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Abstract 

In the last years, medical imaging field has been had an enormous technological 

development. The application of 3D images extended its utility, becoming an essential 

tool to assist in the clinical diagnosis. There are several imaging modalities that allow to 

visualize different information about the body. In particular, with Computed 

Tomography (CT) anatomical information is obtained and with Single Photon Emission 

Computed Tomography (SPECT) the body metabolism is detected. By applying image 

processing methods it is possible to combine different visual information through multi-

modality registration and consequently improve the clinical diagnosis.  

In this thesis, a study of registration algorithms was done on 3D CT and SPECT 

images, in order to select the most appropriated transformation to identify 

bronchopulmonary segments with suspected pulmonary embolism. Rigid (rigid body, 

global rescale, specific rescale and affine) and non-rigid (diffeomorphic demons) 

transformations were applied. For each registration algorithm, processing time, image 

overlay and similarity measurements were analyzed. Affine transformation showed the 

best performance by allowing the combination of a good alignment and a low time to 

process. Therefore, it was considered the most suitable registration algorithm to identify 

suspected pathologic lung regions.  
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1 | Introduction 

This thesis reports the entire work developed within the ambit of the discipline 

of Project of Integrated Master in Biomedical Engineering, in a partnership between the 

Department of Physics of the Faculty of Sciences and Technology of the University of 

Coimbra and the Nuclear Medicine Service of the Coimbra University Hospitals. 

1.1 | Motivation and Innovative Contribution 

The pulmonary embolism occurs when a blood clot gets free from its origin place 

and travels through blood circulation until it reaches the lungs. As a consequence, the 

pulmonary artery, or one of its branches, is blocked. This type of pathology is more 

susceptible to occur in situations where the coagulation system is changed. Pulmonary 

embolism is difficult to diagnose due to its unspecified symptoms[1]. In Portugal, it is 

estimated an incidence of 25,000 cases of pulmonary embolism per year[2].  

The application of imagiologic techniques has become an essential aid for the 

diagnosis of pulmonary embolism. As gold standard diagnosis, is used the pulmonary 

angiography. However, the development of the multislice Computed Tomography (CT) 

brought a high enhancement in image quality and the duration of the examination 

acquisition. Since CT examination only has anatomical information, the combination 

with metabolic information of Single Photon Emission Computed Tomography (SPECT) 

technique introduces an important improvement in the diagnosis of pathology[1] [3]. 

In this context, given the advantages of simultaneous use of images from 

different modalities in the diagnosis of pulmonary embolism, this study was developed. 

The main goals of this thesis are to analyze the behavior of the alignment of 3D CT and 

SPECT images and to identify lung regions with suspected pulmonary embolism. 

Most of the works available in literature corresponds to the analysis of the lung 

as one piece, or using pulmonary lobes. This study goes to a deep level, identifying 

suspected pathologic bronchopulmonary segments. A comparison between several 

registration algorithms is performed in order to evaluate the most suitable methodology 

to be applied in context of identification of suspected pathologic regions. 
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In parallel of the execution of this project, an implementation and comparison of 

3D multimodality registration was developed, which resulted in a publication in 

international conference [4].  

1.2 | Structure of the thesis 

This is thesis is organized according to the following structure. Chapter one 

reports the motivation and goals of the thesis and a summary to the contents of the 

remaining chapters. 

In chapter two, it is given a few considerations about respiratory system, lung 

anatomy and pulmonary embolism disease that are useful to understand the developed 

study. 

In chapter three, the imagiologic modalities of Computed Tomography and 

Single Positron Emission Computed Tomography are described, by focusing on the 

historical evolution of scanning system, the basic principles of image acquisition and the 

advantages and disadvantages of each modality. 

In chapter four, image processing methods of segmentation and registration are 

defined and some relevant algorithms are exposed. A review of the literature is also 

presented with emphasis on the application of CT and SPECT images. 

In chapter five, the applied methodology is presented, describing the pre 

processing steps, the segmentation and the registration method for the four cases 

analyzed suspected of pulmonary embolism. 

In chapter six, the results are presented and discussed, by analyzing the accuracy 

of registration of the bronchopulmonary segments obtained from the segmentation 

process and the performance of the algorithms both in time and similarity metric value. 

A summary of the discussion and results are written in the chapter seven, the 

conclusions. Proposals for further work are also presented. 
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2 | Lungs 

In this chapter is described an overview of the anatomical and physiological 

characteristics of lungs and it is given a brief introduction to the Pulmonary Embolism 

disease.  

2.1 | Anatomical and Physiological Considerations 

The respiratory system transports the oxygen from air to the bloodstream 

during the inspiration and expels carbon dioxide from the blood through the expiration. 

Air enters into the body through the nose or mouth (Figure 1 (a)). After that, the air 

travels to the trachea by the larynx. The trachea is divided into two bronchi: one goes to 

the right lung and the other to the left lung. Successively, the bronchi are branched into 

bronchioles. At the end of the bronchioles are the alveoli. Each alveolus is covered with a 

small extension of the pulmonary arteries called capillaries. Thus, at the alveoli occurs 

the gases exchange (Figure 1 (b)). By diffusion the oxygen passes through the walls of 

the alveoli into the bloodstream. Afterwards, the oxygen that riches the blood travels to 

the heart through the pulmonary vein and its branches and by is delivered by the heart 

pumping to all the parts of our body. Simultaneously, the carbon dioxide travels in the 

opposite direction by crossing from the capillaries into the alveoli being then expelled to 

the outside[5]. 
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(a) 

 (b)  

Figure 1(a) Respiratory System [6]. (b) Gas exchange in lungs[7]. 

 

A lung is divided into lobes, which are further subdivided into lung segments. 

The right lung consists of three lobes (superior lobe, middle lobe and inferior lobe) 

outlined by the horizontal fissure and oblique fissure. The left lung has two lobes 

(superior lobe and inferior lobe) separated by the oblique fissure (Figure 1 (a))[5].  

The localization of the lung segments is difficult, since lungs have not well-

defined reference landmarks. There are several anatomical terminologies that are used 

to describe the distribution of the lung segments. The terminology used in this thesis is 

based on the E-anatomy website[8]. According to this, the right lung is defined by ten 
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segments and the left lung by eight segments. The bronchopulmonary segments are 

characterized as shown in Table 1. 

 
Table 1 Bronchopulmonary segments of right and left lungs 

RIGHT LUNG   LEFT LUNG 

Bronchopulmonary Segment   Bronchopulmonary Segment 

Apical (SI)   Apicoposterior (SI+II) 

Posterior (SII)   Anterior (SIII) 

Anterior (SIII)   Superior Lingular (SIV) 

Lateral (SIV)   Inferior Lingular (SV) 

Medial (SV)   Superior (SVI) 

Superior (SVI)   Antero-Medial (SVII+SVIII) 

Medial Basal (SVI)   Lateral Basal (SIX) 

Anterior Basal (SVIII)   Posterior Basal (SX) 

Lateral Basal (SIX)   
 

Posterior Basal (SX)   
 

2.2 | Pulmonary Embolism Pathology 

A pulmonary embolism, an embolus (also called thrombus or blood clot) can 

arise anywhere in the body. Usually it moves into the lungs, blocking one of its branches 

(Figure 2). The severity of the pathology depends on the size of the blood clot and where 

the blocking is located. An obstruction of the small branch leads to a pulmonary 

infarction. However, if the main branch is blocked, a massive obstruction can occur or 

even death[9].  

 
  

Figure 2 Pulmonary embolism blood clot[10]. 
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There are several risk factors that may be favorable to the creation of a blood 

clot such as: pregnancy, surgery intervention, heart failure, bone fractures and 

decreased mobility[1]. As the diagnosis of a pulmonary embolism is very difficult to 

predict accurately, due to the ambiguous symptoms, several strategies are used to 

support diagnosis, for example: pulmonary angiography, ventilation and perfusion 

SPECT studies, multislice CT scanning or magnetic resonance angiography[9]. 
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3 | Imagiologic Modalities 

Medical imaging, using several acquisition systems, aims to visualize different 

aspects of the human body, in order to allow a more rigorous and accurate diagnosis and 

therapeutic planning. For instance, anatomical structures can be visualized by a CT 

scanner or a MRI system. Furthermore, nuclear image modalities, such as SPECT or PET 

provide the detection of the metabolic activity of a specific organ. In this section is given 

a particular emphasis to CT and SPECT modalities focusing on physical principles, 

system components, details of the acquisition procedure and the processing and storage 

of the acquired data.  

3.1 | Computed Tomography 

The Computed Tomography (CT) analyses the attenuation characteristics of the 

human body to obtain anatomical information. This scanning system uses X-ray beams 

that are attenuated when crossing the tissues or organs of the patient. Thus, a CT 

scanner has an excellent spatial resolution1 and a large relevance in clinical context.  

3.1.1 | Brief Historical Contextualization 

The first CT scanner was created by Sir. Godfery Hounsfield in 1972, who, 

established the beginning of the 1st generation of CT period. The scan pattern of these 

acquisition CT systems consisted of a simultaneous translation of X-ray tube and a 

detector (one or maximum two), followed by a short rotation by about one degree. The 

procedure was repeated until completing the angle range of 180 degrees to 240 degrees. 

This requires long data acquisition time about 4-5 minutes and a large dose for the 

patient [11] [12].  

In 1974, the 2nd generation of CT scanners was created. The improvements 

resided in the application of multi-detectors and in the tightening of the fan beam. 

However, this CT system still needed a translation operation and, despite of the 

decreasing of the scanning time, it was still very slow: 20s per slice. In 1975, with the 

                                                      
1Spatial resolution describes the detail level which can be detected on an image 

  



 

 

 3
 |

 I
m

a
g

io
lo

g
ic

 M
o

d
a

li
ti

e
s 

8 
 

3rd generation CT scanners, the translation movement was eliminated and, therefore, 

the entire piece is scanned at once (Figure 3). Using only the rotation movement, it was 

possible a faster scan, that is, about 1s or less per slice. The incorporation of several 

hundred or thousand detectors and a thin fan beam (1 to 10mm) guaranteed a 

significantly improvement on image quality[12]. 

(a)  (b) 
Figure 3 Brain CT image: (a) Axial CT image from Siretom CT scanner circa (1975); (b) Axial CT image using 

a modern scanner[13]. 

 

In 1981, the 4th generation CT scanner was introduced in the market. In this 

acquisition system, only the radiation source had a rotation movement. However, since 

the detectors should accept rays from different angles, the collimators could not be 

effective suppressing the scattered radiation and the image quality decreased. The 

typical acquisition time for large volume body, such as thorax and abdomen, was 30 to 

45 minutes[14].  

In 1987, the 5th generation CT scanner was developed and it was very similar to 

the previous. Instead of the mechanical rotation, the radiation source is electronically 

rotated which improved the position precision of the beam and, consequently, increased 

the image quality. The acquisition scan could become faster without any mechanical 

operation[12]. 

In 1989 the helical technique was developed. In this new improvement, while 

the radiation tube was rotating around the patient, the patient support was translated 

through the gantry. Thus, the trajectory of the beam described a spiral. This technique 

allowed a significantly decrease on the acquisition time - for instance, a complete 

thoracic exam lasted a 1 minute instead of the previous 10 minutes - and provided a 

continued volumetric acquisition which improved the three dimensional studies. This 

technique was enhanced in the following years, by creating multislice helical systems 

and introducing multiple detector rows in the detection array. This allowed scanning 

multiple slices in a single rotation. Besides the image quality improvement, this 

technique provided the selection of slice thickness according to the CT exam[12]. 



 

 

In modern CT systems, the helical and multislice technologies can be 

incorporated in CT scanners of the 3

hundred or even thousand slices can be obtained in few secon

information on could be 

gains time relevance and, consequently, motion

3.1.2 | CT scanning system: components and acquisition

A CT scanner consis

source tube and a radiation detector; a mo

The source tube produces the X

and then measured by a detector. The gantry continuously rotates a

while the motorized table moves over the gantry, 

trajectory. From the attenuation measurements, the projective data is computed and the 

CT image is reconstructed by using 

backprojected for each angle into the image region and added all together. In order to 

avoid the blurring effect caused by backprojection, filtering is used before the projection 

of data[11] [14]. 

Figure 4 (a) CT scanning

 

CT scans are acquir

anatomical information is obtained by combining the axial CT slices in a stack image. 

Although CT image is supposed to be

interpolation methods, 

5).  

In modern CT systems, the helical and multislice technologies can be 

incorporated in CT scanners of the 3rd to 5th generations. Thus, large volumes with 

hundred or even thousand slices can be obtained in few secon

information on could be visualized in 3D or 4D The dynamic 4D, also known as cine 3D, 

vance and, consequently, motion[11]. 

.1.2 | CT scanning system: components and acquisition 

A CT scanner consists in an acquisition gantry, essentially composed by an X

source tube and a radiation detector; a motorized table and a computer

The source tube produces the X-ray beams that pass through the patient, 

then measured by a detector. The gantry continuously rotates a

while the motorized table moves over the gantry, creating a 

From the attenuation measurements, the projective data is computed and the 

CT image is reconstructed by using a back projection method. 

or each angle into the image region and added all together. In order to 

avoid the blurring effect caused by backprojection, filtering is used before the projection 

(a) 

CT scanning system[16]; (b) a schematic CT image acquisition

CT scans are acquired in axial plan while the patient is in the supine position. 3D 

anatomical information is obtained by combining the axial CT slices in a stack image. 

Although CT image is supposed to be in an axial plan, with the appli

interpolation methods, the coronal or sagittal plan visualization is possible
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In modern CT systems, the helical and multislice technologies can be 

generations. Thus, large volumes with 

hundred or even thousand slices can be obtained in few seconds and volumetric 

The dynamic 4D, also known as cine 3D, 

an acquisition gantry, essentially composed by an X-ray 

torized table and a computer[15](Figure 4). 

pass through the patient, are attenuated 

then measured by a detector. The gantry continuously rotates around the patient 

 helical acquisition 

From the attenuation measurements, the projective data is computed and the 

back projection method. All projections are 

or each angle into the image region and added all together. In order to 

avoid the blurring effect caused by backprojection, filtering is used before the projection 

 (b) 

a schematic CT image acquisition[11]. 

the patient is in the supine position. 3D 

anatomical information is obtained by combining the axial CT slices in a stack image. 

axial plan, with the application of 

is possible[14](Figure 
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Figure 5 Axial, coronal and sagittal planes of a CT scan [17]. 

 

Typically, the images are arranged in a square matrix of 512x512 pixels2. The 

projection of each element in a 2D plane is equal to a pixel, which stores the information 

concerning the attenuation properties of the tissue. The third dimension represents the 

slice thickness of the CT scan, varying typically between 1 to 10 mm. The region of 

interest and the resolution determine the number of slices in a direct proportion[17].  

 

Figure 6 A slice divide into voxels[18]. 

 

The attenuation of the beam depends on the tissue properties of the scanned 

region. For dense structures like bone, the beam is quite attenuated and slight radiation 

information reaches the detector. The attenuation is measured by a CT number scale 

expressed in Hounsfield Units (HU) which relates the attenuation coefficients of the 

material and water. Typically, the CT number scale range is -1000HU for water and 0HU 

for air. However, depending on the composition and structure this range can be 

enlarged[14]. 

 �� �����	 
 1000  ����������������������   (1) 

 

                                                      
2
 A pixel is a picture element 
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Figure 7 Hounsfield Units scale[18]. 

 

The CT exam images can be visualized in order to highlight certain structures. 

This can be done by defining the window and level settings of the image (Figure 8). The 

window width and level influence the contrast and brightness of the image. The window 

width defines the quantity of the display of gray values and the window level is the 

center defined by a window width range. Typically, to visualize the lungs is used a 

window/level of 1500HU and -500HU, respectively[14]. 

(a) (b) 

Figure 8 Thoracic CT image: (a) to highlight the lungs details (width 1500 and level -500); (b) to highlight 

soft tissues (width 350 and level 50)[14]. 

3.1.3 | CT scanner: Advantages and Disadvantages 

The CT exam has a generic application in the visualization of the bone, soft tissue 

and blood vessels at the same time in a differentiated and detailed way. 

CT scanning is painless, noninvasive and accurate. In a CT examination the X-

rays that are used do not have relevant side effects and no radiation remains in the 

patient after the acquisition. Typically, the effective radiation dose from a CT scanning 

ranges from 2 to 10mSv (Table 2). Comparing with the worldwide average background 

dose from cosmic radiation and natural radionuclide in the environment for a human 

being, which is about 2.4mSv per year, which is much lower than a single CT acquisition 

exam with the duration of a few seconds[19] [20]. 

 



 

 

Table 

Despite that CT system allows to ob

structures like muscles, organs and tumors, it is required a contrast agent, such as 

Iodine or Barium, to increase the visibility of

have associated low in

acquisition characteristics provide a real time imaging which is very useful in a surgery 

context. With the cross sectional image acquisition, 3D body images are obtained.

Despite this, the acquisition in sagi

algorithms, which may 

Even though CT scanning has some health issues, its performance and the high quality 

obtained on image results compensate all associated problems

3.2 | Single Photon Emission Computed Tomography

The functional visualization 

along the body and by 

administrated to the patient and travel across

target regions. The radiation measure is done by an external scanning system. Positron 

Emission Tomography (PET) and Single Photon Emissio

(SPECT) scanners are curre

Figure 

 

Table 2 Effective radiation dose (E) of several CT exams[14]

EXAM E (mSv) 

Head 1.26 – 1.38 

Neck 1.98 – 2.17 

Chest 5.17 – 7.01 

Abdomen 5.25 – 5.95 

Pelvis 7.83 – 9.92 

CT system allows to obtain high resolution images, of

structures like muscles, organs and tumors, it is required a contrast agent, such as 

Iodine or Barium, to increase the visibility of those structures[21]. The contrast agents 

have associated low injurious side effects so the benefits prevail over the risks. Fast 

acquisition characteristics provide a real time imaging which is very useful in a surgery 

cross sectional image acquisition, 3D body images are obtained.

acquisition in sagittal or coronal plans requires image reconstruction 

may cause some quality loss by the computational approximations. 

CT scanning has some health issues, its performance and the high quality 

results compensate all associated problems[12]. 

.2 | Single Photon Emission Computed Tomography

functional visualization is achieved by the distribution of radionuclides 

along the body and by the measurement of the radiation. Radioactive tracers are 

d to the patient and travel across the body, gradually concentrating

target regions. The radiation measure is done by an external scanning system. Positron 

Emission Tomography (PET) and Single Photon Emission Computed Tomography 

(SPECT) scanners are currently used in nuclear imaging [22](Figure 9

(a)  

Figure 9 (a) PET System[22]; (b) SPECT system[14]. 
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[14]  

tain high resolution images, of soft tissues 

structures like muscles, organs and tumors, it is required a contrast agent, such as 

. The contrast agents 

the benefits prevail over the risks. Fast 

acquisition characteristics provide a real time imaging which is very useful in a surgery 

cross sectional image acquisition, 3D body images are obtained. 

tal or coronal plans requires image reconstruction 

tational approximations. 

CT scanning has some health issues, its performance and the high quality 

.2 | Single Photon Emission Computed Tomography 

distribution of radionuclides 

Radioactive tracers are 

body, gradually concentrating in the 

target regions. The radiation measure is done by an external scanning system. Positron 

n Computed Tomography 

9 (a) and (b)).  
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Concerning PET, the administrated radioactive tracer interacts with a body 

tissue, decays and emits positrons. Each positron annihilates with an electron producing 

two photons that will be emitted in opposite directions. These photons will be detected 

and then the image is created. In SPECT, the interaction of the radionuclide with the 

body tissue only emits a single photon. Apart from operating technology differences, 

where PET scanner is based on cyclotron (charged particle accelerator) and SPECT on a 

Gamma Camera, the radioactive substances applied in SPECT scanning have longer half 

lives than the used in PET. Therefore, it is possible a better handling. PET systems are 

more expensive but provide more detailed images than SPECT. Further on, it will be 

given more emphasis to SPECT system, since this work is focused on images acquired in 

this modality and CT scanner [22] [23] [11]. 

3.2.1 | Brief Historical Contextualization 

The origins of SPECT scanning are related to the use of radioactive isotopes for 

medical purposes in the 1920’s. In the 1940’s, using a single detector positioned at 

several spots around the head, it was obtained radioactive source distributions within 

the brain. In 1958, Hal Anger developed the Anger Camera, which is the base design of 

the modern acquisition systems (Figure 10). At this time, this device produced 2D planar 

images. The Gamma Camera detects and counts the photons emitted by a radionuclide. 

With the information of the position and energy, an image of the activity distribution 

was created[14].  

 

Figure 10 Anger with a Gamma Camera[24]. 

 

In 1963, Kuhl and Edwards developed an adaptation of Gamma Camera that 

allowed producing tomographic images. By the rotation around the patient, multiple 

images were formed and tomographic characteristics were obtained[22].  



 

 

In 1968, a device called MARK IV was the first Emission Computed Tomography 

(ETC) system developed. This scanner contained a Gamma Camera with multiple 

sodium iodide detectors arr

In 1972 was developed the first commercial SPECT system called Tomomatic 3

in which the Gamma Camera had 32 detectors. Despite 

images, that was not enough an

Keyes and Ronald Jaszczak developed an improved

Everett, Fleming, Todd e Nightengale, using better correction methods for 

Effect3, were able to minimize it an

improvements of the Gamma Camera and the correcti

possible to achieve significant advances in the performance of SPECT scanning 

system[14].   

 In 1999, GE Medical Systems developed the first hybrid SPECT/CT system for 

clinical applications. This scanner provid

same scanning session, which facilitate

anatomical recognition

SPECT systems to allow imaging studies on small animals and 

biological processes and pharmacological activity of drugs in vivo

3.2.2 | SPECT scanning system: components 

A SPECT system measures the metabolic activity of a tissue or organ. In this 

modality, a radionuclide tracer is a

with a target body region

Gamma camera. SPECT scanning produces cross

rotating the camera with circular or elliptical movements around the patient and get

multiple projections from 

                                        
3 Compton camera: A Com

avoid the inherent scattering (Compton) effect when the single photon interacts with the body tissue or 

organ target. 

 

In 1968, a device called MARK IV was the first Emission Computed Tomography 

(ETC) system developed. This scanner contained a Gamma Camera with multiple 

sodium iodide detectors arranged in a rectangular shape[22].  

In 1972 was developed the first commercial SPECT system called Tomomatic 3

in which the Gamma Camera had 32 detectors. Despite the quality of the resulting 

was not enough and it was discarded its clinical application. In 1976 John 

onald Jaszczak developed an improved rotating Gamma Camera. In 1977, 

Everett, Fleming, Todd e Nightengale, using better correction methods for 

minimize it and thus decrease the image blur obtained

improvements of the Gamma Camera and the correction of Compton Effect made 

achieve significant advances in the performance of SPECT scanning 

In 1999, GE Medical Systems developed the first hybrid SPECT/CT system for 

clinical applications. This scanner provided functional and anatomical images in the 

same scanning session, which facilitated the alignment of SPECT and CT images and then 

tomical recognition[25]. Recently, SPECT scanners have been miniaturized to Micro

SPECT systems to allow imaging studies on small animals and the 

biological processes and pharmacological activity of drugs in vivo[26]

 

Figure 11 Micro-SPECT system[27]. 

.2.2 | SPECT scanning system: components and acquisition

A SPECT system measures the metabolic activity of a tissue or organ. In this 

modality, a radionuclide tracer is administrated to the patient and, 

with a target body region, decays, emitting radiation gamma that is detected

SPECT scanning produces cross-sectional images which are acquired by 

rotating the camera with circular or elliptical movements around the patient and get

multiple projections from various angles (Figure 12). As in CT, SPECT projecti

                                                      

A Compton camera uses two gamma detectors operating in coincidence in order to 

avoid the inherent scattering (Compton) effect when the single photon interacts with the body tissue or 
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In 1968, a device called MARK IV was the first Emission Computed Tomography 

(ETC) system developed. This scanner contained a Gamma Camera with multiple 

In 1972 was developed the first commercial SPECT system called Tomomatic 32, 

the quality of the resulting 

clinical application. In 1976 John 

rotating Gamma Camera. In 1977, 

Everett, Fleming, Todd e Nightengale, using better correction methods for Compton 

obtained so far. The 

on of Compton Effect made 

achieve significant advances in the performance of SPECT scanning 

In 1999, GE Medical Systems developed the first hybrid SPECT/CT system for 

functional and anatomical images in the 

the alignment of SPECT and CT images and then 

Recently, SPECT scanners have been miniaturized to Micro-

the visualization of 

[26] (Figure 11). 

and acquisition 

A SPECT system measures the metabolic activity of a tissue or organ. In this 

dministrated to the patient and, when it interacts 

radiation gamma that is detected by a 

sectional images which are acquired by 

rotating the camera with circular or elliptical movements around the patient and getting 

. As in CT, SPECT projective data is 

pton camera uses two gamma detectors operating in coincidence in order to 

avoid the inherent scattering (Compton) effect when the single photon interacts with the body tissue or 
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reconstructed to form the final image. By combining 2D slice images, 3D image is 

obtained. Typically, Gamma Camera rotates 3-6 degrees around the patient, each 

projection lasts 15 to 20 seconds to be taken and an acquisition session about 30 

minutes. SPECT acquired data is stored in an image matrix of 64x64 or 128x128 with a 

variable number of slices. In general, the slice thickness is 5mm. Pixel value represents 

the number of detect photon count emitted by the target tissue or organ. SPECT images 

cannot be acquired in 512x512 pixel format like CT images since, in order to achieve 

that resolution, a large amount of tracer has to be administrated and that would be 

injurious to the patient [14] [22]. 

 

Figure 12 A schematic SPECT acquisition[14]. 

SPECT scanners can have different configurations according to the imaging exam 

goal. The number of head cameras used is crucial to the sensitivity of the acquisition 

system. Using simultaneously a large number of heads allows an increasing detection of 

photon moving on abnormal trajectories that otherwise could not be detected and, 

consequently, would be important information losses on the resulting image. Usually, for 

brain studies, it is used a triple head SPECT camera and two head cameras to 

myocardium or lung exams (Figure 13). Most of SPECT scans have 360o orbit 

acquisitions. The acquisition can be performed using a step-and-shoot process or a 

continuous process. In the first mode, the camera head starts rotating and stops at 

defined positions, waiting at each position while data is acquired and then moving on to the 

next position. Concerning continuous mode, the camera head rotates continuously around the 

patient. The step-and shoot provides better resolution and continuous acquisition is more 

efficient[22]. 
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 (a)   

 

 

 

 

(b)       

 

 

 

 

(c) 

Figure 13 Camera locations: (a) bone SPECT acquisition, (b) brain SPECT acquisition and (c) 

cardiac SPECT acquisition[22]. 

 

SPECT acquired images characterize the activity distribution of the radionuclide 

in a target tissue or organ. The radionuclide can be administrated to the patient by 

intravenous injection, orally or aerosol inhalation. The radionuclide is a molecule which 

contains an unstable isotope (tracer) that emits gamma rays. The most used tracer is the 

99mTc. It has a relative short half-life, which allows an acquisition scanning and keeps 

radiation exposure to low levels. This radioisotope has ideal emission energy (140keV) 

which is high enough to leave the body and be detected by Gamma Camera. 99mTc 

tracer has a low cost to produce. The application of a radionuclide depends on the study 

exam (Table 3). The half-life must be adjusted to the duration of the tracer 

administration procedure and acquisition process. The amount energy required for the 

photons to leave the target region has to be enough to be detected by Gamma camera 

[28] [29] [30] [31]. 
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Table 3 Several SPECT examinations and respective radionuclide [14] 

STUDIES RADIOISOTOPE 
ENERGY 

EMISSION (keV) 
HALF-LIFE 

EFFECTIVE 

RADIATION DOSE 
(mSv) 

Lung Perfusion 99m Tc MAA4 140 6 hours 1.6 

Lung Ventilation 99mTc-DTPA5 140 6 hours 1.8 

Thyroid diseases I-123 159 13 hours 4.8 

Prostate cancer In-111 171 3 days 2.6 

Heart Th-201 70 3 days 17 

Tumor Ga-67 93 3 days 12.2 

3.2.3 | Ventilation/Perfusion studies and Pulmonary Embolism  

A lung study requires two successive acquisitions resulting on two sets of data 

information. When doing the ventilation scanning, the patient inhales an aerosol of 

99mTc-DTPA for a few minutes before the acquisition process. During this procedure, 

the radiotracer distribution is detected and an image is created. Ventilation lasts for 

about 5 minutes and its end coincides with the beginning of the ventilation data 

acquisition. A 99mTc-MAA tracer is injected to the patient and a lung distribution tracer 

image is acquired. Usually, the total acquisition scanning is performed during 30-60 

minutes. When the perfusion is applied, the inhaled tracer is still retained in lungs 

although the injected tracer amount is bigger. To eliminate the component of the 

ventilation data on the resulting image, a subtractive operation is performed after the 

total acquisition process[22]. 

This procedure is commonly used to detected pulmonary embolism. In the case 

of a non pathologic patient, ventilation and perfusion SPECT exams would be similar. 

The injected tracer could travel through all pulmonary regions without any constraints. 

Concerning an embolism patient, a mismatch between ventilation and perfusion scans is 

detected. In PE, a clot is formed anywhere in the body and travels to lungs over the 

bronchopulmonary tree, blocking capilars or major arteries in the lung tree, affecting 

blood circulation. The blocked area will be identified by comparing the ventilation and 

the perfusion SPECT exams and detecting the deficiency of non tracer deposition in the 

perfusion scanning [14]. 

                                                      
4 Technetium-99m macroaggregated albumin 
5 Technetium-99m diethylenetriaminepentaacetic acid 
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3.2.4 | SPECT scanner: Advantages and Disadvantages 

Once SPECT scanning uses radioactive tracers, it has inherent health risks 

associated, including overdose and contamination. When a radiotracer is administrated, 

it will not only accumulate in a specific target, but wherever it travels through. Another 

disadvantage of this technique is that the tracer still remains in the patient for a while 

after the acquisition exam. The remaining time of radiation in the body will vary 

according to the patient metabolism and the proprieties of the tracer[14]. 

Imaging limitations of SPECT systems are related to scattering, attenuation 

effects and the radiation dose amount. Scattering effect can cause measurement errors 

on emission photons positions. Once a certain amount of emitted photons interacts with 

tissue or organs and is attenuated, a substantially data information will be lost. 

Attenuation effects affect the image quality. Image contrast6 and resolution are 

influenced by the tracer dose used during the acquisition and the radiation exposure of 

the target region. An incorrect alignment of the Gamma camera position and detector 

scratches can introduce image artifacts, such as dead pixels or unread lines that 

influence the quality of the resulting image[22].  

Despite that SPECT scanning produces low quality images; its cost is more 

affordable than other nuclear medicine techniques, such as PET. The radioisotopes 

applied to SPECT exams have a long half-time that allows its easier manipulation[14]. 

                                                      
6 Image contrast is related to the ability to detect slight changes in luminance of regions without defined 

contours 
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4 | Image Processing: Theoretical Background 

Medical imaging allows, using a non-invasive technique, to obtain information 

about the human body. The possibility given by the 3D images of the region of interest 

has high relevance concerning applications such as surgery planning for extraction of a 

region or structure or even in real time acquisition during surgery. In order to enhance 

proprieties or details of the image, processing methods are applied[14] [32]. This 

chapter covers some segmentation and registration methods and it presents an 

overview on the literary work that has already been performed.  

4.1 | Segmentation 

Segmentation is the process of extracting important information from an image 

[11]. In this section, it is introduced the principles of segmentation and its applications 

on medical imaging. On the second part of this section, the state of the art is presented, 

focusing CT and SPECT image segmentation. 

Segmentation is a technique that allows identifying regions in an image which 

have specific properties such as color, intensity or texture. Segmentation is widely used 

on boundaries detection, region of interest extraction and image measurements. In 

pulmonary studies, segmentation process is most applied to the extraction of pulmonary 

regions and to the identification of the pulmonary boundaries and organs[33]. 

Several methods can be used depending on the goal of the analysis. 

Segmentation can be done manually or automatically, on an entire image or on sub 

region of the image. There are three segmentation categories: they can be based on 

threshold, based on pattern recognition and based on deformable models [34]. The most 

applied is the threshold-based method, due to its simplicity, fast performance and 

satisfactory results produced. Although, it shows low efficacy on processing images 

affected by noise or images with low contrast. When using this method, a threshold 

condition is defined and the image is divided into groups of pixels, according to their 

values and relation with the threshold. The condition can be select manually or based on 

a value from the image histogram. This method can be applied globally, based on 

histogram or local properties; locally, allowing to separate relevant regions when the 
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image background is not homogenous; or even with dynamic threshold in which for 

each group of pixels is defined a local threshold [33]. Region growing segmentation is a 

threshold-based algorithm. This algorithm typically requires a set of seed points for 

initialization and searches for adjacent pixels. When its intensity value matches with the 

threshold condition, the pixels are jointed to expand and create a region [35]. Another 

used algorithm is the edge-based segmentation in which structures or boundaries of the 

region of interest are defined by the local pixel intensity gradient. The main 

disadvantage of this method is that in most cases, the edge identification does not 

enclose totally the region of interest, creating a discontinuity. Therefore, it may be 

required a manual post-processing step of edge linking[33]. 

The segmentation based on pattern recognition identifies structures or regions 

using pattern information from intensity, position and shape of an image. This method 

can be supervised or unsupervised. Supervised artificial neural networks, support 

vector machine and active appearance models are examples of supervised 

segmentation[34]. These methods are initialized with a learning step in which is used a 

classifier with a training set, as a learning algorithm, and a target function, in order to 

extract pattern information to define criteria parameters. Later on, when making the 

recognition step, the input image is compared to the trained data and it is performed the 

searching of the best match to the defined pattern information criteria. On the 

unsupervised algorithms is not applied the learning step, therefore any pattern data 

information is previous known. The segmentation process involves a clustering 

approach that gradually creates similar groups of pixels. Unsupervised neural networks 

and Fuzzy C-Means algorithms are pattern-based segmentation methods. Despite 

showing better results than the threshold-based, the pattern-based methods are also 

sensitive to noise effect and it is much influenced by the initial parameters[33]. 

The segmentation based on deformable models consists on a boundary 

delineation of the region of interest represented by a curve or surface defined from an 

image. The deformable models are influenced by internal and external forces. The 

internal forces are characterized by the curve or surface and maintained the smoothness 

of the model during the segmentation process[34]. The external forces allow travelling 

of the deformation model until it reaches the boundaries of the region or structure of 

interest. Related to the curve, there is an energy function. The segmentation is 

performed by searching the boundaries in order to minimize that energy. The 

deformable models-based methods can be parametric or geometric models[34]. The 

parametric methods are defined by parametric curves or surfaces. A previous 
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knowledge of the target shape is needed before the segmentation process, since the 

parametric algorithms are not sensitive to the topology of the region of interest. The 

parametric behaviour allows a compact representation which is very useful for real-time 

applications. Snakes are an example of this type of deformable model. The geometrical 

model is based on a curve evolution that is related to the geometric characteristics of the 

region of interest. This model adjusts to the topology of the target and it can easily adapt 

to its shape. The level set algorithm is a geometrical deformable model. This method is 

powerful for complex segmentation [33].  

4.1.1 | State of the Art 

Over the years several works have been done in image segmentation 

accomplishing different results according to the purposes. The state of the art is focused 

on segmentation of CT and SPECT images. 

4.1.1.1 | Segmentation in CT Images 

Sun et al. [36] purposed a 3D segmentation and visualization method by using 

single detector CT images for detection and diagnosis of lung cancer. The segmentation 

was based on 3D region growing. The method started with a seed selection by applying 

either manual or automatic approaches, in which the user can select the seed points by 

using an interface, or using a fuzzy logic algorithm (fuzzy C-means) to automatically 

locate these points. In this method, a growing criteria selection was done based on 

region homogeneity, region aggregation and gradient magnitudes of the voxels. An 

automatic threshold was purposed based on the volumetric histogram and intensity and 

gradient curves. An analysis of the volumetric histogram allows to detect the intensity 

value of the lung voxel and thus an optimal threshold was determined. In order to 

generate segmentation mask it was used an auxiliary cubic volume. Since the results 

obtained by the purposed method could show an incomplete extraction of the lung 

volume, morphological methods of dilation and erosion were applied. The lung 

extraction results were compared with the corresponding gold standard and it was 

possible to conclude that the method was more effective and robust than the gold 

standard.  

Lei et al. [37] presented a fast lung segmentation method for computer-aided 

diagnostic (CAD) system on thoracic CT image. The purposed method initialized with a 

pre-processing step that excluded the pixels which were out of region of interesting, by 

setting them to zero value. For each CT slice, it was determined an optimal threshold, 
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using an interactive process which combined the maximum gray-level number and the 

minimum gray-level number of the image. In order to avoid the error caused by outside 

ROI pixel values, the pixel number of the image was also included. Therefore, a binary 

image was created. Morphologic operations were applied to the resulting images and 

non pulmonary parenchyma was eliminated. If the left and right lungs were not 

successfully segmented by using the optimal threshold, it was applied a fast location of 

the joint region or a self-fit re-segmentation based on watershed algorithm7. In order to 

eliminate non-smoothness edge and small cavities inside the lungs, it was applied a 

segmentation refinement and, after an erosion operation, the segmented lung was 

obtained. The purposed method was tested on CT slices of 30 patients. The results 

obtained showed that, in 90% of the images, the left and right lungs were correctly 

segmented after the threshold, without needing any re-segmentation. The results were 

compared to a manual segmentation done by an expert and showed that the results 

were quite similar. The method allowed applying overall lung parenchyma 

segmentation and retaining the detail. 

Zhou et al. [38] purposed a fully automated segmentation and classification 

method to identify lung anatomical structures using high resolution chest CT images. 

The method was applied along five main steps. The first step was to segment and divide 

the regions over the whole lung of CT images through a histogram analysis and a gray-

level thresholding method, by using the density distribution to identify the region of 

interest. An optimal threshold value was automatically determined for each CT image 

slice. Then, it was applied the extraction of the trachea and bronchi and the recognition 

of the bronchial tree. The airway region was gradually expanded by increasing the 

threshold value until the segmented region achieved the lung. The extraction of the total 

airway region was based on a branch-by-branch process and, for each one, it was 

determined an optimal threshold value. The regions were validated by comparison to 

the anatomical references of structures of airway trees. Then, the lung region was 

extracted and the left and right lungs were separated by applying region shrinking 

algorithms. The following step was to extract pulmonary vessels by applying a similar 

algorithm to the extraction of the bronchus region. After that, the lobar bronchus and 

vessels were recognized and used to divide the lung regions into lung lobes, by detecting 

the edges of estimated fissure locations. This method was tested in 44 patients and the 

obtained results showed that the method successfully classified and recognized lung 

structures from 41 patients. 

                                                      
7 Algorithm based on growing regions 
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Pu et al. [39] used an adaptive border matching to perform lung segmentation in 

lung nodule computer-aided detection from chest CT images. The purposed method was 

based on a smoothing process of contours in continuous space. The method started with 

a removing step of non relevant acquisition information, such as isolated pockets of air, 

by using a Gaussian smoothing. Then, a gray-level threshold was performed with a -

500HU cut-off. After the threshold step, 2D flooding operation was applied in each slice 

in order to remove non-lung regions. Several directed closed contours were generated 

by tracing the border of the lung region in a sequence of pixels. Then, in order to locate 

the over segmented regions and overcome their limitations, it was applied an adaptive 

marching step length based on Euclidean distance which introduced an adaptive 

behaviour to the threshold value. The purposed method was tested in 20 datasets of CT 

images and showed to be robust, efficient, with low computational cost.  

Kakar et al. [40] used a texture-based segmentation and recognition method to 

detect lesions in 3D CT images of lung cancer patients. A pre-processing step was 

performed by using a median filter to remove the acquisition noise and a contrast 

enhancement technique was applied, by mapping intensity values to new values, in 

which 1% data was saturated at low and high intensities. The segmentation step started 

with the application of a Gabor filter which allowed to extract textures features in the 

image. Since the boundaries of lesion were not clearly defined, the features were 

combined and a Fuzzy C-Means clustering was performed. Thus, the target volume was 

segmented. In this method an optimal number of 15 clusters were used, which was 

determined empirically. The recognition step involved features extraction combined 

with a learning phase in which the algorithm used for the texture content image data 

was trained, and a recognition phase in which the textural features were compared to 

the training images with a classification algorithm using Support Vector Machine. In 

order to evaluate the performance of the method, accuracy and sensitivity were 

measured. This method was tested in 42 images from different lung cancer patients. The 

obtained results showed an accuracy of 94.06% for the left lung, 94.32% for the right 

lung and 89.04% for lesion. The classifier algorithm presented an average sensitivity of 

89.48%. 

4.1.1.2 | Segmentation in SPECT Images 

He et al. [41] performed an Image Analysis System to identify the left and right 

pulmonary lobes by using Perfusion-Ventilation SPECT scans. In order to recognize the 

pulmonary region from the SPECT scans and separate it from the background, minimum 
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cross-entropy threshold segmentation was applied. The optimal threshold was 

determined from the cross-entropy distance based on probability distributions. A 

watershed algorithm was used to separate the left and right lungs. This algorithm 

started by dividing the SPECT image into several regions and subtracting the detected 

central region. The next step consisted on applying an edge contour extraction to the 

lung lobes, using a contour tracing, travelling through each image from top-left to 

bottom-right to find the edge points. Then, it was performed the pulmonary lobe 

partition step, in which each lobe was divided into 9 regions. The height and width of 

the pulmonary lobe were measured and divided based on average. In order to compare 

the function of different regions in Perfusion and Ventilation SPECT images, radiation 

counts were performed. This method has powerful applications in pulmonary embolism 

and lung cancer diagnosis. 

In literature, segmentation is widely applied has a pre-processing step for 

SPECT/CT registration of pulmonary scans, using a simple threshold. Takenaka et al. 

[42] on a study to predict lung volume reduction of surgery candidates used a pre-

processing segmentation step in which a threshold of 15% of the maximum radioactivity 

was used to defined the lungs contour of the SPECT exams. This work consisted in a 

performance comparison between perfusion SPECT scan, registered SPECT/CT images, 

CT quantitatively and qualitatively CT images. Suga et al. [43] purposed a study of the 

functional mechanism of lung mosaic computed tomography attenuation in pulmonary 

vascular disease and obstructive airway disease. This study was performed by using 

deep-inspiratory breath hold perfusion SPECT/CT fusion images and non-breath-hold 

SPECT scans. To obtain the SPECT lung contours were applied a threshold of 10% of the 

maximum radioactivity of the lungs. 

Palmer et al. [44] purposed a method for assisting the diagnosis of pulmonary 

embolism by using ventilation and perfusion SPECT exams. The method initialized with 

the elimination of hotspots on the ventilation SPECT by using a clearance correction. 

The hotspots could be created by extra-pulmonary activity of trachea or stomach 

deposition of contrast agent. Through the histogram, it was calculated a threshold of 

25% maximum, in order to find pulmonary region contour and identify the left and right 

lungs. Since the perfusion was acquired after ventilation, during the perfusion scanning, 

the aerosol activity was still detected. Therefore, it was done a subtraction of ventilation 

on perfusion scans. Then, rate normalization counting was applied to ventilation and 

perfusion SPECT exams and the ventilation/perfusion quotient was calculated. 

Subsequently, ventilation, perfusion and quotient images were analyzed to detect 
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mismatches between them, which might indicate any pathologic region. This method 

was tested in 15 patients and showed a fast performance and to be supportive to 

diagnosis of obstructive pulmonary diseases. 

4.2 | Registration 

Registration allows the overlaying of two or more images. In this section, it is 

reported an overview of registration processing and a brief approach to what already 

exists in the literature, focusing on lung SPECT/CT images registration.  

Image registration is a powerful aim to medical imaging. This process consists 

on the alignment of two images in order to establish a correspondence between them 

and, therefore, visualize and analyze them in the same spatial system. During the 

registration process, the moving image is deformed to be adjusted and fit to a reference 

image. The registration can be applied to a mono-modality context, i.e., using images 

from the same imagiologic modality. For instance, this is very useful to analyze the 

tumour evolution of a patient, in which images are acquired in different times. Using 

registration alignment they can be then compared. In a multi-modality context, it is 

possible to combine different data information, for example, functional and anatomical 

information, and, then, improve the medical diagnosis. Registration process is also 

applied for getting correspondence between acquired images and a reference medical 

atlas [11] [45].  

The registration algorithms can be categorized by the registration basis, 

transformation algorithm or the domain of transformation. The registration basis is 

related to the relevant points or regions of interest which will act as reference elements 

for the images alignment. Registration can be performed by using landmarks, which are 

well known points that can be marked on the patient during the exam acquisition or can 

be identified in the acquired image. By applying similarity measures between the 

images, the alignment can be based on segmentation of binary regions or voxel based. 

The transformation algorithm used in registration represents the method as the moving 

image is aligned to the reference image, according to the degrees of freedom, and the 

deformable characteristics. The transformation can be rigid body, where is allowed six 

degrees of freedom (rotations and translations in the x, y and z axes), while in the affine 

registration it is possible to have twelve degrees of freedom (rotations, translations, size 

scaling and shearing in the x, y and z axes). A non-rigid transformation has an elastic 

nature which allows a greater deformation. The greater the transformation complexity, 

higher will be the computational cost and the processing time [45]. The registration can 
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be performed globally when the transformation is applied to the entire image or locally 

when for different regions in the image are applied specific transformations. 

In conclusion, to describe a registration algorithm, required three main elements 

are required: transformation model, similarity metric and optimization process [33]. 

The transformation model, as described above, is related to the alignment behaviour of 

the moving image to be adjusted to the reference image. The similarity metrics quantify 

the differences between the reference image and the registered moving image. 

Correlation and mutual information are examples of metrics. Correlation gives intensity 

relationship between the two images and mutual information defines a probabilistic 

relation with the intensity of the images. The optimization process varies the 

transformation parameters in order to maximize the alignment between the images. 

Iterative closest point is a very used optimization algorithm, in which interactively 

minimizes the distance between points of the two images [46]. 

4.2.1 |State of the Art 

Several registration methods have been reported in literature. In this state of the 

art is presented some works about mono and multimodality registration in an intra and 

inter patient context.  

Woo et al. [47] purposed a 3D registration method to be applied on myocardial 

perfusion SPECT and coronary CT angiography images to help the diagnosis of coronary 

artery disease. The registration was performed by using 3D segmented SPECT images, 

where regions of myocardium and blood pools were extracted and used as an 

anatomical mask. A Gaussian filter was used to homogenize the intensity levels, to lower 

the CT image resolution and to remove image noise. A 3D registration transformation 

was applied using 3 translation parameters and 3 rotation parameters. In this work it 

was purposed energy functional based on the segmented SPECT volume which related 

constants parameters of average region intensities, a Gaussian kernel and the rigid 

transformation parameters. To minimize the purposed energy functional, the optimal 

values of the constants parameters and the standard deviation were determined by 

using a gradient descent algorithm based on Euler-Lagrange equations. The purposed 

registration method was compared to a Normalized Mutual Information method and a 

manual alignment done by 2 observers. The obtained results showed that the purposed 

method has a good performance and could be successfully applied on clinical practice. 

Song et al. [48] performed an optimization method for non-rigid image 

registration using a multi-metrics routine. Often, during the optimization step, an error 
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on the assessment of local minima leads to wrong registration results. The purposed 

method allowed to avoid incorrect registration by using a multi-metrics model that was 

automatic adjustable during the registration process by switching between metrics, in 

order to obtain the best optimization. In this work, it was done mono-modality (MRI-

MRI) and multi-modality (CT-MRI) registration by using brain images. A non rigid 

algorithm using B-spline transformation was applied. For MRI-MRI registration, it was 

used a 10x10 control grid for 2D images with 256x256 matrix size. For CT-MRI 

registration, it was used three types of control mesh: 6x6, 10x10 and 14x14 for 2D 

images with size 250x250. Metrics applied for mono-modality registration were Mutual 

Information (MI), Mean Squares (MS) and the multi-metric model MI&MS. For multi-

modality were applied MI, Normal Vector Information (NVI) and the MI&NVI multi-

metric. As an optimizer, it was used the L-BFGS-B method, which had the advantage of 

speed performances on minima research. Registration processes were evaluated 

according to run time and to image similarity measurements. On both methods (MRI-

MRI and CT-MRI), registration using MI had the faster performance, but the obtained 

results did not show a good alignment. This occurred due to the failure of the metric on 

finding the local minima. On MRI-MRI registration, using MS allowed to achieve good 

registration results, despite the fact that the processing time was high. On CT-MRI using 

NVI beyond the computational costs, the obtained results were worse than the MI 

results for the same registration method. For both methods, the respectively multi-

metrics model had low processing time and good registration results. The obtained 

results showed that the purposed multi-metrics registration method was robust and 

fast.   

Pan et al. [49] developed a method to estimate regional lung expansion by using 

3D CT images of sheep lungs. This study was performed in 3D CT images of two sheep 

with 512x512 matrix size. Images were acquired in a multi-detector row CT in prone 

and supine positions at several different airway pressures (0 to 32 cm H2O). The 

algorithm was initialized with a pre-processing step, where it was performed lung 

segmentation to extract lung boundary and airway tree segmentation to detect bronchi 

landmark points. Then, the image data was resampled to 256x256. The registration step 

was applied using lung surfaces and the airway landmarks as control points, performing 

on four resolution levels varying from 0.0625 to 0.5 of full size. Registration was 

validated by the landmark error, which was related to the registration error at the 

registration landmarks, and the volume overlap error. The last step of the method was 

to compare and evaluate the lung expansion obtained by the several registration 

procedures. Lung expansion was detected by visual inspection of the deformation file 
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created during the image registration. This method showed that, at a lower pressure, the 

regional lung expansion was higher than at higher pressure. 

A study of rigid registration using intra patient 3D images of CT, PET and SPECT 

exams for identification of changes in tumour localization was presented by Hahn et al 

[50]. Their method included an automatic extraction of 3D salient region features; an 

estimation of corresponding regions by using an optimization of a joint correspondence 

set based on a local intensity similarity; and outliers elimination by using an accurate 

refinement at sub-pixel level. A hybrid scanner was used to image acquisition. This 

study used 11 PET-CT 3D images acquired at different times, 3 CT 3D images acquired at 

different times of the treatment and 10 SPECT-CT 3D images. The method was evaluated 

by an expert by measuring the distance between a set of selected corresponding points, 

such as anatomical and functional structures or lesion sites. The obtained results 

showed that the method is robust and could be applied as additional element in a non-

rigid registration procedure.  

Yin et al. [51] evaluated different registration algorithms by using low resolution 

CT exams acquired from a SPECT-CT hybrid scanner, planning CT exams and a SPECT 

exam, for radiation therapy treatment planning. A 3D registration method was applied 

between low resolution CT exams and planning CT exams by using a rigid 

transformation in order to maximize the mutual information of the two exams. They 

also applied 3D CT-CT affine registration based on manually selection of control points 

in the lung volume and on the skin contour. Another method of CT-CT alignment was 

presented by using rigid registration followed by B-spline transformation. A control 

point grid was applied and manipulated to maximize the mutual information measure 

by using an optimizer based on a gradient descent. After the CT-CT registration 

procedures, the SPECT images were warped and registered, as reference image, to the 

planning CT exam. These registration methods were tested in planning CT images with a 

512x512 matrix size that were down-sample to 256x256 (a pixel size of 1.875x1.875x5 

mm3); low resolution CT with 256x256x40 matrix size(a pixel size of 2.2x2.2x 10 mm3); 

and SPECT images with a 128x128x128 matrix size (4.4x4.4x4.4 mm3). In order to 

evaluate the registration similarity was applied the root mean square of intensity 

differences, the median absolute deviation of intensity differences and the maximum 

intensity differences. This study showed that the B-spline registration provided accurate 

results to radiation therapy treatment planning and that the point based registration 

was better for lung deformation detections. 
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Papp et al. [52] purposed an extension of the normalized mutual information 

method applied to SPECT/CT registration of lung images. A hybrid SPECT/CT scanner 

was used to acquire at the same time, the low dose CT, ventilation and perfusion SPECT 

scans of twenty three patients. All images were resampled to 1x1x1mm voxel size. 

Between SPECT images, it was applied a histogram matching in order to increase the 

intensity similarity. Then, SPECT and CT images were scaled between 0 and 255 to 

decrease further entropy calculation time. The registration step started with a 

misalignment simulation of the CT images by using a known rigid transformation. Then, 

misalignment CT image was registered to the ventilation and perfusion SPECT images by 

applying the purposed extended normalized mutual information-based method. To 

evaluate the performance of the purposed extended method, a registration using dual-

normalized mutual information-based method was applied. The obtained results were 

compared and the registration error was determined. This comparison showed that the 

purposed normalized mutual information method obtained lower registration errors 

and could be applied to SPECT/CT registration clinical routines. 
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5 | Methodologies 

To obtain anatomical information on the patients suspected of pulmonary 

embolism, it was performed the registration of 3D SPECT images with the 3D CT image 

of a reference lung. The CT exam has anatomical information about the thoracic region 

and the SPECT exam has functional information about the pulmonary airflow 

(ventilation) and blood circulation (perfusion). For this study, the following types of 

images were used: 

o CT scan of a lung reference 

o Binary images of the pulmonary region from the CT scan (used on the 

registration process) 

o Binary images of the bronchopulmonary segments from the CT scan 

(applied to identify lung segments) 

o Ventilation and perfusion SPECT scans of four patients (used in the 

identification of lung segments) 

o Quotient V / P SPECT, obtained from the ventilation and perfusion SPECT 

scans, which allow to detect mismatches between the ventilation and 

perfusion scans (used in the identification of lung segments) 

o Binary images of ventilation and perfusion SPECT scans of the 

pulmonary region (used on the registration process) 

 

The methodology starts with a segmentation procedure to extract relevant 

information from both CT and SPECT (ventilation and perfusion) scans, i.e., to extract 

the pulmonary region, and producing a 3D binary image. For each SPECT exam, the 

binary image, which corresponds to the pulmonary region, was computed using the 

ventilation and perfusion SPECT exams. The registration process used rigid (rigid body, 

global rescale, specific rescale and affine) [53] and non-rigid transformations 

(diffeomorphic demons) [54]. During the registration process, SPECT image was the 

moving image and CT image the reference image. After the alignment of the binary 

SPECT and CT images, a transformation matrix was obtained for each registration 

algorithm. After analyzing the performance of the several registration algorithms, the 

affine transformation was chosen to be applied in the identification of suspected 
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pathologic bronchopulmonary segments. By applying this transformation matrix on 

ventilation, perfusion and quotient SPECT images, these images became aligned to the 

SPECT binary image obtained after the registration process. Therefore all SPECT images 

were aligned. This means that these images were also aligned with the CT image 

(reference image on registration process). Thus, as the CT binary image was aligned 

with the CT image of the bronchopulmonary segments, all SPECT images were aligned 

with the two CT images. This would allow comparison between the SPECT images and 

CT image of the bronchopulmonary segments to identify the suspected pathological 

segments. By comparison between the aligned SPECT images and the 

bronchopulmonary CT segments, it is possible to: (1) detect the characteristic mismatch 

of pulmonary embolism of ventilation and perfusion SPECT images; (2) compare the 

mismatch with the quotient SPECT image and (3) identify in the CT image the 

bronchopulmonary segment with suspicion of pathology. 

In this section are reported details of images acquisition, segmentation and 

registration processes, and the identification of the pulmonary regions suspected of 

pulmonary embolism.    

5.1 | Image Data and Pre-Processing Procedures 

5.1.1 |CT Image of Pulmonary Region 

From E-anatomy website [8], a CT scan of a lung was obtained, which was 

considered the reference exam for the present study. The exam has the dimensions of 

550x550 pixels with 87 slices. Since SPECT scans were acquired with a size of 64x64 

pixels and a total of 64 slices, CT scan was resampled to 64x64x64 (Figure 14(a)).  

A segmentation pre-processing step was used to identify the pulmonary region. 

In order to attenuate the noise that could induce an incorrect detection of the lung 

contours during the segmentation, a Gaussian filter was applied. Then, a threshold with 

a cutoff -500HU was used. This cutoff value was obtained experimentally analyzing 

histogram charts of several CT exams and having in consideration the range of 

Hounsfield Units for the lungs: -950HU to -550HU [55]. The CT scan from E-Anatomy 

website [8] was in grayscale (0-255 intensity values), which corresponds in Hounsfield 

Units (HU) to a range of -1000 to 2000HU. By extrapolation, the cutoff value in grayscale 

was determined. To eliminate any existing interior holes in the pulmonary region and 

exterior holes due to trachea morphological operations were applied (Figure 14 (b)). 

The segmentation method was applied to each CT image slice. The 3D CT binary image 



 

 

consists on associating all slices into a stack. After obtaining the binary image of the 

pulmonary region, right and left 

performed individually for each lung, since the variability of the distance between them 

depends on the patient (Figure 

 

Figure 14 A CT image slic

region; (c) binary image of right lung and (d) binary image of left lung. 

5.1.2 | CT Lung Segments Labelling

The bronchopulmonary segments were already defined

[8]. By stacking all slices, a 3D CT image of bronchopulmonary segments was created. 

The segment contours were resampled using the methodology already described for CT 

image of pulmonary region, producing a

each bronchopulmonary segment consists in a set of voxels whose value is associated to 

the corresponding segment. 

The terminology used for the bronchopulmonary segments was based on

order to facilitate the differentiation of each segment during the visualization, each voxel 

segment was labeled to values presented in table 

lung consists of ten bronchopulmonary segments and le

image of the pulmonary region, right and left lungs are also considered separately.

 

 

 

consists on associating all slices into a stack. After obtaining the binary image of the 

right and left lungs were separated so that registration could be 

performed individually for each lung, since the variability of the distance between them 

depends on the patient (Figure 14 (c) and (d)). 

(a)   (b) 

(c)   (d)

A CT image slice of the reference lung: (a) examination scan; (b) binary image of pulmonary 

region; (c) binary image of right lung and (d) binary image of left lung. 

2 | CT Lung Segments Labelling 

The bronchopulmonary segments were already defined in the anatomical 

. By stacking all slices, a 3D CT image of bronchopulmonary segments was created. 

The segment contours were resampled using the methodology already described for CT 

image of pulmonary region, producing a final 3D image with 64x64x64 voxels, where 

each bronchopulmonary segment consists in a set of voxels whose value is associated to 

the corresponding segment.  

The terminology used for the bronchopulmonary segments was based on

order to facilitate the differentiation of each segment during the visualization, each voxel 

segment was labeled to values presented in table 4. According to the terminology, right

ten bronchopulmonary segments and left lung of eight. As in the 3D CT 

image of the pulmonary region, right and left lungs are also considered separately.
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consists on associating all slices into a stack. After obtaining the binary image of the 

re separated so that registration could be 

performed individually for each lung, since the variability of the distance between them 

(b)  

(d) 

e of the reference lung: (a) examination scan; (b) binary image of pulmonary 

region; (c) binary image of right lung and (d) binary image of left lung.  

in the anatomical atlas 

. By stacking all slices, a 3D CT image of bronchopulmonary segments was created. 

The segment contours were resampled using the methodology already described for CT 

final 3D image with 64x64x64 voxels, where 

each bronchopulmonary segment consists in a set of voxels whose value is associated to 

The terminology used for the bronchopulmonary segments was based on[8]. In 

order to facilitate the differentiation of each segment during the visualization, each voxel 

. According to the terminology, right 

eight. As in the 3D CT 

image of the pulmonary region, right and left lungs are also considered separately. 



 

 

Table 4 Bronchopulmonary segments to right and left lungs and respectively voxel values

RIGHT LUNG

Bronchopulmonary 

Segment 

Apical (SI) 

Posterior (SII)

Anterior (SIII)

Lateral (SIV)

Medial (SV)

Superior (SVI)

Medial Basal (SVI)

Anterior Basal (SVIII)

Lateral Basal (SIX)

Posterior Basal (SX)

 

Figure 15 (a) 3D CT image of bronchopulmonary segments. (b) CT image slice of the reference lung and 

respective bronchopulmonary segments (right lung: 1 

left lung: 5

5.2 | SPECT Images

The Nuclear Medicine Service of the 

acquired the ventilation and 

methodology in[56], the NMS

ventilation and perfusion binary images. Images from four patients with suspected 

pulmonary embolism were released to this study.

The SPECT scans were acquired by the following protocol: SPECT data were 

obtained from a Gamma Camera (Dual Head Millennium 

the supine position. The ventilation SPECT scans were acquired by inhalation of 37MBq 

of Technegas (an ultra-

the perfusion SPECT, the tracer used was the MAA (

Serium Albumin), which was administrated by intravenous

perfusion acquisition using this protocol, it is administrated 74 to 148 MBq of MAA. An 

Bronchopulmonary segments to right and left lungs and respectively voxel values

RIGHT LUNG  LEFT LUNG

Bronchopulmonary 

 

Voxel 

Values 
 Bronchopulmonary Segment

 10  Apicoposterior (SI+II)

Posterior (SII) 20  Anterior (SIII) 

Anterior (SIII) 30  Superior Lingular (SIV)

Lateral (SIV) 40  Inferior Lingular (SV)

dial (SV) 50  Superior (SVI) 

Superior (SVI) 60  Antero-Medial (SVII+SVIII)

Medial Basal (SVI) 70  Lateral Basal (SIX)

Anterior Basal (SVIII) 80  Posterior Basal (SX)

Lateral Basal (SIX) 90   

Posterior Basal (SX) 100   

 (a)  

CT image of bronchopulmonary segments. (b) CT image slice of the reference lung and 

respective bronchopulmonary segments (right lung: 1 - Anterior, 2 - Apical, 3 - Posterior and 4 

left lung: 5- Anterior, 6 - Apicoposterior and 7 - Superior) 

5.2 | SPECT Images 

Nuclear Medicine Service of the Coimbra University Hospitals 

acquired the ventilation and the perfusion SPECT scans used in this study.

, the NMS–CUH calculated the quotient SPECT images, th

ventilation and perfusion binary images. Images from four patients with suspected 

pulmonary embolism were released to this study. 

The SPECT scans were acquired by the following protocol: SPECT data were 

obtained from a Gamma Camera (Dual Head Millennium VG) in which the patient was in 

the supine position. The ventilation SPECT scans were acquired by inhalation of 37MBq 

-fine suspension of carbon nano-particles labeled with 99mTc). In 

the perfusion SPECT, the tracer used was the MAA (99mTc-Macroaggregat

which was administrated by intravenous injection

perfusion acquisition using this protocol, it is administrated 74 to 148 MBq of MAA. An 
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Bronchopulmonary segments to right and left lungs and respectively voxel values 

LEFT LUNG 

Bronchopulmonary Segment 
Voxel 

Values 

Apicoposterior (SI+II) 10 

20 

Superior Lingular (SIV) 40 

Inferior Lingular (SV) 50 

60 

Medial (SVII+SVIII) 70 

Lateral Basal (SIX) 90 

Posterior Basal (SX) 100 

 

 

 (b) 

CT image of bronchopulmonary segments. (b) CT image slice of the reference lung and 

Posterior and 4 - Superior; 

 

Coimbra University Hospitals (NMS–CUH) 

perfusion SPECT scans used in this study. Following the 

calculated the quotient SPECT images, the 

ventilation and perfusion binary images. Images from four patients with suspected 

The SPECT scans were acquired by the following protocol: SPECT data were 

VG) in which the patient was in 

the supine position. The ventilation SPECT scans were acquired by inhalation of 37MBq 

particles labeled with 99mTc). In 

Macroaggregates of Human 

injection. In a typical 

perfusion acquisition using this protocol, it is administrated 74 to 148 MBq of MAA. An 
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improvement in the detection of perfusion defects was achieved by using a higher 

activity and acquiring a perfusion scan after the ventilation scan. For both ventilation 

and perfusion SPECT acquisition was performed on Step and Shoot mode in a 180 

degree orbit. The total acquisition duration for ventilation was 12 minutes and for 

perfusion 7 minutes. The matrix size for both ventilation and perfusion SPECT scans was 

64x64 with 64 axial slices with 6.548x6.548x 6.548mm3 of voxel dimensions.  

After SPECT data acquisition, the hot spots were removed from the ventilation 

images. The hot spot are regions in image, with excess of counts and occur due to 

deposition of the tracer anywhere in the body, in this specific case the pulmonary 

region. By analyzing the histogram of the image, an expected maximum was found. The 

values that exceeded that maximum were resampled into a value range below it. 

Therefore, the hot spots were removed. 

Since the perfusion scan was acquired immediately after the ventilation scan, the 

aerosol activity was also taken in account in the perfusion scan. To eliminate ventilation 

influence, a subtraction was done based on the following expression [56]: 

�� 
 ���� � ���  (2)   

where  �� is perfusion count; �� is ventilation count; ���� is perfusion count before the 

ventilation subtraction; � the decay factor. 

To delineate the boundaries of the pulmonary region in the SPECT exam, the 

contour of the lungs was determined through a segmentation process. Obtaining a 

binary image allowed to identity right and left lungs and to remove extra pulmonary 

activity from trachea or stomach (the aerosol can in the end be swallowed when mixed 

with saliva during the ventilation acquisition). Image segmentation of ventilation and 

perfusion images was done by applying a threshold of 15% of the maximum calculated 

from the histogram of each image. After getting the lung contours, it was performed the 

normalization of the ventilation (after the hot spot removal) and perfusion (after 

subtraction of ventilation). By histogram analyzes, a normalization region was defined 

from a relative maximum. In the normalization region was considered 70% of the 

relative maximum for each ventilation and perfusion histograms. After normalization 

step, the quotient is determined by the following expression [56]: 

��� 
 �   ! " (3) 

where � is the normalization factor. 



 

 

During the registrat

patients were used. The pulmonary region was considered as a 

might be areas that were not detected during the scan acquisition, the binary images of 

ventilation and perfusion 

left lungs were separated and considered individually 

Figure 16 Patient A SPECT images of the same slice: (a) ventilation SPECT; (b) pe

quotient SPECT; (d) binary image of right lung; and (e) binary image of left lung

5.3 | Registration

Image registration is a process that aligns two images

components: transformation, similarity metric and optimize

changing the transformation parameters, using an optimizer, in order to find the optimal 

similarity metric value, which represents the quality of the alignment between the two 

images. 

5.3.1 | Registration Transforms

The transformation functions define 

to match another image. The image deformation is directly related to the degrees of 

freedom in which the transformation function is allowed to operate. In this work, it was 

used five transformation functions with different deformation characteristics: rigid 

(rigid body, global rescale, specific rescale and affine) and 

demons).  

 

During the registration process binary images of SPECT examinations of four 

he pulmonary region was considered as a single area

might be areas that were not detected during the scan acquisition, the binary images of 

ventilation and perfusion of each patient were merged. As in CT images, the right and 

left lungs were separated and considered individually (Figure 16). 

(a) (b)

(d)  (e) 

Patient A SPECT images of the same slice: (a) ventilation SPECT; (b) pe

quotient SPECT; (d) binary image of right lung; and (e) binary image of left lung

 

5.3 | Registration 

Image registration is a process that aligns two images, involving three main 

components: transformation, similarity metric and optimizer. The registration goal is 

changing the transformation parameters, using an optimizer, in order to find the optimal 

similarity metric value, which represents the quality of the alignment between the two 

5.3.1 | Registration Transforms 

mation functions define the set of operations that deforms 

to match another image. The image deformation is directly related to the degrees of 

freedom in which the transformation function is allowed to operate. In this work, it was 

sformation functions with different deformation characteristics: rigid 

(rigid body, global rescale, specific rescale and affine) and non-rigid
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ion process binary images of SPECT examinations of four 

single area, since there 

might be areas that were not detected during the scan acquisition, the binary images of 

of each patient were merged. As in CT images, the right and 

(c) 

 

Patient A SPECT images of the same slice: (a) ventilation SPECT; (b) perfusion SPECT; (c) 

quotient SPECT; (d) binary image of right lung; and (e) binary image of left lung 

involving three main 

r. The registration goal is 

changing the transformation parameters, using an optimizer, in order to find the optimal 

similarity metric value, which represents the quality of the alignment between the two 

the set of operations that deforms the image 

to match another image. The image deformation is directly related to the degrees of 

freedom in which the transformation function is allowed to operate. In this work, it was 

sformation functions with different deformation characteristics: rigid 

rigid (diffeomorphic 
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5.3.1.1 | Rigid Transformation 

 

The rigid transformation allows to move an object along an axis (translation), 

around a fixed axis (rotation); to enlarge or shrink an object by a scale factor (scaling) 

and to linearly deform an object along one axis (shearing). The transformations can be 

referred using homogeneous coordinates, that allows combining different 

transformations in a multiplication matrix form and therefore the computational 

method is simplified. The Following transformation matrices in homogeneous 

coordinates defines the translation (T), rotation (R), scaling (S) and shearing (Sh) over 

the x, y and z axes [11]. 

 

For translation in the x, y and z axes: 

T 
 $1 0 0 00 1 0 00 0 1 0x y z 1(  
 

 

where x, y and z represent the translation in each axis. 

For rotation in the x, y and z axes: 

R* 
 $1 0 0 00 cosθ* �sinθ* 00 sinθ* cos θ* 00 0 0 1( ; R2 
 $ cos θ2 0 sin θ2 00 1 0 0�sinθ2 0 cos θ2 00 0 0 1( ; 
 

R3 
 $ cosθ3 �sinθ3 0 00 1 0 0�sinθ2 0 cos θ2 00 0 0 1( 
 R 
 R*  R2  R3  

 

with θx, θy and θz represent the rotation angle in each axis. By multiplication the 

rotation matrixes for each axis, it is obtained a rotation global matrix. 

For size scaling (S) in the x, y and z axes: 

S 
 $S* 0 0 00 S2 0 00 0 S3 00 0 0 1( 
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where S*, S2 and S3 represent the scale factor in each axis. 

For shearing (Sh) in the planes xy, xz and yz: 

 

Sh* 
 $1 Sh*2 Sh*3 00 1 0 00 0 1 00 0 0 1( ; Sh2 
 $ 1 0 0 0Sh2* 1 Sh23 00 0 1 00 0 0 1( ; Sh3 
 $ 1 0 0 00 1 0 0Sh3* Sh32 1 00 0 0 1( 
 Sh 
 Sh*  Sh2  Sh3 

 
 

where 9:;, 9:< =�> 9:? represent the shear factor. By multiplication the shearing matrixes 

for each axis it is obtained a shearing global matrix. The global matrix of transformation 

is determined by multiplying the matrices of the parameters involved. 

 

 

 
Rigid Body 

A rigid body transformation is a rigid transformation that includes translations 

and rotations. In this registration distances and angles between points are preserved. A 

3D rigid transformation allows six degrees of freedom which can be defined as 

translation in the x, y and z axes and rotations over the same axes. The translation and 

rotation matrices are multiplied and a global rigid body matrix (RB) is obtained: 

 RB 
 T  R  (4) 

 

Global Rescale 

A global rescale transformation is similar to the rigid body transformation but 

also includes a uniform scaling factor along the x, y and z axis. This transformation 

allows preserving all angles and relative lengths in the transformed image. A 3D global 

rescale transformation has seven degrees of freedom which includes translations, 

rotations and a single scale parameter (S=Sx=Sy=Sz). All transformation matrices are 

multiplied and a global rescale matrix (GR) is obtained: GR 
 T  R  S  (5) 
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Affine 

An affine transformation allows preserving straightness of lines and parallel 

lines. However, the angles between the lines or planes are generally changed. A 3D affine 

transformation can have nine or twelve degrees of freedom. A nine parameter affine, 

which is called specific rescale transformation, allows translation, rotation and scaling 

over the x, y and z axes. All parameters matrices are multiplied and a global specific 

matrix is created (SR). A twelve parameter affine, which is only referred as affine, 

consists in translation, rotation, scaling and shearing operations over the x, y and z axes. 

All operation matrices are multiplied and a global affine matrix (A) is obtained. SR 
 T  R  S (6) A 
 T  R  Sh  S (7) 

5.3.1.2 | Non-Rigid 

Another category of registration algorithms is non-rigid transformations. The 

image is warped with non-linear transformations, allowing a smooth local variation and 

large deformations. The non-rigid algorithms can be defined as the transformation 

model, based on physical models. There are several models, with the elastic and fluid 

models being applied extensively. The elastic models are based on elastic mechanics and 

have a good performance when is needed small deformations. The fluid model is based 

on the equations of fluid dynamics and it is usually applied in large deformations [57]. 

In this study, the diffeomorphic demons transformation was used. This 

registration algorithm used a transformation which belongs to a group of 

diffeomorphism DiffEΩG and it is represented as the composition of the following 

expression [54]: H 
 I J KLME�G (8) 

where H is an element in NOPPEΩG and � is a vector field in Ω belonging to a convenient 

space vector fields that guarantees the existence of the exponential map and the 

composition I J KLME�G remains in NOPPEΩG. This characterization restricts 

transformations to any element in  NOPPEΩG that can be obtained by finite composition 

of exponential of smooth vector fields [54]: H 
 KLME�QG J … J KLME�SG (9) 
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5.3.2 | Similarity Metrics 

A similarity metric measures the differences between two images. The optimal 

value is achieved when the images are completely coincident. During the registration 

method, iterative calculations are done between the moving image and reference image, 

until an optimal value is reached. The following metrics were used in the registration 

methods: Normalize Cross Correlation and Normalized Mutual Information.  

 

Normalized Cross Correlation: 

The Normalize Cross Correlation (NCC) has an intrinsic characteristic, 

considering that the corresponding intensities in two images have a linear correlation 

[46]. This metric multiples the intensity of two images in each voxel, sums the obtained 

product and divides it by the square root of the multiplication of the intensity squared. 

The resulting values are between zero and one. The one value means that the images are 

totally coincident and zero value means no linear relationship, i.e., images are totally 

different. 

 

T�� 
 ∑ ∑ ∑ VE;,<,?GWE;,<,?GXYZ[\]^∑ ∑ ∑ VE;,<,?G_∑ ∑ ∑ WE;,<,?G_XYZ[\]XYZ[\]   (10) 

where A and B are both images; x, y and z are the coordinates on the images; and X, Y 

and Z the dimensions of the images. 

 

Normalized Mutual Information 

The Normalized Mutual Information (NMI) is related to the statistical 

dependence between the intensity of two images [46]. This metric is proportional to the 

entropy of the image A and B, divided by the joint entropy H (A, B). The resulting values 

are between zero and one. On the one hand, NMI value is zero the images are very 

different; on the other hand, NMI is 1 the images are perfect identical. 

 T`a 
  bEVG�bEWGbEV,WG    (11) 

HEAG 
 �dpEaG log pEaGhij ; HEBG 
 �dpEbG log pEbG ;lim  

HEA, BG 
 �ddpEa, bG log pEa, bGlimhij  
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where H (A) is the entropy of the image A; H (B) the entropy of image B; H (A, B) the 

joint entropy of image A and B; p (a) is the probability of image A; p (b) is the probability 

of image B and p (a, b) joint probability of image A and B. 

 

5.3.3 | Optimization and Registration Algorithms 

An optimizer defines how the transformation parameters are modified to 

optimize the similarity metric. A good optimizer is the one that, in a few iterations, 

locates the best possible transformation parameters in which the metric value is closer 

to its optimal value. The optimization of rigid registration was based on Powell's 

algorithm [58]. It is a nonlinear optimizer that iteratively varies each transformation 

parameter in turn, in order to achieve the optimal value of the similarity metric. In non-

rigid registration was applied an iterative optimization based on Lei groups [54]. 

 

Rigid algorithm  

The registration method applied is based on a multi-resolution approach, which 

is initialized in a low resolution and iteratively increases the resolution as the optimal 

value of the similarity metric is determined, for each resolution level. By applying lower 

resolutions in the initial iterations, it is allowed an alignment with few points, which 

reduces the computational cost. 

The registration algorithm started with a pre-optimization step, in which both 

reference and moving image were interpolated by a trilinear algorithm8 to create 

isotropic voxel image (used in level-1 optimization)and to resampled the image size to 4 

and 2 times smaller (used in level-4 and level-2 optimizations, respectively). For the 4 

downsampled reference and moving images, the centers of mass of each image were 

calculated by relating the position and pixel area. Afterward, a translation was applied to 

align the centers of mass. Then, the transformation parameters were adjusted by the 

optimizer to search for the metric optimal value. The parameters determined on the 

previous step were used as initial transformations on the level-2 optimization. The same 

procedure was repeated to level-1 optimization. By applying the trilinear interpolation 

and the parameters calculated in the level-1 optimization, the moving image was 

transformed into the same coordinate system as the reference image, and a 

transformation matrix was obtained.  

                                                      
8
Trilinear interpolation computes values based on 8-neighborhood connection. 
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Diffeomorphic Demons algorithm 

In this work was used a diffeomorphic demons registration algorithm based 

on[54] to search the transformation parameters that maximize an energy. The energy 

consisted of the similarity metric and a regularization term. 

The method was initialized by an estimation of an initial transformation by a 

mapping point. In each iteration, the displacement field (speed vector field) was updated 

by a composite adjustment. Updating search was done using a Lie group structure, in 

which an exponential mapping was defined from the vector space of velocity fields into 

the diffeomorphic space. A local estimation might cause inconsistency between neighbor 

voxels, which could generate instability and loss of continuity in the region of interest. 

To solve this problem, a regularization step was applied by using a Gaussian convolution 

kernel to the speed vector field in order to smooth and kept the image continuity. In 

each iteration, the moving image is deformed using the updated and regulated 

deformation field. The speed vector field was estimated until was achieved the 

convergence of the energy. At the end of the iterative alignment, a transformation matrix 

was obtained.  
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6 | Results and Discussion 

To identify the pulmonary regions in lung SPECT scans with suspicion of 

pathology, a study of registration algorithms was performed. A pre-processing step was 

done to obtain the binary images of CT scan, the ventilation and perfusion SPECT scans. 

Then, by applying five different registration algorithms and comparing their 

performance, the best of algorithm was selected. The transformation matrix of the best 

algorithm was applied to the SPECT scans and comparing with the CT image and the 

segments with suspicion of pathology were indentified.  

In this chapter, it is shown the results obtained with the proposed methodology. 

First, the segmentation of the pulmonary region and bronchopulmonary segments are 

examined. Then, performance of the registration algorithms are analyzed using the 

processing time, the overlay between the aligned images and the reference image, and 

comparing the similarity metric values. Finally, by visual comparison, the suspected 

pathologic segments are identified. 

The following software was used: Matlab [59] (segmentation of pulmonary 

region in CT scan); MIPAV [53] (registration process) and Rview [60] (visualization and 

overlay).  

The images had 64x64x64 voxels and the following orientation: right to left in x-

axis, anterior to posterior in y-axis and superior to inferior in z-axis (Figure 17). All 

methodologies were computed on a laptop with Intel Pentium M processor 2.00GHz 

with 1.00GB of RAM, running Windows XP operating system. The right and left lungs 

were analyzed individually. 



 

 

6.1 | CT Segmentation

A lung segmentation procedure was used to create

the multimodality registration process. In this section is presented the visual inspection 

analysis that was performed in 3D CT images of the pulmonary region and 

bronchopulmonary segments.

6.1.1 | Pulmonary Region

In order to create a binary image of t

scan, the segmentation methodology 

performed a qualitative analysis of the results 

binary masks are correct borders of the en

overlay of the CT scan with the binary masks of the right (red) and left (green) lungs in 

the axial, coronal and sagittal perspectives. The 

representation of the overlay of the 

Figure 17 Anatomical planes [61] 

.1 | CT Segmentation 

segmentation procedure was used to create 3D binary images, used by 

e multimodality registration process. In this section is presented the visual inspection 

analysis that was performed in 3D CT images of the pulmonary region and 

bronchopulmonary segments. 

.1.1 | Pulmonary Region 

In order to create a binary image of the pulmonary region of th

scan, the segmentation methodology described in 5.1.1 was applied. A radiologist expert 

performed a qualitative analysis of the results by visual inspection and verified that the 

binary masks are correct borders of the entire lung. In figure 18

overlay of the CT scan with the binary masks of the right (red) and left (green) lungs in 

the axial, coronal and sagittal perspectives. The figure 18(b) is a three

representation of the overlay of the thoracic region. 
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3D binary images, used by 

e multimodality registration process. In this section is presented the visual inspection 

analysis that was performed in 3D CT images of the pulmonary region and 

lmonary region of the reference CT 

was applied. A radiologist expert 

by visual inspection and verified that the 

18(a) it is shown the 

overlay of the CT scan with the binary masks of the right (red) and left (green) lungs in 

(b) is a three-dimensional 



 

 

Figure 18 Overlay between CT binary masks and CT scan of a reference lung in (a) axial, coronal and 

sagittal perspectives; and a three

6.1.2 | CT Bronchopulmonary Segments

The bronchopulmonary segments were defined using the me

section 5.1.2. The same radiologist expert performed a qualitative analysis of the binary 

masks of each lung segment and verified that

well aligned with the pulmonary region of the CT scan and any overlap between the 

different lung segments detected, was immediately corrected. In 

represented the overlay between the CT scan and the bronch

the right and left lungs in the axial, coronal and sagittal perspectives. Each lung segment 

was labeled with a value, which corresponds to a different color when visualized. 

19(b) represents a three

lung in which a region was removed to be able to observe the details of right lung 

interior with the bronchopulmonary segments

 

 

 (a)           
Overlay between CT binary masks and CT scan of a reference lung in (a) axial, coronal and 

sagittal perspectives; and a three-dimensional representation. Right lung is in red and left lun

.1.2 | CT Bronchopulmonary Segments 

The bronchopulmonary segments were defined using the me

2. The same radiologist expert performed a qualitative analysis of the binary 

masks of each lung segment and verified that the bronchopulmonary segments were 

well aligned with the pulmonary region of the CT scan and any overlap between the 

different lung segments detected, was immediately corrected. In 

represented the overlay between the CT scan and the bronchopulmonary segments of 

the right and left lungs in the axial, coronal and sagittal perspectives. Each lung segment 

was labeled with a value, which corresponds to a different color when visualized. 

(b) represents a three-dimensional representation of the CT scan of the reference 

lung in which a region was removed to be able to observe the details of right lung 

interior with the bronchopulmonary segments. 
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Overlay between CT binary masks and CT scan of a reference lung in (a) axial, coronal and 

dimensional representation. Right lung is in red and left lung in green. 

The bronchopulmonary segments were defined using the method described in 

2. The same radiologist expert performed a qualitative analysis of the binary 

the bronchopulmonary segments were 

well aligned with the pulmonary region of the CT scan and any overlap between the 

different lung segments detected, was immediately corrected. In figure 19(a) is 

opulmonary segments of 

the right and left lungs in the axial, coronal and sagittal perspectives. Each lung segment 

was labeled with a value, which corresponds to a different color when visualized. Figure 

of the CT scan of the reference 

lung in which a region was removed to be able to observe the details of right lung 

(b) 



 

 

Figure 19 Overlay between CT binary masks of bronchopulmonary 

lung in (a) axial, coronal and sagittal perspectives; and in a three

bronchopulmonary segment is associated with a different color.

6.2 | Registration

To proceed with the registration, fo

seven (global rescale), nine 

a non-rigid algorithm (diffeomorphic d

in the evolution of the alignment of

algorithm that have a better performance in a relation alignment /processing time to be 

used in the identification of suspected pathological regions.

6.2.1 | Processing Time

For each registration process of th

patients) using different transformation algorithms (r

rescale, and diffeomorphic d

Table 5). Rigid registration was the f

longer algorithm was diffeomorphic d

seconds.  

(a) 

Overlay between CT binary masks of bronchopulmonary segments and CT scan of a reference 

lung in (a) axial, coronal and sagittal perspectives; and in a three-dimensional representation. Each 

bronchopulmonary segment is associated with a different color.

.2 | Registration 

To proceed with the registration, four rigid algorithms with six (rigid body), 

escale), nine (specific rescale) and twelve (affine) degrees of freedom and 

algorithm (diffeomorphic demons) were applied to evaluate their influence 

in the evolution of the alignment of 3D CT and SPECT binary images to selected the 

algorithm that have a better performance in a relation alignment /processing time to be 

used in the identification of suspected pathological regions. 

.2.1 | Processing Time 

For each registration process of the eight lungs (right and left lungs of four 

ent transformation algorithms (rigid body, global rescale, specific 

diffeomorphic demons), the processing time was measured

). Rigid registration was the fastest algorithm taking about 20 seconds, and the 

longer algorithm was diffeomorphic demons taking about 130s, i.e.,
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segments and CT scan of a reference 

dimensional representation. Each 

bronchopulmonary segment is associated with a different color. 

with six (rigid body), 

ffine) degrees of freedom and 

emons) were applied to evaluate their influence 

3D CT and SPECT binary images to selected the 

algorithm that have a better performance in a relation alignment /processing time to be 

e eight lungs (right and left lungs of four 

, global rescale, specific 

measured (Figure 20 and 

astest algorithm taking about 20 seconds, and the 

emons taking about 130s, i.e., 2 minutes and 10 

(b) 



 

 

 

 
Figure 

Table 

TRANSFORMATION 

Rigid Body 

Global Rescale 

Specific Rescale 

Affine 

Diff. Demons 

 

These results show that 

the processing time.  

6.2.2 | Overlay between reference image and moving image

The performance of a registration process 

between the reference image and the moving image after registrati

inspection a qualitative analysis 

after being processed by each transformation algorithm

counted the number of voxels and c

 

 

Rigid Body

Global Rescale

Specific Rescale

Affine

Diff. Demons

Figure 20 Mean processing time for each registration algorithm

 

 
Table 5 Processing time of each registration algorithm 

 

PATIENTS 

RIGHT LUNG LEFT LUNG

Patient 

A 

Patient 

B 

Patient 

C 

Patient 

D 

Patient 

A 

Patient 

B 

19.7 22.7 22.8 22.1 22.6 23.4 

38.7 45.2 37.4 42.7 38.8 41.7 

39.1 46.0 38.0 43.4 39.5 41.6 

40.2 47.6 39.2 44.4 40.5 42.7 

127.3 129.5 131.3 130.1 126.5 153.1 

These results show that increasing the transformation complexity 

| Overlay between reference image and moving image

The performance of a registration process was evaluated in terms of overlay 

between the reference image and the moving image after registrati

inspection a qualitative analysis was done of the overlay before registration process and 

being processed by each transformation algorithm. Also in this 

the number of voxels and computed the absolute and relative

22.0

40.5

40.8

41.8

Processing Time (seconds)
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Mean processing time for each registration algorithm 

LEFT LUNG 

Patient Patient 

C 

Patient 

D 

 20.4 24.0 

 36.8 38.8 

 37.4 38.9 

 38.3 41.3 

 130.9 134.1 

formation complexity also increases 

| Overlay between reference image and moving image 

evaluated in terms of overlay 

between the reference image and the moving image after registration. By visual 

of the overlay before registration process and 

in this analysis it was 

the absolute and relative errors. 

132.8



 

 

6.2.2.1 | Qualitative analysis

To be presented here, 

overlay were computed between binary mask of the pulmonary region of the CT scan 

(gray) and binary mask of SPECT (ventilation and perfusion)

and after registration: r

affine (brown) and diffeomo

 

Figure 21 Overlay of reference image (

process (green) and after registration: rigid 

(yellow), affine (brown) and diffeomorphic demons (pink).

Figure 22 Overlay of reference image (gray) and moving image of patient C (left lung) before registration 

process (green) and after registration: rigid 

(yellow), affine (brown) and diffeo

 

6.2.2.1 | Qualitative analysis 

To be presented here, two SPECT images were randomly selected. The visual 

ed between binary mask of the pulmonary region of the CT scan 

(gray) and binary mask of SPECT (ventilation and perfusion) before registration (

and after registration: rigid body (red), global rescale (blue), specific rescale (yellow), 

affine (brown) and diffeomorphic demons (pink) (Figures 21 and 22).

 
Overlay of reference image (gray) and moving image of patient B (right lung) before registration 

process (green) and after registration: rigid body algorithm (red), global rescale (blue), specific rescale 

(yellow), affine (brown) and diffeomorphic demons (pink). 

 

Overlay of reference image (gray) and moving image of patient C (left lung) before registration 

process (green) and after registration: rigid body algorithm (red), global rescale (blue), specific rescale 

(yellow), affine (brown) and diffeomorphic demons (pink). 
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randomly selected. The visual 

ed between binary mask of the pulmonary region of the CT scan 

before registration (green) 

(red), global rescale (blue), specific rescale (yellow), 

). 

 

gray) and moving image of patient B (right lung) before registration 

algorithm (red), global rescale (blue), specific rescale 

 

 
Overlay of reference image (gray) and moving image of patient C (left lung) before registration 

algorithm (red), global rescale (blue), specific rescale 
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Before registration process, the misalignment between the two binary images 

was observed. The rigid body registration shows that the moving image was centered in 

the CT binary image. By increasing the complexity with the scaling transformation in 

case of the global rescale, specific rescale and affine, in which in addition to scaling had 

shearing, the SPECT (ventilation and perfusion) binary mask had a better fit to the 

image, comparatively to rigid body registration process. With diffeomorphic demons 

algorithm was obtained an almost perfect alignment, with a complete overlay of the 

reference and moving binary images. 

6.2.2.2 | Calculation of the absolute and relative errors  

The overlay between the registered image and the reference image can be 

analyzed in terms of voxels computed from the histogram.Therefore, the CT binary 

image (which had the voxel value “1” for lung region and the voxel value “0” for non lung 

region) was added to the SPECT binary image (which was multiplied by two so that the 

lung voxel value would have “2”) (Figure 23). Thus, the sum of the two images 

corresponds to an overlay; computing its histogram, it was obtained the number of 

voxels that belong to the overlaying of CT and SPECT binary images.  

 
Figure 23 An overlay image showing the voxel values 

 

Besides the number of voxels, was also determined the absolute error and 

relative error using the following expressions: 

 



 

 

 6
 |

 R
e

su
lt

s 
a

n
d

 D
is

cu
ss

io
n

 

49 
 

n�opq�r� K		p	 
 s�� � E�� t 9uK��Gv t s9uK�� � E�� t 9uK��Gv (12) 

 w�q=rOx� �		p	 
  y�E y�z�{ yG y  100 (13) 

 

where CT is the total number of voxels of CT image, SPECT is the total number of voxel 

of SPECT image and ECT t SPECTG is the total number of voxels in common of CT and 

SPECT images. The addition between CT and SPECT voxels represents logic AND, which 

is the common region of the two images. Since CT image was the reference image during 

the registration process, its number of voxels could be represented as a target value, i.e., 

the theoretical value of the alignment. Thus, the practical approximation value obtained 

in each registration process is ECT t SPECTG. The absolute error is the total number of 

voxels of CT image sCT � ECT t SPECTGv and SPECT image ESPECT � ECT t SPECTGG 
which do not belong to the overlay. By analogy, the absolute error represents the 

difference between the theoretical value of CT and practical value of the overlay ECT t SPECTG.The relative error represents the deviation between the number of voxels 

of CT image (target value) and the number of voxels of the overlay ECT t SPECTG. The 

smaller the absolute and relative error, the best is the alignment between the reference 

and the moving images. By analyzing the results of table 6 to a random patient, it is 

observed that with increasing algorithm complexity, the errors decrease, which means 

better fit between the two images.  

Table 6 Overlay analysis: absolute and relative errors 

 

 

 

PULMONARY REGION (PATIENT C – Right Lung) 

Number of Voxels Absolute 
Error 

Relative 
Error CT SPECT CT+SPECT 

Before Registration 20054 3948 3808 16386 81.0% 

Rigid Body 20054 6288 6287 13768 68.6% 

Global Rescale 20054 17133 14749 7689 26.5% 

Specific Rescale 20054 19224 17489 4300 12.8% 

Affine 20054 19056 17494 4122 12.8% 

Diff. Demons 20054 20018 19985 102 0.3% 

 In table 7, it is a summary of the obtained results from the relative errors of the 
eight lungs in the five registration algorithms. Before registration process was observed 

that the eight lungs had a relative error between 80% and 88%. By applying the rigid 

body algorithm was achieved a relative error between 63-77%. With global and specific 

Rescale, the relative error significantly decreases varying between 18-36% and 13-25%, 
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respectively. With affine transformation was obtained relative errors below 20%. The 

best alignment was obtained with the diffeomorphic demons algorithm, in which was 

achieve relative errors below 1%. This means that 99% of SPECT image was overlaying 

the CT image (Figure 24). 

 
Table 7 Summary of the relative errors of each registration process for the right (RL) and left (LL) lungs of 

the four patients 

PATIENTS 
Before 

Registration 

Process 

Rigid 
Body 

Global 
Rescale 

Specific 
Rescale 

Affine 
Diff. 

Demons 

Patient A (RL) 79.5% 63.3% 27.1% 13.5% 13.5% 0.9% 

Patient A (LL) 84.0% 68.5% 36.3% 25.1% 19.7% 0.3% 

Patient B (RL) 78.4% 63.7% 26.9% 20.2% 19.5% 0.1% 

Patient B (LL) 78.0% 57.9% 25.1% 16.3% 14.1% 0.1% 

Patient C (RL) 81.0% 68.6% 26.5% 12.8% 12.8% 0.3% 

Patient C (LL) 84.7% 67.7% 23.2% 17.0% 15.4% 0.2% 

Patient D (RL) 85.5% 73.2% 17.7% 15.7% 13.2% 0.3% 

Patient D (LL) 87.8% 77.1% 21.2% 19.1% 18.6% 0.2% 

 

 

 

 

 

Figure 24 Relative error of each registration process 

6.2.3 | Similarity Measure 

The similarity metric reflects the likeness between the reference image and the 

moving image in a registration process. Two similarity metrics were used: Normalized 

Cross Correlation (NCC) and Normalized Mutual Information (NMI).  
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NCC varies between 0 and 1 values, in which “0” value corresponds to different 

images and “1” value to identical images. NMI varies in a range of 0 to 1, in which the “0” 

value corresponds to different images and “1” value to identical images. In tables 8 and 9 

is presented the obtained results of the two metrics in the five registration algorithms of 

the eight studied lungs. The rigid body algorithm had relatively low values for the 

similarity metric, which means that the images showed little resemblance. For NCC the 

metric values were about 0.6 and 0.3 for the NMI. By increasing the complexity of the 

transformation on global rescale, specific rescale and affine algorithms, occurs a 

significant increasing on similarity values, in which it was observed an approach of the 

optimal value of the metric. The diffeomorphic demons algorithm performed the best 

alignment, in which both metrics are close to 1, which means that the moving image 

(SPECT binary image) is identical to the reference image (CT binary image). 

 

Table 8 NCC similarity values of each registration process 

 

RIGID 

BODY 

GLOBAL 

RESCALE 

SPECIFIC 

RESCALE 
AFFINE 

DIFF. 

DEMONS 
Patient A 

(RL) 
0.588 0.790 0.872 0.877 0.995 

Patient A 
(LL) 

0.546 0.724 0.806 0.836 0.998 

Patient B 
(RL) 

0.585 0.791 0.829 0.842 0.999 

Patient B 
(LL) 

0.634 0.796 0.854 0.866 0.999 

Patient C 
(RL) 

0.543 0.778 0.881 0.885 0.997 

Patient C 

(LL) 
0.553 0.813 0.859 0.864 0.999 

Patient D 
(RL) 

0.501 0.834 0.859 0.881 0.998 

Patient D 
(LL) 

0.464 0.826 0.835 0.839 0.999 

 

Table 9 NMI similarity values of each registration process 

  

RIGID 

BODY 

GLOBAL 

RESCALE 

SPECIFIC 

RESCALE 
AFFINE 

DIFF. 

DEMONS 
Patient A 

(RL) 
0.386 0.586 0.708 0.718 0.98 

Patient A 
(LL) 

0.344 0.502 0.612 0.654 0.992 

Patient B 

(RL) 
0.382 0.586 0.640 0.662 0.998 

Patient B 
(LL) 

0.438 0.594 0.682 0.700 0.996 

Patient C 
(RL) 

0.338 0.566 0.722 0.732 0.988 

Patient C 

(LL) 
0.350 0.620 0.692 0.698 0.994 

Patient D 
(RL) 

0.296 0.644 0.686 0.724 0.992 

Patient D 
(LL) 

0.262 0.64 0.650 0.658 0.994 
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The box plot analysis allows to observe the data distribution of each registration 

algorithm using the two similarity metrics (Figure 25). A box plot is defined by the 

median, upper and lower quartiles, and maximum and minimum data values. The 

median is the value that divides the data into two halves. The position of the median in 

the box is related to the data symmetry. The upper quartile indicates that 25% of data is 

greater than this value and the lower quartile defines that 25% of data is lower. The up 

end of the whisker is the maximum, which is the greater value and the down end of the 

whisker is the minimum, which is the lower value. Considering the whiskers limited 

between 1.5 times of the inter-quartile range, the outliers will be defined as all the 

values that do not fit in this interval [62]. To perform the box plot chart was used the 

Statistics Toolbox™ of Matlab [63]. 

 

 

 
Figure 25 Box plot interpretation 

 

 



 

 

 6
 |

 R
e

su
lt

s 
a

n
d

 D
is

cu
ss

io
n

 

53 
 

 
Figure 26 NCC box plot chart for each registration process 

 

 

 

 

 

Figure 27 NMI box plot chart for each registration process 
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In figures 26 and 27, comparing the distances between the maximum and 

minimum values to the upper quartile and lower quartile, respectively, i.e., the length of 

whiskers, it was observed that the rigid body registration has the highest dispersion 

data and the diffeomorphic demons the lowest. By decreasing the distance between the 

upper and lower quartiles, consequently the uniformity of data increases. For both 

metrics, there is an increasing in the data consistency with the increasing of the 

complexity of the registration algorithms. Therefore, since the median is higher in the 

diffeomorphic demons transformation, this registration algorithm achieves the best 

alignment. 

6.3 | Identification of Regions with Suspected Pulmonary 
Embolism 

From the registration process, a transformation matrix was obtained and 

applied to the three SPECT images (ventilation and perfusion examinations and quotient 

image) resulting in an alignment between the three SPECT images and the SPECT binary 

image, which in turn was aligned with the binary CT image of the pulmonary region. 

With this process, all images were aligned to the CT image of the bronchopulmonary 

segments. Therefore, by visual comparison between the SPECT scans and the CT image 

of the lung segments, it was possible to identify the location of the bronchopulmonary 

segments in the SPECT scans. 

Despite the best registration performance was obtained by the diffeomorphic 

demons algorithm, its elastic behavior can compromise the identification of the 

suspected pathologic regions; since this algorithm applies a distortion to achieve a 

perfect alignment, data information can be distorted and missing lung regions that 

might be pathologic. Hence, affine transformations were used to the identification, once 

that have a high degree of freedom but without deformation. Affine registration also 

combines a good alignment in a low processing time. 

In a normal lung SPECT examination, ventilation is similar to perfusion, i.e., the 

number of counts of the two examinations is very similar, which is reflected in a visual 

similarity between the two exams. Ventilation SPECT may have low counts due to 

incorrect aerosol inhalation or airway obstruction. Also it can be detected, both in 

ventilation and perfusion, an excess of counts derived from tracer deposition. In a case 

of a patient with suspected pulmonary embolism, there is a mismatch between 



 

 

ventilation and perfusion counts, with a higher number of counts in ventilation. This 

mismatch results in an impact on the 

One patient was

included in this thesis (

activity was detected between ventilation and perfusion SPECT scans (marked areas

where ventilation exam has 

scan. Consequently, the

(lighter area). By comparing with the CT image of bronchopulmonary segments, it was 

observed that mismatch areas were in Posterior B

image).  

Figure 28 Mismatch between ventilation and perfusion SPECT scans and identification of the 

These results were shown to an expert physician, who confirm the 

pathologic pulmonary region

support medical analysis 

 

ventilation and perfusion counts, with a higher number of counts in ventilation. This 

mismatch results in an impact on the quotient image. 

patient was randomly chosen and the SPECT images of this patient were 

included in this thesis (Figure 28). By visual inspection of these exams, a mismatch 

activity was detected between ventilation and perfusion SPECT scans (marked areas

where ventilation exam has higher number of counts when compared with the perfusion 

scan. Consequently, the quotient SPECT image has more intense activity in those areas 

(lighter area). By comparing with the CT image of bronchopulmonary segments, it was 

observed that mismatch areas were in Posterior Basal segment (dark red segment in CT 

Mismatch between ventilation and perfusion SPECT scans and identification of the 

bronchopulmonary segment 

 

results were shown to an expert physician, who confirm the 

pathologic pulmonary region and classified this methodology as a good clinical tool to 

medical analysis in a diagnosis context. 

 6
 |

 R
e

su
lt

s 
a

n
d

 D
is

cu
ss

io
n

 

55 
 

ventilation and perfusion counts, with a higher number of counts in ventilation. This 

nd the SPECT images of this patient were 

). By visual inspection of these exams, a mismatch 

activity was detected between ventilation and perfusion SPECT scans (marked areas), 

unts when compared with the perfusion 

more intense activity in those areas 

(lighter area). By comparing with the CT image of bronchopulmonary segments, it was 

asal segment (dark red segment in CT 

 

Mismatch between ventilation and perfusion SPECT scans and identification of the 

results were shown to an expert physician, who confirm the suspicion of 

and classified this methodology as a good clinical tool to 
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7 | Conclusions and Future Work 

Imagiologic techniques may be useful tools to assist the medical diagnostic, 

helping the physician in a fast identification of pathologic lung regions. In the case of 

pulmonary embolism, ventilation and perfusion SPECT scans are acquired and often 

combined with CT scans. Through the application of this multi-modality registration, 

two exams from different imagiologic modalities can be aligned and compared to 

improve the diagnosis. 

In this thesis, it is performed the study of registration methods, aiming the 

identification of bronchopulmonary segments affected by pulmonary embolism. The 

proposed methodology starts with the extraction of pulmonary region from the 3D CT 

scan of a reference lung and a contour definition of the bronchopulmonary segments. 

Using the binary pulmonary images of SPECT scans, an alignment was done between 

these images and the CT binary image of pulmonary region. Then, in the registration 

step, five transformation algorithms (rigid body, global rescale, specific rescale, affine 

and diffeomorphic demons) were analyzed in order to select the best algorithm in terms 

of alignment and processing time. Although diffeomorphic demons algorithm achieved 

the best alignment (i.e., closer to the optimal similarity value) its computational 

efficiency is low taking a long time to do the image processing. The present work 

suggests that the segments could be preferable identified using affine transformation 

due to their low processing time and relatively good registration results. 

In conclusion, the results obtained in this study showed that the application of 

multimodality registration has a relevant role in the identification of suspected 

pathological pulmonary regions, therefore being a promising tool for medical diagnostic. 
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7.1 | Future Work 

As future work, the application of the proposed methodology will use higher 

resolution images to increase the quality of the image and, thereby improve the 

performance in the identification of lung regions. Due to high variability in shape and 

size of the lungs, it is necessary to expand the study to a larger number of patients to 

have a broader perspective of the applicability of the methodology. The identification of 

bronchopulmonary segments will be extended from visual inspection to a quantitative 

analysis approach. To validate the results, a statistical analysis comparing the results 

calculated by a voxel to voxel comparison between CT and SPECT images and the results 

produced by physicians for the same examinations. 
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