Tertiary tectono-sedimentary characterisation of the Algarve margin (SW Iberia)

F.C. Lopes y P. Proença Cunha

Departamento de Ciências da Terra. Univ. Coimbra. Largo Marquês de Pombal, 3000-272 Coimbra (Portugal).
E-mails: fc@uc.pt - pcunha@uc.pt

ABSTRACT

The study of the Algarve margin on the basis of multichannel seismic profiles, tied with stratigraphic data from five exploration wells, illustrates the regional Cenozoic seismic stratigraphy and tectonics. Six seismic units (B to G), bounded by unconformities, form the Cenozoic cover that range in age from the early Paleogene to Quaternary. A stratigraphic correlation between the sedimentary record of the near Portuguese and Spanish areas is proposed, based on interpreted unconformities on seismic data considered to be related to main tectonic events that affected Iberia. This study provides a synthesis of the geodynamic evolution of the Gulf of Cadiz Portuguese margin in the context of the Africa-Eurasia plate boundary.

Key words: Algarve margin, basin analysis, seismic stratigraphy, tectonics, Tertiary

Caracterización tectono-sedimentaria del Terciario del margen del Algarve (suroeste de Iberia)

RESUMEN

El presente estudio del margen del Algarve basado en perfiles de sismica de multicanal, junto con los datos estratigráficos de cinco sondes de exploración, contribuye al conocimiento de la estratigrafía sísmica y de la tectónica de la región. Seis unidades sísmicas (desde B hasta G) constituyen el conjunto cenozoico y su edad varía desde el Paleoceno inferior hasta el Cuaternario. Se propone una correlación del registro sedimentario de áreas próximas españolas y portuguesas, basada en la existencia de discordancias presentes entre las unidades sísmicas. El estudio sintetiza la evolución de este margen del Golfo de Cádiz en el contexto del límite de placas entre África y Eurasia.

Palabras clave: análisis de cuencas, estratigrafía sísmica, margen del Algarve, tectónica, Terciario

Introduction

The Algarve margin, located in the southwestern margin of Iberia, forms, together with the Spanish southwestern margin, the northern margin of the Gulf of Cadiz (Fig. 1). Its complex geodynamic evolution, particulary during the Cenozoic, results from the convergence between Africa and Iberia along the eastern segment of the Azores-Gibraltar fracture zone (AGFZ) (transpressive context) and the westward migration of the front of the Gibraltar arc (e.g. Sanz de Galdeano, 1990; Ribeiro et al., 1990). From a detailed interpretation of multichannel seismic (MCS) profiles, and gravity and seismological analysis, the Cenozoic of the Algarve Continental margin has been studied, mainly in what concerns: i) its seismic stratigraphy, ii) its main structural features and iii) its tectono-sedimentary evolution in the context of the Africa-Eurasia plate boundary (Lopes and Cunha, 2000; Lopes, 2002).

Seismic units, main active structures and geologic evolution

Seven main seismic units were identified and their age has been interpreted on the basis of the five commercial wells drilled in the margin, namely from their biostratigraphic data (Imperador-1, 1976; Ruivo-1, 1975; Corvina-1, 1976; Algarve-1, 1982; Algarve-2, 1982), of the geometrical position in relation to the front of the Gibraltar Olistostrome and of the correlation to the near Portuguese and Spanish basins (Fig. 2). These units are bounded by six main reflectors, respectively designated from H₁ to H₆, that mark basinwide angular or erosional unconformities.

Unit A. This unit is the acoustic basement and comprises Hercynian basement and the Carnian to Lower Cretaceous sedimentary succession.

Unit B (late Campanian to middle Eocene). The Unit B is best developed in the eastern sector of the
Algarve margin. The geometries and seismic character of this unit reflect intense post-sedimentary deformations. Well data (Algarve-1 and Algarve-2) show that the upper part of the Unit B is composed of marine grey dolomites intercalated with marly limestones and micritic limestones. At the base of Unit B, marls and sandstones occur.

Unit C (upper Eocene to lowermost Miocene). Unit C is recognized in all the study area, overlying the acoustic basement. This unit displays a general onlap filling external configuration. The general geometry, seismic facies and well data (Imperador, Ruivo-1, Corvina and Algarve-1) documenting micritic limestones, suggest that this unit consists of marine deposits...
of a carbonate shelf developed over the entire margin. Seismic data show that the Late Eocene to Oligocene evolution of the Algarve margin is marked by an intense and widespread halokinesis activity. Salt and fault-controlled (thin-skinned) subsidence influenced the thickness and lateral distribution of Unit C.

Unit D (Aquitian to lower Tortonian). Unit D is a widespread wedge geometry filling depressions sequence. The seismic facies and its vertical variation suggest that Unit D has a carbonate character downwards, passing upwards to a more siliciclastic character. Moreover, this facies evolution seems do not occurs basinwards, where the carbonate character is predominant. Halokinesis was relatively moderate during the deposition of Unit D.

Unit E (upper Tortonian to Messinian). The begin of the deposition of Unit E is coeval to the emplacement of the Gibraltar Olistostrome in the area during middle Tortonian (Bonnin, et al., 1975; Lajat et al., 1975; Auzende et al., 1981; Malod, 1982; Sanz de Galdeano, 1990; Flinch et al., 1996). Well data (Imperador, Ruivo and Corvina) indicate that this unit is composed of slope sands and clays. From seismic profiles, three subunits can be identified: subunit E0 is the Gibraltar olistostrome; subunit E1 has been also only recognized in the southeastern Algarve margin, near the front of the olistostrome; subunit E2 is a widespread sequence overlaying, by an erosional unconformity, either subunits E0 and E1 (southeastern Algarve margin) or Unit D. During the deposition of Unit E, the generalized NW-SE compressional regi-

Fig. 2. Seismic stratigraphy, main unconformities and wells of the Algarve offshore. I: Imperador-1; R: Ruivo-1; C: Corvina-1; A1: Algarve-1; A2: Algarve-2. Wells lithologies: 1: sands; 2: clays; 3: silts; 4: limestones; 5: dolomites; 6: evaporites; 7: hiatus

Fig. 2. Estratigrafía sísmica, principales discordancias y sondeos en la zona de offshore del Algarve. I: Imperador-1; R: Ruivo-1; C: Corvina-1; A1: Algarve-1; A2: Algarve-2. Litologías de los sondeos: 1: arenas; 2: arcillas; 3: limos; 4: calizas; 5: dolomías; 6: evaporizas; 7: iato
me induced the tectonic inversion of most of the previous structures. In the eastern domain of the Algarve margin, thin-skinned reverse-thrust faults were reactivated and a N60°E axis trend depocentre began to develop. Widespread halokinesis also occurred, with reactivation of the previous salt structures and emplacement of some salt diapirs.

Unit F (Zanclean). The deposition of Unit F was characterized by a decreasing halokinesis. Salt diapirism is more located and piercing, forming small rim synclines. From the wells data, the main lithologies are clays and sands with interbedded sandy clays. Across the area, the underlying depocentres were progressively filled by this unit. On the other hand, a strong and generalized subsidence occurred south and southeastwards, forming a N60°E trending axis depocentre, probably caused by the NW-SE to NNW-SSE compressive regime. The thickness is variable and is controlled by the underlying fault and salt structures.

Unit G (Piacenzian to Recent). The Unit G is a widespread sequence located between the Unit F and the sea bottom. Its exhibits rather variable seismic facies both upwards in the stratigraphic sequence and laterally across the study area. All the wells show this unit consists of clays and sands, representing hemipelagic deposits, turbiditic sands and current-drift deposits. Detailed interpretation of the seismic profiles allowed the identification of three subunits: G1, G2 and G3. Basinwards, the deposition of the subunits G1 and G2 is marked by a strong subsidence along a roughly N60°E trending axis. Just before the deposition of the subunit G3 the decreasing halokinesis ends, most of the underlying structures become inactive and the depocentres were progressively filled.

Fig. 3. Map of the main cenozoic structures. PMFZ: Portimão-Monchique Fault Zone; ALFZ: Albufeira Fault Zone; SMQF: São Marcos-Quarteira Fault Zone; TF: thrust front; ITB: imbricated thrust belt. 1: syncline axis; 2: anticline axis; 3: strike-slip fault; 4: normal fault; 5: reversal normal fault; 6: thrust fault; 7: structural high; 8: evaporitic structure; 9: reversal half-graben; 10: ramp anticline

Fig. 3. Mapa de las principales estructuras cenozoicas. PMFZ: Zona de Falla de Portimão-Monchique; ALFZ: Zona de Falla de Albufeira; SMQF: Zona de Falla de São Marcos-Quarteira; TF: frente de cabalgamiento; 7: alto estructural; 8: estructura evaporítica; 9: semi-fosa inversa; 10: rampa anticlinal
During the Cenozoic, the geodynamic evolution of the Algarve margin have been controlled by three major tectonic structures (Figs. 3 to 6) (e.g. Lopes, 2002): a) the Portimão-Monchique fault zone (PMFZ) (striking N-S); b) the Albufeira fault zone (ALFZ) (striking N-S); c) the Sáo Marcos-Quarteira fault zone (SMQF) (striking N40°W) that separates three tectonic domains: the Western domain, with N-S and E-W predominant structures and, secondarily, NW-SE and NE-SW; the Central domain, with E-W predominant antiforms; and the Eastern domain, dominated by WSW-ENE, NW-SE, NE-SW, NNE-SSW and NNW-SSE structures. Evaporitic structures occur mainly in the Western and Eastern domains, related with major lineaments. Thrust systems are concentrated in the Eastern domain, and they generally exhibit a southward and southeastward vergence. This tectonic signature has been attributed to the proximity of the Betic orogen and the Gibraltar Olistostrome front, and to the SMQF that acts as a buttress fault to the westward propagation of the compression of the Gibraltar Arc. The tectonic style is thin-skinned, with the Upper Triassic to Hettangian evaporites acting as a detachment layer during the extensional and compressional stages (Ribeiro et al., 1990; Terrinha, 1998; Lopes, 2002). A persistent halokinetic activity occurred, with two major moments: a) syn-Unit C; b) syn-and post-Unit E. An increasing flexuration of the margin was identified, with spatial and temporal variation of the subsidence. The tectonic regime is considered as generally compressive, but some variations of the magnitude and of the orientation of the σ, were deduced. Two major compressive tectonic events have been recognised: i) immediately before the deposition of the Unit C (middle Eocene), causing uplift and a southward tilting of the margin, together with the development of folds and thrusts and is expressed by the H, intra-Eocene unconformity (see Fig. 2); ii) immediately before the deposition of the Unit E (middle Tortonian) and is expressed by the H, intra-Tortonian unconformity (see Fig. 2). The interpretation of the successive stress-fields is rendered difficult by the existence of tectonic sub-domains and the reactivation of evaporitic structures. As an exem-

Fig. 4. P-03 seismic profile and interpretation (see Fig. 3 for location). Cenozoic halokinetic is revealed by the occurrence of three evaporitic structures. The H5 reflector is an angular unconformity.

Fig. 4. Perfil sísmico P-03 y su interpretación (ver Fig. 3 para localización). La halocinesis cenozoica se pone de manifiesto por la aparición de tres estructuras evaporíticas. El reflector H5 es una discordancia angular.
Fig. 5. P-41 seismic profile and interpretation (see Fig. 3 for location). A thin-skinned syn-Unit C raft tectonics is dominant. TF: thrust front

Fig. 5. Perfil sísmico P-41 y su interpretación (ver Fig. 3 para localización). Durante la sedimentación de la Unidad C domina la tectónica salina con despegues de tipo raft-tectonic. TF: frente de cabalgamiento

Fig. 6. P-65 seismic profile and interpretation (see Fig. 3 for location). The central section is dominated by a thin-skinned imbricated thrust belt. The southern section is dominated by the Gibraltar Olistostrome front

Fig. 6. Perfil sísmico P-65 y su interpretación (ver Fig. 3 para localización). En el sector central domina un sistema de cabalgamientos imbricados con despegues. En la sección meridional domina el frente olistostórmico de Gibraltar
ple, during the intense and widespread halokinetic activity that characterized the Unit C deposition, a raft-tectonic style of deformation was predominant in the Eastern domain of the margin, resulting in a dis-tensive sector at the upper slope (Corvina area) and in a compressive sector at the base of the slope. These features provide an explanation for the existence of normal faults parallel to the axis of the folds and thrusts.

Correlation to the sedimentary record of near Portuguese and Spanish areas

The correlation between the onshore Cenozoic litho-stratigraphic units (Pais et al., 2000) and the offshore seismic units was proposed as Fig. 7. Subunit G3 corresponds to the "Faro-Quarteira Formation" (Uppermost Pleistocene to Holocene); subunit G2 corresponds to the "Morgadinho and Algoz deposits" (Lower Pleistocene); subunit G1 corresponds to the "Olhos de Água sands" (Piacenzian); Unit F corresponds to the "Galvana conglomerate" (Zanclean); Unit E corresponds to the "Caçela Formation" (Upper Tortonian to Messinian); uppermost of Unit D corresponds to the "Fine sands and sandstones with glau-conite" (Lower Tortonian); lower and middle parts of Unit D corresponds to the "Lagos-Portimão Formation" (Lower Burdigalian to Upper Serravallian). Unit C do not has onshore equivalent; Unit B corresponds to the "Guia conglomerate" (possibly Upper Cretaceous to Lower Paleogene).

The seismic unconformities identified in the Algarve margin were also correlated with the main

![Diagram](image-url)

Fig. 7. Synthesis of the tectono-sedimentary features of the Algarve margin. Cenozoic seismic units and unconformities are correlated to the onshore lithostratigraphic units (Pais et al., 2000), to the main sedimentary unconformities established in central Portugal (Cunha, 1992a,b) and to the Spanish seismic units (Maldonado et al., 1999). Tectonic events and relative motion of Iberia and Africa are correlated with the development of the seismic units (modified from Lopes, 2002)

Fig. 7. Síntesis de los rasgos tecto-sedimentarios del margen del Algarve. Las unidades sísmicas y discordancias cenozoicas se correlacionan con las unidades litoestratigráficas de onshore (Pais et al., 2000), con las principales discordancias sedimentarias establecidas en Portugal central (Cunha, 1992a, b) y con las unidades sísmicas españolas (Maldonado et al., 1999). Los eventos tectónicos y el movimiento relativo entre Iberia y África se correlacionan con el desarrollo de las unidades sísmicas (modifico de Lopes, 2002)
sedimentary unconformities that bound the allostrati-
graphic Tertiary units (SLD's) established in central
Portugal (Cunha, 1992a,b), namely (Fig. 7): H correlates
to the base of SLD13 (Piacenzian); Hc correlates to the
base of SLD12 (Late Massinian to Zanclean); Hb cor-
relates to the base of SLD11 (Upper Tortonian); Hc
relates to the base of SLD9 (Aquitanian); Hb corre-
lates to the base of SLD7 (Middle Eocene); Hc corre-
lates to the base of SLD5 (Late Campanian).

Finally, the comparative study between the
Algarve and Spanish continental margins of the Gulf
of Cadiz, from the intersection between a Portuguese
seismic reflection profile (P-65) and a Spanish seismic
reflection profile (HE-91-3-Line 12), has enabled corre-
lation between the Cenozoic seismic units identified
in both margins (Spanish seismic units were propo-
sed by Maldonado et al., 1999) (Fig. 7): subunits G2
and G3 corresponds to the unit P/O (Upper Pliocene-
Quaternary); subunit G1 corresponds to the unit P2
(Upper Pliocene); Unit F corresponds to Unit P1
(Lower Pliocene); subunit E2 corresponds to the Unit
M3 (Messinian); subunit E1 corresponds to the Unit
M2 (Upper Tortonian); Unit D corresponds to the Unit
M1 (Lower Langhian-Lower Tortonian); Unit C corre-
ponds to the Unit UO-LM (Upper Eocene-Lower
Miocene); Unit B corresponds to the Unit UK-UE
(Upper Cretaceous-Middle Eocene). It was also possi-
bile to propose a Cenozoic structural map of the nor-
thern border of the Gulf of Cadiz, integrating the
Algarve and the Spanish margins (Fig. 8).

Conclusions

The Cenozoic seismic units identified in the Algarve
margin, deformed by active tectonic structures and
bounded by unconformities related to the tectonic
events that affected the southwestern border of
Iberia, allowed the interpretation of the regional tec-
tono-sedimentary context. These units can be corre-
lated to the sedimentary records of the near areas
and integrated in a more complete model for the evolu-
tion of the complex Azores-Gibraltar fracture zone.
However, interpretation of the spatial and temporal
variations of the stress-field is complicated by the
existence of tectonic sub-domains (bounded by
important fault zones), expressed by different com-
pressive and distensive block interactions, and by the

![Image](image_url)

Fig. 8. Cenozoic structural map of the northern border of the Gulf of Cadiz, integrating the Algarve and the Spanish margins (modified from Lopes, 2002). 1: syncline axis; 2: anticline axis; 3: normal fault; 4: reverse normal fault; 5: thrust fault; 6: evaporitic structure; 7: structural high; 8: reversal half-graben

Fig. 8. Mapa estructural cenozoico del margen norte del Golfo de Cádiz, integrando los márgenes español y del Algarve (modificado de Lopes, 2002). 1: eje sincinal; 2: eje anticinal; 3: falla normal; 4: falla normal-inversa; 5: falla-cabalgamiento; 6: estructura evaporítica; 7: alto estructural; 8: semi-fosa inversa
reactivation of the evaporitic structures. This coexistence during the Cenozoic, but especially during the Miocene, also occurs in other regions of the Gulf of Cadiz. It is considered a consequence of: i) the horizontal migration of evaporites and implantation of a raft structural style; ii) the interaction between the convergence of Africa and Eurasia along the AGFZ (transpressive context) and the westward migration of the mountain front of the Gibraltar Arc, which causes a radial trajectory of σ around the arc.

Acknowledgments

This work is part of the project POCTI/CTA/38659/2001, approved by the Fundação para a Ciência e Tecnologia and POCTI, sponsored by the FEDER. This study has also been supported by the Centro de Geociências da Univ. Coimbra. The authors would like to acknowledge the permission conceded by NPEP (Núcleo para a Pesquisa e Prospeção de Petróleo) for the use of the data included in this paper. We thank Tiago Alves for the english review of the manuscript.

References

Recibido: enero 2004
Aceptado: julio 2004