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Minimum cost design of a welded stiffened square plate loaded
by biaxial compression�

J. Farkas, L.M.C. Simões and K. Jármai

Abstract The optimized plate structure consists of
a simply supported square base plate stiffened with an
orthogonal grid of flat stiffeners welded to the base plate
by fillet welds. The uniformly distributed compressive
load acts biaxially in the plane determined by the centre
of gravity of T-sections, which consist of a part of the base
plate and of a stiffener. In the optimization process the
number of stiffeners as well as the thicknesses of the base
plate and flat stiffeners, which minimize the cost function
and fulfil the design constraints, as sought. The cost func-
tion includes the cost of material, assembly, welding and
painting. Constraints relate to the global buckling, local
buckling of base plate parts and stiffeners as well as to the
deflection due to shrinkage of welds. To illustrate the ef-
fectiveness of the mathematical methods, the problem is
solved by the Rosenbrock’s hill-climb algorithm as well as
by entropy-based unconstrained minimization.

Key words buckling strength, minimum cost design,
stiffened plates, structural optimization, welded struc-
tures

1
Introduction

Our aim is to show the application of efficient mathemati-
cal methods to an important optimization problem. Stiff-
ened plates are used as load-carrying elements of ships,
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bridges, offshore platforms, roofs, etc. In stability prob-
lems of welded structures the effect of initial imperfec-
tions and residual welding stresses should be taken into
account. Based on their own experimental results Mikami
and Niwa (1996–1997) have proposed formulae for the
calculation of the ultimate buckling strength of orthogo-
nally stiffened plates loaded by uniaxial compression con-
sidering the aforementioned effects. Their method is used
in an article by Farkas and Jármai (2000) and extended
here for plates compressed biaxially.
For the objective function an advanced cost function is

used including material, welding and painting costs. Fab-
rication cost plays an important role in the whole cost and
the comparison of the minimum costs of different struc-
tural versions enables designers to achieve significant cost
savings in the design stage.
To illustrate the effectiveness of the mathematical

methods, the problem is solved using the Rosenbrock’s
hill-climb method (Farkas and Jármai 1997) and by an
entropy-based unconstrained minimization for the opti-
mization of continuous design variables associated with
a branch and bound strategy (Simões and Negrao 1999).

2
Problem formulation

In an effective structural optimization the variables are
selected on the basis of analysis of structural characteris-
tics. In the case of stiffened plates the structural charac-
teristics are as follows.
Loads: uniaxial or biaxial compression, in-plane bend-

ing and shear (plate girder webs), lateral pressure, hydro-
static pressure, concentrated, distributed on a line, uni-
formly distributed, static, dynamic, variable, high tem-
perature.
Material: normal or high-strength steels, aluminium

alloys.
Plate geometry: square, rectangular, triangular, trape-

zoidal, circular.
Boundary conditions: simply supported, clamped,

free, elastic support.
Stiffening geometry: edge-parallel, diagonal-parallel,

unidirectional, orthogonal, tridirectional, circular.
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Fig. 1 Welded square plate with flat stiffeners

Topology: number of stiffeners (variable).
Stiffener shape: flat, rolled T- and L-profile, welded

T-profile, cold-formed L-profile, trapezoidal, rectangu-
lar hollow section. Possible variables: dimensions of
stiffeners.
Connections of stiffeners to base plate: welded, riv-

eted, bolted or bonded.
Fabrication of nodes: welded, riveted, bolted or bonded

with L-elements.
From these characteristics we have selected for this

study the following.
The investigated plate structure (Fig. 1) consists of

a simply supported square base plate stiffened with an
orthogonal grid of flat stiffeners welded to the base plate
by fillet welds. It is assumed that the stiffeners in one di-
rection are continuous and in the other direction they are
intermittent. The connections of stiffeners are welded by
transverse fillet welds.
The uniformly distributed compressive load acts biax-

ially in the plane determined by the centres of gravity of
T-sections, which consist of a part of the base plate and
a stiffener.
The unknown variables are as follows. ϕ = b/a; tF ;

hS ; tS . b is the whole side length of the base plate, tF is
the thickness of the base plate, hS and tS are the height
and the thickness of a flat stiffener. Thus, the number
of stiffeners in one direction is ϕ−1. The optima of the
variables, which minimize the cost function and fulfil the
design constraints, are sought.
Numerical data: b= 8m;N = 9800 kN; the yield stress

is fy = 235MPa.

3
Cost function

According to Farkas and Jármai (1997, 2000) the cost
function includes material, fabrication (welding) and
painting costs

K = kMρ0V +kF
[
Θ(κρ0V )

1/2
+

1.3 (T ′2+T
′′
2 +T

′′′
2 )
]
+kPS (1)

The cost factors are as follows:
The material cost factor is kM = 0.5–1.0 $/kg, the fab-

rication cost factor is kF = 12–48 $/h = 0.2–0.8 $/min,
the painting cost factor is kP = 15 $/m

2. We calculate
with kM = 0.5 $/kg and kF = 0.6 $/min.
The density of the steel is ρ0 = 7.85×10−6 kg/mm3.
The volume of the structure is

V = b2tF +2b (ϕ−1) hStS (2)

The difficulty factor expressing the complexity of the
structure is Θ = 3
The number of structural parts to be assembled is

κ= 16+ϕ−1+ϕ (ϕ−1) = 15+ϕ2 (3)

Welding times are as follows

(a) butt welds of the base plate: in the numerical example
the base plate side length is b = 8m, and it is as-
sumed that this base plate is welded from plate elem-
ents of dimensions 6 m× 1.5m, so the weld length
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is LW = 8b= 64m, the weld size is tF and the welding
technology is Gas metal arc welding with mixed gas
(GMAW-M).

for tF ≤ 15mm T ′2 = 0.1861t
2
F ×64 (4)

for tF > 15mm T ′2 = 0.1433t
1.9035
F ×64 (5)

(b) longitudinal fillet welds connecting the flat stiffeners
to the base plate: the welding technology is GMAW-
M,

T ′′2 = 0.3258×10
−3a2W ×4b (ϕ−1) (6)

aW = 0.4tS, but aW.min = 4mm
(c) transversal fillet welds connecting the intermittent
flat stiffeners to the continuous ones: the number of
nodes is (ϕ−1)2, the welding technology is shielded
metal arc welding (SMAW)

T ′′′2 = 0.7889×10
−3a2W ×4hS (ϕ−1)

2
(7)

The superficies to be painted are

S = 2b2+4b (ϕ−1)hS (8)

4
Design constraints

4.1
Constraint on global buckling

N

A
≤ σ∗U = σU

ρP + δS
1+ δS

(9)

whereN is the compression force,

A= btF +(ϕ−1)AS (10)

b= ϕa is the side length of the whole plate, a is the dis-
tance between stiffeners, tF is the thickness of the base
plate,

δS =
AS

atF
(11)

σU is the ultimate global buckling strength of the whole
simply supported plate. It is calculated on the basis of the
classic formula (American Petroleum Institute 1987)

σcr =
π2D1

hb2
(12)

h= tF +AS/a (13)

D1 =D+EIX/a (14)

D =
Et3F

12(1−ν2)
=
Et3F
10.92

(15)

IX is the moment of inertia of a cross-section containing
the flat stiffener and a strip of the base plate of the width
of a. The distance of the centre of gravity of this T-section
is

yG =
hS+ tF
2

δS

1+ δS
(16)

IX =
h3StS

12

4+ δS
1+ δS

(17)

AS = hStS is the cross-sectional area of a flat stiffener, hS
is the height and tS is the thickness of a flat stiffener.
Since the classic buckling strength formula does not

take into account the effect of the initial imperfection
and residual welding stresses, we use a reduced buck-
ling strength according to the Mikami and Niwa method
based on a reduced slenderness

λR = (fy/σcr)
1/2

(18)

where fy is the yield stress. Note that the method of this
reduced slenderness is also used in Eurocode 3 (1992)

σU/fy = 1 for λR ≤ 0.3 (19)

σU/fy = 1−0.63 (λR−0.3) for 0.3< λR ≤ 1 (20)

σU/fy = 1/
(
0.8+λ2R

)
for λR > 1 (21)

The factor of ρP is introduced in order to take into
consideration the local buckling of the base plate

ρP = 1 if σUP ≥ σU (22)

ρP = σUP/fy if σUP < σU (23)

σUP is the ultimate local buckling strength of a base plate
square field, which is assumed to be simply supported and
loaded by biaxial compression. The ultimate strength is
also calculated using a reduced slenderness derived from
the classic buckling strength

σPcr

fy
=
2π2E

10.92fy

(
tF

a

)2
(24)

λP =

(
fy

σPcr

)1/2
=
a/tF

40.19ε
ε= (235/fy)

1/2
(25)

fy is the actual yield stress in MPa.

σUP

fy
= 1 for λP ≤ 0.526 (26)

σUP

fy
=

(
0.526

λP

)0.7
for λP ≥ 0.526 (27)

4.2
Constraint on local buckling of flat stiffeners

According to Eurocode 3 (1992)

hS/tS ≤ 14ε (28)
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4.3
Distortion constraint

In order to assure the quality of this type of welded struc-
tures, large deflections due to weld shrinkage should be
avoided. It has been shown that the curvature of a beam-
like structure due to shrinkage of longitudinal and trans-
verse welds can be calculated by relatively simple for-
mulae (Farkas and Jármai 1997). The allowable maximal
residual deformation f0 is prescribed by design rules. For
compression, Eurocode 3 (1992) prescribes f0 = b/1000,
thus the distortion constraint is defined as

fmax = 1.5Cb
2/8≤ f0 = b/1000 (29)

Considering fillet welds in two directions, we multiply by
1.5 instead of 2, since the interruption of ribs and the re-
sidual plastic zones decrease the deflection.
The curvature for steel is

C = 0.844×10−3QT yT /Ix (30)

QT is the heat input for a double fillet weld

QT = 1.3×59.5a
2
W (31)

In the case of a double fillet weld, we multiply by 1.3 in-
stead of 2, assuming that the second weld is performed
after cooling of the first one and its plastic zone overlaps
the first one.
yT is the weld eccentricity

yT = yG− tF/2 (32)

yG and Ix are given by (16) and (17).

4.4
Limitation on the number of spacings between the
stiffeners

Since the classic overall buckling strength is calculated on
the basis of the theory of orthotropic plates, a limitation
on the number of spacings

ϕ≥ 3 (33)

should be introduced.

5
The applied mathematical methods

5.1
Optimum design with continuous design variables

For solving each relaxed problem with continuous design
variables the simultaneous minimization of the cost and
constraints is sought. All these goals are cast in a normal-
ized form. If a reference cost Ko is specified, this goal can
be written in the form

g1(tF , ts) = K(tF , ts)/Ko−1≤ 0 (34)

A second goal arises from the constraint on overall buck-
ling:

g2(tF , ts) =N(1+ δs)/(ρp+ δs)AσU −1≤ 0 (35)

The remaining goal deals with the limitations of distor-
tions:

g3(tF , ts) = 1500Cb/8−1≤ 0 (36)

The objective of this optimization is to obtain an unbi-
ased improvement of the current design, which can be
found by the unconstrained minimization of the convex
scalar function:

F (tF , tS) =
1

ρ
ln


 3∑
j=1

exp ρ (g (tF , ts))


 (37)

This form leads to a convex conservative approximation
to the objective and constraint boundaries. Accuracy in-
creases with ρ.
The strategy adopted was an iterative sequence of ex-

plicit approximationmodels, formulated by taking Taylor
series approximations of all the goals truncated after the
linear term. This gives:

Min F (tF , tS)=
1

ρ
ln


 3∑
j=1

exp ρ

(
g0 (tF , tS)+

∂g0j (tF , tS)

∂tF
dtF +

∂g0j(tF , tS)

∂tS
dtS

)
 (38)

This single objective optimization problem has an an-
alytic solution giving the design variables changes dtF
and dtS . Solving for a particular numerical value of g0j
forms an iteration of the solution to problem (37). Move
limits must be imposed on the design variable changes to
guarantee the accuracy of the approximations. The new
design must be analysed giving the values for the cost
function and the other goals. New solutions to (38) are ob-
tained until design variable changes become small. Dur-
ing the iterations the control parameter ρ, which should
not be decreased to produce an improved solution, is in-
creased from 30 to 200.
Other alternative procedures could be efficiently used

to locate optimum solutions with continuous design vari-
ables. Caution is required given the non-convexity of the
total cost function and the constraints for 14mm≤ tF
≤ 16mm.

5.2
Branch and bound

The problem has a nonlinear objective function and do-
main. Moreover the solution procedures which can be
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Fig. 2 Branch and bound tree

adopted to handle this type of problems can be charac-
terized as deterministic (enumerative strategies, cutting
planes, tunnelling methods), stochastic (random search,
simulated annealing) or based on analogies with biol-
ogy (genetic programming, evolutionary method). Given
the small number of discrete design variables an implicit
branch and bound (B&B) strategy was adopted to find
the least cost solution.
The two main ingredients are a combinatorial tree

with appropriately defined nodes and some upper and
lower bounds to the optimum solution associated with the
nodes of the tree. It is then possible to eliminate a large
number of potential solutions without evaluating them.
As the implicit numeration relies on the upper bound, its
efficiency can be greatly improved by providing a good
feasible initial solution.
A partial solution is said to be fathomed if the best

completion of the solution can be found or or if it can be
determined that, no matter how sections are assigned to
the remaining free members, it will be impossible to find
a feasible completion of smaller cost than that previously
found. If a partial solution is fathomed this means that all
possible completions of the partial solution have been im-
plicitly enumerated. When the last node is fathomed the
algorithm ends up with the optimum design. Backtrack-
ing in the tree is performed so that no solution is repeated
or omitted from consideration. An underestimate of the
optimum solution can be found if the discrete design vari-
ables requirement is relaxed. The number of levels in the
combinatorial tree equals the number of discrete design
variables.
Each node can be branched into n new nodes where

n represents the set of available sections of the selected
design variable. The combinatorial tree up to level n−
1 has each node identified with an underestimate. Each
node of the tree is associated with an incumbent bound.
Any leaf of the tree whose bound is strictly less than the
incumbent is active. Otherwise it is designated as termi-

nated and need not to be considered further. The B&B
tree is developed until every leaf is terminated (Fig. 2).
The branching strategy adopted was breadth first, con-
sisting of choosing the node with the lower bound.

5.3
The method of Rosenbrock

The second algorithm applied is Rosenbrock’s method,
which has also been modified to be able to handle dis-
crete values (Farkas and Jármai 1997). This method is
a direct-searchmathematical programmingmethod with-
out derivatives. Instead of continuous line searches, the
algorithm takes discrete steps during searches in orth-
ogonal search directions. In each iteration, the procedure
searches successively along n linearly independent and
orthogonal directions. When a new point is reached at the
end of an iteration, a new set of orthogonal search vectors
are constructed. Boundary zones are introduced to slow
down the algorithm when it approaches the constraint
boundaries. A modified objective function, using penalty
functions, is used to handle the constraints. Instead of
continually searching in the coordinate space correspond-
ing to the directions of the independent variables, the
method achieves an improvement after one cycle of coor-
dinate searches by lining the search directions up into an
orthogonal system, with the overall step of the previous
stage as the first building block for the new set of orth-
ogonal directions. After each iteration k, Rosenbrock’s
method locates x(k+1) after completing unidimensional
searches from the previous point x(k) along a set of or-
thonormal directions. It introduces boundary zones to
slow down the algorithm when it approaches the bound-
ary too closely. A modified objective function is calcu-
lated in the boundary zone using penalty functions. No
gradient calculation is needed. The available computer
code is very easy to implement for engineering problems.
The method may find local minima instead of the global
minimum.

6
Results and conclusions

The results are given in Tables 1–4. Minimum material
cost and minimum total cost results for continuous de-
sign variables can be found in Tables 1 and 2. Optimum

Table 1 Minimummaterial cost data continuous design vari-
ables

ϕ tf tS KM ($)

3 18.7 19.8 5362

4 16.2 18.8 5000

5 14.5 18.0 4774

6 14.6 17.1 4951

7 15.5 16.4 5310
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Table 2 Minimum total cost data continuous design vari-
ables

ϕ tf tS K ($)

3 18.7 19.8 11603

4 16.1 18.7 11423

5 15.0 17.9 12714

6 15.0 17.1 13847

7 15.5 16.4 13695

Table 3 Minimum material cost data discrete design vari-
ables

ϕ tf tS KM ($)

3 19 20 5476

4 17 19 5222

5 15 18 4907

6 16 17 5289

7 17 17 5795

Table 4 Minimum total cost data discrete design variables

ϕ tf tS K ($)

3 19 20 11787

4 17 19 11905

5 16 18 12349

6 16 17 13087

7 17 17 14779

discrete design variables are given in Tables 3 and 4. The
optima are marked by bold letters.
It can be seen that the optimum number of spacings

for minimum material cost differs from that for mini-
mum whole cost. The optimal number of spacings (stiff-
eners) is smaller for minimum whole cost. This decrease
is caused by high fabrication costs. The cost differences

between the best and worst structural solutions indicated
in the tables are 18–22%, thus it is worth using the op-
timization procedure. Both mathematical optimization
methods have been efficient for this problem.
When ϕ is increases, tS becomes smaller to reduce dis-

tortion. tf is reduced with ϕ, but for larger ϕ it must
compensate for the diminishing tS .
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