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Abstract: In this paper we study sequences of vector orthogonal polynomials. The
vector orthogonality presented here provides a reinterpretation of what is known in
the literature as matrix orthogonality. These systems of orthogonal polynomials
satisfy three-term recurrence relations with matrix coefficients that do not obey
to any type of symmetry. In this sense the vectorial reinterpretation allows us to
study a non-symmetric case of the matrix orthogonality. We also prove that our
systems of polynomials are indeed orthonormal with respect to a complex measure
of orthogonality. Approximation problems of Hermite-Padé type are also discussed.
Finally, a Markov’s type theorem is presented.
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tional, recurrence relation, tridiagonal operator, Favard theorem, Nevai class.
AMS Subject Classification (2000): Primary 33C45; Secondary 39B42.

1. Introduction

In the late eighties of the last century, the following problem attracted the
interest of many researchers.

When a sequence of monic polynomials, {pn}n∈N, satisfying a recurrence re-
lation

xNpn(x) = cn,0pn(x) +
N∑

k=1

[cn,kpn−k(x) + cn+k,kpn+k(x)] , (1)

where cn,0 (n = 0, 1, . . .) is a real sequence and cn,k, (n = 1, 2, . . .) are se-
quences of complex numbers for k = 1, 2, . . . , N with cn,N 6= 0, is related with
some kind of orthogonality?

Several authors (A. J. Durán, F. Marcellán, W. Van Assche, and S. M.
Zagorodnyuk, among others) were interested on this subject. Their contri-
butions revealed an enormous interdisciplinarity between different kinds of
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orthogonality (like Sobolev orthogonality, orthogonality on rays of the com-
plex plane) and several applications, mainly quadrature formulas. From the
extensive bibliography on the subject we stand out the references [1, 4, 5, 7,
10, 13, 14, 15, 16, 17, 18, 19].

In his work [4], A. J. Durán presents for the first time a Favard’s theorem
for sequences of polynomials {pn}n∈N satisfying recurrence relations like (1).
Few years later this result was reformulated by the author together with
W. Van Assche in [7] where they stated the connection between sequences
of matrix orthogonal polynomials and sequences of polynomials that satisfy
a higher order recurrence relation. As an application, the authors gave an
interpretation of a Sobolev discrete inner product.

In this context the authors considered a positive integer number N and
the operators RN,m, m = 0, 1, . . . , N − 1, defined on the linear space of
polynomials, P, by

RN,m(p)(x) =
∞∑

n=0

p(nN+m)(0)

(nN + m)!
xn,

i.e, the operator RN,m takes from p just those powers with remainder m
(modulus N) and then removes xm and changes xN to x proving then, the
following result.

Theorem 1. [4] Suppose that {pn}n∈N, with deg pn = n, is a sequence of
polynomials satisfying a (2N + 1)−term recurrence relation as (1) and let
{Pn}n∈N be a matrix polynomial sequence defined by

Pn(x) =




RN,0(pnN)(x) · · · RN,N−1(pnN)(x)
... . . . ...

RN,0(p(n+1)N−1)(x) · · · RN,N−1(p(n+1)N−1)(x)


 .

Then, this sequence is orthonormal on the real line with respect to a positive
definite matrix of measures and satisfies a three-term recurrence relation with
matrix coefficients.
Conversely, suppose that {Pn}n∈N, with Pn = [Pm,j

n ]N−1
m,j=0 , is a sequence of

orthonormal matrix polynomials or, equivalently, they satisfy a symmetric
three-term recurrence relation with matrix coefficients. Then the scalar poly-
nomials defined by

pnN+m(x) =
N−1∑

j=0

xjPm,j
n (xN) (n ∈ N, 0 ≤ m ≤ N − 1)
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satisfy a (2N + 1)−term recurrence relation of the form (1).

Taking into account the current relevance of the subject our work is con-
cerned with the analysis of higher order recurrence relations, in this case, of
order 2N + 1

h(x)pn(x) = cn+N−1
n+N pn+N(x) +

2N−1∑

k=0

cn+N−1
n+N−1−kpn+N−1−k(x) (2)

where h is a polynomial of fixed degree N and where cn+N−1
j , n ≥ 0, are

complex sequences for j = n−N, . . . , n + N − 1 with cn+N−1
n−N 6= 0 and initial

conditions on pi for i = 0, . . . , N − 1 are given.
We begin by pointing out that in the structure of the recurrence relation (2)

the polynomial h is a generic polynomial with fixed degree N and their
coefficients do not satisfy any kind of symmetry.

Our aim is to analyze this more general case by studying the sequences of
polynomials satisfying such a kind of recurrence relations in order to find out
what type of orthogonality is associated with them. On the other hand, as
an application, we expect to obtain some known results.

Let us consider the family of vector polynomials PN = {[p1 · · · pN ]T : pj ∈
P} , and MN×N(C) the set of N ×N matrices with complex entries. Given a
polynomial h, with deg h = N, we can split the linear space of polynomials, P,
using the basis

{1, x, . . . , xN−1, h(x), xh(x), . . . , xN−1h(x), h2(x), xh2(x), . . .}. (3)

Then, let {Pj}j∈N be a sequence of vector polynomials such that Pj(x) =

(h(x))j P0(x) , where P0(x) =
[
1 x · · · xN−1

]T
, j ∈ N. Let {pm}m∈N be a

sequence of polynomials, deg pm = m, m ∈ N. We define the associated
vector polynomial sequence {Bm}m∈N by

Bm =
[
pmN · · · p(m+1)N−1

]T
, n ∈ N .

A scalar polynomial pmN+k of degree mN + k, with 0 ≤ k ≤ N − 1, can be
expanded in the basis (3) as follows

pmN+k(x) =

m∑

i=0

N−1∑

j=0

ai,jx
jhi(x).

If we consider the operator Rh,N,j that takes from pmN+k the terms of the form
ai,jx

jhi(x) and then removes the common factor xj and change h(x) to x, we
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get

pmN+k(x) =
N−1∑

j=0

xjRh,N,j(pmN+k)(h(x)).

It is easy to see that we can write Bm in the matrix form

Bm(x) = Vm(h(x))P0(x), (4)

where Vm is a N × N matrix polynomial of degree m given by

Vm(h(x)) =




Rh,N,0(pnN)(h(x)) · · · Rh,N,N−1(pnN)(h(x))
... . . . ...

Rh,N,0(p(n+1)N−1)(h(x)) · · · Rh,N,N−1(p(n+1)N−1)(h(x))




and P0(x) =
[
1 x · · · xN−1

]T
. Equivalently, we can write the elements of the

sequence of matrix polynomials {Vm}m∈N in the form

Vm(h(x)) =
m∑

j=0

Bm
j (h(x))j,

where (Bm
j ) is a family of matrices with complex entries.

First we want to prove that if a sequence of scalar polynomials {pn}n∈N

satisfies a recurrence relation like (2) then there exists a sequence of vec-
tor polynomials denoted by {Bm}m∈N and a sequence of matrix polynomials
{Vm}m∈N defined by (4) that satisfies a recurrence relation with matrix coef-
ficients and the converse is also true.

Notice that we can rewrite (2) changing n by n + N − 1,

h(x)pn+N−1(x) = c
n+2(N−1)
n+2N−1 pn+2N−1(x) +

2N−1∑

k=0

c
n+2(N−1)
n+2(N−1)−k

pn+2(N−1)−k(x) (5)

and then, consider the N equations associated with (2) and (5).
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A straightforward calculation yields that the above system of N linear
equations can be written in the matrix form

h(x)




pn(x)
...

pn+N−1(x)


 =




cn+N−1
n+N

... . . .

cn+2N−2
n+N . . . cn+2N−2

n+2N−1







pn+N(x)
...

pn+2N−1(x)




+




cn+N−1
n . . . cn+N−1

n+N−1
... . . . ...

cn+2N−2
n . . . cn+2N−2

n+N−1







pn(x)
...

pn+N−1(x)




+



cn+N−1
n−N . . . cn+N−1

n−1
. . . ...

cn+2N−2
n−1






pn−N(x)

...
pn−1(x)


 .

Introducing the change of index n = mN in the above relation we get

h(x)Bm(x) = AmBm+1(x) + BmBm(x) + CmBm−1(x), m ≥ 1, (6)

Similarly, if we take into consideration Theorem 1 given by A. J. Durán, and
instead of using the canonical basis for the linear space of polynomials, P,
we deal with the basis (3), then we get a sequence of polynomials {Vm}m∈N

that satisfies the three-term recurrence relation

Vm(z) = AmVm+1(z) + BmVm(z) + CmVm−1(z), m ≥ 1

with some given initial conditions.
Notice that if we multiply this last relation by P0 then we obtain the recur-

rence relation for the sequence of vector polynomials {Bm}m∈N given by (6).
Finally, from (6) and taking into account the structure of the recurrence re-
lation as well as the expression of the vector Bm, we get the (2N + 1)−term
recurrence relation (2).

Theorem 2. Let {pn}n∈N be a sequence of scalar polynomials, {Bm}m∈N the
sequence of vector polynomials with

Bm(x) =
[
pmN(x) pmN+1(x) . . . p(m+1)N−1(x)

]T
,

and {Vm}m∈N the sequence of matrix polynomials given in (4). Then, the
following statements are equivalent:

(a) The sequence of scalar polynomials {pn}n∈N satisfies (2).
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(b) The sequence of vector polynomials {Bm}m∈N satisfies

h(x)Bm(x) = AmBm+1(x) + BmBm(x) + CmBm−1(x), m ≥ 1,

with initial conditions B−1(x) = 0N×1 and B0(x) given.
(c) The sequence of matrix polynomials {Vm}m∈N satisfies

zVm(z) = AmVm+1(z) + BmVm(z) + CmVm−1(z), m ≥ 1,

with initial conditions V−1(z) = 0N×N and V0(z) a fixed matrix.

The matrices Am, Bm, and Cm in the recurrence relations are given, respec-
tively by



c
(m+1)N−1
(m+1)N

... . . .

c
(m+2)N−2
(m+1)N · · · c

(m+2)N−2
(m+2)N−1


 ,




c
(m+1)N−1
mN · · · c

(m+1)N−1
(m+1)N−1

... . . . ...

c
(m+2)N−2
mN · · · c

(m+2)N−2
(m+1)N−1


 ,

and




c
(m+1)N−1
(m−1)N · · · c

(m+1)N−1
mN−1

. . . ...

c
(m+2)N−2
mN−1


 .

Now we consider the sequence of matrix polynomials {Vm}m∈N defined by

xVm(x) = AmVm+1(x) + BmVm(x) + CmVm−1(x) m ≥ 0, (7)

with initial conditions V−1(x) = 0N×N and V0(x) = IN×N .
The first question is to know when a sequence of matrix polynomials de-

fined by (7) is related to the matrix orthogonality.
If Cm = A∗

m−1 := ĀT
m−1 and Bm = B∗

m, there is a positive definite matrix

of measures W̃ supported on the real line, and so the polynomials {Vm}m∈N

are orthonormal with respect to a left inner product, i.e.,

〈Vi, Vj〉 =

∫

R

Vi(x)dW̃ (x)V ∗
j (x) = δi,jIN×N . (8)

In the last years several authors have studied analytic properties of matrix
orthonormal polynomials (see for example [4, 5, 6, 8]) and their connections
with the spectral theory of linear differential operators with matrix polyno-
mials as coefficients.

In the case when neither Cm = A∗
m−1 nor Bm are Hermitian we cannot

guarantee that the system of matrix polynomials {Vm}m∈N satisfying the
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recurrence relation (7) is orthogonal with respect to a inner product induced

by a positive definite matrix of measures W̃ .
In [3] the authors presented a result that characterizes the existence of

a matrix of measures W̃ such that the system of polynomials {Vm}m∈N is
orthogonal in the sense of (8). In fact, if the matrices Am and Cm, for
m ∈ N, in the recurrence relation (7), are non-singular then there exists a
matrix of measures on the real line with a positive definite Hankel matrix as
moment matrix such that the system of polynomials {Vm}m∈N defined by (7)

is orthogonal with respect to the measure W̃ in the sense of (8) if, and only
if, there exists a sequence of non-singular matrices {Rm}m∈N such that the
following relations hold:

• RmBmR−1
m is symmetric, ∀m ∈ N0 ,

• RT
mRm = C−T

m · · ·C−T
1 (RT

0 R0)A0 · · ·Am−1, ∀m ∈ N0 .
In this contribution we prove that a recurrence relation (7) characterizes a

different kind of orthogonality. The structure of the paper is as follows: In
section 2, we present the algebraic theory of the sequences of vector polyno-
mials. In this context, we define a vector linear functional and we introduce
the concept of right and left-orthogonality with respect to this linear func-
tional. In section 3, we present a reinterpretation of the matrix orthogonality
in terms of the vector orthogonality showing that there are two sequences
of matrix orthogonal polynomials with respect to a matrix of measures, not
necessarily positive definite, which are bi-orthogonal with respect to a vector
linear functional. In section 4, we analyze two type Hermite-Padé approxima-
tion problems and, finally, a Markov’s type Theorem is deduced in section 5.

2. Vector orthogonality

Let (PN)∗ be the linear space of vector linear functionals defined on the
linear space of vector polynomials with complex coefficients PN , i.e., (PN)∗

is the dual space of PN . In this space we define a vector of functionals as
follows.

Definition 1. Let uj : P → C with j = 1, . . . , N be linear functionals.
We define the vector of functionals U = [u1 · · · uN ]T in PN with values
in MN×N(C), by

U(P) := (U.PT )T =



〈u1, p1〉 · · · 〈uN , p1〉

... . . . ...
〈u1, pN〉 · · · 〈uN , pN〉


 ,
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where “(.)” means the symbolic product of U and PT .

Let Â(x) =
∑l

k=0 Ak xk, where Ak ∈ MN×N(C), be a matrix polynomial
and U be a vector of linear functionals. Let us consider the vector of linear
functionals, the so called left multiplication of U by Â, that we will denote
by Â U, such that

(ÂU)(P) := (ÂU.PT )T =

l∑

k=0

(xk
U)(P) (Ak)

T .

We will introduce the concept of sequence of vector polynomials left-ortho-
gonal with respect to the vector of linear functionals U and we will prove
that U is quasi-definite, i.e, there exists a unique sequence of vector polyno-
mials, up to the multiplication on the left by a non-singular matrix, that is
left-orthogonal with respect to U.

Definition 2. Let {pn}n∈N be a sequence of scalar polynomials with deg pn =
n , n ∈ N. Let h be a polynomial of fixed degree N , {Bm}m∈N be a sequence

of vector polynomials with Bm(x) =
[
pmN(x) pmN+1(x) · · · p(m+1)N−1(x)

]T
,

and let U =
[
u1 · · · uN

]T
be a vector of linear functionals. {Bm}m∈N is said

to be left-orthogonal with respect to the vector of linear functionals U, if

(a) (hkU) (Bm) = 0N×N , k = 0, 1, . . . , m − 1.
(b) (hmU) (Bm) = ∆m, m ∈ N, where ∆m is a non-singular upper trian-

gular matrix.

We introduce the notion of moment associated with the vector of linear
functionals U. Taking into account that {Pj}, with Pj(x) = (h(x))jP0(x)
and P0(x) = [1 x · · · xN−1]T , is a basis in the linear space of vector polyno-
mials PN , we denote (xkU)(Pj) = Uk

j the j-th moment associated with the

vector of linear functionals xkU.
The Hankel matrices associated with U are the matrices

Dm =




U0 · · · Um
... . . . ...

Um · · · U2m


 , m ∈ N,

where Uj are j-th moments associated with the vector of linear functionals U.
U is said to be quasi-definite if all leading principal submatrices of Dm, m ∈
N, are non-singular.
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The following result provides a necessary and sufficient condition for the
existence of a sequence of vector polynomials which are left-orthogonal with
respect to the vector of linear functionals U.

Theorem 3. Let U be a vector of linear functionals. Then U is quasi-definite
if, and only if, there exists a unique sequence of vector polynomials {Bm}m∈N

such that Bm =
∑m

j=0 αm
j Pj, where αm

j ∈ MN×N(C) with αm
m is non-singular

lower triangular matrix and a unique sequence, (∆m), of non-singular upper
triangular matrices such that (hkU) (Bm) = ∆mδk,m, k = 0, 1, . . . , m, m ∈ N.
Moreover,

Bm =
[
0 0 · · · ∆m

]



U(P0) · · · U(Pm)
... . . . ...

U(Pm) · · · U(P2m)



−1 


P0
...

Pm


 . (9)

Proof : To prove that U is quasi-definite. Let {Bm}m∈N be a sequence of
vector polynomials with Bm =

∑m
j=0 αm

j Pj, where αm
j ∈ MN×N(C) and {Pj}

is a basis in PN , such that Pj(x) = (h(x))jP0(x), P0(x) =
[
1 x · · · xN−1

]T
.

From the orthogonality conditions, the vector sequence of polynomials
{Bm}m∈N is left-orthogonal with respect to the vector of linear functionals U

if, for k = 0, . . . , m − 1,

(
hk

U
)
(Bm) =

(
hk

U
)
(

m∑

j=0

αm
j Pj) =

m∑

j=0

αm
j (hk

U) (Pj) = 0N×N ,

and for all m ∈ N,

(hm
U) (Bm) = (hm

U) (

m∑

j=0

αm
j Pj) =

m∑

j=0

αm
j (hm

U) (Pj) = ∆m.

Taking into account (hkU)(Pj) = U(Pj+k), the above conditions can be
read as

[
αm

0 αm
1 · · · αm

m

]



U(P0) · · · U(Pm)
... . . . ...

U(Pm) · · · U(P2m)


 =

[
0 0 · · · ∆m

]
. (10)

For m = 0, in (10) we have α0
0U0 = ∆0. Using the non-singularity of the

matrices α0
0 and ∆0, U0 is a non-singular matrix. In an analog way, taking
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m = 1 in (10), we have
{

α1
0 U0 + α1

1 U1 = 0N×N

α1
0 U1 + α1

1 U2 = ∆1,
i.e. α1

1(U2 − U1U
−1
0 U1) = ∆1.

Since ∆1 and α1
1 are non-singular matrices then det(U2 − U1U

−1
0 U1) 6= 0

and, as a consequence, the second leading principal submatrix is non-singular.
This argument can be inductively used and we obtain that U is quasi-definite.

Conversely, to find the vector sequence of polynomials such that {Bm}m∈N

with Bm =
∑m

j=0 αm
j Pj, where αm

j ∈ MN×N(C) and where αm
m is non-singular

lower triangular matrix such that (hkU) (Bm) = ∆mδk,m, k = 0, 1, . . . , m, m ∈
N, is equivalent to solve (10) for m ∈ N.
For m = 0, we have α0

0U0 = ∆0. Using the non-singularity of U0, and the
decomposition LU , we can find uniquely α0

0 a non-singular lower triangular
matrix, and ∆0 a non-singular upper triangular matrix such that α0

0U0 = ∆0.
For m = 1 we have{

α1
0 U0 + α1

1 U1 = 0N×N

α1
0 U1 + α1

1 U2 = ∆1,
i.e. α1

1(U2 − U1U
−1
0 U1) = ∆1.

Again, using that the second leading principal submatrix U2 − U1U
−1
0 U1 is

non-singular and the LU decomposition, we can find uniquely α1
1 a non-

singular lower triangular matrix and ∆1 a non-singular upper triangular ma-
trix such that α1

1 = (U2 − U1U
−1
0 U1) = ∆1. We also obtain from α1

0 U0 +
α1

1 U1 = 0N×N , uniquely the matrix α1
0. This argument can be inductively

used and we obtain the stated result.

Theorem 4. Let U be a quasi-definite vector of linear functionals and let
{Bm}m∈N be a sequence of vector polynomials. Then, the following statements
are equivalent:

(a) The vector sequence of polynomials {Bm}m∈N is left-orthogonal with
respect to the vector of linear functionals U, i.e.,

(hk
U) (Bm) = ∆mδk,m , k = 0, 1, . . . , m, m ∈ N, (11)

with ∆m a non-singular N × N upper triangular matrix given by

∆m = Cm · · · C1 ∆0, m ≥ 1,

where ∆0 is a N ×N non-singular matrix and {Cm}m∈N is a sequence
of non-singular upper triangular matrices.
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(b) There exist sequences of N ×N matrices, by {Am}m∈N,{Bm}m∈N, and
{Cm}m∈N with Cm a non-singular upper triangular matrix, such that

h(x)Bm(x) = AmBm+1(x) + BmBm(x) + CmBm−1(x), m ≥ 1, (12)

with B−1(x) = 0N×1, B0(x) = P0(x), where P0(x) =
[
1 x · · · xN−1

]T
.

Proof : To prove (a) ⇒ (b), first we consider the polynomial hBm and then
we take into account that hBm is a polynomial of degree m + 1 that can be
written

h(x)Bm(x) =
m+1∑

k=0

Am
k Bk(x), Am

k ∈ MN×N(C). (13)

We will prove that Am
k = 0N×N , for k = 0, 1, . . . , m − 2. Indeed, if we apply

the vector of functionals U to both sides of (13) then we get Am
0 = 0N×N .

Thus we can rewrite (13)

h(x)Bm(x) =
m+1∑

k=1

Am
k Bk(x) . (14)

Again, by applying the vector of functionals U to both sides of (14) we obtain

Am
1 = 0N×N .

Iterating this procedure, i.e., first by multiplying by h2, afterwards by h3 and
then, successively, applying U we get

Am
k = 0N×N , for k = 0, 1, . . . , m − 2 .

Thus, we can rewrite (13)

h(x)Bm(x) = Am
m−1Bm−1(x) + Am

mBm(x) + Am
m+1Bm+1(x). (15)

If we multiply (15) by hm−1 and we apply the vector of linear functionals U

then we obtain

Am
m−1 = (hm

U) (Bm)
(
(hm−1

U) (Bm−1)
)−1

= ∆m∆−1
m−1 m ≥ 1 .

Using the same technique we obtain

Am
m =

[
(hm+1

U) (Bm) − Am
m−1(h

m
U) (Bm−1)

]
[(hm

U) (Bm)]−1

=
[
(hm+1

U) (Bm) − ∆m∆−1
m−1(h

m
U) (Bm−1)

]
∆−1

m

Am
m+1 =

[
(hm+2U) (Bm) − Am

m−1(h
m+1U) (Bm−1) − Am

m(hm+1U) (Bm)
]
∆−1

m+1.
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The comparison with the coefficients in (12) yields the following explicit
expressions for the coefficients in the recurrence relation:

Am =
[
(hm+2

U) (Bm) − Am
m−1(h

m+1
U) (Bm−1) − Am

m(hm+1
U) (Bm)

]
∆−1

m+1,

Bm =
[
(hm+1

U) (Bm) − Am
m−1(h

m
U) (Bm−1)

]
∆−1

m ,

Cm = ∆m∆−1
m−1.

To prove (b) ⇒ (a), we must start by constructing a vector of linear func-
tionals U, satisfying (11), which is defined from the sequence of moments
(Um)m∈N

using

U (B0) = ∆0 , U (Bm) = 0N×N , m ≥ 1, (16)

where ∆0 is a non-singular upper triangular matrix. Since {Pj} is a basis
for P

N , with

Pj(x) = (h(x))j
P0(x) and P0(x) =

[
1 x · · · xN−1

]T
,

then there exists a unique family of matrices γm
j ∈ MN×N(C) such that the

vector of polynomials Bm can be written Bm(x) =
∑m

j=0 γm
j Pj(x). Thus,

• For m = 0, U(B0) = γ0
0U(P0), i.e., U0 = (γ0

0)
−1∆0.

• For m = 1, U(B1) =
∑1

j=0 γ1
j U(Pj), i.e., U1 = −(γ1

1)
−1γ1

0U0.

• For m = 2, U(B2) =
∑2

j=0 γ2
j U(Pj), i.e., U2 = −∑1

j=0(γ
2
2)

−1γ2
j Uj .

For m ≥ 3, we have Um = −∑m−1
j=0 (γm

m)−1γm
j Uj .

First, we will prove that for U defined as above, we have

(hk
U) (Bm) = 0N×N , m ≥ k + 1.

To prove it, we apply U in the recurrence relation:

U (hBm) = AmU (Bm+1) + BmU (Bm) + CmU (Bm−1) = 0N×N , m ≥ 2 .

Again, if we multiply both sides of the recurrence relation by h, then we
obtain

h2(x)Bm(x) = h(x)AmBm+1(x) + h(x)BmBm(x) + h(x)CmBm−1(x),

and, as a consequence, by applying U in the last relation, we have for m ≥ 3
(
h2

U
)
(Bm) = Am (hU) (Bm+1) + Bm (hU) (Bm) + Cm (hU) (Bm−1) = 0N×N .

Proceeding in a similar way we get

(hk
U) (Bm) = 0N×N , m ≥ k+1, i.e., (hk

U) (Bm) = 0N×N , k = 0, 1, . . . , m−1.
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For k = m, we have

(hm
U) (Bm) = Am(hm−1

U) (Bm+1)+Bm(hm−1
U) (Bm)+Cm(hm−1

U) (Bm−1) ,

and so

(hm
U) (Bm) = Cm(hm−1

U) (Bm−1) = CmCm−1 · · · C1∆0 , m ≥ 1 .

Therefore, the moments associated with the vector of linear functionals U

are uniquely determined from (16). Thus, we obtain the orthogonality con-
ditions (11). Hence, the result follows.

Next we will introduce the concept of right-orthogonality with respect to a
vector of linear functionals and, afterwards, we will show how the right and
left vector orthogonality are connected.

Definition 3. Let U =
[
u1 · · · uN

]T
be a vector of linear functionals and let

consider a sequence of matrix polynomials {Gm}m∈N. {Gm}m∈N is said to be
right-orthogonal with respect to the vector of linear functionals U if

(a) deg Gm = m.
(b) (GT

m(h(x))U) (Pj) = 0N×N , j = 0, 1, . . . , m − 1.
(c) (GT

m(h(x))U) (Pm) = Θm, m ∈ N, where Θm is a non-singular lower
triangular matrix.

Concerning the right-orthogonality we obtain some analog results to those
we found for left-orthogonality. For example, the matrix right-orthogonal
polynomial sequence is uniquely defined up to a multiplication on the right
by a non-singular matrix and the vector of linear functionals U is quasi-
definite with respect to the right-orthogonality. We will present these results
but we shall skip the proofs since the techniques are the same as used in the
left-orthogonality case.

Theorem 5. Let U be a vector of linear functionals. Then, U is quasi-
definite if, and only if, there exists a sequence matrix polynomials {Gm}m∈N,
with Gm(h(x)) =

∑m
j=0 βm

j (h(x))j, for βm
j ∈ MN×N(C) where βm

m is non-
singular upper triangular matrix and there exists a sequence of non-singular
lower triangular matrices, {Θm}m∈N, such that

(GT
m(h(x))U) (Pm) = Θmδj,m, j = 0, 1, . . . , m − 1, m ∈ N.
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Moreover,

Gm =
[
IN×N hIN×N · · · hmIN×N

]



U0 · · · Um
... . . . ...

Um · · · U2m



−1 


0
...

Θm


 . (17)

Theorem 6. Let U be a vector of linear functionals and let {Gm}m∈N be a
sequence of matrix polynomials. Then, the following statements are equiva-
lent:

(a) The sequence of matrix polynomials {Gm}m∈N is right-orthogonal with
respect to the vector of linear functionals U, i.e.,

(GT
m(h(x))U) (Pj) = 0N×N , j = 0, 1, . . . , m − 1,

(GT
m(h(x))U) (Pm) = Θm , m ∈ N,

where Θm is a non-singular lower triangular matrix.
(b) There exist sequences of N × N matrices, {Dm}m∈N , {Em}m∈N and

{Fm}m∈N with Fm a non-singular lower triangular matrix, such that

h(x)Gm(h(x)) = Gm+1(h(x))Dm + Gm(h(x))Em + Gm−1(h(x))Fm ,

m ≥ 1 , with G−1(x) = 0N×N and G0(x) = IN×N .

To show the connection between right and left vector orthogonality we will
introduce some concepts on duality theory. We denote by P∗ the dual space
of P, i.e., the vector space of complex valued linear functionals defined on P.

Let {pm}m∈N be a sequence of scalar monic polynomials. The sequence of
linear functionals {Ln}n∈N, where Ln ∈ P∗ is said to be its dual sequence if
Ln(pm) = δm,n, m, n ∈ N, where δn,m is the Kronecker delta.

Let {Ln}n∈N be a sequence of linear functionals. The vector sequence of
linear functionals {Ln}n∈N given by

Ln =
[
LnN · · · L(n+1)N−1

]T
, n ∈ N ,

is said to be the vector sequence of linear functionals associated with {Ln}n∈N.
Taking into account Definition 1, we get

Ln(Bm) =




LnN(pmN) · · · L(n+1)N−1(pmN)
... . . . ...

LnN(p(m+1)N−1) · · · L(n+1)N−1(p(m+1)N−1)


 = IN×Nδm,n .
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Definition 4. Let {Bm}m∈N be a vector sequence of polynomials. The vector
sequence of linear functionals {Ln}n∈N is said to be its dual vector sequence if

Ln(Bm) = IN×N δm,n , n, m ∈ N .

The next two results give the connection between right and left vector
orthogonality through the equivalent conditions of these two types of vector
orthogonality.

Definition 5. Let U be a vector of linear functionals. We denote by Û,

the normalized vector of linear functionals associated with U, i.e., Û =

((U(P0))
−1)TU, where P0(x) =

[
1, x, · · · , xN−1

]T
.

Furthermore, from this definition we have

Û(P0) = (((U(P0))
−1)T

U)(P0) = U(P0)(U(P0))
−1 = IN×N .

Theorem 7. Let U be a quasi-definite vector of linear functionals, {Bm}m∈N

be a sequence of vector polynomials, and let {Ln}n∈N be its dual vector se-
quence. Then, the following statements are equivalent:

(a) {Bm}m∈N is left-orthogonal with respect to U.
(b) There exist sequences of N × N matrices, {Am}m∈N, {Bm}m∈N, and

{Cm}m∈N with Cm a non-singular upper triangular matrix, such that
{Bm}m∈N satisfies the three-term recurrence relation

h(x)Bm(x) = AmBm+1(x) + BmBm(x) + CmBm−1(x), m ≥ 1 (18)

with B−1(x) = 01×N , B0(x) = P0(x) , where P0(x) =
[
1 x · · · xN−1

]T
.

(c) There exist sequences of N × N matrices, {An}∈N, {Bn}n∈N, and
{Cn}n∈N, with Cn+1 a non-singular matrix, such that {Ln}n∈N is de-
fined by the three-term recurrence relation

h(x)Ln = (Cn+1)
T
Ln+1 + (Bn)

T
Ln + (An−1)

T
Ln−1, n ≥ 1, (19)

with L0 = ((U(P0))
T )−1U, L1 = (CT

1 )−1(h(x)I − (B0)
T )[U(P0))

T ]−1U .
(d) There exist matrix polynomials Gn(h(x)), Gn(h(x)) =

∑n
j=0 βn

j (h(x))j,
where βn

n is a non-singular matrix, such that the elements in the dual
vector basis {Ln}n∈N can be written in terms of the vector of linear
functionals U as follows

Ln = (Gn(h(x)))T U, n ∈ N. (20)
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(e) The sequence of matrix polynomials {Gn}n∈N defined by (20) satisfies

h(x)Gn(h(x))

= Gn−1(h(x))An−1 + Gn(h(x))Bn + Gn+1(h(x))Cn+1, n ≥ 1 , (21)

with initial conditions G−1(h(x)) = 0N×N and G0(h(x)) = U(P0)
−1 .

(f) The sequence of matrix polynomials {Gn}n∈N defined by (20) is right-
orthogonal with respect to the normalized vector of linear function-
als U.

Proof : We will prove this theorem according to the following scheme:
(a) ⇔ (b), (e) ⇔ (f), (b) ⇔ (c), (c) ⇒ (d), (d) ⇒ (e), and (e) ⇒ (c).

The proofs of (a) ⇔ (b) and (e) ⇔ (f) follow immediately from Theorems 4
and 6. We start by proving that (b) ⇒ (c). Let

h(x)Ln =

n+1∑

j=0

βn
j Lj, where (βn

j )T = (h(x)Ln)(Bj) = Ln(h(x)Bj), j ∈ N.

Applying the vector of linear functionals Ln in both sides of the three-term
recurrence relation satisfied by {Bk}k∈N, we have

(βn
j )T = AkLn(Bk+1) + BkLn(Bk) + CkLn(Bk−1))

=





An−1, j = n − 1,

Bn, j = n,

Cn+1, j = n + 1,

0N×N , j 6= n − 1, n, n + 1,

i.e., βn
n−1 = AT

n−1, βn
n = BT

n , and βn
n+1 = CT

n+1. Thus the three-term recurrence
relation for the vector sequence of linear functionals {Ln}n∈N follows.

To prove that (c) ⇒ (b), let hBm =
∑m+1

j=0 γm
j Bj, γm

j ∈ MN×N(C). Ap-
plying the vector linear functional Ln in both sides of the last relation, we
get hLn(Bm) =

∑m+1
j=0 γm

j Ln(Bj) = γm
n . Now, from our hypotheses, we have

γm
n = Ln+1(Bm)Cn+1 + Ln(Bm)Bn + Ln−1)(Bm)An−1

=





Cm, n = m − 1,

Bn, n = m,

Am, n = m + 1,

0N×N , n 6= m − 1, m, m + 1.
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So, (18) holds.
To prove (c) ⇒ (d) we will show by induction that {Ln}n∈N has the fol-

lowing representation Ln = (Gn(h(x)))T U, n ∈ N. For n = 0, we have
that L0 = ((U(P0))

T )−1U. Now, let us assume that the statement holds for

k = 0, 1, . . . , p, i.e., Lk = (Gk(h(x)))T U with deg Gk = k, k = 1, . . . , p. We

will show that it is also true for k = p+1, i.e., Lp+1 = (Gp+1(h(x)))T U, p ∈ N.
Considering the three-term recurrence relation satisfied by {Lp}p∈N and tak-
ing into account the hypothesis of induction, we have

Lp+1 = (Cp+1)
−T

[
(h(x)I − (BT

p ))Gp(h(x))− (Ap−1)
TGp−1(h(x))

]
U

=
[
(Gp(h(x))T ((h(x)I − (Bp)) − GT

p−1(h(x))Ap−1))C
−1
p+1

]T
U.

Thus, Lp+1 = (Gp+1(h(x)))T U, p ∈ N, i.e., if the condition holds for k =
1, . . . , p, then it is also true for p + 1.

To prove that (d) ⇒ (e) we will write hGT
n in terms of {GT

j }j∈N, i.e.,

h(x)GT
n(h(x)) =

n+1∑

j=0

αn
j G

T
j (h(x)), where αn

j ∈ MN×N(C). (22)

Thus, the multiplication on the right by U in both sides of the last equation
yields

h(x)GT
n (h(x))U =

n+1∑

j=0

αn
j G

T
j (h(x))U.

Applying this relation to Bk we get

(h(x)GT
n(h(x))U)(Bk) =

n+1∑

j=0

(αn
j G

T
j (h(x))U)(Bk).

Since, Ln = (Gn(h(x)))T U, n ∈ N,

Ln (h(x)Bk) =
n+1∑

j=0

Lj (Bk) (αn
j )

T = (αn
k)

T .
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Using (18) in (22) we get

(αn
k)

T = CkLn (Bk−1) + BkLn (Bk) + AkLn (Bk+1)

=





An−1, k = n − 1,

Bn, k = n,

Cn+1, k = n + 1,

0N×N , k 6= n − 1, n, n + 1.

Thus, {Gn}n∈N satisfies

h(x)Gn(h(x)) = Gn−1(h(x))An−1 + Gn(h(x))Bn + Gn+1(h(x))Cn+1.

Finally, to prove that (e) ⇒ (c), we must take the transpose in the recur-
rence relation (21) and, then, multiply on the right by U both sides of the
resulting equation. Thus (19) follows.

Theorem 8. Let U be a quasi-definite vector of linear functionals, {Bm}m∈N

and {Gn}n∈N defined by (9) and (17), respectively. Then, {Bm}m∈N and
{Gn}n∈N are bi-orthogonal with respect to U, i.e.,

((Gn(h(x)))T
U)(Bm) = IN×Nδn,m, n, m ∈ N

if, and only if, ∆m = (βm
m)−1 and Ωn = (αm

m)−1.
As a consequence, the dual sequence {Ln}n∈N associated with {Bm}m∈N is
given by Ln = (Gn(h(x)))TU, n ∈ N.

Proof : There exists a unique family of matrices (αm
j ) ⊂ MN×N(C) such that

Bm =
∑m

j=0 αm
j Pj, where αm

m is a non-singular matrix. Hence,

(GT
n (h(x))U)(Bm) = (GT

n (h(x))U)(
m∑

j=0

αm
j Pj) =

m∑

j=0

αm
j (GT

n (h(x))U)(Pj).

Since {Gn}n∈N is right-orthogonal with respect to U then

(GT
n (h(x))U)(Bm) =

{
αm

mΘm, m = n

0N×N , m > n.

Thus, (GT
m(h(x))U)(Bm) = IN×N if, and only if, αm

mΘm = IN×N , i.e., Θm =
(αm

m)−1. Now, let us consider

(GT
n (h(x))U)(Bm) = ((

n∑

j=0

βn
j (h(x))j)T

U)(Bm) =
n∑

j=0

(h(x)j
U)(Bm)βn

j .
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As above, since {Bm}m∈N is left-orthogonal with respect to U then

(GT
n (h(x))U)(Bm) =

{
∆mβm

m , m = n

0N×N , m > n.

So, (GT
m(h(x))U)(Bm) = IN×N if, and only if, ∆m = (βm

m)−1.

To conclude this section notice that Theorems 2 and 7 suggest that the
sequence of matrix polynomials {Vm}m∈N is orthogonal with respect to some
matrix of measures. As a consequence of Theorem 7, the sequence of matrix
polynomials {Gm}m∈N should also be orthogonal in the matrix sense. Finally,
Theorem 8 suggests that the sequences of matrix polynomials {Vm}m∈N and
{Gm}m∈N should be bi-orthogonal to each order, as we will prove in the next
section.

3. The connection between vector and matrix orthogo-

nality

In this section we show how the vector and matrix orthogonality are con-
nected when a special case of the matrix orthogonality is considered. In this
sense, if the sequences {Gn}n∈N and {Bm}m∈N are bi-orthogonal with respect
to the vector of linear functionals U, then the sequences of matrix polyno-
mials {Gn}n∈N and {Vm}m∈N are bi-orthogonal with respect to a complex
matrix of measures.

Definition 6. Let U be a vector of linear functionals. We define the gener-
alized Markov matrix function, F, associated with U by

F(z) := Ux

(
P0(x)

z − h(x)

)
=



〈u1

x,
1

z−h(x)
〉 · · · 〈uN

x , 1
z−h(x)

〉
... . . . ...

〈u1
x,

xN−1

z−h(x)
〉 · · · 〈uN

x , xN−1

z−h(x)
〉


 , (23)

with z such that |h(x)| < |z| for every x ∈ L where L = ∪j=1,...,N supp uj
x .

Here Ux represents the action of U on the variable x and P0(x).

Theorem 9. Let U be a quasi-definite vector of linear functionals and let F

be its generalized Markov matrix function. Then, the following statements
are equivalent:
a) The sequences {Gn}n∈N and {Bm}m∈N are bi-orthogonal with respect

to U, i.e.
((Gn(h(x)))T

Ux)(Bm) = IN×N δn,m, n, m ∈ N .
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b) The sequences {Gn}n∈N and {Vm}m∈N, where Bm(z) = Vm(h(z))P0(z),
are bi-orthogonal with respect to F, i.e.,

1

2πi

∫

C

Vm(z)F(z)Gn(z)dz = IN×N δn,m, n, m ∈ N .

where C is a closed path in {z ∈ C : |z| > |h(x)|, x ∈ L}.
Proof : Taking into account that

Vm(z)F(z)Gn(z) =
(
(Gn(z))T

Ux

) (
Vm(z)P0(x)

z − h(x)

)
,

we have

1

2πi

∫

C

Vm(z)F(z)Gn(z)dz =
1

2πi

∫

C

(
(Gn(z))T

Ux

)(
Vm(z)P0(x)

z − h(x)

)
dz .

Because of Gn, Vm, and P0 are analytic functions, according to the Cauchy
integral formula we have

1

2πi

∫

C

(
(Gn(z))T

Ux

) (
Vm(z)P0(x)

z − h(x)

)
dz = ((Gn(h(x)))T

Ux)(Vm(h(x))P0(x)),

and, as a consequence, for all n, m ∈ N

1

2πi

∫

C

Vm(z)F(z)Gn(z)dz = ((Gn(h(x)))T
Ux)(Bm(x)) = IN×N δn,m .

Thus the statement follows.

The last theorem tell us that {Bm}m∈N is a sequence of vector polyno-
mials left-orthogonal with respect to U if, and only if, {Vm}m∈N associated
with {Bm}m∈N is left-orthogonal with respect to F. Also, {Gm}m∈N is a se-
quence matrix polynomials right-orthogonal with respect to U if, and only if,
{Gm}m∈N is right-orthogonal with respect to F.

It is important to recall now that the definition of F shows us that we only
need N linear functionals to describe the matrix orthogonality. Usually, to
describe the matrix orthogonality, (1 + N)N/2 measures are needed (see, for
example [4, 5, 7]).

As we have already referred in the introduction, we need to know when
a sequence of matrix polynomials defined by a recurrence relation (7) is
related to some kind of matrix orthogonality. Partial answers were given to
this problem, but no complete answer was given as far as we know. To do
that, we start by considering a N × N matrix of measures W that is not



MATRIX ORTHOGONALITY ON THE REAL LINE 21

necessarily positive definite in C, and such that there exist matrix sequences
{Vm}m∈N and {Gm}m∈N, orthogonal with respect to W in the following sense

∫

C

Vm(x)dW (x)xk = Ω1
mδk,m, k = 0, . . . , m , (24)

∫

C

xkdW (x)Gm(x) = Ω2
mδk,m, k = 0, . . . , m , m = 0, 1, . . . (25)

where where C is a closed path in the interior of a region D ⊂ C, Ω1
m is a

non-singular upper triangular matrix, Ω2
m is a non-singular lower triangular

matrix, and δk,m is the Kronecker delta.
Vm and Gm are matrix polynomials of degree m with non-singular leading

coefficients and they are defined up to the multiplication on the left or on
the right by a unitary matrix, respectively. The matrix sequences {Vm}m∈N

(respectively, {Gm}m∈N) satisfying (24) (respectively, (25)) are said to be
the left-orthogonal matrix polynomial sequence (respectively, right-orthogonal
matrix polynomial sequence), with respect to the matrix of measures W .

Usually, in the theory of matrix orthogonal polynomials there are only refer-
ences to the left-orthogonality. The reason is that the authors deal only with
orthonormality with respect to a positive definite matrix of measures, that
allows us to say that left and right orthogonality are, essentially, the same.
Very few authors have emphasized this difference (see, for instance, [11]).

The moments of the matrix measure W are given by N × N matrices

Sk =

∫
xkdW (x), k = 0, 1, . . . .

From the orthogonality conditions it follows that the sequences {Vm}m∈N

and {Gm}m∈N satisfy three-term matrix recurrence relations. It is not so
obvious to prove the converse result, i.e. if a sequence of matrix polynomials
is defined by a recurrence relation (7) or (21), then there exists a matrix of
measures W, not necessarily positive definite, such this sequence is left or
right-orthogonal with respect to W .

The following result proves this equivalence with respect to the left-ortho-
gonality and gives an extension of the Favard’s theorem in the matrix case.

Theorem 10. Let {Vm}m∈N be a sequence of matrix polynomials. Then, the
following statements are equivalent:

(a) The sequence {Vm}m∈N is left-orthogonal with respect to matrix of mea-
sures W .
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(b) There are sequences os scalar matrices {Am}m∈N, {Bm}m∈N and
{Cm}m∈N, with Am lower-triangular, and Cm+1 upper-triangular, non-
singular matrices for m ∈ N, such that the sequence {Vm}m∈N satisfies

zVm(z) = AmVm+1(z) + BmVm(z) + CmVm−1(z), m ≥ 1, (26)

where V−1(z) = 0N×N and V0(z) = IN×N .

Proof : First we will prove that (a) implies (b). Since the sequence {Vm}m∈N

is a basis in the linear space of matrix polynomials we can write

zVm(z) =
m+1∑

k=0

Am
k Vk(z), Am

k ∈ MN×N(C).

Then, from the orthogonality conditions, we get

Am
j

∫
Vj(z)dW (z)Vj(z) =

∫
Vm(z)dW (z)zj+1 = 0N×N for j = 0, . . . , m − 2.

Thus,
zVm(z) = Am

m−1Vm−1(z) + Am
mVm(z) + Am

m+1Vm+1(z),

where

Am
m =

(∫
zVmdW (z)Vm

)
(Ω1

m)−1 , Am
m−1 =

(∫
zVm(z)dW (z)Vm−1(z)

)

×(Ω1
m−1)

−1 , and Am
m+1 =

(∫
zVm(z)dW (z)Vm+1(z)

)
(Ω1

m+1)
−1.

Taking Am = Am
m+1, Bm = Am

m, and Cm = Am
m−1 the result follows.

Finally, to prove that (b) implies (a), we should start by defining recur-
sively the matrix moments associated with the matrix of measures W by the
following conditions

S0 =

∫
dW (z) = Ω1

0 and

∫
Vm(z)dW (z) = 0N×N , m ≥ 1,

where Ω1
0 is a non-singular upper triangular matrix.

Taking into account that Vm can be written

Vm(z) = Vm,mzm + · · · + Vm,1z + Vm,0

with Vm,m a non-singular matrix, then we have

0N×N =

∫
Vm(z)dW (z) = Vm,mSm + · · · + Vm,0S0.
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Thus, the moments are defined recursively by Sm = V −1
m,m

∑m−1
j=0 Vm,jSj .

Let us show that
∫

Vm(z)dW (z)zk = 0N×N , k = 0, . . . , m − 1 , and∫
Vm(z)dW (z)zm = Ω1

m . From (26) we get
∫

zVm(z)dW (z) = 0N×N , m ≥ 2 ,
Again, by multiplying both sides of the recurrence relation by z we get

z2Vm(z) = AmzVm+1(z) + BmzVm(z) + CmzVm−1(z),

and , as a consequence,
∫

Vm(z)dW (z)z2 = 0N×N , m ≥ 3 .

In an analog way, we conclude that
∫

Vm(z)dW (z)zk = 0N×N , m ≥ k + 1,

and so
∫

Vm(z)dW (z)zk = 0N×N , k = 0, . . . , m − 1 .
For k = m we have∫

Vm(z)dW (z)zm = Cm

∫
Vm−1(z)dW (z)zm−1 = CmCm−1 · · ·C1Ω

1
0.

Then
∫

Vm(z)dW (z)zk = 0N×N , k = 0, . . . , m − 1 and
∫

Vm(z)dW (z)zm =
Ω1

m , where Ω1
m = CmCm−1 · · ·C1Ω

1
0 is a non-singular upper triangular

matrix.

The reader should notice that left vector orthogonality and matrix orthog-
onality are equivalent. This equivalence is given by Theorems 2, 7, and 10.
A similar result can be obtained for the right-orthogonality.

Theorem 11. Let {Gm}m∈N be a sequence of matrix polynomials. Then, the
following statements are equivalent:

(a) {Gm}m∈N is a right-orthogonal sequence of matrix polynomials with
respect to a matrix of measures W .

(b) There are sequences os scalar matrices {Am}m∈N, {Bm}m∈N and
{Cm}m∈N, with Am lower-triangular, and Cm+1 upper-triangular, non-
singular matrices for m ∈ N, such that the sequence {Gm}m∈N satisfies

Gm(z) = Gm−1(z)Am−1 + Gm(z)Bm + Gm+1(z)Cm+1, m ≥ 1 (27)

where G−1(z) = 0N×N and G0(z) = IN×N .

4. Some characterizations of the vector and matrix or-

thogonality

In this section we present some characterizations of the vector orthogonality
as well as of the matrix orthogonality. First, we analyze two type Hermite-
Padé approximation problems that characterize completely the right and left
vector orthogonality, respectively.
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Definition 7. Let {Bm}m∈N be a vector sequence of polynomials, {Gm}m∈N

be a sequence of matrix polynomials, and U be a quasi-definite vector of

linear functionals. The sequence of polynomials {B(1)
m }m∈N given by

B
(1)
m (z) := Ux

(
Vm+1(z) − Vm+1(h(x))

z − h(x)
P0(x)

)
,

is said to be the sequence of associated polynomials of the first kind for

{Bm}m∈N and U. In a similar way, the sequence of polynomials {G(1)
m }m∈N

given by

G(1)
m (z) =

[(
GT

m+1(z) − GT
m+1(h(x))

z − h(x)

)
Ux

]
(P0(x)),

is said to be the sequence of associated polynomials of the first kind for
{Gm}m∈N and U. Here Ux represents the action of U on the variable x.

Theorem 12. Let U be a quasi-definite vector of linear functionals, {Bm}m∈N

a vector sequence of polynomials, {B(1)
m }m∈N its sequence of associated polyno-

mials of the first kind, and F the generalized Markov function given in (23).
Then {Bm}m∈N is left-orthogonal with respect to the vector of linear func-
tionals U if, and only if,

Vm+1(z)F(z) − B
(1)
m (z) = ∆m+1

1

zm+2
+ · · · .

Proof : From the definition of B
(1)
m , we get

B
(1)
m (z) = Vm+1(z)F(z) − Ux

(
Bm+1(x)

z − h(x)

)
.

But

Ux

(
Bm+1(x)

z − h(x)

)
=

∞∑

n=0

((h(x))nUx)(Bm+1(x))

zn+1
.

Hence,

Ux

(
Bm+1(x)

z − h(x)

)
=

∞∑

n=m+1

((h(x))nUx)(Bm+1(x))

zn+1
= ∆m+1

1

zm+2
+ · · · ,

if, and only if, the sequence {Bm}m∈N is left-orthogonal with respect to Ux.
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Theorem 13. Let U be a quasi-definite vector of linear functionals, {Gm}m∈N

a sequence of matrix polynomials with N ×N matrix coefficients, {G(1)
m }m∈N

its sequence of associated polynomials of the first kind, and F is the general-
ized Markov function. Then {Gm}m∈N is right-orthogonal with respect to the
vector of linear functionals U if, and only if,

F(z)Gm+1(z) − G(1)
m (z) = Θm+1

1

zm+2
+ · · · .

Proof : Taking into account the definition of the polynomial {G(1)
m }m∈N, we

have

G(1)
m (z) =

[(
GT

m+1(z) − GT
m+1(h(x))

z − h(x)

)
Ux

]
(P0(x))

= Ux

(
P0(x)

z − h(x)

)
Gm+1(z) −

(
GT

m+1(h(x))Ux

) (
P0(x)

z − h(x)

)
.

But,
(
GT

m+1(h(x))Ux

)(
P0(x)

z − h(x)

)
=

∞∑

n=0

1

zn+1
(Lx

m+1) (Pn(x)) .

Hence,
(
GT

m+1(h(x))Ux

) (
P0(x)

z − h(x)

)
= Θm+1

1

zm+2
+ · · ·

if, and only if, the sequence {Gm}m∈N is right-orthogonal with respect
to Ux.

Next, some algebraic results, known as Christoffel-Darboux type formulas
(see for instance [2]), concerning the behavior of the sequences of matrix
orthogonal polynomials {Vm}m∈N and {Gm}m∈N are given.

Theorem 14. Let h be a polynomial of fixed degree N and U be a quasi-
definite vector of linear functionals. Let {Gm}m∈N and {Bm}m∈N be, respec-
tively, sequences of matrix polynomials with deg Gm = m, for all m ∈ N and
Bm(x) = Vm(h(x))P0(x), where Vm is a matrix polynomial with deg Vm = m,
for all m ∈ N. Then, the following statements are equivalent:

(a) {Bm}m∈N is a sequence of vector polynomials left-orthogonal with re-
spect to U.

(b) {Ln}n∈N is a sequence of vector linear functionals bi-orthogonal with
respect to {Bm}m∈N such that Ln = GT

n (h(x))U.
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(c) {Vm}m∈N and {Gm}m∈N satisfy the Christoffel-Darboux type formula

(x − z)

m∑

k=0

Gk(z)Vk(x) = Gm(z)AmVm+1(x) − Gm+1(z)Cm+1Vm(x), (28)

with x, z ∈ C.
(d) For every m ∈ N, {Vm}m∈N and {Gm}m∈N satisfy the Christoffel-

Darboux type confluent formula

Gm(x)AmVm+1(x) − Gm+1(x)Cm+1Vm(x) = 0N×N , (29)
m∑

k=0

Gk(x)Vk(x) = Gm(x)AmV ′
m+1(x) − Gm+1(x)Cm+1V

′
m(x), (30)

(e) For every m ∈ N, {Vm}m∈N and {Gm}m∈N satisfy for all x ∈ C

Gm(x)AmVm+1(x) − Gm+1(x)Cm+1Vm(x) = 0N×N , (31)
m∑

k=0

Gk(x)Vk(x) = G′
m+1(x)Cm+1Vm(x) − G′

m(x)AmVm+1(x) . (32)

Proof : To prove this theorem we will proceed according to the following
scheme (a) ⇔ (b), (b) ⇒ (c) ⇒ (e), (e) ⇒ (b) and (c) ⇒ (d) ⇒ (a).

The equivalence (a) ⇔ (b) is proved in Theorem 7. To prove that (b)
implies (c) we remember that the sequences of matrix polynomials {Vm}m∈N

and {Gm}m∈N verify, respectively, the recurrence relations

xVm(x) = AmVm+1(x) + BmVm(x) + CmVm−1(x) (33)

zGm(z) = Gm−1(z)Am−1 + Gm(z)Bm + Gm+1(z)Cm+1 (34)

Multiplying on the left by Gm(z) in both sides of (33) and on the right by
Vm(x) in both sides of (34) and subtracting the resulting expressions, we get

(x − z)Gm(z)Vm(x) = [Gm(z)AmVm+1(x) − Gm−1(z)Am−1Vm(x)]

− [Gm+1(z)Cm+1Vm(x) − Gm(z)CmVm−1(x)]

and so we have (28). To prove that (c) implies (d), we just have to take z = x
in (28) and then we obtain (29). (30) follows from (28) by differentiation with
respect to x and letting z = x.

To prove that (c) implies (e), we must take z = x in (28) and then (31)
holds. (32) follows in a similar way by differentiating (28) with respect to z
and taking z = x.
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To complete the proof we need to show that (d) implies (a). We can rewrite
the equation (30) as

Gm(x)AmV ′
m+1(x) − Gm+1(x)Cm+1V

′
m(x) = Gm(x)Vm(x) +

m−1∑

k=0

Gk(x)Vk(x),

or, equivalently,

Gm(x)Vm(x) = Gm(x)[AmV ′
m+1(x) + CmV ′

m−1(x)]

− [Gm+1(x)Cm+1 + Gm−1(x)Am−1]V
′
m(x).

Using (29) we get [(AmVm+1(x) + CmVm−1(x))V −1
m (x)]′ = IN×N . Then, we

have

[AmVm+1(x) + CmVm−1(x)]V −1
m (x) = xI − Bn,

i.e, {Vm}m∈N satisfies a three-term recurrence relation. Now, multiplying
both sides in the three-term recurrence relation by P0, from the definition
of Bm and by Theorem 4, the result follows.

Finally, to prove that (e) ⇒ (b) we proceed in a similar way as in the proof
of (d) ⇒ (a) starting from (32) and taking into account Theorem 7.

5. Markov type theorem

The block matrix

J =




B0 A0 0N×N

C1 B1 A1
. . .

0N×N C2 B2
. . .

. . . . . . . . .


 ,

is related to the matrix polynomial sequences {Vm}m∈N and {Gm}m∈N trough
the recurrence relations (7) and (27). This block matrix is said to be the N -
block Jacobi matrix associated with the above matrix polynomial sequences.

For polynomials satisfying a symmetric recurrence relation, it was proved
in [9] that the zeros of the m-th matrix orthogonal polynomial, i.e. the zero
of the scalar polynomial detVm, are the eigenvalues of the leading principal
submatrix JmN of J . This result can be generalized for sequences of orthog-
onal polynomials that satisfy non-symmetric recurrence relations. Thus, for
m ∈ N, the zeros of the matrix polynomials Gm and Vm are the eigenval-
ues of the matrix JmN (with the same order of algebraic multiplicity) where
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ImN×mN is the mN × mN identity matrix and JmN is the leading principal
submatrix of dimension mN × mN for the N -block Jacobi matrix.

Lemma 1. [6] Let V (t) be a N × N matrix polynomial and let a be a zero
of V (t) of multiplicity p. Let L(a, V ) = {v ∈ C

N : vV (a) = 01×N} and
R(a, A) = {v ∈ C

N : V (a)v∗ = 01×N} .

If dim L(a, V ) = dim R(a, V ) = p, then (adj (V (t)))(l) (a) = 0N×N , for

l = 0, . . . , p − 2 and, (adj (V (t)))(p−1) (a) 6= 0N×N .

Moreover, rank (adj (V (t)))(p−1) (a) = p and (adj (V (t)))(p−1) (a) defines a
linear mapping from CN onto L(a, V ) which is an isomorphism from R(a, V )
into L(a, V ).

Lemma 2. [6] Let xm,k, k = 1, . . . , s with s ≤ mN be the zeros of the matrix
polynomial Vm. For any matrix polynomial V (t) of degree ≤ n − 1 we have
the partial fraction decomposition t ∈ C \ {xm,1, . . . , xm,s},

V (t)(Vm(t))−1 =

s∑

k=1

Cm,k

x − xm,k

where Cm,k = lk
(det (Vm(t)))(lk)(xm,k)

V (xm,k)(adj (Vm(t)))(lk−1)(xm,k) and lk is the

multiplicity of xm,k, (lk ≤ N).

With these results we are able to establish a quadrature formula for the
matrix orthogonal sequence {Vm}m∈N.

Theorem 15 (Quadrature Formula). Let {Vm}m∈N be the sequence of matrix
polynomials that is left-orthogonal with respect to the matrix of measures W .
Also let {Bm}m∈N be the sequence of vector polynomials defined by (4) and

let {B(1)
m }m∈N, be the sequence of associated polynomials of the first kind for

{Bm}m∈N and U. Let xm,k, (k = 1, . . . , s) be the zeros of the matrix polyno-
mial Vm (hence s ≤ mN), and let Γm,k be the matrices

Γm,k =
lk

(det (Vm(x)))(lk)(xm,k)
(adj (Vm(x)))(lk−1)(xm,k)B

(1)
m−1(xm,k) ,

for k = 1, . . . , s where lk is the multiplicity xm,k.
Then, for any polynomial V of degree less than or equal to 2m − 1 the

following quadrature formula holds
∫

V (h(x))dW (h(x)) =
s∑

k=1

V (xm,k)Γm,k .
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Proof : Let V be a matrix polynomial of degree less than or equal to 2m− 1.
Since Vm is a polynomial with non-singular leading coefficient, then (cf. [12])

V (x) = C(x)Vm(x) + R(x),

where C and R are matrix polynomials with degree of R less than or equal
to m− 1. Thus V (x)V −1

m (x) = C(x) + R(x)V −1
m (x) assuming that x is not a

zero of Vm. Since degree R(x) ≤ m − 1, using Lemma 2 we get

R(x)V −1
m (x) =

s∑

k=1

Cm,k

x − xm,k

,

where the matrices Cm,k are given by

Cm,k =
lk

(det (Vm(x)))(lk)(xm,k)
R(xm,k)(adj (Vm(x)))(lk−1)(xm,k).

According to Lemma 1, Vm(xm,k) (adj (Vm(x)))(lk−1) (xm,k) = 0N×N and tak-
ing into account that R(xm,k) = V (xm,k) − C(xm,k)Vm(xm,k), the previous
expression becomes

Cm,k =
lk

(det (Vm(x)))(lk)(xm,k)
V (xm,k)(adj (Vm(x)))(lk−1)(xm,k).

Then,

V (x) = C(x)Vm(x) +
s∑

k=1

Cm,k

Vm(x)

x − xm,k

.

Since Vm(xm,k) (adj (Vm(x)))(lk−1) (xm,k) = (adj (Vm(x)))(lk−1) (xm,k)Vm(xm,k)
= 0N×N , we have

V (x) = C(x)Vm(x) +

s∑

k=1

Cm,k

Vm(x) − Vm(xm,k)

x − xm,k

.

Taking x = h(t), we have

V (h(t)) = C(h(t))Vm(h(t)) +
s∑

k=1

Cm,k

Vm(xm,k) − Vm(h(t))

xm,k − h(t)
.

Then, from the integral representation of the associated polynomials of the
first kind

B
(1)
m−1(z) =

∫
Vm(z) − Vm(h(x))

z − h(x)
dW (h(x)),
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it follows that
∫

V (h(t))dW (h(t)) =

∫
C(h(t))Vm(h(t))dW (h(t)) +

s∑

k=1

Cm,kB
(1)
m−1(xm,k).

So, from the orthogonality of {Vm}m∈N with respect to W we have
∫

V (h(t))dW (h(t)) =
s∑

k=1

Cm,kB
(1)
m−1(xm,k),

and the statement follows.

The next result is an extension of one proved by A. J. Durán in [6]. It
deals with the ratio asymptoticss of the m-th orthogonal polynomial Vm with
respect to the generalized Markov matrix function, F, and the (m − 1)-th

associated polynomial of the first kind B
(1)
m−1.

Theorem 16 (Generalized Markov’s theorem). Let U be a quasi-definite
vector of linear functionals, {Vm}m∈N be the sequence of matrix polynomials
left-orthogonal with respect to the generalized Markov matrix function, F,

defined by (23), and let {B(1)
m }m∈N be the sequence of associated polynomials

of the first kind for {Bm}m∈N and U. Then,

lim
m→∞

V −1
m (z)B

(1)
m−1(z) = F(z)

locally uniformly in C\Γ, where Γ = ∩N≥0MN , MN = ∪n≥N{zeros of Vm} .

Proof : First, from Lemma 2 we get

V −1
m (z)B

(1)
m−1(z) =

s∑

k=1

Γm,k

1

z − xm,k

,

where Γm,k are the matrix coefficients that appear in the quadrature formula
presented in Theorem 15 and xm,k are the zeros of Vm. On the other hand,
there always exist complex numbers ym,k such that h(ym,k) = xm,k, and

V −1
m (z)B

(1)
m−1(z) =

s∑

k=1

Γm,k

1

z − h(ym,k)
.

We consider the sequence of discrete matrices of measures {µm}m∈N de-
fined by

µm =

s∑

k=1

Γm,k δym,k
.
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Thus,

V −1
m (z)B

(1)
m−1(z) =

s∑

k=1

Γm,k

1

z − h(ym,k)
=

∫
dµm(h(x))

z − h(x)
(35)

if z is not a zero of Vm. Taking into account (35), it will be enough to prove
that

lim
m→∞

∫
dµm(h(x))

z − h(x)
= F(z) for z ∈ C \ Γ .

The first step deals with the pointwise convergence. Otherwise, we assume
that there exists a complex number z ∈ C \ Γ, an increasing sequence of
nonnegative integers (ml), and a positive constant C such that

∥∥∥∥
∫

dµml
(h(x))

z − h(x)
− F(z)

∥∥∥∥
2

≥ C > 0, l ≥ 0, (36)

where ‖ . ‖2 denotes the spectral norm of a matrix, i.e.,

‖A‖2 = max{
√

λ : λ is a eigenvalue ofA∗A}.
Taking an increasing sequence (ak) such that ak → ∞, and using the Banach-
Alaoglu’s theorem there exists a subsequence (rl) from (ml), defined on a
curve γk contained in a disc |z| < ak, with the same k-th moment of the
vector of linear functionals, U, for k ≤ 2rl − 1, such that

lim
l→∞

∫

γk

f(h(x))dµrl
(h(x)) =

1

2iπ

∫

γk

f(h(z))Ux

(
P0(x)

z − h(x)

)
dz . (37)

Moreover,
∥∥∥∥
∫

dµrl
(h(x))

z − h(x)
− F(z)

∥∥∥∥
2

≤
∥∥∥∥
∫

γk

dµrl
(h(x))

z − h(x)
− F(z)

∥∥∥∥
2

+

∥∥∥∥
∫

ℓk

dµrl
(h(x))

z − h(x)

∥∥∥∥
2

,

with ℓk in the exterior of the disc |z| < ak. We write S0 for the first moment
of the matrices of measures µrl

which is the first moment of U. Then, by
taking k and then rl large enough, from (36) and (37) we obtain

C

2
≤ max

(
1

|z − h(ak)|

)∥∥∥∥
∫

ℓk

dµrl
(h(x))

∥∥∥∥
2

≤ max

(
1

|z − h(ak)|

)
‖S0‖2 .

But this yields C = 0 and, therefore, (36) is not possible.
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The next step is to prove that the analytic functions which are the entries

of the matrix
∫

dµm(h(x))
z−h(x) are uniformly bounded in compact sets of C \ Γ.

Then, the uniform convergence in compact subsets of C \ Γ will follow from
Stieltjes-Vitali’s theorem.

Given a compact K ⊂ C \ Γ, let notice that K ∩ MN 6= ∅, for N large
enough, and then there exists A > 0 such that∣∣∣∣

1

z − h(x)

∣∣∣∣ ≤ A, for z ∈ K and h(x) ∈ MN .

Then, for n ≥ N ∥∥∥∥
∫

dµn(h(x))

z − h(x)

∥∥∥∥ ≤ A S0 .

The spectral norm
∫ dµm(h(x))

z−h(x)
is uniformly bounded and, therefore, from the

equivalence of the norms in finite dimensional spaces, the result follows.

Remark . In an analog way we can deduce the following result. Let {Gm}m∈N

be the sequence of matrix polynomials right-orthogonal with respect to the

generalized Markov function F and let {G(1)
m }m∈N be the sequence of associ-

ated polynomials of the first kind for {Gm}m∈N and U. Then,

lim
m→∞

G
(1)
m−1(z)G−1

m (z) = F(z),

for z ∈ C \ Γ and the convergence is locally uniformly on C \ Γ, where

Γ = ∩N≥0MN , MN = ∪n≥N{zeros of Gm}.
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