Thermodynamics at work: The pressure derivative of the specific heat
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Thermodynamics relates measurable quantities such as thermal coefficients and specific heats. The
first law, which implies that the enthalpy is a function of state, yields a relation for the pressure
derivative of the specific heat . The second law gives a simpler and well-known relation for this
pressure derivative. We compare the values of the pressure derivatiyeobtained from the first

and second laws to the values obtained from measurements for water at different pressures. The
comparison illustrates the scope and methodology of thermodynamic$99&American Association of

Physics Teachers.

[. INTRODUCTION and k= — (1N)(dv/dP)s is the adiabatic compressibilify.
o . Equation(3) implies that the ratio of the specific heats at
Thermodynamics is based on a small number of principlegonstant pressure and at constant vollfrequals the ratio
and provides a formalism which relates the various thermabf the isothermal and adiabatic compressibilifig$.these
coefficients and specific heats for any substance ifuantities are measured independently, we could verify the
equmbnum:l Examples of typical thermodynamic relations first law. Equation(3) can be used to determine the specific
are the reciprocity theorem, arising from the zeroth law, Reneat, c,,, which is difficult to measure because of the diffi-
ech’s relation, arising from the first law, and Mayer’s rela- culty of keeping the volume constant.
tion, arising from the second law. These relations can be Mayer's relation follows from the second and first laws

summarized as follows. and can be expressed Ys:
From the zeroth law, the reciprocity theorem for a PVT
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(pressure, volume, and temperajusgstem states that Cy=Cp— (Mayer’s relation. 4)
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B= =) (reciprocity theorem (1) Equation (4) is one of the most important relations of
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thermodynamics! The independent measurement of the co-
coefficient, v is the specific volume, ander=—(14) Instead of Eq(3) to obtaincy, .
state, because cy, only three can be considered independent. For example,
It is difficult to verify any of the relations, Eg$l), (3), or
experimental data. A pedagogical example using a rubbemental data for thermodynamic consistency by considering
system would not be in equilibriur Equation (1) can be the relation
difficult in practice to keep the volume constant when the op | TevT
can be expressed asi= 5q— P dv, whereu is the specific perature at constant pressure. If we substitute(Eqin Eq.
Kg . (7_P T
cvchK—T (Reech’s relatiop 3
where cy=(60/dT)y=(duldT)y and cp=(5a/dT)p  law. We emphasize that the first law can be verified indepen-

where B=(1/P)(JP/4T)y is the relative pressure coeffi- €fficients appearing in E¢4) allows us to verify the first and
cient, @=(1A)(av/dT)p is the (cubic thermal expansion second laws of thermodynamics. We may also use(&x.
X(dvldP)+ is the isothermal compressibility. Equati¢h) Efc;.ugtions(l), (3), and (3') impg/ thhat amg)fngr]the therrgal
follows readily from the existence of a thermal equation ofS0€MICIENtSe, K7, K5, andp, and the specific heats an
if we choosex, a, andcp, thenc,, could be obtained from
(ﬁ_V> Eq. (4) and B8 and k¢ can be obtained from Eqg&l) and(3).
aP
o ! _ o _ (4) directly, because at least one of the quantities in each
It is interesting to show the validity of Ed1) using only relation is difficult to measure. However, we can test experi-
strip (a tension, length, and temperature systesliscussed  equations for ¢cp/dP)+. In this paper, we show how to
in Ref. 2. If Eq.(2) were not experimentally fulfilled, the gptain @cp/dP)1 using only the first law. We will arrive at
used to obtain a coefficient such gswhich is difficult to
measure, fromx and x1, which are easier to measufé. is (0CP
temperature is being changed by heating. T ) ) o )
We can derive Reech’s relation from the first lAwhich ~ Where the prime denotes differentiation with respect to tem-
internal energy ang is the (specifig heat transfer. Reech’s (5), we obtain another refation
relatior’ states that acp ,
=—Tv(a'+a”). (6)
Equation(6) is well-known, but Eq.5) is not. Note that
the latter relation provides an experimental check of the first
=(dh/dT)p are the specific heats at constant volume andiently of the second. Thus, we may imagine a hypothetical
pressure, respectively, thespecifig enthalpy h=u+ Pv, reversible world where the first law holds but not the second.
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Table I. Experimental data for water By=101.3 kPa and temperatures ranging from the ice point to the boiling (R&it 15. The first six columns are
direct experimental data and the last three columns are determined indirectly. The specific heat in column 8 was obtained from thg=relatioh<; and
the specific heat in column 9 was calculated by usigg cp— Ta?v/ky .

T vx10° ax10® kX 101 KksX 10'° cp BIEq. (1] cy [Eda. (3)] cv [Eq. (4]
°C m*kg ™t K™t Pa’ Pa’ Jkg k! K™t Jkg K™t JkgtK™!
0 1.000 16 —67.89 5.0885 5.0855 4217.6 -1.3171 4215.1 4215.1
10 1.000 30 87.96 4.7810 4.7758 4192.1 1.8162 4187.5 4187.5
20 1.001 79 206.80 45891 45591 4181.8 4.4485 4154.5 4154.5
30 1.004 37 303.23 4.4770 4.4100 4178.4 6.6861 4115.9 4115.9
40 1.007 84 385.30 4.4240 4.3119 4178.5 8.5975 4072.6 4072.6
50 1.01211 457.60 4.4174 4.2536 4180.6 10.226 4025.6 4025.6
60 1.017 09 523.07 4.4496 4.2281 4184.3 11.605 3976.0 3976.0
70 1.02272 583.74 45161 4.2307 4189.5 12.760 3924.7 3924.7
80 1.029 00 641.11 4.6143 4.2584 4196.3 13.716 3872.6 3872.6
90 1.03589 696.24 47430 4.3093 4205.0 14.491 3820.5 3820.5
100 1.043 41 750.30 4.9018 4.3819 4215.9 15.110 3768.7 3768.8
In Sec. Il we derive these two results, and in Sec. Il we 1 v 17/ oh Cp
compare them using experimental data for liquid water. ~ds=Ldh—LdP== (ﬁ —v|dP+—dT. (11
Some conclusions and suggested problems are given in Sec. T
V. Applying Schwartz’'s theorem to the entropy, we obtain
2
Il. THERMODYNAMIC RELATIONS E(E) _ 1 (ﬂ Y A
_ . TP T2\ oP TJoToP T\aT) "
The first law asserts that measurements of the variations of T T ’212)
the internal energy in an isolated thermal system can be re- _
duced to a pure mechanical probléfThis statement as- Using Eq.(10), we obtain
sumes the existence of adiabatic walls. Furthermore, these h oV
variations are independent of the process from the initial to <_) =v—T(— =v(1-Ta). (13
the final state, and thus the internal energy is a function of T AN

state. This important result may be called the compatibility condi-

In practice, the most convenilesnt independent variables arg,, pecayse it equates two different kinds of quantities: a
the intensive quantitie$ and P.™ For this reason, the en- yariyative of the enthalpy on the left-hand side and a func-
thalpy should be used instead of internal energy. From thgsn ghtained directly from the equation of state on the right-
f!rst 'Iaw, we find the following expression relating the de- ,5n4 side. Equatiof6) is obtained by taking the temperature
rivatives of the enthalpy: derivative of Eq.(13) at constant pressure.

ah) +(ah) (aP) @
JT b JP T JT V'

dh aP
ﬁ —Cv+V - =
\ \Y

aT
Using the definitions oty and 8 and Eq.(1), we obtain

Ill. ANALYSIS OF EXPERIMENTAL DATA

In the following we obtain the derivatived¢p/dP)+ for

o« dh 8 water using data for the thermal coefficients and specific
CP_CV_K_T V=lapl |’ ®  heats and various thermodynamic relations. We have chosen
_ _ T water because accurate data are available for a wide range of
which may be written as: temperatures and pressures. The data in Table | are for liquid
oh water at 101.3 kPéormal atmospheric pressiiré The data
KT . . . . .

(— =v—(Ccp—Cy) —. (9) in Table Il is for liquid water in the pressure range 50

P/ a X 10° Pa to 200k 10° Pa®

Taking the derivative of this expression with respect to the The specific volumey, and the thermal expansion coeffi-
temperature and applying Schwartz’s theorghe value of  cient,«, given in Table | can be measured directly. To obtain
mixed derivatives is independent of the order in which thext, specific volumes at different pressures are nedded

derivatives are takerto the enthalpy leads directly to Table Il). The coefficientkg is measured from the speed of

2 , 2 sound. The enthalpyy, and the specific heat,, are mea-
Jd h KT Jd h (9Cp . . .
=av—|(Cp—Cy) —| = 5o7=|2m ] (10) sured using an electric calorimeter.
JT IP @ P d P /4 On the other handB and cy are difficult to measure di-

which is the same as Eq5). This result was given in a rectly, because the volume of water changes upon heating. It

different form by Max Planck in his classical monogrdfih. IS convenient, therefore, to use, respectively, the reciprocity

In Appendix A, we derive Planck’s result and show its theéorem, Eq(1) and Eq.(3) to obtain them. Table | shows

equivalence to Eq(5). the resulting values fg8 andc,, . In the last column of Table
Although Eq.(6) can be obtained by substituting E@) | we show the values ofy as calculated from Eq4). The

into Eq.(5), another way of deriving Ed6) is the following.  values ofcy, turn out to be the samgvithin 5 digits) using

If we combine the second and the first laws, we have either relation.
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Table Il. Experimental specific volumesx 10° (in m®kg 1), and enthalpiesyx 102 (in J kg™Y), for water at
different pressures and temperatu(es°C) (Ref. 16.

P=5 MPa P=10 MPa P=15MPa P=20 MPa

T v h Y, h \% h v h
0 0.9977 5.03 0.9952 10.04 0.9928 15.04 0.9904 20.00
20 0.9995 88.65 0.9972 93.33 0.9950 97.99 0.9928 102.58

40 1.0056 171.98 1.0034 176.38 1.0013 180.78 0.9992 185.15
60 1.0149 255.30 1.0127 259.49 1.0105 263.67 1.0084 267.85
80 1.0268 338.85 1.0245 342.84 1.0222 346.81 1.0199 350.80
100 1.0410 422.81 1.0385 426.51 1.0361 430.28 1.0337 434.06

To obtain @cp/dP); from experimental results at differ- 1V than on the other columns is the fact that the enthalpy and
ent pressures, we first consider the enthalpies given in Tablés variations are more difficult to measure than the volume
Il. We used a five point algorithm for numerical derivatives and the expansion coefficient.

(see Appendix Bto computecp=(dh/dT)p for eachT and
P of Table Il. For the range of pressures considetgdis a  1V. CONCLUSIONS AND PROBLEMS

Ilnear_ function of P for eachT._ To rt_aduce the numerical We have used experimental data for liquid water to obtain

error in (9cp/P)y, we made linear fits t@p(P) (s€€ AP- (¢ /5P); using the first and second laws and compared the
pendix B for eachT. The values otp at atmospheric pres- ingirect results to direct measurements done at different pres-
sure in Table | are included in these fits. The_resqlt is showryres. We argued that E¢p) arising from the second law

in Table Ill. The values of{cp/dP)r are negative, indepen- requires less information and gives more accurate numerical
dent of the pressure. They are displayed in the second cofesuits. The two thermodynamic predictions facg/JP)+

umn of_ Table IV, which includes interpolated values for in- agree very well with each other and reasonably well with the

termediate temperatures. _ . values extracted from experiments at different pressures.

To compute gcp/IP)r at atmospheric pressure using Eq.  we expect thermodynamic relations to be universal. Be-
(5), the derivative on the right-hand side with respecTtat  cause water shows anomalous behaVidesting thermody-
constantP may be evaluated from the data of Table | usingnamic relations using data on water provides a good test of
the same five points algorithm. The numerical derivative orthermodynamics. Similar data sets for other substances may
the right-hand side of Eq5), with ¢, given by Eq.(3), was  also be used to check their thermodynamic consistency.
taken after the expression in brackets was evaluated. The The questions studied here may help students better under-
result appears in the third column of Table IV. stand the formalism of thermodynamics. Students often be-

Because the experimental data in Table | satisfy Mayer'some lost in the mathematical formalism and might not fully
relation forcy, we can also evaluate)¢p/JP); using Eq.  appreciate the physical content of the various thermody-
(6) In this case we have to obtaud numerica”y froma namlC relations. In contrast to engineering StUder\tS, phyS|CS
given in Table I. The result fordcp/dP)+, using the five ~Majors do not make much use of thermodynamic tables so
point algorithm, is the fourth column of Table IV. We take that the connection of thermodynamics to experiment is lim-
the latter result as the standard one because less numerid@d- We think that it is educational to use empirical data and
work is required(besides the empirical errors, only the nu- Simple numerical methods to analyze it. To this end, we
merical error ofa’ is present. The maximum relative devia- ProPose three problems for students.
tion of the results for Eq(5) relative to Eq.(6) is 0.6%.

However, the maximal deviation between the second and the,pie 1v. comparison of values oBép /9P)rx 1P (in Jkg 1K1 Pa’?)
fourth columns of Table IV is 16% and occursB&0 °C. for water at 101.3 kPa. The second column was obtained from the slopes of
These deviations are due to the inaccuracy in the derivativelse equations in Table Ill. The third column is obtained using &g (first

of h with respect to the temperatu(rme error is bigger at the law) taking numerical derivatives of data in Table I. The last column is

. . . . . . . obtained from Eq.(6) (second law using the same table. In the second
end p0|nt$, in the linear fits toce, and in the linear inter- column, linear interpolation was used for the temperatures not given in

polations of @cp/dP)r for intermediate temperatures. A Table Ill. The most accurate results are in the last column.
further reason for relying more on the last column of Table

T From From From
°C Table Il Eqg. (5) Eq. (6)
Table Ill. Fits tocp(P) obtained fromcp=(dh/dT)p using the data given
in Table Il and the values af, at atmospheric pressure from Table I. 18 :gigi :gggg :gggg
T co 20 —2.791 —3.127 —3.118
°C Jkglk? 30 —2.595 —2.715 —2.713
40 —2.398 —2.462 —2.463
0 4217.2-4.1714<10°6 P 50 —2.281 —-2.307 —2.308
20 4183.4-2.7913< 1078 P 60 —2.164 —2.219 —2.220
40 4177.1-2.3982<10 ¢ P 70 -2.129 —2.185 —2.184
60 4182.7-2.1642<10°° P 80 —2.093 —2.190 —2.187
80 4196.6-2.0930<10 ¢ P 90 —2.233 —2.233 —2.228
100 4218.6-2.3722<10°6 P 100 —2.372 —2.306 —2.319
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Table V. Experimental data of and « for water at 101.3 kPa for tempera-
tures close to 0 °Gto be used in Problem)iRef. 18.

T vXx10°

°C mekgt

0 1.000 160
1 1.000 100
2 1.000 060
3 1.000 036
4 1.000 028
5 1.000 036

(1) Water has a density maximum at 4 qTable V). Use
the five points algorithm given in Appendix B to evalu-
atea anda’ for the temperatures indicated in the table.
Evaluate the right-hand side of E@) at 0 °C and com-

pare the result with the corresponding ones in Table IV,

(2) From the data of Table Il obtaingh/dP)+ by fitting

values at the same temperature and different pressures.
Then evaluate the same quantity at atmospheric pressure

from Eq. (9) (first law) and from Eq.(13) (second law
using the data of Table I.

Insert the compatibility condition, Eq13), in Eq. (11).
Use a numerical integration algorithmto integrate Eq.
(11) and construct a table for the entropgT,P) from
the data in Table Il. Take s(T=273.15KP
=5.00 MPa)=0.0001 kJ kg'K 116

3

APPENDIX A: PLANCK'S RESULT

By applying Schwartz’s theorem t©=T(P,v), we obtain
Planck’s resuli(14).

Now we useT and P as independent variables to verify
that Eq.(18) is equivalent to Eq(5). From the definitions of
a and k7 and Eq.(1), we have

gey| [dT\ [dcy| [T\ [dT _C\/,KT 19
o\l Tl ) Tan @9
\Y P P \
Moreover,
FT [ KT) _[ﬁ(KT) (&T) 1 (KT)’
ov P &VaPﬁTaPr?VPava'
(20)
and the left-hand side of Eq18) becomes
, KT CV KT I_ 1 C\/KT !
°v;zv+a—v(;) —a—v( . ) : @)
On the other hand, we have
Jac aT ac k| 1
5 (] -5+l 2
v P T @@
and the right-hand side of E¢L8) is
1 0"Cp , KT Cp KT !
av ﬁ)jcpz avla) 71
1 CpKT ! 1 L?Cp
_a_V o ) +E (?_P T—l. (23)

If we equate Eqs(21) and(23) and reorder terms, we obtain
Eqg. (5).

Based on the first law only, Planck established the follow-

ing relation between thermal coefficients and specific Heat:

ol [, 5,

P dv v P
(Planck’s result

aCp
IP

Jcy

Cp—C
(cp—cv) p

=1 (14)

Here we derive this result and show that it is equivalent to

Eq. (5).
Taking the specific internal energyas a function of the
specific volumev and pressur®, we may write

(au) B (aT)
ﬁ V—CV ﬁ V. (15)
Fromdu=6q— P dv, we obtain
(au) . (aT) . 1
v/, Flov],

Taking derivatives of Egs(15 and (16) and applying
Schwartz’s theorem, we obtain

J JT _ J oT P 1
w| B || |ap|%lav -
\% P P Vv
or
dcy\ [dT #T  [dcp) (dT T
— | l=5| tov—5=|=5] | ==| +cp -
AN JP ov dP JP ov JdPdv
\ v P
(18)
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APPENDIX B: NUMERICAL METHODS

Given N data points for the quantity(x), the derivative
dy/dx can be obtained numerically by using the five point
algorithm?®

dy 1
ax lzm(_5OY1+9GY2_72Y3+3ZY4_6Y5%

dy 1

(&);m(—ﬁh—myﬁ%h—12)/4+2y5),

(d) ! (2 16y;_,+ 16y 2 )

T T oany (&Yi-2— 10y i+17 2Yi+2)

dXI 24AX | I 1+ 1+

dy = ! 2 1 36

ax N_l—m( Yn-aT12yN-3 YN-2
+20yn-1+6YN),

dy

ax N:m(GYN—4_3ZYN—3+72YN—2

—96yN-1+50yn).
The algorithm also applies to partial derivatives. This algo-
rithm was implemented using Excel.
We used the analytical equation of state of Thomsen and
Hartk&! to estimate the error for’ at T=0°C and P
=101.3kPa. For a temperature step of 10°C, the result
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a'(T=0°C)=16.0002x 10 *K 2 obtained with the five
point algorithm is accurate to within>210 10K 2,
Excel was also used to fit data fog(P) to a straight line

trivial physically about it or about other thermodynamic identities such as
the Maxwell relations. The experiments which are used to obtain heat
capacities are completely different from those that give the expansion
coefficients. That the resulting numerical values consistently satisfy that

(linear regression The use of spreadsheets is appropriate for relation must, accordingly, be viewed as the working of a deep physical
the type of analysis presented in this paper and requires onlylaw.”

modest knowledge of computer programming.
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