
Pré-Publicações do Departamento de Matemática
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1. Introduction
In this note we will be concerned with Gabor expansions of the form

f(t) =
∑

l,k∈Zd

ck,le
2πiωltΦn(t − xk), (1)

where Φn are the d-dimensional Hermite functions

Φn(x) =

d
∏

j=1

hnj
(xj), with hn(t) = cne

πt2
(

d

dt

)n
(

e−2πt2
)

(cn the orthonormalizing constant). Expansions (1) are useful in image pro-
cessing [15] and in multiplexing of signals [3], [20], [1].

Gabor expansions with Hermite functions enjoy rich ”soft” (functional/group
theoretical) and ”hard” (complex variables) analytic structures. They have
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been recently introduced in mathematical time-frequency analysis by Gröchenig
and Lyubarskii [19] and studied further in [13], [20] and [1], with an emphasis
on vector-valued Gabor frames (the so called Gabor super-frame).

The nice properties of Gabor expansions with Hermite functions are the
result of an interplay between classical (orthogonal polynomials, Weierstrass
sigma functions) and modern (frame and group theory, modulation spaces)
mathematical topics. In the present work, we will combine complex variables
methods with the theory of expansions through integrable group representa-
tions (Feichtinger-Gröchenig coorbit theory [10], [9], [16]).

It has been discovered recently [1] that expansions (1) are equivalent to
sampling problems in spaces of functions which satisfy generalized Cauchy-
Riemann equations of the form

(

d

dz

)n

F (z) =
1

2n

(

∂

∂x
+ i

∂

∂ω

)n

F (x + iω) = 0.

Those functions are century-old objects known as polyanalytic functions.

They have been investigated thoroughly, notably by the russian school led
by Balk [4] and they provide extensions of classical operators from complex
analysis [5]. The connection to Gabor expansions seems to be yet another
instance of how, as epigraphed by Folland [12], ”the abstruse meets the appli-
cable” in time-frequency analysis. Indeed, time-frequency analysis is prone
to reveal unexpected relations to other fields of mathematics. Two recent
examples are the associations with Banach algebras [18] and with noncom-
mutative geometry [14].

Our ideas are organized in three sections. In section 2, we explain the
connection between Gabor transforms with Hermite functions and the true
polyanalytic Bargmann transform. The L2 theory is mostly from [1]. More-
over, we extend the L2 theory of the true poly-Bargmann transform to the
appropriated Banach spaces, using the theory of Modulation spaces. In sec-
tion 3 we study Gabor frames with Hermite functions in L2(R), using those
generalized transforms. We provide a different proof of the sufficient condi-
tion given in [19] for the the lattice parameters which generate those frames.
In the last section we study Gabor Banach frames with Hermite functions in
higher dimensions, by using the representations of the Heisenberg group and
Feichtinger-Gröchenig coorbit theory. Using these results we prove a sam-
pling theorem for certain Fock spaces of polyanalytic functions (true Banach
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poly-Fock spaces). The results can also be seen as Banach Gabor frames
with Hermite functions in Modulation spaces.

2. Gabor transforms with Hermite functions
2.1. The Bargmann transform. Expansions of the type (1) are closely re-
lated to the samples of the Gabor transform of f with respect to the windows
Φn:

VΦn
f(x, ω) =

∫

Rd

f(t)Φn(t − x)e−2πiωtdt. (2)

The Hermite function Φ0(t) = 2
d
4e−πt2 is the d-dimensional Gaussian. Writing

z = x + iω a simple calculation shows that

e−iπxω+π
|z|2

2 VΦ0
f(x,−ω) =

∫

Rd

f(t)e2πtz−πz2−π
2 t2dt = (Bf)(z), (3)

where (Bf)(z) is the Bargmann transform of f . The function Bf satisfies

d

dz
Bf = 0.

Thus, it is an analytic function and we can use powerful complex analysis
tools (at least in the case d = 1) to study its properties. Moreover, it is an
isomorphism B : L2(Rd) → F(Cd), where F(Cd) stands for the Bargmann-
Fock space of analytic functions in Cd with the norm

‖F‖2
F(Cd) =

∫

Cd

|F (z)|2 e−π|z|
2

dz. (4)

2.2. The true poly-Bargmann transform. Let us go back to the window
Φn for general n. A calculation (see [19] for details) shows that

e−iπxω+π
2 |z|

2

VΦn
f(x,−ω) = (π|n|n!)−

1
2

∑

0≤k≤n

(

n

k

)

(−πz)k

(

d

dz

)n−k

[Bf ] (z).

(5)
Now we have a serious obstruction regarding the possibility of using complex
analysis tools: The function on the right hand side of (5) is analytic no more.
However, differentiating (5) n + 1 times with respect to z, one realizes that
it satisfies the equation

(

d

dz

)n+1

f(z) = 0. (6)
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Functions satisfying (6) are called polyanalytic of order n + 1. Moreover, we
can use Leibnitz formula in order to write (5) as

e−iπxω+π
2 |z|

2

VΦn
f(x,−ω) = (π|n|n!)−

1
2eπ|z|

2 dn

dzn

[

e−π|z|
2

Bf(z)
]

.

Now, integration by parts shows that the Fock norm (4) of these functions
is finite. Therefore, it is natural to define a transform as

Bnf(z) = e−iπxω+π
2 |z|

2

VΦn
f(x,−ω). (7)

This transform has been studied in [1] and [2], where it is shown that
‖Bnf‖F(Cd) = ‖f‖L2(Rd). Thus the image of L2(Rd) under Bn is a function

with membership in a space equiped with the same norm as F(Cd), whose el-
ements are not analytic functions but satisfy the equation (6). These spaces
are denoted by Fn−1(Cd) and called true poly-Fock spaces of order n − 1
(since their elements are polyanalytic of order n but not polyanalytic of any
other lower order, see [1], [2] and [26]). The prefix ”true” has been used by
Vasilevski [26] to distinguish them from the polyanalytic Fock space, Fn(Cd),
constituted by all polyanalytic functions up to order n. The relation between
the spaces is given by the orthogonal decomposition:

Fn(Cd) = F0(Cd) ⊕ ... ⊕Fn−1(Cd), (8)

the transform Bn is the true poly-Bargmann transform of f and its ”multi-
plexed version” Bn : L2(Rd, Cn) → F(Cd) defined, for f = (f0 + ...fn−1) ∈
L2(Rd, Cn) by

Bnf =B0f0 + ... + Bn−1fn−1,

is also a Hilbert space isomorphism called the poly-Bargmann transform [1].
The applications in multiplexing are a result of (8), since we can ”encode”
every individual signal into a space Fk(Cd), multiplex the n signals and then,
when required, we can recover each signal from the orthogonal projection of
the multiplexed signal over Fk(Cd).

2.3. The true poly-Bargmann transform and the spaces Fp(C
d). Let

p ∈ [1,∞[ and consider the norm

‖F‖p

Fp(Cd)
=

∫

Cd

|F (z)|p e−πp
|z|
2

2

dz.
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Consider among the functions with finite Fp norm, those such that
(

d

dz

)n+1

F (z) = 0, but

(

d

dz

)k

F (z) 6= 0, k = 0, ..., n.

We denote these (true poly-Fock) Banach spaces by Fn
p (Cd). Clearly, F0

p (Cd) =

Fp(C
d) is the standard analytic Fock space. The space F1(C

d) is the complex
version of the Feichtinger algebra ([7],[8]) and it will play an important role
in last section of the paper.

Now we will need the concept of modulation space. Follow notations of [17]
and set Mp(R2d) = Mp,p(R2d). The modulation space Mp(R2d) consists of all
tempered distributions such that Vgf ∈ Lp(R2d) equipped with the norm

‖f‖Mp(R2d) = ‖Vgf‖Lp(R2d) .

Modulation spaces are ubiquitous in time-frequency analysis. They were
introduced by Feichtinger in [6].

With a view to studying sampling sequences in poly-Fock spaces Fn
p (Cd)

for general p, we prove some statements concerning the properties of the true
poly-Fock transform which may have independent interest.

In the proof of the next proposition, a property of Modulation spaces (the
definition of Modulation space is independent of the particular window cho-
sen) comes in handy. We wonder whether one can prove it directly from the
complex variables setting.

Proposition 1. For every f ∈ L2(R2d), there exist constants C, D, such that

C ‖Bnf‖Fn
p (Cd) ≤ ‖Bf‖Fp(Cd) ≤ D ‖Bnf‖Fn

p (Cd) . (9)

Proof : This follows from the theory of modulation spaces: since the definition
of Modulation space is independent of the particular window chosen [17,
Proposition 11.3.1], then the norms

‖f‖Mp(R2d) = ‖VΦn
f‖Lp(R2d)

and

‖f‖Mp(R2d) = ‖VΦ0
f‖Lp(R2d) ,

must be equivalent. Therefore, there exist constants C, D, such that

C ‖VΦn
f‖Lp(R2d) ≤ ‖VΦ0

f‖Fp(Cd) ≤ D ‖VΦn
f‖Lp(R2d) .

By definition of Bn and B, this yields (9).
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Corollary 1. For every F ∈ Fn
p (Cd) there exists f ∈ L2(Rd) such that

F = Bnf and

C ‖F‖Fn
p (Cd) ≤ ‖Bf‖Fp(Cd) ≤ D ‖F‖Fn

p (Cd) . (10)

Proof : Let F ∈ Fn
p (Cd) ∩ Fn

2 (Cd). Since Bn maps L2(Rd) onto Fn
2 (Cd), it is

possible to choose f ∈ L2(Rd) such that F = Bnf . Thus, the range of Bn

contains a set which is dense in Fn
p (Cd). Thus, Bn : L2(Rd) → Fn

p (Cd) is
onto. Then (9) is equivalent to (10).

From the norm equivalences it is possible to adapt the arguments of [23]
in order to prove that the orthogonal decomposition (8) extends as a decom-
position in direct sums of Banach spaces.

Proposition 2. The following decomposition holds for 1 < p < ∞:

Fn
p(C

d) = F0
p (Cd) ⊕ ... ⊕Fn−1

p (Cd).

Proof : Define an integral operator P n acting on Lp(Cd, e−π|z|
2

) by

(P nF )(w) =

∫

Cd

F (z)Kn(w, z)e−π|z|2dz,

where

Kn(w, z) =
1

n!
eπ|w|2

(

d

dw

)n
[

eπzw−π|w|2(w − z)n
]

is the reproducing kernel of Fn
2 (Cd) [2]. It follows that, if F ∈ Fn

p (Cd) ∩

Fn
2 (Cd), then

(P nF )(w) = F (w), (11)

and if F ∈ Fk
2 (Cd), with k 6= n, then (P nF )(w) = 0. By density, (11) is

valid for every F ∈ Fn
p (Cd) and P nF = 0 if F ∈ Fk

p (Cd), with k 6= n. A
similar argument can be used to extend the reproducing equation to the space
Fn

p(C
d), using the operator Pn = P 0 + ... + P n−1. Thus, every F ∈ Fn

p(C
d),

can be written as

PnF = P 0F + ... + P n−1F = F0 + ... + Fn−1,

with Fk ∈ Fk
p (Cd). Moreover, the intersection of the spaces is {0}: if F ∈

Fk
2 (Cd), with k 6= n, then (P nF )(w) = 0; again by density, this extends to

Fk
p (Cd).
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3. Gabor frames in L2

Stable Gabor expansions (1) can be obtained from frame theory. Given a
point λ = (x, ω) in phase-space R

2d, the corresponding time-frequency shift
is

πλf(t) = e2πiωtf(t − ω), t ∈ R
d.

Using this notation, the Gabor transform with respect to the window g can
be written as

Vgf(x, ω) = 〈f, πλg〉L2(Rd) .

Let Γ = {λk,l = (xk, ωl) : l, k ∈ Zd}. The Gabor system G (Φn, Γ) = {πλk,l
Φn :

l, k ∈ Zd} is a Gabor frame or Weyl-Heisenberg frame in L2(Rd), whenever
there exist constants A, B > 0 such that, for all f ∈ L2(Rd),

A ‖f‖2
L2(Rd) ≤

∑

l,k∈Zd

∣

∣

∣

〈

f, πλk,l
Φn

〉

L2(Rd)

∣

∣

∣

2

≤ B ‖f‖2
L2(Rd) . (12)

3.1. A polyanalytic interpolation formula for Fn(C). In this section
we restrict to d = 1. It has been proved recently ([19], [20]) that, if Λ =
MZ2 ⊂ R2 is a lattice in R2, where M is a 2×2 invertible real valued matrix
with s (Λ) = |det M | < 1/(n + 1), then G (hn, Γ) is a Gabor frame. In this
section we will obtain this result from an interpolation formula in Fn(C),
which is a polyanalytic version of the one used in [25].

Considering the Weierstrass sigma function associated with the lattice Λ =
{λk,l}k,l∈Z,

σΛ(z) = z
∏

λk,l∈Λ\{0}

(

1 −
z

λk,l

)

e
z

λk,l
+ z2

2λ2
k,l ,

we have

|σΛ(z)| ≤ Ce
π

2s(Λ) |z|
2

. (13)

The lattice Λ is an interpolating sequence for Fn(C) if, for every sequence
{αk,l} ∈ l2, there exists F ∈ Fn(C) such that

e−
π
2 |λk,l|

2

F (λk,l) = αk,l,

for every λk,l ∈ Λ.
The lattice Λ is required to be separated: infn,m,k,j∈Zd |λk,l − λn,m| = δ > 0.
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Theorem 1. If s(Λ) > n + 1, then the lattice Λ is an interpolating sequence

for Fn(C). The interpolation problem is solved explicitly by

F (z) =
∑

k,l∈Zd

ak,le
πλk,lz−π|λk,l|

2 GΛ−λk,l
(z − λk,l)

(z − λk,l)
. (14)

Proof : Estimate (13) gives
∣

∣

∣
(σΛ)s(Λ) (z)

∣

∣

∣
≤ Ce

π
2 |z|

2

.

Thus, since s(Λ) > n + 1, then (σΛ)n+1 ∈ F2(C). As a result, there exists a

fΛ ∈ L2 (R) such that (σΛ(z))n+1 = BfΛ(z). Now, let

GΛ(z) = (BnfΛ)(z) = (π|n|n!)−
1
2eπ|z|

2 dn

dzn

[

e−π|z|
2

(σΛ(z))n+1
]

.

Then GΛ(z) ∈ Fn
2 (C) and GΛ(λk,l) = 0 for every λk,l ∈ Λ. Similarly,

define
(

σΛ−λk,l

)n+1
(z) = BfΛ−λk,l

(z) and GΛ−λk,l
(z) = (BnfΛ−λk,l

)(z). Since
GΛ−λk,l

(z) ∈ Fn
2 (C), then

∫

Cd

∣

∣GΛ−λk,l
(z − λk,l)

∣

∣

2
e−π|z−λk,l|

2

dz < ∞. (15)

Now,
∣

∣

∣
e−

π
2 |z|

2

F (z)
∣

∣

∣
=

∑

k,l∈Zd

∣

∣

∣
ak,le

−π
2 |λk,l|

2
∣

∣

∣
e−

π
2 |z−λk,l|

2

∣

∣

∣

∣

GΛ−λk,l
(z − λk,l)

(z − λk,l)

∣

∣

∣

∣

.

This estimate shows that the series converges uniformly to a polyanalytic
function F such that F (λk,l) = ak,l. By Cauchy-Schwarz,

e−π|z|
2

|F (z)|2 ≤
∑

k,l∈Zd

e−π|λk,l|
2

|ak,l|
2

∑

k,l∈Zd

e−π|z−λk,l|
2

∣

∣

∣

∣

GΛ−λk,l
(z − λk,l)

(z − λk,l)

∣

∣

∣

∣

2

.

Integrating with respect to area measure in the plane and using (15), we see
that F ∈ Fn(C).

3.2. Gabor frames with Hermite functions in L2(R). Following Fe-
ichtinger and Kozek [11], the adjoint lattice Λ0 is defined by the commuting
property as

Λ0 = {µ ∈ R
2d : πzπµ = πµπz, for all z ∈ Λ}.
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If Λ = αZ× βZ, then Λ0 = β−1
Z× α−1

Z. There exists a remarkable duality
between the Gabor system with respect to Λ0 and those with respect to Λ.
This is often refered to as the Janssen-Ron-Shen duality principle [24], [21].

Theorem A (duality principle). The Gabor system G(g, Λ) is a frame for
L2(Rd) if and only if the Gabor system G(g, Λ0) is a Riesz basis for its linear
span inside L2(Rd).

Combining the duality principle with Theorem 1, one recovers the theorem
of Gröchenig and Lyubarskii [19]:

Theorem 2. If s(Λ) < 1
n+1, then the Gabor system G(hn, Λ) is a frame for

L2(R).

Proof : First observe that s
(

Λ0
)

=
∣

∣det M−1
∣

∣ = 1
s(Λ). Thus, if s(Λ) < 1

n+1,

then s
(

Λ0
)

> n + 1. It follows from Theorem 1 that the lattice Λ0 is an
interpolating sequence for Fn(C). Since

〈f, πλhn〉L2(Rd) = Vhn
f(x, ω) = eiπxω−π

2 |z|
2

Bnf(z),

then it is clear that G(hn, Λ
0) is a Riesz basis for its linear span inside L2(R).

By the duality principle, the Gabor system G(hn, Λ) is a frame for L2(R).

4. Banach frames
4.1. Banach frames in the Fock space Fp(C

d). Define a ”translation”
βz on F(Cd) by

βzF (ζ) = e−π
|z|2

2 eπzζF (ζ − z). (16)

The action of the Bargmann-Fock representation of the Heisenberg group
(which can be identified with C

d × R) in the space F(Cd) is given by the
operator βz is (modulo the action on R). The operator βz satisfies the inter-
twining property

βzB = B
(

eiπxωπz

)

, z = x + iω, (17)

which provides the equivalence between the Bargmann-Fock and the Schrödinger
representations of the Heisenberg group (which is the operator eiπxωπz, af-
ter identifying with R2d × T and factoring the action on the torus-see [17,
Chapter 9] for details).

Now we collect some facts from Feichtinger-Gröchenig coorbit theory in
the context of Fp(C

d):
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Definition [16]. The set {βλk,l
g : l, k ∈ Zd} is a Banach frame for Fp(C

d)
if the following three conditions hold:

i)F ∈ Fp(C
d) if and only if

〈

f, βλk,l
g
〉

F2(Cd)
∈ lp.

ii)There exist two constants A, B depending only on g such that

A ‖F‖Fp(Cd) ≤





∑

l,k∈Zd

∣

∣

∣

〈

F, βλk,l
g
〉

F2(Cd)

∣

∣

∣

p





1
p

≤ B ‖F‖Fp(Cd) .

iii)f ∈ Fp(C
d) can be unambiguously reconstructed from the coefficients

〈

F, βλk,l
g
〉

F2(Cd)
.

Let U a neighborhood of 0 in the complex plane. A set X = (λk,l) of
points in Cd is U-dense if

⋃

l,k∈Zd βλk,l
U = Cd and it is separated if for some

compact neighborhood V of 0 we have βλk,l
V ∩ βλi,j

V = {}, (k, l) 6= (i, j)
and relatively separated if X is a finite union of separated sets. Now set
G(z) = 〈g, βzg〉F2(Cd) and define the oscillation function of G as

oscUG(z) = sup
u∈U

|βuG(z) − G(z)| .

The application of Theorem T and Theorem S in [16] gives the following
result.

Theorem B [16] Assume that g ∈ F1(C
d). Let U be so small that

‖oscUG‖F1(Cd) < 1.

Then for any U-dense and relatively separated set Γ = {ξk,l = xk + iωl) :
l, k ∈ Z

d}, every f ∈ Fp(C
d) has the atomic decomposition

F (z) =
∑

l,k∈Zd

ck,lβξk,l
g,

for some numbers λm,l, with convergence in Fp(C
d) and ‖F‖Fp(Cd) equivalent

to
(

∑

k,l∈I |ck,l|
p
)

1
p

. Moreover, the system (g, Γ) = {βλk,l
g : l, k ∈ Zd} is a

Banach frame for Fp(C
d).

If one takes g = 1 ∈ F1(C
d), we are led to the sampling theorem 8.4 of

[22]. However, we can also choose as windows any element of the canonical
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orthonormal basis of F(Cd),

en(z) =

(

π|n|

n!

)

1
2

zn =

d
∏

j=1

πnj

√

nj!
znj , (18)

since en ∈ F1(C
d). Thus, under the conditions of the above theorem, F (en, Γ)

is a Banach frame for Fp(C
d). In the next section we will use the fact that

(BΦn)(z) = en(z).

4.2. Sampling sequences for the poly-Fock space Fn
p (Cd). As remarked

in [16], combining the intertwining property (17) of B with Theorem 4.8
in [9] (about automatic extension of intertwining operators from Hilbert to
Banach settings), B extends to an isomorphism between Mp(R2d) and Fp(C

d).
However, such a direct argument does not apply to the transforms Bn, since
Bn does not satisfy (17). Thus, we will require the results of section 2.3.

Theorem 3. Set Gn(z) = 〈en, βzen〉F2(Cd) and let U be so small that

‖oscUGn‖F1(Cd) < 1.

Then the following holds:

(1) F ∈ Fn
p (Cd) if and only if e−π

|λk,l|
2

2 F (λk,l) ∈ lp.
(2) There exist two constants A, B depending only on g such that

A ‖F‖Fn
p (Cd) ≤





∑

l,k∈Zd

|F (λk,l)|
p e−πp

|λk,l|
2

2





1
p

≤ B ‖F‖Fn
p (Cd) .

(3) F ∈ Fp(C
d) can be unambiguously reconstructed from the samples

{F (λk,l)}l,k∈Zd.

Proof : Since (BΦn)(z) = en(z), the unitarity of the Bargmann transform
together with the intertwining property (17), gives:

〈

Bf, βλk,l
en

〉

F2(Cd)
=

〈

Bf, βλk,l
BΦn,

〉

F2(Cd)

=
〈

Bf,B
(

e−iπxkωlπλk,l
Φn

)

,
〉

F2(Cd)

=
〈

f, e−iπxkωlπλk,l
Φn,

〉

L2(Rd)
.
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As a result,

〈

Bf, βλk,l
en

〉

F2(Cd)
= e−iπxkωl

〈

f, πλk,l
Φn

〉

L2(Rd)
= e−π

|λk,l|
2

2 (Bnf)(λk,l). (19)

It follows immediately that F (en, Γ) is a Banach frame for F2(C
d) if and only

if Γ = {ξk,l = xk + iωl) : l, k ∈ Zd} is a sampling sequence for Fn
2 (Cd). We

can extend this equivalence to the Banach frame setting: given F ∈ Fn
p (Cd),

we choose f ∈ L2(Rd) such that F = Bnf . Since Theorem B applies, the first
assertion follows immediately from i) in the definition of Banach frames, and
the identity (19). To prove 2., observe that, combining ii) in the definition
of Banach frames with (19), it follows that there exist two constants A, B
depending only on g and such that

A ‖Bf‖Fp(Cd) ≤





∑

l,k∈Zd

|(Bnf)(λk,l)|
p e−πp

|λk,l|
2

2





1
p

≤ B ‖Bf‖Fp(Cd) . (20)

The statement then follows from (9).

4.3. Gabor frames with Hermite functions in modulation spaces.
Using again identity (19), Theorem B and

‖f‖Mp(R2d) = ‖VΦn
f‖Lp(R2d) = ‖Bf‖Fp(Cd) ,

we can rewrite (20) as an inequality yielding Banach Gabor frames with
Hermite windows in modulation spaces.

Theorem 4. In the conditions of the theorems in the previous subsections,

we have that every f ∈ Mp(R2d) has an expansion of the form 1. Moreover,

(1) f ∈ Mp(R2d) if and only if
〈

f, πλk,l
Φn

〉

L2(R2d)
∈ lp.

(2) There exist two constants A, B depending only on g such that

A ‖f‖Mp(R2d) ≤





∑

l,k∈Zd

∣

∣

∣

〈

f, πλk,l
Φn

〉

L2(R2d)

∣

∣

∣

p





1
p

≤ B ‖f‖Mp(R2d) .

(3) f ∈ Fp(C
d) can be unambiguously reconstructed from the coefficients

〈

f, πλk,l
Φn

〉

L2(R2d)
.
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[19] K. Gröchenig, Y. Lyubarskii, Gabor frames with Hermite functions, C. R. Acad. Sci. Paris,

Ser. I 344 157-162 (2007).
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