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Resumo: 

 

O trabalho realizado incidiu na análise do contaminante mercúrio em Chelon 

labrosus, de forma a avaliar o estado da qualidade ambiental dos ecossistemas 

aquáticos, bem como o risco do consumo desta espécie para os humanos. 

Para tal, mediram-se as concentrações totais de mercúrio em amostras de 

fígado, músculo, guelras e cérebro de C. labrosus. Os peixes foram capturados 

em três locais de amostragem, dois deles na Ria de Aveiro (um em Mira, perto 

da embocadura do estuário e o outro no Laranjo, localizado perto de uma fonte 

de descarga de mercúrio), e o terceiro no estuário do Mondego, considerado 

um sistema não poluído. Em Mira e no Mondego as condições ambientais 

apresentavam baixa contaminação de mercúrio, já o Laranjo apresentou 

condições ambientais onde se pode encontrar contaminação de mercúrio 

proveniente de actividades antropogénicas. As escamas dos peixes foram 

também analisadas para determinar a idade de cada indivíduo e para verificar 

se houve bioacumulação de mercúrio ao longo da vida. 

O Laranjo foi o local de amostragem onde se verificaram os valores mais 

elevados de mercúrio, em comparação com Mira e Mondego, apesar de não 

terem sido encontradas diferenças estatisticamente significativas entre os 

vários sistemas. Em todos os locais de amostragem, a concentração de 

mercúrio foi maior no fígado do que nos outros órgãos analisados. As 

concentrações de mercúrio variam de acordo com o tecido do peixe, do 

seguinte modo: fígado > músculo > cérebro > guelras. Os valores de mercúrio 

nos tecidos dos peixes variam de 0.0077 (guelras no Laranjo) a 2.1 µg g -1 

(fígado no Laranjo) (peso seco). A correlação entre a concentração de mercúrio 



e o tamanho do peixe foi variável e dependeu do tecido analisado e do local de 

amostragem, não se verificando bioacumulação de mercúrio nos três locais de 

amostragem. No Laranjo observou-se uma redução da concentração de 

mercúrio com o aumento da idade, ao contrário dos outros dois sistemas, onde 

os níveis de mercúrio permaneceram quase constantes com o crescimento dos 

peixes. 

Os resultados indicam que as concentrações de mercúrio total obtidas para 

os músculos de C. labrosus nos diferentes sistemas são inferiores ao limite 

estabelecido como seguro para o consumo humano equivalente a 0.5 µg g-1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CONTENTS 

 

 

 

1. Introduction………..……………………………………………………………3 

 

2. Material and Methods……………………………………………..…………11 

 

2.1 Study area………………………………………………………………...11 

2.2 Sampling procedures…………………………………………………....16 

2.2.1 Biota………………………………………………………………..16 

2.2.2 Sediments, suspended particulate matter and water…………17 

2.3 Mercury analysis…………………………………………………………18 

2.4 Statistical analysis……………..…………………………………………20 

 

3. Results………………………………………………………………………...21 

 

4. Discussion…………………………………………………………………….27 

 

5. Conclusion…………………………………………………………………….36 

 

6. References……………………………………………………………………38 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

Thicklip grey mullet ( Chelon labrosus) as a bioindicator for mercury 

contamination: Results from Ria de Aveiro and Monde go estuary  

 

H.I. Oliveiraa, *, S.C. Tavaresa, M.E. Pereirab, M.A. Pardala 

 

a IMAR – Institute of Marine Research, Department of Zoology, University of 

Coimbra, 3004-517 Coimbra, Portugal. 

 

b CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, 

Portugal. 

 

*Corresponding author: Tel.: + 351 239 836386; Fax: + 351 239 823603; e-mail 

address: hicolive@student.zoo.uc.pt 

 

 

Abstract 

 

The focus of this work was to evaluate mercury contamination in Chelon 

labrosus as a tool to assess the environmental health status on aquatic 

ecosystems, as well as the evaluation of the risk to human of the consumption 

of these organisms.   

Total mercury concentrations were measured in samples of liver, muscle, 

gills and brain from thicklip grey mullet (Chelon labrosus). Fish were collected in 

three different sampling sites: two of them in Ria de Aveiro (Mira, which is 

located close to the estuary mouth and Laranjo located near a mercury 
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discharge source); the third station is located in a non-polluted system, 

Mondego estuary. Mira and Mondego have environmental conditions of low 

contamination of mercury; in the other hand, Laranjo has high contamination 

with the metal. The scales were also analyzed to determine the age of each fish 

and to see if mercury bioaccumulates along the lifespan.  

Clearly higher total mercury values were observed in Laranjo comparing to 

Mondego and Mira, in spite of no significant difference were found between 

different sampling sites. In all sampling sites, the concentration of mercury was 

higher in liver than in other three organs. Concentrations of mercury varied 

according to the fish tissue, in the following way: liver > muscle > brain > gills. 

The values of total mercury in fish tissues ranged from 0.0077 (gills at Laranjo) 

to 2.1 µg g -1 (liver at Laranjo) (dry weight). The correlation between mercury 

concentration and fish size was variable and depended upon the tissue 

analyzed and the sampling site. Mercury bioaccumulation with growth were not 

seen in the three sites. In Laranjo sampling site, it was observed a reduction of 

mercury concentration with age increase, different from the two other sites, 

where the levels of mercury remain almost constant along the lifespan.  

The results showed that total mercury concentrations obtained for the 

muscles of C. labrosus in different systems were below the established limit for 

safe human consumption of 0.5 µg g-1. 

 

 

 

Key words: Mercury contamination, C. labrosus, bioindicator, Ria de Aveiro, 

Mondego estuary. 
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1. Introduction 

 

The estuarine processes are extremely important from the biogeochemical, 

ecological and economical point of view, but also of public health, due to 

contamination of aquatic natural resources. Estuaries have been considered 

nurseries for several significant faunal species and they are mainly located in 

the biggest cities of the world (Raffaelli et al., 1998; Flindt et al., 1999; Coelho et 

al., 2004; Lillebø et al., 2004). Also, estuarine and coastal waters are some of 

the most productive and economically important ecosystems. Their 

contamination by organometals and metals resulting from anthropogenic 

actions (such as human population growth, intensive agricultural practice and 

progressive industrialization and urbanization) has long represented a threat to 

the environment (Coelho et al., 2006). So, there is still a tremendous need for 

more research in the field of aquatic sciences as an effort to preserve the 

biodiversity and ecology of these incomparable areas, i.e., to maintain the high 

quality status of these zones.  

The processes of contaminants accumulation in aquatic organisms will 

determine, in part, the enhancement of their adverse effects on the biota. Most 

of the times, estuaries and coastal zones are analyzed in the scope of its 

environmental quality, when suffering the consequences of anthropogenic 

inputs. These kinds of inputs implicate deep studies and surveys on different 

aspects of the interactions between compartments and contaminants, as, for 

example, their chemical speciation (Coelho et al., 2006). 

The use of bioindicators has been recommended as an efficient 

methodology (Saiz-Salinas et al., 1996; Liang et al., 2004; Ugoliniet et al., 2004; 
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Roméo et al., 2005) that could give useful monitoring data without requiring 

such a complex set of studies. Trace metal content of biota has been commonly 

used in biomonitoring programmes of metal pollution in the marine environment 

since is considered to give a time-integrated measure of metal availability (Saiz-

Salinas et al., 1996; Coelho et al., 2006). 

 

Mercury contamination of aquatic systems 

 

Mercury (Hg) is an element that has both anthropogenic and natural sources 

(OSPAR, 2004). It is often assumed that, in Europe, the anthropogenic 

deposition of mercury exceeds the natural one, which means that Europe is a 

major global exporter of mercury (SEC, 2005). 

 Several point emissions of mercury from human activities are identified as 

more important, mainly chlor-alkali production using mercury as a cathode, 

mining activities, cement production, coal and oil combustion, waste incineration 

(medical and municipal) and lightning industry (OSPAR, 2000). With the growth 

of industry and intensive agriculture, mercury has been extensively used in the 

production of paper, pesticides, fungicides, electrical goods, batteries and other 

items, which has caused high amounts of mercury to be emitted to the 

environment (Jian-bo Shi, 2007). However, the knowledge of its toxicity and 

persistence in the environment led to the search for substitutes, which 

originated a decrease in its use in some sectors (Simon et al., 1998). 

 Having in mind the important impacts of mercury in the environment, this 

metal is considered an extremely dangerous pollutant with highest priority 

concerning environmental consequences and threat to human health. Mercury 
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has high mobility in aquatic systems, persists in the environment, posses 

lipophilicity, and ubiquity, which justifies the environmental study, as it is a toxic 

element to all living organisms (Boening, 2000) and ecosystems. Their high 

toxicity is related to its high affinity to the sulphide groups of host proteins 

(ATSDR, 1999). Mercury has mutagenic and teratogenic effects, even though 

the data on the mechanisms of those effects are very sparse and controversial 

in the available literature (Calderón et al., 2003; Tchounwou et al., 2003). 

Mercury has high affinity to particulate material, namely suspended particles, 

conducting to its accumulation in sediments by deposition processes. Thus, the 

sedimentary compartment constitutes an important source and deposit of 

mercury to the pore water and biota (Ramalhosa, 2001). To become available 

to aquatic organisms and to be transported, the mercury buried in sediments 

has to be released to the water column through disturbances inducing 

resuspension or changes in the physicochemical environment (temperature, 

salinity, redox potential, oxygen) (Rajar et al.,1997; Ramalhosa, 2001; Hung 

and Chmura, 2006). The changes in mercury species resulting from sediments 

resuspension can also include methylmercury production (Bloom and Lasorsa, 

1999). 

Total contaminant concentrations in sediments do not reflect their 

bioavailability to organisms, which can be affected by some variables such as 

particle size, sediment geochemistry or organic matter content (Rainbow, 1995; 

Luoma, 1996). In addition, the activities of burrowing organisms or higher 

trophic level organisms feeding on benthic invertebrates may be the way of 

bringing the mercury to the water column from the sediments (Mason et al., 

2006). 
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The ocean is an important sink in the global mercury cycle. Recently, the 

biogeochemistry of mercury (Figure 1) in coastal and estuarine environments 

has received particular notice (Mason et al., 1996; Horvat et al., 1999; Hines et 

al., 2000; Conaway et al., 2003) for being one of the most complex and 

attractive elemental cycles, due to its influence in significant processes 

(Fitzgerald and Mason, 1997; Mason and Sheu, 2002). Mercury is chiefly 

reactive in the environment, shifting fast between the four interconnected 

compartments (atmospheric, terrestrial, aquatic and biotic) (Fitzgerald and 

Mason, 1997).  

 

 

 

Figure 1 – Conceptual biogeochemical cycling of mercury (adapted from 
www.learner.org/.../vis_bytype.php?type=graphic). 

 

The global cycle of mercury (Figure 1) is dominated by anthropogenic and 

natural emissions of gaseous mercury to the atmosphere subjected to long-
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range atmospheric transport (Mason et al., 1994). The great part of mercury 

brought to the marine environment, through different pathways (as for example 

waste-water discharges and atmospheric deposition), is inorganic but can be 

converted to the methyl-form by both aerobic and anaerobic bacteria (Dixon and 

Jones, 1994). So, in coastal environments, the atmosphere is the main pathway 

for the transport of mercury between the land and the oceans, while riverine 

inputs, globally, are comparatively small (Cossa et al., 1996; Fitzgerald and 

Mason, 1997). Nevertheless, estuaries make an important contribution to the 

mercury mass balance in local coastal environments (Laurier et al., 2003; 

Mason et al., 2006; Schäfer et al., 2006). Consequently, estuarine systems are 

crucial transition zones for the understanding of the behaviour and destiny of 

mercury, with potential implications for the global biogeochemical cycle of the 

metal (Pato et al., 2008). Moreover, its presence and behaviour in aquatic 

systems is extremely relevant since it is the metal that have a higher capacity to 

accumulate and to increase its concentration along the trophic chain (Kehring et 

al., 2001).  

The quantity of mercury accumulated in an organism is a function of the 

exposure route, availability of mercury and physico-chemical and environmental 

factors (e.g temperature, pH and concentration of dissolved organic carbon) 

(Watras et al., 1998). The bioaccumulation process consists in the sorption of 

contaminants in the organisms faster than its elimination. The ratios of mercury 

sorption or elimination are specific for each organism (Rosa, 2006). 

Bioaccumulation includes two distinct processes, bioconcentration and 

biomagnification. The first is the accumulation in aquatic organisms by mercury 

uptake from water alone and the second is defined as the increase in mercury 
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concentration caused by the transfer from a trophic level to a higher level which, 

thus, amplifies the rates of bioaccumulation at the top of the chain (Rosa, 2006). 

The biomagnification of mercury occurs even in system with low concentrations 

of the metal (water for example) (Morel et al., 1998; Kehrig et al., 2002). 

The requests for biomagnification include an effective uptake of contaminant 

by microorganisms at the bottom of the trophic chain, the retention in these 

organisms and finally the transfer to their predators. Decisive to the 

biomagnification behaviour of mercury is the fact that elementar mercury (Hg0), 

Hg2+ and dimethylmercury are not so extensively bioaccumulated, in contrast 

with methylmercury, which is (Morel et al., 1998). 

Summarizing, two important processes are involved in the cycle of mercury 

in coastal and ocean environments (Jian-bo Shi, 2007). The first is the 

methylation process mediated by bacteria which convert inorganic mercury into 

methylmercury in water and sediment systems (Tchounwou et al., 2003). This 

will affect the toxicity and bioavailability of the metal (Jian-bo Shi, 2007). The 

second one is the bioaccumulation of mercury in aquatic organisms through the 

food chain (Jian-bo Shi, 2007), which brings problems that come from higher 

methylmercury concentrations in seafood. Methylmercury is the most toxic form 

of mercury and is subject to high biotic bioaccumulation and biomagnification 

(Mason et al., 1995; Tchounwou et al., 2003). Through the processes of 

biomethylation and bioaccumulation through estuarine food webs, 

methylmercury finds its way to species usually consumed by humans (Clarkson 

et al., 2003; Coelho et al., 2005). Therefore mercury represents a particular 

threat for both aquatic wildlife and human health (OSPAR, 2000). 
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Examples of toxicological effects of mercury are neurological damages, 

growth inhibition, reproduction capacity reduction, development abnormalities 

and changes of responses in terms of behaviour (Wiener et al., 2003). In 

relation to the exposure of adult fish to methylmercury, the neurotoxicity 

appears to be the main effect, taking into account the observed coordination 

faults, feeding incapacity, lack of appetite, diminished response capacity, 

lethargy, abnormal movements and brain lesions (Wiener and Spry, 1996). The 

health effects associated to the exposure to mercury is related to the period of 

exposure, mercury form and exposure route (Clarkson et al., 2003). 

Nevertheless, studies specifically focused on mercury contamination are limited, 

despite being one of the most hazardous elements.  

Hotspots of mercury contamination are recognized in the Portuguese coast, 

mainly in estuarine ecosystems such as the Tagus (Canário et al., 2003, 2005) 

and the Ria de Aveiro (Pereira et al., 1998; Ramalhosa et al., 2005a), while 

other systems keep near pristine conditions when referring to this metal, namely 

the Douro (Ramalhosa et al., 2005b) or the Mondego (Vale et al., 2002). 

The Mugilidae (Osteichthyes) is a widespread family of fish in estuaries, 

coastal waters and rivers of tropical, subtropical and temperate zones 

(McDowall, 1988; Almeida, 1995). In contrast with other teleosteans occurring in 

the estuaries of temperate regions, mugilids have the benefit of using directly 

the food resource provided by the primary producers contributing decisively to 

the energy and organic matter flux in the estuarine ecosystems (Almeida, 

2003). 

 Mugilids are resistant to environmental stress. Its success, in areas with 

high intervention, is in great part, due to food plasticity that allows the 
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consumption of large variety of food items and the subsistence at the expense 

of low quality food, not usable by other fish (Costa, 1993). The combination of 

these two conditions allows thus the reduction of intra and interspecific food 

competition (Costa, 1993). Therefore and despite its great capacity to adapt to 

polluted environments, mugilids present with other species, a critical period of 

their life cycle – the breeding season – during which a disturbance may cause 

an unbalance in estuarine ecosystems (Costa, 1993). 

In this work a fish (Chelon labrosus from Mugilidae family) was chosen as 

bioindicator for mercury contamination because is relatively large, easily 

identified, sampled and capture in pristine and metal contaminated 

environments (Pacheco et al., 2005). Another reason was the trophic position 

and its extensive range, which makes it able to reflect aquatic contamination by 

persistent metals. These points and the point that are a relation (direct and 

indirect) among ichthyofaunal communities and human impacts on estuaries are 

the main reasons for the selection of this taxonomic group as a bioindicator.  

As we have already seen, fish is a major pathway of environmental 

exposure to mercury and, therefore, the main source of methylmercury in 

human diet (Shimshack et al., 2007) causing negative impacts in human health, 

by damaging the central nervous (CNS), cardiovascular and immune systems 

(EPA, 2001; SEC, 2005; Jewett and Duffy, 2007; Guzzi and La Porta, 2008). 

So, fish are a good choice for the development of this research work, also from 

the point of view of human and ecosystem health risk assessment. 
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The main goals of this work are: 

a) To study the accumulation of total mercury in different tissues (liver, 

muscle, gills, brain) of Chelon labrosus captured in different systems, with 

different mercury contamination (Mira channel in Ria de Aveiro and Mondego 

estuary which have low contamination and Laranjo area of Ria de Aveiro which 

has high metal levels); 

b) To evaluate the value of C. labrosus as bioindicator of mercury pollution; 

c) To determine which tissue best reflects the concentration of mercury and 

why; 

d) To determine mercury bioaccumulation along the life of the fish; 

e) To assess the environmental health status of the Mondego estuary and 

Ria de Aveiro; 

f) To assess the risk for human health due to the consumption of fish 

inhabiting the studied areas. 

 

2. Material and Methods  

2.1 Study area 

The study was conducted in two different aquatic systems, the Ria de Aveiro 

and Mondego River estuary. 

Ria de Aveiro (Figure 2) was choose because it is a temperate shallow 

coastal lagoon (45 Km-length; 10 Km-wide), so are among the most productive 

ecosystems, with a diversity of habitats that must be preserved. The Ria de 

Aveiro is adjacent to the Atlantic Ocean and located on the north-western coast 
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of Portugal (40º 38´N, 8º 45´w), covering an area of approximately 83 Km2 of 

wetland at high tide to 66 Km2 at low tide (Dias et al., 2001). 

The system is characterized by an irregular and complex geometry, with four 

main narrow channels and a significant area of intertidal zones. The channel of 

Ovar (25 Km) turned to northeast, which is the most extensive and profound 

channel, and the channel of Mira with orientation to southwest are the two major 

channels. The smallest channels are channel of Murtosa (8 Km) turned to east 

and Ílhavo (7 Km) with orientation to south (Monterroso, 2004). Water 

circulation in Ria de Aveiro depends exclusively on a single narrow opening in 

the sea and the freshwater inputs come from two major rivers, Antuã and Vouga 

(Dias et al., 2000). Circulation of water inside the lagoon is complex and difficult 

due to an extensive web of channels and islands, so it is possible that any 

conservative contaminants spread inside the system before they are discharged 

into the coastal waters through the single sea mouth (Ramalhosa, 2005). 

The Vouga is the major river discharging into the Ria and has a drainage 

area of 2425 km2 (Dias et al., 2000). It has an average flow of 25 m3 s−1, which 

corresponds to 60% of the freshwater discharged into the lagoon (Dias et al., 

2000). Nevertheless, the freshwater contribution is small comparing to the tidal 

prism at the sea boundary (Dias et al., 2000). Concerning hydrodynamic 

conditions, the Ria de Aveiro is considered a mesotidal system where tides are 

semi-diurnal and propagate from the mouth to the lagoon’s inner areas. The 

minimum tidal range is 0.6 m (neap tides) and the maximum tidal range is about 

3.2 m (spring tides) (Dias et al., 2000). 
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Figure 2  – The Ria de Aveiro with sampling sites (Laranjo and Mira) indicated by 
the square sign. 

 

In the coastal plain around the lagoon are located a wide range industries, 

an exhaustive and diversified agriculture, and a population of about half a 

million people. Part of this population discharge their untreated or partially 

treated sewage into the lagoon (Lucas et al., 1986), causing pollution problems 

and affecting water quality. In the past five decades, Ria de Aveiro has 

received, in a distant branch (Estarreja channel, Figure 2) of the lagoon that 

ends in an inner bay of 1,5 km2, Laranjo basin (Figure 2), incessant discharges 

of an effluent rich in mercury from a chlor-alkali industry. As a consequence, 

tons of mercury were deposited in the water, sediments and biota of the area, 

causing a well defined anthropogenic mercury gradient in the system (Coelho et 
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al., 2007). The discharges began in 1950s and in 1994 the effluent stop 

released. Nevertheless, high mercury concentration is still present in sediments 

(Pereira et al., 1998; Coelho et al., 2005). A great part of the discharged 

mercury is still present in the Laranjo basin, with high mercury concentrations in 

sediments (maximum of 35 µg g-1) buried at 30–40 cm depth (Pereira et al., 

1998a), corresponding to the period of greatest industrial production. The 

storage of mercury in the lagoon is estimated to be 33 x 103 kg, of which 77% 

are stored in the Estarreja channel and Laranjo basin (associated to the 

sediments) (Pereira et al., 1998). Probably decades are needed for a full 

system recover (Pereira et al., 1998b; Abreu et al., 1998). These high 

concentrations turned the Ria into a hotspot in terms of mercury contamination 

on the southwest Atlantic coast of Europe (OSPAR, 2000). In different 

compartments (biotic and abiotic), Ria de Aveiro has been reported the impact 

of mercury contamination (e.g. Ramalhosa et al., 2001; Coelho et al., 2005). 

Two sampling sites were selected in Ria de Aveiro, as shown in Figure 2. 

The Laranjo basin, near Estarreja, in channel of Murtosa, corresponds to a high 

contaminated area, located near the mercury discharge source. Mira is located 

close to the estuary mouth at one opposite extreme of the lagoon (Coelho et al., 

2007). 

Other sampling station was selected in the Mondego estuary, 60 km south 

from the Ria de Aveiro. Both systems studied in this work have, in the present, 

the same climatic characteristics (interface among Mediterranean and Atlantic 

climate), which are characterized by hot summers and cold and rainy winters.  

Mondego estuary was considered to have pristine conditions referring to 

heavy metals (Vale et al., 2002; Coelho et al., 2005) and the determined values 
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in terms of sediments and suspended particulate matter in previous studies 

enable us to use this estuary as a reference to the present study. So, this 

reference site was used for comparison purposes. 

Mondego River estuary (Figure 3), located on the Atlantic coast of Portugal 

(40º 08’ N, 8º 50’ W) consists of two separate channels, northern and southern, 

separated by Murraceira Island (Marques et al., 2003).  

 

 

 

 

Figure 3  – Mondego estuary located on the Atlantic coast of Portugal. 
 

The two arms show different hydrological characteristics (Marques et al., 

2003). The south channel is shallower (max. 2–4 m deep, at high tide), has 

higher residence times (2-8 days) and is almost silted up in the upstream areas, 



 

16 

 

being the water circulation mostly driven by the tidal excursion. The discharge 

from the Pranto tributary is small and artificially regulated by a sluice, according 

to water needs of the rice crop of the valley (Dolbeth et al., 2003). The north 

channel is deeper (max. 5–10 m, at high tide) has lower residence times (<1 

day) and constitutes the main navigation channel. The northern channel is in 

direct connection to the Mondego River, which drains a hydrological basin of 

approximately 6670 km2, with intensive agriculture activity in the lower section 

and large urbanized populated areas (e.g., Coimbra City) in the middle section. 

The shorelines of the north channel were artificially elevated and covered with 

rocks, eliminating most of the intertidal soft sediment areas. The wet area was 

reduced and inundation of agricultural areas by river runoff minimized. Life in 

this channel became, however, more sensitive to the sharp increase of river 

discharges occurring in spring and winter (Marques et al., 2003). Previous 

works (Marques et al., 1993) revealed that the bottom of the north channel 

consists of a mixing of coarser material transported by the river and marine 

sands, while fine-grain particles are deposited in the south channel. 

 

2.2 Sampling procedures 

2.2.1 Biota 

83 individuals of thicklip grey mullet (Chelon labrosus) were collected, during 

low tide, in the three sampling sites (56 fishes in Mondego, 13 in Mira and 14 in 

Laranjo). The fish caught had different sizes that was between 14 to 57 cm in 

Mondego, 19 to 33 cm in Mira and 17 to 37 cm in Laranjo, and different weight 

wet which vary from 25 to 2296 g in Mondego; 83 to 398 g in Mira and 46 to 490 

g in Laranjo. 
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A beach-seine net named “chincha” was used to catch smaller individuals 

and networks of trammel to catch older individuals.  All samples were collected 

during the autumn of year 2007 and April 2008. After being caught, the fish 

were brought into the laboratory, where each individual was weighed, measured 

and dissected. Through the length, the individuals were separated into classes 

of size. Each class differed from the next class by 3 cm. Whenever possible, we 

store five individuals of each class for later analysis of the levels of mercury. 

Liver, gills, brain and muscle of selected individuals were removed from 

each fish. All samples were washed with distilled water and placed in bottles of 

flicker. The sex was determined macroscopically by examination of the gonads 

after dissection. A set of 15-20 scales were taken from each fish to determine 

the age, observing the number of annulus. The scales were frozen. 

The samples were then freeze-dried, homogenized, and weighted again for 

mercury fresh weight calculations. Analyses for determination of total mercury 

were performed. 

Efforts were made during the laboratory work to keep all the material used 

clear enough to try to avoid the contamination of the samples that can 

irreversibly compromise all the work. 

 

2.2.2 Sediments, suspended particulate matter and w ater 

In the field, samples of sediments, suspended particulate matter (SPM) and 

water were also collected. Sampling was conducted in low tide situation. 

Sediment samples were oven-dried to constant weight at 60ºC, homogenized 

and sieved through a 1 mm sieve before storage until analysis. 
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Water sample treatment and analysis were performed using ultra-clean 

protocols (adapted from Bloom, 1995). Ultra-pure water was obtained from a 

Millipore Milli-Q model 185 system. All glassware was previously soaked for at 

least 24h in a bath containing 5% Decon, then in 25% HNO3 and finally 

thoroughly rinsed with ultra-pure water. After sampling, water samples were 

transported to the laboratory and processed within a few hours. The water 

samples were filtered and the suspended particulate matter was collected on 

pre-weighed, 0.45 µm pore size Millipore filters for mercury determinations. The 

variability of replicates for filtration was assessed through analysis of two 

replicates of each sample, analyzed three to four times each; the coefficient of 

variation (defined as the ratio between standard deviation and the mean) was in 

the range from 2 to 6%. Filters were dried at 60ºC and digested with HNO3 4 

mol L-1 for determination of the mercury concentration in suspended particulate 

matter (for detailed information on the method see Pereira et al., 1998b).  

 

2.3 Mercury analysis 

Dissolved mercury and suspended particulate matter mercury analyses were 

performed by cold-vapor atomic fluorescence spectrometry (CV-AFS) using a 

PSA model Merlin 10.023 equipped with a detector PSA model 10.003, with tin 

chloride as reducing agent (2% in 10% HCl). The method for mercury analysis 

in water and in SPM has a mean analytical detection limit (defined as three 

times the standard deviation of the blank signal) of 0.42 ng L-1 (n=10).  

Total mercury levels were quantified in solid samples (biological material 

and sediments) by thermal decomposition atomic absorption spectrometry 

(AAS) with gold amalgamation, using an Advanced Mercury Analyzer (LECO 
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AMA-254). This methodology is simple and based on a thermal decomposition 

of the sample, which replaces all the delicate stage of digestion of sample 

(Hintelman, 1999), and based on collection of the mercury vapour on a gold 

amalgamator. The homogenized tissues samples (20-160 mg) were directly 

weighed, then placed into a nickel boat and located in a quartz combustion 

tube, containing a catalyst (Figure 4). 

 

 

 

Figure 4  – Schematic representation of the methodology used in equipment LECO 
AMA-254 for mercury determinations. 

 

The sample is firstly dried at 120°C, prior the com bustion at 680-700°C, in 

an oxygen (200 mL min-1) atmosphere. The gases advenient from the 

combustion (nitrogen and sulphur oxides, as well as halogens) are removed in a 

“second” oven to 550°C (Costley et al., 2000), in a  column formed by a catalytic 

mixture based on MnO4 e CaO. The mercury vapour is collected in a gold 

amalgamator and after a pre-defined time (120–150 seconds) the gold 

amalgamator is heated at 900°C. The released mercur y is taken to a heated 

cuvette (120°C) and then analyzed by atomic absorpt ion spectrometry (AAS) 

using a silicon UV diode detector (more details on the methodology in Costley 

et al. (2000), Cizdziel et al. (2002) and Haynes et al. (2006)). Operational 



 

20 

 

conditions used included a drying time: 10 seconds; decomposition time: 150 

seconds; waiting time: 45 seconds. The methodology allows rapid quantification 

of mercury in a sample (usually a time less than 5 minutes). 

The evaluation of the accuracy of the analytical methodology for total 

mercury determinations were made by replicate analysis of Certified Reference 

Materials (CRM), namely TORT-2 (lobster hepatopancreas) for biological 

samples and MESS-2 (marine sediment) for sediments, in parallel with samples 

and procedure blanks. The recovery efficiency of the analysis varied between 

97-116% (defined as the difference between the certified mercury concentration 

and the obtained value). 

Analyses were always performed in triplicate. In 91% of the cases the 

coefficient of variation (defined as the ratio between standard deviation and the 

mean) was less than 10%, 6% of the times the error was between 10 to 20% 

and only in 3% of the times the error was superior to 20%. This latter situation 

represents generally low concentration or low biomass.  

 

2.4 Statistical analysis 

Mondego was the only site in this study where immature individuals were 

caught, males and females. So, to test if there were significant differences 

between sexes, in different tissues and also to compare the concentration of 

mercury in different tissues and different places one way ANOVA (analyses of 

variance) were performed followed by the parametric Newman-Keuls test to 

confirmed the results. Differences between means were considered significant 

at p<0.05. 

Normality and homogeneity variance tests were carried out before the 
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application of the one-way ANOVA test and Newman-Keuls test. Therefore, 

data analysis followed standard statistical procedures (Zar, 1999).  

 

3. Results 

Concentration of mercury in the environment 

From the results shown in Table I, it is possible to see that mercury in the 

sediments, dissolved in water and associated with SPM, is similar in Mira and 

Mondego estuary, presenting the two sampling sites low levels of mercury on 

these three environmental compartments. 

 

Table I – Mercury concentrations in sediments and water column (dissolved and 
associated with SPM) of the three sampling sites. 

 

Sampling  
site 

Sediment Hg  
(µg g -1) 

Dissolved Hg  
(ng L -1) SPM Hg (µg g -1) 

Laranjo 5.2 97.8 9.0 

Mira 0.2 1.0 0.6 

Mondego  0.1 4.6 1.2 

 

 

In Laranjo, the results show a quite different situation from the two other 

sites, with values up to 97.8 ng/L of mercury dissolved in water. Also samples of 

sediments and SPM collected in the Laranjo present higher levels of mercury 

comparing with Mira and Mondego. 
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Concentration of mercury in fish tissues 

The results (Figures 5, 6, 7) showed that in the different studied sites 

(Mondego, Mira and Laranjo) the concentrations of mercury varied according to 

the fish tissue, in the following way: liver > muscle > brain > gills. 

 

 

 
Figure 5  – Mercury concentrations (µg/g) in tissues in fishes collected in the 

Mondego estuary. 
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Figure 6  – Mercury concentrations (µg/g) in tissues in fishes collected in Mira. 
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Figure 7  – Mercury concentrations (µg/g) in tissues in fishes collected in Laranjo. 
 

The values of total mercury in fish tissues ranged from 0.0077 (Gills at 

Laranjo) to 2.1 µg g -1 (Liver at Laranjo) (dry weight). Figures 5, 6 and 7 show 

that there are not bioaccumulation of mercury with age (along the life span).  

Comparing mercury concentration in different tissues in both sexes for 

samples collected in Mondego estuary, we can see that males have higher 

concentrations of mercury than females and immature fishes, in the muscle 

(F2,0=2.79; p=0.0713), gills (F2,0=2.38; p=0.102), liver (F2,0=1.33; p=0.272) and 

brain (F2,0=3.0059 p=0.0588). However these differences are not statistically 

significant. 

Afterwards, we compared statistically the mercury concentration in different 



 

25 

 

tissues in the different systems and we found that Laranjo is the sampling site 

where the muscles (F2,74=0.790; p=0.457), gills (F2,74=3.575; p=0.03295), liver 

(F2,71=1.540; p=0.221) and brain (F2,74=1.318; p=0.273) of C.labrosus have 

higher concentrations of mercury with respect to the other sites, followed by 

Mira and finally Mondego. However, the statistical tests showed that no 

significant differences were found in mercury concentration in different tissues 

in the different sampling sites. ANOVA of one way showed, in the case of the 

gills, significant differences in mercury concentration in the different sampling 

sites. So Newman-keuls test were developed (Table II) and comproved that no 

differences were found in mercury concentration in gills in the different systems. 

 

Table II  – Results of Newman-Keuls test, in the case of Gills. 

 

 Laranjo  Mondego  Mira  

Laranjo  ---- 0.0591 0.754 

Mondego  0.0591 --- 0.0725 

Mira  0.754 0.0725 --- 

 

 

Tissue-to-tissue mercury concentrations ratios were calculated for the 

combination of all the evaluated tissues. The average for each combination and 

each system was also calculated. These results are summarized in Table III 

and IV. 
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Table III  – Ratios between [Hg]muscle/[Hg]tissue and ratios [Hg]gills/[Hg]tissue for the 
three sampling sites (values showed are an average of all values of the 
each combination). 

 

 Muscle/Gills  Muscle/Liver  Muscle/Brain  Gills/Muscle  Gills/Liver  Gills/Brain  

Mondego  4.55 0.45 2.02 0.24 0.10 0.45 

Mira 3.24 0.33 1.64 0.32 0.10 0.54 

Laranjo 3.29 0.37 1.91 0.33 0.12 0.62 

 

 

Table IV  – Ratios [Hg]liver/[Hg]tissue and ratios [Hg]brain/[Hg]tissue in the three 
sampling sites (values showed are an average of all values of the each 
combination). 

 

 Liver/Muscle  Liver/Gills  Liver/Brain Brain/Muscle  Brain/Gills  Brain/Liver 

Mondego  3.00 13.36 5.59 0.58 2.45 0.24 

Mira 3.51 10.94 5.81 0.69 2.20 0.22 

Laranjo 2.93 9.47 5.36 0.57 1.85 0.20 

 

Tables III and IV allow to verify that the average of the ratios between 

tissues is similar in the three sampling sites, and in fact no significant 

differences were found. The ratios highest values were determined for 

[Hg]liver/[Hg]tissue, being  the higher value found for the ratios 

[Hg]liver/[Hg]gills, followed by the ratios [Hg]liver/[Hg]brain. 
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4. Discussion 

Decision 2455/2001/EC, published in 2001, November the 20th, in order to 

correct directive 2000/60/EC, classifies mercury and its compounds as priority 

hazardous substances (Rosa, 2006). This metal is not known for having any 

function on metabolic processes (Wiener and Spry, 1996). So, mercury for 

being a non-essential element, is not supposed to have its uptake/elimination 

actively regulated (Capelli et al., 2008). Therefore, concentration found in 

different tissues can vary greatly and in some organisms may reach high 

values. This level of concentration reflects exposure to environmental levels and 

feeding behaviour (Capelli et al., 2008). However, the uptake from the diet is 

generally the principal route of mercury bioaccumulation in several organisms, 

being the elimination rates from tissues slow (Tremblay, 1999). 

Accumulation of mercury is of great concern in aquatic organisms and its 

quantity in the body of individuals give indications of aquatic pollution, as well as 

indications of its potential impact on organism health (Kotze et al., 1999). But, 

the metal distribution in body depends, not only from the fish species, but also 

from metal properties (Gaspic et al., 2002).  

Many studies were carried out to analyze mercury concentrations in fishes, 

but most of them only reviewed one tissue of fish. In this work we selected more 

than one organ (four tissues), once they provide additional information on 

accumulation and detoxification mechanisms on a broader view and to try to 

understand the dynamics of mercury in fish body under field conditions. The 

anatomical structure of organs and its functional properties and subsequent 

association to processes like uptake, storage, depuration/excretion and 

biotransformation, main processes that determine the mercury kinetics in fish 
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body, are the main reasons for the choice of different organs selected for the 

study.  

The statistical tests allow to see that in Mondego there aren’t significant 

differences regarding the concentration of mercury found in different tissues 

studied when comparing different sexes. So, no differences were found 

between males, females and immatures in terms of quantity of mercury. Thus, 

mercury uptake seems to be independent of differential physiological responses 

between sexes and reproductory condition, and if bioaccumulation had 

happened, it would probably follow a similar pattern irrespective of gender.  

Though no statistically significant were found between sampling sites 

regarding mercury concentration in different tissues, clearly higher total mercury 

values were observed in Laranjo. These higher values in different tissues in 

Laranjo are related to the particularly high total mercury concentration in the 

entrance spots of contaminated industrial effluents as we can see in Laranjo 

(Fowler, 1990). Just gills presented levels of contamination lower probably due 

to depuration process (explained below). Previous studies have shown that 

several fish species captured in Laranjo are contaminated by the industrial 

mercury (Lima, 1986; Lucas et al., 1986). It is known that concentrations of 

elements like mercury within biological tissues tend to vary according to 

exposure (Turoczy et al., 2001) and that the increase of body size is associated 

to the age increase and thus more exposure (Rosa, 2006).  

As Laranjo was the station which presented more concentrated fish tissues 

and received incessant discharges for long time from an effluent rich in mercury 

from a chlor-alkali industry, we expected, that with fish growth, the mercury 

levels would increase. However, our results showed that with the growth of 
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individuals, the levels of mercury decreased. Thus, there was not 

bioaccumulation of mercury with age. Also, Blasco et al. (1998) when studied 

heavy metal in some fishes of the Mugilidae family in Cádiz Bay, showed that, 

in all cases, concentrations falls as fish size increased. So, the correlation 

between metal concentration and fish size was variable and depended upon the 

species and tissue analyzed (Blasco et al., 1998). 

Probably, a response to these results can be an effect of dilution of mercury 

concentration with age. Scott and Armstrong (1972) defined growth dilution as a 

phenomenon that happens when the organisms’ growth is faster than its rate of 

sorption. Therefore, mercury concentration in organisms is counterbalanced by 

the growth dilution (Scott and Armstrong, 1972). 

It is known that a number of factors affect the susceptibility of aquatic 

organisms to mercury. One of them is life-cycle stage (Boening, 2000). This 

factor can also be responsible for the decreased mercury concentration with 

age in Laranjo. According to its life cycle, the juvenile fishes of C. labrosus 

initially go to estuary, where they stay a while, then start migration to the sea to 

reproduce, between December and February (Almeida, 1996). Bograd (1961) 

also said that C. labrosus support fresh water during its juvenile state but the 

older preferred brackish water or sea. So, C. labrosus prefers more saline areas 

of the estuary and adjacent coastal zones (Almeida, 1996). Thus, the 

permanence of C. labrosus in coastal zones during adult state, contribute for 

fish not to stay too far away from estuary, having the chance to occasionally 

return to it (Almeida, 1996). Probably, it was in this time that we captured the 

few fish with bigger size in Laranjo, which in turn, had their tissues less 

concentrated, possibly due to a lower permanence in Laranjo than the juveniles, 
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which had a time of greater permanence. In fact, when migrated to sea - where 

there isn´t a source of contamination like in Laranjo – fish deviate from the 

source of contamination, and when they enter the Ria they are less 

contaminated. So, the phenomena of growth dilution, the life cycle of C. 

labrosus, as well as a possible mechanism of excretion, are all possible 

responses to reduction of mercury with age increase in Laranjo sampling site.  

Mercury concentration found in different tissues of fish from Mondego 

estuary sampling site demonstrated low values and the tendency of statistical 

tests showed that this place is the less contaminated one, comparing the three 

sampling sites. It is understood because there aren´t known direct sources of 

entry of this contaminant in the Mondego estuary and waters from this estuary 

have total mercury concentration from the same order of magnitude from the 

concentrations found in not polluted estuaries (Davis et al., 2004). This is 

probably the reason for the absence of mercury bioaccumulation with organism 

growth in different tissues. Thus, mercury concentration in different tissues was 

almost similar in both juvenile and older individuals.  

The values found in Mira in Ria de Aveiro are also low and very similar to 

those found in Mondego. These results are also easy to understand because 

Mira sampling site is also referred as reference site (Rosa, 2006) and also in 

this case none direct source of contamination is known to be close to the 

sampling site. In fact, the reason for the low values and absence of 

bioaccumulation with growth are the same in Mira and Mondego.  

Also Blasco et al. (1998) showed that no significant relationship was found 

between the concentration of metals in muscle or liver, and fish size. Similar 

results have been reported by other authors (Phillips, 1980). Our results 
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showed that a single tendency for mercury was not seen in the three sampling 

sites. 

From the analyses of the total mercury concentration in different 

environmental compartments along different sampling sites, we could see that 

mercury in the sediments, dissolved in water and associated with SPM in 

Laranjo present higher levels of mercury comparing with Mira and Mondego. 

This difference probably affected the mercury bioavailability to fish. Thus, the 

great availability of mercury for fish was found in Laranjo, which is in 

accordance with our results. Though no significant differences were seen in 

different sampling sites, we observed differences between tissues. The 

hierarchy of the analysed tissues, in the three sampling sites, according to total 

mercury concentration, was liver > muscle > brain > gills, as already seen. The 

few field studies that determined the concentration of mercury in different fish 

organs showed heterogeneous accumulation patterns, which depend on 

species. Cizdziel et al. (2003) analyzed five species and in one of them (striped 

bass), the same tissues were analyzed showing the same order found in our 

results. 

Levels in liver were much higher than values recorded in the other fish parts 

that have a direct influence from the environment. These high levels of mercury 

in liver, in three sampling sites, happen because liver is the major target organ 

of accumulation of mercury which occurs because it is actively involved in 

metabolism of heavy metals (Elia et al., 2003) acting as a storage organ 

(Filipović and Raspor, 2003) and, in this case, in storage of mercury in fish. 

Liver also has an important role in basic physiology (Elia et al., 2003). 
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Gills exhibited less mercury concentration in the three sampling sites. Gills 

analysis can be mainly recommendable for species in migratory stages or with 

high mobility, since gills usually reflect current exposures. Moreover, more 

quiescent organs with high storage tendency can reflect past exposure and, 

therefore, increase the risk of misinterpretations.  

Concentrations higher than 5 µg g-1 in brain and muscle generally show 

symptoms of toxicity in fish, according to Spry and Wiener (1991). In fact, the 

levels analyzed in the tissues of C. labrosus, are below that limit in the three 

sampling sites studied. 

Comparing all ratio [Hg]tissue/[Hg]tissue, we verified that all cases are 

different from 1, from which we also concluded that different tissues accumulate 

mercury in different ways and loads.      

The process of uptake, retention and elimination of mercury in fish has been 

studied by determination of mercury concentration on analyzed tissues 

compared with muscle (Cizdziel et al., 2003). This [Hg]tissue/[Hg]muscle ratios 

are very important because muscle is the largest compartment, representing 

60% of fish body mass. So, it is an important tool concerning mercury 

accumulation assessment. Muscle is also the easiest tissue to access for 

sampling purposes, where a significant amount of tissue can be used. In 

addition, it is known that mercury accumulates on muscle, mainly in the 

methylated form (Storelli et al., 2005; Magalhães et al., 2007), which is highly 

relevant regarding bioaccumulation along food chains and the risk to human 

health. So, this organ is considered as the reference tissue for biomagnification 

effects (Cizdziel et al., 2003). 
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When we compared mercury levels in liver with different muscle analyzed, 

we verified that liver presented levels of mercury (< 0.45 µg g-1) around 3 times 

higher than the muscle (< 0.15 µg g-1), corresponding to high 

[Hg]liver/[Hg]muscle ratios. The high [Hg]liver/[Hg]muscle ratios were previously 

reported in other fish species environmentally exposed (Abreu et al., 2000; 

Raldúa et al., 2007). This can be explain taking into account that liver has a 

central role in mercury accumulation, playing a buffering role, i.e., when 

retention capacity of liver is exhausted, this metal is able to bypass to skeletal 

muscle and, as a result, the accumulation rate of mercury in this organ starts 

increasing. Moreover, the same type of action takes place in other studied 

tissues where the respective [Hg]liver/[Hg]tissue ratios were also > 1.  

But a second explanation for this high [Hg]liver/[Hg]muscle ratios was 

proposed by Henny et al. (2002) who defend the theory that, as methylmercury 

exposure increases, the percentage of inorganic mercury in the liver also 

increases, indicating greater hepatic demethylation. Subsequent binding and 

immobilization of inorganic mercury to metallothionines (and other proteins 

containing sulphydryl groups), preferentially produced in the liver (Hogstrand 

and Haux, 1990), could give origin to increased liver concentrations relative to 

muscle (Cizdziel et al., 2003). The synthesis of this metallothionines is 

accepted, generally, to be induced under conditions of high metal concentration 

(Hg in this case) providing more sites for binding metal ions and limits possible 

damage to tissue (Monserrat et al., 2007). Maury-Brachet et al. (2006) said that 

high [Hg]liver/[Hg]muscle ratios are characteristically found in benthivorous fish 

species, depending on the feeding behaviour. Therefore, our specie stays in 

accordance with this statement.  
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Gills are an important organ due to their role on gaseous exchange, osmotic 

and ionic regulation, as well as on bioconcentration and excretion of toxicants. 

The accumulation in the gills has been associated with a higher intake of 

inorganic mercury (the most water soluble form). Thus, gills are considered the 

main route for uptake of mercury present on aqueous phase, due to their wide 

surface area and continuous contact mostly with the dissolved and particulate 

metal species in water (Laporte et al., 1997). Nevertheless, our results showed 

low [Hg]gills/[Hg]tissue (<1) ratios. This probably happens due to the 

phenomenon of depuration which occurred in the gills, mainly by the flow 

through dissolved and particulate inorganic mercury; other responses possible 

to low values in gills are the high renewal rate of branchial tissue as an 

unfavorable factor to bioconcentration or the fact that gills epithelium is regularly 

subject to exfoliation and erosion, which is counteracted by an intense cell 

division rate (Pacheco et al., 1993). We saw that [Hg]gills/[Hg]tissue ratios were 

minimum for the liver (<1), which can be an indication of a low relocation of 

mercury stored in the liver. Therefore, the high value for mean 

[Hg]muscle/[Hg]gills ratio might have resulted from the depuration, as already 

seen. And the higher values of mercury in muscle of C. labrosus than in gills 

suggested that diet may be the route of mercury incorporation and reveal an 

efficient sequestering of mercury in muscle tissues. When Abreu et al. (2000) 

studied the accumulation of mercury in Sea Bass from Ria de Aveiro, they 

concluded the same. 

Brain is of an extreme interest, not only due to its neurological functions 

essential for survival, but also because it is a target organ for methylmercury 

which is able to react directly with important receptors (Berntssen et al., 2003). 
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Methylmercury is incorporated in fish muscle and brain tissue, most likely by 

forming a methylmercury-cysteine complex (Harris et al., 2003). 

[Hg]brain/[Hg]muscle ratio was lower than 1. One possible justification is the 

association of methylmercury to proteins of the skeletal muscle and this is an 

advantage of reducing the exposure of the brain, which is the organ more 

sensible to the adverse effects of methylmercury (Wiener and Spry, 1996). 

Thus, levels in muscle are more concentrated in mercury than in brain of C. 

labrosus and the muscles tissues have been suggested to act as a sink for 

methylmercury (Leaner and Mason, 2004).  

When we compared the three sampling sites we verified that there is no 

significant differences in each [Hg]tissue/[Hg]tissue ratio. This fact denotes that 

mercury in fish is not clearly affected by the environmental levels or by the 

subsequent body burdens extent.  

 

Consequences to human health 

 

Mercury contamination in fish is a widespread problem, which generates 

important public health concerns (Lindqvist, 1991). As fish have great nutritious 

value and are an important alternative to other food sources, the main concern 

regarding mercury environmental health risks is associated to the consumption 

of aquatic organisms, particularly fish, with elevated levels of methylmercury in 

muscles. So, seafood consumption is, in fact, the principal source of mercury 

and thus, mercury accumulates in the human body and causes damage in 

many of its basic systems, particularly to the nervous system (Dey et al., 1999). 
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This argument, adequately underlines the need to develop preventive measures 

to protect public health (Storelli et al., 2005).  

Thus, it is important assess the quantity of mercury in edible tissues of fish 

species included in human diet. The official regulatory agencies have put limits 

for mercury concentrations above which the fish is considered inappropriate for 

human consumption. The European Commission decision 93/351 recognized 

this limit at 0.5 µg g-1 of wet weight (Official Journal of the European 

Communities, 1994). In the present study, we registered values of mercury 

concentration in muscle from 0,004 µg g-1 (minimum) wet weight in Laranjo to 

0,175 µg g-1 (maximum) wet weight in Laranjo. Hence, the total mercury 

concentrations obtained for the muscles of C. labrosus in different systems 

were below the established limit for safe human consumption of 0.5 µg g-1. 

Thus, in references and contaminated sampling site, the values of 

environmental contamination do not determine the contamination of muscles of 

C. labrosus to make them unfit for consumption.  

 

5. Conclusion 

With this work, we were able to conclude that mercury concentration in the 

different tissues of C. labrosus does not reflect significant differences among 

the sampling sites that we studied. Nevertheless, Laranjo is a more 

contaminated site. We also concluded that mercury distribution and 

accumulation was dependent of the specific tissue. Therefore, clear differences 

result in the next pattern: liver > muscle > brain > gills.  So, liver, like the major 

target organ for mercury accumulation, was the tissue that best reflects the 

environmental mercury contamination degree. Thus, the use of biota as a 
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source of environmental information provides this way, invaluable data on the 

health status of aquatic ecosystems, which reinforced the choice of C. labrosus 

as bioindicator of metal contamination.  

The determination of mercury quantity in more than one tissue, as well as all 

ratio [Hg]tissue/[Hg]tissue, can give additional information on accumulation 

pathways and specific toxicity mechanisms of mercury. In spite of this, tissue 

discrimination is more labour intensive and time demanding, not to mention 

difficulties related with sample mass in smaller organisms.  

We could see that a single tendency for mercury was not seen and mercury 

bioaccumulation along the life span in the three sampling sites was not verified. 

The reason for the low values and the absence of bioaccumulation with growth 

are the same in Mira and Mondego. Phenomena of growth dilution, the life cycle 

of C. labrosus, as well as a possible mechanism of excretion, are all possible 

responses for the reduction of mercury with age in Laranjo sampling site.  

In the three sampling sites, the values of environmental contamination do 

not determine the contamination of muscles of C. labrosus to make them unfit 

for consumption. Anyway, in spite of this, we saw that levels in Laranjo were 

higher than the other sampling sites, thus, the threat to humans about the 

consumption of fish that lives in this site can not be ignored.  

 

 

 

 

 

 

 



 

38 

 

 

6. REFERENCES 

 

Abreu, S.N., Pereira, M.E., Duarte, A.C., 1998. The use of a mathematical model to 

evaluate mercury accumulation in sediments and recovery time in a coastal lagoon 

(Ria de Aveiro, Portugal). Water Science and Technology 37, 33-38. 

Abreu, S.N., Pereira, E., Vale, C., Duarte, A.C., Vale, C., 2000. Accumulation of 

Mercury in Sea Bass from a Contaminated Lagoon (Ria de Aveiro, Portugal). Marine 

Pollution Bulletin 40, 293-297. 

Almeida, P.R., Moreira, F.M., Domingos, I.M., Costa, J.L., Assis, C.A., Costa, M.J., 

1995. Age and growth of Liza ramada (Risso, 1826) in the river Tagus, Portugal. 

Scientia Marina 59, 143-147. 

Almeida, P., 1996. Biologia e Ecologia de Liza ramada (Risso, 1826) e Chelon 

labrosus (Risso, 1826) (Pisces, Mugilidae) no Estuário do Mira (Portugal). Inter-

relações com o Ecossistema Estuarino. Tese de Doutoramento, Faculdade de 

Ciências da Universidade de Lisboa. 

Almeida, P.R., 2003. Feeding ecology of Liza ramada (Risso, 1810) (Pisces, Mugilidae) 

in a south-western estuary of Portugal. Estuarine Coastal and Shelf Science 57, 

313-323. 

Arruda, L.M., Azevedo, J.N., Neto, A.I., 1991. Age and growth of the grey mullet 

(Pisces, Mugilidae) in Ria de Aveiro (Portugal). Scientia Marina 55, 497-504. 

ATSDR (Agency for Toxic Substances and Disease Registry), 1999. Toxicological 

Profile for Mercury. U.S. Department of health and human services, Public Health 

Service, Agency for Toxic Substances and Disease Registry. 

Berntssen, M.H.G., Aatland, A., Handy, R.D., 2003. Chronic dietary mercury exposure 

causes oxidative stress, brain lesions, and altered behavior in Atlantic salmon 

(Salmo salar). Aquatic Toxicology 65, 55-72.  



 

39 

 

Blasco, J., Rubio, J.A., Forja, J., Gómes-Parra, A., Establier, R., 1998. Heavy metals in 

some fishes of the mugilidae family from salt-ponds of Cádiz Bay, SW Spain. 

Ecotoxicology and Environmental Restoration 1, 71-77. 

Bloom, N.S., 1995. Mercury as a case study of ultra-clean sample handling and 

storage in aquatic trace metal research. Envron Lab 3-4, 20-25. 

Bloom, N.S., Lasorsa, B.K., 1999. Changes in mercury speciation and the release of 

methylmercury as a result of marine sediment dredging activities. The Science of 

the Total Environment 237/238, 379-385. 

Boening, D.W., 2000. Ecological effects, transport, and fate of mercury: a general 

review. Chemosphere 40, 1335-1351. 

Bogrard, L., 1961. Occurrence of Mugil in the rivers of Israel. The Bulletin of the 

Research Council of Israel 9B, 169-190. 

Calderón, J., Ortiz-Pérez, D., Yáñez, L., Díaz-Barriga, F., 2003. Human exposure to 

metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicology 

and Environmental Safety 56, 93-103. 

Canário, J., Vale, C., Caetano, M., Madureira, M.J., 2003. Mercury in contaminated 

sediments and porewaters enriched in sulphate (Tagus Estuary, Portugal). 

Environmental Pollution 126, 425–433. 

Canário, J., Vale, C., Caetano, M., 2005. Distribution of monomethylmercury and 

mercury in surface sediments of the Tagus Estuary (Portugal). Marine Pollution 

Bulletin 50, 1142–1145. 

Capelli, R., Das, K., De Pellegrini, G., Drava, G., Lepoint, G., Miglio, C., Minganti, V., 

Poggi, R., 2008. Distribution of trace elements in organs of six species of cetaceans 

from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and 

nitrogen ratios. Science of the Total Environment 390, 569-578. 

Cizdziel, J.V., Hinners, T.A., Heithmar, E.M., 2002. Determination of total mercury in 

fish tissues using combustion atomic absorption spectrometry with gold 

amalgamation.  Water Air and Soil Pollution 135, 355-370. 



 

40 

 

Cizdziel, J., Hinners, T., Cross, C., Pollard, J., 2003. Distribution of mercury in the 

tissues of five species of freshwater fish from Lake Mead, USA. Journal of 

Environmental Monitoring 5, 802-807. 

Clarkson, T.W., Magos, L., Myers, G.J., 2003. Human exposure to mercury: The three 

modern dilemmas. Journal of Trace Elements In Experimental Medicine 16, 321-

343. 

Coelho, J.P., Flindt, M.R., Jensen, H.S., Lillebø, A.I., Pardal, M.A., 2004. Phosphorus 

speciation and availability in intertidal sediments of a temperate estuary: relation to 

eutrophication and annual P-fluxes. Estuarine, Coastal and Shelf Science 61, 683-

690. 

Coelho, J.P., Pereira, M.E., Duarte, A., Pardal, M.A., 2005. Macroalgae response to a 

mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, 

Portugal). Estuarine, Coastal and Shelf Science 65, 492-500. 

Coelho, J.P., Pimenta, J., Gomes, R., Barroso, C.M., Pereira, M.E., Pardal, M.A., 

Duarte, A., 2006. Can Nassarius reticulatus be used as a bioindicator for Hg 

contamination? Results from a longitudinal study of the Portuguese coastline. 

Marine Pollution Bulletin 52, 674-680. 

Coelho, J.P., Rosa, M., Pereira, E., Duarte, A., Pardal, M.A., 2006. Pattern and annual 

rates of Scrobicularia plana mercury bioaccumulation in a human induced mercury 

gradient (Ria de Aveiro, Portugal). Estuarine Coastal and Shelf Science 69, 629-

635. 

Coelho, J.P., Policarpo, E., Pardal, M.A., Millward, G.E., Pereira, M.E., Duarte, A.C., 

2007. Mercury contamination in invertebrate biota in a temperate coastal lagoon 

(Ria de Aveiro, Portugal). Marine Pollution Bulletin 54, 464-488. 

Communication from the Comission to the Council and the European Parliament: 

Community strategy concerning mercury. SEC (2005) 101. 

Conaway, C.H., Squire, S., Mason, R.P., Flegal, A.R., 2003. Mercury speciation in the 

San Francisco Bay estuary. Marine Chemistry 80, 199–225. 



 

41 

 

Cossa, D., Coquery, M., Gobeil, C., Martin, J.M., 1996. Mercury fluxes at the ocean 

margins. In: Baeyens, W., Ebinghaus, R., Vasiliev, O. (eds.), Global and Regional 

Mercury Cycles: Sources, Fluxes, and Mass Balances. NATO ASI Series. Kluwer 

Academic Publishing, Dordrecht 229–247. 

Costa, M.J., Almeida, P.R., Costa, J.L., Assis, C.A., Moreira, F., 1993. Algumas notas 

sobre a capacidade adaptativa da enguia europeia, Anguilla anguilla (L.,1758), e 

das tainhas (Fam. Mugilidae): referência especial às populações do Tejo. Publ. Inst. 

Zool. «Dr. Augusto Nobre» 233, 1-17. 

Costley, C.T., Mossop, K.F., Dean, J.R., Garden, L.M., Marshall, J., Carroll J., 2000. 

Determination of mercury in environmental and biological samples using pyrolysis 

atomic absorption spectrometry with gold amalgamation. Analytica Chimica Acta 

405, 179–183. 

Davis, J., Yee, D., Collins, J., Schwarzbach, S., Luoma, S., 2004. Issues in San 

Francisco Estuary Tidal Wetlands Restoration: Potential for increased mercury 

accumulation in estuary food web, CALFEB Bay-Delta Program. 

Dey, S., Stafford, R., Roy, M.K.D., Bhattacharjee, C.R., Khathing, D.T., Bhattacharjee, 

P.C., Dkhar, P.S., 1999. Metal toxicity and trace element deficiency in some wild 

animal species from north-east India, as revealed by cellular, bio-inorganic and 

behavioural studies. Current Science 77, 276-280. 

Dias, J.M., Lopes, J.F., Dekeyser, I., 2000. Tidal Propagation in Ria de Aveiro Lagoon, 

Portugal. Physics and Chemistry of the Earth (B): Hydrology, Oceans and 

Atmosphere 25, 369-374. 

Dias, J.M., Lopes, J.F., Dekeyser, I., 2001. Lagrangian transport of particles in Ria de 

Aveiro Lagoon, Portugal. Physics and Chemistry of the Earth (B) 26, 721–727. 

Dixon, R., Jones, B., 1994. Mercury concentrations in stomach contents and muscle of 

five fish species from the North East Coast of England. Marine Pollution Bulletin 28, 

741–745. 



 

42 

 

Dolbeth, M., Pardal, M.A., Lillebφ, A.I., Azeiteiro, U., Marques, J.C., 2003. Short - and 

longterm effects of eutrophication on the secondary production of an intertidal 

macrobenthic community. Mar. Biol. 143, 1229–1238. 

Elia, A.C., Galarini, R., Taticchi, M.I., Dörr, A.J.M., Mantilacci, L., 2003. Antioxidant 

responses and bioaccumulation in Ictalurus melas under mercury exposure. 

Ecotoxicology and Environmental Safety 55, 162–167. 

EPA (United States), 2001. Mercury Update: Impact on Fish Advisories. EPA-823-F-

01-011. EPA, Washington, 10 pp. 

Filipović, V., Raspor, B., 2003. Metallothionein and metal levels in cytosol of liver, 

kidney and brain in relation to growth parameters of Mullus surmuletus and Liza 

aurata from the Eastern Adriatic Sea. Water Research 37, 3253–3262. 

Fitzgerald, W.F., Mason, R.P., 1997. Mercury in the Marine Environment. Mercury and 

its effects on environment and biology. Sigel, A., Sigel, H., New York, Marcel 

Dekker, Inc. 34, 53 - 112. 

Flindt, M.R., Pardal, M.A., Lillebø, A.I., Martins, I., Marques, J.C., 1999. Nutrient cycling 

and plant dynamics in estuaries: a brief review. In: Marques, Gamito, Ré. (eds.), 

Processes and Flows in Marine Benthic Ecosystems. Acta Oecologica 20, 237-248. 

Fowler, S., 1990. Critical review of selected heavy metal and chlorinated hydrocarbon 

concentrations in the marine environment, Marine Environmental Research 29, 1-

64. 

Gaspic, Z.K., Zvonaric, T., Vrgoc, N., Odzak, N., Baric, A., 2002. Cadmium and lead in 

selected tissues of two commercially important fish species from the Adriatic Sea. 

Water Research 36, 5023-5028. 

Guzzi, G., La Porta, C.A.M., 2008. Molecular mechanisms triggered by mercury. 

Toxicology 244, 1–12. 

Harris, H.H., Pickering, I.J., George, G.N., 2003. The chemical form of mercury in fish. 

Science 301, 1203-1203. 



 

43 

 

Haynes, S., Gragg, R.D., Johnson, E., et al., 2006. An evaluation of a reagentless 

method for the determination of total mercury in aquatic life. Water Air And Soil 

Pollution 172, 359-374    

Henny, C.J., Hill, E.F., Hoffman, D.J., Spalding, M.G., Grove, R.A., 2002. Nineteenth 

century mercury: Hazard to wading birds and cormorants of the Carson River, 

Nevada. Ecotoxicology 11, 213-231. 

Hines, M.E., Horvat, M., Faganeli, J., Bonzongo, J.-C.J., Barkay, T., Major, E.B., Scott, 

K.J., Bailey, E.A., Warwick, J.J., Lyons, W.B., 2000. Mercury biogeochemistry in the 

Idrija River, Slovenia, from above the mine into the Gulf of Trieste. Environmental 

Research Section A 83, 129–139. 

Hintelman, H., 1999. Comparison of different extraction techniques used for 

methylmercury analysis with respect to accidental formation of methylmercury 

during sample preparation. Chemosphere 39, 1093-1105. 

Hogstrand, C., Haux, C., 1990. Metallothionein as an indicator of heavy-metal 

exposure in two subtropical fish species. Journal of Experimental Marine Biology 

and Ecology 138, 69-84. 

Horvat, M., Covelli, S., Faganeli, J., Logar, M., Mandic, V., Rajar, R., Sirca, A., Zagar, 

D., 1999. Mercury in contaminated coastal environments; a case study: the Gulf of 

Trieste. Science of the Total Environment 237/238, 43–56. 

Hung, G.A., Chmura, G.L., 2006. Mercury accumulation in surface sediments of salt 

marshes of the Bay of Fundy. Environmental Pollution 142, 418-431. 

Jewett, S.C., Duffy, L.K., 2007. Mercury in fishes of Alaska, with emphasis on 

subsistence species. Science of the Total Environment 387, 3–27. 

Kehrig, H.A., Costa, M., Moreira, I.,  Malm, O., 2001. Methylmercury and total mercury 

in estuarine organisms from Rio de Janeiro, Brasil. Environmental Science & 

Pollution Research 8, 275-279. 

Kehrig, H.A., Costa, M., Moreira, I., Malm, O., 2002. Total and methylmercury in a 

Brazilian estuary, Rio de Janeiro. Marine Pollution Bulletin 44, 1018-1023. 



 

44 

 

Kotze, P., Du Preez, H.H., van Vuren, J.H.J., 1999. Bioaccumulation of copper and 

zinc in Oreochromis mossambicus and Clarias gariepinus from the Olifants River, 

Mpumalanga, South Africa. Water SA. 25, 99-110. 

Laporte, J.M., Truchot, J.P., Ribeyre, F., Boudou, A., 1997. Combined effects of water, 

pH and salinity on the bioaccumulation of inorganic Mercury and Methylmercury in 

the shore crab Carcinus maenas. Marine Pollution Bulletin 34, 880–893.  

Laurier, F.J.G., Cossa, D., Gonzalez, J.L., Breviere, E., Sarazin, G., 2003. Mercury 

transformations and exchanges in a high turbidity estuary: The role of organic matter 

and amorphous oxyhydroxides. Geochimica et Cosmochimica Acta 67, 3329-3345.  

Leaner, J.J., Mason, R.P., 2004. Methylmercury uptake and distribution kinetics in 

sheepshead minnows, Cyprinodon variegatus, after exposure to CH3Hg spiked 

food. Environ. Toxicol. Chem. 23, 2138–2146. 

Liang, L.N., He, B., Jiang, G.B., Chen, D.Y., Yao, Z.W., 2004. Evaluation of molluscs 

as biomonitors to investigate heavy metal contaminations along the Chinese Bohai 

Sea. Science of the Total Environment 324, 105-113. 

Lillebø, A.I., Neto, J.M., Flindt, M.R., Marques, J.C., Pardal, M.A., 2004. Phosphorous 

dynamics in a temperate intertidal estuary. Estuarine, Coastal and Shelf Science 61, 

101-109. 

Lima, C., 1986. Impacto da poluição por mercúrio nos organismos aquáticos da Ria de 

Aveiro, Relatório INIP – Lisboa, 66. 

Lindqvist, O., 1991. Mercury in the Swedish environment – Recent research on causes, 

consequences and corrective methods. Water Air Soil Pollution 55, 1–261. 

Lucas, M.F., Caldeira, M.T., Hall, A., Duarte, A.C. and Lima, C., 1986. Distribution of 

mercury in the sediments and fishes of the Lagoon of Aveiro, Portugal. Water 

Science and Technology 18, 141-148. 

Luoma, S.N., 1996. The developing framework of marine ecotoxicology: Pollutants as a 

variable in marine ecosystems? Journal of Experimental Marine Biology and 

Ecology 200, 29-55. 



 

45 

 

Magalhães, M.C., Costa, V., Menezes, G.M, Pinho, M.R, Santos, R.S., Monteiro, L.R., 

2007. Intra- and inter-specific variability in total and methylmercury bioaccumulation 

by eight marine fish species from the Azores. Marine Pollution Bulletin 54, 1654-

1662. 

Marques, J.C., Rodrigues, L.B., Nogueira, A.J.A., 1993. Intertidal macrobenthic 

communities structure in the Mondego estuary (western Portugal): Reference 

situation. Vie Milieu 43, 177–187. 

Marques, J.C., Nielsen, S.N., Pardal, M.A., Jφrgensen, S.E., 2003. Impact of 

eutrophication and river management within a framework of ecosystem theories. 

Ecol. Model 166, 147–168. 

Mason, R.P., O’Donnell, J., Fitzgerald, W.F., 1994. The biogeochemical cycling of 

mercury in the equatorial Pacific Ocean. Deep-Sea Res. 40, 1897–1924. 

Mason, R., Reinfelder, J., Morel, F., 1995. Bioacumulation of Mercury and 

Methylmercury. Water Air and Soil Pollution 80, 915-921. 

Mason, R.P., Reinfelder, J.R., Morel, F.M.M., 1996. Uptake, toxicity, and trophic 

transfer of mercury in a coastal diatom. Environmental Science and Technology 30, 

1835–1845. 

Mason, R.P., Sheu, G.R., 2002. Role of the ocean in the global mercury cycle. Global 

biogeochemical cycles 16. 

Mason, R.P., Kim, E., Cornwell, J., Heyes, D., 2006. An examination of the factors 

influencing the flux of mercury, methylmercury and other constituents from estuarine 

sediment. Marine Chemistry 102, 96-110.  

Maury-Brachet, Gilles, D., Yannick, D., Alain, B., 2006. Mercury distribution in fish 

organs and food regimes: Significant relationships from twelve species collected in 

French Guiana (Amazonian basin). Science of the Total Environment 368, 262-270. 

McDowall, R.M., 1988. Diadromy in fishes. Migrations between freshwater and marine 

environments. Croom Helm. London. 



 

46 

 

Monserrat, J.M., Martínez, P.E., Geracitano, L.A., Amado, L.L., Martins, C.M.G., Pinho, 

G.L.L., Chaves, I.S., Ferreira-Cravo, M., Ventura-Lima, J., Bianchini, A., 2007. 

Pollution biomarkers in estuarine animals: Critical review and new perspectives. 

Comparative Biochemistry and Physiology (C) 146, 221 – 234. 

Monterroso, P., 2004. Distribuição e comportamento do cádmio, chumbo, cobre e 

zinco nos sedimentos e coluna de água da Ria de Aveiro. Tese de doutoramento, 

Universidade de Aveiro. 

Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The chemical cycle and 

bioaccumulation of mercury. Annual review of ecology and systematics 29, 543-566. 

Official Journal of the European Communities (OJEC), 1994. L. 144 of 16 June 1994. 

OSPAR, 2000. OSPAR Background Document on Mercury and Organic Mercury 

Compounds. London, OSPAR Comission: 32 p. 

OSPAR Commission, 2004. Mercury losses from the Chlor-Alkali Industry (1982–

2002). 

Pacheco, M., Santos, M.A., van Der Gaag, M.A., 1993. The ecotoxicological relevance 

of Anguilla anguilla L. as a proposed cytogenetic model for brackish-water genetic 

toxicological studies. Science of the Total Environment 134, 817-822. 

Pacheco, M., Santos, M.A., Teles, M., Oliveira, M., Rebelo, J.E., Pombo, L., 2005. 

Biotransformation and genotoxic biomarkers in mullet species (Liza sp.) from a 

contaminated coastal lagoon (Ria de Aveiro, Portugal). Environmental Monitoring 

and Assessment 107, 133–153. 

Panfili, J., Pontual, H. (de)., Troadec, H., Wright, P.J. (eds), 2002. Manual of fish 

sclerochronology. Brest, France: Infremer-IRD coedition, 464 p. 

Pato, P., Lopes, C., Válega, M., Lillebø, A.I., Dias, J.M., Pereira, E., Duarte, A.C., 

2008. Mercury fluxes between an impacted coastal lagoon and the Atlantic Ocean. 

Estuarine, Coastal and Shelf Science 76, 787-796. 



 

47 

 

Pereira, M.E., Duarte, A.C., Millward, G., Vale, C., Abreu, S.N., 1998a.Tidal export of 

particulate mercury from the most contaminated area of Aveiro’s Lagoon, Portugal. 

Science of the Total Environment 213, 157–163. 

Pereira, M.E., Duarte, A.C., Millward, G.E., Abreu, S.N., Vale, C., 1998b. An estimation 

of industrial mercury stored in sediments of a confined area of the Lagoon of Aveiro 

(Portugal). Water Science and Technology 37, 125-130. 

Pereira, M.E., Abreu, S.N., Coelho, J.P., Lopes, C.B., Pardal, M.A., Vale, C., Duarte, 

A.C., 2007. Seasonal fluctuations of tissue mercury contents in the European shore 

crab Carcinus maenas from low and high contamination areas (Ria de Aveiro, 

Portugal). Marine Pollution Bulletin 52, 1450-1457. 

Pereira, P., Vale, C., Ferreira, A.M., Pereira, E., Pardal, M.A., Marques, J.C., 2005. 

Seasonal Variation of Surface Sediments Composition in Mondego River Estuary. 

Journal of Environmental Science and Health (A) 40, 317-329. 

Phillips, D.J.H., 1980. Quantitative Aquatic Biological Indicators. Applied Science 

Publishers, London, U.K. 

Raffaelli, D.G., Raven, J., Poole, L., 1998. Ecological impact of green macroalgal 

blooms. Annual Review of Marine Biology and Oceanography 36, 97-125. 

Rainbow, P., 1995. Biomonitoring of Heavy Metal Availability in the Marine 

environment. Marine Pollution Bulletin 31, 183-192.  

Rajar, R., Cetina, M., Sirca, A., 1997. Hydrodynamic and water quality modelling: case 

studies. Ecol Model 101, 209-228. 

Raldúa, D., Díez, S., Bayona, J.M., Barceló, D., 2007. Mercury levels and liver 

pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. 

Chemosphere 66, 1217-1225. 

Ramalhosa, E., Monterroso, P., Abreu, S., Pereira, E., Vale, C., Duarte, A., 2001. 

Storage and export of mercury from a contaminated bay (Ria de Aveiro, Portugal). 

Wetlands Ecology and Management 9, 311–316. 



 

48 

 

Ramalhosa, E., Pereira, E., Vale, C., Válega, M., Duarte, A.C., 2005a. Distribution of 

mercury in the upper sediments from a polluted area (Ria de Aveiro, Portugal). 

Marine Pollution Bulletin 50, 682–697. 

Ramalhosa, E., Pereira, E., Vale, C., Válega, M., Monterroso, P., Duarte, A.C., 2005b. 

Mercury distribution in Douro Estuary (Portugal). Marine Pollution Bulletin 50, 1218-

1222. 

Roméo, M., Frasila, C., Gnassia-Barelli, M., Damiens, G., Micu, D., Mustata, G., 2005. 

Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus 

galloprovincialis. Water Research 39, 596-604. 

Rosa, M., 2006. Mercúrio e amêijoa: uma relação perigosa? Tese de mestrado, 

Universidade de Aveiro. 

Saiz-Salinas, J.I., Ruiz, J.M., Frances-Zubillaga, G., 1996. Heavy metal levels in 

intertidal sediments and biota from the Bidasoa estuary. Marine Pollution Bulletin 32, 

69-71. 

Schafer, J., Blanc, G., Audry, S., Cossa, D., Bossy, C., 2006. Mercury in the Lot-

Garonne River system (France): Sources, fluxes and anthropogenic component. 

Applied Geochemistry 21, 515-527. 

Scott, D., Armstrong, F., 1972. Mercury concentration in relation to size in several 

species of freshwater fishes from Manitoba and North-Western Ontario. Journal of 

Fishing Restoration Board of Canada 29, 1685-1690. 

Shi, J.-b., Ip, C.C.M., Tang, C.W.Y., Zhang, G., Wu, R.S.S., Li, X.-D., 2007. Spatial and 

temporal variations of mercury in sediments from Victoria Harbour, Hong Kong. 

Marine Pollution Bulletin 54, 464-488.  

Shimshack, J.P., Ward, M.B., Beatty, T.K.M., 2007. Mercury advisories: Information, 

education, and fish consumption. Journal of Environmental Economics and 

Management 53, 158–179. 

Spry, D.J. and Wiener, J.G., 1991. Metal bioavailability and toxicity to fish in low-

alkalinity lakes: A critical review. Environ. Pollut. 71, 243-304.  



 

49 

 

Storelli, M.M., Storelli, A., Giacominelli-Stuffler, R., Marcotrigiano, G.O., 2005. Mercury 

speciation in the muscle of two commercially important fish, hake (Merluccius 

merluccius) and striped mullet (Mullus barbatus) from the Mediterranean sea: 

estimated weekly intake. Food Chemistry 89, 295–300. 

Storelli, M.M., Barone, G., Piscitelli, G., Marcotrigiano, G.O., 2007. Mercury in fish: 

Concentration vs. fish size and estimates of mercury intake. Food Additives and 

Contaminats 24, 1353-1357. 

Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., Sutton, D., 2003. Environmental 

exposure to mercury and its toxicopathologic implications for public health. 

Environmental Toxicology 18, 149–175. 

Tremblay, A., 1999. Bioaccumulation of mercury and methylmercury in invertebrates 

from natural boreal lakes. In: Lucotte, M., Schetagne, R., Therien, N.,  Langlois, C.,  

Tremblay, A.  (eds.), Mercury in the Biogeochemical Cycle: Natural Environments 

and Hydroelectric Reservoirs of Northern Quebec (Canada), Springer-Verlag, Berlin, 

Germany, 89-113. 

Turoczy, N.J., Mitchell, B.D., Levings, A.H., Rajendram, V.S., 2001. Cadmium, copper, 

mercury, and zinc concentrations in tissues of the King Crab (Pseudocarcinus gigas) 

from southeast Australian waters. Environment International 27, 327-334. 

Ugolini, A., Borghini, F., Calosi, P., Bazzicalupo, M., Chelazzi, G., Focardi, S., 2004. 

Mediterranean Talitrus saltator (Crustacea, Amphipoda) as a biomonitor of heavy 

metals contamination. Marine Pollution Bulletin 48, 526-532. 

Vale, C., Ferreira, A., Caetano, M., Brito, P., 2002. Elemental composition and 

contaminants in surface sediments of the Mondego river estuary. In: Pardal, M.A., 

Marques, J.C., Graça, M.A. (eds.), Aquatic Ecology of the Mondego River Basin. 

Global Importance of Local Experience. Imprensa da Universidade de Coimbra, 

243–256. 



 

50 

 

Watras, C.J., Back, R.C., Halvorsen, S., Hudson, R.J.M., Morrison, K.A., Wente, S.P., 

1998. Bioaccumulation of mercury in pelagic freshwater food webs. Science of the 

Total Environment 219, 183-208. 

Wiener, J., Spry, J., 1996. Toxicological significance of mercury in fresh water fish. In: 

Beyer, W., Heinz, G., Redmon-Norwood, A., (eds), Environmental Contaminants in 

Wildlife – interpreting tissue concentrations, CRC Press. 

Wiener, J., Krabbenhoft, D., Heinz, G., Scheuhammer, A., 2003. Ecotoxicology  of 

mercury. In: Hoffman, D., Rattner, B., Burton, G., Cairns, J., Cairns, Jr. (eds), 

 Handbook of Ecotoxicology, Lewis Publishers, London, 409-463. 

Zar, J.H., 1999. Biostatistical Analysis, fourth ed. Prentice Hall, New Jersey. 

 

 

 

 

 

 

 


