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BlueWorks – Medical Expert Diagnosis has been developing software in the ophthalmology 

field in order to provide new tools for decision support. This work aims to give further 

contributions to their projects for multimodal co-registration of ocular fundus images, and to 

take a step towards a tool for classification of pathologies of the retina and the ocular fundus 

in general. 

In this thesis, it was implemented an algorithm [1] for correction of variability induced in 

retinal images by non-uniform illumination caused by the image acquisition, as well as some 

variants to the algorithm’s architecture, whose performance and its usefulness for 

ophthalmologists were subsequently evaluated. 

Moreover, modifications were made to the BlueWorks’ semi-manual image registration 

project, where ophthalmologists and technicians could perform manual registration to fundus 

images without much effort, with the help of image processing algorithms and a graphical user 

interface designed for this purpose. On this line of work, several improvements were made 

both on the graphical interface level and to the automatic algorithms on which it is based. 

In addition, in this document are studied new ways of using SIFT descriptors [2] to register 

ocular fundus images, combined with approximations [3] at the scale-space analysis level for 

better speed performance. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

A BlueWorks – Medical Expert Diagnosis tem vindo a desenvolver software na área da 

oftalmologia com o intuito de fornecer novas ferramentas para apoio à decisão. Este trabalho 

tem como objectivo dar continuação aos seus projectos de co-registo multimodal de imagens 

do fundo ocular e dar um passo na direcção de uma ferramenta de classificação de patologias 

da retina e do fundo ocular em geral. 

Nesta tese foi implementado um algoritmo [1] de rectificação das variações induzidas nas 

imagens da retina pela iluminação não-homogénea por parte do sistema de aquisição de 

imagem, assim como algumas variações na arquitectura do algoritmo, cujas performance e a 

sua utilidade perante oftalmologistas foram posteriormente avaliadas. 

Foi também continuado o projecto de registo de imagens semi-manual da BlueWorks, em 

que os oftalmologistas ou técnicos de oftalmologia poderiam registar manualmente as 

imagens sem muito esforço, com a ajuda de algoritmos de processamento de imagem e uma 

interface desenhada para este fim. Relativamente a esta linha de trabalho, foram feitas várias 

melhorias tanto ao nível da interface gráfica como ao nível dos algoritmos automáticos em que 

esta é fundada. 

Para além disso, neste documento são ainda estudadas novas maneiras de usar descritores 

SIFT [2] para registar imagens do fundo ocular, combinados com aproximações [3] ao nível da 

análise escala-espaço para melhoramento de performace temporal. 
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DLL  Dynamic-Link Library 

GUI  Graphical User Interface 

HHFW  Half Height at Full Width 

HSV  Hue, Saturation, Value (color space) 

RGB  Red, Green, Blue (color space) 

ROI  Region of Interest 

SIFT  Scale Invariant Feature Transform 

SURF  Speeded-Up Robust Features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

The main objective of this project is to contribute to the creation of an analysis system for 

multimodal ocular fundus images that will allow visualization, registration and pathology 

progress evaluation and classification on such images. The most crucial step in this kind of 

system is the registration process, since without it there can be no pathology progression 

evaluation. Moreover, a reliable mechanism that performs fully-automated registration of 

retinal images is also an extremely valuable tool for any ophthalmologist, because it allows 

them to have a very easy way to cross information between exams from different modalities, 

different stages of pathology progression or even from the same exam set but different retinal 

areas (for instance, when the area of interest is not entirely covered by a single image). 

Therefore, all implementations and decisions that were made during this project were made 

with the future of such system in mind. 

 

 

 

 

This document is segmented in four main chapters. The first of the four – chapter 2 – is 

meant to provide an overview of the eye’s anatomy, along with an introduction to the 

heterogeneity problem and to the characteristics of ocular fundus images. The imaging 

systems and the exam types used throughout this project are also presented in that chapter. 

Chapter 3 describes an algorithm to normalize image parameters, which follows the 

proposal of Foracchia et al. [1], as well as some variations to its architecture. All implemented 



architectures and approaches to speed-up the process of normalizing the image are then 

extensively examined and other approaches are discussed.  

This algorithm was implemented in order to address part of the heterogeneity problem that 

exists in this type of images, so that, other automatic algorithms of pathology progression 

evaluation and retinal classification in general can be used. Therefore, this study aims to 

contribute to multimodal system that, in the future, is meant to automatically perform 

pathology progression assessment from registered images of different imaging systems. 

However, for such algorithm to be designed and implemented, one needs to have an image 

alignment algorithm. Chapters 4 and 5 aim to present alternatives to the co-registration step. 

The work described in chapter 4 is a continuity project of a previous Blueworks 

semi-assisted solution to perform registration of two fundus images. Several improvements to 

both the graphical user interface and automated part of the software were made. However, 

this line of work was suspended by the Project supervisor. This was done due to the results 

obtained while searching for procedures to optimize the automated identification of vascular 

points, since it was identified that some of them described the ability to properly solve the 

more complex problem of fully-automated alignment. Acknowledging that the implementation 

tasks requiring the most effort were common to both full-automated and semi-automated 

approaches, as well as the potential outcome, it was decided that there was a positive 

cost-benefit ratio to pursue the more complex registration and to study other ways of 

performing fully-automated registration. 

To conclude, chapter 5 describes two fast architectures of modified SIFT descriptors that 

were used to try to perform multimodal registration of fundus images. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

The human eye is composed by the eyeball and its protective structure. The eyeball is a 

spherical organ with a diameter of 2,5 cm and it is organized in three chambers: the anterior 

chamber, the posterior chamber and the vitreous chamber. The anterior chamber is positioned 

between the cornea and the iris and communicates with the posterior chamber, which is 

localized between the iris and the lens. Both of them are filled with a liquid substance called 

aqueous humour. The vitreous chamber is the biggest cavity of human eye and contains the 

vitreous humour, a gel composed mainly by water [4]. [5] 

The eyeball’s wall is composed by three layers: the outer layer, known as the fibrous tunic, 

the choroid, in the middle, and the inner layer, which is called retina. The first contains the 

cornea, a transparent layer localized in the anterior pole of the eyeball, and the sclera, the 

white thick layer that externally covers the rest of the eye. The middle layer, or the choroid, is 

composed by the ciliary body, the iris and the choroidea. The choroidea is a highly vascularized 

structure composed mainly by collagen and elastic fibers, capillary and an external layer with 

medium-size vessels and areolar connective tissue. Lastly, the inner layer of the eyeball’s wall, 

the retina, comprises two parts: a photoreceptive part (pars optica retinae) and a nonreceptive 

part (pars caeca retinae) that merge together at the ora serrata. The photoreceptive part is 

organized in several layers composed mainly by neural cells. The outer layers of the retina are 

supplied by the capillary net of the choroid, whereas the inner layers receive their supply from 

the central artery of retina. [5, 6] 

The optic disk, situated at the posterior pole of the eyeball, is the entry point of the central 

retinal vessels and the optic nerve. 

Figure 1 depicts the human eye’s anatomy. 



 

 

Figure 1 – Diagram of the human eye’s anatomy. In Wikipedia [7]. 

Key: 1. Vitreous Chamber; 2. Ora Serrata; 3. Ciliary Muscle; 4. Ciliary Zonules; 5. Canal Of Schlemm; 6. Pupil; 

7. Anterior Chamber; 8. Cornea; 9. Iris; 10. Lens Cortex; 11. Lens Nucleus; 12. Ciliary Process; 13. Conjunctiva; 

14. Inferior Oblique Muscle; 15. Inferior Rectus Muscle; 16. Medial Rectus Muscle; 17. Retinal Arteries And Veins; 

18. Optic Disc; 19. Dura Mater; 20. Central Retinal Artery; 21. Central Retinal Vein; 22. Optic Nerve; 

23. Vorticose Vein; 24. Bulbar Sheath; 25. Macula; 26. Fovea; 27. Sclera; 28. Choroid; 29. Superior Rectus Muscle; 

30. Retina. 

 

The ocular fundus, extensively referred to throughout this thesis, is formed by the inner 

structures of the posterior pole of the eyeball, namely, the retina, optic disk, central 

vasculature of the retina, macula, fovea and the choroid (see Figure 2). Noteworthy is the fact 

that a normal retina is colorless and the red coloration seen in colored retinographies is 

inflicted by the choroid’s vascular net [6, 8]. 
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Figure 2 – Detail of a colored retinography. 

 

 

 

 

This project is addressed to ocular fundus images in general, which poses a significant 

problem, since there is huge variability in these images, both within each image 

(intra-variability) and between images (inter-variability). This heterogeneity has it source in: 

 The large number of acquisition methods and imaging systems 

 The high number of pathologies registered by these methods 

 Non-uniform illumination 

 The inter-patient heterogeneity inflicted by age, race and the personal features of 

each patient 

The algorithms discussed throughout this thesis were implemented to target images 

acquired with several imaging systems and methods of acquisition. Table 1 shows the main 

image types that were used in the testing and to generate results. 

 



Table 1 – Acquisition systems and exam types used in this project. Imaging systems: Heidelberg Engineering 

Spectralis® HRA and HRA2, TOPCON TRC-50IX and TRC-NW8 and Optos® optomap®. 

 

A typical RGB (red, green and blue) fundus image contains very different information in 

each channel (see Figure 3). The blue channel normally shows the optic disk and some 

pathological structures, but, normally, it does not have very useful information. Moreover, as 

mentioned before, the red coloration of fundus images is generated by the reflection of light 

on the vasculature of the choroid. Therefore, the red channel contains mainly information on 

the choroid level. 

 

 

Figure 3 – The three channels of a RGB image captured with the TRC-50IX imaging system. From Left to right: red 

channel, green channel and blue channel. 

 

As regards to the green channel, that is where the most interesting information can be 

observed. In fact, “empirical observations by several authors (e.g. Shin et al.2; Leandro et al.3) 

identify the green channel of RGB images as containing the maximum contrast. Rapantzikos et 

                                                           
 

1
 In optmap®’s colored retinographies the blue channel is approximately zero for all pixels. However, in 

the implementations discussed in this thesis, these images are always treated as normal RGB images. 
2
 Shin DS, Javornik NB, Berger JW. Computer-assisted, interactive fundusimage processing for macular 

drusen quantitation. Ophthalmology 1999;106:1119–25. 
3
 Leandro JJG, Soares JVB, Cesar Jr RM, Jelinek HF. Blood vessels segmentation in nonmydriatic images 

using wavelets and statistical classifiers. In: XVI Brazilian symposium on computer graphics and image 
processing. 2003. p.262–9. 



al.4 also note that the green channel appears to provide “more information” and is less subject 

to non-uniform illumination” [9]. Therefore, some algorithms like vessel segmentation only use 

the green channel instead of the whole image or a grayscale version of it, since the vasculature 

and other structures are better differentiated from the background in this channel. 

Another relevant feature of this type of images is the black mask that appears on some 

images. This can be seen in Figure 3 and is caused by a shadow of the acquisition system. Most 

algorithms have to compensate for this effect and, therefore, ways of detecting it had to be 

used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
 

4
 Rapantzikos K, Zervakis M, Balas K. Detection and segmentation of drusen deposits on human retina: 

potential in the diagnosis of age-related maculardegeneration. Med Imaging Anal 2003;7:95–108. 



 

 

 

 

 

 

 

 

 

Medical images of the ocular fundus come in a wide range of sizes, going from images with 

        pixels to images with almost         pixels that can either have one or three color 

planes. Therefore, when performing even trivial tasks, like brightness manipulation, in larger 

images, computing time becomes a critical factor. 

In order to replace the algorithms implemented in Visual C#, already integrated in the 

BlueWorks software, new methods were implemented to manipulate brightness and contrast, 

along with an algorithm to perform gamma correction and a new histogram manipulation 

algorithm inspired by optomap® images’ histograms. 

The histograms of retinographies captured with the optomap® imaging system have, in 

general, intensity values comprised in the lower values of the histogram’s spectrum in all three 

color planes (see Figure 4). This fact brought to mind an algorithm that is potentially useful to 

ophthalmologists and technicians, particularly in the examination of such images. The 

implemented algorithm uses a threshold value between the spectrum boundaries (i.e., 

between 0 and 255) given by the user through the GUI, to crop the pixels with values bellow 

that threshold – eliminating all pixels with intensity values in the red zone (Figure 4) – and 

stretch the new cropped histogram to fit the spectrum boundaries. 

This will increase the contrast and consequently highlight several structures losing only a 

small percentage in the higher values of the histogram. 

 



 

Figure 4 – Application of the new method of histogram manipulation to a RGB optomap® image’s histogram. 

Left: original histogram marked with the cutting point. Right: output image’s histogram. 

 

To achieve high computation performance the methods for computing the manipulated 

images were implemented in Visual C++ and compiled into a DLL file meant to be used in the 

BlueWorks software, which is a Visual C# project. All mentioned algorithms were implemented 

with this architecture in mind, allowing an optimization of the interaction between languages. 

 

 

There were massive improvements on the timings of these manipulation algorithms. The 

processing speed was reduced to approximately      of the older algorithms’ processing time 

for RGB images and reaching      of the previous processing time on grayscale images. These 

time measurements were obtained with the application of brightness, contrast and gamma 

correction simultaneously to images with dimensions of 3900 by 3072 pixels. 

 

 

 

 

To address the intra-image variability issue, already introduced in chapter 2, an algorithm 

based on the method proposed by Foracchia et al. [10] was implemented. This method aims to 

compensate for the variability in the image’s contrast and brightness5 caused by non-uniform 

illumination, which can affect the diagnosis by rendering some lesions and pathologies barely 

visible to a human observer. Furthermore, intra-image variability reduction may also be 

                                                           
 

5
 The term used by Foracchia et al. in the same context is luminosity, which is a measurement of 

brightness. However, for coherence purposes, brightness is going to be used in this thesis. 



essential to other algorithms like region segmentation or pathology progression evaluation 

algorithms, depending on their approaches to solve the respective problems. 

This method consists in computing the brightness and contrast drifts, using the image’s 

background information, to correct illumination variability. Note that background in this 

context is thought as the image itself without any visible pathological structures or vasculature 

[10]. 

  

 

Figure 5 – Representative flowchart of the architecture used for the normalization of grayscale images. 

Key: Mask – mask determination; BG – background estimation; Norm – image normalization and post-processing. 

 

Regarding grayscale images, such as angiographies and red-free retinographies, the overall 

architecture of the algorithm is very straightforward (see Figure 5). The source image is used to 

perform mask determination and background estimation and then the normalization process is 

applied to image generating the corrected grayscale image. However, for three-channel RGB 

images, further attention must be paid to the architecture of the algorithm, since there are 3 

channels with very different information, as shown in chapter 2. If the purpose of the 

algorithm is to normalize RGB images to perform segmentation of the retinal vascular tree, 

then the red and blue channels are of little use and can be discarded [9], and the method 

should simply be applied to the green channel. On the other hand, if the objective is the 

normalization for better visualization or to use as a pre-processing step before the application 

of other algorithms that deal with color information like pathology detection and evaluation 

algorithms, then the three channels must be considered and processed so that no color 

information is lost. To address this situation, three different approaches to this problem were 

implemented and studied. For now they are going to be referred as approaches A, B and C. 

Approach A follows an architecture similar to one mentioned by Bernardes6 in the same 

context. In this approach the source image is transformed into two different color spaces, 

namely HSV (hue, saturation and value) and grayscale (see Figure 6). The grayscale version of 

                                                           
 

6
 In a lecture entitled Imagiologia do Fundo Ocular: do pixel à função by Professor Rui Bernardes on 

10/03/2009, as part of a lecture series sponsored by NEDF/AAC. Coimbra, Portugal. 



the image loses hue and saturation information, which, however, can be restored using the 

HSV image. Therefore, all processing steps are applied only to the grayscale image and then 

the processed grayscale image is combined with the hue and saturation channels to generate 

the final RGB normalized image. By doing this it is being assumed that the grayscale image is 

equivalent to the value channel (     (     )), i.e., each pixel of the grayscale image is 

equivalent to maximum of the corresponding three pixels from the red, green and blue 

channels. This is not true, however, it is not a bad assumption to be made since all important 

features can be observed in the grayscale image and, therefore, the pixels in the grayscale can 

be considered of being of more importance than the actual maximum. 

 

 

Figure 6 – Representative flowchart of the architecture of approach A used for the normalization of RGB images. 

Key: Mask – mask determination; BG – background estimation; Norm – image normalization and post-processing. 

 

The architecture used in approaches B and C (see Figure 7) is based in the aforementioned 

paper by Foracchia et al. [10], in which it is proposed the application of the algorithm to the 

three channels independently. Nevertheless, the architecture was slightly changed mainly to 

shorten the processing time. In these approaches, the brightness and contrast normalization 

are still applied to the channels in parallel, but the background estimation is applied only to a 

grayscale version of the source image, instead of being performed for each channel. This way 



the background is estimated according to the combination of all channels and the same binary 

map of the background is used in the normalization processes of the three channels. 

Furthermore, the difference between approaches B and C is not on the architecture per se 

but in a step of post-processing which will be discussed later. 

 

 

Figure 7 – Representative flowchart of the architecture of approaches B and C used for the normalization of RGB 

images (images retrieved using approach C). 

Key: Mask – mask determination; BG – background estimation; Norm – image normalization and post-processing. 

 

An example of the application of the three approaches is shown in Figure 8. 

 



 

Figure 8 – Results of the application of the normalization technique to a TRC-50IX retinography using the three 

different implemented approaches (A, B and C). 

 

 

 

The brightness and contrast normalization technique proposed by Foracchia et al. [10] is 

based on a simple model where the observed image of the ocular fundus (   ) or, in other 

words, the image retrieved from the imaging system, is thought as a function ( ) of the actual 

image or the original image (   ): 

 

    (   )   (   (   )) (3.1)  

Therefore, if that function, which characterizes the acquisition system, was known and 

invertible, one could reconstruct the original image. However, that function can only be 

predicted to a certain level of accuracy and, since foreground properties are rather difficult to 

predict and to model, to estimate   only background pixels are used. 



Considering that the ideal image’s background information can be modeled as a normal 

distribution with mean     and standard deviation    , that correspond to the overall 

brightness and contrast values, respectively, as long as one only aims to compensate for 

non-uniform illumination, in order to estimate    , one only needs to find the drifts of this 

values in the observed image. In other words, the acquisition function could be described with 

the drifts computed by local means and local standard deviations of the background of     that 

correspond to the contrast ( ) and the brightness ( ) drifts, respectively. Therefore, the 

acquisition function becomes: 

 

  (   (   ))   (   )   (   )   (   ) (3.2)  

Note that   and   are matrices with the same size as the images. 

Mask determination is the first step of the normalization algorithm and it is done with an 

adaptation of the implementation of Chanwimaluang et al. [11] which is described in Appendix 

A. 

For better understanding of the rest of the algorithm, it will be divided into two main steps: 

 Background estimation 

 Image normalization and post-processing 

 

In this step, for each pixel a neighborhood is defined and then the mean and standard 

deviation of the values of the pixels belonging to this neighborhood are computed, resulting in 

two matrices with the same size as the image,    and   , respectively. That information is 

then used to categorize the pixels in two distinct sets, foreground and background. This 

classification is done by computing for each pixel the Mahalanobis distance according to the 

following: 

 

 
            (   )  |

   (   )    (   )

  (   )
| (3.3)  

and then by comparison with a threshold (  ) each pixel is assigned to one of two categories 

giving origin to a binary map of the background, i.e., those pixels that satisfy the condition 

                are categorized as background; those that do not are set as belonging to 

the foreground. The threshold (  ) was set to  , as proposed by Foracchia et al. [10], meaning 



that if the intensity value of the pixel with coordinates (   )  belongs to the interval 

[  (   )    (   )   (   )    (   )] it will be marked as background, otherwise it is 

assigned as foreground. 

Pixels that belong to the mask do not enter in the computation of either    or    and they 

are set as foreground. 

For the background estimation procedure, some assumptions regarding the neighborhoods 

were made [10] that must be considered while choosing its size: 

1. Both   and   are constant within the neighborhood 

2. At least     of the pixels in the neighborhood belong to the background 

3. Intensities of the background pixels are significantly different from those of the 

foreground pixels 

Therefore, the size of the neighborhoods must be carefully chosen, since it should obey the 

second assumption and still have no significant variations in contrast and luminosity, as stated 

in the first assumption. The size used for the neighborhoods can be adjusted, however, by 

default, it was chosen to be 
 

 
 of the size of the image, similar to the size used in the paper [10]. 

In other words, the neighborhood is a matrix   
 
 
 

 

, where   and   are the image’s width and 

height, respectively. 

The aforementioned approach is very expensive from a processing standpoint, which makes 

it not viable in practice. Thus, a similar but much faster way to estimate the background was 

also stated in the same paper [10] and also implemented in this project. In this 

implementation, instead of computing    and    for each pixel of the observed image, the 

pixels of the image are divided into a tessellation of neighborhoods. The implementation made 

in this project follows the scheme depicted on the left of Figure 9. The neighborhoods, by 

default, have approximately the same size as before, which results in 81 ((   ) ) 

neighborhoods and the same number of means and standard deviations. The matrices    and 

   are then found by assigning those values to the central pixel of each neighborhood and 

using a bicubic interpolation to compute the remaining values. This is acceptable since   and   

should be approximately constant within each neighborhood. 

Another approach was also implemented that, in practice, takes almost the same time to 

execute. This method uses neighborhoods with the same size, but with approximately     

overlap between them (see scheme on the left of Figure 9). Resulting in 289 ((     ) ) 

regions and, consequently, a more accurate interpolation. 

 



 

Figure 9 – Representative schemes of the definition of neighborhoods (w/3    ) on a square image. 

Left: tessellation of neighborhoods used in the second approach. Right: neighborhoods with overlapping. 

 

An example of the binary map of the background’s estimation using the slower approach is 

shown below, in Figure 10. 

 

 

Figure 10 – Background estimation using the slowest approach. 

Left: Observed image. Right: binary map of the background. 

 

Note that the background classification does not need to have high sensitivity, allowing a 

much faster approach than the ones usually used for region segmentation in this type of 

images. It should, however, have a relatively high specificity, meaning that a pixel classified as 



background should belong with a high level of certainty to the background. Otherwise, pixels 

wrongly classified as background would be incorporated in the drifts’ computations, causing 

the modulation as a normal distribution to be incorrect. 

 

The next step is the estimation of background drifts. This stage is very similar to the 

previous one, with the exception that the means and standard deviations are now computed 

with only background pixels, resulting, as mentioned before, in two matrices ( ̂ and  ̂), with 

the same size as the observed image, that describe the brightness and contrast variations 

throughout the observed image. 

 

 

Figure 11 – Illustration of the drifts computed from the grayscale image shown in Figure 10 with the slowest 

approach. Left: contrast drift. Right: brightness drift. 

 

All three approaches to the definition of the neighborhoods, used in the previous stage, 

were also implemented in this step. Namely, the two approaches introduced by Foracchia et 

al. [10] and the one with overlapping. 

After obtaining the drifts, the observed image is corrected to approximate the ideal retinal 

image, free of illumination variability. This is done simply by combining equations 3.1 and 3.2, 

resulting in: 

 



 
 ̂  (   )  

   (   )   ̂(   )

 ̂(   )
 (3.4)  

where  ̂   is the estimate of the actual fundus image.  

In practice, the corrected image will have some intensity outliers, either because of 

localized noise in the observed image or because of an over-enhancement of image features 

associated with pathology induced structural change. These outliers are eliminated in post-

processing by considering only the values that fall inside the interval [         ] and 

assigning the remaining values with the boundaries values, according to the equation below. 
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      (   )      

 
(3.5)  

This way, the outliers are eliminated without eliminating any relevant information. The image’s 

histogram is then renormalized to fit the range of 8bit images ( [     ] ). Grayscale 

normalization and approaches A and B use this method to eliminate outliers. However, this is 

where approaches B and C diverge, since in the latter the overall mean and standard deviation 

of     (excluding pixels that belong to the mask) are restored to  ̂  . Therefore the result of 

approach C may lose more information in each channel, but also holds color information that it 

is lost in approach B. 

 

 

All the following numbers and charts were obtained using the default value for the size of 

the neighborhoods (
 

 
 the input image’s size). 

To analyze the speed of the three approaches used in the definition of the neighborhoods, 

a benchmark was created to use a grayscale image with 1320 by 1030 pixels to compute the 

mean processing time for each approach throughout several repetitions of the same 

processing task. The results obtained were the following: approximately 96,6 seconds for the 

slower approach, 465 milliseconds for second approach and 391 milliseconds with the 

neighborhoods’ overlapping approach. 

Since the slowest approach is unquestionably out of the picture, due to the computation 

time (it is almost 250 times slower than the overlapping approach), it has to be determined 

which one of the other two implemented approaches to use. Both the second approach and 

the one with overlapping are themselves approximations of the slowest approach and, 



consequently, each of the formers’ steps are approximations of the latter’s steps. With this in 

mind, relative errors of the two faster approaches (            and         ) for the outputs of 

each step, namely the background map, the drifts and the output image were computed 

according to the following equations: 
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‖        ‖

 (3.6)  

where   denotes a generic matrix that is used store the outputs of each step. The following 

charts (Figure 12 to Figure 14) show the results obtained using that equation in a set of 30 

randomly picked fundus images. 

 

 

Figure 12 – Comparative chart containing the background map approximation errors for both the second approach 

and the one with overlap in relation to the slower approach. 

 

 



 

Figure 13 – Comparative chart containing the brightness drift approximation errors for both the second approach 

and the one with overlap in relation to the slower approach. 

 

 

 

Figure 14 – Comparative chart containing the contrast drift approximation errors for both the second approach and 

the one with overlap in relation to the slower approach. 

 



 

 

Figure 15 – Comparative chart containing the output image approximation errors for both the second approach and 

the one with overlap in relation to the slower approach. 

 

Another important question that has to be clarified is which architecture to use in the 

processing of RGB images and if the implemented approaches are even of any use to 

ophthalmologists or technicians. In order to do that assessment, 10 sets of RGB images were 

sent to ophthalmologists, each set of images were composed of the original image and three 

normalized images, one for each approach (A, B or C). An example of one of these sets was 

already shown previously in Figure 8. The physicians were then asked to mark which approach 

or approaches would highlight or enhance structures and/or areas of the image that could be 

helpful to the diagnosis that were not totally perceptible in the original image. The responses 

are show in Figure 16. 

 

 

 



 

Figure 16 – Chart containing the ophthalmologists’ responses. 

 

 

 

Curiously, the approach with overlap turned out to be the faster than the second approach 

even though it has more neighborhoods in which to compute means and standard deviations. 

This probably happens because the interpolation process has more points to use in the 

computation of the remaining values. 

About the approximation errors, one can easily understand that the approach with overlap 

is much more similar to slower approach and, except on two cases on the output image, it 

always succeeds to approximate better the slower approach’s steps. Meaning that, in the end, 

the approach to be used is the one that uses overlap, since it is faster and approximates better 

the slower approach than the one without overlap. 

Regarding the three architectures implemented for the processing of RGB images and the 

inquiry mentioned previously, the answers were rather diverse. However, as can be observed 

in Figure 16, architecture A seems to be the most useful in most cases. Nevertheless, it is not 

clearly that this approach is actually better than the others. In fact, from the feedback 

obtained from the physicians, depending on a particular area of interest, the image’s 

acquisition conditions, the patient and the pathologies present in the image, the most useful 

architecture can change. 



Another noticeable effect from the visual inspection of the data set used in the inquiry is 

that approach B seems to be very invariant to inter-patient variability. However, this could not 

be tested due to the limited time period of the project. 

In general, the optic disk and large pathological structures are the only areas of the image 

that are not enhanced by this normalization technique. This happens because in those areas 

the neighborhoods fail to have at least     of background pixels, resulting in a bad estimation 

of the background which is propagated to rest of the steps. To address this problem, Joshi et 

al. [12] propose the use of predictable domain knowledge to manipulate the size and shape of 

the neighborhoods, so that, for example, in the optic disk area the neighborhoods are bigger 

than the macula region, maintaining, this way, an acceptable percentage of background pixels 

in all neighborhoods. A similar approach would be a good follow up for the implementations 

made in this context. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

There are several studies on fully automated registration of ocular fundus images with a 

wide variety of approaches and interesting result. However, those studies, due to their 

complexity, take years to develop and the results are not always the desired and the 

algorithms are, very often, computationally over expensive.  

BlueWorks had already developed some previous work in this field, and two approaches 

were attempted: fully-automated (which did not result in a satisfactory performance) and 

manual. The project of creating a semi-assisted system was started in 2009, also within the 

scope of a Master’s Thesis [13], in which a graphical user interface (GUI) was implemented to 

gather inputs from a technician or an ophthalmologist in order to simplify and speed up in the 

registration process. The system was meant to be a simpler approach to the registration 

problem that could be developed in a shorter time period and still could perform a robust 

multimodal registration. This implementation would allow the user to perform registration of 

two ocular fundus images, such as retinographies and angiographies, by taking a few seconds 

from the user that would not happen in a fully-automated system. In the other hand, a 

semi-assisted system would also allow a must faster algorithm to be implemented, which, in 

the end, could pay off for the user’s lost time. 

Within the scope of the same project, in order to increase the manual tool’s performance, 

some automated features were added and the GUI was upgraded. 

 

 

 

 

As mentioned above, a GUI was already implemented. With it, the user would load two 

fundus images to perform the alignment process. Next, the user had to select 6 points in the 



one image and the 6 exact corresponding points in the other image. The selected points were 

then used to perform a second-order polynomial transformation to the second image in order 

to align the two images.  

 

 

Figure 17 – Screenshot of the former graphical user interface. 

 

Nevertheless, it is not an easy task to select the exact matching pixels and even an error by 

a few pixels would cause an erroneous registration. Consequently, considering that the goal is 

to consume the least user time as possible, the first step in improving this interface should 

address how the points are chosen. In fact, the GUI was changed and improved so that, instead 

of carefully selecting every point, the user would choose regions of interest (ROIs), with a 

variable size, containing vascular tree bifurcation areas. Then, with these regions, a processing 

step takes place to find a unique point for each one of them. The points that were found are 

then used to perform the alignment. This way, the user would not need to worry about the 

precision of the each entry, but only if the matching between images is correct. 

Figure 18 depicts the previous and the new ways of selecting the points. 

 



 

Figure 18 – Detail of both the previous and new interfaces. 

Left: selecting points of interest on the previous interface. Right: selecting regions of interest in the new interface. 

 

Moreover, in the previous interface, the area below the images was reserved to input point 

correspondence data. A detail of the GUI where this area is located is shown in Figure 19.  

 

 

Figure 19 – Detail of the former interface showing the area where the point matching is performed. In Lopes [13]. 

 

When a point is selected in one of the images, its position information and the label 

assigned to it are displayed in the corresponding data table – table A (Figure 19) has 

information of the selected points in image to the left and table D refers to the image in the 

right. The matches are then established manually one by one by dragging a row of table D to 

table C in the correct order: first the match of Point A, then the match of Point B and so forth. 

A lot of thought was put into how to upgrade the matching system in an attempt to create 

a cleaner and more intuitive interface. In the end, after changing the interface several times, 

the GUI was made to assign a color to each selected ROI, making it very easy to spot the 

mismatched regions and the color those should have. 

 



 

Figure 20 – Screenshot of the new graphical user interface. 

 

Additionally, the matches between the regions are made automatically in the order that 

they are selected, i.e., the first ROI selected in the left is assigned as the match of the first ROI 

selected in the right. However, a mismatch can easily be corrected by selecting the color that 

the mismatched ROI should have in the color palette that appears next to the right table 

(shown in detail in Figure 21), automatically swapping the colors between the two mismatched 

ROIs. 

 

 

Figure 21 – Detail of the new interface showing the area where the point matching is performed. 

 

 

 

 

 



 

 

The next step in this semi-assisted registration system is to find the exact points to perform 

image registration from the defined ROIs. These points (or pixels) must be highly distinctive so 

that their position can be found, with a high level of certainty, repeatedly under numerous 

conditions that vary mainly with rotation, local distortions, illumination variability and actual 

divergent information between exam types. As stated before, the most static characteristics in 

ocular fundus images refer to the vascular tree. That is why the features chosen to be used in 

this processing step are vessel bifurcations or, in a more commonly used nomenclature, 

Y-features. 

To find the bifurcation’s center, it was assumed that each selected ROI correctly contains 

only one bifurcation and no other distinctive structures like pathologies. 

Some approaches were implemented in order to find the center of Y-Features. Even so, 

they all started with a few simple pre-processing steps to reduce variability between ROIs. 

First, for RGB images, even though in the GUI still shows a 3-channel RGB image, only the 

green channel is used in the algorithm, since it more retinal vasculature information than any 

other channel (see Chapter 2). In the next step, images that have vessels darker than the 

background are inverted so that all ROIs have a darker background. To conclude this pre-

processing stage, the ROI’s histogram is scaled to fit the interval [     ], resulting in regions 

with similar characteristics whatever their source. For instance, in all regions, the higher level 

of the histogram will definitely belong to vessels, assuming that there is no other brighter 

structure, as mentioned above. 

 

 

Figure 22 – Pre-processing step for the Y-features’ center detection algorithm. 

From left to right: retinography’s original ROI and respective pre-processed ROI; ROI of an angiography with 

flourescein and respective pre-processed ROI. 

 

Vessel segmentation is a common approach to find Y-features and their centers in ocular 

fundus images. However, vessel segmentation, depending on the technique used, can be quite 

demanding. But in this case instead of an entire image, there are only a few pixels, thus the 

mentioned disadvantage does not have the same impact, allowing one to follow that 



approach. Therefore, in the first attempts to build an algorithm to find the center of the 

Y-feature, vessel segmentation was used with the intention of extracting the centerlines of the 

vessels, which in turn would be used to easily find the center of the Y-feature. 

A method called hysteresis threshold was used to perform vessel segmentation and 

separate the ROI into two groups of pixels (explained in detail in Appendix C). This technique 

uses two thresholds that are chosen to strongly characterize the two groups, i.e., the higher 

threshold is chosen so that all pixels with intensity values above it belong to the vessels with 

high certainty and, regarding the lower threshold, it must be chosen to contain only pixels of 

the background below it. For that reason, the higher threshold was hardcoded at 240 – 

meaning that about    of the 8bit scale was assumed as vessel – and the Otsu’s threshold was 

used as the lower threshold (see Appendix D). 

The visual assessment of several tests of the application of this method showed good 

results for most ROIs tested. However, there were still some ROIs being poorly segmented and, 

even though the bad segmentations were occurring mainly in vessels with lower caliber and in 

less visible vasculature, because the aim was to build a very robust algorithm, this approach 

was discarded and other approaches were tested. It was with a vessel tracking algorithm that 

the most viable results were obtained. However it was still in its first implementations when 

the semi-assisted alignment project was suspended. This algorithm is described in the 

following section. 

 

 

In this algorithm, trigonometry concepts, inspired by the works of Lowell et al. [14], Grisan 

et al. [15] and Gregson et al. [16] are used to analyze consecutive profiles of each branch of 

the Y-feature. 

The implemented approach is divided into three steps: 

 Seed points extraction 

 Vessel Tracking 

 Center Determination 

 

During this stage, the border pixels of the ROI are analyzed and the seed points for the 

tracking algorithm are determined. To accomplish that, first, the border pixel with the 



maximum intensity is found and it is assumed as belonging to one of the Y-feature’s branches. 

Starting in that pixel the method searches for the left minimum and right minimum, along the 

borders of the ROI, according to the model illustrated in Figure 23. Afterward, the positions of 

the left and right edges are computed as being at half way between the intensities of the 

maximum and each of the respective minimum. The first seed point is set as the vessel’s 

centerline pixel, i.e., the middle point between the two edges. 

 

 

Figure 23 – Generic model of the vessel profile used in the tracking algorithm. 

 

The second and third seed points are then consecutively searched the same way as the 

first. 

 

Having determined the initial seed points, the vessel tracking algorithm flows according to 

the following steps: 

1. Find maximum value (     ) in a circumference with center in the seed point 

(   ) and a radius equal to the distance between the edges (determined in the 

previous step when analyzing the vessel’s profile); 

2. Define the branch’s directional vector as            ; 

3. Find new centerline pixel, using the profile model, along the line segment bisector 

between     and      ; 

4. Define more seed points along a line segment from     to the new centerline pixel; 

5. Store new centerline pixel as a seed point; 

6. Go to the next seed point (   ); 

7. Find new maximum value (     ) in a circumference with center in the seed point 

(   ) with a slightly larger radius (search conditioned by  ); 

8. Define the branch’s directional vector as            ; 



9. Find new centerline pixel, using the profile model, along the line segment bisector 

between     and      ; 

10. Store new centerline pixel as a seed point; 

11. Return to step 6. 

The vessel tracking loop continues for the three branches simultaneously, until, through a 

series of conditions, the three parallel tracking converge in the center of the Y-feature. 

 

The final stage consists in doing a linear regression of the last centerline pixels extracted for 

each branch and finding the intersections between the three lines. The center of the Y-feature 

is then determined to be the pixel in the exact middle of the tree intersections. 

 

 

 

 

This line of work was suspended without the possibility of doing other intended 

modifications and improvements. If this architecture were to be followed, the next steps 

would certainly be to use more robust seed points and a different model. A pre-processing 

step with Gaussian filters would undoubtedly produce more reliable seed points and would 

also reduce vessel tracking errors. Regarding the profile model used, there are a few others 

that would be worth being implemented such as the model HHFW (half-height at full width), 

also known as full width between two half minima (FWHW), which is a reliable method for 

vessel diameter assessment [17] that also accounts for light reflex in the retinal arteries. Other 

interesting model that appears to have very good results is the model published by Lowell et 

al. [14], which consists in a two-dimensional model composed by the difference between two 

Gaussian curves that is fitted to the vessel’s profile. 

The brightness and contrast normalization algorithm discussed in the previous chapter did 

not seem to have much impact in the determination of the Y-features’ center. Which in partly 

understandable, since these ROIs are too small to have great discrepancies in contrast and 

brightness. 

 

 



 

 

 

 

 

 

 

This chapter aims to create a fully-automated system to perform registration of ocular 

fundus images from multiple imaging systems and acquisition methods based on well-known 

algorithms, such as the SIFT (Scale Invariant Feature Transform) [2] and SURF (Speeded-Up 

Robust Features) [3] methods. 

The overall architecture of the algorithms that were implemented in this part of the project 

is represented in Figure 24. 

 

 

Figure 24 – Representative flowchart of the registration algorithms implemented. 



 

Two distinct architectures were implemented, the main differences being the type of 

descriptor used in the descriptor computation step and the fact that the first architecture does 

not involve performing vessel extraction. In addition, in both solutions, only the green channel 

is considered when processing RGB images, since it has more contrast and contains more 

useful information (see chapter 2). 

Each module of the algorithms was implemented in Visual C++ and is going to be discussed 

throughout this chapter. Furthermore, an evaluation of the overall algorithms’ performance is 

also carried out. 

 

 

 

 

In order to greatly decrease computation effort regarding the search of points of interest as 

well as descriptor computation, there is the need to build an integral version of the source 

image. This image is computed using the following equation: 

 

 

  (   )  ∑∑ (   )

   

   

   

   

 (5.1)  

resulting in a matrix where each entry represents the sum of all pixels of the input image ( ) 

before that entry, i.e., each entry is the sum of the pixels in a rectangular region defined by 

two opposite vertices, one in the first pixel of the image and other in that entry’s position. That 

matrix is called integral image (  ). 

After having computed the integral image, to calculate the sum of intensity values in any 

rectangular region (  ), in an upright position (see Figure 25), it only takes three sum 

operations whichever its size, via the following equation: 

 

      (     )    (     )  (  (     )    (     )) 
(5.2)  

in which   ,   ,    and    refer to the coordinates of the vertexes as demonstrated by Figure 

25. 

 



 

Figure 25 – Diagram of a generic rectangular region in an upright position. 

 

This approach is particularly useful for scale-space analysis, which will be further discussed 

in the next section. 

 

 

 

 

To find points of interest in a given image the approach chosen was the one described by 

Bay et al. in their SURF paper [3]. This approach uses the determinant of the Hessian matrix at 

multiple scales to find key features throughout the image. 

 

 

The first step in this searching mechanism is to build a set of matrices or images where each 

matrix represents data at a different scale and each entry is the Hessian’s determinant of that 

particular point. 

The Hessian contains second-order partial derivatives of a given function. However, in this 

case this function is replaced by the discrete three-dimensional function that describes the 

pixel intensities throughout the image. Therefore, there is the need to adapt the way the 

second-order derivatives are computed. 

As mentioned by several authors, the convolution of the input image with Gaussian 

second-order derivatives seems to be optimal for scale-space analysis [3] and is used with 



good efficiency in the SIFT algorithm [2], but their lack of performance encourages other 

approaches [18]. The SURF searching mechanism approximates the Gaussian kernels to box 

filters allowing the algorithm to take advantage of integral image properties. 

Figure 26 compares the Gaussian and the adapted kernels. 

 

 

Figure 26 – Templates for computing the image’s intensity second-order derivatives. In Evans [18]. 

Top: Gaussian templates. Bottom: weighted box filters. From left to right: templates for   -directions,   -directions 

and   -directions. 

 

The method used to weight the new box templates is quite simple. The weights are 

assigned in order to obtain a balanced distribution. In fact, their assignment is done to assure 

that their DC response is null. In other words, they will be sensitive only to intensity variations 

and not in areas without texture, as intended. With this in mind, on the first two templates of 

the bottom row the white boxes are weighted    and the black    and on the last one the 

white boxes are weighted    and the black ones   . All gray areas are weighted zero and do 

not even become part of the equations. 

As one should already have realized the convolution process can now be reduced to a few 

sums per iteration with the use of equation 5.2. 

The pyramidal process that is frequently used [18] to create the determinant layers is also 

modified. Usually, the image is sequentially smoothed and sub-sampled to create a pyramidal 

set of images that are then convolved with the Gaussian second-order derivative templates 

resulting in the needed information to compute the Hessian. However, instead of creating a 

set of images with different sizes by down-scaling the original image and then use the same 

kernels, since the computation effort of convolving with the adapted kernels is independent 

from their size, the algorithm is made to create a set of templates with different sizes, each of 



them corresponding to a different scale, and to compute the Hessian by convolving them with 

the same image in its original size (see Figure 27). 

 

 

Figure 27 – Scheme showing a typical pyramidal process (left) and the used pyramidal process (right). 

Adapted from Bay et al. [3]. 

 

The Hessian matrix for a scale   and a point   (   ) now becomes: 
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where    ,     and     are the image’s second-order derivative approximates that result 

from the convolution process of with new templates.    ,     and     are, therefore, also the 

Laplacian of Gaussian (   ,     and    ) estimates (see Appendix B). 

After their computation,    ,     and     responses are normalized according to the size 

of the filter’s used. 

With equation 5.3, computing the Hessian’s determinant (    ) is very straightforward: 
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 (5.4)  

with       [3], which is a correction factor needed to balance the equation due to the 

approximations in the kernel. This expression is used to build a set of 10 layers, one for each 

scale. Moreover, 3 pyramidal sets of templates are needed – one set for the second-order 

partial derivative in   -directions, one for the   -directions and the last for   -directions. 

The size increasing mechanism separates the templates in 4 octaves, each octave with 4 

different size values. The first octave starts with a 9x9 kernel and has step of 6 pixels, resulting 



the following sizes: 9x9, 15x15, 21x21 and 27x27. The second octave starts with the second 

kernel of the previous octave and the step doubles its value. This repeats for the remaining 

three octaves. For better understanding of sizes of the filters used and their distribution across 

the octaves see Figure 28. 

 

 

Figure 28 – Representative scheme of the distribution of the kernel’s size across the octaves and their relation with 

the scale they are intended to. 

 

For simplicity, from now on, the layers are going to be referred to by the size of the 

template used for its creation with the prefix T-. For instance, the first layer is going to be 

called layer T9. 

 

 

Having computed all response layers of the pyramid, the algorithm starts the actual search 

for the key points. First, the response values are cropped using a pre-determined threshold. 

Then, the layers are searched for local maxima. A point is determined as a point of interest if 

its response value is greater than its 26 neighbors, 8 in its layer and 9 in the adjacent layers 

above and below as illustrated in Figure 29. 

 



 

Figure 29 – Illustration of the search for local maxima in a generic point (red mark) by comparing it to its 26 

immediate neighbors (blue squares). Adapted from [2]. 

 

Note that for each octave there is only 2 local maxima searches. For instance, for the first 

octave there is a search for local maxima throughout layer T15, using also layers T9 and T21, 

and throughout layer T21, using also information from layers T15 and T27. 

In the final stage of the process of extracting key points, the data around it is fitted to a 3D 

quadratic curve, in order to find the location of the point with sub-pixel accuracy, in both scale 

and space. This is particularly important to find the actual scale, since scale sampling becomes 

very large in the higher octaves. [3, 18] 

Considering a Taylor expansion up to quadratic terms centered at the detected discrete 

location of the key point   (     ): 
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One can find the new location at the extremum of the quadratic curve, by computing: 
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 (5.6)  

If  ̂ is greater than     in any direction the point will be discarded, so that only the most stable 

points are marked as points of interest. 

The threshold used to crop the response values is adapted and the search process is 

repeated until a desirable number of points are found. 

 

 



 

 

With the purpose of obtaining orientation-invariant descriptors, these will have to be 

computed according to a local orientation. The method implemented in this context to obtain 

a reproducible local orientation using the integral image properties is described by Bay et al. 

[3]. 

The method starts by defining a circular region with a radius of    centered in the key point 

in study, where   refers to the scale of the key point, detected in the previous section (see 

Figure 30). 

 

 

Figure 30 – Orientation assignment illustration showing the response vectors (blue points), the angle aperture being 

analysed (darker region) and the assigned orientation (red vector). In Bay et al. [3]. 

 

Afterward, the region is sub-sampled using a step size of   and the response of the Haar 

wavelet (show in Figure 31), with a side length of   , is computed for those sampled points, 

creating a response vector (      (     )) for each point. Like before, the integral image can 

be used to speed up the process of box filtering. 

 

 

Figure 31 – Haar wavelet filters with black and white regions weighted with -1 and +1, respectively. 

Left: filter to generate reponse in   direction. Right: filter to generate response in   direction. 



 

All response vectors are weighted based on the relative position of the equivalent sample 

point according to a Gaussian curve with a standard deviation of     . The response vectors 

are then searched for a dominant orientation. To do that, the sum of all vectors, within an 

aperture of 
 

 
 is computed, represented as the darker region of Figure 30. Then, the aperture is 

slightly rotated and sum is computed again. After all vector sums are computed, the biggest 

vector sum is chosen as the dominant orientation. 

 

 

 

 

At this point each key point has a set of 2D coordinates, a scale value and an orientation 

assigned to it. The next task in the algorithm’s course will address the creation of a descriptor 

for each of the points of interest. This descriptor must be robust enough that it could be 

accurately reproduced in another image with that key point in common. However, this can be 

a delicate path, since the intention of the whole registration algorithm is to align images from 

a wide variety of imaging systems and methods of image acquisition. 

As discussed before, a pair of images from two different exams contains countless 

differences, caused primarily by contrast and brightness variations, as well as variations 

provoked by the angle of acquisition and other local distortions like geometrical distortions 

triggered by the saccadic eye movements during image acquisition. Additionally, in some pairs 

of images, other problems arise, like the inversion of contrast and, even more problematic, 

different visible information caused by the different nature of imaging techniques, e.g., 

between a retinography and an angiography. This difference in the visible information of 

different methods of acquisition is what motivates the creation of a multimodal registration 

system, but it is also the greatest obstacle. 

In the next subsection of this thesis (5.4.1) the descriptors proposed by Lowe [2] are going 

to be described followed by the explanation of other similar approaches that were implemted 

in this project (5.4.2 and 5.4.3). 

 

 

 



 

SIFT descriptors are generated by computing the gradients around the key point’s location 

weighted by a Gaussian curve with    . However, one must consider the previously 

computed dominant orientation of the key point if the intention is to create orientation 

invariant descriptors. Therefore, the gradients are computed in a quadrangular area (16x16 

pixels) centered in the point of interest, but, instead of an upright position, the square will be 

rotated by an angle equal to the orientation assigned to the key point. Moreover, to obtain 

scale invariance the gradients will have to be computed taking into account the scale of the 

point. Lowe [2] uses Gaussian blurring to impose scale information in the descriptor. After 

having computed all gradients within the square along the   and   directions, they need to be 

recomputed to match their new axis in order to achieve orientation invariance.  

 

 

Figure 32 – Rotated gradient samples in an 8x8 quadrangular region around a key point and their distribution in the 

corresponding 2x2 histograms. In Lowe [2]. 

 The blue circumference represents the Gaussian (   ) used to weight the gradients. This is a representative 

scheme. In fact, the algorithm uses a Gaussian with    , 16x16 samples and 4x4 histograms. 

 

 

The next stage consists in clustering the samples in the square in 16 (4x4) smaller squares 

and using gradient information in each cluster to build an orientation histogram. Each 

histogram has 8 bins with a 
 

 
 angle range each (for example *  

 

 
*  *

 

 
 
 

 
*    * 

 

 
   *). 

The location of each bin’s center, as well as of a gradient sample, can be described as a set 

of 3D coordinates. The first two coordinates refer to the position in the larger square. The last 

coordinate refers to the angles. The histograms are generated by summing the value of each 

gradient’s magnitude to the respective bin, weighted according to the distance of the sample 

to center of the bin. However, the value is also spread to the adjacent bins (up to 3, one for 



each coordinate), also weighted according to distance to those bins. These weights are 

computed using linear interpolation. 

The result is a set of 16 vectors with 8 elements each that can be rearranged into a single 

vector of 128 elements. This vector is then normalized to unit length to make it invariant to 

contrast changes. Brightness variations do not cause any problem since the descriptor is 

computed from pixel differences. 

The previous step only addresses linear illumination changes. However, there are also some 

variations caused by non-linear illumination problems that can greatly change some gradient 

magnitudes [2]. Therefore, to attenuate this effect, the larger gradients magnitudes are 

thresholded to have no value greater than    . This reduces the influence of gradient 

magnitudes and gives emphasis to the distribution of orientations. 

To conclude the computation of the descriptor, the vector is renormalized to unit length. 

 

 

The descriptors proposed in this section are an adaptation of both descriptors proposed by 

Lowe [2] and Chen et al. [19]. 

The first major modification to SIFT descriptors is the way of computing the gradients of the 

samples. As mentioned before, SIFT descriptors compute their gradients simply convolving 

differentiation templates with a blurred image. The blur is applied using Gaussian templates 

with a standard deviation proportional to the detected scale of the point of interest. Chen et 

al. use a similar way of computing the gradients but the descriptors they propose are not 

scale-invariant; thus, scale assignment is not even performed. The modified descriptors here 

suggested use gradients computed with the same method used before (in section 5.3) where 

Haar wavelet responses along   and   replace the gradients, and the scale is used to choose 

the size of the templates. This way, one is able to take advantage of the processing speed of 

box filtering based on the integral image. 

The method used to compute the histograms is the same as the one used by Chen et al., 

[19], which is an adaptation of the SIFT descriptors that is designed to be invariant to inversion 

of contrast, such as in what happens to the vascular trees between retinographies and 

angiographies. The result is what Chen et al. call a symmetric descriptor. To compute this 

descriptor, first the gradients are forced to be comprised in [   [ by rotating all sample 

gradients within [    [ by an angle of –  (see Figure 33). The histograms still have 8 bins, 

consequently, the angle range of each bin has to be reduced by half, i.e., the angle range is 



reduced to 
 

 
. This generates a 4x4x8 sub-descriptor ( ). Then, after normalizing sub-descriptor 

A to unit length, another sub-descriptor ( ) is computed from the first one using the following 

equation: 

 

  (     )   (         ) (5.7)  

where             refer to the histogram’s position and           refers to the bin’s 

position within each histogram. 

 

 

Figure 33 – Illustration of the computation of a symmetric descriptor. In Chen et al. [19]. 

Key: (a) sampled gradients; (b) gradients induced to be comprised in [   [; (c) histogram representation of sub-

descriptor A; (d) to (f) demonstrates the computation of sub-descriptor B. Note that this a representative diagram 

and the number of samples and bins do not correspond to the reality. 

 

Having both sub-descriptors, the final descriptor (   ) can be computed according to: 
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 (5.8)  

where    and    are adjustable parameters that were set to        and     , simply to 

make each element of     have the same range. 

 



 

Architecture I was the first of the two to be implemented and its goal was to combine 

scale-space analysis with the symmetric descriptors proposed by Chen et al. [19]. 

Nevertheless, the first tests of that architecture showed that it did not perform well on image 

pairs with greater heterogeneity. Therefore, the idea to use the well-known SIFT descriptors 

with approximations for speed improvement and a previous step of vasculature segmentation 

arose. 

Like in the modified SIFT, here, it is used the Haar wavelet responses to replace the 

gradients and the scale is used to choose the size of the templates, to take advantage of box 

filtering using the integral image. 

Several approaches to perform multimodal registration with ocular fundus images use 

vessel segmentation as an early step. Nevertheless, the segmentation process is not a trivial 

task and there are several studies that try to overcome this problem [20-22]. Sometimes they 

are successful, but usually their algorithms succeed with only a few types of images or at least 

they do not report their robustness across a wide variety of exam types. 

In this project, the first approach to perform vessel segmentation involved transposing to 

Visual C++ an existent solution developed by BlueWorks [13], which was itself an adaptation of 

an algorithm by Chanwimaluang et al. [11, 23]. Summarizing, this implementation uses 

matched Gaussian filters to pre-process the image in study and then uses a global entropy-

based threshold to differentiate vessel from non-vessel pixels. The pre-processed image results 

of the convolution of the image with a set of 12 rotated Gaussian templates and taking the 

maximum value for each pixel along the 12 convoluted images. The use of Gaussian templates 

is predicated on the assumption that all vessels have a profile similar to a Gaussian curve. 

There are two types of templates that can be used in the segmentation process and they 

are chosen according to the exam type in study. If the image has vessels brighter than the 

background, as it does on angiographies, then the templates used result from the rotation of 

the template depicted on the right of Figure 34. Although, if the image contains a brighter 

background, much like what happens in retinographies, the template set used is based on the 

template on the left. The set of 12 templates is generated by sequentially rotating the main 

template by an angle of 
 

  
. 

 



 

Figure 34 – The two template types that are used to pre-process ocular fundus images. Adapted from Lopes [13]. 

 

Nevertheless, this approach was not robust enough to perform vessel segmentation to the 

fundus images to which it was intended. In fact, it turned out to be very instable and even 

small lesions would affect its performance. 

In another attempt to perform segmentation, an algorithm already used by Martinez-Perez 

et al. [24] was implemented, this time, however, it was simply tested in MATLAB® language. In 

this technique the gradients and the Hessian matrix (Appendix B) are computed along several 

scales by changing the value of   in the Gaussian kernels. Afterwards, from the eigenvalues of 

the Hessian matrix, one can compute the principal curvature values, resulting in a set of 

matrices or representative images with gradient magnitudes and principal curvature values. 

With these two resultant matrices a set of consecutive stages is then performed where a 

process called hysteresis threshold is applied. For more information on the hysteresis 

threshold see Appendix C. 

However, the results obtained with this approach were not also the desired. This 

implementation succeeds with great performance in some images, but fails to classify the 

vasculature on other images. 

 

 

 

 

 

 

 



 

 

The whole point of having descriptors of an image’s points of interest is to have them 

match the descriptors from another image in order to obtain point-to-point correspondences 

between a pair of images which can then be used to perform an alignment transformation. 

The algorithm for descriptor matching starts by proceeding to the comparison between the 

descriptors from the two images that are going to be registered. The metric used for 

comparison was the Euclidean distance: 
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(5.9)  

with          and         , where    and    are the number of points of interest in the 

first and second image, correspondingly.     
  is the descriptor of the key point   of the first 

image and     
  the descriptor of key point   of the second image. The group that contains all 

descriptor from the first image is going to be called    and for the second image the 

terminology will be   . 

First, for each descriptor of   , the algorithm is going to find the most probable candidate 

for a match in   , i. e., the descriptor from    with the lowest Euclidean distance. However, 

only the strongest matches continue to the next phase of the matching algorithm. In fact, the 

matches are cropped by what is usually known as ambiguity threshold [25]. This threshold is 

used to eliminate the matches that have a low ratio between the distance of the closest match 

and the distance of the second closest. 
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with    being the index of the closest match and    the index of the second closest. 

In the next step, the same is done but with the descriptors from   , resulting in two groups 

of matches, one that refers to the strongest matches of    in    and another that contains the 

strongest matches of    in   . These two groups are then merged together prevailing only the 

matches that exist in both groups. This is called bilateral matching [19]. 

Only the strongest matches are considered at this point, nevertheless, there are usually still 

some wrong matches, especially with challenging pairs of images. Therefore, the goal of the 



next step is to eliminate all wrong matches. The elimination of false positive matches is done in 

two steps, according to descriptors’ orientation and according to key points’ relative position. 

The first is based on the fact that the differences between the orientations of each match are 

approximately constant [19]. Thus, if a match’s orientation difference differs greatly from the 

median of all orientation differences, that match is discarded. 

As regards to false positive elimination according to relative positions, it is predicated on 

the assumption that there is no great affine transformation in the pair of images [19]. Knowing 

that at this point there is one list of    elements, each element containing a match (composed 

by   , from the first image, and    from the second image), the algorithm follows the 

following steps: 

1. Compute every match distance ratio according to: 

 
    (   )  

          (  ( )   ( ))

          (  ( )   ( ))
           (5.11)  

2. Calculate the median of all    values of     ; 

3. For each value of  , compute the   mean values of the differences between      

values (along  ) and the median; 

4. Eliminate matches that have a high mean. 

In other words, it assumes that the ratio between Euclidean distances of the feature points 

of on one image and the distances of the matched features on the other image is 

approximately constant. If there is a match that has ratios too different from the median value, 

that match is excluded. 

 

 

 

 

Regarding the transformation process of the second image, to perform the alignment of 

both images, a second-order polynomial transformation process is used (equation 5.12), since 

it had been already implemented in a BlueWorks project [13]. 
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 (5.12)  

where    refers to the correct position of the points, or this case, the positions in the first 

image, and    (     ) is position of the points in second image.   and   are coefficients 

that have to be pre-computed with the extracted matches from the previous stage. 

Note that to compute   and   coefficients, one only needs 6 matched feature points. So in 

order to select 6 matches from the set of matches retrieved from the previous stage, a 

K-means algorithm was used to gather the matches’ points relative to the first image into 6 

clusters. The points closer to the center of each cluster and their matches were then extracted 

to compute the transformation matrix. 

 

 

 

 

Performance evaluation of multimodal registration algorithms is a difficult process since 

there are few algorithms available for comparison that perform such task. However, one 

algorithm which is commonly used for comparison with this type of implementations is the 

Dual-Bootstrap Iterative Closest Point algorithm [26]. This algorithm will also be used here for 

comparison with the implementation of the first architecture (symmetrical descriptors). 

A set of 12 randomly chosen multimodal pairs of images is used to evaluate the 

performance of the first architecture. The results are shown on Figure 35. 

Note that the results obtained using the approaches described in this thesis are simply the 

matches that result from the bilateral matching and not the results from a final alignment. This 

compromise solution, caused by the limited time frame of the project, enables one to assess 

the performance without the influence of the false positive elimination process. 

Furthermore, the results for the first architecture were obtained using a higher value for 

the ambiguity threshold since this method seams to produce less distinguishable descriptor 

due to being symmetrical. Therefore, the matches are less robust, producing a more unstable 

registration process. 

 



 

Figure 35 – Chart containing the number of matches using architecture I (symmetric descriptors) 

 

Regarding the dual-bootstrap algorithm, it was able to perform registration to 6 of the 12 

pairs. Therefore, aiming for a second-order polynomial transformation (which only needs 6 

matches to be computed), theoretically, this architecture would perform better, since it has 

more than 6 correct matches in 8 out of the 12 pairs. However, this is not a fair comparison 

because one still needs to perform false matches elimination. 

Regarding architecture II, since there were no segmentation algorithm implemented that 

was robust enough to validate these descriptors, a way of performing vasculature 

segmentation external to BlueWorks was needed. The most precise way of evaluate the 

performance of these descriptors were to have a set of image pairs segmented, manually or 

with another algorithm sufficiently robust to segment the wide range of exam types for which 

they were intended to. Nevertheless, none of the mentioned approaches was possible to 

execute. Therefore, another path was taken. 

The DRIVE (Digital Retinal Images for Vessel Extraction) database [27] contains a set of 

fundus images and their manually created segmentation maps by two trained human 

observers. However, the dataset does not contain pairs of images so, in order to simulate two 

different images, two other datasets were created from one of the manual segmentation sets 

according to the following: 



1. A dataset was generated by performing a random perspective transformation to 

the segmented images from the second observer; 

2. A second dataset was generated by arbitrarily erasing vessels from the first 

dataset, simulating poorly segmented images (see Figure 36). 

 

 

Figure 36 – Example of the images created from the DRIVE database. 

From left to right: original map created by the first observer; map from the second observer with perspective 

transformation; map with perspective transformation and vessel deletion. 

 

Summarizing, now there is a dataset from the first observer and other two generated from 

the second observer which are going to be registered with the first for evaluation of the 

architecture II. The results are shown in Figure 37 and Figure 38. 

 



 

Figure 37 – Chart containing the number of matches using architecture II on the data set with perspective 

transformation. 

 

 

Figure 38 – Chart containing the number of matches using architecture II on the data set with perspective 

transformation and vessel deletion. 

 



The mean time for computing the matches with this architecture (computed from the 

registration of the two datasets of segmented images) was 1,98 seconds.  

 

 

 

 

From visual inspection of the actual matching of the first architecture’s implementation, 

one can conclude that the matched key points are not uniformly distributed throughout the 

image, suggesting that the descriptors from the first architecture are not robust enough to 

account for the dissimilarities in intrinsic information of different exam modalities, which, in 

part, led to the implementation of the architecture with vasculature segmentation. 

Architecture II performed well under the variability induced in the segmented datasets and, 

while further testing still needs to take place, the results are very promising. In fact, even with 

the visual inspection of testing performed with poorly segmented vessels from the 

implemented method that uses Gaussian templates, good results were obtained. 

Segmentation seems to be an inevitable step for reducing heterogeneity of ocular fundus 

images. Therefore, the study and implementation of other approaches, like quadrature filters 

[28], should be a good step towards the completion of a multimodal registration algorithm. 

Other considerations also have to made regarding the transformation stage, since the 

second-order polynomial transformation process is not the most successful approach for 

registration of fundus image, as pointed out by Bernardes [29]. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

To conclude, this thesis contributes with a study of a brightness and contrast normalization 

technique that will be very helpful for ophthalmologists and for other software of pathology 

classification. 

It also presents several improvements and modifications to the semi-assisted registration 

project that can be easily modified in the future to be more robust. 

In addition, a good contribution to the fully-automated system was made, which was 

ultimately the objective of this project. The architectures presented, especially the fast SIFT 

with previous segmentation seem to be a very good path to the final version of such system.  

In the end, a lot of questions arose along with several ideas that were discussed throughout 

this document. However, the time period is limited and not every idea can be implemented 

and tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

The algorithm to determine the mask created by some image acquisition systems 

(introduced in chapter 2) that was used throughout this project is similar to the one used by 

Chanwimaluang et al. in an implementation of the registration algorithm described in their 

paper “Hybrid Retinal Image Registration” [11]. This implementation has four stages (see 

Figure 39). In the first stage the each row of the image is analyzed from left to right and the 

pixels are marked as belonging to the mask until a pixel with an intensity value that is greater 

than 15 (in the interval [     ]) is found. This value is the same as the one used by the 

mentioned implementation and its meaning comes from the fact that the shadow is not 

actually black, but a gray level close to black. When that value is found, the algorithm skips to 

the next line. After all lines are analyzed the second stage begins. In this stage, the lines 

analyzed the same way but from right to left. The last two stages are responsible of analyzing 

the columns, one from top to bottom and the last from bottom to top. The result is a binary 

map that separates mask pixels from the actual ocular fundus image. 

 

 

Figure 39 – Mask determination illustration. 

Left: the four steps of the mask determination algorithm. Right: final mask resulting of the intersection of the 

intermediate steps. 



 

 

 

 

 

 

 
 

The Hessian matrix (or Hessian) is a square matrix that contains second-order partial 

derivative information of a given function. 
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(B.1)  

In a computer vision context, the Hessian typically results in a two by two matrix for each 

pixel   (   ), as shown in the equation below: 
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where    ,     and     result from the convolution the second-order derivatives of a 

Gaussian template  : 
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with the image itself, using the following equations: 
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The hysteresis threshold technique is usually associated with the Canny’s Edge Detector 

[30]. However, it can be used to binarize any given grayscale image.  

Instead of using a single threshold to separate the image into two different sets of pixels, 

this algorithm uses two thresholds. The lower threshold is used to classify the pixels with an 

intensity value lower than it as the binary value “false”. All pixels with intensities above the 

higher threshold are marked as “true” and are picked as seeds for the next stage.  

At this point, the immediate neighbors of each seed are analyzed. If the neighbor pixel is 

greater than the lower threshold, then it is marked as “true” and it is added to the seed list; if 

not, the algorithm skips to the next neighbor or the next seed if there are no more neighbors. 

The algorithm keeps flowing until the seed list is empty. 

Some pixels may have not been analyzed because they fall between the two thresholds and 

they do not neighbor any pixel above the higher threshold nor have a connection through 

pixels between the thresholds to one. These pixels are marked as “false” in a final swept 

through the image. 

 

 

Figure 40 – Representative diagram of the application of hysteresis thresholding to a set of intesities along a row of 

the image. The red lines represent the two tresholds, the blue part are the pixels classified as “true” and the black 

part of the curve are the pixels classified as false. 



 

Figure 40 shows the intensity values of the pixels in a row of the image and how they are 

classified. Obviously enough, in this representation each pixel only has two neighbors instead 

of the eight that are present in a two-dimensional image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

Otsu’s threshold, named after its first publisher Nobuyuki Otsu [31], is a commonly used 

technique to perform binarization to grayscale images, splitting its histogram into two 

different groups of intensity values. In this method, the threshold is iteratively adjusted, 

changing this way the variance of both groups, with the intension of choosing the threshold 

that minimizes the within-class variance (   
 ). [32] 

The within-class variance can be computed with the following equation. 
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where   
  is the variance of the first group or background,   

  is the variance of the second 

group or foreground and    and    are the number of pixels that belong to the first group and 

second group, respectively, according to the current division. After having calculated the 

values of    
  for all possible values of the threshold, which in 8bit images can go from 0 to 

255, the value of the threshold for which the within-class variance has the lowest value is 

chosen as the definitive threshold. [32] 

Another commonly used approach uses the between-class (   
 ) variance instead of the 

within-class variance, since the former is faster to compute, especially on larger images. 

Equation D.2 shows how it can be computed. 
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where    and   are the overall variance and mean, respectively. Then, the between-class 

values are searched to find the threshold that maximizes it. That threshold, like before, is set 

as the final threshold. [32] 



Note that an additional implementation had to be made so that the determination of the 

Otsu’s threshold in images with a black mask was not affected by the massive amount of black 

pixels, by previously determine the mask pixels using the algorithm described in Appendix A. 
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