Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Conformation of 17-chloro-16-formylandrosta-5,16-dien-3 β-yl acetate and 17 -chloroandrosta-5,16-dien-3 β-yl acetate

Manuela Ramos Silva, ${ }^{\text {a }}$ V Vânia M. Moreira, ${ }^{\text {b }}$ Cláudia Cardoso, ${ }^{\text {c }}$ Ana Matos Beja ${ }^{\text {a }}$ and Jorge A. R. Salvador ${ }^{\text {b }}$
${ }^{\text {a }}$ CEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, b Laboratorio Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal, and ${ }^{\text {C }}$ CFT, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
Correspondence e-mail: manuela@pollux.fis.uc.pt

Received 8 August 2008
Accepted 12 August 2008
Online 29 August 2008
In the title compounds, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ClO}_{3}$, (I), and $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{ClO}_{2}$, (II), respectively, the B rings adopt a half-chair conformation and the D rings adopt an envelope conformation. A twist of the steroid skeleton of both compounds is observed. There is a positional disorder of the acetoxy group of (II), with the terminal atoms disordered over two positions with near equal occupancy. Quantum-mechanical ab initio calculations using a molecular orbital Hartree-Fock method were performed for the isolated molecules, thus allowing the distinction within the structural features of these two androstane derivatives of which characteristics are intrinsic to the molecules and which are due to packing effects. The skeletal twisting was found to be innate to the molecules, while the acetoxy disorder is due to packing effects.

Comment

Treatment of 17 -oxoandrost-5-en- 3β-yl acetate with POCl_{3} and dimethylformamide (Vilsmeier reagent) afforded 17-chloro-16-formylandrosta-5,16-dien-3 β-yl acetate, (I), as the major and 17 -chloroandrosta-5,16-dien-3 β-yl acetate, (II), as the minor reaction product (Sciaky \& Pallini, 1964; Marson, 1992; Siddiqui et al., 1995). Compound (I) was found to be an important precursor for the synthesis of steroidal inhibitors of cytochrome P450 17 α-hydroxylase-C17,20-lyase as potential agents for prostate cancer treatment (Njar et al., 1998; Handratta et al., 2005; Moreira et al., 2007). We report here the molecular structures of (I) and (II), determined by singlecrystal X-ray analysis, and compare them with those of the free molecules given by quantum-mechanical ab initio calculations.

ORTEPII (Johnson, 1976) plots of (I) and (II) are shown in Figs. 1 and 2, respectively. The two compounds are very
similar: both have acetoxy and chloro substituents at the 3 and 17 positions, and compound (I) has an extra formyl group at the 16 position. In both compounds, the A / B junction is quasitrans and the remaining rings are trans-fused. The acetoxy

(I)

(II)
substituents at C3 are in equatorial positions, with angles to the normal (Cremer \& Pople, 1975) of ring A of 68.43 (15) and $68.4(2)^{\circ}$, respectively, for (I) and (II). In compound (II), the substituent is disordered, with atoms O2 and C31 and methyl group C32 occupying two positions with near-equal occupancy. Rings A and C have slightly flattened chair conformations, as shown by the mean values of their torsion angles [52.97 (12)$\left.55.33(14)^{\circ}\right]$. The unsaturated ring B adopts a half-chair conformation, with puckering parameters (Cremer \& Pople, 1975) $Q=0.474$ (3) $\AA, \theta=52.0$ (4) ${ }^{\circ}$ and $\varphi=210.0$ (4) ${ }^{\circ}$ for (I), and $Q=0.491$ (3) $\AA, \theta=51.5$ (3) ${ }^{\circ}$ and $\varphi=211.0$ (5) ${ }^{\circ}$ for (II).

The five-membered ring D features a double bond at C16C17 and shows a conformation that can be described as an envelope on C14, with $P=11.3$ (3) ${ }^{\circ}$ and $\tau=36.0(2)^{\circ}[P=$ 12.0 (4) ${ }^{\circ}$ and $\tau=35.7$ (2) ${ }^{\circ}$ for (II)]. The value of the bowing angle, the angle between the least-squares plane of ring A and

Figure 1
The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

The molecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The minor component of the disordered acetoxy group is shown with broken bonds.
the least-squares plane that includes the atoms of rings B, C and D, is 23.43 (9) ${ }^{\circ}$ for (I) and 21.35 (4) ${ }^{\circ}$ for (II). The corresponding distances between terminal atoms C3 and C16 are 8.921 (5) and 8.867 (5) \AA, and the values for the pseudotorsion angle $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ are 12.9 (5) ${ }^{\circ}$ for (I) and 9.4 (5) ${ }^{\circ}$ for (II).

We have performed quantum mechanical calculations of the equilibrium geometry of the free molecule using GAMESS (Schmidt et al., 1993) under conditions described previously (Ramos Silva et al., 2008). By comparing the calculated and experimental structural parameters it is possible to infer whether the molecular conformation is intrinsic to the free steroid molecule or is due to intermolecular interactions. The calculations reproduce the twist of the molecules as measured by the pseudo-torsion angle $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$, giving a slightly decreased value of 10.2° for (I) and a slightly increased value of 9.9° for (II). Such twists are therefore intrinsic to the molecule and not a packing effect, as confirmed by previous studies (Ramos Silva et al., 2008; Pinto et al., 2008; Paixão et al., 2004). For compound (I), the geometry of the isolated molecule that corresponds to the energy minimum is quite similar to that observed in the solid state. Larger differences are found for the head and tail groups; the calculated $\mathrm{C} 3-\mathrm{O} 1-$ $\mathrm{C} 31-\mathrm{O} 2$ torsion angle is 0.6° [observed $1.5(4)^{\circ}$] and the calculated $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 161-\mathrm{O} 3$ torsion angle is -1.7° [observed $3.2(5)^{\circ}$].

There are no hydrogen bonds joining the molecules of (I). They pack in such a way that the terminal acetoxy/formyl groups come close, with the shortest intermolecular contact being O3 . . O1 1^{i} of 3.440 (3) \AA [symmetry code: (i) $\frac{3}{2}-x, 1-y$, $\left.-\frac{1}{2}+z\right]$. Without the formyl substituent, the molecules of (II) pack in a different way. They assemble head-to-tail, with the shortest intermolecular contact being $\mathrm{C} 14 \cdots \mathrm{O} 2^{\text {ii }}$ of 3.311 (9) \AA [symmetry code: (ii) $-x+1,-\frac{1}{2}+y, \frac{1}{2}-z$].

Packing effects have a significant impact on the conformation of the molecule of (II), as seen by comparison with the calculations for the isolated molecule. The minimum energy for compound (II) is achieved with the acetoxy group in-plane with atoms C 3 and C 4 , and $\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 31-\mathrm{O} 2$ converges to -0.3°, while in the solid state both alternative positions for the acetoxy group result in higher torsion angles [C3-O1-C31$\mathrm{O} 2=-8.9(13)^{\circ}$ and $\left.\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 31^{\prime}-\mathrm{O}^{\prime}=4.7(14)^{\circ}\right]$.

Experimental

Details of the synthesis of the title compound have been reported previously (Siddiqui et al., 1995; Njar et al., 1998; Moreira et al., 2007). Compounds (I) and (II) were each crystallized from a solution in a mixture of ethyl acetate and n-hexane (1:1 $\mathrm{v} / \mathrm{v})$ by slow evaporation.

Compound (I)

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ClO}_{3}$
$M_{r}=376.90$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.0689(2) \AA \AA$
$b=13.2879(4) \AA$
$c=24.7664(8) \AA$
$V=1997.24(11) \AA^{3}$
$a=6.0689(2) \AA \begin{array}{ll}\AA & \\ \text { Mo } K \alpha \text { radiation } \\ & \mu=0.21 \mathrm{~mm}^{-1}\end{array}$
Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3236). Services for accessing these data are described at the back of the journal.

References

Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Handratta, V. D., Vasaitis, T. S., Njar, V. C., Gediya, L. K., Kataria, R., Chopra, P., Newman, D., Farquhar, R., Guo, Z., Qiu, Y. \& Brodie, A. M. (2005). J. Med. Chem. 48, 2972-2984.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Marson, C. M. (1992). Tetrahedron, 48, 3659-3726.
Moreira, V. M., Vasaitis, T. S., Njar, V. C. \& Salvador, J. A. R. (2007). Steroids, 72, 939-948.
Njar, V. C., Kato, K., Nnane, I. P., Grigoryev, D. N., Long, B. J. \& Brodie, A. M. (1998). J. Med. Chem. 41, 902-912.

Paixão, J. I. F., Salvador, J. A. R., Paixão, J. A., Matos Beja, A., Ramos Silva, M. \& Rocha Gonsalves, A. M. d'A. (2004). Acta Cryst. C60, o630o632.
Pinto, R. M. A., Salvador, J. A. R. \& Paixão, J. A. (2008). Acta Cryst. C64, o279-o282.
Ramos Silva, M., Moreira, V. M., Cardoso, C., Matos Beja, A. \& Salvador, J. A. R. (2008). Acta Cryst. C64, o217-o219.

Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. \& Montgomery, J. A. (1993). J. Comput. Chem. 14, 13471363.

Sciaky, R. \& Pallini, U. (1964). Tetrahedron Lett. 28, 1839-1845.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siddiqui, A. U., Rao, V. U. M., Maimirani, M. \& Siddiqui, A. H. (1995). J. Heterocycl. Chem. 32, 353-354.

