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Resumo

Neste projecto foi estudada a equacédo de estado da matéria nuclear assimétrica
a baixas densidades e temperatura zero com a introducio de nicleos leves (hélio,
tritio, alfa e deuterao). A equacao de estado foi construida utilizando o modelo néao
linear de Walecka na aproximacédo de campo médio.

Foram estudadas as propriedades da matéria nuclear para varios valores de
assimetria com e sem nucleos. A dependéncia da densidade de dissolucéo de cada
nucleo em funcio do valor das suas constantes de acoplamento foi estudada uti-
lizando duas parametrizacoes da equacéo de estado da matéria nuclear.
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Abstract

In this project the equation of state of asymmetric nuclear matter at low densi-
ties and zero temperature introducing light nuclei (helion, triton, deuteron and
alpha particles) was studied. The equation of state was built using the non-linear
Walecka model in the mean-field approximation.

The properties of nuclear matter for various asymmetry values with and with-
out clusters were studied. The dissolution density dependence for each nucleus as
a function of its coupling constants was also determined using two parametriza-
tions of the equation of state of nuclear matter.
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Chapter 1

Introduction

Supernova explosion is a stellar phenomenon that happens when massive stars
(M > 8M) have burned up all the nuclear fuel. Through fusion reactions, hydro-
gen is converted to heavier elements by the heat produced by gravitational com-
pression. The fusion reactions stop when iron, the most bound nuclear species, is
reached. Iron is the heaviest element on the fusion chain. After the iron is formed
in the core, the core collapses due to gravitational force, creating a supernova ex-
plosion.

A supernova explosion may lead to the formation of a neutron star or a black
hole. A maximum mass exists, called the Oppenheimer-Volkoff mass limit [12],
that can be sustained against gravitational collapse. Therefore, if the mass of the
hot collapsed core of the supernova explosion is not high enough to form a black
hole, a neutron star is born.

The initial temperature of the neutron star is of the order of tens of MeV and
in a few seconds cools to ~ 1 MeV due to the diffusion of neutrinos and photons [5].
The mass and radii are typically 1.5M and 10 km, respectively. Thus, neutron
stars are the smallest and densest stars known. Neutron stars are 10'* times
denser than Earth [5].

Neutron stars can be detected by their periodic radio emission of pulsars. This
periodic radio emission is due to its intense magnetic field and high rotation. The
observed pulsars, the name given to neutron stars that emit periodic pulses, range
from milliseconds to seconds with the mean period of ~ 0.7 ms [5]. A realistic des-
cription of the structure of neutron stars demands the use of Einstein’s equations
of General Relativity.

Neutron stars are composed by nucleons (protons and neutrons) and leptons
(electrons, muons and neutrinos). Exotic matter such as hyperons, boson conden-
sates and quark matter may also exist in their interior.

The nuclear short-range repulsion and Pauli exclusion principle give rise to an
outward pressure that makes neutron stars stable against gravitational collapse
[5].

The gravitational energy per nucleon in a neutron star can be estimated as
~ 157 MeV and the binding energy per nucleon in a limiting neutron star mass as
~ 100 MeV [5].

Therefore, the nuclear force contributes negatively to the binding of neutron stars.

1



This is due to the fact that the average density of a neutron star lies above the
saturation density of nuclear matter and, consequently, the nucleons do not feel
attraction from their neighbors, but repulsion. In fact, if we turned off the gravi-
tational interaction, the neutron star would explode.

In a long time scale neutron stars will become invisible because, as the stars
cool, their magnetic field decays and, therefore, its rotation decreases until the
magnetic field pulse is no longer detectable.

One global constraint that neutron stars must satisfy is the charge neutrality.
The repulsive Coulomb force for an infinitesimal charge per baryon in the star will
expel particles of like charge [5].

The mass and radii of a neutron star is obtained solving the Equation of hydro-
static equilibrium of General Relativity called the Tolmann-Oppenheimer-Volkoff
equation. For solving the Tolmann-Oppenheimer-Volkoff equation we need the
equation of state p = p(€) of the nuclear matter [5]. It is through the equation of
state that the properties of dense matter enter the equations of stellar structure.

The density range of a neutron star falls from its high central value to approxi-
matly fifteen orders of magnitude to the surface. At each density the matter is in
beta equilibrium and consistent with charge neutrality.

The pressure is zero at the surface of a neutron star and the density is low,
therefore, it is composed by atoms of the most strongly bounded nuclei, *°Fe. As
the density increases, the atoms become progressively more ionized, the electrons
become increasingly relativistic and a lower energy state can be achieved through
the capture of energetic electrons by nuclei. Thus, the nuclei will become increas-
ingly neutron-rich. This process is called neutralization. All the neutrinos and
photons created in these processes, diffuse out of the star lowering their energy.
As the density increases, the neutron drip is reached, where the bound neutrons
leave the nuclei. At densities above the saturation density of nuclear matter, the
superdense regime is reached, nuclei dissociate into a uniform charge-neutral mix-
ture of baryons and leptons.

At superdense matter hyperons can be formed and constitute an important part
of the population or a kaon condensate may occur [5]. The superdense matter may
be composed of quark matter at high density. The density at which the confined
hadronic matter converts into its quarks constituints (deconfined matter) is ex-
perimentally and theoretically unknown.

As we have seen, the neutron stars span a wide density range that go from or-
dinary nuclei at the surface to superdense quark matter in the core.

One of the primary goals of nuclear physics is the determination of the equation
of state of nuclear matter. Astrophysical predictions are very difficult due to the
large extrapolations involved: isospin extrapolations from stable nuclei to the very
neutron-rich systems present in neutron stars and the extrapolation from density
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of normal nuclei to the very high densities or low densities that are present in the
core or in the crust of a neutron star, respectively.

In stable nuclei, the asymmetry is ~ 0—0.2, in neutron star it ranges from ~ 0.9
in the dense interior to ~ 0.1 near the crust at densities p ~ 107> — 10~ fm > [13].

To determine the equation of state of the dense matter we want to start from
the known properties of bulk nuclear matter. A relativistic quantum field theory in
a mean-field approximation that is based on nuclear effective interactions is used
[11]. These effective interactions provide an efficient description of the structure
of finite nuclei and nuclear matter and are fitted to reproduce well-determined nu-
clear matter properties.

In this work the inclusion of light clusters (*°H,>H,*He,*He) at zero temperature
and low densities in the EOS is studied. Below saturation density ~ 0.16 fm*, the
system can minimize its free energy by forming clusters [6]. Therefore the study
of low-density nuclear matter must take into account clusters. The challenging
question is figuring out how can these clusters be included in the model and how
do they affect the low density equation of state. Due to clustering, the physics of
nuclear matter will be very different from neutron matter, mainly we expect that
transport properties of the crust will be affected.

The second chapter is devoted to introducing the properties of nuclear matter
and the nuclear field theory. On the third chapter, we discuss the model used
in this work. It is a relativistic mean-field model with a omega-rho term, which
allows changing the density dependence of the symmetry energy, while keeping
the isoscalar channel unchanged

Finally, in the fourth chapter, the results obtained are presented. In particular
we are interested in determining the dissolution density of the different types of
clusters.






Chapter 2

Relativistic Nuclear Field Theory

Until the mid 1970s, nearly all dense nuclear matter studies were based on
non-relativistic static potentials for describing the nucleon-nucleon interaction.

The relativistic, field-theoretical approach to nuclear matter was introduced in
1974 by J. D. Walecka [18]. It is a Lorentz covariant theory of nuclear matter des-
cribing the interaction between nucleons in matter through two meson fields, the
scalar ¢ and the vector V# [5]. This theory is known as QHD-I (quantum hadro-
dynamics) or o — w model.

This theoretical approach has the following advantages:
e It is automatically causal.

e The properties of nuclear matter at the saturation density are built-in in the
theory.

The second point is very important since, as we will see, the input parameters
of the theory can be algebrically related with the properties of nuclear matter at
the saturation density. Therefore, before introducing the model, we need to study
the properties of nuclear matter.

In this whole chapter we follow Glendenning’s book closely [5].

2.1 Properties of Nuclear Matter

Presently, it is unknown any point of the equation of state (EOS) of nuclear
matter, P(£), above nuclear density with precision. We use some properties of
nuclear matter at the saturation density to normalize the EOS at one point in
the energy-density plane and others to assure that the extrapolations to higher
densities near the saturation density are valid.

We use the bulk aproximation that consists in considering uniform, infinite and
symmetric nuclear matter. The properties of nuclear matter in the bulk approxi-
mation are inferred from experimentally observed properties of finite nuclei.

Some properties of nuclear matter cannot be directly measured and there is
some uncertainty on their exact values.

All the empirical values used were taken from [5].
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2.1.1 Saturation density

The short-ranged, strong nuclear interaction is the dominant interaction be-
tween nucleons. It is essentially attractive but repulsive at short distance (<
0.4 fm). Due to the properties of nuclear force, at a certain density, the central den-
sity of the system will not increase any further, even if more nucleons are added
to the system. The density at which this occurs is referred to as the saturation
density.

Thus we have the following relation

A
p= v ~ constant 2.1)

where A is the number of nucleons (number of protons plus the number of neu-
trons). Considering, for simplicity, a spheric nuclei we have

A <47TR3

:—:A
P=y 3

therefore we find the relation R = ryA'/3. This relation is satisfied in good accuracy
for finite nuclei.
For the saturation density, p,, the observed value used is

po = 0.153 fm .

-1
) ~ constant (2.2)

2.1.2 Binding energy

The parametrization of nuclear masses as a function of the number of neutrons,
N, and protons, Z, is known as the Weizsicker formula or the semi-empirical mass
formula given by
M(Z,N) = Zm,+ Nm, — B(Z,N)
where m, and m,, are, respectively, the mass of proton and neutron in MeV, the
B(Z, N) is the binding energy of the nucleus given by

(N —Z)
A
where a,, as, ac and ayy,, correspond to volume, surface, Coulomb and asymmetry
coefficients, respectively. The physical interpretation of the individual terms of
(2.3) can be found in [9]. The exact values of the coefficients depend on the range
of masses for which they are optimized. Several coefficient sets can be found in the

literature.
From the equation (2.3) we get the binding energy per nucleon
B(Z,N as Z2 N-—2\?
% =aqa, — 5 acA4/3 — Qsym (T) ) (2.4)
In the bulk approximation, the Coulomb interaction is ignored. Letting A — oo on
(2.4), we get

B(Z,N) = a,A — a,A*? —ac Z° A7 — agym (2.3)

B
1= a, = —16.3 MeV.

Thus, in the bulk aproximation, the binding energy per nucleon is given by the
volume term.



2.1.3 Symmetry energy

From the valley of the beta stability we know that stable nuclei with a low
proton number prefer a nearly equivalent neutron number. This preference will
diverge for nuclei with a large proton number due to the repulsive Coulomb inter-
action between the protons. This is exactly what the last term of (2.4) says. We call
the difference between the neutron and protons numbers, the isospin symmetry,
difined by ¢t = (p, — p,) /p-

The equation of state is related to the binding energy per nucleon by

E E B
) =(Z) ==+ M 2.5
<A)0 (P)o A 25

where M = 938.93 MeV is the average of the neutron and proton masses, called nu-
cleon mass. So, taking into account (2.4), we can calculate the asymmetry energy

coefficient from (2.5), by ,
_1(07(&/p)
Qsym = 5 (T - . (26)

A neutron star should be electrically neutral®, therefore in a first approximation
the neutron stars are mainly populated by neutrons. Thus, neutron stars are sys-
tems highly isospin asymmetric unlike nuclear matter that prefers isospin symme-
try. So, for a good description of neutron stars, the theory should correctly reflect
this fact.

If we assume charge symmetry of nuclear interaction, the energy per baryon of
asymmetric nuclear matter can be expanded on a series in powers of t2

E E
— (9 t) = = (0,0) + anm(P)E + @2, () + O()

where £(p, 0) is the energy per nucleon of symmetric nuclear matter.

Several theoretical studies show that the dominance dependence of the energy
density of asymmetric nuclear matter on ¢, is essentially quadratic [16].

Thus, in good approximation, the symmetry energy is given by

E E
Asym ~ Z(pa ]-) - Z(pao)

Therefore the symmetry energy could be defined as the difference between the
energy per nucleon of the pure neutron matter (¢ = 1) and the symmetric nuclear
matter (¢t = 0).

The nuclear symmetry energy is well constrained at the saturation density,
asym(po) = 32 £ 4 MeV but its value at higher and lower densities are extremely di-
verse. An interesting fact is that most empirical models coincide around p =~ 0.6p,
where a,,,, = 24 MeV [4]. This shows that constraints on finite nuclei are active for

'the net charge per nucleon in a neutron star must be very small, of the order Z,,.;/A < 10736,
For details see [5].



densities ~ 0.6p,.

In this work, we use the empirical value as,,, = 32.5 MeV [5].

2.1.4 Compression modulus

The compression modulus K defines the curvature of de EOS £/p at py and is
related to the high density behavior of the EOS.
We normally use the term stiff and soft to characterize the behavior of the EOS,
i.e., if the energy density rapidly increases with an increase in pressure, the EOS
is referred to as stiff and if it increases slowly, it is referred to as soft. The maxi-
mum mass that a neutron star can take depends on the stiffness of the EOS, thus,
the maximum mass of a neutron star is related to the value that we choose for the
K.

The compression modulus is deffined by

& (€
— 2 -
K= {p 7 (p)L:m. (2.7)

The value of K is quite uncertain and lies in the range of 200 to 300 MeV.

The compression modulus can not be measured directly and that is one of the
reasons for the uncertainty on the experimental values. The value of K can be
extracted from experimental energies of isoscalar monopole vibrations (GMR) in
nuclei but its value can not be constraint better than 50%. Other approach is de-
termining K based on microscopic calculations of GMR, giving 210 — 220 MeV using
Skyrme effective interaction and 231 +5 MeV based on Gogny effective interaction.
Details of these values can be seen in [17] and references therein.

2.1.5 Effective mass

The effective mass also referred as relativistic Dirac mass is defined through
the scalar part of the nucleon self-energy in the Dirac field equation, which is
absorved into the effective mass M* = M +X(p) [4]. Various values for the effective
mass can be found in [7] and references therein.

The experimental values for the effective mass lie in the range

*

M ~ 0.7 to 0.8
MN . LO.

As K, the effective mass will influence the high-density behavior of the EOS.
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2.2 QHD-I Model

The Quantum Hadro-Dynamics I was introduced by J. D. Walecka [18]. It is
based on four fields: the barionic field ¢, that represents the nucleons, the neutral
scalar meson ¢ and the neutral vector meson V#, that represent, respectively, the
o and w particles. The properties of these mesons are in Table 2.1.

Table 2.1: Meson properties: spin (s), isospin (/) and charge (¢).

m (MeV) s I q
o ~ 500 0 0 0
w 782 1 0 0
p 70 1 1 -1,0,1

The scalar meson gives rise to a strong attractive force in the nucleon-nucleon
interaction, while the vector meson gives rise to a strong repulsive force.

The model assumes that neutral scalar meson couples to the scalar density
of baryons through ¢,1)¢)c and the neutral vector meson couples to the conserved
baryon current through g, ¢, V*.

In the limit of heavy, static baryons, one-meson exchange gives rise to an effe-
ctive nucleon-nucleon potencial of the form [11]

2 —myr 2 —mgr
_ g™ gie™

Veff(r)_llﬁ r 4 r

Choosing the right coupling constants of the mesons, the V.;; reproduces the po-
tencial of the nuclear force.

2.2.1 Lagrangian density

The lagrangian interaction of this model can be written as®

Including the free Lagrangians of the mesons and the nucleons we obtain

£ = 00 b 0 — g (2)) = (O — goor(@))] () @9
+3 (0@ () = mEo (@) — JFu P+ SmiV, @)V (),

where F,, = 0,V,(z) — 0,V,.(2).

As expected, the nucleons are described by the Dirac Lagrangian, the scalar
meson by the Klein-Gordon Lagrangian and the vector meson by the massive vec-
tor meson Lagrangian that gives the Proca equation.

2hereafter we use the shorthand notation = = (¢, .y, 2)

9



The nucleon spinor is a eight-component spinor given by

o= (1)

The coupling constans g, and g, are dimensionless constants that will be fitted to
the bulk properties of nuclear matter.

2.2.2 Equations of motion

The equations of motion for the fields are calculated solving the Euler-Lagrange

equation
oL oL
O|l=——]—=—=0 2.10
“(a@as)) 85 210

As we will see in the next chapter, (2.9) is a special case of the Lagrangian that we
use in this work. The calculation details of the equations of motion can be found
in Appendix 1.

Using (2.10) and (2.9), we get

(0,0 +m3) o(x) = ga(@)i() (2.11)
(0,0 +m2) Viu(z) — 0,0"V,(2) = guthyu(z)p(x) (2.12)
[ (00" — g, V¥(x)) = (M — gso(x))] ¢(x) = 0 (2.13)

From the Proca equation for a massive vector field we know that 0"V, = 0 due to
current conservation. So, (2.12) gives

(0,0 +m2) Vi(x) = gotb(x)(x) (2.14)

The three equations of motion constitute a system of coupled nonlinear differ-
encial equations that are complicated to solve. Perturbative approaches to solve
the equations are not useful due to the large values of the coupling constants.
Therefore we need a new approach for solving the equations.

2.2.3 Mean-field approximation

The Relativistic Mean-Field (RMF) approximation consists on considering that
the system is composed by static and uniform matter in its ground state. Then, we
replace the meson fields by their mean values on this state

o(z) — (o) (2.15)
Vilz) = (V). (2.16)
In the ground state of static and uniform matter quantities, ga> and (V;) are in-

dependent of = = (t,z,y, 2), so are the source terms (¢ (z)y(z)) and (¢, (z)¢(z)).
Due to rotational invariance, the expectation value of <VZ> vanishes [11].

10



Thus, in the RMF approximation, the equations of motion for the mesons simplifiy
to

ma (o) = g:,(bv) (2.17)
mi(Vo) = gu(¥19). (2.18)
In the RMF, the Lagragian density (2.9) reduces to
1 1
Lryur = —577%(2,02 + §m3VHV“. (2.19)

2.2.4 Scalar and vector density

To calculate the energy spectrum of (2.13) we follow the method used in [5].
Setting the wave equation of the nucleons equal to the free single-particle solution
for a Dirac particle,

() = v(k)e ™ (2.20)
where kx = k2" = Eyt — k.x and using the wave function on (2.13) we obtain
[ (B = g, V*) = (M — g0)] (k) = 0. (2.21)
Defining
K" =k —g,V* (2.22)
M*(0) = M — gs0, (2.23)

where M* is the effective mass, (2.21) takes the form
[y, K" — M (k) = 0. (2.24)

By rationalizing de Dirac operator we find the eigenvalues. Multiplying (2.24) by
(7, K" + M*) on the left we get

(P M) (3% — M) = 7K, K Mo, K — MoK — (M7 (2.25)
= Ky K — (M) = KR 2

2
(2.26)
Taking into account the following property of the gamma matrices,
VY + A 277;u/a
we obtain
(K" 4+ M*) (v, K" — M*) = K"K, — (M*)*. (2.27)
The final result is
(K, K" — M*|y(k) =0. (2.28)

11



The coefficient of ¢/(k) is no longer an operator, therefore
K, K" — (M*)* =0
(=)KoK° + KK — (M*)* =0
(=) (ko — g,Vo) (K = g,V°) + (ki — g,Vi) (K = 9,V') — (M*)* =0,
by the RMF approximation V¢ = 0, then
(E - g,V°)" = &% + (M*).

EE(k) = g,V + /K2 4 (M*)* (2.29)

are the eigenvalues for the particle and anti-particle, respectively.

Finally, we find that

We see that the scalar meson reduces the energy eigenvalue, decreasing the
effective mass. The time component of the vector meson shifts the energy eigen-
value of a given k to higher values. The shift of the energy eigenvalue due to the
vector meson is proportional to the baryon vector density as result of its equation
of motion.

To obtain the energy spectrum we need the mesons’ fields that are given by
(2.17) and (2.18). For that we need the baryon currents whose eigenvalues are a
function of the fields themselves.

To proceed we need to calculate the baryon currents (¢¢) and (). For that,
we can follow [18] or the method used by [5]. We chose to use the method in [5]. It
states that the expectation value of an operator I' in the ground state can be given
in terms of the expectation value of the single-particle state (z/?Fz/z)kvn, where k and

x denote, respectively, the momentum and spin-isospin state of the single-particle.

The expectation value in the many-nucleon system is given by
- dk
() =% / i O (- E(k)), (2.30)

where 1 is the chemical potencial and O (1 — E(k)) is a step function defined by
1 ik <k
O (n—Ek)) = { 0 ifk| > k.
All the possibilities needed for I" will in general appear in the Dirac Hamiltonian.
The Dirac Hamiltonian H can be constructed from the nucleon equation of motion
isolating the ky = E as follows

[ (B = gow") — (M — gs0)] (k) = 0
(=) [v0 (k° = gow°) — vk — M*] (k) =0
(=) [r0guw” +vik" + M*] (k) = ok (k)
(=) 70 [10g900° + vk’ + M*] (k) = E(k)v (k)
(=) Hpy(k) = E(k)y(k),

12



where

Hp = [%ngo + vkt + M*] : (2.31)
Taking the single-particle expectation value of Hp, we have
W' HpY) . = W'ER)Y),, = E(k) (v'0), . (2.32)

where (¢!¢), is the spinors normalization.
Taking the derivative on the left side of (2.32) with respect to any variable y, yields

9t 10Hp oyt . a@/’)
Bx (@Z) HDQ/’)k <1/’ Dy ¢>k,n+ <6X HD@/))kn (@/) HDax -

(), (Gov), e (95),.

oH 0
(w* Dw) - E(kz)a (1)
= (#%0)

where we use H}, = H), and the last step is due to 1/(k) be an eigenfunction. So we
obtain the following relation

OH )
YD _
<¢ o )kﬁ__aXEXk) (2.33)

We can take the normalization condition of the wave function by the above condi-
tion. Taking the derivative of (2.31) with respect to 1, we obtain

0Hp

v, 9 (") = gu

k,x

where, (70)2 = I, by the properties of the gamma matrices. Using the relation
(2.33) and the eigenvalues, we obtain

8 8 /
T 0 2 %) 2 _
therefore, we obtain the normalization condition (¢/), = 1.

The calculation of the vector baryon density (i) is straightforward using
(2.30)

<otv> =3 [ s (61,0 (- E(k)

dk
O (n— E(F))
B /W<m B /Wymwk_lfi
T @~ T), e T 23
_
32

13



where v = 2,1, X 2i505pin = 4 1S the degeneracy of the nucleons.

To calculate the scalar baryon density (1)) we use the same procedure, having

(D) = (Whop),

and by the equation (2.32) we get 0Hp/OM* = 7, so

oH 0
<¢T ar ‘”) = anr P
k,x
M*

k2 4 (M*)?

(:) (Q/JT%Q/})](?,Q =

Therefore we have
() =3 / - (Whow),., © (1 — B(k))
}j/ @w—E@»

M*)
/’ff Amk2dk M*
=7
0 (27T)3 k2 + (M*)2
k
7 2k

\/ k2 A+ (M)

:—/ Kdh— 90
\/k2 (M — gso

Summarizing, for the vector and scalar baryon densities we obtain, respectively,

3
= (yhy) = 21 (2.34)
P= 372 '
- 2 M — g,
po = (P¥) = 5 / k2dk 9:7 (2.35)
\/k:2 (M — gso
The explicit forms of the meson fields become
kg _
M2 = gy / Rk 90 (2.36)
’ VR + (M — g0
Vo = gup. @37

The first equation is a non-linear equation that has to be solved self-consistently.
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2.2.5 Pressure and energy density

The tensor energy-momentum is given by

oL
THY — o . — /,LVL’
<a<au<z>z->) P

which in the rest frame of isotropic matter is diagonal®

T —

oo o M
oo ©
o8 oo
_N o oo

The energy density and pressure are given by

E=T (6(6ow) Oy — L 500u7) Y — L (2.38)
1, 1oL AP A :
p=3T _3(8(8iw))aw _3£_3(6(8iw))w+£ (2.39)

The expectation value of the energy density on the ground state, taking into ac-
count (2.9) and (2.19), is

e~ (5tks) ) -
= (Y9i0°Y) + %m?aQ — %miVOQ (2.41)
= (Bohot) + gm20® — Sm2V; (2.42)

where in the last step we use the wave function of nucleons.
To calculate <zmokoz/z>, using the same procedure as in the section before

(1/;70]{:01#)1{7,{ = (Wkoi/})k,n = E<k> (Wlp)kﬁ = E<k>

Using (2.30) we obtain

(ko) = 3 [ s (0ot © (0= ECR)

krodk
- / )

k
L (VE+ (M = o) + V")

2 Jo

2 [k
=g,V + ﬁ/ k2dk/k2 + (M — g,0)2.
0

3see [5] for details.
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So the energy density is

2 [ 1 1
E=g,Vp+ —2/ k2dk~\/k2 + (M — g,0)2 + §m§02 — §m3V02 (2.43)
™ Jo
1 2 2 1 2772 2 kf 2
€= gmio’ +5miVi+ — k2dk\/k2 + (M — g,0)2 (2.44)
™ Jo

where, in the last step the equation of motion of the vector meson m?V, = g,p, is
used. The expectation value for the pressure is

13 (5t ) o)

1,- ) 1 1
p= §<W%al¢> - §m502 + §m121V02

1, 1 1
D= §<1/J%'k Py — ngaz + szv(?-
Using the same procedure

(k) = (1 KE)y, = (P79),, K

_ (@% )kﬁ k- (a%E(k)) k
) kk
VI + (M - g0)

Through (2.30) we obtain

(ki) = Z/ (;1:)3 (ag—l(f)) O (u— B(k))

Frodk k?
_7/0 (2m)? /K2 + (M — g50)2
2 M k*dk

w Jo I+ (M —gw0)2

The final expression for the pressure is

12 [ KAdk 1 1
== — —m?o® + —m2V. (2.45)
37 Jo \/k2+(M—9sU)2 2 2

p

The two coupling constants of the model can be fitted to reproduce the satura-
tion density of nuclear matter and the energy per nucleon at saturation.
The other bulk properties are not reproduced so well. The compression modulus
computed from the EOS at saturation gives K ~ 550 MeV, which is a very high
value. The Dirac effective mass at saturation is small M*/M = 0.5 comparing with
the empirical range of ~ 0.7 to 0.8.
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2.3 Introduction of scalar self-interactions

Boguta and Bodmer [2] introduced an extension of the 0 — w model aimed to
bring the compression modulus and nucleon effective mass under control.
They introduced scalar self-interactions by the following Lagrangian density:

1 1
Lpp = ;0M (gs0)® + Zc(gso—)4. (2.46)
So the lagrangian of the theory becomes
1 1
L= Lo+ 50M (g50)° + 1C (gs0)*. (2.47)

It is easy to see from the Lagrangian density, that only the equation of motion of
the scalar meson changes

2
gs0 = (ﬁ) [ps —bM (9s0)° — ¢ (gsa)?’] (2.48)

where p, is the scalar density given by (2.34).

The energy density and the pressure with the addition of the self-interactions be-
come

1 1 1 1 2 ks
E = §bM (gsa)?’ + -c (gsa)A‘ + —m2o® + émiv(f + —2/ dek\/k2 + (M — g40)?
™ Jo

4 2

1 5 1 PR U P IR k*dk
= —=bM (9s0)" — —c(g9s0) — =mzo" + —m,Vy + -— .
p=—30M (g.0)" = e (50) R = M~ ey

2 2

In the last section of this chapter we will see how to fit the coupling constants
in order to reproduce the experimental values of the compression modulus and the
effective nucleon mass.

2.4 Introduction of ) meson

To study the properties of the neutron rich matter of a neutron star, we need
to introduce a new field to reproduce the isospin restoring interaction that are
present in (2.4).

This is done by introducing the isospin triplet of the rho meson, denoted by b,,
that has as source the 3-component of the isospin density /5 = %(pp — Pn)-

The interaction Lagrangian density is given by
Lint = —g,b0,.1".

On the ground state, only the isospin 3-component of the b,, has finite mean value.
In the mean field approximation, the spatial component of b, vanishes like in the
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V# field. Thus, the only non-vanishing component of the rho meson is pg°>. For
details see [5].

The equation of motion for the rho meson is

2 2

© _ 1 (9% \ yi0syy_ (9L _ 2.49
93" = 5 (mp) (%) (mp) 5 (Pp = Pu), (2.49)

and the Dirac equation changes to

1
[% (k“ — gyw" — 59,)73195) — (M — gsa)} (k) = 0. (2.50)

Its eigenvalues are

E(k) = g,V° + 9,0 I + /K2 + (M — g,0)?, (2.51)
where I; is the isospin of the nucleon, /35 = 1/2 for protons and /3 = —1/2 for neu-

trons.

The pressure and energy density becomes

1 1 1 1 2
€= §bM (950)3 + ZC (950 ) + 2m o’ + 5 2% + 2m2 (pi(i )>
1 kb ) b )
+ ) /0 k:pdk:p\/kg + (M — gs0)? + /0 k:ndkn\/kr% + (M — gs0)?
1 s 1 1 27,2 (0)
p= ——bM (gs0)” — Zc(gsa) — ém o + 2m Vi + 2m (p3 )

/’ff kidk, . K A dke
\/k2 (M — gs0)2 Jo VE2+ (M — g0)?

The energy density can be separated in two. One part that depends on the asym-
metry between protons and neutrons that takes the form

1 2 1 k} &
£ = m (pé,m) + ( / k;dkp\/kg (M — go0)? + / K2di/R2 + (M — g20)? | -
0 0

Using the equation of motion of the pg‘”

f
E 1(g\* (pa—0r L[ [
?Zé(#p) p( o +W || i+ 01 = g7

kf
+/ k2 dkn\/k2 + M—gsa)z). (2.52)
0

This way we reproduced the asymmetry term that favors symmetric systems.

The coupling constant of the rho meson is chosen to reproduce the empirical
value of the symmetry energy. In the next section we show how that is made.
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2.5 Coupling constants

One of the merits of the relativistic nuclear field theory is that the coupling
constants of the theory can be algebrically related to the properties of matter at
saturation density.

The expressions that relate the values of b, ¢ and g;/m, are too extense to re-
produce here and can be seen in [5]. The key point here is to understand that it
is possible to algebrically relate the coupling constants in terms of the empirical
quantities p, B/A, K, M* and a,,, of symmetric nuclear matter at saturation.

For g,/m, and g,/m, the relations are

2 M+ BJA— k24 (M*)°
(ﬂ> — / . (2.53)

My p
2
8 2
(&) B | 2.54)
Mo/ P 6/ k2 + (M~)*
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Chapter 3
Model with light clusters

In this work we apply the nonlinear RMF model to study the dissolution of light
clusters at zero temperature.
3.1 Relativistic mean field theory

The nonlinear RMF model [15, 13] for a system of nucleons, electrons and the

following light elements: deuteron (d = 2H), triton (¢t = 3H), helion (h = 3He) and
« particles (*He) is given by the Lagrangian density

- 1 1 1
L= Z (0 [%ﬂ.Df — MZ-*] v + 3 (6,#7(9“0 — TrLEO'2 — —ko® — E/\OA)

. 3
i=p,n,t,h
L(-Lo,0m e mpvve - egtvvm?) + L (1B, B b, b
+§ Tt +my, Vi +E§gv(u ) +§ o Pu +m,Py.
1 . * . 1 * * - .
+ Avgggzvuvﬂbu'bu + 2 (Z'Dggﬁa) (ZDuaﬁba) - §(Ma)2¢a¢a + e ['YMZaH - me] e
1. Uy ok . 1 .. "
+t1 (1D byg — iDydy)” (iDpadar — 1DyaPap) — §(Md)2 (05)" D (3.1)
where

iDE = o — gy %T.b“

M = M;—g'o
iD= o' — gV
and
Q, =0,V, —09,V,
B, =09b,—-0b,.

The spin 0 field ¢, represents the « particles, the spin 1 field ¢/, represents the
deuteron and the spin 1/2 fields v, and 1, represent the helion and triton, respec-
tively. The electrons are represented by the spin 1/2 field ¢.. They are included
when stellar matter is described, otherwise their contribution is neglected.
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The clusters are treated as point-like particles and their internal structure is
not taken into account.

The omega-meson self-interaction softens the equation of state at high density,
tuning the parameter £. Instead, the nonlinear coupling constant A, was included
to modify the density dependence of the symmetry energy [3].

3.2 Equations of motion

The equations of motion of the fields are obtained applying the Euler-Lagrange
equation to each field.
The calculation details are shown is Appendix A. The equations of motion for the
meson fields in the RMF approximation are

2 K 5 A3 _ i i
mio 50t tgot = D gt D gl (3.2)
i=p,n,t,h i=d,x
1 2 ‘
miVOt 2Egh (V)" + 20000V (béo)) = > g (3.3)
i=p,n,t,h,d,a
m§b§°’3 - 2Avg3g§ (V0)2 bgo) = Z gf)]é/)z‘ (3.4)
i=p,n,t,h

where, p' is the scalar density given by
M; — 920
\/7%2 + (M; — gio)”

and p; is the vector density for i = n,p,t,h. At zero temperature all the o and
deuteron populations will condense in a state of zero momentum, therefore p, and
pq correspond to the condensate density of each species. However since the a parti-
cles have a larger binding energy at 7" = 0 all nucleon of symmetric nuclear matter
will form an o condensate. If matter is asymmetric only the more abundant species
(protons or neutrons) will not completely condensate into a particles.

(3.5)

i 7 1M 2
Ps = <1/1ﬂ/12> = p/o k; dk;

I} is the isospin of the particle i, whose values are: I3(p) = 1/2, I3(n) = —1/2,
I3(t) = —1/2 and I3(h) = 1/2.

3.3 Parameter sets

There are many relativistic effective interactions. In this work we use NL3
[8] and FSU [14], two well known and widely used. We use a new relativistic
effective interaction named IUFSU introduced in [3]. NL3 has been fitted to the
groundstate properties of both stable and unstable nuclei. FSU was fitted to static
properties of nuclei and collective giant resonances.

IUFSU was built in a way close to FSU but it was refined to describe neutron stars
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with mass ~ 2M.
The values of the parameters to each relativistic effective interaction are in

Table 3.1 and the corresponding properties of infinite nuclear matter at saturation
density are shown in Table 3.2.

Table 3.1: Parameter sets for the three models used in this work.

NL3[8] FSU [14] IUFSU [3]

ms (MeV)  508.194 491.500 491.500
m, (MeV)  782.501 782.500 782.500
m, (MeV)  763.000 763.000 763.000

g2 104.3871 112.1996 99.4266

g’ 165.5854  205.5469 169.8349

gz 79.6000 138.4701 184.6877
Kk (MeV) 3.8599 1.4203 3.3808

A —0.015905 +4-0.023762  +0.000296

3 0.00 0.06 0.03

A, 0.000 0.030 0.046

Table 3.2: Bulk parameters characterizing the behavior of infinite nuclear matter
at saturation density.

NL3 [8] FSU [14] IUFSU [3]

po (fm™)  0.148 0.148 0.155
E/A(MeV) -16.24  —16.30 —16.40
K (MeV) 2715 230.0 231.2
(gym (MeV)  37.29 32.59 31.30
L(MeV) 1182 60.5 A7.2
M (MeV) 939 939 939

Where L is the symmetry energy derivative. It is another property that can
characterize nuclear matter on saturation density, defined as

This quantity is related to the stiffness of the symmetry energy at high densities.
Recently, a combination of several data restricted its range to 62 MeV < L <

107 MeV [7].
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3.4 Clusters binding energy

The total binding energy of a cluster i is given by B; = BY + AB;, where B
is the experimental binding energy in vacuum and AB; is the medium-dependent
binding energy shift.

In [15], for the RMF, the empirical quadratic form is used

ABi(p,T) = —p; |6B:i(T) + 2’;0 SB(T) (3.6)
with
2
b = I [Zipl" + Nipl'] . (3.7
where
p=ry"+p

is the total nucleon density. This expansion was obtained from a quantum statis-
tical approach [10].
In the limit of zero temperature we obtain

ABi(p,0) = —p; |6B:(0) + 2"];1‘,_0 §B2(0) (3.8)

where .
6B;(0) = ;/12. (3.9)

;9

The parameters a;; and «; , are listed for symmetrical nuclear matter (Y, = 0.5) in
Table I of [15] that is partially reproduced in Table 3.3.

Table 3.3: Parameters for the cluster binding energy shifts.

Cluster 7 Q51 ;2 BZO [1]
(Me\/5/2 fm3> (MeV)  (MeV)

69516.2 7.49232 8.481798
08442.5 6.07718 7.718043
164371 10.6701  28.29566
38386.4 22.5204  2.224566

ISHESEES

The density where a cluster becomes unbound, p,, that we call dissolution den-
sity, is given by

In Figure 3.1 we represent the binding energy as a function of the density for all
clusters.
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Figure 3.1: Clusters binding energy for symmetric nuclear matter at zero temper-
ature as a function of the density.

The dissolution density obtained for the clusters is shown in the table 3.4.

Table 3.4: Densities at which the clusters become unbound given by equation (3.10)

t h «Q d
pd(fm_?’) 0.00183175 0.00144835 0.00439226 0.00453391

In this work, the values in of Table 3.4 are used as a reference for symmetric
nuclear matter and the coupling constants of clusters that reproduce this dissolu-
tion densities were calculated. The results are shown in the next chapter.

3.5 Density energy and Pressure

The result of applying the RMF approximation to the density lagrangian (3.1),
ignoring the terms of the a and deuteron, is

1 1 1 1 1 2 1 2
‘CRMF = — amiaz — 650'3 — ﬂ)\OA + amg%vo -+ ﬂfgg (%VO) + ami (bg@)

2
+ Aug? (VO)° (7).

The density energy is

&= Z <1/_1i70i301/1z‘> - <£RMF> + Z &

i=p,n,t,h i=a,d
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We know that
B Ko dk.
~nr 00\ — A Iy Nl
<w27028 1/}2> 72/0 (27T>3Ez(kz>

1 } 2 iv/0 i7,(0) 1i 2 i\2
=— : kidki | g,V" + g,b; [3+\/ki+(Mi_gsU)

T2

4 o 1 [k 4
:¢W%+¢w%m+;/ @M(W&HMjﬁﬂﬁ
0

where v; = 24, 1s the degeneracy of each particle i = p, n, ¢, h. Therefore
‘ o 1 [k
_ i7/0 i7(0) 7 2 i
&= E <gvV pi + gpb3 Lypi + P/o ki dk; (\/kzz + (M; — 950)2)>

i=p,n,t,h
2
2 (1(0)
my, (bg )

1 1
A#—;ﬁ%w—ﬂ@ﬂ%Wf—

N —

1 1 1
+ §m§02 + 6/{03 + 21

2
~ Mog2goV (W) + Y &
i=a,d

The contribution to the density energy of the « and d is calculated in the Appendix
1. The total density energy is

‘ . 1 [F ‘
E= ) <QZV0M +gob Lp: + ;/0 ki dk; <\/k22 + (M; —920)2)>

i=p,n,t,h

I 5o, 1 5 1 4 1 5 05 1 4 0212(0)2
+§msa +6/<;a +ﬂ)\a—§mv%V—ﬂfgv(VgV) —émp(b3>

2 . .
— Aogigo VoV (b§°)> + > (M= glo+ g V) pi. (3.11)
i=a,d
The pressure is given by

p= % Z <QZ}ZZ’718177Z)2> + <£RMF>-

i=p,n,t,h

We know that

A 1 Ky kA dk;
<¢ﬂ%‘3@¢z‘>=— Z /0

m i=p,n,t,h \/kz2 + (M; — 920)2'

The final expression to the pressure is

11 Ky kddk; 1 1 1
p=-— Z / . — — —m20® — Zko® — —\o*
372 0 \/kf + (M; — gio)? 2 6 24

i=p,n,t,h
2
+ %mgvovo + 21—4@3 (VaV°)? + %mi (87 + Aug2g2vav® (157)
There is no explicit contribution of the o and deuteron to the pressure. This was
expected due to the fact that, at zero temperature, the o and deuteron particles
will condensate on zero momentum state and do not contribute for the pressure.
There is of course an implicit contribution in the meson fields, a presence of « or

deuteron particles changes the meson fields and, consequently, the total pressure.
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3.6 Free energy density
The free energy density is given by
F=E-TS.

where S is the entropy density. At zero temperature the free energy is equal to the
energy density.

We define the global proton fraction Yp; by

2pq 2 o
_ Pp+2pa+ pat ph—l-/)t:@_'_Qp_ @_'_2@_'_&_
P P PP PP

Ypa

Defining the mass fraction Y; = A;(p;/p) of the various species we obtain

1 1 2 1
Ypa=Y, +=-Y,+=-Y,+=-Y, +-Y,.
PG p+2 +2d+3h+3t

Using the same procedure to obtain the global neutron fraction Yy

1 1 1 2
Yne =Y, + §Ya + §Yd + gYh + gY;t

With these definitions we obtain the relation Ypro + Yyg = 1.

The method used to find the density of dissolution of a cluster i is the following:
we fix the Yp; and compare the free energy of the EOS composed by neutrons and
protons with the EOS with neutrons, protons and the specie i. Therefore, we can
study the density regions where it is energetically favorable to form a cluster.

We define dissolution density p; as the density where the free energy of both
EOS is the same and study how this dissolution density depends on the coupling
constants of the various cluster species.
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Chapter 4

Results and Discussion

In this chapter we present the results obtained. In the first section we apply
the nonlinear RMF model developed in the last chapter to study the equations of
state of nuclear matter composed by nucleons. With this study, the dependence of
the meson fields on the baryonic density as well as other important quantities for
several proton fractions is shown. As we saw, the major population of a neutron
star is neutrons. Therefore, it is interesting to study the properties of the equation
of state of nuclear matter for low proton fractions.

In the second section we study the EOS at low densities where the true ground
state of nuclear matter at zero temperature is composed mostly by light clusters
rather than only by nucleons. This is an important study since, as it is referred
in the introduction, in a neutron star crust, where the density is lower than the
saturation density, it is believed that light clusters are present.
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Figure 4.1: Results obtained to symmetric nuclear matter (Y, = 0.5) as a function
of baryon density: (a) and (c) are the meson fields, (b) is the nucleon effective mass,
(d) is the pressure, (e) and (f) are, respectively, the energy density and the binding
energy per nucleon.
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Figure 4.2: Results obtained to asymmetric nuclear matter with Y, = 0.3 as a
function of baryon density: (a), (b) and (c) are the meson fields, (d) is the pressure,
(e) and (f) are, respectively, the energy density and the binding energy per nucleon.
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Figure 4.3: Results obtained to asymmetric nuclear matter with Y, = 0.1 as a
function of baryon density: (a), (b) and (c) are the meson fields, (d) is the pressure,
(e) and (f) are, respectively, the energy density and the binding energy per nucleon.

In figures 4.1-4.2-4.3(a) the scalar meson field value grows as the baryonic den-
sity increases but, at high densities, it saturates. Therefore, figure 4.1(b) shows
that the value of the Dirac effective mass decreases with the increase of the scalar
meson field.

The expression of the Dirac effective mass is

M*(p) = M — gso(p)
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taking the limit of infinite baryonic density we obtain g;0(p) — M and therefore
M* — 0, as figure 4.1(b) shows.

From figures 4.1-4.2-4.3(a) we see that the scalar meson in NL3 saturates faster
than in FSU and IUFSU. In figures 4.1(c) and 4.2-4.3(b), the vector meson field
value in NL3 increases linearly with the baryonic density, due to the fact that the
parameters ¢ and A, are zero. From figures 4.1-4.2-4.3(d) and 4.1-4.2-4.3(e) we
conclude that the equation of state of NL3 is the stiffer and the equations of state
of FSU and IUFSU are similar and substantially softer.

The behavior of the binding energy per nucleon is shown in figures 4.1-4.2-4.3(f).
It is very similar for all the parametrizations at subsaturation densities but, for
suprasaturation densities, the NL3 provides very different values comparatively
to FSU and IUFSU.

The rho meson field value is shown in figures 4.2-4.3(c). In the NL3 parametriza-
tion the field value is proportional to the isopsin asymmetry due to A, = 0.

It is interesting to note, from figures 4.1-4.2-4.3, that as the asymmetry de-
creases from Y, = 0.1 to 0.5 (symmetric nuclear matter) the pressure and the
energy density decrease, as expected, due to the decrease of the rho meson field
which is zero at Y, = 0.5. Thus, the higher the asymmetry, the stiffer is the equa-
tion of state.
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Figure 4.4: The symmetry coefficient as a function of baryonic density on the left
and on the right for subsaturation densities.

In figure 4.4 the symmetry energy as a function of the baryonic density is re-
presented. The symmetry energy for the Lagrangian density used is calculated in
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Appendix C and is given by

2 2 3
_ ky " 9, K

Asym 27 2
6,/k2+ (mr)? 127 (my)

where (m;)2 =m2 + 29297\, (VO)Z.
In the NL3 parametrization it is reduced to

2 2 3
ky 9, Ky

Qsym = + 3 5"
6 /k?_i_(m*)Q 127 mp

Taking the limit of the high baryonic density p — +oo or ks — 400 we obtain

g, ki
Asym (p) = 12;2W in NL3, 4.1)
P
9 k? .
sy (P) in FSU and IUFSU. (4.2)

1272 m2 + 2g2g2A, (V0)?

This behavior can be seen in figure 4.4 where, at a given density, the a,,,,(p) for
the NL3 is almost linear as a function of the baryonic density. The coupling con-
stant A, can be used to change the baryonic density dependence of the symmetry
energy as we see in figure 4.4 for FSU and IUFSU. The larger A,, the larger is the
denominator in (4.2), therefore reducing the a,,,, at large densities.
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Figure 4.5: The dissolution density as a function of the total proton fraction Ypq
for the various clusters: deuteron (d = ?H), triton (t = 3H), helion (h = *He) and «
particles (“‘He).

In figure 4.5, for each cluster, the dissolution density is maximum for the Ypg
that allows the conversion of all nucleons into clusters. The proton fraction for the
o particles is y, = Z = 2 = 1 and for the deuteron is y, = 1. Thus, at Y = 0.5,
all the neutrons and protons can be converted into deuterons or a particles, if it
is energetically favorable. The proton fraction for helion is y, = 2 ~ 0.667 and for
triton is y, = 3 ~ 0.333. Therefore, at Yp; = 2 and Ypq = 3, all the nucleons are
convertible into helion and triton, respectively.

From figure 4.5 we see that the dissolution density for all the global proton
fractions is bigger for NL3 and smaller for FSU. The dissolution density values of
IUFSU and the NL3 are very close. Therefore, hereafter we ignore IUFSU in our
studies and only use NL3 and FSU.
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Figure 4.6: Energy per nucleon as a funtion of baryonic density for nuclear matter
EOS, in thick lines, and nuclear matter EOS with « particles, in thin lines, with
Ype = 0.5 and 0.1 for all parametrizations.

To understand why the dissolution density in the IUFSU and the NL3 are close
and bigger than in FSU we show in figure 4.6, as an example, the energy density
for global proton fractions of 0.5 and 0.1 for the « EOS and the nuclear matter EOS
and we see that the intersection of both equations of state for the IUFSU and NL3
occurs near the same density. From 4.6 we see that the energy density from the
a EOS increases when we change from NL3 to FSU. This is due to the fact that
initialy we set g' = 0 and g’ = A,g,; so this increase is related to the value of g,
in each parametrization. In fact, if we look at table 3.1, the FSU has the bigger
g, and the NL3 and IUFSU have approximately the same value but NL3 has the
smaller value. This fact explains why the NL3 o EOS increases slower than the
FSU « EOS.

In the following we test the effect of the o-cluster coupling constant on the disso-
lution density. We fix g7"“*"" = Acjusteros 9 = g = 9p» 9% = g5 = 0 and parametrize

v

the ggluster as g;:luster = ng,.

In figures 4.7-4.8-4.9 the dissolution density grows with the increase of ¢ for
all clusters. As we saw, the o0 meson gives the attraction between particles. This
is due, as referred, to the fact that the sigma meson reduces the effective mass of
the particle and, consequently, its energy eigenvalue. Therefore, as expected, the
dissolution density is larger as the o coupling increases because its effective mass
decreases.
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Figure 4.7: The dissolution density of each cluster as a function of the ¢ for a
global proton fraction of 0.5 for: « in a), deuteron in b), helion in ¢) and triton in d).

Now we will test the effect of the p—cluster coupling constant on the dissolu-
tion density of triton and helion. We fix . = 0, g, = A;g, and parametrize the ¢/ as

g5 = 19,

In figure 4.10 we conclude that the dissolution density for triton and helion de-
pends weakly on its rho coupling constants. Even in the wide range of g/ and gﬁ
studied, the dissolution density variation was very small compared with the vari-
ation observed for the sigma and omega clusters’ coupling constants.

To understand this behavior, we write only the energy density part of (3.11) that
depends on the asymmetry

% 7 1 2 2
gsym = Z gpr(SO)[BpZ - §m,§ (bl(%O)) - Avgggz‘/@vo (bi(i0)>

i=p,n,t,h

= > gzbéo’fém—§<mib§°’+2Avgig§VOV° (b§°’))b§°)

i=p,n,t,h

37



Pd ( fm_?’)

Pd ( leAS)

0.09 T T T T T T 0.01

FSU ——
0.08 | NL3
007} FSU—
0.06 } Py
[o C?
0.05 } 9s = NYs =
(-
0.04 5 g? = 490 ~—
’ 3
0.03 } SY
0.02 } a)
0.01 }
O i
0 0.5 1 1.5 2 2.5 3 3.5
n
0.008 r r r r 0.022
0.02 }
0.007 }
0.018 |}
0.006 | 0.016 }
?
0.005 | " 0.014 }
& 0.012 }
0.004 } ~
5 0.01 }
0.003 } 0.008
0.006 }
0.002 }
0.004 }
0.001 . . 0.002
0 0.5 1 1.5 2
n

Figure 4.8: The dissolution density of each cluster as a function of the ¢ for a
global proton fraction of 0.3 for: « in a), deuteron in b), helion in ¢) and triton in d).

Using the equation of motion of the rho meson (3.4) we obtain

i7,(0) 74 1 i 737,00
Eoym = Z gpb:(‘})]—f}pl'_i Z gpf?,b:(a)/)z'

i=p,n,t,h i=p,n,t,h
1 o
_ i 1i7,(0)
=9 E gp‘[?)b3 Pi-
/[::p7n7t7h

We rewrite the equation of motion of the rho meson (3.4) as

1 .
b = > gilip:. (4.3)

2
(mp) i=p,n,t,h

where (m;)2 = m? + 2A,g792(V"). Inserting this expression in &,,,, we obtain

2
gsym - 5 ( )2 ( Z gpIBpZ>

mz i=p,n,t,h
2
11 (g 9 g
= Q(mZ)Q <2ph 5Pt (Pp — pn)
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The densities of all the species present are defined by fixing the global proton
fraction. When only triton is present in nuclear matter we have
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Figure 4.9: The dissolution density of each cluster as a function of the ¢ for a
global proton fraction of 0.1 for: « in a), deuteron in b), helion in ¢) and triton in d).

Let us discuss the case in which the global proton fraction is 0.1. If the EOS
is only composed by nucleons, we have 10% of protons and 90% of neutrons. If we
add the triton in the EOS we would get 0% of protons, 70% of neutrons and 30% of
tritons. Therefore, we have p, = 0, p, # 0 and p; # 0. So, the &, reads

L (g e,
8sym — 9 (m:‘))z < 2 Pt 9 pn)
1 1 ‘ 2
- = + n
8 (mZ)Q (gppt 9pP )
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Using the g/, = g, dependence we obtain

Esym = %ﬁgﬁ (npe + pu)” -
P
Therefore as the g/ increases by the parameter 7 in figure 4.10, the &, increases
and also the total density energy £. The intersection of the nucleons EOS and
triton EOS free energy densities is at lower densities. Consequently, as the ¢/
increases, the dissolution density p,; decreases.
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Figure 4.10: The dissolution density of each cluster as a function of the gg for a
global proton fraction of 0.3 and 0.1 for: helion on the left and triton on the right.

It is easier to understand if we think only in terms of the isospin of the present
species. The EOS with neutrons and tritons is highly isospin asymmetric, both
having I3 = —1/2 and, so, the total energy density is higher. This is why, if besides
protons, neutrons and tritons, we added helions to the EOS as a new degree of
freedom, the system would decrease its energy density by creating, not only tri-
tons, but also helions if it is energetically favorable. This way the system would
decrease its isospin asymmetry. For the case where Yy, = 0.3 we would have 90%
of tritons and 10% of neutrons. Therefore, we would have p, =0, p, # 0, p; # 0 and
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the consequence is exactly the same as in the case of Yps = 0.1.

For the helion case in figure 4.10, we apply the same procedure as for triton.
For Yp; = 0.1 we would have 0% of protons, 85% of neutrons and 15% of helions.
Therefore we have p, = 0, p, # 0 and p;, # 0. So, the resulting &, is
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Figure 4.11: The dissolution density of each cluster as a function of the ¢’ for a
global proton fraction of 0.1 for: « in a), deuteron in b), helion in ¢) and triton in d).

Thus, as 7 increases, so does the g;} and in this way, we are reducing the asym-
metry of the system and, consequently, &,,,, decreases. Thus, the dissolution den-
sity will increase with the increase of g'.
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Figure 4.12: The dissolution density of each cluster as a function of the ¢’ for a
global proton fraction of 0.3 for: « in a), deuteron in b), helion in ¢) and triton in d).

We next discuss the effect of the w-cluster coupling on the dissolution density.
In the figures 4.11, 4.12 and 4.13 the dissolution density for all clusters is represen-
ted to Ype = 0.1, 0.3 and 0.5. We see that the dissolution density becomes smaller
as the ¢! increases. This is due to the fact that the V/* meson shifts the energy
eigenvalues to higher values, giving the repulsive feature to the vector meson.

In order to determine which clusters are present we must analyze the free
energy density of the system. In equilibrium, this quantity has a minimun.

In chapter two, we saw that the binding energy per baryon can be written as

B
B_¢
A p
Multiplying the equation by p we obtain
B
—p =& — Mp.
SP=¢ p

This is shown in figure 4.14. From figure 4.14 we see that the binding energy per
baryon is the lowest in the « particle, being followed by triton, helion and deuteron.
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The range in which the binding energy per baryon is lower than nuclear matter
only with nucleons, decreases with the same order. The conclusion from figure 4.14
is that, at low densities, it is energetically favorable for nucleons to convert to light
clusters, lowering the binding energy per baryon. Therefore, at zero temperature
and at very low densities, the ground state of nuclear matter is composed by light
clusters.
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Figure 4.13: The dissolution density of each cluster as a function of the ¢’ for a
global proton fraction of 0.5 for: « in a), deuteron in b), helion in ¢) and triton in d).

At T' = 0 only « particles are formed because they minimize the free energy.
However, at finite temperature, chemical equilibrium will determine the fraction
of each cluster present in the system. Large temperatures will favour the light
clusters like the deuteron.
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Figure 4.14: The binding energy per baryon multiplied by the baryonic density
(B/A)p as a funtion of baryonic density for global proton fractions of 0.1, 0.3 and
0.5 for FSU on the left and NL3 on the right.
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4.3 Clusters coupling constants

To fit the coupling constants of the clusters, the only information we have is the
dissolution densities for symmetrical nuclear matter shown in table 3.4. There-
fore, we can find several sets of coupling constants that reproduce the dissolution
densities or, as we did, fix two coupling constants for each cluster and fit the other
to reproduce the dissolution density. Namely, we fix ¢’ = 0 for all clusters and fix
gf) = g, for triton and helion. Then, we fit for all clusters the ¢/ that reproduces the
dissolution density. The obtained values are shown in table 4.1.

Table 4.1: Clusters coupling constants obtained for symmetric matter (Y, = 0.5)
that reproduce the dissolution densities of Table 3.4

NL3 FSU
Clusteri gi/gs gi./9v  95/90  9i/9s  9i/9s  95/9p
t GCH) 0.0 335637 g, 0.0 296154 g,
h ((He) 0.0 371748 g, 0.0 328334 g,
d (2H) 0.0 088224 0.0 0.0 081178 0.0
a (*He) 0.0 491988 0.0 0.0 443779 0.0

More experimental information is needed in order to determine the coupling
constants of the phenomenological model we propose.
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Chapter 5

Conclusions

The aim of this work was to study the EOS of nuclear matter at low densities
and at zero temperature. As expected, the ground state of nuclear matter at low
densities and at zero temperature is not only composed by neutrons and protons,
as our results show. We conclude that the true ground state of the nuclear matter
at low densities and zero temperature is mainly composed by the light clusters
studied. This happens because, at low temperatures, the binding energy per nu-
cleon can be reduced through the formation of light clusters.

The RMF model used has the coupling constants of the various clusters to the
mesons of the model that mediate the interactions between the particles as the
free parameters. Because there are no experimental values that can be used to
fit the coupling constans, we fitted them to the values taken from [15] for nuclear
symmetric matter. The coupling constants obtained can be used in further studies
at finite temperature. In particular, we expect that the presence of light clusters
in the crust of a compact star will affect properties such as thermal and electrical
conductivity.
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Appendix A

Equations of motion

The Lagrangian density we use reads

L= Y Lit+Lo+Lu+Ly+Lup+ Lot Lot Lo (A1)

i=p,n,t,h

or writting explicitly all terms

7

£= X b (0 v - Bew) - 1 o) 0

i=p,n,t,h
1 1 1 1 1 1 2
+ 3 <6M08“a —m?o? — gkra?’ — E/\U4) — ZQWQ“ + §m3VMV“ + ﬂfgg (VuV")
1 1 -
+ 5 (_EBW.BW + mibu'bu) +M0gog, ViV b b 4 e [,00" — me] e

1 * . v * vk - V\*
+ 5 (6“ (65)" Ouas + 0" ()" 92Viba — g2V (61)" O + (92)" V" (65)" Vidaw
* 1 * . * (% e% * [e% *
- (M;)z (d)g) deu) + ) (8“<Z> W@+ i (0"9%) g, Vg —igy VF 9 0,0 + (94 )2VuV“¢>¢>
- o)
The L, and L, are simplified and the details are shown in the next sections.

The equation of motion for a field ¢ is calculated by solving the Euler-Lagrange
equation

oL oL
On (6’(6@)) =% (4.2)
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A.1 Deuteron field
Starting from its Lagrangian density,
1 sy NE [ . L. x
7 (D45 = iD6)" (iDuaaw — iDavban) — 5(M)* (80)" Pay
iDly = ot — gtV
M} = My — g%

1
Lo=7

Lq=~ (i0"¢l — giVFiey —id" ¢l + gV d4) (10,00 — 9iVibar — 10, ban + 9V,

o | =

1 .
— S (68
(_Zaﬂ (QSZ)* - gf}lv,u (Gbs)* +1i0” (gbg)* + gzlvl/ (¢s)*) (iaugbdu - gzajlvugbdu - iau¢du + gzajlvugbdu)
1

— SO (64)" b

- 1 [8M (QbZ)* au¢du + 0" (QbZ) Vu¢du — ot (de) u¢du — 0" (ﬁbg)* ggvugbdu
- gvVH (¢a)° 10, Pa + (93)2 V“ (¢4)° Vibay + gUVH (¢0)° 10y ay — (93)2 V(o) Vo @y
-0 (gbd) u¢dv —id” (¢f§) ¢du + 0" (¢d) uﬁbdu + 10" (gbfj)* gffqubdu

V() Vi — G0V ()" 0000+ (92)" V" (61)" Vi

AN

+ ggvy (¢>§)* 10 Pan — (gg)

1 *
— SR ()" duy

By the Euler-Lagrange equation,
( 0L, ) 0L,
ae * = *k
9(0p93) 9P,

1
(2300|070 + igiV'6N = 9" — il g — 6" — igi e’ + P + iV

= [~ oo + (6 VIV gV, — () VIV, + gl i
() VIV, — V0,0 + () V] — 5 (M) 6
(20| +iglV 6> — ¢ — igh o' | = | = giv"i0,8 + (9)" V" Vii6?
+iglV O g, — (91)° VIVA6,] — (M) 6
(=)050" 9 + gV 050" — 040°" —iglV 00" + giV"i0, 8 — (g1)" VIVii
—iglVI o+ (g) VIV 0, + (M) 6 = 0
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D, (D"¢" — D"¢/) =D, (0"¢" +igiVFe” — 0" ¢/ — igiV¥ o)
= (10, — gaVyu) (9"¢" +igiVhe” — 8" ¢M —igaV" ")
= 0,0"¢” + zgvV“ﬁugb” 0,0" ¢t — igtv” 0t + ng“z@Mgb”
- (93)2 VIV, — ngvuay‘bu ( v) VIVE g,

D, (D"¢" — D"¢") + (M)’ ¢" =0
D, x (D, (D"¢" — D"¢") + (M})* ¢ = 0) = D, ¢" = 0.

Using the Lorentz gauge, D, ¢” = 0, we obtain the equation of motion for the
deuteron field

D0+ (M) o' — 0

As expected, the equation of motion of the deuteron is the Klein-Gordon equation.
Using the Lorentz gauge, D¢/ = 0(=)0"¢4, = —igiV"¢q,, we could simplify the
Lagrangian density

]. * . v ¥ v\ * . v\ *

'Cd -5 [a# (gbg) 8u¢du + 10" (¢d) ggvugbdu — 0" (¢d) 6V¢du — 0" (¢d) ggVVdeu
. 2 s .
- gvVH (¢d> Za,u(bdl/ + (gf,l) VH <¢d> Vu(bdu + gvVH <¢d> Zau(bdu
— (g VA (6 Vi — (V3 (0" 0]

notting the following relations

a) — 0" (¢q) Oudap = —0" ((¢0)" Ovay) + (01)” 0,0" bay
= —0" ((6)" Ovba) — igu V" (8)" Db
= —0" ((¢2)" Oubau) — Oy (igsV" (64) bau) + igu V"0, (6)" Pap
= —0" ((¢2)" 0ubau) — 0y (igy V" ($2) bau) + igyV" (+igyV" (Par)”) Pau
= =0 ((65)" Oua) — Do (1G2V* ()" Bau) — (9)° VIV (Ga)" G

b) — 0" (6%)" g Viay = —0" (i (6)" 9™Viday) + i (85)" 97V, b
= —0" (i (¢5)" gVida) + (92)° ViV (6)" by

©) giV* (¢h)" i0,Gap = 0" (g2V* (¢7) idap) — 9oV 0, (04)" idbay
— 0" gV (85) idhan) + (90" VIV (da)” Pap-
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Defining the following Lagrangian density

1 |: - 8M (QSZ)* au¢du - Zau (gbg)* ggvugbdu + gUVM (¢d) iau¢du - (95)2 % (ﬁbg)* VZ/QZSdM]

2
= o[- 0 (@) 0.6 — 8 oV (02)" 0) — (6’ VIV (60

—o" (Z ¢a) g V(bdu) ( Zz) V.V (dg)" ¢ay + 0" (gdvu (¢)° i%)
+ (g VIV (ba)” bap — (90 V' (85) Vi u¢dy}

L=

= 5= 0 (00 2100) 00 (alV" ()" 00 = 0 (i (6" alVio) + 0 (V" (03" i)
= 3“% [ — ((65) D) — (1g5VY (Gap)” dan) — (i (65)" 92Vidan) + (g2VH (0) idba) ]

= 0"f,.

Looking at the original Lagrangian density we can see that it can be written in the
following manner

La= 5[0 (0" ua, + 10" (92)" 9iViba — gIV" (6)" 0,6,
+ (90" VH(00)" Vida — (M5)? (88)° bun| + 0y

=L+ 0"f,.

N)I»—t

By the action properties we obtain

S = /Edd4x = /£d4x+/8"fud4x
:/ﬁd‘lx—l—/fun“d‘lS
oS = 5/£dd4x = 5/£d4x+5/fun“d45
— 5/f,m“d45 =0

5825/£dd4x:5/£d4x

Thus, the original Lagrangian density in the Lorentz gauge can be written as
1 * . A U\* -
‘Cd = 5 [au (¢Z> 8ﬂ¢dv + 10" <¢d> gzcjlv,u(bdl/ - ggvu (‘bd) Zau(bdl/
(98" V(90 Vidaw — (M) (64)” . (A.3)
In the mean-field approximation, the deuteron takes the following form [5]
gbO — gb(k’)e_ik“xﬂ )
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Inserting this expression in the equation of motion we get
0=0"9.¢+ zg“V“ﬁ ¢ +iggV" 90 — (g)*ViV"o + (My)?
0 = (—ik")(=iky)o + 2ig, V" (—iky)d — (g)*ViV" o + (M7)*¢
0= ¢ [~k"ky +295V"ky — (93)°VV" + (M)?]
0= —w” +k + 295V, — (9)* V" + (M)*.

For zero temperature the deuteron particles will condensate in a state with k = 0
and by the mean-field approximation V* = 0. Thus, we obtain

— w205V — ()"Vo V" + (M7)* =0
(=) (W= g V") = (M7)* = |w = My + g;V°

A2 qfield
Starting from £,
Lo = 5 (D"6)" (1Du0) — 5(M:)*66
D" = i* — goVH
M; =M, —glo
Lo= 5 (080" = gVI6°) (10,0 — 03V,6) — 3 (M2
% (0067100 — 1 (040°) (~95Vib) — ISV 0" 0y + (42)PV,VH667) — S(M2)076

1
= S (000,041 (0°6) 62Vib — gV 0,0 + (62 60°) — S0
Applying the Euler-Lagrange equation
5 < 0L, ) 0L,
"\ 0(9.9%) d¢*

(=) 0, [0" ¢ +igg V! o] = —igiVF0,¢ + (90)* V. V") — (M3)*¢
(:) 8M8u¢ + 19, Vuauﬁb + 19, Vuauﬁb ( ) VMQZ) + (M*) ¢»=0

iD"iD,p = (10" — g“V“) (10" — g“V“) )
= —0"0,¢ — igiV" 0, — igi V" + (92)*V, Vo
— D'Dyu¢ = 80,0 +igy V40,0 +igi V! 9,0 — (97) V.V o
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0L, 0Ly, B o
o (5555 ) = 5oz [P+ a2l = 0]

As expected, the equation of motion for the « particle is the Klein-Gordon equation.

Taking ¢ = ¢(k)e *»*" as in the deuteron field we obtain
0= 0"0,¢ +iggV"0u0 +igy V" 0ut — (97)° ViV + (M7)*¢
0 = (—ik")(—iky) + 2ig; V" (=iku)¢ — (97)V, V"6 + (M7)*0
0= ¢ [~k'k, + 205V "k, — (95)* V. V" + (M)

0=—w?+k+ 200V ky — (99)°V,V* + (M)

for k = 0 and since V! = 0 we obtain
—w? 4295V % — (g0)*VoV? + (M)* = 0
(=) (w—goVO)? = (M})? = |w = M} + ggV°

A.3 o field

Applying (A.2) for the o field in (A.1) we obtain for each term

oL 1 0 0
= — _ 13 12
o0y <8(890)) Oy <89<7 (Oyo) 0" + 8“0—890 (0 cr))
1

0
89 <558MU + aﬂo_gueag—g (890'))

8@ (890' + 8@0’) = 8.9890'.

2
2
1
2

[ )
VR
Q;
Siis
N———
I
Q
e
/T\
N | =
=
e

SN
/N
.
=
=
5

RN RN -

(Mf + (gicr)2 - 2Migzcr> oW0Y

= (2 AN 2M@-gi) O; b
= (2Migi - (gi)Q U) b7 di
= gsM; ;i = gipi

where in the last step we use the relation p; = M;¢; (¢')" deduced in the Appendix
2.

S))
q

oL ) [P i T i
U L LA DI AR SRS

i=p,n,t,h i=a,d
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The equation of motion for the o field is

k (2
88%H4n0+20+-0 Z:gﬂw%+§:%m (A.4)

i=p,n,t,h i=a,d

A4 V' field

Applying (A.2) for the w* field to (A.1) we obtain for each term

oL 01 o0,
= ——gh* g"" it Q 1yt 0O V#
0.V~ Y (8(%) S a(%))
1 ! ! 89
N () T 7 % Hv Q ;L
27 9 (0aVs) M
— _lgﬂﬂ/guy/ d (a VV _ ayv ) 0 »
2 0 (0.Vs) " " re
1 U7 A Ve e
L g 5360 O
1 / ! / !
_ _5 (gau gﬁv QM’V’ _ gﬁu gow Qu’V’)
oL
(" = _80190{[3
=2 (5577)

8£ 8 1 2 4 2 2 2 i oy
SV Vv, VH A V., Vtb,.b" — Ly VEY;
8V5 8V5 ( + ggv ( M ) + gvgp 14 12 Z':;t’h gv,l/} 7# ’l/}
0L, oL,
avs vy

For the deuteron and « particles

g‘ﬁ/; % (i(0"67) 9,01 — 19,07 0" di + 2(9,)* V" $16})
% (i(ik*) gy — igo(—ik") + 2(g,)°V*) ¢idh;
% (—k*gh — gok™ + 2(g)°V*) ¢i;
gf/oi 5 (2809} + 2(6})V°) 0065 = b (o + giV") 6i0;

= _gll) ( gvvo) ¢ ¢ - _gvpl
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where i = o, d. The other terms are

1 1 / ' 1
i < m VV“) = —mZgh (8V“V' av“) “m2 gt (5“\/ +V5“)

* v, 9 oV, "oV, 2
1
zami(vhvﬁ):mgvﬁ
0 (L) - Lt (2 v 2 vy
s (24§gv(VHV)) g o, VvV V,V +6Vﬂ(VV)VV
) )
_ ¢4 I v :_ 4 v m
ot (50 GV wr) = fpaimiv (- 04
—gg4vv"vﬂ

. 6%(— > gi@/?mV“@/)i) =— Y g

i=p,n,t,h i=p,n,t,h

8V (Ag2g2V,V'b, b") = 2Ag§g§VﬁbH.b“

The equation of motion for V* is

1 i 7 '
aaQaﬂ + mzvﬁ + éggf;VUV”VB + 2Ag§givﬁbu.b“ = Z gf,@/w%i + Z GuPi

i=p,n,t,h i=a,d
A.5 Db field
Applying (A.2) for the b* field using (A.1) we obtain for each term
oL 0 gt 1
= o~ X Gt frin A )
9y - o (1
- Z Ep@/h‘%ﬂﬂ/}i + AUgngV Vub)\u 8[)“ <§mib)\ub’;>
= A
i=p,n,t,h
== Z %@/}ﬂ;ﬂﬂ/h‘ + Aygvng Vub)\u +m bAM
i=p,n,t,h

Yo, ((‘3(8”1)’;\)) =0 (BVM)\) = —0"Byx.
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The equation of motion for b" is

B, + mibu + Avgggivu\/“b“ = Z %zﬂi%ﬂ/}i (A.5)

i=p,n,t,h
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A6 1,1, v, and i, fields

Applying (A.2) for the ¢; (i = p,n.h,t) fields using (A.1) is straighfoward

7

[% (i@“ —gVr— %T.b“) — (MZ- — gia)} =0 (A.6)

for i =n,p,t, h.
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Appendix B

Energy density for the o and
deuteron

The Langrangian density of the deuteron and « are

La :% [au (05) 0utar + 10" (¢9)" 92Vudar — giVH (¢1) 10, a + (gg)Q VA () Vida

— (M7)* (6)" ban

Lo =5 (0"0"0.0 +1(0"0") gyViud — igh V9" 0ud + (90)* V.V d0™ — (M2)*679) .

wl»—‘

The deuteron Lagrangian density for each component of the deuteron field in the
Lorentz gauge is equal to the o Lagrangian density.

In the mean-field approximation, ¢/, is zero. Therefore, the energy density of both
is the same.

The energy-momentum tensor is given by

0L 0Ly
- 9" P WLy = 4 9" i z
Za Gy’ %O = 5 Y T 5@ 0
5 (6%@-6%;‘ +igiVIgO" ¢ + 01410 ¢ — gV 90" ;)
n“”

5~ (0707000 +1(9°67) 9,Vads — i,V 67001 + (9, VoV 0i0; — (M7)*6; 1)
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where i = a, d. Denoting ¢, = ¢4 = ¢ we get
1

E=T" =2 (0"00"¢" +igi V609" + 0"¢"0°6 — igi V6" 0"¢)
00

_ ”7 (a%s*aoqs + 7 0;6 41 (0°97) g Voo + 1 (7 67) gLV — igh VO o6

—igVI0" 056 + (911 VoV 06" + (gh)PViVI0s" — (M;)P6"0)

= 3 (605" +igsV oS + 6P — igh V)

— (05000 + 096700+ (2°6°) gios + 1 (P6") 91Vi0 — iglV 0" Oho
—iglVI0" 056 + (91 VoV 66" + (g1)PViVIos" — (M3)P6"0)

= (P50 D500 — i (096°) giVio+ gV 5050 — (6)PVOV 00"
~ (g)PV;V7 60" + (M)%6"0)

= & (RO(=ik) — (8 (—iky) — (gh)*VOVO + (M7)?) 60"

= 5 (@ R (VO (M) 66" = 5 (= (VP + (w0 giV)7) 66"
For a state with k = 0, we have

6= 1 (27 20V) 0" = (= gluV) 60" = (0~ V") 60"

To go further we need to calculate the current density that is given by

. N oL; oL;
:ZO@>a@wm>‘a@@WO

T =t [60"0 — 0 (6 6+ (8)" gV + ighV* (8)' )

= pa =g [6°0% — 8°6°6 + i6" gV 6 + igi V")
Z . iy . g *
=3 (—iky, — ik, + gV, + igiV,,) 0o
= (ku — g,Vi) 99
For a state of k = 0, we obtain

Pd = (k‘o - gf;Vo) ®o (¢0)* = (w - gfjvo) " = M/ pg*.

Therefore,

pi = M; ¢i¢;

Consequently, we have
& =wpi = (M + g, V°) pi = (M; — gio + g, V°) ps

60



Appendix C

Asymmetry energy

Defining the symmetry energy part of expression (3.11) as

; 1 1
Eam = D 903 Lipi — 5 (0) = Mugpgp (VOO + —5 / K dkinJ k2 + (M7)?
i=p,n i=p,n
) 7i L 500 2,0 0 , 1 Ko 5 )2
= Z ng3 ‘[3pi - 5 (mpbB + 2Avgvgp( ) b ) bB + F Z 0 kl dk:l k:i + (M ) :
i=p,n i=p,n

Using the rho meson equation of motion (3.4) we get

Eum =D, 9505 Tipi - Z 9 LspidS” + Ly / K2k /K2 + (M)?

i=p,n i=p,n i=p,n
LS ot 5 Y [ ki ry
i=p,n 1=p,n

Rewriting the rho meson equations of motion (3.4) as

Z 9pl3p:

i=p,n

where (m;)2 =m? 4+ 2A,g,95(V")?, we obtain

gsym = ! (Z gp]§p1> + — Z / dek \/ kf2 M*

2 1=p,n 1=p,n
1 K
g(gp (pp — pn) +—Z/ 2dki k2 + (M*)?
=
1gpp 2 2 *
:8 Z/ k2dk;\/ k2 4 (M*)

i=p,n

pp)/p- We know that the symmetry energy coefficient is given by

_ 1 (P(E/p)
Gm =9\ "o ),
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To calculate the ay,, first we need to define the Fermi momentum of neutron and
proton as a function of ¢t = (p, — p,)/p and the Fermi momentum at saturation

density [5]
k= <3ﬂ2p0)1/3.
2

Is it straightforward to obtain the following relations

Therefore the a,,,, is given by

|1 gp /
Asym = <at2 [_ ( p* p) 2 p7T2 E / k2d]€ ]i'Q ]\4>k ])
p

i=p,n

The first term gives

P |1 9P
Asym = 3 t
’ <3t2[ S(m)" 1)

1 g;po
—Q 2
5 (m;)
1 gk
=
121 (m3)

The second term gives

Asym =

N | —

<p7r2 Z/ ki dk; W)

i=p,n
1 & 2 2 * 1 . 2 2 %)2
5(@ {mg/ K2k /k2 + (M) ?/O K2 dky/k +(M)D
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For the proton’s part is

(8L v

. (8t2 Lnr? /kkadk\/kQ (M) D =

1 0k, 0 [* , 2
= =2 %Rk k2 4+ (M
o O akp/o 8

1 1
W (—gkfu — t)2/3) k2\/k2 + (M*)*

7T2 3k7f \/k‘2 2/3

</)7T?3 f\/]€2 l—t)2/3+(M*))

+ (M*)°

1/2 2

—— kb (kp(1 =) + (M “k

3,0 F2(F( )77+ ( )) 3F(
- k5 (1—t)_1/2

- 9pn? \/kQ £)2/3 + (M*)2

3w kY (1—t)~1/2

2k on W? £)%/3 4 (M*)?

R (1—1)"1/?

6 \/kQ £)2/3 + (M*)2

For the neutron’s part is

. (% {% /Ok dem/k2+(M*)2D

(5 e [ e 0]) =5

1 0k, 0 [* o [
:__n_ kQ M*
pr? Ot Ok, / Wk + (M)

p; (3kf(1+t) 2/3) kiy/ k2 + (M*)?

R (14125 + (M)?

(E#:?’ \/k2 1+1)2/3 4+ (M~) )

3,0

1 —~1/2 2
— Lol o) e
k% (141)"12

- 2
Ipm \/k;l%(l +1)2/3 4 (M*)?

_ 3n? kR

(14 ¢)~1/2

kR (14¢)71/2

s A
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The final result is

92 |1 ¢?p )
(e s [ )

1=p,n
_ 1 gk 1 k% (1—75)*1/2 _% (1)1
127 (m;)” 6\/k2 123 4 (M*)? 6\/ (L0234 (M) )
1 2k3 1
- 2
127 //{:2 M* /k2 M*
1 gky 1 k2.

+
2

Therefore the symmetry energy is givin by

ki L% ki
K2+ (Mo ) 127 (mp 4 200g3gn(VO)?)

a'sym - 6
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