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ABSTRACT
.0 this paper itis described a new methodology for finding the optimal shape of arch dams. Several finile element
models of a dam are tesicd in order (o make staicments about the validity of the analyser, Next, it ig deseribeid a
semi-analytical procedwre for generating the sensitivity anatysis information. In the shape optimization phasc an
uniconstigined non-linear function is minimized by means of eatropy maximization.

INTRODUCTION

In shape optimization it is intended (o find the exterior aud mterior boundaries of the structure in an automalic
way. Some inconsistent results were found on a lilerature survey on three-dimensional shape optimizalion of doubly
curved arch-dams [1]. In refated recent wark, polynomial shape functions were optimized by a sequential Jinear
progranuming lechnique associated with cither a 8 node [2] or a 20 node {3] isoparametric element. In this work,
several finite element models of a dam are tested in order to make stalements aboul the validity of the anatyser, The
shape oplimization phase consists of minimizing a whole set of goals such as weight, siresses at all points of ie
finite element mesh and nodal displacements. Entrapy mazimization methods, recently developped in constrained
non-linear programming are employed as a means of replacing this muld-objective problem by the minimization of
an uniconsuained non-lingar function,

FINITE ELEMENT ANALYSER

We shall confine our attention here to siatic, linear behaviour of the structure. The structural response R is relaled to
the rodal displacement vector u by,

R = Qly ()
“are Q is the virtual load vectorand u satisfies;
Kus=P (2)

in which I is the global stiffuess matrix of the struclure and P is the external load veclor. Boh K and P are
functions of the design variables a.

Table 1. Finite elements results for Alvito dam
{mesh made of 20 node brick clements and the loading condition consists af water pressuire and seif-weighty

NE glements CPU time (sec)
A : Finite element mesh without foundation interaction 9 :
B: 16 458
C: (Dam clamped on a rigid valiey) 25 825
D ; Finite element mesh with foundation interaction 94 14 1122
(complete dam-foundation gystem)
E : (dam foundation interaction on (he downsiream side) o+8 786
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Tie major part of the cost of the analysis is in the solution of the banded sysiem of equations (2), The technique
used in this work is Based on the Gaussign elimination method using the fronal philosonhy. The facility of solution
. with multiple right hand sides'in (his method is particulacly useful in the context ef calculating design derivatives.

22

imp T
0
704
ELE
a0 4 . - N
— complete mdial adjustement
———
Fi |
B . s —
A S
a {.' —
‘," J',I .".
A £
e i kS 3 . 3 . =2

Figure 2 ‘Normal displacements at the ceatral crown cantilever

From the results of Fig. ¢ it may be concluded that no advantage can he gained from using more than 9 elements
1o model the concrete dam. Maode! E progved to be closer 1o the ebserved behaviour. Models A and C were alst lested
for e node brick element. Althouet the CPU was reduced to 137 and 152 sec, the ermors involved in gvaluating
the normal displacements of the crest prolile were 163% and 15%, respecuvely.

SHAPES
For the purpose of optimization, the shape of the dam is usually desgribed by two potynomial expressions, one

for the mid surtace and the other for the thickness variation afong the mid-surface. The design variables are therefore
the eoefficients 1; ol the polynemials:
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2 ; a
Xqud = A1 y~+azy27.-a37.+a4-22 3)
[=a5+a.5y2"z+'a7z @)
The cbjective is 10 minimize the volume of the conerete subject 1© the following constraints: Limiis on the
principal stresses (Compressive stresscs on the crown seclion on the abuwment and tensile siresses on the crown

section); limits on:the angles of the cross seetion to conirol overhanging: limits on the amount by which the shape
variables are allowed 10 change. The corresponding mathematical programming problem can be solved by sequential

lingar programming (2.3]. All functions arc approximated by first arder Taylor serics at the current design a%,
yislding a LP problem in the design change Az

Min F{a®) + Zi:l,N (BF/3a;)° Az (53)
st £i=1,N (aRj/a 00h @ < CE RJ:E-a“) j=LaM {3b)

SEMI-ANALYTIC METHOD FOR SENSITIVITY CALCULATION

The formulas for the analytic method of sensitivily calculation [2,3] are:

dR aqgt du

= u +QI' - (6)
day ag gy
du aK ar

= -kl gkl — @
3 aj daj daj

Q. U and K are all functions of a and the obtaining of the expresssions for 3K/ Baj and 8Q/3aj involves lengthy

derivation. The sermi-analyte method of sensitivity analysis consists of the (ollowing: steps:
1 - Given a proper step length veclor A a = {0, 0y j..,0), the dilference approximaton of pseudo-ipad

veclor Qp 150
Qp = Leer FRelr Ad)u+ Kela) u+ Pylar A a)- Pofa)l / Ag ]
where subseript & denotes the quantity of the cth element and E is the set of elements relawed 1o the design

variable a
2. = Solve 8u/d3a; lrom,

.3u/8a; = K-l Qp &
3. - Determine the first-order approximation of displocement at desipn a+A 2,
u(a+ A ay & u(@)+ Ju/de; A (10)
4.- Oblain ing sensilivity of swie variable by local difference:
BR/8% = [Rlarddurdu)-Rai) 1/ Ny (11)
ENTROPY BASED SHAPE OPTIMIZATION

The maximum entropy formatism is congerned with cswblishing what logical unbiased inferences can be drawn

o available information [4]. 1n this wark it is inierided Lo minimize a whele sct of goals such as weight, siresses

i
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at all poinis of 2 finite element mesh and nodal displacements by ‘shape optimization. All goals need to be
formulated in the normalized feres. For instance, the upper limits on 2 swess become:

c@oY-1<0 o g2 <0 (12)
Then, the following problem needs 1o be solved,

Ming F = (g1(), g2}, o EM 1] {133)

¢ ab<asgaV (13b)

It ean be reformulated in the minimax form,

T Ming Maxj F = (5@ 8208 o Er41()] (143)

i al<gacs al (14h)
The solution a® of the minimax problem is also the soltitien of tha convex scalar optimization problem:
Ming o — large F=1l/g In Zj:[,M+1 expl @ gj(a)] (i9)
Linearizing all g(a) using the sensitivilics infotmation icads to:
3 g 0
Minp, E=1Vp In zj=1’M+l exp (P [gj(aﬂ}+zi=;,N — 1 A ]} (i6)
day,

o = large

F is a nonlincar function of A a and The optimal solutign can be found by an unconstrained minimizaticn
algarnm, such as Hooke and Jeeves.

COMCLUSIONS

We conclude that the 20 node isoparamerric element brick is an efficient clement. When using such an element, a
fairly coarse idealization not only gives refiabic results but aiso provides a good represeniation [or curved surfzces.

The etficiency of L method desezibed Lo caleulate (i sersilities is by no means Jower than that of the anatylic
mer'  becsuse the complitational effor invoived in calculating Ko (a+Aa) u- Kelayu and Ria+&a, Ular A 2
R{aw, is often no more Lran that in evalusting (8K/8x)u and (3QYBa)u+ Gteawda.
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