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a b s t r a c t

The stratigraphy of the western Portugal on-shore Cretaceous record (western Iberian margin, Lusitanian
Basin) is described, including formal units and a selection of informal units prevailing in the geological
literature. This paper is a synthesis based on a review of previous works, but with an innovative emphasis
on the interpretation of eustatic and tectonic controls. The sedimentary record is dominated by
siliciclastics and comprises fluvial and deltaic coastal marine siliciclastic systems, as well as extensive
deposits of shallow marine carbonate platforms, both open and rimmed. Several regional unconformities
and transgressive/regressive cycles are identified and the allogenic controls interpreted, namely the
geodynamic events along the boundaries of the Iberian plate. Above the Berriasian deposits belonging to
the Upper Jurassic cycle, the five main unconformity-bounded units are: (1) upper Berriasian–lower
Barremian, (2) upper Barremian–lower Aptian, (3) upper Aptian–uppermost Cenomanian, (4) mid lower
Turonian–lower Campanian and (5) middle Campanian–Maastrichtian. These units show transgressive
peaks in the lower Hauterivian, lower Aptian, base of the upper Cenomanian and mid lower Turonian.
The general trend of the Lower Cretaceous reflects the transition from late rifting to passive margin, with
the last break-up unconformity dated as late Aptian. The Lusitanian Basin achieved full infill by the
Cenomanian, when a large carbonate platform extended far inland. The later deposits were preserved
only in the northern sector and the accompanying unconformities reflect transpressive intraplate
stresses generated in boundaries of the plate with Africa and Eurasia. With very low accommodation
being created throughout the Late Cretaceous, fluvial deposits were dominant, including a few marine
levels related with eustatic rises in the early Turonian, the Coniacian, the early Campanian and the
Maastrichtian.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction and setting

The break-up of Pangea developed a complex NNE-oriented
system of graben structures in the western margin of Iberia, known
as Lusitanian Basin and located between the Hercynian mainland
and a set of basement horsts currently represented by the Berlengas
Islands (Fig. 1). This structural basin reached its post-rifting stage
during the Kimmeridgian and became infilled during Cenomanian
times. The resulting passive margin had a simple geometry and the
sedimentary systems linked directly the emerged continent with
the deep margin.

During the Cretaceous the palaeogeographic position of the
western Iberian margin was around 30� N (Stampfli and Borel,
2002), with the palaeontological assemblages reflecting a domi-
nant Tethyan influence. This influence fades due to the closure of

the Tethys. The palaeontological record reveals increasing Boreal
influence during the Late Cretaceous in response to the northward
propagation of the Atlantic opening.

The goal of this work is to present an updated lithostratigraphy
of the Cretaceous sedimentary record (Fig. 2), including 2nd order
transgressive-regressive cycles separated by basin-wide uncon
formities, and to propose interpretations on the allogenic controls
of the regional stratigraphic evolution.

Until the Aptian, the continental break-up and opening of the
Atlantic progressed northward in discrete episodes along three
sectors of the western Iberian margin (Pinheiro et al., 1996), named
after the adjacent abyssal plains as Galicia, Iberia and Tagus (Fig. 3).
Later, the break-up continued eastward of the Galicia triple-junc-
tion along the Bay of Biscay. The extensional progression resulted in
counter-clockwise rotation of Iberia, allowing for transpressive
interactions with Eurasia and Africa reflected in the western Iberian
margin by intraplate transmission.

The Western Iberia-Newfoundland rifting model and timing is
currently under debate (Russell and Whitmarsh, 2003; Shipboard
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Scientific Party, 2004). The discussion is focused on the nature of
the transitional crust, and some authors (Srivastava et al., 2000;
Sibuet et al., 2004) consider it as slowly accreted oceanic crust,
implying an age of rifting and onset of seafloor spreading older than
previously thought. However, the same authors admitted recently
(Srivastava et al., 2005) that the transitional crust is in essence
composed of tectonically exposed and later serpentinized mantle
peridotites, following the Brun and Beslier (1996) model.

2. Methological remarks and data sources

Fig. 2 presents the above mentioned synthesis for the on-shore
record, including formal units and a selection of informal units
prevailing in the geological literature. The synthesis presented
below is mainly based on Rey (1992, 1993); Cunha and Pena dos
Reis (1995); Pena dos Reis (2000); Pena dos Reis et al. (2000); Dinis
et al. (2002); Rey et al. (2003, 2006); Rey and Dinis (2004); and
Callapez (2004).

The major unconformities and cycles fit well with those recog-
nized in several West-European basins (Jacquin et al., 1998), and we
admit that they can be related to 2nd order eustatic cycles and/or
discrete tectonic episodes within the geodynamic motion of Iberia.
The 3rd order sequences identified in the Valanginian-lower Aptian
and in the Albian strongly resemble in number and age those
described from other European basins (Jacquin et al., 1998; Rey

et al., 2003), namely the Paris Basin (Rusciadelli, 1999), and there-
fore should be considered as eustatically driven.

In general, two major domains can be distinguished in the on-
shore. South of the Caldas da Rainha parallel (Fig. 1) a domain with
a relatively complete Berriasian-middle Cenomanian record (Fig. 2)
had its depocentre located on the Lisbon peninsula, south of Eri-
ceira. In the northern areas of the basin, over a Valanginian-Aptian
p.p. hiatus, the Cretaceous stratigraphic record is mainly post
Aptian, including extensive middle Cenomanian to lower Turonian
platform carbonates, and Turonian to Maastrichtian marine and
fluvial siliciclastics.

3. Lithostratigraphy, unconformities and allogenic controls

3.1. Berriasian

The lowermost Cretaceous deposits are included in the Upper
Jurassic cycle, which is characterized by the progradation of alluvial
systems over the basin axis and the reduction of the marine and
brackish sedimentation area. The biostratigraphic age assignments
are poorly constrained due to the nature of the deposits, but the use
of detailed sequential analysis allowed the identification of
Berriasian deposits (Pena dos Reis et al., 2000). In the depocentre
region west of Lisbon, the Farta Pão Formation corresponds to
a brackish carbonate platform with lituolids, charophytes, and
ostracodes (‘‘purbeckian’’ facies of Ramalho, 1971, and Rey, 1972).
This domain is surrounded to the N, W, and S by costal plains where
mixed carbonate-siliciclastic deposition built the Porto da Calada
Formation and the top of the Freixial Formation (Leinfelder, 1986).
In proximal areas to the north and the east, the coarse arkosic
deposits of the Serreira Formation and the top of both the Lourinhã
and Bombarral Formations record fluvial systems.

In the northern sector, presumed Berriasian fluvial to deltaic
deposits, with rare carbonate intercalations, constitute the top of
the ‘‘Upper sandstone with plants and dinosaurs’’ and the Boa
Viagem sandstone (Bernardes, 1992; Pena dos Reis et al., 1996).
Brackish lagoonal deposits (mainly marls and mudstones) occur-
ring along a NNW-trending axis have been identified in the
offshore around 10 km west of Figueira da Foz (Alves et al., 2002)
and can be correlated with the top of the Alcobaça beds.

3.2. Late Berriasian unconformity

In most of the on-shore record, the Late Berriasian unconformity
is marked by substantial clastic input and an extensive erosion
surface, revealing a marginal uplift. The coeval increase of sub-
sidence verified in the depocentre west of Lisbon can be explained
by a regional tilting towards the extensional axis. It can be related to
an extensional event with expression in the whole western Iberian
margin (Fig. 3), previous to the creation of oceanic crust in the
Tagus sector (Pinheiro et al., 1992), matching the initiation of
mantle exhumation in the Iberia sector (Dean et al., 2000), as well
as the rifting climax in the northern part of the Iberia sector
(Wilson et al., 2001) and in the Galicia sector (Reston, 2005).

3.3. Valanginian – lower Barremian

Deposited under a stable tectonic regime, the Valanginian-lower
Barremian T-R cycle is preserved only in the southern domain. After
the initial fluvial expansion corresponding to the coarse and arkosic
Vale de Lobos Formation, the subtidal Serradão Formation indicates
the onset of a transgressive open carbonate platform in the
southern depocentre. Due to a rapid rise in relative sea-level, the
areas of Cascais, Sintra, and the Espichel Cape become an open
shelf, with water depth reaching 40 to 50 m at the Valanginian-
Hauterivian boundary. Accompanied by a sudden increase in

Fig. 1. Location of the studied area displaying the main localities and the most relevant
tectonic structures interpreted as active during all or part of the Cretaceous (namely
the faults with significant diapiric activity). In the approximate location of Fig. 2, note
that the northern extreme includes a proximal-distal Lousã-Figueira da Foz branch and
the axis of the Late Cretaceous Aveiro-Mira gulf.
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cephalopods abundance, the initially calcareous sedimentation was
replaced by marls (Guia and Maceira Formations). The sea
progressed widely towards the north and to the east, since the tidal
flats of the São Lourenço and Santa Susana Formations reached the
vicinities of Torres Vedras and Alenquer (Fig. 4).

A maximum sea-level rise at the Valanginian–Hauterivian
boundary is expressed in the depocentre by condensed successions
and the maximum flooding during the early Hauterivian by the
widespread occurrence of reefs of the Cabo Raso Formation
consisting of dolomitic limestone with scleractinian corals and

stromatoporoids. Then, the shoreline reaches the Torres Vedras
vicinity (Fig. 4). Subsequently, the gradual infill of the basin resulted
from the progradation of depositional systems. In the Cascais and
Sintra areas, the build-ups are overlain by limestone with rudists
and dasycladacean algae of the Guincho Formation, characterising
the inner environment of a reef-rimmed platform.

Near Ericeira (Praia dos Coxos, Ribamar, and Ribeira de Ilhas
Formations) and in the Arrábida hills (Ladeira, Rochadouro, Areia
do Mastro, Papo Seco, and Boca do Chapim Formations), subtidal
inner marls and limestone with rudists and echinoids are

Fig. 2. Synthetic lithostratigraphic chart of the Cretaceous of the western Portuguese margin. Informal units within parenthesis. Triangles: blue - transgressive phase; green -
regressive phase. UBS: unconformity bounded sequences after Cunha and Pena dos Reis (1995).

Fig. 3. Geodynamic setting of Iberia during the Cretaceous, showing the break-up situation in the latest Aptian. 1 to 5: western and northern Iberian margins rifting segments.

J.L. Dinis et al. / Cretaceous Research 29 (2008) 772–780774
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Fig. 4. Palaeogeographic maps of depositional environments for selected times of the Early Cretaceous (modified after Rey et al., 2006). There is no depositional record for those times in the northern domain of the Lusitanian Basin.

J.L.D
inis

et
al./

Cretaceous
Research

29
(2008)

772–780
775



Author's personal copy

interbedded with lagoonal dolostone and sandstone. These units
reflect minor sea-level changes, but an important transgressive
peak is located near the Hauterivian-Barremian boundary. The
maximum flooding is marked in Ericeira and in the north face of the
Espichel Cape by more distal marine environments, present in all
the system tracts (maximal marine conditions were mid platform),
in contrast with the lagoonal to intertidal conditions dominating
the deposition of the underlying sequences.

Eastwards and northwards, the paralic and littoral plains of the
Lugar d’Além Formation were replaced by braided alluvial systems
of the Fonte Grada Formation.

3.4. Barremian unconformity

An important (mid?) Barremian regression creates a basin-wide
emersion surface, marked by coarse fluvial siliciclastics overlaying
a karstified surface in the depocentre area west of Lisbon. The
regression can be assigned to the regional uplift created by the
onset of seafloor spreading in the Iberia sector (Whitmarsh and
Wallace, 2001; Shillington et al., 2004), in which the oldest iden-
tified magnetic anomaly is M3 (earliest late Barremian; Whitmarsh
et al., 1996). In the Galicia sector, it seems coeval with the beginning
of mantle exhumation and with the last pulse of continental ex-
tension in the Galicia Interior Basin and in the southern limit of the
sector, where is marked by an unconformity between the lower
Barremian and the upper Barremian (Sibuet et al., 1978). In the
Newfoundland conjugate Jeanne d’Arc Basin, a phase of intense
extension and subsidence starts in the late Barremian (Driscoll
et al., 1995). A major Barremian unconformity in the southern Iberia
margin is interpreted as recording a compressional event
(Maldonado et al., 1999), which is compatible with the increasing
rate of Atlantic opening.

3.5. Upper Barremian-lower Aptian

Following the emersion, the upper Barremian in the depocentre
of the basin is composed by fine clastics and dolostone of the
Regatão Formation, deposited in inter to supratidal coastal plains
and estuaries. However, large parts of this unit as well as of the
deposits of the remaining southern sector (lower member of the
Almargem Formation) were accumulated in fluvial systems drain-
ing the Hercynian mainland (Fig. 4). A sea-level rise allowed the
onset of a rimmed carbonate platform environment in the region
from the Arrábida hills to Ericeira: the Crismina Formation. In this
unit, inner platform limestone and marls (Cobre Member) are
followed by build-ups with corals and rudists associated with
barrier grainstones (Ponta Alta Member; Fig. 4), culminating in the
deposition of oyster-rich regressive marls representing a protected
lagoonal setting (Praia da Lagoa Member, lower Aptian, Heimhofer
et al., 2005), scarcely preserved in thickness and area due to erosion
during the Late Aptian tectonic event.

Showing reduced subsidence, the upper Barremian-lower
Aptian defines a distinct transgressive-regressive cycle. Its maximal
transgression, with an extension smaller than the previous major
sequence, occurred in the mid early Aptian (Deshayesites deshayesi
Zone; Rey et al., 2003). This evolution was recorded in several other
European basins (Jacquin et al., 1998) and was most probably
contemporary with the global OAE1 (ocean anoxic event), identi-
fied in the Galicia offshore (Tremolada et al., 2006).

3.6. Late Aptian unconformity

Around the Aptian-Albian transition an important tectonic
event created a basinward erosional surface, covered by coarse
fluvial deposits which overlay tilted Mesozoic units and the
Hercynian basement. The unconformity was probably caused by

the continental break-up and initiation of seafloor spreading in the
Galicia sector (e.g. Schärer et al., 2000), an event showing up clearly
in the magnetic anomalies around (at least south and E) the Galicia
triple-junction (Sibuet et al., 2004). It separates the transitional
from the alkaline magmatic cycles in Iberia, namely in Portugal and
Catalonia, considered as postdating the main plate extension and
rotation (Martins, 1991; Solé et al., 2003). This break-up
unconformity was also identified in offshore boreholes in Galicia,
both in the deep margin (Sibuet et al., 1978; Mauffret and
Montadert, 1988; Reston, 2005) and the Interior Basin (Murillas
et al., 1990), as well as in the conjugate Newfoundland margin
(Foster and Robinson, 1993; Driscoll et al., 1995; Shipboard
Scientific Party, 2004). In many Western Europe basins, in both
Tethyan and Boreal realms, late (possibly latest) Aptian
unconformities were recognized, including several linked with key
geodynamic changes (Jacquin et al., 1998).

In the Galicia and Newfoundland offshore wells a late Aptian to
early Albian age was assigned to the deposits that overlay the
break-up unconformity (Graciansky et al., 1978; Foster and
Robinson, 1993; Shipboard Scientific Party, 2004). In the on-shore
of the western Iberia margin, no fossils with precise chronostrati-
graphical significance were identified in the lower part of the
Rodı́zio and Figueira da Foz Formations, were the oldest accurate
biostratigraphic (palynological) data points to the early Albian
(Heimhofer et al., 2005, 2007). Such data do not exclude a late
Aptian age for the deposits directly over the main unconformity.

3.7. Upper Aptian-upper Cenomanian

Following the late Aptian tectonic event, the Rodı́zio Formation
and the Figueira da Foz Formation (equivalent to the upper member
of the Almargem Formation) correspond to the fast progradation of
braided fluvial systems covering the entire studied region (Fig. 5).
In the northern sector, the Figueira da Foz Formation includes
several members defined by the 3D distribution of clastic facies and
some marine intercalations. Along the eastern border of the basin,
the Lomba do Alveite Formation displays onlap geometry, over-
laying Palaeozoic and Proterozoic meta-sediments. Due to the
different resistance of the basement to weathering and erosion,
narrow NW-SE-trending Palaeozoic synclines produced quartzitic
ridges, whereas the large anticlines cores composed of slates and
metagreywakes developed flat valleys. Because the Lomba do
Alveite Formation onlaps these quartzite inselbergs a long period of
general chemical weathering followed by erosion, occurring in
Early to Middle Jurassic and Early Cretaceous times, has been
inferred (Cunha and Pena dos Reis, 1995). The Lomba do Alveite
Formation comprises alluvial plain sediments with a composition
indicating a source area dominated by granites and phylites; the
quartzite inselbergs provided the larger extraclasts.

During the Albian, the long-term eustatic rise initiated the
diachronic establishment of a carbonate platform in the southern
domain. The uppermost lower and upper Albian carbonate record is
known as the Galé Formation. This unit includes nerineid-rich
sandy shoals and fringes of rudist build-ups (Ponta da Galé Mem-
ber) as well as inner lagoonal marly deposits (Água Doce Member).
These deposits are linked with siliciclastics in the northeast, rep-
resenting large fluvial systems draining to SW.

Three major T-R cycles (2nd to 3rd order) can be defined in the
upper Aptian-Albian interval: (1) upper Aptian/lower Albian, (2)
middle Albian/upper Albian p.p., and (3) uppermost Albian
(Vraconian). The lower one reflects a latest Aptian (Grötsch et al.,
1998) or lower Aptian (Jacquin et al., 1998) eustatic maximum, the
middle one was probably triggered by the onset of oceanic crust in
the northern margin of Galicia (Malod and Mauffret, 1990) and/or
an eustatic drop (Haq et al., 1988; Ruffell, 1991; Grötsch et al., 1998),
and the base of the upper cycle is possibly linked with the onset of

J.L. Dinis et al. / Cretaceous Research 29 (2008) 772–780776
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Fig. 5. Palaeogeographic maps of depositional environments for selected times of the late Early and Late Cretaceous (modified after Rey et al., 2006).
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oceanic crust production in the eastern Bay of Biscay, inducing
transpression in the Pyrenean domain.

The Albian/Cenomanian transition corresponds to a discontinu-
ity which is connected to a regressive episode within the carbonate
platform. It can be related with increase in compression with Africa
(Martı́n-Chivelet, 1995) and transpression in the Pyrenees (Olivet,
1996; Canérot et al., 2005). It was an ample and widespread sea-
level drop recognized in the Boreal and the Tethyan main cycles
(R15 in Jacquin et al., 1998), possibly eustatic considering its
recognition in the cratonic Moscow depression (Sahagian et al.,
1996; Immenhauser, 2005). After Uchupi and Emery (1991) this
regression is coeval with the onset of oceanic crust north of the
Galicia triple-junction, recognized as the break-up unconformity in
the Porcupine Basin (Sinclair, 1995) and the north of the Jeanne
d’Arc Basin (Driscoll et al., 1995).

The lithostratigraphy and the geological maps with Albian-
middle Cenomanian deposits of the southern sector are based in
a set of units defined by Choffat (1885, 1886, 1900): (1) the
‘‘Knemiceras uhligi level’’, (2) the ‘‘Polyconites subverneuili level’’, (3)
the ‘‘Exogyra pseudafricana level’’ [Ilymatogyra], (4) the ‘‘Pterocera
incerta level’’ [Harpagodes], (5) the ‘‘Neolobites vibrayeanus beds’’
and (6) the ‘‘rudists limestone’’ (systematic update sensu Callapez,
2003). The four lower ones were grouped as ‘‘Bellasiano’’ by Choffat
(1886). Recently, the two lower levels define, respectively, the Água
Doce and Ponta da Galé Members of the Galé Formation (Rey, 1992).
The units (3) and (4) compose the Caneças Formation and the upper
two levels correspond to the Bica Formation (Rey et al., 2006).

The Cenomanian T-R cycle: within the long-term eustatic rise
(Fig. 5) the maximal Cretaceous transgression in the basin was
during the initial upper Cenomanian (Calycoceras guerangeri Zone;
Berthou, 1984; Callapez, 2003). Afterward, individualization of
open platform domains with ammonite facies took place in the
northern sector (Baixo Mondego region; Choffat, 1900; Soares,
1980; Lauverjat, 1982; Fig. 5). Southwards, there was a rimmed
platform with extensive calcarenitic shoals, a coral reef complex
(Callapez, 2004) and fringes of rudist build-ups. Local uplift
movements along the main diapiric axis also contributed to the
diversification of the palaeogeography, particularly in the northern
and central domains of the platform (Callapez, 2003).

3.8. Turonian-lower Campanian

Marked by a hiatus and a karstified surface in the carbonate
succession, the Cenomanian-Turonian transition exhibits an
unconformity (Soares, 1980; Berthou, 1984; Callapez, 2003) which
is out of phase with the long-term eustatic trend, possibly due to
increased compression in both, the Pyrenean and the Betic
domains. After a brief resume of carbonate deposition, the Turo-
nian-middle Campanian long-term regressive evolution is recorded
exclusively in the northern domain, clearly shown by the Picadouro
Formation succeeding the Choisa Formation. An initial fluvial pro-
gradation trend, mainly represented by the distal alluvial plain
micaceous sandstones of the Choisa Formation and its coastal
marine equivalent, the Lousões Formation, was most likely stopped
by a geographically restricted shallow marine episode (Siadouro
sandstone member, probably of Coniacian age; Gutierrez and Lau-
verjat, 1978). This short marine incursion was followed by signifi-
cant aggradation, leading to the accumulation of about 130 m of
alluvial siliciclastics (maximal thickness of the Picadouro Formation
in the Lousã area). The subsequent fluvial incision reached around
100 m in depth and was followed by another limited shallow ma-
rine episode (the ‘‘Mira conglomerate,’’ uppermost lower Campa-
nian). The top of the Picadouro Formation exhibits a thick silcrete,
indicating long-term landscape stability and tropical weathering,
probably caused by very low and decreasing subsidence during the
early Campanian.

The reduction of the counterclockwise rotation of Iberia (Malod,
1989) from the Turonian onwards preceded the establishment of
compression along the northern boundary of the plate, marked in
its western margin by the top of the UBS4b (Fig. 2; Cunha and Pena
dos Reis, 1995).

3.9. Middle Campanian-Maastrichtian tectonic framework

A kinematic change in the northern boundary of Iberia is
thought to have deeply modified the overall tectonic framework.
Ocean crust formation in the Bay of Biscay ended by anomaly A33o
(Sibuet and Ryan, 1979; Malod, 1989; Srivastava et al., 2005) of early
to middle Campanian age (ca. 80–83 Ma; Gradstein and Ogg, 2004).
At the same time, Iberia accreted to Africa and the two plates began
to move together (Galdeano et al., 1989; Srivastava et al., 1990;
Sibuet and Collette, 1991; Maldonado et al., 1999).

The direction of convergence in the Pyrenees suffered a deep
change, namely decreasing the sinister transpressive motion and
increasing the N-S compression (Olivet, 1996; Sibuet et al., 2004),
including active subduction (Sibuet and Le Pichon, 1971; Grimaud
et al., 1982; Sibuet et al., 2004). As a consequence, a NNW-SSE-
oriented maximum compression was established (N-S cf.
Mougenot, 1981; Lepvrier and Mougenot, 1984; Gräfe and
Wiedmann, 1993). The development of W-E directed intraplate
tension is likely as a minor horizontal stress in the overall
compression focused in the Bay of Biscay, as well as linked with the
persistence of ocean spreading west of Iberia.

In the western margin of Iberia, the deposition of the UBS5
sequence was under this geodynamic configuration. Such a stress
field may have stimulated the uplift of fault-related anticlines with
evaporite cores, documented by erosion of the Cretaceous and
sometimes Jurassic units in Nazaré, Vale Furado (Paredes de Vitó-
ria), and Leiria–Monte Real as well as the reactivation of some
parallel structures, like the N-S Arunca–Montemor-o-Velho fault.
During this period the intrusion of the Sines and Monchique
alkaline plutons occurred, as well as the main phase of the Sintra
massif emplacement (e.g. Ribeiro et al., 1979; Abranches and
Canilho, 1981), probably by the reactivation of ENE directed faults
(González-Clavijo and Valadares, 2003) along a deep-seated dextral
major strike-slip fault (Terrinha, 1998; Gomes and Pereira, 2004).
Some upper Campanian interstratified basic alkaline volcanism is
also considered as associated with the tensional component.

3.10. Middle Campanian-Maastrichtian deposits

Important palaeogeographic changes resulted from the
diapirism along N-S-trending faults and vertical displacement
along NE-SW-trending faults such as the Lousã one, probably with
a left-lateral transpressive component and uplift of the southern
block (Fig. 5). This resulted in a direction of the fluvial drainage to
NW, as recorded by the Taveiro Formation (Pena dos Reis, 1983).

The upper Cretaceous sediments of the UBS5 overlie the thick
regional silcrete on the top of UBS4, but along the diapirs they cover
a deeply erosional angular unconformity. With a maximum thick-
ness around 200 m onshore, the sequence includes mostly
yellowish quartz sandstone and reddish and brown lutites with
nodular calcareous crusts (Taveiro Formation). Around the diapirs,
the interfingering coarse clastics and lutitic facies can be inter-
preted as deposited in alluvial fans, including frequent mud flow
beds, lakes, and highly sinuous rivers. The unit displays a general
fining upward trend, although the architecture can be rather
complex.

In areas distant from the narrow diapiric anticlines, the Taveiro
Formation facies associations record a fluvial meandering system
draining towards the NW, grading distally into lagoonal and re-
stricted shallow marine deposits, with barrier-island facies in the
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Aveiro region (the Aveiro Formation; Bernardes and Corrochano,
1987). Its offshore equivalents (Fig. 5) are the very shallow marine
fine clastics and dolomites of the upper Campanian-Maastrichtian
Dourada Formation (90 m thick). This unit consists of grey-brown,
dolomite cemented quartzarenites grading to sandy crystalline
dolostones with intercalations of grey to light brown marl and
occasionally sandy limestone in the lower part (Witt, 1977).

4. Concluding remarks

The Cretaceous deposits of the Portuguese western margin
reflect two main phases. The first phase (Berriasian – Cenomanian)
corresponds to the total infill of the Lusitanian Basin during the late
rifting stage, and is composed by three transgressive-regressive
cycles (and the upper part of a cycle bellow) separated by
unconformities related with the northward propagation of the At-
lantic opening. The depocentre during this phase was located on the
Lisbon peninsula, mainly composed of marine platform carbonates,
fringed by transitional mixed deposits linked with continental sil-
iciclastics; the northern sector includes a large hiatus due to uplift,
probably cumulating those three basin-wide unconformities. The
identified cycles were also controlled by eustasy, especially the
minor ones. The establishment of a large Cenomanian carbonate
platform was a turning interval towards a tectonic setting con-
trolled by the counterclockwise rotation of the Iberian plate,
reflecting the opening of the Bay of Biscay and the transpressive
interactions with Africa and Eurasia. During the second phase, the
depocentre was relocated to the northern sector whereas the
southern one experienced uplift. The post-Cenomanian strati-
graphic record is characterized by a low subsidence rate and is
dominated by fluvial deposits with occasional marine in-
tercalations. The upper Campanian and Maastrichtian deposits
mirror the end of seafloor spreading in the Bay of Biscay and the
start of incipient compression between Iberia and Eurasia, as well as
with Africa, during the mid Campanian.
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cique du Portugal - Deuxième étude - Le Crétacé supérieur au Nord du Tage.
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González-Clavijo, E.J., Valadares, V., 2003. O maciço alcalino de Monchique (SW
português): estrutura e modelo de instalação na crosta superior. Comunicações
do Instituto Geológico e Mineiro 90, 43–64 (in Portuguese, English abstract).

Graciansky, P.-C. De, Muller, C., Rehault, J.-P., Sigal, J., 1978. Reconstitution de
l’évolution des milieux de sédimentation sur la marge continentale iberique au
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Université Pierre et Marie Curie, Unpublished PhD thesis, University Pierre et
Marie Curie, ParisVI, 716 pp. (in French).

Leinfelder, R.R., 1986. Facies, stratigraphy and paleogeographic analysis of Upper?
Kimmeridgian to Upper Portlandian sediments in the environs of Arruda dos
Vinhos, Estremadura, Portugal. Münchner Geowissenschaftliche Abhandlungen
7, 215.

Lepvrier, C., Mougenot, D., 1984. Deformations cassantes et champs de contrainte
post-hercyniens dans l’Ouest de l’Ibérie (Portugal). Revue de Géologie
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France 8, 927–934 (in French, English abstract).

Malod, J.A., Mauffret, A., 1990. Iberian plate motions during the Mesozoic.
Tectonophysics 184, 261–278.

J.L. Dinis et al. / Cretaceous Research 29 (2008) 772–780 779



Author's personal copy

Martı́n-Chivelet, J., 1995. Sequence stratigraphy of mixed carbonate-siliciclastic
platforms developed in a tectonically active setting, Upper Cretaceous, Betic
Continental margin (Spain). Journal of Sedimentary Research B25, 235–254.

Martins, L.S., 1991. Actividade ı́gnea mesozóica em Portugal (Contribuição petro-
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