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Neurobiology of the visual system

 

The visual system is part of the central nervous system (CNS) and 

to see. Vision is one of the senses we use to gather information about the surround

environment. The light that reflects or irradiates from the environment enters the eye 

and is projected onto the retina. In its deepest layer, photoreceptors convert the 

patterns of light into electrical signals that neurons convey to the visual cortex

simplistic way, this system captures visible light and interprets its information in order to 

create a representation of the external

However, the biology behind vision is far from being simple. Our eyes and brain work 

together to accomplish a multitude of complex tasks: since 

we experience the psychological manifestation of that visual information (i.e.

‘see’), a number of structures, connecting pathways and brain regions are recruited to 

process and relay the relevant signals.

information from an object, it must be projected on the fovea 

retina with the highest concentration of photoreceptors 

visual acuity. Therefore, to keep the (moving) object’s projection on the fovea, brain 

and eyes interact through reflex and voluntary eyes movements (e.g., slow, smooth 

pursuit eye movements and fast, saccadic eye movements).

 

Eye 

The eyes are organs that evolved

detect light, convert it to electrical 

impulses and relay those signals a

optic nerve towards the visual cortex, in 

the brain. These organs vary

tremendously in shape (generally divided 

into ten different forms) 

organization; nevertheless, 96% of all 

animal species possess a complex optical 

system. (Land et al., 1992).

basic surrounding characteristics captured 

by the eyes are shape, 

movement. But vision is a highly 

specialized sense that evolved to suit 

particular needs. For example, predators 
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Fig. 1: Representation of the eye structure 
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(e.g., humans) have both eyes aiming forward; this provides large areas of binocular 

vision which is ideal for target localization and stereoscopic depth perception. On the 

other hand, animals that require a broader coverage of the visual field – to avoid being 

preyed upon – have their eyes pointing sideways (monocular vision). 

 

Retina 

The retina is a thin, filmy tissue, less than half millimeter thick, that covers the internal 

part of the eye. It consists of a stack of cellular layers, each with a specific role. There 

are three layers of nerve cells separated by two layers of synaptic connections. The 

first layer starting from the back of the eye (the furthest from the light source) is made 

of a large number of photoreceptor cells, which are sensitive to light. There are two 

main types of cells, rods and cones, with distinct functions: the first are very sensitive to 

light – ideal for low light conditions – and can be found in high numbers throughout the 

retina, while the latter are much less sensitive to light, but provide color perception 

(although much sparser than rods, cones are highly concentrated on the fovea). Cones 

can be subdivided into three types, according to the wavelengths of light they 

preferentially absorb: therefore, they are known as blue, green and red cones. 

The unique trait of these retinian cells is the fact they contain special proteins – opsins 

– that have the ability to absorb photons. Such absorption triggers a signal transduction 

pathway, which starts with the conformational change of retinal (vitamin A) and 

eventually hyperpolarizes the photoreceptor cells, giving rise to an electrical signal. 

Once retinal molecules undergo this process, they are taken by the pigment epithelium 

– the tissue behind the retina that is usually dark due to its melanin content – to be 

recycled. This pigment plays an important role by absorbing photons after they cross 

the photoreceptive layer, which prevents their reflection and deterioration of overall 

image quality (Kolb, 2003). 

Subsequently, the neuronal impulses are transmitted to the following layer, mainly 

composed of bipolar cells. These cells can synapse with either cones or rods and may 

also receive input from horizontal cells. Bipolar cells can be either of ON or OFF type, 

depending on their reaction to glutamate released by photoreceptor cells (such release 

is inversely related to the amount of light  that photoreceptors capture). Intuitively, 

when light is detected, glutamate concentration decreases and ON bipolar cells 

depolarize; on the other hand, OFF bipolar cells will react in the opposite way, by 

hyperpolarizing. Under low light conditions, however, photoreceptor cells release more 

glutamate, which then inhibits the ON cells and excites the OFF bipolar cells (Nicholls 

et al., 2001). Subsequently, the bipolar cells transmit signals to the third, outermost 
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layer, which consists of retinal ganglion cells (RGC’s); these will finally output action 

potentials to the brain. 

The RGC’s, although presenting diversified characteristics, have the common property 

of extending a long axon into the brain. This may explain why they fire action 

potentials, unlike photoreceptors and bipolar cells. These axons exit the retina in 

bundles and form the optic nerve (which then extends towards the optic chiasm and the 

optic tract). Although a small part of the ganglion cells is not dedicated to vision (e.g., 

RGC’s involved in the circadian rhythm and pupillary light reflex), most of the 1.2 – 1.5 

million of cells present in the human retina are engaged in visual processing, 

transmitting visual information from the retina to the thalamus, hypothalamus and 

midbrain. This mechanism depends on the modulation of the ganglion cells: when 

stimuli are not present (resting state), RGC’s fire at a baseline rate; upon excitation of 

the central part of the receptive field of stimuli of appropriate polarity (black/white 

depending on whether the cell belongs to the OFF or ON pathway), they increase the 

firing rate, while inhibition of the cells by stimulus placement on surrounding regions 

reduces it. 

 

 

 

Fig. 2: Representation of the discrete layers of retinal cells; light travels upwards crossing the nerve fiber 

layer first and finally reaching the pigment epithelium. It is noteworthy the presence of neurons in the 

retina, particularly horizontal and amacrine cells, which can relay information laterally (between neurons of 

the same layer); these cells are known to integrate and regulate information transfer in inner and outer 

plexiform layers (Kolb, 2003). 

 



 

An interesting aspect of the human retina is its peculiar 

one might expect to encounter the photoreceptor cells on the inner layer, in order to 

optimize the photon capture 

different design, where light has to cross multiple layers of nerve cells and synaptic 

fibers until it reaches the photo

In conclusion, the retina is a complex tissue 

sensitive) neurons that interact with light and neural circuits that are responsible for the 

initial image processing; this information is then passed on through the optic nerve into 

the brain to eventually form a visual perception of the outside world, which is

phenomenon we consciously

 

Receptive fields 

In the visual system, sensory neuron

by the presence of a (light) 

as a receptive field. Particularly, for a photoreceptor, this region corresponds to

volume in space (with a conic shape) 

from where light can converge and 

excite the cell. However, visual 

receptive fields are commonly illustrated 

in two dimensions, which represents a 

cut along the volume of space which a 

specific cell responds to.

surprisingly, the level of complexity rises 

when we broaden the concept of 

receptive fields, extending them to a 

more intricate neural system

been mapped all the way to the later

geniculate nucleus and visual cortex 

cells). This leads to the notion of center 

surround organization, whereby an 

appropriate stimulus placed in the 

center will activate the cell, whereas 

when it is placed in the surround it 

inhibits the same neuron. Th

organization starts already at the bipolar 

cell level. Neighboring photo
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An interesting aspect of the human retina is its peculiar architecture as,

one might expect to encounter the photoreceptor cells on the inner layer, in order to 

optimize the photon capture when they enter the eye. However, evoluti

different design, where light has to cross multiple layers of nerve cells and synaptic 

fibers until it reaches the photo-sensitive cells.  

In conclusion, the retina is a complex tissue that consists of both sensory (photo

that interact with light and neural circuits that are responsible for the 

initial image processing; this information is then passed on through the optic nerve into 

the brain to eventually form a visual perception of the outside world, which is

we consciously interpret as seeing.  

sensory neurons can be stimulated (i.e., their firing rate increases) 

(light) stimulus coming from a particular region of space 

ield. Particularly, for a photoreceptor, this region corresponds to

volume in space (with a conic shape) 

from where light can converge and 

However, visual 

receptive fields are commonly illustrated 

in two dimensions, which represents a 

t along the volume of space which a 

specific cell responds to. Not 

surprisingly, the level of complexity rises 

when we broaden the concept of 

receptive fields, extending them to a 

more intricate neural system (they have 

been mapped all the way to the lateral 

geniculate nucleus and visual cortex 

This leads to the notion of center 

surround organization, whereby an 

appropriate stimulus placed in the 

center will activate the cell, whereas 

when it is placed in the surround it 

inhibits the same neuron. This type of 

organization starts already at the bipolar 

photoreceptors 

   Fig. 3: Receptive fields and cell firing.

architecture as, theoretically, 

one might expect to encounter the photoreceptor cells on the inner layer, in order to 

evolution has led to a 

different design, where light has to cross multiple layers of nerve cells and synaptic 

that consists of both sensory (photo-

that interact with light and neural circuits that are responsible for the 

initial image processing; this information is then passed on through the optic nerve into 

the brain to eventually form a visual perception of the outside world, which is the 

firing rate increases) 

coming from a particular region of space – known 

ield. Particularly, for a photoreceptor, this region corresponds to a 

fields and cell firing. 



10 

 

are known to communicate (i.e., to form synapses) with a single cell (e.g., bipolar cell); 

therefore, the receptive field of the latter is nothing less than the combined fields of the 

cells that are providing it with visual input. In fact, the formation of center-surround 

receptive fields of bipolar and ganglion cells accounts for a significant amount of the 

visual processing that already takes place in the retina.  

In the same line of thought, the receptive field of a RGC encompasses the input from 

all photoreceptors that are linked (through bipolar, horizontal and amacrine cells) to it 

and, finally, a cell in the brain has an even larger receptive field as it synapses with a 

group of ganglion cells. This process is known as convergence and was first described 

by Hubel and Wiesel; in a pioneering study performed in the cat visual system, they 

have claimed that receptive fields of cells at an higher level of the visual system arise 

from input received by cells at a lower level. In this way, smaller fields from a group of 

receptors ‘funnel into a particular ganglion cell…and that group forms the ganglion 

cell’s receptive field’. (Hubel et al., 1963). Later on, this hierarchical organization has 

increased in complexity by allowing cells to receive feedback from higher levels of the 

visual system.  

 

From the eye to the brain 

The visual pathway between the retina and the brain consists of an optic nerve, the 

optic chiasma (where the nerves partially cross) and is primarily made of axons from 

ganglion cells. The vast majority of these axons belong to M and P ganglion cells and 

extend towards the lateral geniculate nucleus (LGN) in the thalamus; this parallel 

networks of ganglion cells will allow the visual cortex to analyze aspects of the visual 

word beyond contrast or luminance (e.g., form, color and movement). 

• P (Parvo) cells have small center-surround receptive fields with slow conduction 

speed; their axons are projected into the parvocellular layers of the LGN; these 

cells exist in higher number than any other RGC type and in central retina, 

where cone density is maximum, there are two P cells for each cone 

(Gazzaniga, 2004). P cells provide superb visual acuity and play a major role in 

color vision (they respond selectively to specific chromatic contrasts given the 

specific organization of cone input to center and surround mechanisms). 

• M (Magno) cells have much larger center-surround receptive fields, fast 

conduction speed and large dendritic trees (receiving input from many 

photoreceptors); their axons are projected into the magnocellular layers of the 

LGN. M cells account for less than 10% of RGC’s and are particularly sensitive 

to achromatic stimuli, even in low-contrast conditions; they appear to have a 

role in the perception of gross features and movement (Kandel et al., 2000). 
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• K (Konio) cells project their axons into the koniocellular layers of the LGN; they 

are very small and ‘have a density of approximately 1% of the total ganglion 

cells in central retina, increasing to approximately 6-10% in the retinal 

periphery’ (Dacey, 1993). K cells have very large receptive fields, most of them 

with blue-ON center and blue-OFF (yellow) surround. This means that ON 

center receives input from blue cones and the OFF center receives input from 

red and green cones; they are thought to provide an additional function in color 

vision. 

 

Lateral Geniculate Nucleus (LGN) 

The LGN is a major processing center of visual information and is located in the 

thalamus (there is one LGN in each brain hemisphere). As previously referred to, it 

receives such information from the retinal ganglions cells through the optic tract; on the 

other hand, output relay-neurons of the LGN send axons through a pathway – the optic 

radiation – that leads to the primary visual cortex, or V1 (this, in turn, sends feedback 

connections back to the LGN through its layer 6). 

The human LGN has a peculiar organization of six layers, with two subdivisions of four 

dorsal, parvocellular layers and two ventral, magnocellular layers. But differences go 

beyond their distinct anatomy; functionally, these subdivisions represent different facets 

of vision. In 1920, Minkowski discovered the projection tracts between the retina and 

the thalamus and proved that homonymous areas of the retina (i.e., the visual 

information, captured from both eyes, coming from a specific region of the visual field) 

are aligned together in the projection field of the LGN; these findings had a tremendous 

impact on cortical processing depth perception, or three-dimensional binocular vision 

as they provide the possibility for the combination of binocular information at higher 

levels (Minkowski, 1920). Interestingly, each eye projects to three layers of each lateral 

geniculate body, in an alternating way. 

Therefore, a visual hemifield (corresponds to 

half of the retina) is represented three times 

in each LGN, twice on parvocellular layers 

and once on the magnocellular layer. It is 

important to recall that the former layers are 

known to be particularly involved in form and 

color perception, while the latter is 

responsible for movement and gross depth 

perception. (Livingstone et al., 1988). 

 Fig. 4: Schematic structure of the LGN; the inner layers, 1 and 2, are the magnocellular, while the outer 

four are the parvocellular layers. 
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In between these layers, there are K cells 

which provide a third route to the visual 

cortex. So far, the functional role of the 

koniocellular system, despite being 

functionally different from either M and P 

cells, is still unclear. 

Although overall LGN function in visual 

perception remains unclear, it has been 

proposed that after receiving the spatially 

decorrelated visual information from the 

retina, the LGN performs temporal 

decorrelation to bring the visual data one 

step closer to the visual processing that will 

take place at the cortical level. (Dong et al., 

1995). 

 

 

 

 

Visual decussation 

The lateral geniculate body on each hemisphere receives visual input from both eyes. 

To achieve this anatomically, our visual system has evolved in a way that allows part of 

the optic nerve fibers to decussate. The axons of the ganglion cells from the inner 

(nasal) side of the retina cross to the opposite (or contralateral) hemisphere through 

the optic chiasm, while those from the outer (temporal) side of the retina remain on the 

same (ipsilateral) hemisphere. Consequently, the right hemisphere receives visual 

information only from the left visual field (from both eyes) and the left hemisphere 

receives information from the right visual field. 

 

Primary visual cortex 

Visual processing in the brain is a complex feat that is achieved through a series of 

hierarchical processing stages, as well as crosstalk and feedback between brain 

regions. The primary visual cortex (V1 or striate cortex) is a key structure for visual 

perception as it is the cortical region where decoding of visual stimuli begins, which will 

eventually lead to a perceptual experience of the outside world. V1 is located on the 

most posterior area of the brain (equivalent to Brodmann area 17) and it surrounds the 

calcarine sulcus, an horizontal fissure in the medial posterior occipital lobe. The visual 

Fig. 5: Optic fibers from the nasal halves of the retina cross at the optic chiasm. Within the LGN, the visual 

information coming from the contralateral eye is transferred to layers 1,4 and 6; the visual information 

from the ipsilateral eye, in an alternating fashion, is passed to layers 2,3 and 5 (Wade et al., 1991). 
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information reaches V1 through LGN axonal projections, known as the optic radiation. 

Studies with patients that suffer from blindsight syndrome have suggested that retinal 

information projects through the LGN and other subcortical structures not only to V1 

but also to higher cortex areas; nevertheless, LGN-V1 is the dominant pathway for 

visual information. The axons relaying information from the superior visual field form a 

lateral pathway around the temporal lobe – the Meyer’s loop – while those conveying 

information from the inferior visual field extend through the parietal lobe, underneath 

the cortex. The wiring of these visual pathways are so that V1 has not only a 

representation of the contralateral visual hemifield, but the upper visual field is mapped 

on the lower bank of the calcarine sulcus and the lower visual field on the upper bank. 

The visual representation has yet another particularity – as the foveal region in the 

retina has an higher density of ganglion cells, its representation in the cortex covers a 

relatively larger area (it is mapped in the most posterior part of V1, while the peripheral 

visual field is represented more anteriorly). 

The LGN cellular layers send their axons to layer 4 in V1, with the exception of the 

koniocellular layers, which project into layers 4a in the striate cortex. On the other 

hand, axons from layer 6 of V1 establish feedback pathway with the LGN. Therefore, 

the primary visual cortex in each hemisphere is directly connected to its ipsilateral 

LGN. 

The output from V1 primarily follows two major pathways, known as the dorsal and the 

ventral stream. 

• The dorsal stream connects the visual areas V1, V2, dorsomedial area (V6), 

V5 (MT) and the posterior parietal cortex. This pathway is generally associated 

with motion, representation of spatial location (it is involved in spatial attention) 

and eye-hand coordination (e.g., using visual information to position the eyes 

onto a target and reach for it). 

• The ventral stream, on the other hand, consists in a pathway that connects V1 

to the visual area V2, then to V4 and to the inferior temporal cortex. Commonly 

known as the ‘what’ stream, it is involved in form recognition and 

identification/categorization of objects and other visual stimuli. (Farivar et al., 

2009). 

This Two-Streams hypothesis for visual processing was first proposed by Ungerleider 

and Mishkin, in 1982, and it has been widely accepted. However, there is still much 

debate regarding the degree of specialization and interconnectivity of these pathways. 

As stated in a recent study, ‘after 25 years, it has become clear that the earlier 

distinctions in terms of neuroanatomy and functional dissociation are less pure than 

originally considered’ (Mishkin et al., 1982). 
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Extrastriate cortex 

In mammals, the extrastriate cortex is a region located next to the striate cortex in the 

occipital lobe (equivalent to Brodmann areas 18 and 19). This region includes visual 

areas V2, V3, V4 and MT and can be associated with an intermediate level of visual 

processing. Although neurons in the extrastriate cortex still respond strongly to visual 

stimuli (lower-level, from the retina) within their receptive fields, they are modulated by 

higher-level processes that arise from cortical activity, such as attention and working 

memory. Therefore, throughout the visual cortex, neurons fire (action potentials) when 

their receptive fields are stimulated, but its response may vary depending on the 

stimulus; this is known as neuronal tuning. In lower visual areas, namely in V1, neurons 

become more active (fire more frequently) when a simpler visual characteristic is 

observed (e.g., when a stimulus in a given direction appears in its receptive field). 

Along the visual pathway, in higher-level areas, neurons present an increasingly 

complex tuning; the degree of specialization can become such that a neuron in the 

inferior temporal cortex may fire only when it sees a particular face or object. 

The extrastriate cortex is involved in the process of translation and interpretation of 

visual information arriving from V1; for this, it is also known as the visual association 

area. The first region within this area is V2, which receives feedforward connections 

from the primary visual cortex, as well as via the pulvinar. V2 is made up of four sub-

regions (quadrants), which correspond to the dorsal and ventral representation of this 

visual field, both in the left and right hemispheres. Despite its functional differences 

with V1, neurons within V2 still respond to simple visual properties (e.g., orientation 

and color); nevertheless, they have been shown to be modulated by more complex 

properties. (Qiu et al., 2005). The following visual area is V3 and it is located 

immediately in front of V2; to date, its function and cortical extension is still under 

debate. It is believed that dorsal V3 is part of the dorsal stream, conveying visual 

information from V1/V2 to the posterior parietal 

cortex. A recent study has suggested that V3 

may be involved in global motion processing 

(Braddick et al., 2001); however, other 

researchers do not even consider it to be an 

independent area, but part of the larger, 

dorsomedial area (DM). In opposition to its 

dorsal counterpart, ventral V3 (or VP) is strongly 

connected with the inferior temporal cortex and 

less so with V1. 

 Fig. 6: Three-dimensional reconstruction of the brain; cuts have been made on the occipital lobe to allow 

visualization of the main visual areas (Smith et al., 1998). 
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V1 damage functional consequences of scotoma 

From early studies to the most recent literature, it has been shown that degeneration or 

damage caused to the first visual cortical area – V1 – leads to blindness in the 

corresponding part of the visual field (the cortical representation is damaged). The blind 

area, or scotoma, is an area in the field of vision where visual acuity is partially 

diminished or completely lost, surrounded by a field of relatively normal vision. The 

visual loss occurs in the visual field opposite to the damaged hemisphere and can 

greatly vary in size. Therefore, it is clear that an impaired V1 significantly limits the flow 

of visual information from the retina (via LGN) to higher cortical areas. However, it is 

known that this is not the only visual pathway into the extrastriate areas; these 

alternative pathways that bypass V1 might be responsible for residual perception 

reported in patients with blindsight, but seem to be insufficient to process and relay the 

visual information needed for visual awareness.  

 

 

Retinotopic mapping 

 

From the receptive fields to the visual field maps 

A fundamental principle in visual neuroscience is that human perception is inherently 

connected to the properties of the brain, as its circuits and communication pathways 

have evolved to recognized and understand the properties of the external world. One of 

those properties, and perhaps the most important, is space. For instance, we can 

easily process images with lower or higher contrast, with different colors, even if they 

are rotated or displaced in some way; but if the spatial organization is tampered, if the 

2D or 3D representation of the visual environment is altered, our brain becomes unable 

to interpret such stimuli as an image and form a visual perception. Therefore, we 

should expect to find a complex, yet spatially organized representation of the visual 

field at the cortical level. In fact, visual field (retinotopic) representations appear 

repeatedly in the cortex, preserving the image features throughout the visual 

processing pathways. In this way, by retaining a critical image property – spatial 

organization - the cortical circuitry is able to maintain the information provided by the 

receptive fields (nearby neurons in the cortex have receptive fields that are close, or 

even slightly overlaid, in the visual image. And even though they are responsible for 

interpreting other characteristics of an image (e.g., orientation, motion, color…), 

different regions of the visual cortex are still wired in a way that a topographical visual 

field map is preserved. 
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Historical perspective 

As far as in 1881, the occipital lobe was already being linked to vision. For the first time 

it was suggested that the ‘visual center’ (of a monkey) was the cortex of his occipital 

lobe. These findings were possible by studying monkeys with lesions in this part of the 

cortex, which originated visual alterations (Munk, 1881). Eventually, this visual loss 

caused by brain lesions was identified and studied in human cases. Two of the most 

prominent examples were Tatsui Inouye (Japanese ophthalmologist) and Gordon 

Holmes (British neurologist); their independent studies of neurological cases (mostly 

due to war injuries), where they found a correlation between the wound location and 

the visual field loss, unveiled the existence of visual field maps in humans. 

Furthermore, they have shown that this part of the cortex (V1) had particular traits, 

such as each hemisphere mapping the contralateral visual hemifield and the foveal 

area covering comparatively more cortex area than the peripheral visual field – cortical 

magnification (Holmes, 1918). Later on, additional studies have revealed a multitude of 

maps; in 1940, electrophysiological studies performed in cats were used to define a 

second visual area with a spatial mapping (now known as V2), laying next to V1. 

(Talbot, 1940). A decade later, the same Talbot and Thompson successfully mapped 

‘visual areas I and II’ of the visual cortex in rabbit (Thompson et al., 1950). Then a third 

area (V3) that surrounds V2 was identified in cat by Hubel and Wiesel, in 1965. The 

findings of new visual field maps, such as V4 and V5/MT in monkey, followed and 

evidence of repeated visual field maps throughout the visual cortex grew exponentially. 

Soon, researchers turned their attention to the organization of those maps and to their 

role in visual perception. 

Some of the first direct observations of the link between vision and the cortex were 

made by Penfield. Together with Herbert Jasper, this groundbreaking neurosurgeon 

operated patients with severe epilepsy to destroy nerve cells that were causing 

seizures. To minimize collateral damage, he electrically stimulated the brain (with the 

patient only locally anesthetized) and observed the evoked cognitive response. During 

his extensive efforts to map the human cortex, he found that visual sensations could be 

produced when the electrical stimulus was applied to certain cortical areas. However, 

his findings relate mostly to regions outside the striate area (Penfield & Rasmussen, 

1952; Penfield & Jasper, 1954). But in 1968, electrical stimuli were applied to the 

occipital lobe (V1) of a blind man which originated a visual sensation (‘phosphene’) at 

the corresponding visual field location; such a discovery was the first milestone of the 

conceptual idea of developing prosthetic devices that would allow at least a partial 

recovery from blindness (Brindley & Lewin, 1968). 
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Retinotopy 

Retinotopy can be described has the spatial organization of neuronal activity elicited by 

visual stimuli. As mentioned above, such organization is a consequence of the spatially 

specific wiring between the retina and different brain structures (e.g., visual cortex, 

LGN, pulvinar, etc.); it allows adjacent neurons to have receptive fields that respond to 

a slightly different part of the visual field. In this way, the visual field is orderly sampled 

and represented throughout the visual pathways, forming a topographical map of the 

visual field (or retinotopic map). 

Due to this particular functional organization of the visual system, one could expect that 

visual areas were defined by their retinotopic boundaries; in reality, this has proved to 

be a more complex task since areas further away from the initial visual processing (V1) 

do not present complete and organized maps of the visual field. In fact, most of the 

extrastriate areas are still under debate today as ‘of the many areas described by the 

pioneering mapping studies in monkeys, only two have become universally accepted: 

the second (V2) and the mediotemporal (MT) areas’ (Rosa, 2002). But even in V2, the 

retinotopic map is considerably more complex than in the striate cortex; adjacent 

features of visual field may not be represented in adjacent regions of V2. The major 

disruption in spatial organization derives from the separation of visual information into 

hemifields: the areas of the retina that respond to the upper visual field are represented 

in more ventral regions of the extrastriate cortex while those that respond to the lower 

visual field are represented more dorsally. Based on the topological continuity and the 

geometric transformations from the visual field to the cortical representation, Rosa 

classified retinotopic maps as either first-order (V1 and MT) or second-order 

representations (V2, V3): the former are ‘those in which adjacent points of the same 

hemifield always map to adjacent columns in the contralateral cortex’, while in the latter 

representations the topological equivalence is lost (Rosa, 2002). 

 

Fig. 7: The figure portrays how the left visual field is transformed and represented on the primary visual 

cortex of the right hemisphere. It is clearly visible that the areas closer to the fovea (face in picture) have a 

much larger cortical representation (appear to be expanded). The most posterior part of V1 corresponds to 

the center of the visual field and the image representation is inverted (Wandell et al., 2007). 
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In a recent study, it has been shown that the visual cortex (in humans and other 

primates) presents such a marked functional organization that its anatomical 

development is strongly influenced by its constraints. The cortical sheet presents a 

folding pattern that is relatively well identified (despite individual variability); what has 

been found (particularly for V1 and V2) was that the vertical meridian of the visual field 

is predominantly represented on cortical gyri, while the horizontal meridian is primarily 

represented on the concave folds of the cortex (sulci). As proposed by the author, this 

could mean that the retinotopic maps may be influencing the very pattern of cortical 

folding during brain development (Rajimehr, 2009). Despite the multitude of studies 

conducted in animals and in human patients (mostly with cortical lesions) that lead to 

invaluable knowledge, it was only with the advent of fMRI technology (Ogawa and Lee, 

1990) that researchers could look into fully functional human visual cortex. The most 

effective advances in terms of experimental methods and data analysis of human 

visual field maps measurements were introduced in the mid 90’s (Sereno et al., 1995; 

DeYoe et al., 1996; Engel et al., 1997). Even though these techniques rely on 

hemodynamic response (which is an indirect measure of neuronal activity that still 

triggers debate among scientists), there has been an increasing interest in exploring 

their potential to study the human brain, as well as in the development of clinical 

applications. 

 

Objectives 

 

This thesis aims to provide more insight in the neurophysiological aspects of optic 

neuropathies and to explore the possible links between retinal degeneration and visual 

cortex dysfunction. More precisely, we wanted to assess the structural impact of 

ganglion cell damage (degeneration of the retina/optic nerve) in cortical cell number, as 

indexed by cortical thickness of the regions of interest (i.e., visual areas). Additionally, 

we wanted to understand the level of functional impact of ganglion cell loss in the 

organization of retinotopic maps. The first part of this work will present data from a 

group of glaucoma patients, which were subdivided into three groups: ocular 

hypertension/HTO (subjects that are at risk but have not yet developed the 

neuropathy), glaucoma suspects (transitional/early stage) and glaucoma (advanced 

stage of disease). In order to explore and uncover the likely differences between 

patients in these stages, correlations across global measures (structure-structure and 

structure-function) are complemented with specific within group analyses. In the 

second part of this work we will focus on a group of Leber’s hereditary optic neuropathy 

(LHON) patients. 
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Methods to study structure and function of visual 

pathways 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 

 

Cortical Thickness Analysis (CTA) 

 

Cortical thickness analysis, or CTA, is a neuroimaging technique that allows 

researchers to look into the structural characteristics of patients and healthy subjects’ 

brains. By using appropriate MRI equipment and data processing software (we have 

used BrainVoyager QX®), it is possible to obtain the measure of the combined 

thickness of the 6 cerebral cortex layers. Cortical thickness (CT) throughout one’s brain 

can vary greatly depending on the brain regions and on individual variability, but typical 

values for the human brain range between 2-4mm (Jones et al., 2000). The study of 

regional CT variations may provide valuable information about the neuroanatomy and 

structural alterations that characterize neurodegenerative and neurodevelopmental 

disorders. For example, normal aging individuals have been shown to have a 

widespread decrease in CT (Salat et al., 2004), while normal brain development 

studies have reported interregional statistical associations in CT that may be linked to 

brain connectivity and its functional networks. Other studies have performed CTA in 

patients with brain disorders like Alzheimer’s disease, where it was observed a 

pronounced thinning of the cortex, while an increase in cortical thickness was reported 

in Williams syndrome (Thompson et al., 2005) and in autism (Hardan et al., 2006). 

In this study, cortical thickness analysis was performed with BrainVoyager QX through 

a process that involves four essential steps: 

 

High-quality segmentation of the inner and outer cortex boundary 

Starting from high-quality T1-weighted anatomical 3D data sets, this step prepares the 

data for subsequent thickness measurements. Initially, the raw anatomical output data 

provided by the MR equipment (Siemens Trio 3T) is converted into data files (DICOM) 

that can be processed by BrainVoyager. With this software we create a three-

dimensional, anatomical representation of the patients’ head; subsequently this data 

undergoes a multitude of processing steps in order to obtain a map of cortical thickness 

values. Before running the automatic segmentation tools, there are some prerequisites 

that should be considered: - The original anatomical 3D data set must have an appropriate spatial resolution 

(1x1x1mm); if the voxels do not have this exact resolution, an iso-voxel tool 

should be used to interpolate the data set; - The contrast between grey matter (GM) and white matter (WM) tissue must be 

high enough – we use optimized MPRAGE (magnetization prepared rapid 

acquisition gradient echo) sequences that provide high quality / high contrast 
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anatomical data); averaging multiple structural scans of the same subject 

further improves the quality of the data – we used two 9-minute long MPRAGEs 

for each subject to obtain superior results; - The intensities across space of the same tissue types should be homogeneous 

(this can be assessed by looking at the intensity histogram); if the histogram 

does not show two clearly separated peaks, it is advisable to use the 

inhomogeneity correction tool (regardless of individual histograms, I have 

performed this correction of the magnetic field inhomogeneities for all subjects); - The anatomical data set should be in Talairach space because some tools of 

the automatic segmentation procedure exploit anatomical knowledge for initial 

brain segmentation (Talairach masking), filling of ventricles, removing 

subcortical structures and disconnecting the cortical hemispheres; I have used 

the spatial transformation tools to convert the original anatomical data sets into 

Talairach space (see figures at the end of this chapter for a step-by-step 

overview of data processing). 

 

Cortical thickness measurement in volume space 

This step starts with individual segmented cortical hemispheres, where all voxels in the 

brain have been classified into three types of tissue: WM (light grey), GM (dark grey) 

and CSF (black); with these files as input, BrainVoyager produces cortex thickness 

volume maps (VMPs) containing the thickness measures at cortical voxels. 

The measurement of cortical thickness, as Jones et al. (2000) point out, is not easy 

because cortical thickness varies substantially across space; in this case, simple 

orthogonal measurements (distance from one side of grey matter to the other side) 

may lead to inaccurate thickness estimates. Therefore, the CT measurements in 

BrainVoyager QX are based on the Laplace method (Jones et al., 2000). 

 

Cortical thickness measurement in surface space 

The created VMPs contain relevant additional information (e.g. gradient maps), which 

may then be used to efficiently calculate the CT on cortical surface meshes, producing 

cortex thickness surface maps (SMPs). Although the surface information is identical to 

what we had in the volume space, it provides an easier access to visualize both sulci 

and gyri and provides a better view over the entire cortex. 
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Cortical thickness analysis for regions-of-interest 

Cortex thickness values can be calculated for defined patches-of-interest or POIs (e.g., 

frontal lobe, anterior bank of central sulcus). For this study, the relevant regions are the 

visual areas of the human visual cortex. Although these areas could be defined based 

on an anatomical atlas or their relative positions to Brodmann areas, substantial errors 

would be introduced into the data analysis due to the great anatomical variability 

among individuals (even though all brains were transformed into the normalized 

Talairach space). Instead, we have decided to functionally define the visual areas – V1, 

V2v, VP (ventral) and V2d, V3 (dorsal) – for each subject. For this purpose we have 

used retinotopic mapping, a method introduced by Sereno and colleagues in 1995. 

Tools are available to statistically compare mean regions-of-interest thickness values 

within a group as well as across groups. However, BrainVoyager requires all subjects’ 

brains to be aligned, a process called cortex-based alignment. Since this method 

significantly distorts one’s brain (while trying to ‘align’ it with all the others), we have 

chosen to perform all statistical analysis with SPSS Statistics 18©. There is no 

automatic feature that allows to export cortical thickness values directly to another 

platform, so a data sampling was needed. Each visual area was subdivided into three 

parts – ‘foveal’, ‘intermediate’ and ‘peripheral’ – according to the part of the visual field 

they encode and for each subdivision 10 CT values were obtained; the subdivision was 

based on the functional information gathered with an eccentricity paradigm. Therefore, 

the average cortical thickness of any given visual area was calculated based on 30 

different CT values (10+10+10). 

 

In summary, cortical thickness analysis addresses the following main points: - Measurement of cortical thickness of individual segmented cortical hemispheres 

(in volume space, VMP, or in surface space, SMP); - Calculation of individual thickness values in any region-of-interest; - Statistical analysis that may reveal correlations among CT of visual areas and 

between CT and other relevant physiological parameters (e.g. retinal thickness, 

contrast sensitivity). 

(For group studies, particularly for whole brain comparisons, it may be relevant to 

compute average thickness maps across subjects and assess the statistical difference 

between group maps). 
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Fig. 8: Original data before processing steps (left); Selection of WM voxels (blue) in order to perform the 

inhomogeneity correction (right). 

Fig. 9: Histogram of WM voxels before (left) and after (right) the inhomogeneity correction; note that it may be 

necessary to run the correction algorithm more than once before achieving a smooth, continuous distribution of 

voxel intensities. 
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Fig. 10: Automatic segmentation – the WM/GM cut value should be closer to the ‘Min’ value of the 

inhomogeneity correction procedure (lower left side of the WM peak on the histogram) to get the best 

segmentation possible; the cut point is manually optimized for each individual. 

 

Fig. 11: RECOSM surface – WM/GM boundary estimated based on the given cut point (yellow); this boundary 

is then represented on its own and stretched (or inflated), which will serve as a template where CT maps and 

retinotopic maps may be overlaid. Inflated RECOSM surface of a subject’s right hemisphere (blue). 
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Fig. 12: Final preparations for cortical thickness measurements; the white matter is increasingly selected by adjusting 

global and local WM-GM cut points (blue and green voxels, respectively). The result (right) is a complete segmentation and 

classification of brain tissue into three types: WM (light grey), GM (dark grey) and CSF/background (black). 

Fig. 13: Cortical thickness measurement in individual brain; the resulting file is a volume map (VMP) file 

containing submaps with the cortical thickness estimates, gradients and other parameters used for CT 

calculation. The cortical thickness map appears superimposed on the VMR data (color scale: dark blue – 

0.5mm, light blue – 2/3 mm, green – 5 mm). 
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Methods in Retinotopy 

 

Retinotopy is the functional organization of the visual cortex that relies on the 

topographically preserved projections from the retina to the LGN layers and then to V1. 

With proper fMRI stimuli we can map visual areas in the human brain (as introduced by 

Sereno et al., 1995), since peak activation in adjacent areas alternate with a mirror / 

non-mirror representation of the visual field that correspond to the horizontal and 

vertical meridians. All subjects in this study have undergone the same imaging 

sequence protocol: MPRAGE T1-weighted, three polar angle functional paradigms, one 

eccentricity functional paradigm and a second MPRAGE T1-weighted. The 3T scanner 

(Siemens Trio 3T) was set with the following parameters: TR = 2000 ms, TE = 39 ms, 

interslice time = 76 ms, voxel size = 2 x 2 x 2 mm (for functional data), FOV = 256 mm 

x 256 mm, slice thickness = 2 mm, number of slices = 26, imaging matrix = 128 x 128. 

The visual stimuli presented in real-time to the subjects were computer delivered and a 

mirror was used to reflect the image on a screen while the subject was lying inside the 

scanner. The polar angle and eccentricity experiments, i.e., a rotating checkerboard 

wedge stimulus and an expanding ring stimulus, respectively, stimulate the visual field 

repeatedly whilst the subject fixates a spot (yellow dot) in the center of the image. Each 

functional stimulus lasts for just over three minutes and comprises four complete cycles 

(rotations or expansion) of 48s each. These experiments, also known as phase-

encoding, result in the mapping of the horizontal and vertical meridians that allow the 

manual delineation of the visual areas in the human visual cortex.  

Fig. 14: Cortical thickness map in surface space (SMP); the VMP is stretched to fit an inflated 

representation (RECOSM mesh) of a subject’s right hemisphere. 



27 

 

                                                       

Fig. 15: Rotating wedge or polar angle stimulus (left); expanding ring or eccentricity stimulus (right). Both 

stimuli have a rapidly flickering checkerboard pattern.  

 

To perform the mapping, the background circle (that represents the visual field) was 

divided into 8 areas that were used to define the functional protocol with BrainVoyager. 

To delineate the visual areas, the data was processed as described in the software 

documentation, based on the retinotopic mapping experiments performed by Goebel 

and colleagues, in 1998. In terms of data pre-processing, the most relevant procedures 

include mean intensity adjustment (to reduce variation of mean signal intensity across 

volumes), slice scan time correction (a temporal offset introduced by the MR data 

acquisition), 3D motion correction (head movements) and spatial and temporal 

smoothing and filtering. To achieve higher statistical significance, we have combined 

the three polar angle data sets into a single volume time course (VTC) file. To do so, 

we had to ensure that all data sets were precisely aligned among each other and also 

aligned with the anatomical data. All the alignment procedures we used are fully 

automatic in order to achieve optimal, unbiased results. 

 

 

 

Fig. 16: Retinotopic map of the left and right visual cortex (on the left and right, respectively). These maps 

represent a computation of the linear correlation of activity in the various visual areas (such computation 

has the average VTC data files as input). 
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Fig. 17: Retinotopic (polar angle-based) maps for both hemispheres in surface space (above); mirror / non-

mirror reflections are clearly visible ventrally and dorsally of the calcarine sulcus. Eccentricity maps (below) 

reveal that central regions of the visual field are represented in more posterior areas of the visual cortex 

(warm colors) while peripheral regions are encoded more anteriorly (cool colors). 

     

 

 

 

Retinal and RNFL thickness measurements 

 

Optical Coherence Tomography (OCT) is a popular technique for assessing the 

patients’ retinal and RNFL thickness in real-time. It provides high-resolution, cross-

sectional images of retinal tissue based on optical interferometry using infra-red and 

low coherence light, with longitudinal resolution of approximately 10 µm (Hee et al., 
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1995). Besides having a superior resolution, OCT is also a quantitative, non-invasive 

method that has been used in the diagnosis of a variety of diseases of the macula and 

the optic nerve. Reduction of RNFL thickness, measured by OCT, correlates with 

increased severity of RNFL damage as assessed photographically and histologically in 

studies with primates. OCT RNFL measures have been shown to decrease with age, 

as well as with increasing severity/progression of glaucoma (Porciatti et al., 2006). 

While for the glaucoma studied we have used the OCT Stratus equipment, all Leber’s 

Neuropathy subjects were screened using the OCT Spectralis. This new equipment 

offers a superior resolution than its predecessor and has a better signal to noise ratio. 

Additionally, the acquisition process is much faster as the data is presented on the 

Fourier space. 

 

 

Methods to study visual function in retinocortical disease 

 

FDT – Perimetry as a method to study retinotopy behaviorally 

The Frequency Doubling Technology (FDT) perimeter is an instrument designed for 

fast and effective detection of visual field loss. Previous studies have demonstrated its 

high sensitivity and specificity in the detection of early glaucomatous damage, as well 

as in other ocular, retinal and neurological disorders (Johnson et al., 1997). Among the 

advantages of FDT there is the fact that it is easy to administer and interpret, it is 

patient-friendly, it is hardly affected by refractive error and cataract and it is fast and 

highly reliable (test-retest). 

FDT perimetry is based on a phenomenon described four decades ago; it was then 

observed that when an achromatic sinusoidal grating of low spatial frequency 

undergoes counter-phased flickering at a high temporal frequency (>7 Hz), the 

apparent spatial frequency of the grating appears to double (Kelly, 1966). This 

nonlinear response of the visual system has been thought to be due to the appearance 

of a second-harmonic distortion that may involve rectification and response 

compression (Kelly, 1981).  

Maddess and Henry reported that the FD illusion could be useful in detecting 

glaucomatous field loss. The FDT stimulus is thought to predominantly stimulate the 

magnocellular ganglion cell pathway, which is primarily involved in motion and flicker 

detection. Some suggested that the neurophysiological explanation for the frequency 

doubling illusion in humans lies in a subgroup of M cells (the My cells); these are 

thought to be preferentially lost in early glaucoma (Maddess and Henry, 1992). 
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The use of FDT perimetry in a clinical setting began just over a decade ago, thus 

further longitudinal studies are needed to evaluate the role of FDT in monitoring 

progressive field loss, its effectiveness in predicting glaucomatous defects and the 

possible correlations it has to structural loss.  

 

Standard Automated Perimetry (SAP) 

Visual Perimetry is a psychophysical procedure that provides a quantitative estimate of 

the function of the visual field. The most common test of functional vision used in 

clinical diagnosis and evaluation of glaucomatous stages is the static-threshold, 

computer-automated perimetry or Standard Automated Perimetry (SAP), which uses 

standard stimulus conditions and psychophysical approaches. In static perimetry, the 

size and location of the test target remain constant, while the intensity of a fixed target 

varies in order to determine the sensitivity of specific VF locations; in sum, SAP 

measures the retinal sensitivity at predetermined locations in the visual field (Punjabi, 

2006). On the Octopus perimeter (used in this study), the intensity of the supra-

threshold stimulus is based on data from age-matched normal subjects. Despite the 

advantages of this functional measure, substantial ganglion cell damage can take place 

before SAP detects functional deficits, so we should use caution when taking 

conclusions from a lack of structure-function correlations. 

 

Global measures 

FDT provides two global indexes to generally summarize the visual field results for 

threshold tests: mean deviation, MD, and pattern standard deviation, PSD (they are 

both expressed in dB). On one hand, MD represents the average sensitivity deviation 

from a normal healthy person of the same age; it is an indication of the overall VF 

sensitivity and can either be a negative or positive value depending on whether the 

individual’s general contrast sensitivity is below or above the average for that same age 

group. On the other hand, PSD gives an indication of how each test location deviates 

from the age adjusted data. It represents how evenly the field loss is spread across the 

VF, thus it is indicative of localized loss. A null PSD means that the individual VF has 

no deviation from a height adjusted VF profile of a normal person of the same age; a 

higher the PSD value reveals a greater amount of irregularities in the VF.  

For the SAP, the global measures are MD and LV (the latter is a measure identical to 

the pattern standard deviation, PSD). 

 

 

 



31 

 

 

 

 

Chapter 3 

 

 

Results 

Structural and structure-function correlations 
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Glaucoma (1st part of the study) 

 

Cortical thickness of retinotopic areas 

 

The table below presents all CT measurements used during this part of the study; all 

values are in millimeters. 21 subjects were evaluated by an experienced 

ophthalmologist and divided into three groups: Ocular hypertension / HTO (n=9), 

Glaucoma suspect / GS (n=8) and Glaucoma, G (n=4). In terms of CT of visual areas, 

there are six rows of data for each subject (ID) – foveal, intermediate and peripheral 

sub-regions, for both hemispheres. Average values were calculated for each sub-

region; total values were obtained for each region by averaging the three 

corresponding sub-regions. 

 

ID Age Sex Group Hemisphere 
V1 
avg V1 total 

V2v 
avg V2v tot. 

VP 
avg 

VP 
tot. V2d avg V2d tot. 

V3 
avg V3 tot. 

19580400317 51 F G LH - fovea 2,05 2,23 2,67 2,67 2,76 2,54 2,54 2,56 2,21 2,18 

19580400317 51 F G LH - inter. 2,7   3,02   2,44   2,67   2,55   

19580400317 51 F G LH - perif. 1,95   2,33   2,42   2,48   1,79   

19580400317 51 F G RH - fovea 1,91 2,23 2,33 2,18 2,33 2,25 2,48 2,49 2,23 2,30 

19580400317 51 F G RH - inter. 2,79   2,33   2,15   2,27   2,04   

19580400317 51 F G RH - perif. 1,99   1,89   2,27   2,71   2,63   

19521100609 57 F G LH - fovea 1,97 2,26 2,03 2,16 2,23 2,15 1,94 2,00 1,98 2,03 

19521100609 57 F G LH - inter. 2,4   2,20   2,00   1,92   2,00   

19521100609 57 F G LH - perif. 2,4   2,26   2,22   2,13   2,11   

19521100609 57 F G RH - fovea 2,02 2,40 1,92 2,30 2,38 2,31 2,20 2,07 2,40 2,06 

19521100609 57 F G RH - inter. 2,95   2,65   2,49   2,00   1,80   

19521100609 57 F G RH - perif. 2,23   2,32   2,06   2,00   1,98   

19381100600 71 F G LH - fovea 2,34 2,34 2,38 2,11 2,05 2,10 1,90 2,03 2,13 2,22 

19381100600 71 F G LH - inter. 2   2,05   1,97   2,20   2,31   

19381100600 71 F G LH - perif. 2,68   1,91   2,28   1,99   2,21   

19381100600 71 F G RH - fovea 2,42 2,54 2,78 2,54 2,37 2,12 2,09 2,15 2,04 2,00 

19381100600 71 F G RH - inter. 2,47   2,33   1,87   2,00   1,88   

19381100600 71 F G RH - perif. 2,72   2,50   2,13   2,36   2,07   

19460900883 63 F G LH - fovea 1,88 2,06 1,99 1,99 1,94 1,92 1,63 1,91 1,86 1,98 

19460900883 63 F G LH - inter. 2,37   2,25   1,90   2,16   2,15   

19460900883 63 F G LH - perif. 1,92   1,74   1,91   1,94   1,94   

19460900883 63 F G RH - fovea 2,02 2,01 2,09 2,07 1,94 2,05 1,95 1,96 2,31 2,08 

19460900883 63 F G RH - inter. 2,12   2,02   2,12   2,27   2,06   

19460900883 63 F G RH - perif. 1,89   2,11   2,10   1,66   1,88   

19660600035 43 F GS LH - fovea 1,95 1,97 2,35 2,27 2,35 2,28 2,38 2,09 2,08 2,29 

19660600035 43 F GS LH - inter. 1,9   2,26   2,44   2,06   2,58   

19660600035 43 F GS LH - perif. 2,07   2,19   2,06   1,84   2,21   

19660600035 43 F GS RH - fovea 1,74 1,99 1,96 1,82 2,14 2,00 2,17 1,94 2,16 2,12 

19660600035 43 F GS RH - inter. 2,38   1,70   1,94   1,92   2,18   

19660600035 43 F GS RH - perif. 1,86   1,80   1,91   1,72   2,03   

19350300928 75 M GS LH - fovea 1,91 1,89 2,22 1,92 1,89 2,00 1,96 2,11 2,40 2,31 
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19350300928 75 M GS LH - inter. 1,76   1,69   2,10   2,15   2,36   

19350300928 75 M GS LH - perif. 2   1,84   2,01   2,21   2,18   

19350300928 75 M GS RH - fovea 1,86 1,99 1,79 2,01 1,70 2,15 1,51 1,99 2,05 2,46 

19350300928 75 M GS RH - inter. 2,09   2,47   2,49   2,28   2,55   

19350300928 75 M GS RH - perif. 2,01   1,78   2,26   2,17   2,77   

19550300128 55 F GS LH - fovea 2,08 2,33 2,01 2,03 2,34 2,02 2,26 2,16 2,17 2,29 

19550300128 55 F GS LH - inter. 2,38   2,09   1,88   1,96   1,91   

19550300128 55 F GS LH - perif. 2,53   2,00   1,84   2,26   2,79   

19550300128 55 F GS RH - fovea 2,15 2,39 2,87 2,37 1,99 2,41 2,04 2,24 2,27 2,13 

19550300128 55 F GS RH - inter. 2,49   2,25   3,18   2,20   1,84   

19550300128 55 F GS RH - perif. 2,53   2,00   2,06   2,49   2,28   

19510800677 58 F GS LH - fovea 2,04 2,27 2,46 2,43 2,36 2,27 2,75 2,31 2,00 2,22 

19510800677 58 F GS LH - inter. 2,33   2,21   2,23   2,20   2,19   

19510800677 58 F GS LH - perif. 2,43   2,62   2,21   1,97   2,47   

19510800677 58 F GS RH - fovea 2,59 2,42 2,51 2,35 2,17 2,19 2,70 2,55 2,07 2,17 

19510800677 58 F GS RH - inter. 2,35   1,96   2,26   2,75   2,44   

19510800677 58 F GS RH - perif. 2,33   2,57   2,13   2,20   2,00   

19560600861 53 M GS LH - fovea 2,04 2,10 2,26 2,20 2,04 2,06 2,13 1,94 1,93 2,04 

19560600861 53 M GS LH - inter. 1,97   2,14   1,91   2,01   2,08   

19560600861 53 M GS LH - perif. 2,28   2,20   2,24   1,67   2,10   

19560600861 53 M GS RH - fovea 1,96 2,00 2,09 2,01 1,89 2,16 2,12 1,99 1,81 2,00 

19560600861 53 M GS RH - inter. 2,26   1,88   2,15   1,84   2,05   

19560600861 53 M GS RH - perif. 1,79   2,06   2,45   2,01   2,15   

19430200515 67 M GS LH - fovea 2,43 2,24 2,09 2,06 1,95 1,94 2,54 2,50 2,02 1,97 

19430200515 67 M GS LH - inter. 2   2,16   1,88   2,17   1,95   

19430200515 67 M GS LH - perif. 2,28   1,93   1,98   2,80   1,93   

19430200515 67 M GS RH - fovea 2,19 2,28 1,88 2,35 2,10 2,45 1,96 2,21 2,04 2,20 

19430200515 67 M GS RH - inter. 2,61   2,71   2,55   2,09   2,51   

19430200515 67 M GS RH - perif. 2,05   2,45   2,71   2,59   2,06   

19460400145 63 F GS LH - fovea 2,2 2,36 2,05 2,13 2,23 2,29 2,07 2,21 2,15 2,15 

19460400145 63 F GS LH - inter. 2,42   2,13   2,26   2,30   2,39   

19460400145 63 F GS LH - perif. 2,45   2,21   2,39   2,27   1,90   

19460400145 63 F GS RH - fovea 2,3 2,33 1,95 1,88 2,16 2,12 2,33 2,23 2,27 2,26 

19460400145 63 F GS RH - inter. 2,56   1,82   2,16   2,17   2,19   

19460400145 63 F GS RH - perif. 2,14   1,86   2,03   2,19   2,32   

19470800085 62 M GS LH - fovea 2,26 2,28 2,66 2,43 2,25 2,46 2,18 2,36 2,09 2,11 

19470800085 62 M GS LH - inter. 2,51   2,69   2,85   2,55   1,88   

19470800085 62 M GS LH - perif. 2,07   1,95   2,27   2,34   2,36   

19470800085 62 M GS RH - fovea 2,52 2,30 2,20 2,05 2,10 2,05 2,37 2,47 2,09 2,02 

19470800085 62 M GS RH - inter. 2,14   1,89   2,16   2,57   1,97   

19470800085 62 M GS RH - perif. 2,25   2,07   1,90   2,46   2,01   

19391200175 70 M HTO LH - fovea 1,96 2,49 1,65 1,94 1,99 1,88 1,79 1,85 1,88 1,87 

19391200175 70 M HTO LH - inter. 2,84   2,08   1,90   1,90   1,84   

19391200175 70 M HTO LH - perif. 2,66   2,08   1,76   1,87   1,88   

19391200175 70 M HTO RH - fovea 2,16 2,42 1,69 1,89 1,74 1,90 1,72 1,88 2,00 1,93 

19391200175 70 M HTO RH - inter. 3,1   1,98   1,85   2,08   1,83   

19391200175 70 M HTO RH - perif. 2   2,00   2,12   1,85   1,97   

19541200494 55 M HTO LH - fovea 2,29 2,06 2,30 2,06 2,15 2,19 2,29 2,03 1,94 2,15 

19541200494 55 M HTO LH - inter. 1,92   1,97   2,35   2,02   2,46   

19541200494 55 M HTO LH - perif. 1,96   1,92   2,06   1,78   2,04   

19541200494 55 M HTO RH - fovea 2,03 1,92 2,01 2,35 2,20 2,06 2,05 2,31 1,94 2,04 

19541200494 55 M HTO RH - inter. 1,8   2,45   1,92   2,41   2,17   
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19541200494 55 M HTO RH - perif. 1,94   2,59   2,06   2,48   2,02   

19570100748 53 F HTO LH - fovea 2,1 2,32 2,58 2,18 2,35 2,17 1,68 2,00 2,46 2,03 

19570100748 53 F HTO LH - inter. 2,74   1,85   2,09   2,12   1,77   

19570100748 53 F HTO LH - perif. 2,12   2,12   2,07   2,21   1,87   

19570100748 53 F HTO RH - fovea 2,13 2,12 2,32 2,16 2,17 2,17 1,90 1,91 2,19 2,04 

19570100748 53 F HTO RH - inter. 1,95   2,10   2,06   1,83   1,97   

19570100748 53 F HTO RH - perif. 2,29   2,05   2,28   2,01   1,95   

19461000557 63 F HTO LH - fovea 2,15 2,24 2,09 1,98 2,27 2,16 1,77 1,86 2,31 2,29 

19461000557 63 F HTO LH - inter. 2,27   1,96   2,13   1,78   2,33   

19461000557 63 F HTO LH - perif. 2,3   1,88   2,08   2,02   2,22   

19461000557 63 F HTO RH - fovea 2,01 2,07 1,99 1,90 2,09 2,09 1,80 1,79 2,00 2,17 

19461000557 63 F HTO RH - inter. 2,12   1,91   2,04   1,86   2,34   

19461000557 63 F HTO RH - perif. 2,07   1,80   2,13   1,71   2,16   

19550100742 55 M HTO LH - fovea 1,83 1,97 1,83 1,90 2,16 2,02 2,04 2,06 1,81 2,02 

19550100742 55 M HTO LH - inter. 1,94   2,07   1,96   2,00   2,02   

19550100742 55 M HTO LH - perif. 2,15   1,80   1,95   2,14   2,23   

19550100742 55 M HTO RH - fovea 1,78 2,00 1,99 2,00 1,93 2,11 1,75 1,76 1,97 1,93 

19550100742 55 M HTO RH - inter. 2,1   1,86   2,08   1,78   2,08   

19550100742 55 M HTO RH - perif. 2,12   2,15   2,31   1,74   1,75   

19500600240 59 M HTO LH - fovea 2,23 2,20 2,20 2,17 2,42 2,24 2,13 2,10 2,03 2,19 

19500600240 59 M HTO LH - inter. 2,38   2,05   2,16   1,96   2,44   

19500600240 59 M HTO LH - perif. 2   2,25   2,15   2,20   2,11   

19500600240 59 M HTO RH - fovea 2,21 2,36 2,23 2,09 2,16 2,13 1,88 2,15 2,08 2,18 

19500600240 59 M HTO RH - inter. 2,61   2,01   2,05   2,14   2,16   

19500600240 59 M HTO RH - perif. 2,27   2,03   2,17   2,44   2,29   

19390500171 71 M HTO LH - fovea 2,01 2,26 2,29 2,24 2,19 2,13 2,36 2,22 2,74 2,40 

19390500171 71 M HTO LH - inter. 2,46   2,08   1,85   2,15   2,28   

19390500171 71 M HTO LH - perif. 2,3   2,34   2,34   2,15   2,18   

19390500171 71 M HTO RH - fovea 2,14 2,35 2,18 2,19 2,02 2,00 2,11 2,41 2,34 2,48 

19390500171 71 M HTO RH - inter. 2,69   2,29   2,05   2,49   2,41   

19390500171 71 M HTO RH - perif. 2,22   2,10   1,94   2,64   2,68   

19490200369 61 F HTO LH - fovea 2,22 2,03 2,25 2,00 1,93 2,08 2,27 2,20 2,06 2,16 

19490200369 61 F HTO LH - inter. 2,2   1,99   2,12   2,05   2,30   

19490200369 61 F HTO LH - perif. 1,66   1,77   2,18   2,28   2,12   

19490200369 61 F HTO RH - fovea 2,13 2,08 2,17 2,23 2,10 2,00 2,09 2,28 1,95 2,14 

19490200369 61 F HTO RH - inter. 2,03   2,05   1,87   2,41   2,17   

19490200369 61 F HTO RH - perif. 2,07   2,47   2,02   2,34   2,29   

19501200262 59 M HTO LH - fovea 2,16 2,13 2,16 2,38 2,55 2,47 2,04 2,11 2,62 2,52 

19501200262 59 M HTO LH - inter. 2,15   2,55   2,70   2,27   2,45   

19501200262 59 M HTO LH - perif. 2,09   2,42   2,17   2,03   2,50   

19501200262 59 M HTO RH - fovea 2,15 2,45 2,24 2,11 2,08 1,95 2,48 2,24 1,96 2,02 

19501200262 59 M HTO RH - inter. 2,6   2,11   2,03   2,15   1,89   

19501200262 59 M HTO RH - perif. 2,6   1,97   1,74   2,10   2,22   

 

Table 1: Values of cortical thickness for individual visual areas (HTO, GS and G subjects). 
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Correlations between thickness of retinotopic areas and retinal 

nerve fiber layer of the optic nerve (RNFL) 

 

To calculate correlations between the cortical thickness of visual areas and the RNFL 

of the optic nerve we have used parametric statistics (Pearson Correlation coefficient). 

The analysis was performed using all data (CT from both hemisphere) and separately 

for each hemisphere. Furthermore, both global (HTO+GS+G) and within group 

correlations were performed. All variables follow a normal distribution (Kolmogorov-

Smirnov test, p>0.01), with the exception for the glaucoma (G) group when 

hemispheres are analyzed separately (n=4); in this case, the variables follow a normal 

distribution according to the Shapiro-Wilk test, but we decided to complement the 

analysis with non-parametric correlations (Spearman coefficient). 
 

HTO+GS+G (LH+RH) Pearson Correlation Sig. (2-tailed) N 

V2v – VP .697 .000 42 

V2v – V2d .544 .000 42 

VP – V3 .358 .020 42 

RNFL Sup – RNFL Inf .757 .000 42 

RNFL Sup – RNFL Nasal .401 .008 42 

RNFL Inf – RNFL Nasal .660 .000 42 

 

HTO (LH+RH) Pearson Correlation Sig. (2-tailed) N 

V2v – VP .510 .030 18 

V2v – V2d .645 .004 18 

V2v – V3 .516 .028 18 

VP – V3 .583 .011 18 

V3 – RNFL Sup -0.606 .008 18 

 

GS (LH+RH) Pearson Correlation Sig. (2-tailed) N 

V1 – V2d .717 .002 16 

V2v – VP .774 .000 16 

RNFL Sup – RNFL Inf .709 .002 16 

RNFL Inf – RNFL Nasal .591 .016 16 

 

G (LH+RH) Pearson Correlation Sig. (2-tailed) N 

V2v – VP .775 .024 8 

VP – V2d .814 .014 8 

VP – RNFL Inf .750 .032 8 

RNFL Sup – RNFL Inf .969 .000 8 

RNFL Sup – RNFL Nasal .742 .035 8 

RNFL Inf – RNFL Nasal .853 .007 8 
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HTO+GS+G (LH) Pearson Correlation Sig. (2-tailed) N 

V2v – VP .851 .000 21 

V2v – V2d .600 .004 21 

VP – V2d .451 .035 21 

VP – V3 .483 .026 21 

RNFL Sup – RNFL Inf .861 .000 21 

RNFL Sup – RNFL Nasal .684 .001 21 

RNFL Inf – RNFL Nasal .856 .000 21 

 

HTO (LH) Pearson Correlation Sig. (2-tailed) N 

V2v – VP .823 .006 9 

V2v – V3 .735 .024 9 

VP – V3 .805 .009 9 

VP – RNFL Temp .672 .048 9 

V2d – RNFL Sup -0.665 .050 9 

 

GS (LH) Pearson Correlation Sig. (2-tailed) N 

V2v – VP .807 .015 8 

RNFL Sup – RNFL Inf .897 .002 8 

RNFL Sup – RNFL Nasal .759 .029 8 

RNFL Inf – RNFL Nasal .858 .006 8 

 

G (LH) Pearson 

Correlation 

Sig. (2-tailed) Spearman 

Correlation 

Sig (2-tailed) N 

V2v – VP .968 .012 1.000 .000 4 

V2v – V2d .991 .009 0.800 N.S. 4 

VP – V2d .968 .032 0.800 N.S. 4 

RNFL Sup – RNFL Inf .994 .006 1.000 .000 4 

RNFL Sup – RNFL Nasal .953 .047 0.800 N.S. 4 

RNFL Inf –RNFL Nasal .978 .022 0.800 N.S. 4 

 

HTO+GS+G (RH) Pearson Correlation Sig. (2-tailed) N 

V1 – V2d .434 .049 21 

V2v – VP .502 .020 21 

V2v – V2d .510 .032 21 

RNFL Sup – RNFL Inf .681 .001 21 

RNFL Sup – RNFL Nasal .488 .025 21 

RNFL Inf – RNFL Nasal .668 .001 21 

 

HTO (RH) Pearson Correlation Sig. (2-tailed) N 

V2v – V2d .785 .012 9 

V3 – RNFL Sup -0.857 .003 9 
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GS (RH) Pearson Correlation Sig. (2-tailed) N 

V1 – V2d .878 .004 8 

V2v – VP .830 .011 8 

RNFL Sup – RNFL Temp -0.837 .010 8 

 

The strong correlations (Pearson coefficient) found for the G group with parametric statistics mostly survive 

the non-parametric analysis; however, the absolute values of correlations coefficients should be taken with 

care when performing tests in a group with a small numbers of subjects. 

 

G (RH) Pearson 

Correlation 

Sig. (2-tailed) Spearman 

Correlation 

Sig (2-tailed) N 

V1 – V2v .954 .046 1.000 .000 4 

VP – RNFL Sup .995 .005 1.000 .000 4 

VP – RNFL Inf .980 .020 1.000 .000 4 

RNFL Sup – RNFL Inf .960 .040 1.000 .000 4 

RNFL Inf – RNFL Temp .969 .031 1.000 .000 4 

RNFL Temp – RNFL Nasal .990 .010 0.800 N.S. 4 

 

Table(s) 2: Correlations between retinotopic areas and retinal nerve fiber layer of the optic nerve (RNFL); 

the (12) data tables above present all the statistically significant correlations found between CT of visual 

areas and retinal thickness.  

 
Global measures Pearson 

Correlation 

Sig. (2-tailed) Spearman 

Correlation 

Sig (2-tailed) N 

V1 – FDT_MD_OD - - -0.358 .020 42 

V2d – FDT_MD_OE .320 .039 .440 .004 42 

V2d – FDT_PSD_OE - - -0.367 0.017 42 

FDT_MD_OE – FDT_MD_OD .927 .000 .714 .000 42 

FDT_MD_OE – FDT_PSD_OE -0.501 .001 -0.469 .002 42 

FDT_MD_OE – FDT_PSD_OD -0.804 .000 -0.358 .020 42 

FDT_MD_OD – FDT_PSD_OD -0.835 .000 -0.481 .001 42 

 

Table 3: Variables MD and PSD, when separated by eyes (OD and OE), did not adjust to a normal 

distribution, so non-parametric tests were also performed.  
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The following plots correspond to the correlations previously highlighted in yellow. 

  HTO+GS+G (LH+RH) 
 

 

Fig. 18: V2v-VP thickness correlation is statistically significant for all groups and is one of the strongest 

correlations between visual areas we have found (left). Similarly, it has been found that RNFL thickness in 

different regions (i.e., superior, inferior and nasal) of the retina are strongly correlated (right); interestingly, 

the temporal region seems to be an exception for the most part. 

 

 

 

 

Fig. 19: A stronger correlation between V1 and V2d has been found for patients characterized as 

glaucoma suspects (GS). Although trends can be seen for the remaining groups, they do not reach 

statistical significance. 
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Fig. 20: A striking negative correlation has been found for HTO subjects between V2d (for LH, on the left) / 

V3 (for RH, on the right) and the RNFL superior region’s thickness. 

 

 

Correlations between thickness of retinotopic areas and retinal 

functional activity (FDT) 

 

There is a recurrent hypothesis regarding the structure-function relationship in early 

Glaucoma (GS) where a Retinal Ganglion Cell functional reserve (or RGC redundancy) 

is postulated. This is consistent with the finding that even more than half of RGCs may 

be lost before loss in visual function is detectable by standard automated perimetry 

(SAP); it is assumed that there is enough redundancy of RGCs so that a subpopulation 

could retain normal sensitivity levels even though many other RGCs have degenerated 

or become dysfunctional (Quigley et al., 1992). 

As previously stated, the use of FDT perimetry in a clinical setting began fairly recently, 

so its role in monitoring progressive field loss and the eventual correlations it has to 

structural loss is still being studied. In this work, we have looked for the correlations 

between functional sensitivity, separated either in hemifields and quadrants, and the 

cortical thickness in main visual areas. 

 

Table(s) 4: Correlations between thickness of retinotopic areas and retinal functional activity (FDT); the (6) 

data tables below present all the statistically significant correlations found between CT of visual areas and 

retinal functional activity, provided by FDT.  

 

HTO+GS+G (LH) Pearson Correlation Sig. (2-tailed) N 

V2d – FDT (TI_OE) .439 .047 21 
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HTO (LH) Pearson Correlation Sig. (2-tailed) N 

V1 – FDT (LH_OE) -0.720 .029 9 

V1 – FDT (TS_OE) -0.711 .032 9 

 

GS (LH) Pearson Correlation Sig. (2-tailed) N 

V1 – FDT (NI_OE) -0.712 .048 8 

V2v – FDT (TI_OD) -0.803 .016 8 

V2d – FDT (LH_OD) -0.769 0.026 8 

V2d – FDT (TS_OD) -0.783 0.021 8 

V2d – FDT (NI_OD) -0.766 0.027 8 

 

G (LH) Pearson 

Correlation 

Sig. (2-tailed) Spearman 

Correlation 

Sig (2-tailed) N 

VP – FDT (TI_OE) .963 .037 1.000 .000 4 

 

Even though only the VP – FDT (TI_OE) correlation is significant in both parametric and non-parametric 

analysis, V2v and VP correlate with most FDT quadrants if we only consider the non-parametric tests. 

 

HTO (RH) Pearson Correlation Sig. (2-tailed) N 

V2v – FDT (NS_OE) .666 .050 9 

 

GS (RH) Pearson Correlation Sig. (2-tailed) N 

V1 – FDT (LH_OD) -0.760 .028 8 

V2v – FDT (NI_OD) -0.720 .044 8 

V2d – FDT (RH_OD) -0.735 0.038 8 

V2d – FDT (LH_OD) -0.817 0.013 8 

V2d – FDT (NI_OD) -0.786 0.021 8 

 

For the right hemisphere of glaucoma patients (G), only non-parametric correlations have been found 

between V2d and multiple quadrants of FDT. 

 

Finally, we have tried to assess the correlation between RNFL thickness of visual areas 

and central ganglion cell activity, as measured by Pattern Electroretinogram (PERG). 

PERG records global ganglion cell responses to a stimulus that consists in a pattern 

reversal checkerboard. With the available data (PERG N35-P50 and PERG P50-N95, 

as well as the superior, inferior, nasal and temporal RNFL thickness values), only one 

correlation emerged as statistically significant (for non-parametric tests): 

 

G (LH+RH) Pearson 
Correlation 

Sig. (2-tailed) Spearman 
Correlation 

Sig. (2-tailed) N 

PERG P50-N95 – RNFL Sup 0.659 N.S. (.076) .738 .037 8 
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Multivariate analysis of variance (MANOVA) and CatPCA 

 

Due to the large number of variables we were considering and the correlations 

between them, we have decided to employ a more powerful statistical tool – a 

multivariate analysis. With MANOVA, the dependent variables are considered 

simultaneously, organized in a composite way and the effects associated to each 

variable are weighed according to the correlation that exists between them (this 

reduces the associated type I error) In fact, often MANOVA allows one to detect 

differences that would go unnoticed if only simple variate analyses (ANOVAs) were 

performed (Newton, 1999). 

For OCT, the global analysis of variables (OCT nasal, temporal, inferior and superior) 

has revealed a significant difference (λ Wilks, p<0.001). ANOVA tests for each RNFL 

region revealed significant differences among groups for superior (HTO=GS≠G, 

p=0.001), inferior (HTO=GS≠G, p<0.001) and nasal (HTO=GS≠G, p=0.026) regions; 

for the temporal region, the difference was between the HTO and G groups (p=0.032). 

Similarly, group differences were detected for FDT quadrants (TS, NS, NI and TI) by 

the MANOVA (λ Wilks, p<0.001); the significant differences were once again detected 

for the G group (HTO=GS≠G) for all quadrants. As for the cortical thickness of visual 

areas, no group differences have been found when evaluating the joint effects on the 

five regions (λ Wilks, p>0.001). 

 
Since all relevant variables were quantitative, we have further studied our data with a 

multivariate method known as Principal Components Analysis. This technique takes a 

set of correlated variables and transforms it into a smaller components set – being 

each component (principal component) a linear combination of the original variables. 

In order to add the ‘Group variable’ (HTO, GS or G), which is not quantitative, SPSS 

applies the Optimal Scaling algorithm that allows its use during the numerical analysis 

– the combined analytical procedure is called Categorical Principal Components 

Analysis (or CatPCA). This type of analysis is particularly useful to reduce the 

dimensionality of variables (measured in different scales); the number of components 

to be extracted should be enough to account for a reasonable percentage of the 

original data variation. 
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Dimension Cronbach's Alpha Variance Accounted For 

 Total (Eigen value) % of Variance Total (Eigen value) 

1 .737 2.974 29.736 

2 .576 2.078 20.782 

Total .891 5.052 50.517 

 
Fig. 21: Total Cronbach's Alpha is based on the total Eigen value and serves as an indicator of reliability of 

a model. Typically a model with a Cronbach’s Alpha over 0.7 is considered to be sound.  

 
 

  Total (Vector Coordinates) 

  Dimension Total 

  2 1  

Group .451 .175 .625 

V1 total .105 .014 .119 

V2v total .443 .283 .726 

VP total .199 .417 .616 

V2d total .206 .283 .488 

V3 total .038 .346 .384 

OCT RNFL Sup .552 .015 .567 

OCT RNFL Inf .610 .211 .821 

OCT RNFL Temp .184 .021 .205 

OCT RNFL Nasal .187 .314 .500 

Active Total 2.974 2.078 5.052 

% of Variance 29.736 20.782 50.517 

   
 

 
 

 

 Dimension 

  1 2 

Group -.671 -.418 

V1 total -.324 .119 

V2v total -.666 .532 

VP total -.446 .646 

V2d total -.453 .532 

V3 total -.195 .588 

OCT RNFL Sup .743 .124 

OCT RNFL Inf .781 .459 

OCT RNFL Temp .429 .146 

OCT RNFL Nasal .432 .560 

Fig. 22: Variance accounted for the present variables (left); individual component loadings (right). Tests 

were evaluated at the 0.05 significance level. Plot of the principal component loadings (below). 
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LHON (2nd part of study) 

 

Cortical thickness of retinotopic areas 
 

Leber hereditary optic neuropathy (LHON) is characterized by bilateral, subacute visual 

failure that develops during young adulthood; males are more prone (approximately 

four times) to develop this condition than females. These patients are usually 

asymptomatic until they develop visual blurring that affects the central visual field of 

one eye; however, similar symptoms appear in the other eye weeks later. 

Nevertheless, in about a quarter of the cases, visual loss is bilateral at onset. Visual 

acuity is severely reduced visual field testing (e.g., perimetry) shows an enlarging 

central or scotoma. Later, after the initial acute phase, the optic discs become atrophic. 

Improvements in visual acuity are rare and most of these patients will present a visual 

acuity of ≤20/200, which classifies them as blind. Mutations in the mitochondrial genes 

that encode subunits of NADH dehydrogenase, MT-ND1, MT-ND2, MT-ND4, MT-ND5, 

and MT-ND6, are known to be associated with LHON. 

The table below presents all CT measurements used during this part of the study; all 

values are in millimeters. In total, 20 Leber’s hereditary optic neuropathy patients 

performed the anatomical/functional MRI exams and underwent a full optic assessment 

(retinian and RNFL thickness of the macula and RNFL thickness of the optic nerve). In 

terms of CT of visual areas, there are six rows of data for each subject (ID) – foveal, 

intermediate and peripheral sub-regions, for both hemispheres. Average and Total 

values were calculated for each sub-region and visual area, respectively. 

ID Age Group Hemisphere 
V1 
avg V1 tot. 

V2v 
avg 

V2v 
tot. 

VP 
avg 

VP 
tot. 

V2d 
avg 

V2d 
tot. 

V3 
avg V3 tot. 

3 67 LHON LH - fovea 1,56   2,05   2,15   1,82   1,80   

3 67 LHON LH - inter. 1,82 1,83 2,43 2,30 2,22 2,22 2,13 2,09 1,91 1,90 

3 67 LHON LH - perif. 2,10   2,41   2,29   2,31   2,00   

3 67 LHON RH - fovea 1,88   2,10   2,17   1,99   2,16   

3 67 LHON RH - inter. 1,91 2,08 2,48 2,56 2,38 2,24 2,10 2,14 2,37 2,18 

3 67 LHON RH - perif. 2,44   3,11   2,16   2,34   2,00   

13 20 LHON LH - fovea 1,93   2,24   2,14   2,06   2,10   

13 20 LHON LH - inter. 2,95 2,30 2,31 2,29 2,59 2,26 2,18 2,20 1,86 1,98 

13 20 LHON LH - perif. 2,03   2,33   2,04   2,36   1,97   

13 20 LHON RH - fovea 2,41   2,08   2,19   1,50   2,06   

13 20 LHON RH - inter. 2,52 2,42 2,28 2,26 2,27 2,33 2,48 2,27 2,53 2,27 

13 20 LHON RH - perif. 2,34   2,41   2,54   2,83   2,23   

17 12 LHON LH - fovea 2,00   1,71   1,80   1,67   2,09   

17 12 LHON LH - inter. 2,68 2,32 2,07 2,01 2,36 2,02 2,84 2,44 2,20 2,25 

17 12 LHON LH - perif. 2,27   2,26   1,91   2,81   2,45   

17 12 LHON RH - fovea 1,65   1,47   1,83   1,92   2,01   

17 12 LHON RH - inter. 2,58 2,13 2,30 1,99 2,12 1,99 2,67 2,38 2,33 2,20 

17 12 LHON RH - perif. 2,16   2,19   2,01   2,55   2,27   
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11 20 LHON LH - fovea 2,12   2,02   2,05   2,14   2,17   

11 20 LHON LH - inter. 2,23 2,25 2,21 2,14 2,54 2,37 2,62 2,52 2,05 2,19 

11 20 LHON LH - perif. 2,40   2,19   2,51   2,79   2,35   

11 20 LHON RH - fovea 2,33   2,68   1,99   2,08   2,22   

11 20 LHON RH - inter. 2,22 2,25 2,93 2,71 2,22 2,17 2,40 2,43 2,40 2,33 

11 20 LHON RH - perif. 2,21   2,53   2,29   2,81   2,36   

8 37 LHON LH - fovea 2,03   2,49   2,73   1,85   2,44   

8 37 LHON LH - inter. 2,14 2,16 2,27 2,46 2,88 2,62 2,23 2,00 2,33 2,30 

8 37 LHON LH - perif. 2,32   2,61   2,25   1,92   2,14   

8 37 LHON RH - fovea 2,18   2,26   2,15   1,46   2,07   

8 37 LHON RH - inter. 2,35 2,21 2,22 2,22 2,23 2,35 2,47 2,19 2,26 2,18 

8 37 LHON RH - perif. 2,11   2,19   2,67   2,65   2,20   

15 17 LHON LH - fovea 2,08   2,46   1,99   2,13   2,40   

15 17 LHON LH - inter. 2,07 2,12 2,79 2,54 2,58 2,32 2,40 2,31 2,45 2,32 

15 17 LHON LH - perif. 2,21   2,36   2,40   2,40   2,11   

15 17 LHON RH - fovea 2,22   2,36   2,41   1,93   2,21   

15 17 LHON RH - inter. 2,13 2,36 2,97 2,74 2,76 2,53 2,59 2,27 2,22 2,24 

15 17 LHON RH - perif. 2,72   2,90   2,42   2,29   2,28   

7 38 LHON LH - fovea 1,97   2,42   2,48   1,83   2,27   

7 38 LHON LH - inter. 1,73 1,87 2,17 2,14 2,63 2,45 1,92 1,85 2,28 2,19 

7 38 LHON LH - perif. 1,90   1,82   2,23   1,79   2,03   

7 38 LHON RH - fovea 2,34   2,61   1,88   2,12   1,98   

7 38 LHON RH - inter. 2,07 2,21 2,95 2,73 2,16 2,06 1,80 1,96 1,76 1,85 

7 38 LHON RH - perif. 2,22   2,64   2,13   1,95   1,81   

9 35 LHON LH - fovea 2,13   3,03   2,76   2,07   2,24   

9 35 LHON LH - inter. 2,65 2,44 3,00 2,88 3,01 2,79 2,21 2,13 2,64 2,38 

9 35 LHON LH - perif. 2,53   2,61   2,61   2,11   2,26   

9 35 LHON RH - fovea 2,21   2,32   2,28   2,18   2,05   

9 35 LHON RH - inter. 2,41 2,30 2,51 2,40 2,71 2,67 2,18 2,33 2,36 2,23 

9 35 LHON RH - perif. 2,27   2,36   3,01   2,62   2,27   

14 17 LHON LH - fovea 1,99   2,30   3,07   2,61   2,41   

14 17 LHON LH - inter. 2,30 2,17 2,92 2,56 2,63 2,83 2,06 2,24 2,31 2,38 

14 17 LHON LH - perif. 2,21   2,45   2,79   2,05   2,42   

14 17 LHON RH - fovea 2,43   2,12   2,13   2,04   2,67   

14 17 LHON RH - inter. 2,63 2,49 3,06 2,79 2,65 2,49 2,35 2,51 2,44 2,55 

14 17 LHON RH - perif. 2,40   3,18   2,69   3,15   2,55   

20 7 LHON LH - fovea 2,41   1,99   2,22   2,20   2,53   

20 7 LHON LH - inter. 1,95 2,17 2,69 2,50 2,63 2,65 2,35 2,43 2,34 2,54 

20 7 LHON LH - perif. 2,14   2,83   3,11   2,74   2,75   

20 7 LHON RH - fovea 2,52   2,65   2,57   2,38   2,70   

20 7 LHON RH - inter. 3,30 2,74 2,89 3,16 2,75 2,70 3,02 2,75 3,04 2,78 

20 7 LHON RH - perif. 2,41   3,94   2,79   2,85   2,61   

6 39 LHON LH - fovea 1,68   2,44   2,18   2,18   2,95   

6 39 LHON LH - inter. 3,05 2,33 3,00 2,66 2,84 2,85 2,35 2,31 3,00 2,82 

6 39 LHON LH - perif. 2,27   2,53   3,53   2,39   2,51   

6 39 LHON RH - fovea 2,07   2,24   2,37   2,05   2,17   

6 39 LHON RH - inter. 3,00 2,49 3,46 2,89 3,23 2,69 2,84 2,56 2,48 2,37 

6 39 LHON RH - perif. 2,40   2,97   2,48   2,78   2,46   

5 41 LHON LH - fovea 2,03   2,62   1,92   2,37   1,93   

5 41 LHON LH - inter. 2,73 2,49 2,46 2,60 2,21 2,16 2,41 2,29 2,83 2,38 

5 41 LHON LH - perif. 2,71   2,71   2,34   2,09   2,39   

5 41 LHON RH - fovea 2,16   2,31   2,49   1,77   2,30   
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5 41 LHON RH - inter. 2,98 2,62 2,94 2,69 2,70 2,62 2,11 2,05 2,57 2,34 

5 41 LHON RH - perif. 2,71   2,81   2,66   2,28   2,16   

2 44 LHON LH - fovea 1,81   2,42   2,35   2,61   2,40   

2 44 LHON LH - inter. 2,46 2,31 3,06 2,65 2,80 2,68 2,97 2,82 2,87 2,50 

2 44 LHON LH - perif. 2,65   2,46   2,90   2,88   2,22   

2 44 LHON RH - fovea 2,29   3,03   2,61   1,79   2,42   

2 44 LHON RH - inter. 3,15 2,71 3,63 3,37 3,47 3,02 2,77 2,15 2,70 2,58 

2 44 LHON RH - perif. 2,69   3,46   2,97   1,90   2,62   

1 45 LHON LH - fovea 2,16   1,86   2,33   2,43   1,91   

1 45 LHON LH - inter. 2,52 2,47 2,89 2,47 2,82 2,57 2,76 2,52 2,45 2,15 

1 45 LHON LH - perif. 2,73   2,66   2,56   2,38   2,10   

1 45 LHON RH - fovea 2,07   2,48   2,42   2,09   2,44   

1 45 LHON RH - inter. 2,96 2,45 3,23 2,97 2,66 2,50 2,46 2,85 2,67 2,58 

1 45 LHON RH - perif. 2,33   3,19   2,41   3,99   2,63   

19 8 LHON LH - fovea 2,16   3,41   2,63   2,70   2,86   

19 8 LHON LH - inter. 1,90 2,01 3,87 3,69 2,19 2,61 2,42 2,76 2,64 2,77 

19 8 LHON LH - perif. 1,97   3,79   3,01   3,15   2,80   

19 8 LHON RH - fovea 2,71   3,53   3,23   1,87   2,83   

19 8 LHON RH - inter. 2,88 2,58 3,65 3,39 3,32 3,04 2,60 2,49 3,00 2,83 

19 8 LHON RH - perif. 2,15   2,99   2,58   2,99   2,65   

12 15 LHON LH - fovea 2,15   2,77   2,14   2,37   2,65   

12 15 LHON LH - inter. 2,64 2,35 2,92 3,06 3,19 2,62 2,51 2,71 3,15 2,88 

12 15 LHON LH - perif. 2,26   3,48   2,53   3,26   2,84   

12 15 LHON RH - fovea 1,66   2,74   2,61   1,57   2,09   

12 15 LHON RH - inter. 2,85 2,29 2,57 2,79 3,56 3,07 2,17 2,11 2,13 2,22 

12 15 LHON RH - perif. 2,36   3,07   3,04   2,60   2,44   

18 18 LHON LH - fovea 1,85   2,12   2,24   1,92   1,94   

18 18 LHON LH - inter. 2,33 2,04 2,35 2,21 1,90 2,10 2,55 2,29 2,38 2,19 

18 18 LHON LH - perif. 1,94   2,17   2,15   2,39   2,24   

18 18 LHON RH - fovea 1,76   2,18   2,49   1,80   1,94   

18 18 LHON RH - inter. 2,36 2,10 3,22 2,54 2,54 2,35 2,37 2,31 2,22 2,15 

18 18 LHON RH - perif. 2,17   2,23   2,01   2,76   2,28   

22 23 LHON LH - fovea 2,28   2,33   2,42   2,36   2,55   

22 23 LHON LH - inter. 2,70 2,46 2,79 2,67 2,72 2,53 2,18 2,48 2,82 2,76 

22 23 LHON LH - perif. 2,40   2,88   2,45   2,89   2,90   

22 23 LHON RH - fovea 2,51   2,75   2,60   2,24   2,45   

22 23 LHON RH - inter. 3,21 3,03 3,19 3,19 3,48 3,04 3,05 2,70 3,01 2,84 

22 23 LHON RH - perif. 3,36   3,63   3,05   2,80   3,05   

16 25 LHON LH - fovea 2,00   2,34   2,15   1,85   2,08   

16 25 LHON LH - inter. 2,31 2,24 1,82 2,03 2,05 2,36 2,18 2,09 2,34 2,19 

16 25 LHON LH - perif. 2,40   1,93   2,87   2,25   2,15   

16 25 LHON RH - fovea 2,02   2,78   2,26   1,76   2,25   

16 25 LHON RH - inter. 2,28 2,17 1,99 2,53 2,40 2,31 2,52 2,37 2,03 2,13 

16 25 LHON RH - perif. 2,22   2,81   2,28   2,83   2,12   

10 29 LHON LH - fovea 1,91   2,06   1,78   1,89   2,22   

10 29 LHON LH - inter. 2,03 2,04 2,19 2,17 2,78 2,48 2,39 2,17 2,33 2,26 

10 29 LHON LH - perif. 2,18   2,26   2,88   2,22   2,23   

10 29 LHON RH - fovea 2,06   1,81   2,74   2,24   2,02   

10 29 LHON RH - inter. 2,37 2,24 2,49 2,36 2,88 2,72 2,37 2,33 2,14 2,17 

10 29 LHON RH - perif. 2,28   2,79   2,53   2,39   2,34   

 

Table 5: Values of cortical thickness for individual visual areas of 20 LHON subjects. 
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Correlations between thickness of retinotopic areas and retinal 

nerve fiber layer of the optic nerve (RNFL) and macular regions 

 

The correlations between the cortical thickness of visual areas and the RNFL of the 

optic nerve were primarily obtained with parametric statistics (Pearson Correlation 

coefficient). The analyses were performed using all data (CT from both hemispheres) 

and, when appropriate, for each hemisphere. All variables follow a normal distribution 

(Kolmogorov-Smirnov test, p>0.01). 
 

LH+RH (N=40) V2v Total VP Total V2d Total V3 Total 

V1 Total Pearson Correlation ,521 ,509 ,406 ,554 

Sig. (2-tailed) ,001 ,001 ,009 ,000 

     V2v Total Pearson Correlation 1 ,614 ,454 ,691 

Sig. (2-tailed) 
 

,000 ,003 ,000 

     
VP Total Pearson Correlation ,614

**
 1  ,599 

Sig. (2-tailed) ,000 
 

N.S. ,000 

     V2d Total Pearson Correlation ,454
**
 ,198 1 ,627 

Sig. (2-tailed) ,003 ,221 
 

,000 

      

Table 6: Correlations between cortical thickness of individual visual areas of 20 LHON subjects; only VP – 

V2d did not reach statistical significance. 

 

To rule out the possibility of these correlations being heavily age-dependent, we have 

divided our data set into two groups, by choosing a threshold age of 21. 

 

Age <= 21 (N=18) V2v Total VP Total V2d Total V3 Total 

V1 Total Pearson Correlation     

Sig. (2-tailed) N.S. N.S. N.S. N.S. 

     V2v Total Pearson Correlation 1 ,687 ,564 ,800 

Sig. (2-tailed) 
 

,002 ,015 ,000 

     
VP Total Pearson Correlation ,614

**
 1  ,550 

Sig. (2-tailed) ,000 
 

N.S. ,018 

     V2d Total Pearson Correlation ,454
**
 ,198 1 ,797 

Sig. (2-tailed) ,003 ,221 
 

,000 

 

Table 7: Correlations between cortical thickness of individual visual areas of LHON subjects younger than 

21; other than VP – V2d, none of V1 correlations reached statistical significance (above). However, for 

subjects older than 21, the correlations between V1 and all other visual areas reappear (below). 
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Age > 21 (N=22) V2v Total VP Total V2d Total V3 Total 

V1 Total Pearson Correlation ,776 ,625 ,508 ,677 

Sig. (2-tailed) ,000 ,002 ,016 ,001 

     V2v Total Pearson Correlation 1 ,548  ,581 

Sig. (2-tailed) 
 

,008 N.S. ,005 

     
VP Total Pearson Correlation ,614

**
 1  ,700 

Sig. (2-tailed) ,000 
 

N.S. ,000 

     V2d Total Pearson Correlation ,454
**
 ,198 1 ,540 

Sig. (2-tailed) ,003 ,221 
 

,010 

     
 

 

Visual areas – RNFL optic nerve 

 

Pearson Correlation 

 

Sig. (2-tailed) 

 

N 

V1 – RNFL_NI_OE .371 .048 38 

V2v – RNFL_NI_OE .436 .006 38 

VP – RNFL_NI_OE .357 .028 38 

VP – RNFL_NI_OD .498 .001 38 

 

Table 8: Correlations between cortical thickness of individual visual areas of LHON subjects and RNFL 

thickness in the optic nerve (average values by quadrants).  

 

 

RNFL optic nerve 

 

Pearson Correlation 

 

Sig. (2-tailed) 

 

N 

TS_OE – TS_OD .586 .000 38 

TS_OE – TI_OE .605 .000 38 

TS_OD – TI_OD .552 .000 38 

TI_OE – TI_OD .498 .001 38 

 

Table 9: Correlations between RNFL thickness of different quadrants in the optic nerve. Despite having 

found several correlations among RNFL thickness of different optic nerve regions, the strongest ones were 

interestingly between temporal regions (different regions in the same eye or same region in different eyes). 

 
 

As for the last structural analysis, we have decided to look into possible differences in 

retinocortical correlations according to eccentricity. For this purpose, OCT thickness 

values of the macular retina were divided into three rings (1 – foveal region, 2 – 

intermediate region, 3 – peripheral region); Cortical thickness was sampled similarly, 

providing an average CT value for foveal, intermediate and peripheral sub-regions for 

each visual area.  
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Eccentricity 

Visual areas – macular OCT 

 

Pearson Correlation 

 

Sig. (2-tailed) 

 

N 

V1 Int – Ring 2_OE -0.462 .004 38 

V1 Int – Ring 2_OD -0.463 .003 40 

V1 Int – Ring 3_OE -0.474 .003 38 

V1 Int – Ring 3_OD -0.493 .001 40 

V2v Per – Ring 2_OE -0.483 .002 38 

V2v Per – Ring 3_OE -0.471 .003 38 

V2d Int – Ring 2_OE -0.450 .005 38 

V2d Int – Ring 2_OD -0.360 .023 40 

V2d Int – Ring 3_OE -0.446 .005 38 

V2d Per – Ring 3_OE -0.376 .020 38 

V3 Per – Ring 3_OE -0.419 .009 38 

 

Table 10: Correlations between thickness of individual visual areas (by eccentricity of VF representation) 

and thickness of the macular retina (by eccentricity rings). 

 

 

Fig. 23: Correlations between V1 (intermediate sub-region) thickness and average thickness of the 

intermediate ring (Ring 2) of the macular retina; all LHON subjects (left) and age-grouped (right) where 

blue dots represent younger subjects (<21) and green dots represent older subjects (>21). The correlation 

results were virtually identical whether we considered OCT values from the left (OE) or the right (OD) eye. 
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Correlations between thickness of retinotopic areas and sensory 

performance (SAP) 

 
For the functional global measures, MD(dB) and LV(dB), there was a statistically 

significant correlation between them (Pearson coefficient of 0.581, p<0.001). As LV did 

not follow a normal distribution, we used a non-parametric test that confirmed the 

correlation (Spearman coefficient of 0.518, p=0.001); data from both hemispheres were 

included. Additionally, LV correlated with all macular regions of both eyes (i.e., with its 

thickness values); Spearman coefficient ranged from 0.363 (Nasal OE) to 0.527 

(Temporal OE), p<0.01, n=39. 

 

Leber (LH+RH) 

Visual areas – SAP (dB) 

 

Pearson Correlation 

 

Sig. (2-tailed) 

 

N 

V1 – TS_OD .363 .021 40 

VP – TI_OE .436 .006 40 

V3 – TS_OD .414 .008 40 

V3 – NI_OD .335 .034 40 

 
Leber (LH) 

Visual areas – SAP (dB) 

 

Pearson Correlation 

 

Sig. (2-tailed) 

 

N 

VP – TI_OE .466 .044 20 

V3 – TS_OD .498 .025 20 

V3 – NI_OD .508 .022 20 

V3 – TI_OE .505 .028 20 

 
Leber (RH) 

Visual areas – SAP (dB) 

 

Pearson Correlation 

 

Sig. (2-tailed) 

 

N 

V1 – TS_OD .466 .038 20 

 
Table(s) 11: Correlations between thickness of retinotopic areas and sensory performance (SAP); the (3) 

data tables above present all the statistically significant correlations found between CT of visual areas and 

sensory performance, provided by SAP. All variables follow a normal distribution (Kolmogorov-Smirnov 

test, p>0.01). 

 

Once again, it is the temporal region that seems to be more closely correlated with 

structural alterations at the cortical level; the most significant correlations were found 

predominantly between the functional activity of the retinal temporal region and the 

extrastriate areas of the left hemisphere. 

When analyzing solely the functional measures, the results for each region (retinal 

quadrant) indicate a strong correlation among all regions. 
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CatPCA and FA (factor analysis) 

 

Similarly to what we have done in the first part of this study, we analyzed our data with 

a multivariate method known as Principal Components Analysis, as all relevant 

variables were quantitative. Instead of a ‘Group’ variable, we wanted to explore the 

influence of the subjects’ age (age range – two groups, threshold age of 21) on both 

cortical and macular retina thickness. This type of analysis is particularly useful to 

reduce the dimensionality of variables (measured in different scales) and reveals 

trends in dependency between different sets of variables.  

 

Dimension Cronbach's Alpha Variance Accounted For 

 Total (Eigen value) Total (Eigen value) 

1 .893 5.852 

2 .667 2.628 

Total .950 8.480 

 

Fig. 24: Total Cronbach's Alpha is based on the total Eigen value and serves as an indicator of reliability of 

a model. Typically a model with a Cronbach’s Alpha over 0.7 is considered to be sound.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Variance accounted for the present variables (left); individual component loadings (right). Tests 

were evaluated at the 0.05 significance level. Plot of the principal component loadings (below). 

 

 Total (Vector Coordinates) 

 Dimension Total 

 2 1 2 

Age Range .064 .078 .142 

V1 Total .161 .425 .586 

V2v Total .239 .425 .665 

VP Total .239 .247 .485 

V2d Total .016 .487 .503 

V3 Total .238 .552 .790 

QTSdBOE .671 .114 .785 

QTSdBOD .648 .000 .648 

QNSdBOE .518 .039 .557 

QNSdBOD .597 .008 .605 

QNIdBOE .547 .108 .655 

QNIdBOD .597 .002 .600 

QTIdBOE .655 .083 .738 

QTIdBOD .661 .059 .720 

ctive Total 5.852 2.628 8.480 

 

Dimension 

1 2 

Age Range .253 -.280 

V1 Total .401 .652 

V2v Total .489 .652 

VP Total .489 .497 

V2d Total .127 .698 

V3 Total .488 .743 

QTSdBOE .819 -.338 

QTSdBOD .805 -.004 

QNSdBOE .719 -.198 

QNSdBOD .773 -.090 

QNIdBOE .740 -.329 

QNIdBOD .773 -.049 

QTIdBOE .810 -.288 

QTIdBOD .813 -.242 
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To confirm the results provided by the CatPCA, we further used a multivariate tool that 

allows the integration of the age data as a numerical variable (instead of a category, 

with only two values – ‘>21’ or ‘<21’. Therefore, the subjects age will be looked at as a 

factor that may be influencing the other variables; therefore its name, factor analysis. 
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In this study, we have identified several particular traits of cortical involvement in 

progressive optic neuropathies. For our glaucoma patients (HTO, GS, G), we have not 

found evidence of any relevant cortical degeneration throughout disease progression 

that could account for visual loss; on the contrary, in some cases higher RGC’s loss 

(and consequently retinal thinning) and diminished functional activity (provided by 

FDT), correlates with an increase in cortical thickness in certain visual areas (namely, 

V1 and V2d). However, for the Leber’s neuropathy group, we have came across 

different findings. First, although CT of different visual areas was relatively well 

correlated, we have found that the V1 from younger subjects (<21) did not present the 

same structural behavior. Furthermore, we encountered a significant correlation 

between the RNFL thinning in the optic nerve and the reduction in cortical thickness of 

visual areas (mainly ventral, V2v and VP). Surprisingly, we could not finding similar 

correlations between the macular retina and the cortex; furthermore, when we looked 

for these effects in terms of eccentricity, we found a negative correlation for some sub-

regions of the visual areas and the macular rings from which they partially received 

their visual input from, as if some sort of structural plasticity was going on. 

 

Glaucoma 

The V2v-VP thickness correlation is statistically significant for all groups and it is one of 

the strongest correlations between visual areas we have found (Table 2). This does not 

appear to be surprising as these areas are contiguously located in the ventral part of 

the visual cortex and have a strong functional connection (they encode the same 

quadrant of the lower visual field). Similarly, it has been found that RNFL thickness in 

different regions (i.e., superior, inferior and nasal) of the retina are strongly correlated; 

interestingly, the temporal region seems to be an exception for the most part. The 

particular behavior of this region is consistent with our previous reports in normal 

subjects and patients (Silva et al., 2008; Mendes et al., 2005). 

A striking negative correlation has been found for HTO subjects between V2d (for LH, 

on the left) / V3 (for RH, on the right) and the RNFL superior region’s thickness (Fig. 

20). As V2d and V3 are both dorsal visual regions that are encoding the inferior visual 

field (which is represented on the superior part of the retina), this could be due to a 

direct effect of a localized retinal degeneration. In this way, the observed cortical 

behavior could be interpreted as a compensatory plasticity mechanism that is occurring 

early on in the degenerative process. This might also help explain some of the 

surprising negative structure-function correlations (FDT and V2d in GS and V1 in 

HTO). 
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When we further analyzed our data in search for a link between the retinal structure 

and the electrophysiological parameters (we have considered both PERG N35-P50 

and PERG P50-N95, as well as the superior, inferior, nasal and temporal RNFL 

thickness values), we found that, for the advanced glaucoma group (G), the RNFL 

thickness of the superior region is correlated with the PERG- P50-N95 signals. Despite 

similar trend have been observed for other RNFL regions, this was the only correlation 

that emerged as statistically significant (non-parametric tests). 

Lastly, we have subjected our data to multivariate analyses techniques, MANOVA and 

CatPCA. In terms of RNFL OCT, the global analysis of variables (nasal, temporal, 

inferior and superior) has revealed a significant difference (λ Wilks, p<0.001). ANOVA 

tests for each RNFL region revealed significant differences among groups for superior 

(HTO=GS≠G, p=0.001), inferior (HTO=GS≠G, p<0.001) and nasal (HTO=GS≠G, 

p=0.026) regions; for the temporal region, instead, we found differences between the 

HTO and G groups (p=0.032). One possible explanation for this difference could be an 

early on degeneration of the RNFL temporal region.  

Similarly, group differences were detected for FDT quadrants (TS, NS, NI and TI) by 

the MANOVA (λ Wilks, p<0.001); the significant differences were once again detected 

for the G group (HTO=GS≠G) for all quadrants. As for the cortical thickness of visual 

areas, no group differences have been found when evaluating the joint effects on the 

five regions (λ Wilks, p>0.001). This corroborates the initial findings of a minimal or null 

CT correlation with the progression of this visual disorder. 

The plot of the obtained component loadings (Fig. 22) provides a very straightforward, 

visual representation of these results. The RNFL thickness vectors for each region are 

pointing in the opposite direction of the Group variable, which implies that they are 

inversely related; the thickness of visual areas, however, is clearly more independent 

from the Group, as evidenced by the vectors’ orthogonality. 

 

LHON – Leber Neuropathy 

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial 

disorder characterized by bilateral loss of central vision, most frequently found in young 

adult males. As it becomes clear from our initial structural analysis (Table 6), cortical 

thickness of the visual areas are highly correlated among each other; but this alone 

would not suffice to suggest that the patients present widespread anatomical 

alterations throughout the visual cortex. To rule out the possibility of these correlations 

being heavily age-dependent, we have divided our data set into two groups, by 

choosing a threshold age of 21. This has revealed that, although strong correlations 

between V1 and all extrastriate areas remain significant for the group of older subjects 
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(>21), they disappear for the subjects that are under 21 years of age (Table 7). From 

these observations, we may hypothesize that the extrastriate areas only become 

structurally affected in later stages of disease, while V1, as the primary area receiving 

visual input, follows the degenerative path at an earlier stage when the retina and the 

optic nerve has not yet been severely affected. This might explain the early 

decorrelation pattern and later association, as damage becomes widespread in the 

visual system. 

 

In terms of correlations between cortical thickness of individual visual areas of LHON 

subjects and RNFL thickness in the optic nerve (average values by quadrants), we 

have found them to be significant for V1, V2v and VP (interestingly always with the 

nasal-inferior region of the RNFL). This suggests that the ventral visual areas of the 

cortex are being affected first by alterations at the retina level (Table 8). However, the 

retinal impact in the cortex could not be associated to the degeneration of the macular 

region, since no positive correlations between macular retina thickness (OCT) and 

cortical thickness of visual areas have been found. 

When looking only at the retinal data, strong correlations were found between 

thickness of all regions of the macular retina, which is in agreement with a progressive 

degeneration that does not preferentially develop in any macular region. 

In the following structural analysis, we have decided to look into possible differences in 

retinocortical correlations according to eccentricity. The results revealed a surprising 

negative correlation for the average thickness of the macular eccentricity rings and the 

CT of visual areas. These effects were particularly relevant for the intermediate (V1_Int 

and V2d_Int) and peripheral (V2d_Per and V3_Per) sub-regions of the dorsal visual 

areas. As stated above, such correlations may suggest a sort of structural plasticity 

which may occur when most patients are mostly carriers of a disease mutation (11778 

G to A mtDNA point mutation as investigated by standard PCR and automatic 

sequencing methods). 

 

As for the structure-function (CT – SAP) correlations in LHON subjects, it is the 

temporal region that seems to be more closely correlated with structural alterations at 

the cortical level; the most significant correlations were found predominantly between 

the sensory performance corresponding to the retinal temporal region and extrastriate 

areas (VP and V3) of the left hemisphere. 

When analyzing solely the functional measures, the results for each region (retinal 

quadrant) indicate a strong correlation among all regions. 
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Finally, the multivariate approach revealed the partial dependence between the 

functional activity in the retina and cortical thickness (particularly clear for VP), while 

age appeared as a factor that is negatively related to the CT of visual areas; this effect 

is more clear with the FA than with the CatPCA, where age range (only two classes) is 

considered. 

 

We conclude that the pattern of visual loss is different in the two studied visual 

conditions, glaucoma and Leber neuropathy. In the latter we found evidence for a 

correlation between cortical thickness and sensory performance and structural 

evidence for compensatory plasticity. Such plasticity seems to be weaker in glaucoma, 

which is consistent with the idea that brains of subjects form older populations are less 

prone to plastic changes. Future studies should further explore in larger samples of 

subjects the surprising correlational patterns we have found in this study. 
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