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Abstract

A density functional modelling study of impurities in hydrogen terminated silicon

nanocrystals is presented. Energy states of some contenders for n- and p-type doping

in con�ned systems are calculated, namely for the �rst three interstitial alkali elements,

Li, Na and K, and the �rst three interstitial halogen elements, F, Cl and Br. We �nd

that these impurities do not contribute with carriers (electrons or holes) to the LUMO

or HOMO states at room temperature. This results from both surface con�nement and

electronic weak screening in the nanocrystals. Energy levels for P, B and the O5 chain

model for the Thermal Double Donors (TDD) were also calculated in order to assess their

behaviour in the con�ned systems vs the well established dopant character bulk. Deep

energy levels were also found for these impurities.



Resumo

No presente trabalho estuda-se, através de modelação computacional baseada na teoria

do funcional da densidade, os efeitos de impurezas em nanocristais de silício passivados com

hidrogénio. São calculados os níveis de energia das impurezas intersticiais mais propícias

à dopagem de tipo-n e p para os sistemas con�nados, nomeadamente os três primeiros

elementos pertencentes ao grupo dos alcalinos, Li, Na e K, e os três primeiros halogéneos,

F, Cl e Br. Observou-se que à temperatura ambiente estas impurezas não contribuem com

portadores de carga (electrões ou lacunas) para os estados HOMO nem LUMO. Este facto

resulta do con�namento da superfície e do meio dieléctrico fraco existente no nanocristal.

Os níveis de energia para o P, B e o Duplo Dador Térmico do modelo da cadeia O5 foram

também calculados por forma a comparar o comportamento destes nos sistemas con�nados

com o comportamento, bem estabelecido, na matéria extensa. Níveis de energia profundos

no hiato também foram observados para estas impurezas.
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Chapter 1

Introduction

Since much attention is being drawn to nano-optoelectronic devices, with promising

technological and medical applications (molecular photosensitization, colour-dyes, new gen-

eration of solar cell applications, Li-ion batteries), the understanding of the electrical and

optical properties of Si nanocrystals (Si-NC) becomes an important aspect to focus upon,

due to the fact that these systems possess di�erent properties from those of the bulk

materials.

Nanostructures, smaller than macroscopic objects (present-day electronic devices), but

larger than molecules, belong to the intermediate domain of a complex combination of clas-

sical physics and quantum mechanics, where amazing properties emerge - the mesoscopic

world.

Quantum e�ects become dominant when the nanometre size range is reached, thus

accounting for changes in the physical properties of nanostructures, as is the case for

the increase in surface area to volume ratio altering mechanical and thermal properties

of materials. Here, the geometry of the material can dictate drastic e�ects on quantized

states. The energy spectrum becomes discrete, measured as quanta, rather than continuous

as in bulk materials. As a result, the bandgap becomes size dependent and this is known

as the quantum con�nement e�ect.

The present report is divided into four chapters. The �rst, is an overview of the theo-

retical background and a brief introduction to the relevance of the study of undoped and

doped silicon nanocrystals - the enhancement of the surface-area e�ects that are responsi-

ble for the appearance of di�erent properties when compared to those of bulk silicon. The

second chapter accounts for the description and convergence parameters de�ned in the

computer codes for the systems under study. The third chapter goes through a discussion
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of the obtained results, where in the �rst section this is based on the evaluation of energy

gaps for di�erent sized systems, in order to compare data from relevant literature and also

to compare results between two exchange-correlation functionals - LDA and GGA. The sec-

ond section accounts for the study of energy states of the doped silicon nanocrystals with

the aim of �ngding possible contenders to act as shallow impurities in silicon nanocrystals.

The fourth chapter �nalizes the report with the importance and conclusions of the present

work and describes future studies of oxidized silicon nanocrystals, where core-shell transfer

doping e�ects may occur, and the evaluation of optical properties of silicon nanocrystals.

1.1 Density Functional Theory

1.1.1 The Many-Body Problem

In order to solve the many body Schrödinger's equation for a quantum system of N

interacting fermions, several approximations can be employed, being these simpli�cations

of the full problem of many electrons moving in an external, electrostatic potential �eld.

In the absence of external �elds, the many-body Schrödinger equation, involving a set

of Ne electrons and Nn atomic nuclei, is

ĤΨ(~R,~r) = EΨ(~R,~r), (1.1)

where the wavefunction of the system depends on the nuclei, ~R, and the electron, ~r,

positions. This interacting system is usually described by the Hamiltonian, Ĥ, containing

the kinetic and potential terms 1

Ĥ = −1
2

Ne∑
i

∇2
i −

Nn∑
α

1
2Mα

∇2
α +

1
2

Ne∑
i,j=1
i6=j

1
|~ri − ~rj |

−
Ne,Nn∑
i,α=1

Zα

|~ri − ~Rα|
+

1
2

Nn∑
α,β=1
α6=β

ZαZβ

|~Rα − ~Rβ|
,

(1.2)

where Mα, Zα and ~Rα represent the mass, charge and location of the α-th nucleus, and ~ri

the coordinate of the i-th electron. The total wavefunction is thus a function of Nn plus

Ne coordinates (disregarding spin degrees of freedom), respectively [1],

Ψ ≡ Ψ(~r1, . . . , ~rNe ; ~R1, . . . , ~RNn). (1.3)
1Quantities are expressed in atomic units, where ~, electron charge e, electron mass m and permitivity

of vacuum 4πε0, are taken to be unity.
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One of the �rst simpli�cations to solve the many-body problem was the Born-Oppenheimer

approximation (1927). This approach considered that the Schrödinger equation, for the

electronic system, could be solved in a �eld of static nuclei, due to the mass of the nuclei

being ∼ 2000 times bigger than the mass of the electrons. Thus, the nuclear and electronic

degrees of freedom can be separated, which implies that electrons are supposed to move in

a potential of nuclei frozen in their equilibrium positions (adiabatic approximation).

The total wavefunction can then be approximated as

Ψ(~r, ~R) = ψ(~r, ~R)φ(~R) (1.4)

where ψ and φ are separate electronic and nuclear wavefunctions (the electronic wavefunc-

tion depends on ~R in a parametric way), and the Born-Oppenheimer Hamiltonian for the

electrons reads

ĤBO = −1
2

Ne∑
i

∇2
i +

1
2

Ne∑
i,j=1
i6=j

1
|~ri − ~rj |

−
Ne,Nn∑
i,α=1

Zα

|~ri − ~Rα|
. (1.5)

Even though the positions of the nuclei are kept �xed, �nding the electronic wave

function remains a di�cult task to achieve, because the Coulomb interaction (interactions

between electrons), second term of Eq. 1.5, introduces correlations between electrons.

When it is not possible to disregard the connection between electrons and nuclei, such

as for systems where electron-phonon coupling is a fundamental parameter (Jahn-Teller

systems, superconductor materials) [1], this approach cannot be applied.

Hartree (1928) attempted to replace the Coulomb interaction by an e�ective electron-

electron potential, Uee(~r), in which each electron moves in a �eld produced by a sum over

all the other electrons. This term was suggested to be of the form

Uee(~r) =
∫
d~r′

n(~r′)
|~r − ~r′|

, (1.6)

with n being the density of electrons

n(~r) =
∑
j

|ψj(~r)|2. (1.7)

In this simple approximation, electronic correlation is not accounted for and the many-

body Schrödinger equation is decoupled into Ne one-electron equations. This results in
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the Hartree equation [2]

−1
2
∇2ψl + [Uion(~r) + Uee(~r)]ψl = εlψl (1.8)

where Uion is the ion interaction potential.

Due to the nature of the Hartree equation, Eq. 1.8 (one-electron equation), the Pauli

principle is not recognized - whenever two electrons occupy the same position, the true

many-body wavefunction has to vanish. Fock and Slater (1930) suggested that due to the

fermionic character of the electrons, a space of antisymmetric wavefunctions is required,

where the many-electron wavefunction has the form of an antisymmetrised product of

one-electron wavefunctions [3, 2].

The simplest possible type of antisymmetric wavefunction is obtained by taking a col-

lection of orthonormal one-particle wavefunctions

∫
ψ∗i (~r)ψj(~r)d~r = δij (1.9)

and antisymmetrizing them, in the form of a Slater determinant

Ψ(~r1σ1 · · ·~rNσN ) =
1√
N !

∑
s

(−1)sψs1(~r1σ1) · · ·ψsN (~rNσN ) (1.10)

=
1√
N !

∣∣∣∣∣∣∣
ψ1(~r1σ1) ψ1(~r2σ2) · · · ψ1(~rNσN )

...
...

. . .
...

ψn(~r1σ1) ψn(~r2σ2) · · · ψn(~rNσN )

∣∣∣∣∣∣∣ (1.11)

where the sum is over all permutations s (the sign is +1 or −1 whether the permutation

can be written as a product of an even or odd number of pair interchanges).

Because this wavefunction is not a simple product, but a determinant, the Pauli prin-

ciple induces correlations among particles and therefore, the spin index σi (taking values

±1) is included in every wavefunction. The wavefunction can be written in the form

ψl(~riσi) = ψl(~ri)χl(σi) (1.12)

being χl(σi) the spin-function, satisfying [4]

∑
χ∗l (σi)χk(σi) = δlk. (1.13)
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The expectation value of the energy, is

E =
∑
l

〈ψl|hl +
1
2

(Jl −Kl)|ψl〉, (1.14)

where ĥ =
∑

l hl is the one-electron integral of the form

hl =
1
2
∇2
l −

∑
n

Zn

~rl − ~Rn
, (1.15)

Ĵ =
∑

l Jl is the Coulomb operator (electron-electron repulsion term) and K̂ =
∑

lKl the

exchange operator (spin-correlation e�ects), with

Jl(~r) =
∑
k

∫ ∫
ψl(~r)ψ∗l (~r)

1
|~r − ~r′|

ψk(~r′)ψ∗k(~r′) d~r d~r
′ (1.16)

Kl(~r) =
∑
k

∫ ∫
ψl(~r)ψ∗k(~r)

1
|~r − ~r′|

ψk(~r′)ψ∗l (~r′) d~r d~r
′. (1.17)

By minimizing 1.14 as a function of the spin-orbitals, ψl, providing the many-electron

ground-state, this gives the Hartree-Fock equations

F̂ψl = εlψl, (1.18)

where F̂ is known as the Fock operator (e�ective one-electron operator), de�ned as F̂ =

ĥ+ Ĵ − K̂.

Equation 1.18 is a Schrödinger-like equation, with εl being a lagrange multiplier, that

have to be chosen such it ensures orbital orthonormalization, and is identi�ed as the orbital

energies.

Density Function Theory (DFT) is based on the work performed on electronic structure

calculations for solids by Hohenberg, Kohn and Sham in 1965 [5, 6]. Here the electronic

orbitals are solutions of a set of Schrödinger-like equations (referred to as Kohn-Sham

equations), from which potential terms depend on the electron density rather than on the

individual electron orbitals, as in the Hartree-Fock theory.

In Hartree-Fock the potential terms enter the equations in a non-local way - the value of

the Coulomb and the exchange operators at ~r depends on the coordinate ~r′, complicating
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the evaluation of their respective matrix elements [1]. Within DFT, the Hamiltonian has

a non-local dependence on the density, however this value can be taken to depend on the

local value of the density alone with approximations made to the exchange-correlation

potential, simplifying the evaluation of the Kohn-Sham solutions.

Since the electron density, n(~r), is a simple function that depends solely on the 3-

dimensional vector ~r, instead of the 3N coordinates of the many-body wavefunction, where

N is the number of electrons of the system, the density is used as basic variable and thus

density functional theory becomes computationally feasible for large systems [7].

This theory is the theoretical foundation for the construction of an e�ective single-

particle scheme allowing for the accurate calculation of the ground state density and energy

of systems of interacting electrons [7].

The Kohn-Sham method assumes that, for each interacting ground state density n(~r),

there is a non-interacting electron system with the same ground state density. The in-

teracting ground state is thus obtained through the solution of the Kohn-Sham equations

that have the form of the single-particle Schrödinger equation

[
− ∇

2

2
+ vKS[n(~r)]

]
ϕi(~r) = εiϕi(~r),

where vKS is the Kohn-Sham potential, with a functional dependence on the electronic

density, n, which is de�ned in terms of the Kohn-Sham wave-functions by

n(~r) =
occ∑
i

|ϕi(~r)|2.

This potential can be de�ned as the sum of the external potential, the Hartree term

and the exchange and correlation potential (xc), thus

vKS[n(~r)] = vext(~r) + vHartree[n(~r)] + vxc[n(~r)]. (1.19)

Each component of Eq. 1.19 is solved according to the following:

1. The external potential is a sum of nuclear potentials centered at the atomic positions

vext(~r) =
∑
α

vα(~r − ~Rα) (1.20)
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This term is the Coulomb attraction between the bare nucleus and the electrons

vα = −Zα/r (with Zα being the nuclear charge), but, when necessary, this potential

can be replaced by Pseudopotentials, an e�ective interaction between the valence

electrons and an ionic core consisting of the nucleus and the inner electrons (detailed

discussion in subsection 1.1.2).

2. The Hartree term (electrostatic energy of the electron in the �eld generated by the

total density) can be evaluated by direct integration

vHartree[n(~r)] =
∫
d3r′

n(~r′)

|~r − ~r′|
(1.21)

or by solving the Poisson equation

∇2vHartree[n(~r)] = −4π[n(~r)]

3. The xc potential takes into account the many-body e�ects in the form of an exchange-

correlation functional and is de�ned by the functional derivative of the xc energy

(discussed in subsection 1.1.3)

vxc[n(~r)] =
δExc

δn(~r)
. (1.22)

1.1.2 Pseudopotentials

The chemical binding of atoms is due almost exclusively to the valence electrons. The

inner core electrons can thus be disregarded, forming an inert core, with the nucleus, that

interacts with the valence electrons [8].

The concept of pseudopotential was �rst proposed by Fermi in 1934 [9] and in 1935,

Hellman [10], suggested for potassium, that the potential felt by the valence electron could

be represented by

w(~r) = −1
r

+
2.74
r
e−1.16r,

thus replacing the complicated e�ects from core electrons by using an e�ective potential

(pseudopotential). Based on this idea, the Schrödinger equation will now contain a mod-

i�ed e�ective potential term instead of an explicit Coulombic potential for core electrons.
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Figure 1.1: Comparison of a wavefunction in the Coulomb potential of the nucleus (blue) to
the one in the pseudopotential (red). The real and the pseudowavefunction and potentials
match above a certain cut-o� radius rl.

The wavefunction can be written as a sum of a smooth function (pseudowavefunction) with

an oscillating wavefunction resulting from the orthogonalization between the valence and

the core electrons [8]

|ψv〉 = |ϕv〉+
∑
c

αcv|ψc〉, (1.23)

where αcv = −〈ψc|ϕv〉, |ψv〉 and |ψc〉 are the exact solutions of the Schrödinger equation

for the valence and the core electrons, respectively, and |ϕv〉 the pseudowavefunction. This

avoids the violation of the Pauli exclusion principle since orthogonality ensures that core

electrons do not occupy �lled valence orbitals.

The Schrödinger equation for the smooth orbital |ϕv〉 is thus

Ĥ|ϕv〉 = Ev|ϕv〉+
∑
c

(Ec − Ev)|ψc〉〈ψc|ϕv〉. (1.24)

Nowadays there are two main types of pseudopotentials in use: norm-conserving and

ultrasoft pseudopotentials.

Norm-conserving pseudopotentials are constructed by using an ab-initio procedure and

require that the pseudo- and all-electron valence eigenstates have the same energies, am-

plitude, and charge densities outside a certain cut-o� radius, rl - �g. 1.1. The integrated

charge inside the cut-o� radius for each wavefunction must agree (norm-conservation), so

that the total charge in the core region is correct and that the normalized pseudo-orbital
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equals the true orbital outside rl [11], therfore requiring that the pseudo wavefunction has

the same norm as the true valence wavefunctions [8]. The norm-conserving condition is

de�ned as

RPP
l (~r) = RAE

nl (~r), if r > rl (1.25)∫ rl

0
dr|RPP

l (~r)|2 r2 =
∫ rl

0
dr|RAE

nl (~r)|2 r2, if r < rl (1.26)

where Rl(~r) is the radial part of the wavefunction with angular momentum l, and PP and

AE are the pseudo and the all-electron wavefunction, respectively.

The cut-o� radius can in�uence the accuracy to reproduce the realistic features in

di�erent environments (transferability), being rl the measure of the quality of the pseu-

dopotential. The minimum value for the cut-o� radius is determined by the location of

the outermost nodal surface of the true wavefunction, to remove the oscillations in the

core region - if rl is close to this minimum, the pseudopotential can reproduce the sys-

tem more accurately (strong pseudopotential). If a very large cut-o� radius is chosen,

the pseudopotential will be smooth and almost angular momentum independent (softer

pseudopotential), not being adequate to transfer between widely varying systems. A soft

potential leads to a fast convergence of plane wave basis calculations, being the choice of

the ideal cut-o� radius a balance between basis-set size and pseudopotential accuracy. The

ultrasoft pseudopotentials, where norm-conservation is not enforced, are constructed to

describe a particular atomic environment [8].

1.1.3 Exchange-Correlation Potential

One of the di�erences between the Hartree-Fock approximation and DFT is the re-

placement of the exchange term by the exchange correlation energy Exc - functional of the

density, including, not only the exchange e�ects, but also dynamic correlation e�ects due

to the Coulomb repulsion between the electrons [3].

The exchange-correlation potential is a functional derivative of the exchange-correlation

energy, Eq. 1.22, with respect to the local density. To ensure that the Kohn-Sham formu-

lation is exact, the xc energy can be de�ned as

Exc[n(~r)] = T [n(~r)]− Ts[n(~r)] + Eee[n(~r)]− EHartree[n(~r)] (1.27)

13



where T [n(~r)] and Eee[n(~r)] are the exact kinetic and electron-electron interaction energies,

respectively, Ts[n(~r)] is the Kohn-Sham kinetic energy

Ts[n(~r)] =
∑
i=1

∫
ψ∗i (~r)

(
− 1

2
∇2
)
ψi(~r) dr (1.28)

and EHartree is the classical Hartree energy of the electrons of the form

EHartree[n(~r)] =
1
2

∫ ∫
n(~r)n(~r′)
|~r − ~r′|

drdr′. (1.29)

The kinetic and interaction terms can be group into an universal functional, equal to

all electron systems and independent of the external potential, as

FHK[n(~r)] = T [n(~r)] + Eee[n(~r)], (1.30)

where the HK subscript refers to the the Hohenberg-Kohn theory, where this functional

is originated from. Thus, the Exc can be written in terms of Hohenberg-Kohn functional

as [11]

Exc[n(~r)] = FHK[n(~r)]− (Ts[n(~r)] + EHartree[n(~r)]). (1.31)

For a homogeneous electron gas, the potential will depend only on the value of the

electron density. For an inhomogeneous system, the value of the exchange-correlation

potential at point ~r depends not only on the value of the density at ~r, but also on its

variation close to ~r, and can be therefore written as an expansion in the gradients

Vxc[n(~r)] = Vxc[n(~r),∇n(~r),∇(∇n(~r)), . . . ]. (1.32)

The inclusion of density gradients is not needed in most cases, so the simplest ap-

proximation to represent an exchange correlation potential is to apply the Local Density

Approximation (LDA) or its spin-relaxed version, the Local Spin-Density Approximation

(LSDA) - here the potential depends only on the value of the density at ~r and not on its

gradients. The functional has the form [8]

ELDA
xc =

∫
d3rεHEGxc (n)|n=n(~r) (1.33)

vLDAxc =
d

dn
εHEGxc (n)|n=n(~r), (1.34)
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where εHEGxc (n) is the xc energy per unit volume of the homogeneous electron gas (HEG)

of constant density n.

The correlation functional is obtained by a simple parametrized form �tted to several

densities calculated by using quantum Monte Carlo simulations of Ceperley and Alder [12]

on homogeneous electron gases. The most common parametrizations in use are PZ81 [13],

PW92 [14].

The LDA is exact for an homogeneous electron gas, so it works well for systems in

which the electron density does not vary rapidly, thus being well suited for the description

of crystalline simple metals. Some results, provided within the L(S)DA approximation,

are found to be in very good agreement with experimental data, such as determining

molecular properties - equilibrium structures, harmonic frequencies, charge moments [15].

This approach, being successful for some systems, can also lead to failures; some of these are

the wrong unstable prediction for stable negative ions (H−, O− and F−), underestimation

of semiconductor's band gaps, overestimation of hydrogen bonds.

The generalized gradient approximation (GGA), another well known functional and a

simple extension of the LSDA

ELSDA
xc [n↑, n↓] =

∫
d3r n(~r)εxc[n↑(~r), n↓(~r)], (1.35)

where εxc(n↑(~r), n↓(~r)) is the exchange-correlation energy per particle for an electron gas

of uniform spin densities n↑ and n↓, is of the form

EGGA
xc [n↑, n↓] =

∫
d3r f(n↑, n↓,∇n↑,∇n↓). (1.36)

This functional di�ers from the LDA because ε depends, not only on the density,

but attempts to incorporate the e�ects of inhomogeneities by including the gradient of the

electron density, ∇n (semi-local method). GGA is more widely used in quantum chemistry,

but LSDA remains the most popular way to do electronic-structure calculations in solid

state physics.

Hybrid functionals are perhaps the most accurate density functionals in use for quantum

chemical calculations and incorporate a portion of exact exchange from Hartree-Fock theory

with exchange and correlation from other sources, such as LDA, or empirical results. An

hybrid approach was introduced by Axel Becke [16] that concluded that a fraction of exact
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exchange should be mixed with GGA exchange and correlation. The simplest functional

form is

Ehyb
xc = aEexact

x + (1− a)EGGA
x + EGGA

c , (1.37)

where the constant a can be �tted empirically or estimated theoretically as a ∼ 1/4 for

molecules [17].

1.1.4 Expansion of the Kohn-Sham Wavefunctions

Plane-Waves

Plane-wave expansion of the Kohn-Sham wavefunctions takes advantage of the period-

icity of extendend systems.For �nite system calculations (atoms, molecules and clusters),

this type of expansion can also be performed if using the supercell approach. This can be

achieved by placing the system in a large enough unit cell, in order to avoid interactions

between neighboring cells.

The Kohn-Sham wave-functions are written according to Bloch's theorem in order to

ensure that the combination of basis orbitals, veri�es the translational periodicity of the

supercell. Thus,

ϕ~k,n(~r) = eı
~k·~r
∑
~G

c~k,n(~G)eı ~G·~r, (1.38)

where ~k is the wave vector, n the band index, and ~G are the reciprocal lattice vectors, of

the form ~G = m1
~b1 +m2

~b2 +m3
~b3, with

~bi = 2π
~aj × ~ak

~ai · (~aj × ~ak)
. (1.39)

The electronic density is

n(~r) =
∑
~k,n

∑
~G, ~G′

f~k,nc
∗
~k,n

(~G′)c~k,n(~G)eı( ~G− ~G
′)·~r (1.40)

where f~k,n are the occupation numbers. Fourier tranforming the density, one gets

n(~G) =
∑
~k,n

∑
~G′

f~k,nc
∗
~k,n

(~G′ − ~G)c~k,n(~G′). (1.41)

16



Two convergence parameters need to be adjusted for periodic condition calculations.

One of these are the Brillouin zone sampling. Physical quantities require integration over

the Brillouin zone in the supercell method, hence to evaluate these integrals computation-

ally, a weighted sum over special ~k-points (irreducible representative ~k vector) is performed.

The second convergence parameter is the cut-o� radius of the density in reciprocal space,

to truncate the sums over the reciprocal lattice vectors. The cut-o� energy is given by

Ecuto� = G2
max/2, where Gmax is de�ned as the radius of the sphere that contains all

plane-waves, Vsphere = (4π/3)G3
max.

Though the use of supercells may be a natural choice in solid state physics, one needs

to be aware of some consequences. Due to the long-range interaction between a charged

cluster and its periodic images, the supercell approach is restricted to neutral systems.

Thus, calculations performed on charged periodic systems must be considered with care

and di�erent methods can be applied in order to solve these problems [8]. The study of

defects, by using the supercell approach, also needs to be done with some care. For such

studies, this technique represents an in�nite array of defects separated by lattice vectors

and surrounded by the host species. When the lattice vectors are not large enough, spuri-

ous e�ects can take place in the form of defect-image coupling through interactions. This

can also be well accounted for when using the LDA functional. Due to the predicted un-

derestimation of the band-gap in semiconductors by the functional, and for a non adequate

sized supercell, mixing between defect-related gap states with the band extrema can lead

to serious problems, especially when one intends to study charged defect levels and/or

shallow levels [1].

Gaussian Basis Functions

Another form to solve the Kohn-Sham equations is by expanding the orbitals in a

localized orbitals basis set

ϕn(~r) =
∑
i

cn,iφi(~r) (1.42)

with n labeling the electron state and i the label of the basis functions. The error of the

approach is determined by the number of functions used and the suitability of the choice

of these functions φi.
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One common choice for the localized orbitals is gaussians multiplied by polynomials of

the position vector

φi(~r) = (x−Rix)l1(y −Riy)l2(z −Riz)l3e−ai|~r−
~Ri|2 , (1.43)

with li ≥ 0 determining the type of orbital (for example,
∑

i li = 1 is a p-orbital).

The charge-density is then calculated by

n(~r) =
∑
i,j

bijφ
∗
i (~r)φj(~r) (1.44)

bij =
∑
n

fnc
∗
n,icn,j (1.45)

where fn is the occupancy of the n state and bij the density matrices [18].

Within this approach, one can infer that �nite system calculations can overcome some

disadvantages that periodic calculations endure, mainly computational cost when compared

to using a supercell approach. Nevertheless, this method can have its shortcomings when

one intends to evaluate a �nite cluster of atoms, such as [19]

• the total electric dipole may depend on the location of the defect

• cluster surfaces must be saturated, otherwise the surface states from dangling bonds

could interfere with gap states from the defects

• existence of defect-surface interaction is dependent on the size of the cluster

Real Space

Within the scheme of real space calculations, functions are not expanded in a basis set,

but are sampled in an uniform, real-space mesh. Convergence of the results has, therefore,

to be checked against the grid spacing [8].

The study of �nite systems, molecules, or clusters, may be performed without the need

of a supercell, simply by imposing that the wave-functions are zero at a surface far enough

from the system. In�nite systems, such as a bulk material, can also be studied by de�ning

the appropriate cyclic boundary conditions.

Just as all the approachs, real-space methods su�er from a few drawbacks, which can

be minimized by reducing the grid-spacing. These are,
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• most of the implementations are not variational - a total energy lower than the

true energy may be found, and if so, when reducing the grid-spacing the energy can

actually increase

• the grid can break symmetries that the system possesses, leading to the arti�cial

lifting of some degeneracies.

1.2 Silicon Nanocrystals

1.2.1 Gap Width as a Function of the Nanocrystal Size

Silicon nanocrystals and similar nanostructures have been intensively studied in the

last years due to their interesting quantum con�nement properties. The strong spatial

localization of electrons and holes in Si NCs can enhance radiative recombination rates

and give rise to luminescence [20].

In the bulk regime, silicon has an indirect, low energy gap of 1.1 eV, in the infra-

red region [21]. As the size of the Si specimen decreases, reducing into a �nite sized

material (Si nanocrystal), this energy gap tends to widen, driving the lowest occupied

molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) further apart

and ultimately giving the small nanocrystals a direct gap-like behaviour [22], discrete

energy spectra, an important feature for optoelectronic and photonic applications. The

greater the di�erence between the HOMO and the LUMO, more energy is needed to excite

the nanocrystal, and therefore, more energy is released when the crystal returns to its

fundamental state, resulting in a colour shift from red to blue of the emitted light, hence

allowing for photoluminescence (PL) across the visible spectrum [23]. By this, one can

infer that one of the main advantages of Si-nanocrystals (Si-NC) is the possibility for

atomic manipulation, allowing the control over the conductive and optical properties of

the material just by altering the size of the gap or its chemical composition.

Ab initio studies are needed to achieve a better understanding of the size dependence of

optical processes in con�ned systems. Empirical approaches su�er from the transferability

of the bulk interaction parameters to the con�ned system environment, thus a�ecting

the optical gaps due to the quantum con�nement changes in the self-energy corrections

(corrections that correspond to those of the bulk). First principle studies, that had been

limited to small sized crystals and had known problems of band gap underestimation by the
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local and semi-local functionals, can now achieve more accurate results. The improvements

are due to advances in electronic structure algorithms and computational infrastructures,

and the gap problem can be overcome due to alternative formulations of optical gaps,

adequate to apply to con�ned structures [24].

There are two distinct formulations for the optical gaps: the quasiparticle gap, εqpg ,

which is the di�erence between the ionization energy (energy needed to remove an electron

from the N -electron system) and the electronic a�nity (energy gain when an electron is

added to the N -electron system) [25]; and the excitonic or optical gap, εoptg , which accounts

for an electron-hole pair bound by ECoul. Therefore, the form of the optical gap is

εoptg = εqpg − ECoul (1.46)

where ECoul is the Coulomb exciton binding energy [26]. Both these components are

di�erent from their bulk values in small nanoclusters due to quantum con�nement [27].

For an N -electron system, the quasiparticle gap, εqpg , without account of the direct

interaction of electron and hole, can be expressed in terms of the ground state total energies

E of the (N + 1)-, (N − 1)-, and N -electron systems, as [26]

εqpg = E(N + 1) + E(N − 1)− 2E(N) (1.47)

thus requiring the self-consistent solutions of three di�erent charge con�gurations.

In the bulk limit, Eq. 1.47 is simply the di�erence between the Kohn-Sham eigenvalues

of the lowest unoccupied and the highest occupied states.

Excitonic Coulomb and exchange-correlation energies need to be included if one wants

to compare results with experimental absorption data. Quantum con�nement in nanostruc-

tures enhances the bare exciton Coulomb interaction, also reducing the electronic screening,

so that the exciton Coulomb energy can be comparable to the quasiparticle gap. If using

an �exact� exchange-correlation functional within DFT and in the case of bulk silicon, the

quasiparticle gap should be close to the optical gap because excitonic e�ects are small.

Since LDA (or GGA) is not exact, the optical gap limit is not met [28].

The Coulomb exciton energy, of Eq. 1.46, needs to be evaluated accurately, hence there

have been several techniques in order to obtain this value for quantum con�ned systems.
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E�ective mass approximations (EMA) cannot account adequately for such energies

because the microscopic features of the electron-hole wavefunctions, inside the con�ned

system, are neglected and the wavefunctions are constrained to vanish outside the crystal,

instead of decaying smoothly into the vacuum.

Other calculations using the bulk dielectric constant, or reduced dielectric constant, of

a quantum system for all the electron-hole distances are also not adequate, since and in

the case of con�ned systems, the dielectric screening is di�erent at increasing/decreasing

respective length scales. One of the most direct and adequate approach can be obtained

by using ab initio pseudowavefunctions calculations, though these can be computationally

very demanding [24]. Therefore and within this framework, the exciton Coulomb energy

can be written as

ECoul =
∫ ∫

ε−1(~r1, ~r2)
|ψe(~r1)2||ψh(~r2)2|
|~r1 − ~r2|

dr1dr2 (1.48)

with ψe and ψh being the electron and hole wavefunctions, respectively and ε−1(~r1, ~r2)

the inverse of the microscopic dielectric matrix. The evaluation of the matrix is what

contributes for the demanding computational task of the pseudowavefunctions calculations.

The optical absorption spectra can be computed using a linear response theory within

the adiabatic time-dependent local-density approximation (TD-LDA); this formalism al-

lows the inclusion of the electronic screening and correlation e�ects, which determine ex-

citon binding energies, to be evaluated within an ab initio framework. This technique is

developed to include the proper representation of excited states [29], being this an extension

of the ground state density-functional formalism. Compared to other theoretical methods,

such as the many-body perturbation theory (MBPT) involving the Bethe-Selpeter equa-

tion, the TD-LDA approach requires considerably less computational e�ort and can be

applied to much larger systems. However, the choice of the right xc-approximation with

respect to the given excited state property is crucial. Therefore, MBPT comes as a well

established and intuitive formalism, based on Green functions, where quaisparticle ener-

gies appear as a natural domain and accounting for a better behaved description of excited

states.
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1.2.2 Doped Silicon Nanocrystals

Another form of controlling the electronic and optical properties of Si-NC is by intro-

ducing impurities in the material [30]. Doped nanocrystals may emit light di�erent than

those emitted by pure NC, indicating that the impurity level a�ects the absorption and

photoluminescence spectra.

The presence of single donor and acceptor states can lower the energy gap of the pure

Si-NC [32, 21], whereas deep defects may degrade device performance. Hence, and since

the new generation of optoelectronic devices is being drawn towards the nanometre, it

becomes crucial to understand the properties of dopants in con�ned systems [32].

Phosphorous and Boron are the most studied dopants in Si (as they are easier to

incorporate) and thus their binding energies, as shallow impurities, are well established for

the bulk Si semiconductor. The binding energy for the substitutional donor, P, is of the

order of 33 meV, and the acceptor energy for B is 45 meV [33]. Hence these impurities in

bulk Si introduce defect energy states close to the conduction and valence band, respectivly,

enabling thermal excitation of the charge carriers, thus enhancing the conductivity of the

material and altering the respective transport properties [34]. Reducing the dimensionality

of the system, these electric levels start to deepen into the mid gap, being this an evidence

of how the size of the nanocrystal a�ects the localization of the electric states [21]. The

combined e�ects of both quantum con�nement and weak screening thus transform well

established shallow impurities of the bulk, into deep levels in the nanocrystals [21].

It is worth mentioning that doping in nanostructures is more problematic than in

bulk materials. One of the main di�culties is the control over impurity concentration and

precise positioning, because of the out-of-phase relation of impurity concentrations between

nano and bulk-sized materials - a small amount of dopant atoms can correspond to higher

impurity concentrations in a nanomaterial [35]. Increasing dopant concentration results in

distinct changes in the photoluminescence properties due to the in�uence on the mobility

of the charge carriers [36]. In fact, it has been established that the emission intensity

of NCs with low concentration of P (B) impurities is higher (lower) than for pure NCs,

resulting that higher impurity concentration may suppress the luminescence intensity [30].

Another problematic issue arising in doped nanomaterials is the self-puri�cation. One

of the major issues, regarding this fact, is the possible deactivation of the functionalization
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properties of impurity atoms that can be expelled or segregated to the surface of the

material due to energetic and kinetic processes, that result from the e�ects of the con�ned

dimensions [35].

Quantum Con�nement E�ects vs Weak Dielectric Screening

Several works intend to explain dopant localization in NCs on the basis of two theories.

Experimental data tend to regard this feature based on quantum con�nement e�ects,

whereas some theoretical calculations seem to show that dopant localization also results

from the decrease of the dielectric screening. Both these theories are related to the size of

the crystal.

Based on reference [37], the electron wavefunction localization should be explained

di�erently for distinct NC radius R:

1. for R > 3.5aeffB nm, the reduction of the dielectric screening determines the local-

ization

2. for R < aeffB nm the in�uence of the con�ning surface potential prevails over the

dielectric screening

3. for intermediate size ranges, both dielectric and quantum con�nement contribute to

the electron localization

with aeffB = 1.67 nm being the e�ective Bohr radius of the bulk system.

The measure of how strongly the defect electron interacts with the impurity atom can

be determined by its binding energy. Taking as example the case of a P-dopant, this energy

is calculated by the energy required to ionize a P-doped Si nanocrystal by removing an

electron, IPd, minus the energy gained by adding the electron to a pure Si nanocrystal,

EAp. Thus,

IPd = Ed(N − 1)− Ed(N)

EAp = Ep(N)− Ep(N + 1) (1.49)

where Ed and Ep is the ground state total energy of the N electron system for doped

and pure Si, respectively. The binding energy is determined by calculating the di�erence
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between these quantities [36]

EB = IPd − EAp. (1.50)

This de�nition of the binding energy for con�ned systems is not similar to the bulk's

de�nition of such quantity. In the bulk regime the binding energy is de�ned as the di�erence

between the dopant electron level and the conduction band. In nanocrystals this de�nition

is not valid since an excited electron will be con�ned by the physical size of the crystal and

will continue to interact strongly with the impurity atom [36].

It has been observed in ref. [34] that for NCs with diameters larger than 2 nm, the

binding energy tends to decrease as the P atom moves towards the surface. This is due to

the defect wavefunction becoming more delocalized around P, leading to a Coulomb energy

loss between the impurity and the electron, hence making the centre of the nanocrystal

energetically more stable. For Si crystals less than 2 nm in diameter, the binding energy

is higher close to the surface, thus P segregates to the surface. The binding energy and

the stress induced by the dopant are responsible for determining the defect position in the

crystal with respect to the size regime [34]. These results can be compared with the ones

obtained by Melnikov et al. [36], with Si nanocrystals sizes ranging from 0.8 nm to 2.4 nm

in diameter. It was inferred that the choice of the P site does not have a strong in�uence

on the binding energies; nevertheless a minor di�erence was found - the centre position is

more stable than the surface position by about 0.6 eV. It was also suggested by Zou et al.

[38] that, in doped silicon nanocrystals, the most signi�cant physical e�ect that determines

the positioning of the defect level is the reduced screening of the impurity potential that

leads to the large donor and acceptor binding energies (not allowing for the formation of

shallow impurities in con�ned systems [36]); the screening inside the nanocrystal is less

e�ective than long range screening in bulk Si.

Studying the ionization energies with respect to the radii of the nanocrystals, Melnikov

et al. [36] inferred that these were unchanged throughout the studied range of crystals,

being this value approximated to the bulk's value (4.2 eV). Hence, conclusions withdrawn

from here are that the ionization energies do not exhibit a quantum con�nement behaviour,

but this can be attributed to a strong electron-impurity interaction [36] due to the weak

screening and strong localization around the defect.

The hyper�ne splitting (HFS), that results from the interaction between the electron
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spin of the defect level and the nuclear spin (which is directly related to the dopant electron

density localized on the impurity site), is observed to be very large for small nanocrystals,

due to a strong localization of the electron around the impurity. It has also been found

that the HFS increases with respect to the bulk [36], which suggests that the screening

dielectric constant of the NCs is not equal to the dielectric bulk value, εbulk = 11.7 eV [37].

Ab-initio pseudopotential calculations [34] have also concluded that the P defect in

Si-NCs can be well described by the hydrogenic system, using the model calculation of a

hydrogen atom con�ned in a quantum well (�dielectric box�), V0. This is plausible because

the defect wave function, ψ, has a functional form similar to the 1s orbital, where

ψ ∼ exp (−r/aeffB ) (1.51)

being aeffB the e�ective Bohr radius that is dependent on the nanocrystal size (aeffB ∼ 1.67

nm in the bulk system [37]).

It was found by Chan et al. [34] that the e�ective Bohr radius decreases as the NC

size is reduced; but, for very small crystals, R → 0, the Bohr radius tends to converge to

∼ 0.2 nm. The authors concluded, after �tting the data that was obtained to an e�ective

mass model, that the depth of the potential well is dependent on the nanocrystal radius,

suggesting that V0 represents the e�ect of quantum con�nement on the wavefunction. Thus,

in the range of small sized crystals, the kinetic energy of the defect electron increases due

to the reduction of the dielectric screening; therefore the quantum well tends to deepen

such that it can con�ne the electron. Whereas, when the limit of the bulk regime is met,

the well vanishes.

Dopant Contenders

Possible contenders for shallow donors in silicon nanocrystals can be considered with

elements belonging to the alkali group (I) (Li, Na and K) as these have lowest ionization

energies. For acceptor-dopants, attention can be drawn to the �rst three elements, with

highest electronic a�nities, belonging to the halogen group (VII-B) (F, Cl and Br).

Works regarding the usage of halogen elements as dopants have already been carried

out in the diamond lattice. A recent one, accomplished by Yan et al. [39], shows that

doping diamond with these elements becomes more di�cult as one goes down the halogen

column of the periodic table, due to the increase of the respective formation energies. In
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spite of this di�culty, it has been seen that substitutional doping is more favourable. In

principle, it is possible for these elements both to accept and donate electrons from and to

the diamond lattice, respectively, as it has been shown in reference [39]. Though F dopant

(substitutional or interstitial) may act as an acceptor, doping diamond with Cl, either

using any of the two sites, or with substitutional Br, enables a donor state in the lattice.

Interstitial F is a shallow acceptor, thus being a good candidate for p-type conduction

for the diamond lattice, whereas interstitial Cl introduces deep levels in the gap. Being

di�cult to dope with interstitial Br, due to the large values of the formation energies, it

has not yet been possible to gather information regarding the respective electrical levels.

Studies also show that Li and Na in the diamond lattice are unlikely to produce n-type

materials due to deep levels these introduce in the band gap. Calculated donor levels (for

interstitial sites) were obtained at Ec − 0.1 eV [40] and Ec − 0.6 ± 1 eV [41] for Li and

Ec − 0.3 eV [40] and Ev + 3.6 eV [41] for Na. Although Li might be considered a good

candidate for donor doping, it is insoluble, mobile (during typical growth and annealing

conditions) and it is likely to form complexes with other impurities, hence inactivating

any possible electrical levels that could eventually occur [41]. Nevertheless, it has been

registered that after Li implantation, n-type material can be produced, but a reduction in

the conductivity may occur when annealing up to 600oC [42].

Li is a fast di�user in diamond, just as it is in Si, and the possibility of matching these

two elements can enable outstanding applications. An example of this coexistence are the

Li-ion batteries, with Si being one of several compounds proposed to replace graphite.

However, commercial applications are not yet viable due to problems that are encountered

in silicon bulk-based materials, such as large volume change during Li uptake and capacity

loss due to decrepitation, resulting in a reduction in the e�ective capacity during cycling

[43]. These problems can be overcome with nano-sized materials, such as Si nanotubes

or nanowires, because of their outstanding mechanical properties, allowing for these to

better support huge amounts of stress, thus avoiding cracks that may occur after repeated

charging and discharging cycles [35]. Another advantage is the increase of the surface area

of the anode, due to the large surface-to-volume ratio characteristic of the nanomaterials,

allowing for a more e�ective uptake by the cathode.

Another well established shallow impurity for the bulk Si (besides the already men-

tioned P and B) are the thermal double donors (TDD). Thermal double donors are
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formed by annealing Czochralski-grown, oxygen-rich, Si at temperatures ranging between

350oC and 500oC. Their levels are found to be around E(0/+) = Ec − 0.07 eV and

E(+/ + +) = Ec − 0.15 eV [44] for bulk Si. Small oxygen chains, aligned along [110],

can migrate through the lattice more easily than interstitial O, due to lower migration

barriers; hence rapid chain di�usions enables long chains to grow rapidly. The lowest en-

ergy chain is found to belong to the O∞−2NN model, where oxygen is bonded to second

neighbour Si atoms in two parallel chains [45]. It has been seen in reference [45], that the

in�nite chain model is insulating, while for the �nite chain this is not true. For the �nite

chain an occupied state edges the conduction band due to the end regions. The origin of

donor activity is the result of the topological defect at the interfaces between two oxygen

con�gurations, either over-coordinated oxygen species or divalent oxygen together with a

Si dangling bond.
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Chapter 2

Computational Method

The calculations were divided in two sections. The �rst section is based on the study

of the gap width as a function of the nanocrystal size. The aim of this study was to try

to reproduce theorectical data from relevant literature and con�rm that the convergence

parameters de�ned in the codes were adequate for the present studies. The second section

is based on the study of the electronic properties of doped silicon nanocrystals, namely the

defect level localization within the gap.

In order to evaluate the required quantities two density functional based codes (DFT)

were used: AIMPRO (Ab-initio Modelling Program) [46] and Octopus [47], where with

Octopus, results were obtained only for the �rst set of calculations.

AIMPRO

AIMPRO can run in two distinct modes, the supercell mode, where periodic boundary

conditions simulates a bulk system by expanding the charge density in plane-waves, and

the cluster mode, where it is required the use of Gaussian (localized) basis-sets in order to

expand the same property.

The usual way to expand the charge density and potential terms has been with plane

waves as these �t naturally with periodic boundary conditions. As already mentioned in

1.1.4, there are disadvantages with the use of plane wave expansions, being the major of

these problems, the need of an extremely large number of functions when studying localized

problems.

As the dynamics of a system is described by the Schrödinger equation, a di�erential

equation, appropriate boundary conditions should be imposed [48]. Since grown freestand-

ing Si-NCs produced by plasma decomposition of silane are H-passivated at the surface, a
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real-space, non-periodic, calculation is also therefore the most appropriate mode of calcu-

lation to apply to such systems. This also applies to surface oxidized NCs that are also

reported.

For these two mentioned reasons, localized-based functions were therefore chosen to

evaluate the desired quantities for the H-passivated silicon nanocrystals.

For the two sets of studies, the exchange-correlation interaction was accounted for by

the the LDA, using the Padé approximation to the PW92 functional [49, 14]. The core

states were replaced by norm-conserving pseudopotentials of the Hartwigsen, Goedecker

and Hutter [50] type, that are a optimal analytical integration in real-space using Gaussian

basis sets.

For the gap convergence study, the valence states and electron density were represented

by a set of atom-centred s-, p-, and d-like Gaussian functions, and the Kohn-Sham states

were expanded with the help of a set of contracted basis: C44G* for Si and H. Uncon-

tracted basis-sets are de�ned as a set of exponents are completely free to vary during a

run, while the contracted basis-set is a set of exponents and coe�cients used to generate

�xed combinations of these functions. The use of contracted basis, on atoms, can lower the

computational cost without signi�cant loss of accuracy. The basis nomenclature, C44G*,

describes the nature of the material for which the basis are optimised (carbon) and the

number of the �tting functions - two sets of four Cartesian Gaussian Orbitals of di�erent

exponents that are combined into �xed functions (one s- and three p- polynomial combi-

nations), with polarization functions, * (addition of a d-type function), in order to improve

the description of the Si atoms in the nanocrystal environment [18].

To perform the calculations of the doped systems extra care was required and so con-

vergence tests were performed on doped nanocrystals with 124 Si atoms, passivated by

96 hydrogen atoms, applying several types of wavefunctions and charge density functions.

The purpose of these tests was to verify the best basis to be applied for NCs with 304

Si atoms and passivated with 168 hydrogen atoms, which are experimentally feasible size

ranges - about 2.25 nm in diameter.

The dopants were chosen, as already mentioned, according to their electron shell prop-

erties, namely those with lowest ionization energies (Li, Na, K) and those with highest

electronic a�nities (F, Cl, Br) - �g. 2.1. These were placed at the centre of the crystal

(centre of the tetrahedral cage), at the interstitial site. P and B dopants were also stud-
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ied, but positioned in the substitutional site, this being the most stable site for these two

dopants [21].

The TDD was also calculated in order to compare results and establish the levels in

the nanocrystal regime. It was chosen, amongst a family of at least 17 double donors, a

thermal double donor characterized by a chain of O5 atoms placed interstitially along [110]

- �g. 2.2.

Valence states and the electron density for Si, the halogens and the substitutional

dopants, were represented with the help of s, p and d -like Cartesian-Gaussian func-

tions. For the interstitial donors (alkalis) and for H, these were described by s and p-like

Cartesian-Gaussian functions, and the oxygens were depicted by s and d -like functions.

Uncontracted and contracted wavefunction basis-sets were also used for the three

species involving the NC (Si, H and the dopants). The usage of functions was made

according to the following scheme:

• for Si and H contracted basis was used (C44G*)

• for the remaining species uncontracted basis-sets were employed

� for the interstitial dopants (the three donors, Li, Na and K and the three accep-

tors, F, Cl and Br) basis-sets, with angular momenta up to p on four exponents

- pppp, were used

� for O the dddd basis-sets was employed

� the two substitutional dopants, P and B, were converged with ddpp and pdpp

basis-sets, respectively.

The NCs were fully relaxed, including the outer cores of the hydrogens. The crystals

with interstitial dopants preserve the same symmetry as the pure crystal, Td, while in the

NCs with substitutional dopants the symmetry is lowered to the trigonal symmetry, C3v.

The O5 chain merged within the Si nanocrystal also reduces the high symmetry of the NC

to C2v symmetry.

Octopus

For cluster runs in AIMPRO, the default functional is the LDA functional. The GGA

to the exchange-correlation potential is not available in the cluster mode. So, in order
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to compare results between the local and semi-local functional and to avoid plane-wave

calculations (where the GGA is provided within this mode), a real space code, Octopus, was

also used. This program materializes the main equations of density-functional theory in

the ground state and of time-dependent density-functional theory (TD-DFT) for dynamical

e�ects.

Calculations, within Octopus, were hence initiated for the undoped silicon crystals,

with di�erent size ranges, applying LDA (Slater exchange and Perdew and Zunger Mod-

i�ed correlation [13, 51] ) and GGA-PBE [52, 53] to represent the exchange-correlation

interaction. Troullier and Martins norm-conserving pseudopotentials [54] (TM) were used

as the e�ective potential.

As already discussed in subsection 1.1.4, and within the scheme of real space calcula-

tions, functions are represented by their value over a set of points in real space, hence the

convergence parameters have to be checked against the grid spacing. Octopus, by default,

allows for the use of equally spaced grids - points are distributed in a uniform grid, which

means that the distance between points is a constant for each direction. In this scheme,

the separation between points, or spacing of the simulation, is a critical value. When the

separation becomes large, the representation of functions get worse and when it becomes

small the number of points increases, thus increasing memory use and calculation time.

This value is equivalent to the energy cut-o� used by plane-wave representations.

A �nite domain of the real space to run the simulations need to be selected (simulation

box). This option optimizes the shape of the box to minimize the number of points and

can be set accordingly to the geometric con�guration of the system. Therefore, for the

simulation box, the default option was choosen (minimum), which constructs a simulation

box by adding spheres created around each atom of radius R.

By default Octopus assumes zero boundary conditions, that is, wavefunctions and

density are zero over the boundary of the domain. This is the natural boundary condition

when working with �nite systems and thus, for this case the choice of an adequate box size

is crucial. If the box is too small the wavefunctions will be forced to go to zero, but if the

box is too large, a larger number of points is needed, increasing computational resources

as well.

Convergence tests were performed with di�erent radius of spheres and spacing be-

tween the points and checked against the di�erences between the total energies and re-
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spective eigenvalues of six di�erent sized crystals (Si29H36H, Si35H36, Si78H64, Si87H76,

Si147H100 and Si304H168). Convergence was attained for radius of R = 3.5 Å and spac-

ing of 0.23 Å for the smallest crystal, 0.30 Å for the biggest crystal, and 0.25 Å for the

remaining systems.
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Figure 2.1: Hydrogen-saturated spherical Si nanocrystal doped with an interstitial defect
(purple) - �rst �gure and with a substitutional dopant (green) - second �gure.
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Figure 2.2: Representation of the O5 thermal double donor chain in the Si nanocrystal.
Red and black balls represent the O and Si atoms, respectively. Distance lengths are
de�ned in nm.
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Chapter 3

Results and Discussion

3.1 Gap Convergence of Silicon Nanocrystals

Di�erent sized, spherical nanocrystals were used in order to reproduce the con�nement

gap e�ects, the sizes of the crystals ranging from the smallest crystal - 1.03 nm to the

biggest - 2.25 nm in diameter; all of these spherical systems were passivated by hydrogens

(hydrogen terminated Si-NC) to induce the gap-size dependence. The diameters were

calculated within the core of the silicon atoms (disregarding the H atoms) and using the

following relation

Radius =
(
natoms

3
nunit4π

a3
0

)1/3
(3.1)

where the lattice parameter, a0, is obtained by calculating the average bond lengths of all

the crystals under study, hence a0 = 5.38 Å, and nunit is the number of atoms contained

in the unit cell of bulk silicon (2 atoms per unit cell).

Two sets of calculations were made in order to study the gap with respect to the crystal

size: quasiparticle gap and the single-particle band gap (LDA or GGA gap) - table 3.1.

The �rst set is de�ned as being the di�erence between the ionization potential and the

electronic a�nity, as already mentioned in 1.2.1 - �g. 3.1. Hence,

IP = E(N)− E(N − 1)

EA = E(N + 1)− E(N) (3.2)

where E is the ground state total energy of the neutral, E(N), positively charged, E(N−1),

and negatively charged, E(N + 1), electron system. The so called quasiparticle gap, εqpg is
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obtained by

εqpg = EA− IP, (3.3)

which includes the quasiparticle corrections for systems with spatial con�nement.

The usual single-particle band gap is de�ned as the eigenvalue di�erence between the

lowest unoccupied and the highest occupied orbitals, LUMO and HOMO respectivly.

8 8

IP EA

Figure 3.1: Representation of the ionization potential and electronic a�nity

What is observed, for the di�erent gap calculations, is that as the size of the cluster

increases, the gaps tend to decrease. This can imply that the discrete spectra for small

clusters evolves Size dependence of the quasiparticle and LDA band gaps are shown in

�gs. 3.2 and 3.3. Both gap values are enhanced with respect to the bulk values and are

inversely proportional to the Si-NC diameter as a result of quantum con�nement.

In table 3.1 the results of the two sets of calculations can be observed. The LDA gap

width is about half the size of the quasiparticle gap. These latter calculations neglects

the e�ects of the Coulomb attraction between the electron and the hole [55], this being

one of the reasons why the quasiparticle gap is much bigger than the LDA gap. The fact

that the local functional tends to underestimate the di�erence between the LUMO-HOMO

eigenvalues also accounts for the gap width di�erences.

To compare results by using a semi-local functional, GGA was used for the same group

of di�erent sized crystals - table 3.2. What can be observed is that the results are very

similar to the ones evaluated by using the LDA functional, either for the quasiparticle

gap or for the gap evaluated from the di�erences between the eigenvalues (being the GGA

values slightly bigger than the LDA). The di�erences of the quasiparticle gaps between the
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two functionals are about 0.2 eV, for the smaller systems, but, this is reduced to 0.1 eV for

bigger systems, inferring that for the bulk limit the di�erences between the two functionals

will be even smaller.

Ionization energies and electronic a�nities are shown in �g 3.5 and compared to those

of the bulk system, where IPbulk = 4.8 eV and EAbulk = 4.1 eV [28]. For small NCs, the

electronic a�nities are small in comparison with the ionization energies. As the radius

increases, the IP gradually decreases and the EA increases. For the results obtained from

AIMPRO and Octopus, the IP and EA scale with radius R of the nanocrystal as R−l, with

l = 1.1, in contrast to the scaling factors l = 2 predicted by simple e�ective-mass models.

These results are in accordance with ref. [28] (see �g. 3.3) that presents a large set of

calcluations using a real-space ab initio pseudopotential (TM) code.

Table 3.1: Comparison of the quasiparticle and the di�erence beteween the LUMO and
HOMO eigenvalues (LDA gap) obtained from AIMPRO and Octopus calculations for dif-
ferent nanocrystal sizes. The diameter of the nanocrystal is obtained by measuring the
core of Si atoms (disregarding the outer core of the passivation H atoms) - eq. 3.1.

AIMPRO Octopus
Si atoms Diameter (nm)

QP gap (eV) L-H gap (eV) QP gap (eV) L-H gap (eV)

29 1.026 6.4435 3.9260 6.5760 3.7888
35 1.092 6.3033 3.9241 5.8142 3.7200
78 1.427 5.0181 3.1108 4.7147 2.8574
87 1.480 4.8371 2.9909 4.5659 2.7186
110 1.600 4.5824 2.8566 � �
124 1.665 4.4415 2.7746 � �
130 1.692 4.3291 2.7012 � �
147 1.762 4.2981 2.7074 3.7560 2.4119
172 1.857 3.9941 2.5134 � �
196 1.940 3.8322 2.3909 � �
211 1.988 3.8654 2.4485 � �
244 2.087 3.6978 2.3465 � �
256 2.120 3.6053 2.2765 � �
275 2.171 3.4883 2.1853 � �
286 2.200 3.5070 2.2256 � �
304 2.245 3.5334 2.2671 2.7908 1.8628

3.2 Doped Silicon Nanocrystals

In this section, we present a study of the electronic properties of Si nanocrystals doped

with impurities. Impurities were chosen, based on their electronic features (Li, Na, K, F,
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Table 3.2: Comparison of the quasiparticle gap and the di�erence between the LUMO and
HOMO eigenvalues obtained by using the LDA and the GGA functional within Octopus
calculations. The diameter of the nanocrystal is obtained by measuring the core of Si
atoms (disregarding the outer core of the passivation H atoms) - eq. 3.1.

LDA GGA
Si atoms Diameter (nm)

QP gap (eV) L-H gap (eV) QP gap (eV) L-H gap (eV)

29 1.026 6.5760 3.7888 6.7549 3.9394
35 1.092 5.8142 3.7200 5.9657 3.8658
78 1.427 4.7147 2.8574 4.8922 3.0276
87 1.480 4.5659 2.7186 4.7532 2.8845
147 1.762 3.7560 2.4119 3.8967 2.5797
304 2.245 2.7908 1.8628 2.9210 2.0268

Cl, Br), and for some, based on their well established behaviour in bulk silicon (P, B and

O5), in order to verify if these could create shallow levels in the gap. Until today, it has

not yet been possible to establish which impurities can contribute for n-type and p-type

silicon nanoparticles due to the issues with nano-sized materials. Therefore, we explore the

possibility of �nding shallow dopants in Si nanocrystals where con�nement e�ects become

more pronounced.

For the intrinsic Si crystal with diameter of 2.25 nm, the di�erence between the ioniza-

tion potential, IP, and electronic a�nity, EA, following the procedure de�ned in eq. 3.3,

was found to be 3.53 eV.

For the doped crystals, we calculated the ionization energy for the donor defects and

the electronic a�nity for the acceptor impurities, with results shown in table 3.3. To

obtain n-type doping, the donor levels have to lie slightly below the LUMO of the host's

crystal, in order for the donor electrons to be easily ionized, even at room temperature.

The same is true for acceptor levels, but these have to be slightly higher than the HOMO

of the undoped Si, contributing with holes to the top of HOMO. For neither of these two

cases, shallow defect levels were found, being all these located deeply within the gap - a

representation of the levels can be found in �g. 3.6. The respective energy states were

obtained by calculating

ED = IPD − EAp

EA = EAA − IPp (3.4)

where ED and EA are the donor and acceptor energy states, respectively, IPD and EAA
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Figure 3.2: LDA gap of Si nanocrystals as a function of the radius of the nanocrystals, from
calculations obtained from AIMPRO and Octopus and compared to results from references:
Melnikov et al. [28] and Ögut et al. [24].

are the donor ionization potential and acceptor electronic a�nity of the doped crystal,

respectively, and IPp and EAp the ionization potential and electronic a�nity, of the pure

Si crystal, respectively.

The impurity donor states are approximately in the same energy range from each other,

being the P level the one that lies deeper in the gap and distanced from the EAp at about

1.55 eV. For the acceptor impurities, the deepest level distanced from the IPp is 1.87 eV

and is owed to the Br impurity, whilst the F impurity contributes with a defect level closest

to the IPp - 1.36 eV.

The well established shallow dopants (P, B and the TDD) for the bulk limit do not

behave as so in the �nite-size systems. These results are in accordance with references [21,

34, 36], and result from the lower Coulomb screening of the nanocrystals when compared

to bulk silicon, hence enhancing the defect electron con�nement that becomes dominant

for the nanocrystal system [34].

In the presence of an interstitial impurity, placed at the centre of the crystal, the

Si-Si surrounding cage undergoes a structural displacement. The bonds between the Si

neighbours tend to expand in comparison to the pure crystal. The biggest displacement
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Figure 3.3: Quasiparticle gap of Si nanocrystals as a function of the radius of the nanocrys-
tals, from calculations obtained from AIMPRO and Octopus and compared to results from
references: Melnikov et al. [28] and Ögut et al. [24].

occurs for the K impurity, where the distance between the bonds expands by about 6.7%

compared to the intrinsic Si-Si bonds. The lowest shift occurs for one of the halogen

impurities, F, being this value around 0.6%.

For the substitutional defects, alteration of the bonds only occur around the impurity

as well. For the P impurity, the di�erence between the P-Si bonds tend to be very similar

to those of the pure relaxed Si nanocrystal - distortion between the bonds is an expansion

of 0.2% and the Si-Si next neighbour bonds increases by 0.04%. The B dopant causes more

impact upon the B-Si bonds - these shrink by about 11.6% compared to Td Si bonds, with

an increase of the next Si-Si neighbour bonds of about 1.7%. These results are very similar

to calculations performed in reference [56], inferring that the amount of relaxation around

the impurity is directly related to the impurity's valence properties (B being a trivalent

and P a pentavalent atom) [56].
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Figure 3.4: Quasiparticle gap of Si nanocrystals as a function of the radius of the nanocrys-
tals, from Octopus calculations. Comparison is made between results of two di�erent
functionals: LDA and GGA.

Figure 3.5: Ionization energies and electron a�nities of Si nanocrystals as a function of
the radius of the nanocrystals, from calculations obtained from AIMPRO and Octopus and
compared to results from Melnikov et al. [28]. Respective bulk values are presented with
IP=4.8 eV and EA=4.1 eV.
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Table 3.3: Ionization potentials and electronic a�nities for donors and acceptor Si impuri-
ties, respectively. For the TDD, only the �rst ionization potential was calculated. Defect
energy state calculations were carried out on the Si304H168 crystal (2.25 nm of diameter).
Values are given in eV.

IP EA
Si -5.96 -2.43

Interstitial Defects

Li -3.78
Na -3.78
K -3.82
F -4.60
Cl -4.35
Br -4.09

Substitutional Defects

P -3.98
B -4.54

Thermal Double Donor

O5 -3.82

Figure 3.6: Energy levels of doped Si nanocrystals. The width of the quaisparticle gap for
the Si304H168 crystal (2.25 nm of diameter) is 3.53 eV . All values are given in eV.
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Chapter 4

Conclusions and Future Perspectives

4.1 Conclusions

Experimental works regarding controlled doping can become a di�cult task, hence

detailed studies based on this subject are still far from complete. As such, �rst-principles

calculations may contribute with an helpful insight in the search for dopants with suitable

electronic, optical or magnetic performance at the nanoscale. Hence, and within the density

functional framework, calculations were carried out in order to obtain the P, B and O5 chain

impurity energy levels, well established bulk shallow impurities, and the alkali and halogen

favourable contenders for n- and p-type doping.

In this dissertation work, it was demonstrated that no shallow energy levels were found

for the doped silicon nanocrystals under study. At nanoscaled systems the dielectric screen-

ing is reduced in comparison to the bulk value, hence giving rise to a strongly localized

defect state, due to the enhancement of the donor and acceptor binding energies, and the

increase of the e�ective electron-impurity potential. The reduction of the screening e�ect

enhances the defect level localization and transforms well known shallow impurity states

of the bulk material into deep levels.

Considering the edge treatment, that is the origin of variety, the passivation of the

dangling bonds is also known to be important for the electronic properties of hydrogen ter-

minated silicon nanocrystals. Therefore, it was also seen, and in agreement with the cited

theoretical literature, that the quasiparticle gaps, evaluated for these H-terminated sys-

tems, show a strong size dependence characteristic of the quantum con�nement e�ects, and

remain di�erent from the corresponding bulk value. The same behaviour is also accounted

for in the ionization potentials and electronic a�nities of the same systems.
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4.2 Future Perspectives

Core-Shell Transfer Doping

Altering the surface of the Si crystal with di�erent species can alter its electrical prop-

erties. An example is surface oxidation. We know that Si natural oxide (SiO2 or silica)

appears when Si is exposed to an O-containing atmosphere by indi�usion of O2 molecules

through the SiO2 network, until they meet the Si. Accordingly, the Si/SiO2 interface

advances through Si by replacing Si-Si bonds by Si-O-Si units [57].

SiO2 has a wide gap of about 9 eV, and this presents an opportunity for transfer doping

in core-shell nanostructures. Basically, a deep donor in SiO2, with an occupied state lying

above the LUMO level of the Si-NC core, will donate (or transfer) its electron to that

LUMO level. Analogously, any deep acceptor level in SiO2, with a level below the HOMO

of the Si core, will remove an electron from the Si-NC HOMO level.

Finding a suitable dopant for the SiO2 interface, which may contribute with a donor

(acceptor) level slightly above (below) its LUMO (HOMO) state of the core is a tricky

task, since the shell is amorphous and any foreign chemical species can occur in many

con�gurations (some of them chemically inert). The mechanism governing tansfer doping

is depicted in �g. 4.1.

These studies are still in their early stages. One of the most promising contenders for

this study is the P dopant, which may replace a four oxidized Si atom, within the silica

core. Because of its pentavalent nature, this impurity will give rise to a donor level - the

question arises as if this will allow for transfer doping of an electron from the SiO2 onto

the Si-NC LUMO states.

Optical Properties

The study of optical excitations in hydrogen terminated silicon crystals is essential for

understanding absorption and emission of light. Therefore the study of optical properties

for the doped silicon nanocrystals can be thought of as an opportunity for such perspective.

The calculations performed to obtain the electronic properties of the doped Si-NCs brought

no expectation in �nding impurity contenders for n- and -p type doping. But, a new

perspective based on optical properties calculations can still unveil important properties

for these con�ned systems, where underlying applications can emerge.
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HOMO
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Transfer Doping

SiO2 SiO2Si-Nc

Acceptor

Donor

Figure 4.1: Schematics of transfer doping e�ects.

Figure 4.2: Isosurface plot of the HOMO level for the Si/SiO2 crystal doped with P. 211
Si atoms (pink), 216 O atoms (red), 1 P atom (brown) passivated by 140 H atoms (white)
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In order to calculate the absorption spectrum, one can appeal to a time-dependent

DFT (TD-DFT) theory, that is implemented within Octopus. The absorption spectrum

is evaluated by exciting the system with a very short pulse, and then propagating the

time-dependent Kohn-Sham equations for a certain time. The spectrum is thus evaluated

from the time-dependent dipole moment.
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