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1. Abstract
The optimized plate structure consists of a simply supported square base plate stiffened with an orthogonal grid of flat
stiffeners welded to the base plate by fillet welds. The uniformly distributed compressive load is acting biaxially in the
plane determined by the gravity centers of T-sections, which consist of a part of base plate and of a stiffener. In the
optimization process the number of stiffeners as well as the thicknesses of base plate and flat stiffeners are sought,
which minimize the cost function and fulfil the design constraints. The cost function includes the cost of material,
assembly, welding and painting. Constraints relate to the global buckling, local buckling of base plate parts and
stiffeners as well as to the deflection due to shrinkage of welds. To illustrate the effectiveness of mathematical methods,
the problem is solved by the Rosenbrock’ s hillclimb algorithm as well as by entropy-based unconstrained minimization.
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2. Introduction
Our aim is to show the application of efficient mathematical methods to an important optimization problem. Stiffened
plates are used as load-carrying elements of ships, bridges, offshore platforms, roofs, etc. In stability problems of
welded structures the effect of initial imperfections and residual welding stresses should be taken into account. Based
on own experimental results Mikami and Niwa [1] have proposed formulae for the calculation of ultimate buckling
strength of orthogonally stiffened plates loaded by uniaxial compression considering the above mentioned effects. Their
method is used in an article of Farkas and Jármai [2] and extended here for plates compressed biaxially.
For the objective function an advanced cost function is used including material, welding and painting costs. Fabrication
cost plays an important role in the whole cost and the comparison of the minimum costs of different structural versions
enables designers to achieve significant cost savings in the design stage.
To illustrate the effectiveness of the mathematical methods, the problem is solved by using the Rosenbrock’ s Hillclimb
method [3], and by an entropy-based unconstrained minimization for the optimization of continuous design variables
associated with a branch and bound strategy [4].

3. Problem formulation
In an effective structural optimization the variables are selected on the basis of analysis of structural characteristics. In
the case of stiffened plates the structural characteristics are as follows.
Loads: uniaxial or biaxial compression, in-plane bending and shear (plate girder webs), lateral pressure, hydrostatic
pressure, concentrated, distributed on a line, uniformly distributed, static, dynamic, variable, high temperature.
Material: normal or high-strength steels, aluminium-alloys.
Plate geometry: square, rectangular, triangular, trapezoidal, circular.
Boundary conditions: simply supported, clamped, free, elastic support.
Stiffening geometry: edge-parallel, diagonal-parallel, unidirectional, orthogonal, tridirectional, circular.
Topology: number of stiffeners (variable).
Stiffener shape: flat, rolled T- and L-profile, welded T-profile, cold-formed L-profile, trapezoidal, rectangular hollow
section. Possible variables: dimensions of stiffeners.
Connections of stiffeners to base plate: welded, riveted, bolted or bonded.
Fabrication of nodes: welded, riveted, bolted or bonded with L-elements.
From these characteristics we have selected for this study the following.
The investigated plate structure (Figure 1) consists of a simply supported square base plate stiffened with an orthogonal
grid of flat stiffeners welded to the base plate by fillet welds. It is assumed that the stiffeners in one direction are
continuous and in the other direction they are intermittent. The connections of stiffeners are welded by transverse fillet
welds.
The uniformly distributed compressive load is acting biaxially in the plane determined by the gravity centers of T-
sections, which consist of a part of the base plate and of a stiffener.

The unknown variables are as follows. .;;;/ SSF thtab�  b is the whole side length of the base plate, tF is the

thickness of the base plate, hS and tS are the height and the thickness of a flat stiffener. Thus, the number of stiffeners in
one direction is 

� �
1. The optima of the variables are sought, which minimize the cost function and fulfil the design

constraints.
Numerical data: b  = 8 m; N  = 9800 kN; the yield stress is  fy = 235 MPa.



4. Cost function
According to Farkas and Jármai  [3, 5] the cost function includes material, fabrication (welding) and painting costs� � � �� �
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The cost factors are as follows:
Material cost factor is  kM = 0.5 – 1.0 $/kg, fabrication cost factor is kF = 12 – 48 $/h = 0.2 – 0.8 $/min, painting cost
factor is kP = 15 $/m2 . We calculate with kM = 0.5 $/kg and kF = 0.6 $/min.
The density of the steel is 6

0 1085.7 �� x  kg/mm3

The volume of the structure is � �
SSF thbtbV 122 ��� � (2)

the difficulty factor expressing the complexity of the structure is 3��
the number of structural parts to be assembled is � �

2171116 ����� ������� (3)

Welding times are as follows
(a) butt welds of the base plate, in the numerical example the base plate side length is b=8 m, and it is assumed that this
base plate is welded from plate elements of dimensions 6mx1.5 m, so the weld length is LW = 8b = 64 m, weld size is tF ,
welding technology is GMAW-M (Gas metal arc welding with mixed gas)
for  15

�
Ft  mm 641861.0 2'

2 xtT F
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for  tF > 15 mm 641433.0 9035.1'
2 xtT F
� (5)

(b) longitudinal fillet welds connecting the flat stiffeners to the base plate, welding technology is GMAW-M,� �
14103258.0 23''
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aW = 0.4tS, but  aW.min = 4 mm
(c) transversal fillet welds connecting the intermittent flat stiffeners to the continuous ones.
Number of nodes is  

� �
21�� , welding technology is SMAW (Shielded metal arc welding)� �

223'''
2 14107889.0 �� � �
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The superficies to be painted is � �
ShbbS 142 2 ��� � (8)

5. Design constraints
5.1 Constraint on global buckling
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where N is the compression force, � �
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ab !�  is the side length of the whole plate, a is the distance between stiffeners, tF is the thickness of the base plate,
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U  is the ultimate global buckling strength of the whole, simply supported plate. It is calculated on the basis of the

classic formula [6]
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IX is the moment of inertia of a cross-section containing the flat stiffener and a strip of the base plate of the width of a.
The distance of the gravity center of this T-section is
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Figure 1. Welded square plate with flat stiffeners

AS = hStS  is the cross-sectional area of a flat stiffener, hS is the height and tS is the thickness of a flat stiffener,
Since the classic buckling strength formula does not take into account the effect of the initial imperfection and residual
welding stresses, we use a reduced buckling strength according to Mikami and Niwa method based on a reduced
slenderness ) *

2/1/ cryR f +, ( (18)

where fy is the yield stress. Note that the method of this reduced slenderness is used also in Eurocode 3 [7]
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The factor of P
  is introduced in order to take into consideration the local buckling of the base plate
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UUP
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yUPP f/- �       if  
UUP

-- 7 (23)

UP
8  is the ultimate local buckling strength of a base plate square field, which is assumed to be simply supported and

loaded by biaxial compression. The ultimate strength is calculated also by using a reduced slenderness derived from the
classic buckling strength
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 fy is the actual yield stress  in MPa.
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5.2  Constraint on local buckling of flat stiffeners
According to Eurocode 3 (1992) @14/
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5.3  Distortion constraint
In order to assure the quality of this type of welded structures large deflections due to weld shrinkage should be avoided.
It has been shown that the curvature of a beam like structure due to shrinkage of longitudinal and transverse welds can
be calculated by relatively simple formulae [3]. The allowable maximal residual deformation  f0 is prescribed by design
rules. For compression Eurocode 3 [7] prescribes f0 = b/1000, thus the distortion constraint is defined as

fmax = 1.5      C b 2/8 J  f0 = b/1000 (29)
where the curvature for steel is

C = 0.844x10-3      QT yT/Ix (30)
QT is the heat input, yT is the weld eccentricity

yT = yG – tF/2 (31)
yG  and  Ix  are given by Eq.(16) and Eq.(17).

5.4  Limitation of the number of spacings between the stiffeners
Since the classic overall buckling strength is calculated on the basis of the theory of orthotropic plates, a limitation of
the number of spacings � K 3 (32)
should be introduced.

6. The applied mathematical methods

6.1  Optimum design with continuous design variables
For solving each relaxed problem with continuous design variables the simultaneous minimization of the cost and
constraints is sought. All these goals are cast in a normalized form. If a reference cost K0 is specified, this goal can be
written in the form,

g1(tF,ts) = K(tF,ts)/Ko - 1 J  0 (33)

A second goal arises from the constraint on overall buckling:

g2(tF,ts) = N(1+
"
s)/(  p+

"
s)A -

U  - 1 L  0 (34)

The remaining goal deals with the limitations of distortions:

g3(tF,ts) = 1500 C b/8 - 1 L  0 (35)

The objective of this Pareto optimization is to obtain an unbiased improvement of the current design which can be
found by the unconstrained minimization of the convex scalar function:M N M NM N
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This form leads to a convex conservative approximation to the objective and constraint boundaries. Accuracy increases
with U .
The strategy adopted was an iterative sequence of explicit approximation models , formulated by taking Taylor series
approximations of all the goals truncated after the linear term. This gives:
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This problem has an analytic solution giving the design variables changes dtF  and dtS. Solving for a particular numerical
value of goj forms an iteration of the solution to problem Eq.(36). Move limits must be imposed on the design variable
changes to guarantee the accuracy of the approximations. The new design must be analysed giving the values for the
cost function and the other goals. New solutions to Eq.(37) are obtained until design variable changes become small.
During the iterations the control parameter ^] which should not be decreased to produce an improved solution, is
increased from 30 to 200.
Other alternative procedures could be efficiently used to locate optimum solutions with continuous design variables.
Caution is required given the nonconvexity of the total cost function and the constraints for 14 mm L  tF L 16 mm.

6.2  Branch and Bound
The problem was a non-linear objective function and domain. Moreover the solution procedures which can be adopted
to handle this type of problems can be characterized as deterministic (enumerative strategies, cutting planes, tunnelling
methods), stochastic (random search, simulated annealing) or based on analogies with biology (genetic programming,
evolutionary method). Given the small number of discrete design variables an implicit branch and bound strategy was
adopted to find the least cost solution.
The two main ingredients are a combinatorial tree with appropriately defined nodes and some upper and low bounds to
the optimum solution associated the nodes of the tree. It is then possible to eliminate a large number of potential
solutions without evaluating them. As the implicit numeration relies on the upper bound, its efficiency can be greatly
improved by providing a good feasible initial solution.
A partial solution is said to be fathomed if the best completion of the solution can be found or or if it can be determined
that, no matter how sections are assigned to the remaining free members it will be impossible to find a feasible
completion of smaller cost than the previously found. If a partial solution is fathomed this means that all possible
completions of the partial solution have been implicitly enumerated. When the last node is fathomed the algorithm ends
up with the optimum design. Backtracking in the tree is performed so that no solution is repeated or omitted from
consideration. An underestimate of the optimum solution can be found if the discrete design variables requirement is
relaxed. The number of levels in the combinatorial tree equals the number of discrete design variables.
Each node can be branched into n new nodes where n represents the set of available sections of the selected design
variable. The combinatorial tree up to level n-1 has each node identified with an underestimate. Each node of the tree is
associated with an incumbent bound. Any leaf of the tree whose bound is strictly less than the incumbent is active.
Otherwise it is designated as terminated and need not to be considered further. The B&B tree is developed until every
leaf is terminated (Figure 2). The branching strategy adopted was breadth first, consisting of choosing the node with the
lower bound.

6.3 The method of Rosenbrock

The second algorithm applied is Rosenbrock’ s method, which has also been modified to be able to handle discrete
values [3]. This method is a direct search mathematical programming method without derivatives. Instead of continuous
line searches, the algorithm takes discrete steps during searches in orthogonal search directions. In each iteration, the
procedure searches successively along n linearly independent and orthogonal directions. When a new point is reached at
the end of an iteration, a new set of orthogonal search vectors are constructed. Boundary zones are introduced to slow
down the algorithm when it approaches the constraint boundaries. A modified objective function, using penalty
functions, are used to handle the constraints. Instead of continually searching in the co-ordinate space corresponding to
the directions of the independent variables, the method achieves an improvement after one cycle of co-ordinate searches
by lining the search directions up into an orthogonal system, with the overall step of the previous stage as the first

building block for the new set of orthogonal directions. After each iteration k, Rosenbrock’ s method locates _`acbde  after

completing unidimensional searches from the previous point _a de  along a set of orthonormal directions. It introduces
boundary zones, to slow down the algorithm, when it approaches the boundary too closely. A modified objective
function is calculated in the boundary zone, using penalty functions. No gradient calculation is needed. The available
computer code is very easy to implement on engineering problems. The method may find local minima instead of the
global minimum.

7. Results and conclusions
The results are given in Tables 1-4. Minimum material cost and minimum total cost results for continuous design
variables can be found in Tables 1,2. Optimum discrete design variables are given in Tables 3,4.
The optima are marked by bold letters.
It can be seen that the optimum number of spacings for minimum material cost differs from that for minimum whole
cost.  The optimal number of spacings (stiffeners) is smaller for minimum whole cost. This decrease is caused by high
fabrication costs. The cost differences between the best and worst structural solutions indicated in tables are 18-22%,



thus, it is worth using the optimization procedure. Both mathematical optimization methods have been efficient for this
problem.

Table 1.  Minimum material cost data        Table 2. Minimum total cost data
                                    continuous design variables                                continuous design variables

tf TS KM  $ tf tS K  $
3 18.7 19.8 11603
4
5

16.1
15.0

18.7
17.9

11423
12714

6 15.0 17.1 13847

3
4
5
6
7

18.7
16.2
14.5
14.6
15.5

19.8
18.8
18.0
17.1
16.4

5362
5000
4774
4951
5310 7 15.5 16.4 13695

Figure 2. Branch and Bound Tree

Table 3.  Minimum material cost data        Table 4. Minimum total cost data
                                                discrete design variables                                discrete design variables

tf tS KM  $ tf tS K  $

3 19 20 11787
4
5

17
16

19
18

11905
12349

6 16 17 13087

3
4
5
6
7

19
17
15
16
17

20
19
18
17
17

5476
5222
4907
5289
5795 7 17 17 14779

When  is increased, tS becomes smaller to reduce distortion. tf is reduced with , but for larger  it must

compensate the diminishing tS.
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