the query is:

creature(X), frame(X), shape transfer(E1, Y ), shape transfer(E2, Y ), {E1\ = E2,

X\ = Y }.

A good blend would therefore consist of the structure of one of the creatures with at

least two of the shape parts of the other creature. In table 6.13, we show, for each pair of

creatures and a weight configuration, the median results of novelty and usefulness obtained,

as well as the scores for the best blend. The weight configurations consist essentially of the

ones used in previous experiments.

In these experiments, almost every result satisfied entirely the query, thus giving a value

of 100% for each one (the mean was 0.98 with a standard deviation of 0.05 corresponding

to a few outliers). In which respects to novelty, we can observe the variability of the results

5Of course, this does not imply that these creatures will never be generated. The system is only told
that such constructions are to be avoided.
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Combination Weights nov use Best blend
I T MVR U R (nov/ use)

horse werewolf 34 16 10 4 36 0.50 1.00 0.56/1.00
horse dragon 34 16 10 4 36 0.31 1.00 0.25/1.00
werewolf dragon 34 16 10 4 36 0.50 1.00 0.62/1.00
horse werewolf 10 0 0 0 90 0.86 1.00 0.86/1.00
horse dragon 10 0 0 0 90 0.69 1.00 0.57/1.00
werewolf dragon 10 0 0 0 90 0.74 1.00 0.65/1.00
horse werewolf 20 0 0 0 80 0.86 1.00 0.86/1.00
horse dragon 20 0 0 0 80 0.87 1.00 0.75/1.00
werewolf dragon 20 0 0 0 80 0.76 1.00 0.65/1.00
horse werewolf 30 5 5 15 45 0.83 1.00 0.71/1.00
horse dragon 30 5 5 15 45 0.37 1.00 0.50/1.00
werewolf dragon 30 5 5 15 45 0.59 1.00 0.65/1.00

Table 6.13: Results of creature combinations

with the weight configurations. Indeed, when there is a focusing on Relevance and Integra-

tion, the system runs away from typicality, which is understandable when we analyze the

used frames. They favor the use of knowledge from both inputs, without significantly fa-

voring one input over the other. When doing so, as also verifiable in the other experiments,

novelty tends to increase. When, on the contrary, the frames favor one of the inputs (e.g.

the Pegasus is a horse), then the typicality will tend to increase. When applying optimal-

ity principles other than Relevance and Integration, namely Topology and Unpacking, we

can notice a decrease of novelty, although also achieving the 100% solution. This results

from a heavy weight on Relevance, but also a preference for those blends that, although

accomplishing the goal frames, respect the other principles as much as possible (Topology

and Unpacking particularly favoring similarity to inputs). From applying Ritchie’s criteria,

we obtain the table 6.14, where we can see that the average and ratio of typicality has

lowered slightly in comparison to the previous experiments (criteria 1 and 2). The average

and ratio of value is, of course, 100% given that every result satisfied entirely the query (3

and 4). This fact implies also maximum values in other criteria (5, 7, 12 and 14). Again,

this demonstrates the difficulties both in determining the value of something as well as in

comparing it with other experiments. The ratio of untypical and valuable results, a very

important measure for creativity, has raised to 0.667 (remember that in previous experi-

ments, it rounded 0.333), expectable given that everything is now maximally valued. The

rest of the criteria confirm the same conclusion: Divago was able to satisfy the value criteria

for every combination, it did not reinvent any of the inputs and it was able to produce some
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Criterion Value
1 0.343
2 0.333
3 1.000
4 1.000
5 1.000
6 0.667
7 1.000
8 2.000
9 0.000
10 N/A
11 0.308
12 1.000
13 0.333
14 1.000

Table 6.14: Ritchie’s [Ritchie, 2001] criteria results.

Figure 6.12: The best blends for horse|dragon (nov=0.25), horse|werewolf (0.56) and
werewolf|dragon (0.62).

proportion of results with low typicality (i.e. high novelty).

The generation of these 3D images was made by an interpreter developed in collaboration

with other researchers [Ribeiro et al., 2003]. It receives the concept maps generated by

Divago and produces a “wavefront obj” file, which describes the 3D image. The several

parts of the creature were coded in separate (e.g. horse back leg, ogre head) and placed

together according to the concept map. To give an idea of the creatures generated, we now

show some examples (the rest in appendix E). In figures 6.12, 6.13 and 6.14 we show the

images of the best blends found in configurations 1, 2, 3 and 4, respectively.

In order to give an insight on the range of generated creatures, we also show the worst

results. In these, we can see that they either lack one member (e.g. a wing), they have

more than one member in the same point (e.g. a horse|werewolf with four back legs) or a
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Figure 6.13: The best blends for horse|dragon (0.37), horse|werewolf (0.86) and
werewolf|dragon (0.65).

Figure 6.14: The best blends for horse|dragon (0.75), horse|werewolf (0.86) and
werewolf|dragon (0.65).

Figure 6.15: The best blends for horse|dragon (0.50), horse|werewolf (0.71) and
werewolf|dragon (0.59).
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Figure 6.16: Some worst blends for horse|dragon (nov=0.73), horse|werewolf (0.44 and 0.60)
and werewolf|dragon (0.67).

pirate leg. See figure 6.16.

We left the visualization of these creatures to the end of this section to prevent the

reader from giving excessive importance to the images. Indeed, there is much more behind

each of these creatures, namely characteristics such as the abilities, their strength and

defense values and so on. Therefore their novelty, as reported in the captions, may have

been affected by these non-visual characteristics.

The positive conclusion from these experiments was that Divago, as a generative model,

can enhance the dynamics of a game environment. Suppose that it is allowed to blend

not only creatures, but also scenarios, physical objects, behaviors, and so on. Even more,

with appropriate frames, it is theoretically possible to blend creatures and scenarios (with

blends that, say, transfer the color or texture of a scenario to a creature, or the function of

an object), which would considerably potentiate the possibilities of the game.

Although these experiments were stimulating as a motivation for developing a game,

they also revealed some problems that need to be solved:

• The majority of the mappings used in this experiment were not made by the Mapper,

they were hand coded, first because the Mapper is easily fooled by the representation

simplicity (e.g. it can map back leg to right arm because both are connected to the

creature with the same relation, pw), and second because some of the mappings are

not based on structure alignment. The above situation of the scrambling of numbers

is a good example.

• The projections are too restrictive, which prevents from achieving a lesser error to the

targets. Perhaps the game engine should consider multiple projections for the same

concept map element.
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• Divago is extremely slow in generating each creature. This is acceptable for a Prolog

based prototype, but not for an on-line system. For this reason, the game engine

is being developed in an Object Oriented Programming language, which will use a

Prolog server for the logic processing (essentially, the Elaboration module and the

verification of integrity constraints).

6.5 The classical Blending examples

One of the contributions of this thesis is a computational model of Conceptual Blending and

therefore it is fundamental to validate it with a set of examples recognized in literature as

being conceptual blends. In section 3.3.2 and in Appendix A, we present what we call the

classical Blending examples. These are Blending case studies that appear in literature and

that we think should be considered when building a computational model of Conceptual

Blending. Although some more examples could be included, we restricted ourselves to the

ones sufficiently specified (they should discriminate at least all the mappings and elements

from the inputs) and that considered only two input spaces (there are many examples

with multiple input spaces). Moreover, they should be considered “conceptual blends”

somewhere in their description, to prevent any subjective evaluation from our side.

In table 6.15, we enumerate the examples, as well as their characterization. We believe

that they are representative of a number of situations that have been approached for the

last few years in the main CB reference literature. In order to provide Elaboration, a few

rules were added to the generic domain, namely the movement laws rule (as presented in

section 5.7) and rules stating common sense implication (e.g. “When an x and a y are

married, they form a couple”). The Mapper was not used because the mappings for each

example were already given in the literature.

From each of these examples, we extracted the input domains, the blend, the generic

space and the mapping. Normally, all these were directly available in tables or diagrams.

The special cases were “Computer Desktop” and “Computer Virus”, which were completed

with some common-sense knowledge inserted by us.

For each of the examples in table 6.15, the goal of these experiments was to understand
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Name Typology

The Riddle of the Buddhist monk Mirror network, Topology preserving
CEO boxing fight Single-scope network
Gun wound Nominal compound, Double-scope network
Kant debate Double-scope, Mirror network,Pattern Completion
Land yacht Nominal compound, Analogical
Trashcan basketball Double-scope
Computer desktop Double-scope,Metaphorical
Computer virus Double-scope,Category metamorphosis
Same-sex marriage Double-scope, Category metamorphosis
Sandwich counterfactual Counterfactual blend, Single-scope
“Mabel is the daughter of Paul” XYZ blend,Single-scope
Pet fish Nominal compound

Table 6.15: 12 examples of Conceptual Blending found in literature

actor(shoot, agent).
actee(shoot, human).
means(shoot, gun).
result(shoot, wound).

error=0.75 −→

actor(shoot, agent)
actee(shoot, target)
means(shoot, gun)
result(shoot, wound)
result(shoot, result)

Figure 6.17: Target blend for the “gun wound” example (left) and a blend (right)

to what extent Divago was able to achieve the “correct” blends (the targets). Differently to

the previous experiments, we will not focus novelty and usefulness in the same way for the

goal here is not to assess the creativity of the system, but to find how competent it is in

being a model of CB, i.e. in minimizing the error to the target. These targets correspond

to the blends described in each example in literature. In table 6.17, we show the target for

the “gun wound” blend as well as a (hypothetical) blend with error 0.75. It has 2 relations

that do not belong to the target (“actee(shoot, target)” and “result(shoot, result)”) and

misses one target relation (“actee(shoot, human)”), yielding a sum of 3. Since the size of

the target is 4, we have an error of 3/4 (=0,75).

As in the Horse-Bird experiments, we divide the experiments into two different stages:

isolated constraints and combined constraints. In the former, we will be able to watch the

behaviour of each isolated optimality constraint of Divago w.r.t. each of the examples. In so

doing, it is possible to observe which of these constraints is able to achieve minimum error

in the blend generation. The results will also be useful for the last stage of the experiments,

in which we will combine constraints according to the results obtained previously.

We also followed the methodology for the noun noun experiments, with a first, tuning,

step to obtain the frames. The set of frames achieved is listed in table 6.16 and we show
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Frame Description

aframe The blend has the same relations of input space 1 (although the
elements may differ)

aframe The blend has the same relations of input space 2 (although the
elements may differ)

aprojection The blend has the elements of input space 1
bprojection The blend has the elements of input space 2
analogy transfer [Part of] the blend results from the transfer of all neighbour

elements and relations of mapped elements of input space 2
to their counterparts in input space 1

role transfer [For a noun-noun compound blend] the head is projected to
a role element of the modifier (e.g. for “gun wound”, “wound”
is projected to “result” in the blend)

Debate The blend has all the relations expected for a debate scenario
(see example 3)

day compression All temporal elements of both inputs become referent to the
same day

head transfer [For a noun-noun compound blend] all relations and elements
connected to the head (input space 2) are projected untouched
to the blend

Table 6.16: An informal description of the frames used

their code in appendices A and E. The table 6.17 shows the goals used in each of the

examples.

In table 6.17, we can observe some regularity in the choice of frames. Normally, there

is at least one generic organizing frame (e.g. aframe, bprojection), which establishes

the general structure of the blend (aframe makes the blend maintain the relations of in-

put 1; bprojection makes the blend maintain the elements of input 2). Then, there

may be other frames that can be transforming (e.g. analogy transfer, head transfer,

day compression) or organizing (e.g. role transfer). Finally, pattern identifying frames

like debate are used in specific situations. A final remark concerns the “sandwich coun-

terfactual” example. As referred in the creatures experiment, Divago is technically inapt

to reach the target when a 1-to-many mapping is necessary, as happens with this blend, so

we removed it from the rest of the experiments. Apart from Relevance, no other principles

demand special configuration concerns, therefore their application depends exclusively on

their weight being higher than zero.

6.5.1 Experiments with isolated principles

This part of the experiment had the intention to find the dominant principle of each blend

at a first order i.e., it gives us the principle that seems to be immediately prevalent in the
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Goal

Example Frames Relations

Buddhist monk day compression meets(monk1, monk2)
CEO boxing aframe, bprojection
Gun wound aframe, role transfer
Kant debate bprojection, debate
Land yacht aprojection,

head transfer
Trashcan basketball aframe,

analogy transfer
Computer desktop aframe, bprojection,

analogy transfer
Computer virus aframe, head transfer
Same-sex marriage aframe same sex(person1, person2),

married with(person1, person2)
Sandwich counterfactual
Mabel is the daughter of bframe, aprojection
Paul
Pet fish aframe, bprojection

Table 6.17: The goals used for the Relevance principle
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Computer Virus
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Kant debate
Trashcan Basketball
Computer Desktop
Pet fish
Mabel is the...

Figure 6.18: The median of the error, for the optimality principles in isolation

blend (at a second order, we would see pairs of principles that seem to be prevalent, and

so on), thus giving a first classification for our blends. This latter idea can become even

more precise when considering the behaviour of all (isolated) principles for each blend and

comparing them as a set, so, instead of comparing individually each value, we can compare

a sequence of values.

In figure 6.18, we present the overall results of each of the optimality principles. Two

immediate conclusions can be drawn from this graph: the Relevance principle has con-

sistently smaller error than any other principle; the “CEO Fight” blend beats the record

of maximum error in three of the principles. The first conclusion confirms the results of
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Figure 6.19: Reduced line graph corresponding to the error of isolated optimality principles

previous experiments and highlights the importance of this principle. On the other hand,

it demonstrates that almost none of the blends have a naturally inherent tendency for the

other principles (at least, as we implemented them). Furthermore, since the Relevance prin-

ciple is configured differently for each blend according to an intuitive, trial-and-error, choice

of goals, it seems to indicate that there is no generic, context-independent, principle that

can lead to an exact solution. It is also important to say that, since Relevance demands a

specific configuration, its value may vary immensely according to the choices of the goals

used and so the reader should retain this aspect while interpreting these graphs.

The second conclusion is much less important and easily explained by the fact that

none of the input spaces of “CEO Fight” (“Boxing” and “Business”) contained any vital

relations, which meant that there was no guidance in the search (every possible result had

zero value, whatever the choice of the search engine) and so the results were essentially

random. Moreover, Divago does not process differently the vital relations, it only favors

their existence and it can be observed that in no example the vital relations are particularly

important. For this reason, and to simplify the analysis, we decided to remove these (two)

principles from the rest of the experiment.

A more practical conclusion from figure 6.18 regards the graphical representation itself.

Although using bars seems to be correct given that we have no scale in the x axis, it does

not simplify the task of understanding and organizing the several kinds of blends we may

be considering. For this reason, we decided to represent it as a line graph (fig. 6.19).

Analyzing the results paying attention to the typology presented in table 6.15 was our
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first concern for this stage. However, we found no particularly revealing patterns in the

results. There may be many different explanations for this, but the most salient one suggests

that there may be no correlation between any of the principles and the given typologies. For

example, a double-scope blend may be Topology preserving and another one may demand

strong Integration, a mirror network may also preserve (or not) Topology. For this latter

case, even if it does preserve Topology, the value of this principle may not have to be very

high (i.e. in a mirror network, there is a priori topological correspondence between the

input spaces, so the preserving effort may be low). Many other arguments that testify the

complexity of blends could be given, eventually ending up in the uncertainty of the typology

itself (e.g. the difference between single and double-scope can become extremely subtle).

On the other hand, we found clear patterns in the choices of goal frames for the Relevance

principle. Both single-scope blends achieved exactly the target with the pair xframe and

yprojection (being x and y either “a” or “b”). This totally agrees with the idea of single-

scope - the elements of one of the inputs are organized according to the frame of the other.

Nominal compounds also show a pattern: there is a “projection” of one of the inputs, the one

that coincides with the focus of the compound. The exception is “gun wound”, which is also

double-scope. Double-scope examples normally demand more specific frames (e.g. debate,

analogy transfer, etc.) or specific relations (e.g. same sex(person1, person2)) and were

less consistent in reaching the exact target. This confirms that “in a two-sided network [i.e.

double-scope] (...) it is necessary to use a frame that has been developed specifically for

the blend and that has central emergent structure. (...) In two-sided networks, then, we

expect to see increasing competition between optimality principles and increasingly many

opportunities for failure to satisfy them” [Fauconnier and Turner, 1998].

Considering a qualitative evaluation based on similarity in terms of the shape of the

graph and of the principles that yield smaller error, we found four different groups of blends:

Group 1 (“Same-sex marriage”, “Computer Desktop”, “Pet fish” and “Gun wound”); Group

2 (“Computer Virus”, “Kant Debate”, “CEO fight” and “Trashcan Basketball”), Group 3

(“Mabel is the daughter of...”) and Group 4 (“Buddhist Monk” and “Land yacht”). These

are shown in figures 6.20, 6.21, 6.22 and 6.23.

Except for “Computer Desktop”, the blends in Group 1 have Relevance yielding the
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smaller error being followed by the Integration and in similar proportion by Pattern Com-

pletion. “Computer Desktop” was the only example that we weren’t able to find a good set

of goal frames for. As a result, isolating Relevance yielded an extremely large error. Thus,

the reason for including it in this group lies on the other principles. We can see that, as in

the other examples of this group, Integration yields the smaller error, followed by Pattern

Completion. Topology and Unpacking show a less constant pattern, although all falling

within a small error range.

Figure 6.21 shows Group 2, which consists of blends that have in Pattern Completion

the second smaller error and in Integration and Topology the two highest errors. Another

interesting remark is the high similarity between the results of “Computer virus” and “Kant

debate” (except for Relevance which, as said previously, may vary according to goal config-

uration). Group 3 has only a single example. As we see in Figure 6.22, there is a pattern

of zero error in Relevance followed by stabilization around a specific error value. Every

principle (except Relevance) got an error of 2. After analyzing the results carefully, we

understand that: a) it is based on a single relation (daughter of(mabel, paul)); b) being

so, the target is only achieved when bframe and aprojection are achieved simultaneously,

which does not happen consistently except in Relevance. In Integration, we observed that

the system gives higher score to the accomplishment of bframe alone, instead of its com-

bination with aprojection. This agrees with our intuition for Integration presented in

section 5.6, in which we argue that, when the blend is totally covered by a single frame, its

Integration value should be stronger than when it is totally covered by two different frames.

The examples that have Topology and Relevance as the main principles were gathered

in Group 4 (fig. 6.23). In fact, particularly for the “Buddhist Monk”, this agrees with

the analysis of Fauconnier and Turner [Fauconnier and Turner, 2002, p.45], who stress the

role of Topology as being fundamental for this example. The results of “Land yacht” were

unexpected and some further analyzes revealed that the target is topologically very similar

to one of the inputs (the “land”) and so the highest value in Topology may get close to the

target, particularly when few elements are projected from the other input (the “yacht”),

thus having, in the blend, a copy of the “land” domain. Moreover, since this example

showed difficulty in achieving small errors (except for Relevance), the salience of Topology

is probably magnified.
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Weights
Combination (I, PC, T, U, R)
Relevance+Integration (Group 1) (50, 0, 0, 0, 50)
Relevance+Pattern Completion (Group 2) (0, 50, 0, 0, 50)
Relevance+Integration+Topology (Group3) (33.3, 0, 33.3, 0, 33.3)
Relevance+Topology (Group 4) (0, 0, 50, 0, 50)
Combination 2 (20, 20, 20, 20, 20)
Combination 3 (38, 0, 18, 4, 40)
Combination 4 (21, 0, 21, 5, 53)

Table 6.18: Weights used in the experiments with combination of principles

There seems to be no specific pattern underlying the groupings found. We analyzed

issues like concept map size, emergent structure and difference to input domains, but still

no patterns were found. In the next section, in which we will apply combinations of weights

to each of the groups, it will be possible to check if the same grouping tendencies maintain.

If so happens, then we have more evidence of the meaningfulness of the groupings made.

6.5.2 Experiments with combination of principles

The second part of these experiments is dedicated to combine the optimality principles in

different ways. We made four different combinations: the two principles with least error

from the previous stage of these experiments; all principles with equal weight (Combination

2); application of two sets of weights derived from Horse-Bird, normalized to exclude MVR

(Combinations 3 and 4, resp.). In Table 6.18, we show the weight configurations used.

We organized the results maintaining the groupings already discussed and, for each one,

we also added the best value obtained in the previous section in order to better understand

the evolution.

The first observation is that combination 2 tends to obtain the worst results, meaning

that adding all principles with equal weights reveals unproductive, supporting the idea that

each blend may result from different combinations of these competing pressures. Another

immediate observation regards the difficulty in approaching the target, i.e. the error only

becomes smaller in the examples of “Kant debate” and “Trashcan basketball”, while in “Gun

wound” and “Buddhist monk”, the first combination reaches the best solution error. For

all others, no combination brought better results. This raises perhaps the most important

question for this experiment: is Relevance (or the way we configure it) sufficient to achieve
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Figure 6.27: Combinations of weights applied to Group 4

the best blend? From all the experiments done so far, the answer turns out to be “yes”.

Indeed, with a proper goal choice, it is in principle possible to find the target, independently

of its complexity. And this takes us to the perspective of classifying blends by frames rather

than by optimality principles.

It is also observable that the four groupings found in the previous section are consistent

with the new results. Additionally, we may now find two distinct major groups (let us call

them clusters), the first one comprising groups 1 and 2. In this cluster, Combination 2 gets

normally the highest error, being followed by Combination 4. Except in Group 2, there is

also a tendency for obtaining the same value for Combination 3 and the “two best principles”

combination. The other cluster comprises groups 3 and 4, in which Combination 4 seems to

acquire much better results than the Combinations 2 and 3. This may mean that the blends

in question demand less Integration (which can be confirmed in the previous section), since

Combination 4 differs from Combination 3 essentially in the weight of Integration. Still in

this cluster, we can also see that one example, the “Buddhist monk”, is very stable in the

obtained errors, getting worse results only when the weight of Relevance is shared with all

others (Combination 2).

A final and more practical point regards the computational performance of the system.

Given the complexity of some blends and our experiment requirements (30 runs for each

blend, for each configuration), our search engine needed a considerable amount of time in

some cases. We used an Intel Pentium IV r at a speed of 2.4 GHz, which needed sometimes

four to five hours to find a solution (only in the most complex cases like “Computer Desktop”
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with Combinations 2, 3 or 4). At best, it took 2-5 seconds to find a result. These values

can get extremely lower after an optimization of the system, but will hardly become fast

enough to be compared with the performance of our own cognitive system, particularly if

taking into account the extremely large amount of background knowledge that we are able

to cope with.

6.5.3 Some considerations

Given the complexity involving the several aspects of Conceptual Blending and the ex-

tremely wide range of situations considered, the Blending mechanism of Divago is far from

an exhaustive model. The initial and most fundamental motivation for this mechanism was

to be the Bisociation mechanism within Divago. Thus, its scope can be considered very

limited in comparison to what we can find in all the CB literature. This fact does not inhibit

us from understanding how much our model is capable of simulating and making predictions

in the context of classical examples. Furthermore, given that, as far as we know, there are

no operational models for the study of blends with a stable, commonly used, methodology

across researchers, Divago could be a starting point for the validation and discussion of the

subset of blends that it can consider. We believe that such study would bring some inter-

esting outcomes: (possibly new) categorizations of blends; understanding of the underlying

frames that are recurrent in some blends; validation of observations previously made (e.g.

Topology is important in the “Buddhist Monk”); predictions regarding novel blends (e.g.

its underlying frames).

It is a fact that, with the knowledge representation used, Divago was able to find the

targets (or very similar solutions) also found in the literature. Achieving such, it is our

opinion that it reached a capacity for making Conceptual Blending, although still at a

relatively basic level in comparison to our own cognition and to the world of examples

discussed in [Fauconnier and Turner, 2002], some considering many input spaces, many

consecutive blends, the majority of them not formally described or represented. Clearly, a

more dynamic knowledge representation, perhaps not entirely symbolic, would be needed

to cope with more elaborate, and more realistic, examples at the level of cognition.
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6.6 Discussion

The experiments presented in this chapter raised a set of questions we would like to discuss

now. We will start by a set of practical issues and progress towards more philosophical

questions. We intend to focus the problems and virtues of the implementation and of the

model, and lead the reader towards possible evolutions and applications.

From the results obtained (namely regarding nov and use), it was an undeniable fact

that a few predictions can now be made regarding the behaviour of Divago. We can now

say that, with a problem that can be specifiable via a query, it is able to retrieve a good

solution, if this exists in the space of concept combinations and if some prominence is

given to Relevance and Integration weights. We can also predict that Divago will diverge

from the inputs if this query so implies, or when there are frames available that so imply.

Ultimately, if we have no query or frames available, Divago will have the tendency not to

reinvent the inputs, but to generate blends that inherit parts from both, although without

any specific overall coherence, namely because of its space complexity. This raises the

issue that, by themselves alone, the Optimality Constraints, as we modelled them, did

not have success in Divago, except for Relevance and Integration. For this context, and

perhaps in general, we believe that the eight constraints of Fauconnier and Turner can be

reduced to three: Relevance, for purposefulness; Integration, for internal coherence; and

Topology/Unpacking, for external coherence.

In which respects to a direct comparison with WASP regarding the values of Ritchie’s

criteria, as we said earlier, such an exercise is merely academic in the sense that, in practice,

these are very different from each other. Nevertheless, some new conjectures can be taken.

First of all, we must provide the values obtained for WASP, as well as a summary of Divago’s

results (figure 6.19).

From an analysis of these results, the first thing to conclude is that WASP clearly

produces a higher average of typicality and lower average of value than Divago (criteria 1 to

4). This unbalance goes affecting also criteria 5 to 8, which basically reassures that outcomes

of Divago were classified as higher valued than WASP’s, and criteria 11 to 14, which get

the same conclusions by comparison with the inspiring set. Notice that, by criteria 9 and

10, neither system tends to reinvent the inspiring set in any way (i.e. these latter criteria
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Experiment
Criterion Horse-Bird Noun-Noun Creatures WASP

1 0.443 0.543 0.343 0.71
2 0.273 0.563 0.333 0.54
3 0.504 0.782 1.000 0.47
4 0.636 0.781 1.000 0.24
5 1.000 0.778 1.000 0.36
6 0.364 0.344 0.667 0.05
7 0.500 0.786 1.000 0.12
8 1.333 0.786 2.000 0.28
9 0.000 0.036 0.000 0.000
10 N/A 16.000 N/A N/A
11 0.406 0.513 0.308 0.71
12 0.483 0.831 1.000 0.47
13 0.273 0.500 0.333 0.54
14 0.636 0.781 1.000 0.24

Table 6.19: Ritchie’s [Ritchie, 2001] criteria: summary of Divago + WASP results.

cannot add any new conclusions). We must insist that the actual values should not be taken

further in this comparison. At this point, the most one can do (and the actual importance

of Ritchie’s criteria in this case) is to conclude that, according to the criteria used, Divago

seems to be more inventive than WASP. To go further, one would have to compare the

specific evaluation procedures of each system. This would imply a comparison of a Poetry

generation system evaluation methodology (which was based on people’s interviews and

stylistic analysis) with the ones used in our system. As this is an unsafe comparison to

make, we trust that the evaluations just made will be more important for future related

works (e.g. of creativity assessment in concept invention systems) than for a competent

comparison of Divago and WASP.

It can also be said that our measures of typicality and value are simplistic and therefore

lead to a high variability in Ritchie’s criteria as well as to some counterintuitive results. As

a formal system, Divago needs a set of well defined criteria and the question is whether the

effort for building more complex formulae or heuristics would be justified by an added value

in results. As we said earlier, there can be no universal measure of value, and therefore

following the Occam’s razor principle seems the adequate choice. Moreover, this choice

becomes a virtue of Divago in the sense that this system suggests a validation that can be

applied to different domains, not being tailor-made for the specific application, as happens

in the majority of systems referred to in this thesis.
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The knowledge representation followed revealed itself problematic in some experiments.

Namely for the noun-noun combinations and for the classical blending examples, it is clear

that our common sense knowledge of the concepts goes far beyond the representations

considered, this being one of the main reasons for such counterintuitive results. Although

the frames revealed extremely powerful, they can never compensate the poorness of the

concept maps. Ideally, the concept maps should be dynamic (such as in the Slipnet of

Copycat [Hofstadter and Mitchell, 1988]) and not isolated. Actually, this leads to the first

strong self criticism we must make regarding Divago.

While, throughout this thesis we have been arguing for a multi-domain environment,

Divago, as it is implemented, is only superficially considering such. We can see this at two

levels. At the level of the individual experiments, the pairs of input concepts considered are

rarely distant enough to each other such that one can unquestionably consider them from

different domains. Still at the level of individual experiments, Divago is given externally (or

randomly) a pair of concepts, and thus it does not “wander” in the multi-domain environ-

ment, but in the space defined by the Blender, which is utterly more restrictive. At the level

of the overall experiments, it did not consider input concepts from two different experiments

(e.g. blending a house and a horse, or a werewolf with a paper). After verifying the com-

plexity we faced in the experiments presented, it becomes obvious that our choice for a set of

isolated experiments, some with familiar concepts (horse-bird, house-boat, creatures), some

with less familiar concepts (noun-noun combinations, classical blending examples), comes

from a need to observe the capacity of bisociation of Divago, avoiding being distracted by

other, yet also important, aspects. We trust that, first of all, in order to reason in a genuine

multi-domain environment, such a system must be able to deal with simpler situations, with

the motivation of being gradually open to a wider scope, as we made with Divago.

We have been criticizing recurrently the structure alignment algorithm used in Mapper,

but we must add that this is very much an unexplored ground and we have so far found no

promising alternatives. The algorithm demonstrated the virtue of being computationally

inexpensive and of proposing mappings for Divago in some of the experiments.

Another issue to discuss is the interpretation of the blends. We proposed visual and

textual interpretations, yet these describe only a selection of aspects, leaving out some

others of potential importance. This is rather a problematic issue. The concept theories
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and instances were designed to be self explicatory, however in order to avoid ambiguities,

big amounts of knowledge are necessary, and each piece of knowledge recursively demands

the explanation of its constituents, thus demanding the existence of ground symbols. The

semantics of these ground symbols must be context dependent (e.g. the semantics of a

wing can be a 3D or 2D image, a functionality description, a word, another network of

concepts with feathers and bones, each one appropriate for a different context). This

means that, while knowledge representation for concepts can be domain independent, their

interpretation must be domain dependent (or at least context dependent).

Divago’s versatility has also been recurrently referred in that it needs no structural

changes for working with any two different pairs of input concepts. For each pair of concepts,

it demands their description (via concept theory and instances), a choice (or creation) of

frames to use as query and to add to the generic domain, and a choice of the weights for

the Constraints module. Only the description of the concepts will always demand some

effort, while the rest may be picked from the available. Of course, for each application, an

interpreter may be necessary, this being the less versatile, although unavoidable, aspect.

We have demonstrated also that Divago is being divergent in the sense that it tends not

to reproduce the input concepts and agrees with the theories and principles enunciated in

the previous chapters regarding Conceptual Blending and our Model of Concept Invention.

It was empirically demonstrated that, with an appropriate set of frames (and sufficient

Relevance and Integration) the system is able to produce useful and novel results. Indeed,

we believe frames have an extraordinary power only superficially explored here. Remember

that they may comprise small programs with the expressiveness of the Prolog language.

In spite of the uncertainties in the assessment of issues like creativity or divergence,

these experiments show that Divago was able to accomplish two very objective goals: it

is able to reach approximately the same results of C3, with a specific set of frames; it

can produce the same blends, or approximate ones, as in the examples listed from the

Conceptual Blending literature. The latter is particularly important as it may become a

computational methodology for analyzing blends.

As suggested by some contexts that we invited the reader to imagine, we assume that

the model presented in this thesis is more useful as a reasoning mechanism (possibly at the

meta-level) that can help a computational system to extend its space of possibilities, i.e.
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transform it. Such system would need to give our model the description of what a valid

possibility is about (via a language such as used in the queries of Divago), which would then

generate bisociations until finding a satisfactory outcome. We argue that this emulates, at

least partially, the process of imagination according to Koestler, Guilford and Fauconnier

and Turner. However, we are aware that Divago is very incomplete in which regards to the

implementation of such model.

As a model of creativity, we have to reassert that it lacks some fundamental parts,

namely the interaction with the environment, which is so fundamental, according to Csik-

szentmihalyi and others. If Divago was a perfect implementation of the model of Concept

Invention here discussed, it would still be somewhat autistic due to a lack of contact with

the external world. This is another reason why it should not be considered alone and

independent of a specific purpose or environment.

To conclude, as far as our definition of creative system given in section 2.2.3 goes,

Divago clearly falls into that category. For every experiments made, it produced more

results that are not replications of previous solutions than copies of its own knowledge; it

was able to reach the established goal or fall short to it in the majority of the situations.

It is based on a cognition-centered model - the model of Concept Invention, from chapter

4.2 - and is implemented as a hybrid AI system, since it applies typical Knowledge Based

Systems techniques (rules, constraints, knowledge representation) as well as Evolutionary

Computation algorithms (the GA of the Factory module). Thus, one can conclude that

Divago is also an AI system, an argument for the thesis that Computational Creativity

should be part of AI, as much as creativity is part of intelligence.
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Conclusions and Future Directions

Now that we are reaching the end of this thesis, it is time to draw the main conclusions,

both at the level of Creativity modelling and its many associated questions that have been

referred since the beginning and at the level of the practical implementations and models

here presented. We cannot finish without enhancing the main contributions as well as point

to future directions to be taken.

Modelling Computational Creativity can be seen, by the most skeptical, as an a priori

impossible mission. As a formal machine, a computer is deprived of aspects that are often

considered fundamental, such as intention or emotion. The same argument is also used

against Artificial Intelligence. In either case, one falls into a human-centric view which is

monolithic and reductionist at the same time. It is monolithic because it assumes that only

a being (or a thing) that has all the characteristics together in a whole can be considered

creative or intelligent and it is reductionist because it reduces creativity and intelligence to

an all or nothing basis, assuming that only humans fulfill all of these conditions. From the

many studies in the areas of Psychology, Philosophy or Cognitive Sciences, some of which

described here, we are taken to the different conclusion that Creativity is more continuous

than discreet and that it is related to many different aspects, some more computational

than others. We have brought arguments for the construction of Computational Creativity,

which does not have to be the same or measured with the same thresholds as the Human

Creativity. Computational Creativity must be defined more precisely and we have proposed

that it should be bounded by the capacity of generating a reasonable amount of valued

and untypical solutions to a problem. A conclusion we took from this thesis was that

this modelling of creativity must not run away from an AI framework. In other words,
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one should not avoid facing creativity as a problem of search for solutions to problems

(although these become normally much less specified) or using mechanisms typically from

AI (e.g. genetic algorithms, inductive logic programming, neural networks). This does not

mean that creativity can only bring new applications of AI techniques, on the contrary we

believe that creativity is a missing part of AI and, in the same way that humans (and nature

in general) need creativity - by being more versatile, less constrained to usual solutions to

usual problems, more open to change and ready to cope with unpredictability -, the machine

will need a more creative behaviour to be more competent.

The model here presented applies many of the well known AI techniques, such as rule-

based systems or genetic algorithms, but these are only means to the broader end of mod-

elling bisociation and divergence, which have not been approached within AI. Traditional

AI search has been considered throughout this work, but always with attention to the world

beyond the search space, and to methods for how to reach it. It is within this paradox of

reaching the unreachable that the study of Creativity can become fundamental within AI.

This thesis brings some contributions motivated by this quest:

• Model of Concept Invention based on principles and theories from Psychology,

Philosophy and Cognitive Science. This model was the leitmotif of this thesis, rep-

resenting an ideal system, as opposed to an actual implementation. It proposes a set

of modules and their interaction for the invention of concepts via the combination

of concepts from distinct areas of the knowledge base. This concept invention is es-

sentially inspired on Koestler’s bisociation [Koestler, 1964] and Guilford’s divergent

thinking [Guilford, 1967], still leaving open other forms of concept creation and of

concept combination.

• Computational model of Conceptual Blending. We present the first exten-

sive computational approach to Conceptual Blending [Fauconnier and Turner, 1998],

which takes into account the several processes (composition, completion, elaboration,

selective projection) and principles (optimality principles) described in that frame-

work. This model is directly applicable to the study of blends that are based on

one-to-one mappings and two input domains. Once these input domains are repre-

sented according to this thesis, they can be tested and analyzed, as we showed. A

specific conclusion we obtained from this computational model of blending was that
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the set of optimality principles suggested in the framework are reducible to a smaller

set of principles (Integration, Topology and Relevance).

• Divago. The two models above ultimately led to the implementation of a system,

Divago, which comprises a set of proposals for how to implement the many modules

involved. It is a system entirely built in Prolog and completely functional and config-

urable. It was thoroughly described in this thesis and is available for other researcher

to use it directly (e.g. for experiments with Conceptual Blending) or for connecting

it with another system (e.g. to extend this other system’s knowledge base). Divago

is unique in many aspects, namely its ability to generate results that are valued (ac-

cording to a purpose known to it) yet untypical1. It is a basic argument of this thesis

that this tendency to diverge is fundamental for creative behaviour.

• Multitude of applications. Divago was tested with a multitude of applications.

If not useful for the applications themselves, for they were more hypothetical situa-

tions for testing the system than actually directed to specific problems, they can be

used later for comparison with similar systems and for starting point for more specific

applications of Divago. More important, they allowed an observation of the system

within different situations and the analysis of its evolution and behaviour. They are

also proposals for situations where bisociation can become important and compu-

tationally applicable: the creation of new concepts for another system (a drawing

system in the house-boat; a game system in the creature generation); and the study

of conceptual combination (the noun-noun experiments and the classical blends).

• Creativity assessment. The issue of evaluation is one of the fundamental problems

in the study of creativity. Throughout this thesis, it has been a primary concern

and, without promising the holy grail of universal formulae of usefulness or novelty,

we propose some ideas for the assessment of creativity in computational systems,

and for systems like Divago in particular. The main pillars for defining the criteria

used in the creativity assessment of Divago were the works of Ritchie [Ritchie, 2001],

Wiggins [Wiggins, 2001, Wiggins, 2003] and Colton et al [Colton et al., 2001]. We

characterized the Model of Concept Invention with the more abstract and generic

perspective of Wiggins, and analyzed Divago with the more concrete perspective of
1This being, of course, much depending on the situation, configuration and knowledge available
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Ritchie and Colton et al. The latter leading to a precise definition of typicality, which

consists of the distance to the inputs (what is known), and of value, which is defined

by how much the system accomplishes a goal2. As these analyzes are rare within the

field of Creative Systems, we believe that this work contributes to the evolution of the

field in general and to the problem of assessment in particular.

Of an extensive set of future directions that this research can pursue, either by us or

others, we list a few that seem fundamental:

• Other processes of invention other than bisociation. In this thesis, we have focused

almost exclusively on bisociation as a method for concept invention. However, other

methods may also apply, such as concept re-representation or interaction with the

environment, to name two candidates. There is no reason to expect that these methods

have to be considerably different or antagonistic with the one presented here, therefore

allowing other alternatives could result in the extension of the Model of Concept

Invention with new modules or further exploration of already existing ones.

• Evolutions to the Blending model. The computational model of Blending here

presented should also be subject to further developments, namely the redesign of the

optimality principles, possibly reduced to a smaller set, the inclusion of the latest

changes, namely the vital relations and the compressions. The big leap for this model

would be to cope with more than one input space as well as allow a more realistic

knowledge base, which would have to be extremely large and organized.

• Evolutions to Divago. As this was the main practical part of the thesis, it was

subject to many compromises, namely paths that we did not follow for pragmatic

and research direction reasons. These paths should deserve particular attention in the

future:

– Real multi-domain environment. Divago is still not able to work in a real

multi-domain environment since the choice of the pairs of concepts to bisociate is

either made randomly or externally. In a multi-domain environment, it should,

2The notion of goal here does not imply a thorough definition, for it can be only partially defined. For
example, a thoroughly defined goal can be “draw me a white house, with two windows, a door and a roof”,
while a less defined can be “draw me a construction where one can live in”.
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in face of a problem, make an inspection of the whole knowledge, which would

comprise many different domains and knowledge representations, and would pick

itself the sources for concept invention. Possible algorithms for developing this

capability could come from works on analogy retrieval, where, before establishing

an analogy between two concepts, the system searches for candidates in the

knowledge base (e.g. MAC/FAC, from [Gentner and Forbus, 1995], or ARCS,

from [Holyoak and Thagard, 1997]).

– Meta-level reasoning. Being able to do meta-level reasoning would be a giant

leap for Divago. It would then reason about its own knowledge and processes, po-

tentially evolving them. A possible inspiration for enabling meta-level reasoning

in Divago could be Simon Colton’s HR [Colton et al., 1999], which is able to gen-

erate theories about its theories, and theories about its own rules. Analogously,

Divago would bisociate its own internal rules, such as the optimality constraints

or the blending projections or, a more realistic situation, create new frames by

bisociating existing ones. All this seems extremely complex and demanding a

serious research effort.

– Interaction with the environment. It was argued in the beginning of this

thesis that the environment is important for creativity. For some theories (e.g.

the Systems model of Csikszentmihalyi [Csikszentmihalyi, 1996]), it is even a

necessary condition for the existence of creativity. In this sense, Divago is rather

autistic and clearly demands more contact with the environment. Integrating

Divago within a multi-agent society environment seems an interesting project to

develop, possibly a hybrid society, as suggested by [Pazos et al., 2002]).

– Elaboration. The Elaboration phase in concept invention is of great impor-

tance. It is there that part of the emergent structure of a new concept is con-

structed. However, the processes by which concepts are elaborated vary much

depending on the situation. While it is generally agreed that part of the emergent

features come from rule-based elaboration, i.e. accomplished by straightforward

reasoning about a situation (e.g. a “beach bicycle” must have “large tyres”),

other features seem not to have straightforward explanations (e.g. why does

“Dracula” hate garlic?). Alternative processes must be sought for the elabo-

ration, for this may have a great effect on the creativity of the results. We
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suggest that a possible contribution could be the use of other knowledge from

the knowledge base (other than the inputs or the generic domain), for example,

by searching for similar concepts and bringing new knowledge from them (e.g.

when blending “horse” and “bird”, the result may become similar to “dragon”

and get new knowledge, such as “spitting fire”).

To conclude, the area of Computational Creativity has been growing in the past few

years and is clearly in its first ages. The current need for stronger and consensual defini-

tions is notable, as well as evaluation methodologies, and benchmarks for comparisons. Its

relationship with AI and other sciences must be established, if it is to gain its own place

and flourish to fulfill its promises. In this sense, this thesis aims no further than being one

step towards this direction.
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Classical examples of Conceptual

Blending

In this appendix, we will show the classical blending examples that are used in chapter 5.

In chapter 3, we have already described two examples (“Riddle of the Buddhist Monk” and

“computer virus”). As with those, we reproduce the diagrams, tables and explanations as

close as possible to the original ones.

The “CEO boxing fight” example has two input spaces with different organizing frames

[Fauconnier and Turner, 2002, p. 128]. It is a metaphoric scenario that conceptualizes

business competition. According to this metaphor, we can say that “one CEO has landed

a blow but the other one has recovered”, “one of the knocked down the other out cold”,

etc. In other words, it is the structuring of the business domain according to the boxing

domain. In figure A.1, we show the corresponding network as proposed by F&T. Since only

one input space determines the organizing frame of the blend, this is a single scope blend.

The trashcan basketball example (in figure A.2) refers to the “game” one imagines to

play when heaving papers at the wastepaper basket [Coulson, 2000, p. 118]. This involves

the integration of the domains of Basketball (imagination) and trash disposal (reality). The

emergent structure arises from affordances in the environment. In trashcan basketball, some

elements are inherited from trash disposal domains (“trashcan”, “crumpled-paper”) while

others from the basketball domain (“shoot(person, paper, trashcan)”). Since the structure

of the game comes from both domains (the rules of basketball, the affordances of the room),
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Figure A.1: The blending diagram of CEO fight.

this is considered a double-scope blend.

The next example is a nominal compound that leads to a permanent category change.

More precisely, the notion of “same-sex marriage”. One input space is the traditional

scenario of marriage, while the other describes an alternative domestic scenario involving two

people of the same sex [Fauconnier and Turner, 2002, p. 271]. The cross-space mappings

may link typical elements such as partners, common dwellings, commitment, love, sex.

Selective projection then pulls to the blend social recognition, wedding ceremonies and

mode of taxation from the traditional marriage input, while same sex, absence of biologically

common children and culturally defined roles of the partners are projected from the other

input (see figure A.3). Thus, this is also a double-scope blend.

Another very classical example is known as the “Debate with Kant”. It is about the

following monologue (more precisely, an imagined dialogue) [Fauconnier and Turner, 2002,

p. 62]:

I claim that reason is a self-developing capacity. Kant disagrees with me on

this point. He says it’s innate, but I answer that that’s begging the question,

to which he counters, in Critique of Pure Reason, that only innate ideas have

power. But I say to that, What about neuronal group selection? And he gives
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Figure A.2: The blending diagrams of Trashcan Basketball.
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Figure A.3: The blending diagram of Same-sex marriage.

220



A. Classical examples of Conceptual Blending

Input1 Input2 Blend Generic
Gun Wound GunWound ViolentAct
Elements Elements Elements Elements
Agent DangerousAct Agent ViolentAct
Target Human Human Patient
Gun Means Gun Means
Result Wound GunWound Damage
Relations Relations Relations Relations
Shoot(Agent, Cause(DangerousAct, Shoot(Agent, Cause(ViolentAct,
Gun, Target) Means, Human) Gun, Human) Means, Patient)
Result(Result) Result(Wound) Result(GunWound) Result(Damage)

Table A.1: Gun Wound mappings.

no answer.

In one input space, we have the modern philosopher (m) making claims, aware of Kant

(k2) - the eighteenth century philosopher. In a separate input space, we have Kant (k1) -

the living philosopher -, thinking and writing. The blended space has both people and the

“debate” frame has been recruited since there is no debate in neither input. The debate

frame comes to the blend through pattern completion, since so much of its structure is

already in place as a result of composition (i.e. many of the elements and relations of

the debate frame were already in the blend before it was recruited). Once the blend is

established, we can “run the blend”, in this case, this is done by instantiating the debate

frame with arguments from both input spaces.

In the next examples (“gun wound”, “pet fish” and “land yacht”), Seana Coulson ap-

proaches a subject that is typical of Conceptual Combination: noun-noun compounds. She

thus proposes applying the Conceptual Blending to explain the (conventional) meanings

of each of the compounds. A “gun wound” is a “wound” (directly or indirectly) caused

by a “gun”. The strategy followed to deconstruct this compound is by recruiting the

action frames associated with each domain. The generic space contains the generic Vio-

lentAct frame with a cause and a result, while the blend contains the more specific Shoot

frame. The input spaces bring the cause (the “gun” domain) and the effect (the “wound”)

[Coulson, 2000, p. 130] (see table A.1).
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Figure A.4: The blending diagram of Same-sex marriage.
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Input1 Input2 Blend
Elements Elements Elements
Pet Fish PetFish
Owner Water Owner
House House

Tank
Relations Relations Relations
Feeds(Owner, Pet) Lives-in(Fish, Water) Feeds(Owner, Fish)
Loves(Owner, Pet)

Swims(Fish) Swims(Fish)
Lives-in(Fish, Tank)

Table A.2: Pet Fish mappings.

“Pet fish” is a blend in which the two inputs (“Pet” and “Fish”) are counterparts and

map onto the same element in the blended space, i.e. they fuse into the same concept.

As in many examples already given, the blend inherits structure from both input spaces.

Knowledge having to do with “pet ownership” are inherited from the “Pet” domain, while

fish attributes come from the “Fish” domain [Coulson, 2000, p. 143] (see table A.2).

The “Land Yacht” compound demands more subtle reasoning. A land yacht is a very

high class luxury car, it inherits the central properties of car and the diagnostic properties

of yacht (in relation to other sailboats, a yacht is a luxury boat, extremely expensive and

providing high social status to the owner). Therefore, the projection from inputs is more

unbalanced than was the case with “Pet Fish”, where the central properties of each were

projected to the blend. Here, incongruities would arise if so happened (e.g. a car cannot

sail). Here goes the cross-space mappings as Coulson presents them [Coulson, 2000, p. 155]

(see table A.3).

The example of the “computer desktop” comes from Tim Rohrer, who is interested in

the relationship of Metaphor with information technologies [Rohrer, 2000]. The computer

desktop interface comes as a metaphorical projection of a physical desktop in an office,

with folders, storages, waste basket, documents and the respective actions (moving physical

objects from different places, opening folders), to computer data management representa-

tion (directories, files) and physical objects (screen, drive). The diagram is, therefore, not

descriptive of the blending process. It basically shows the direct correspondences between

the desktop with the blend, leaving implicit the computer domain elements (fig. A.4).
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Input1 Input2 Blend
Land Yacht Land Yacht
Elements Elements Elements
land water land
driver skipper driver
road course highway
car yacht luxury car
owner tycoon rich owner
Relations Relations Relations
Drives(driver, car, road) Sails(skipper, yacht, course) Drives(driver, car, highway)

Yacht Luxury Car
Function: sails Function: drives
Sign-of: upper-class Sign-of: wealth
Owner: tycoon Owner: rich person

Table A.3: Land Yacht mappings.

Desktop Human-Computer Interface
(input 1 - source domain) (blend - target domain)
Desktop → Screen
Documents → Files
Folders → Directories
Storage → Drive icons
Moving physical objects → Dragging icons
Putting physical objects down → Dropping icons
Deleting objects → Dropping icons in trash (recycle bin)
Focusing on a task → ’Zooming in’, opening window
Putting away a task → ’Zooming out’, closing window

Table A.4: Computer Desktop mappings.
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Input1 Input2 Blend
Actual Sandwich Counterfactual
Seana Agent Seana’
Fridge Fridge” Fridge’
Turkey Turkey” Turkey’
Cheese Cheese” Cheese’
Mustard Mustard” Mustard’

Bread” Bread’

Table A.5: Sandwich counterfactual mappings

Input1 Input2 Blend
Elements Elements Elements
Mabel Daughter Mabel
Paul Father Paul

Relations Relations
Daughter-of(Daughter, Father) Daughter-of(Mabel, Paul)

Table A.6: “Mabel is the daughter of Paul” mappings

Counterfactuals are also a recursive theme in Blending literature (CITE Barnden and...).

Counterfactuals are statements about the consequences of things that happen to be false

(e.g. “If you were you...”). We present one of Seana Coulson’s counterfactual examples:

“If I had bread, I could make a sandwich”. The inputs are the Actual space (Seana has

turkey, cheese and mustard in the fridge), and a Sandwich space, in which there is bread,

condiments, meat and cheese [Coulson, 2000, p. 206] (see table A.5).

According to the author, this is a single-scope blend because the organizing structure

of the counterfactual comes from the Sandwich space, i.e., it states the individual roles of

each element.

The final example we show is also a classical theme in blending literature: the “X is

the Y of Z” constructions. In this case, it is instantiated as “Mabel is the daughter of

Paul”[Coulson, 2000, p. 119]. It is also a single scope blend, since structure comes only

from input 2 (see table A.6).
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Appendix B

The Generalized Upper Model

Hierarchy
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B. The Generalized Upper Model Hierarchy

Figure B.1: The Concept Hierarchy
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B. The Generalized Upper Model Hierarchy

Figure B.2: The Relations Hierarchy
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Appendix C

Programming the frames

C.1 Syntax and Overview

The syntax of every frame is:

Predicate: frame(Domain, Name, PosConds, NegConds, PosConc, NegConc)

Domain identifier of the domain or concept in which

the frame is included. (e.g. generic, eating)

Name name of the frame (e.g. aprojection, flying thing)

PosConds Positive permisses (e.g. have(X, wings))

NegConds Negative permisses (e.g. weight(X, very heavy))

PosConc Positive conclusions (e.g. ability(X, fly))

NegConc Negative conclusions (e.g. habitat(X, water))

In first order logic, the frame can be represented as:

PosConc or not (NegConc) ←− PosConds and not(NegConds)

For example (prolog like):

ability(X, fly); not (habitat(X, water)) :- have(X, wings), not(weight(X, very heavy)).

Applied to the blend, this would mean that, if X has wings and it is not very heavy,

then it has the ability to fly and its habitat should not be water. If we used the above frame

as a query to the blend (measured within the “relevance” optimality constraint), it would

tend to evolve towards a blend that has the concept wings projected (and so the relation

has( ,wings) as a consequence) while the very heavy concept is not projected (it can be
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C. Programming the frames

projected, but it must be in such a way that weight( , very heavy) is not).

Later, in the “elaboration phase”, the conclusions are triggered, so the predicate abil-

ity(X, fly) is added, while the predicate habitat(X,water) is removed (if it exists).

C.2 Programming of the frame

There are allowed four kinds of terms in any of the frame conditions (or conclusions) part:

1. Regular concept map binary relations, like “sound(X, neigh)” or “purpose(Y, fly)”.

There are also special variations in which we can give multiple options for a predi-

cate parameter, specified inside a list. For example, “sound(X, [neigh, bark, chirp])”

means that if X neighs, barks or chirps, then the condition is satisfied. A specific

binary relation, isaN, is also considered, being the transitive relation for isa (e.g.

“isaN(human, animal)” because “isa(human, primate)” and “isa(primate, mammal)”

and “isa(mammal, animal)”).

2. Projection specifications, with the syntax projection(Domain, Origin, Destination).

And the meaning of this condition is that concept Origin, which belongs to the do-

main Domain, should be projected into concept Destination, in the blend. For ex-

ample, if we had the condition “projection(horse, neigh, neigh)” in a frame, it means

we are requiring the concept “neigh” to be kept in the blend as it is in the (input

space) horse domain. Of course, this doesn’t mean the neighbour concepts also keep

their original “names” (e.g. it is possible to find “produce(beak, neigh)”, instead of

“produce(mouth, neigh)”.

3. Special operators, with the syntax op(Operator), where Operator corresponds to any

command the frame interpreter should understand. Currently, we have only one

single operator: exists(List). This operator converts the elements of List into the

binary relations and projection format. For example, op(exists([sound/X/neigh, pur-

pose/Y/fly, projection/horse/neigh/neigh])) will just convert the list into “sound(X,

neigh), purpose(X, fly), etc” and add it to the list of conditions of the frame.

4. Prolog calls, inside curly brackets (“{}”), just as in DCG grammars syntax. This
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allows the programming of frames in “regular” prolog. Naturally, some specific pred-

icates have been created, for situations that happen regularly in frame programming:

• stats(D,X) yields some statistics of the current blending operation (e.g.

stats(domain1, X) returns the identifier of domain 1; stats(frame, f) means that

the frame f is satisfied in the blend)

• current blend(Blend) Blend is the identifier of the blend being created

• m(R, X, Y) Returns the mapping correspondences according to the vital relation

R (e.g. m(analogy, horse, bird) means there is mapping between horse and bird,

according to analogy)

• rel(D, X, R, Y) Direct access to the concept map of domain D (e.g. rel(horse,

legs, quantity, 4))

• projection(B,D,X,Y) Direct access to the projection predicates, where B is the

blend in which X, from domain D is projected into Y.

• other input domain(D1,D2) Given D1 or D2, instantiates the other with the

“opposite” input domain (e.g. other input domain(bird,X) ’ X= horse)

• relationArc(Domain, Action) True if Action has a action/actee configuration in

Domain (e.g. relationArc(eating, eating), relationArc(basketball, shoot)”

• descendant(R, GUMConcept) R is descendant of GUMConcept in the GUM

hierarchy (e.g. descendant(snowing, ambient process))

C.3 Examples

We show some example frames, organized according to the level of abstraction. Simple

frames only use “regular” binary relations, while intermediate frames already apply pred-

icates in brackets, still connecting to “lower level” reasonings. The abstract frames deal

with the reasoning behind the blend construction (e.g. “project concepts from one domain,

while maintaining the structure of the other”).

Simple frames

Name:haunted
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C. Programming the frames

Code: frame(generic, haunted,

[contain(X, Y), cause effect(Y, fear), attribute(X, [magic, unknown])],

[],

[property(haunted,X), cause effect(haunted, interesting)],

[]).

Description: Something is haunted if it contains something that causes fear and is magic

or mysterious

Name: artefact

Code: frame(generic, artefact(X),

[isaN(X, physical object), purpose(X, Y), isaN(Y, task)],

[],[],[]).

Description: X is an artefact if it is a physical object whose purpose is a specific task

Name: habitat earth

Code: frame(generic, habitat earth(X),

[place(X, [land, earth, ground, solid])],

[],[],[]).

Description: The habitat of X is earth if its place is in either land, earth, ground or

solid

Name:habitat water

Code:frame(generic, habitat water(X),

[place(X, [sea, ocean, water, liquid])],

[], [], []).

Description:The habitat of X is water if its place is in either sea, ocean, water or liquid

Intermediate frames

Name: habitat water

Code: frame(generic, amphibious(X), [stats(frame, habitat water(X)),

stats(frame, habitat earth(X))],[],[isa(X, amphibious)],[]).

232



C. Programming the frames

Description:X is an amphibious if it satisfies frames habitat water(X) and habitat earth(X)

Name: new ability

Code: frame(generic, new ability(D1),

[ability(X,A), purpose(P, A), pw(P,X),

{current blend(Blend), projection(Blend, D1, X, X),

other input domain(D1,D2), projection(Blend, D2, A, A)},
op(exists([projection/D1/X/X, projection/D2/A/A]))],

[{rel(D1, X, ability, A)}],
[new ability(X, A)], []).

Description: A concept projected from domain D1 has a “new ability” in the blend.

I.e. there is a X (projected from D1) that has an ability A that didn’t exist in D1 and was

projected from D2. In order to be a “well founded” ability, X must have a subpart (P) that

enables it to do A.

Name: quality transfer

Code: frame(generic, quality transfer(D1,Q),

[{current blend(Blend), rel(Blend, X, Q,A), descendant(Q, simple quality)},
{projection(Blend, D1, X, X), other input domain(D1,D2),

projection(Blend, D2, A, A)},
op(exists([projection/D1/X/X, projection/D2/A/A]))],

[{rel(D1, X, Q, A)}],
[new quality(X, A)], []).

Description: There is a quality transferred from domain D2 onto D1. In the blend,

there is a concept X that has a relational quality (i.e. a relation that descends from the

simple quality node in GUM hierarchy) A that didn’t exist in the original space.

Name: living thing personificationA

Code: frame(generic, living thing personificationA,

[actor( ,A), {current blend(Blend), projection(Blend, D, A, A),

rel(D, A, isa, Type)}],
[isaN(Type, living entity)],
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[personification(A, living thing)],[]).

Description: A is able to be an actor of some action, and this becomes a personification

of a living thing if A is not a living thing (e.g. a “actor(eating, pencil)” ’ we are doing a

personification of the pencil, which is not a living thing)

Name: living thing personificationB

Code: frame(generic, living thing personificationB,

[ability(A, ), {current blend(Blend), projection(Blend, D, A, A),

rel(D, A, isa, Type)}],
[isaN(Type, living entity)],[personification(A, living thing)],[]).

Description: The same as above, but A is not expected to be an actor, but instead it

should have an ability (e.g. “ability(book, fly)”)

Abstract frames

Name: aprojection

Code:frame(generic, aprojection(A),

[{stats(domain1, A), current blend(Blend),

findall(projection/A/X/X, (projection(Blend,A,X, )), L1)},op(exists(L1))],
[],

[aprojection(A,Blend)],[]).

Description: Every concepts from domain 1 (A) should be projected (unchanged) to the

blend. For example, in “aprojection(horse)”, every single concept of “horse” (legs, mouth,

snout, mane, neigh, run, cargo, pet, etc.) should be present in the blend.

Name: analogy transfer

Code: frame(generic, analogy transfer,

[{stats(domain1, A), stats(domain2, B),

findall(projection/A/X/Y, (m( , X, Y), not(relationArc(A, X))), L1)},
op(exists(L1)),

{findall(projection/B/Y/Y, (m( , , Y), not(relationArc(B, Y))), L2)},
op(exists(L2))], [],
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[analogy transfer(B,A)],[]).

Description: Every mapped concepts X that are part of domain A should be projected

to their counterpart Y of domain B (except when X corresponds to an actor/actee action

name, e.g. “eating” is projected to “eating” and not to “reading”). And every concept Y

from domain B should also be projected to Y in the blend.

Name: aframe

Code: frame(generic, aframe(A),

[{stats(domain1, A), current blend(Blend),

findall(R/X/Y, (rel(A, XA, R, YA), projection(Blend, A, XA, X),

projection(Blend, A, YA, Y)),L1)}, op(exists(L1)),

{findall(projection/A/Action/Action, relationArc(A, Action), L2)},
op(exists(L2))], [],

Description: Every relation R that is present in domain 1 (A), should also be present in

the blend, regardless of the projection of the argument concepts (e.g. the ability relation in

“ability(bird, fly)” should be present in the blend as in “ability(horse, fly)”). Once again,

there is the special case of actor/actee relation descriptions, which should also be projected

(e.g. if using aframe in blending “basketball and trash disposal”, “shooting” should be

projected to the blend, as well as the relations from the basketball domain.

Name: noun noun

Code: frame(generic, noun noun(A,B),

[{stats(domain1, A), stats(domain2, B), L=[projection/A/A/A,

projection/B/B/B]}, op(exists(L)), isa(B, Something), projection(A,C,B),

{C\=B}, {(rel(generic, C, isa, Something); rel(A, C, isa, Something))}],
[], [], []).

Description: A proposal of a noun-noun combination. The idea is that A and B have a

relational connection such as “property of”, “lives in”, etc.

For the example “house dog”, where A=house and B=dog, the frame implies that

“house” and “dog” are projected to the blend exactly as they are (they remain the same
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Figure C.1: Three frames in a small blend

concepts), but there is also a projection from the “house” domain to the “dog” (e.g. “pro-

jection(house, person, dog)”), which yields a dog that inhabits a house ’ which is one of the

interpretations for “house dog”

In Figure C.1, we give an idea of the application of frames to a blend (to improve read-

ability, both the frames and the concepts are simplified). We say that the blend accomplishes

(or satisfies) “aframe”, “transport means” and “new ability” and that its overall frame cov-

erage is 100% (every relation is included in a frame). The coverage of “aframe” is aprox-

imately 72% (the ratio of the blend that is covered by “aframe”) and “transport means”

and “new ability” have coverages of 54% and 27% (respectively).
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Appendix D

Instances in the house-boat

experiment

In this appendix, we describe the language used in the instances for the house-boat experi-

ment.

An instance follows a hierarchical case representation, each node in the hierarchy written

in prolog-like form:

case(Instance Name, Node Address, Node Name,Command List).

with Instance Name being the identifier of the instance; Node Address a unique iden-

tifier of the node within the instance with respect to its position; Node Name an identifier

of the node within the instance (which can be repeated); and Command List the list of

commands that correspond to the semantics of the specific node. Therefore, this repre-

sentation is structured top to bottom (the attribute “son” indicates the descendants of a

node):

• each level adds a number to the address (e.g., 0 is the root node, 0:0 is the first son

of the root node, 0:0:1 is the second son of 0:0)

• each node in the structure corresponds to an area of the drawing, containing one or

more shapes.

• some shapes are pre-defined (e.g., parallelogram boat, oval, rectangle, etc.) in Logo.
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D. Instances in the house-boat experiment

• each shape position is relative to a reference point (“in” indicates the commands to

apply from the reference point to the starting point of the shape), normally the upper

right corner of the smallest rectangle that can include the shape

The Logo keywords for defining shapes are:

• left/X. Rotate 45 degrees left

• right/X. Rotate 45 degrees right

• on/X. Move and write X pixels in the current direction

• off/X. Move without writing X pixels in the current direction

For example, the function that defines the shape triangle(X) is defined by the list

[on/X, right/120, on/X, right/120, on/X, right/120]. The used shapes are all defined in

the file “logoCommands.pl”. The representation for sailing boat goes like this:

case(b1,0,sailing boat,[sons=3,size=small, type=simple,son name=vessel, son name=

mast,son name=sail]).

case(b1,0:0, vessel, [sons=2, in=[left/90,off/14,right/90],son name=floating struc-

ture, son name=hatch]).

case(b1,0:0:0, floating structure, [shape=parallelogram boat, size=small]).

case(b1,0:0:1, hatch, [shape=oval(5,5), size=small, in=[off/25,right/90, off/6,

left/90]]).

case(b1,0:1, mast, [shape=rectangle(4,30), type=very thin, in=[off/18]]).

case(b1,0:2, sail, [shape=triangle(30), in=[off/18, right/90, off/7, right/90,

off/13,right/180]]).

And the house is represented as:

case(1,0, house, [sons=2, size=small, type=simple, son name=roof, son name=body]).

case(1,0:0, roof, [shape=triangle(30)]).

case(1,0:1, body, [sons=3, in=[left/90,off/25, right/90],son name=structure,

son name=window, son name=door]).

case(1,0:1:0, structure, [shape=square]).

case(1,0:1:1, window, [shape=square(5), in=[off/20, right/90, off/15, left/90]]).

case(1,0:1:2, door, [shape=rectangle(4, 10), in=[off/3]]).
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Appendix E

Experiments, Databases and other

documents

This appendix corresponds to the CD that comes attached to this document. It has the

directory structure shown in the figure E.1. The reader will also find “readme” files with

explanations about some of the files and directories.
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Figure E.1: The directory structure of the CD.
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