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Abstract. In this study, we evaluated the effect of lipoic acid (LA) and N -acetyl cysteine (NAC) on oxidative [4-hydroxy-
2-nonenal, Nε-(carboxymethyl)lysine and heme oxygenase-1] and apoptotic (caspase 9 and Bax) markers in fibroblasts from
patients with Alzheimer disease (AD) and age-matched and young controls. AD fibroblasts showed the highest levels of oxidative
stress, and the antioxidants, lipoic acid (1 mM) and/or N -acetyl cysteine (100 µM) exerted a protective effect as evidenced by
decreases in oxidative stress and apoptotic markers. Furthermore, we observed that the protective effect of LA and NAC was
more pronounced when both agents were present simultaneously. AD-type changes could be generated in control fibroblasts
using N -methylprotoporphyrin to inhibit cytochrome oxidase assembly indicating that the the oxidative damage observed was
associated with mitochondrial dysfunction. The effects of N -methylprotoporphyrine were reversed or attenuated by both lipoic
acid and N -acetyl cysteine. These data suggest mitochondria are important in oxidative damage that occurs in AD. As such,
antioxidant therapies based on lipoic acid and N -acetyl cysteine supplementation may be promising.
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INTRODUCTION

Alzheimer disease (AD) is a multifactorial disorder
that has many physiological, biochemical, and neuro-
chemical facets. Aging is the major risk factor for AD
that coexists with other causes of cognitive decline,
particularly vascular dementia [72]. The processes un-
derlying the pathology of AD involve several factors,
including mitochondrial dysfunction, abnormal protein
aggregation, metal accumulation, inflammation and ex-
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citotoxicity. Although the relationship between these
factors and the development of AD is multidirection-
al, oxidative damage is considered a common thread
linking some of these factors [40,55].

Increased oxidative damage is a prominent and ear-
ly feature of vulnerable neurons in AD [71]. Nu-
cleic acid oxidation is marked by increased lev-
els of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-
hydroxyguanosine (8-OHG) [49–51]. Protein oxida-
tion is marked by elevated levels of protein carbonyl
and widespread nitration of tyrosine residues in the
susceptible neurons [70,71]. Lipid peroxidation is
marked by higher levels of thiobarbituric acid reac-
tive substances (TBARS), malondialdehyde (MDA),
4-hydroxy-2-nonenal (HNE), isoprostanes and altered
phospholipid composition [63]. Modifications to sug-

ISSN 1387-2877/07/$17.00  2007 – IOS Press and the authors. All rights reserved



196 P.I. Moreira et al. / Antioxidants in AD Fibroblasts

ars are also observed via increased glycoxidation and
glycation [11,66,69] that are responsible for the forma-
tion of advanced glycation endproducts (AGEs) such
as Nε-(carboxymethyl)lysine (CML), pentosidine and
pyralline.

Mitochondria are essential organelles for neuronal
cell function because their limited glycolytic capac-
ity makes them highly dependent on aerobic oxida-
tive phosphorylation for their high energetic demands.
However, oxidative phosphorylation is a major source
of endogenous toxic free radicals or precursors, includ-
ing hydrogen peroxide (H2O2), hydroxyl (•OH) and
superoxide (O−•

2 ) radicals that are products of normal
cellular respiration [81]. Reactive oxygen species gen-
erated by mitochondria have several cellular targets in-
cluding mitochondrial components themselves (lipids,
proteins and DNA). The lack of histones in mitochon-
drial DNA (mtDNA) and diminished capacity for DNA
repair render mitochondria an easy target of oxidative
stress events suggesting that these organelles are key
elements involved in aging [43] and age-related disor-
ders [2,42,59,75].

The cytopathological significance of oxidative dam-
age is seen by the up-regulation of antioxidant enzymes.
Heme oxygenase-1 (HO-1) is an antioxidant enzyme
that degrades heme into biliverdin, iron and carbon
monoxide and is one of the most sensitive and selec-
tive indicators of the cellular oxidative stress response.
It has been shown that brains of AD patients present
an increase of both HO-1 mRNA and protein [58,65]
which co-localizes and parallels the expression of the
altered form of tau characteristic of AD [76,77].

Recently, we demonstrated that olfactory epithelium
of AD patients [56] and olfactory neuroblasts in cul-
ture [23] from cases of AD present high levels of HNE,
CML and HO-1 when compared with age-matched con-
trols. Given the proximal role and devastating effect
that oxidative stress plays in AD pathogenesis, a ther-
apeutic strategy based on reducing oxidative stress ap-
pears reasonable. Both in vitro and animal studies sug-
gest that treatment with antioxidant agents may be use-
ful in neurological disorders, including AD [17]. Two
agents that have received attention because of their an-
tioxidant capacity are lipoic acid (LA) [38] and N -
acetyl cysteine (NAC) [6]. Several studies provide ev-
idence that LA decreases oxidative stress and restores
reduced levels of other antioxidants in vivo (for review,
see [44]). Similarly, it has been reported that NAC acts
as a precursor of glutathione synthesis as well as a stim-
ulator of the cytosolic enzymes involved in glutathione
regeneration; induces protection by direct reaction be-

tween its reducing thiol groups and reactive oxygen
species (ROS) and stimulates mitochondrial complexes
I and IV (for review, see [6]).

It is well known that fibroblasts from AD patients
also show elevations in oxidative markers [12,48]. The
goal of this study was to evaluate the effect of LA and
NAC in oxidative and apoptotic markers observed in
skin fibroblasts obtained from AD, age-matched and
young control subjects. Furthermore, to elucidate if the
oxidative levels observed were related with mitochon-
dria, we induced mitochondrial dysfunction with N -
methylprotoporphyrine IX (NMP) which inhibits cy-
tochrome oxidase assembly. For this purpose, we eval-
uated oxidative (HNE, CML, HO-1) and apoptotic (Bax
and caspase 9) markers. Our data indicate that LA
and NAC are highly effective in reducing oxidative and
apoptotic changes observed in AD and aged-matched
control fibroblasts. These findings provide further sup-
port for the use of antioxidants in the treatment of AD
and show that mitochondria may play an important role
in oxidative damage in disease pathogenesis.

MATERIALS AND METHODS

Skin Fibroblast Cultures

Fibroblasts cultures were obtained from the NIA Ag-
ing Cell Culture Repository (Camden, NJ, USA). The
clinical diagnosis, age and sex of the donors are listed
in Table 1. Cells were cultured at 37◦C with 5% CO2

in 1x DMEM supplemented with 1% (v/v) antibiotic-
antimycotic, 1% (v/v) glutamine, and 10% (v/v) heat-
inactivated fetal calf serum (Invitrogen, Carlsbad, CA,
USA). Stock cultures were split once a week when
near confluence. Cells were harvested by trypsiniza-
tion (0.25% Trypsin, Invitrogen, Carlsbad, CA, USA)
for 2 minutes at 37◦C.

Table 1

Fibroblast Case Age Gender

AD – 1 60 Female
AD – 2 61 Male
AD – 3 67 Male
AD – 4 70 Male
AD – 5 79 Female
Control – 1 35 Male
Control – 2 35 Female
Control – 3 60 Female
Control – 4 68 Male
Control – 5 79 Female
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Fig. 1. A) Immunocytochemical quantification of CML, HO-1 and HNE levels. ∗∗p < 0.01; ∗p < 0.05 when compared with age-matched
control fibroblasts. B) Immunostain demonstrating the increased immunoreactivity in AD fibroblasts compared to age-matched controls for HNE,
HO-1, and CML. Scale bar = 50 µM.

Incubation with Lipoic Acid and N-Acetyl Cysteine

Fibroblasts were plated on LAB TEK II chamber
slides (Nalge Nunc International, Rochester, NY, USA)
and incubated overnight to allow cells to adhere. Af-
ter this period, cells were either treated with a final
concentration of 0.14% ethanol (control) or with LA
(1 mM) (10 mM Stock diluted in 70% ethanol) and/or
NAC (100 µM) in phosphate buffered saline (PBS, pH
7.2) for 24 to 48 hours.

Induction of Heme Deficiency

Fibroblasts were plated on LAB TEK II chamber
slides and incubated overnight to adhere. After this pe-
riod cells were either left untreated (control) or treated

with 10, 20 or 40 µM NMP (Frontier Scientific, Logan
UT, USA) for 5 days. Some NMP treated cells were
subsequently treated with LA and/or NAC. The stock
solution of NMP was made in 0.1 N NaOH.

Immunocytochemistry

Cells were plated on LAB TEK II chamber slides.
After the desired incubation with the experimental con-
ditions previously outlined, cells were rinsed in PBS at
37◦C then fixed with methacarn (methanol-chloroform-
acetic acid, 6:3:1) for 15 minutes at room temperature.
Endogenous peroxidase activity was eliminated by in-
cubation in 3% H2O2 in Tris-buffered saline (TBS;
50 mM Tris-HCl, 150 mM NaCl, pH 7.6) for 30 min-
utes. To reduce non-specific binding, cells were incu-
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Fig. 2. Effect of LA and/or NAC on HNE, CML and HO-1 immunoreactivity in fibroblasts obtained from AD and age-matched controls. Data
are the mean (% of untreated fibroblasts) ± S.E.M. of four independent experiments with each fibroblast line.∗∗∗p < 0.001; ∗∗p < 0.01; ∗p <
0.05 when compared with untreated fibroblasts. ∓∓∓p < 0.001, ∓∓p < 0.01 when compared with LA condition. +++p < 0.001; ++p <
0.01; +p < 0.05 when compared with NAC condition.

bated for 30 minutes with 1% normal goat serum (NGS)
in TBS. After rinsing briefly with 1% NGS, cells were
incubated overnight with primary antibody. Cells were
stained with the peroxidase antiperoxidase method [73]
using 3,3’-diaminobenzidine (DAB) as a chromogen
(Dako Corporation, Carpinteria, CA, USA).

The antisera to the following markers were used HO-
1 (1:00; [65]); HNE (1:50; [63]); CML (1:00; [11]);
Bax (1:100; StressGen, San Diego, CA, USA) and Cas-
pase 9 (1:100, StressGen, San Diego, CA, USA).

Quantification

The intensity of the immunoreaction for each anti-
serum used was measured using an Axiocam digital
camera and KS300 image analysis software (Carl Zeiss,
Inc., Thornwood, NY, USA). The cells were manu-

ally outlined and the computer-generated optical den-
sity values determined. Background values, samples
similarly processed but lacking the primary antibodies,
were subtracted and the mean densities determined for
each case.

Statistical Analysis

Results are presented as raw data or as relative inten-
sity (% of control or untreated condition)± SEM of the
indicated number of experiments. Relative intensity
is utilized for those experiments where the control fi-
broblasts were stained for an increased incubation time
with DAB in order to visualize a difference between
treatments. Statistical significance was determined us-
ing the one-way ANOVA test for multiple comparisons,
followed by the post-hoc Tukey-Kramer test.
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Fig. 3. Effect of 20 µM NMP on age-matched control fibroblasts. ∗p < 0.05 when compared with untreated control fibroblasts.

RESULTS

LA and/or NAC Prevent the Increase in Oxidative
Stress Marker Levels

AD fibroblasts showed higher levels of oxidative
markers (HNE, CML and HO-1) when compared
to age-matched controls (Fig. 1). Importantly, co-
incubation of AD fibroblasts with LA or NAC reduced
the levels of all oxidative markers (Fig. 2), consistent
with the notion that both compounds have antioxidant
properties. Interestingly, co-incubation of LA and NAC
afforded a higher protection than that promoted by each
agent alone (Fig. 2) supporting the notion that a com-
bination of antioxidants is more effective than a single
agent.

Mitochondrial-Associated Oxidative Stress is
Reversed/Attenuated by LA and/or NAC

To determine if oxidative stress was related to mito-
chondrial dysfunction and whether the protective effect
of LA and NAC occur at the mitochondrial level, we in-
duced heme deficiency by inhibition of ferrochelatase
with NMP. NMP mimics protoporphyrin IX, the sub-
strate for ferrochelatase, except that a methyl group is
added to a nitrogen group. NMP binds ferrochelatase
with affinity similar to protoporphyrin IX, but the
methyl group prevents iron from being inserted into
NMP [14]; thus, it is a selective and specific inhibitor
for ferrochelatase [22] and has been used previously in
several studies to inhibit heme synthesis [4,5,78]. We
observed that NMP induced a concentration-dependent
decrease in cytochrome oxidase content when com-
pared with control conditions (data not shown) indicat-

ing that the compound is effective in inducing heme de-
ficiency. Interestingly, we observed that age-matched
control fibroblasts in the presence of NMP increased
oxidative stress to levels similar or above those of AD
fibroblasts (Fig. 3). These findings suggest that mi-
tochondrial dysfunction is a key source of oxidative
stress. The increase in oxidative levels due to NMP
was reversed/attenuated with the presence of LA and/or
NAC (Figs 4 and 5) suggesting that both compounds act
preferentially on mitochondria to attenuate oxidative
stress.

LA and/or NAC Protect Against the Increase in
Mitochondrial-Associated Apoptotic Markers

Caspases are a family of proteins that are one of the
main effectors of apoptosis. They are a group of cys-
teine proteases that exist within the cell as inactive pro-
forms or zymogens. These zymogens can be cleaved to
form active enzymes following the induction of apop-
tosis. Bax is a member of the Bcl2 family of pro-
teins and is a critical regulator of apoptotic cell death
(pro-apoptotic protein). NMP induced an increase in
the levels of Bax and Caspase-9 in fibroblasts of AD,
young and aged-matched controls (Fig. 6) which is in
accordance with the increase in oxidative stress levels.
Levels of apoptotic markers were reversed /attenuated
by LA and/or NAC (Fig. 6), again supporting the idea
that metabolic antioxidants are capable of preventing,
or at least attenuating mitochondrial-associated oxida-
tive stress and, consequently, apoptotic cell death.

DISCUSSION

In this study we show that AD fibroblasts possess
high levels of oxidative markers (HNE, CML and HO-
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Fig. 4. Effect of LA and/or NAC in the increase of oxidative stress markers immunoreactivity induced by NMP. The data are means (% of control)
± S.E.M. of four independent experiments with each fibroblast line. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05 when compared with untreated
fibroblasts. +++p < 0.001; ++p < 0.01 when compared with NMP-treated fibroblasts.

1) when compared with young and age-matched con-
trols. These results are in accordance with previous
studies from others as well as from our laboratory show-
ing that fibroblasts [12,48], olfactory epithelium [56]
and olfactory neuroblasts [23] from cases of AD have
higher levels of oxidative markers when compared with
age-matched controls. We also demonstrate that the
inhibition of cytochrome oxidase assembly potentiates
the increase in oxidative and apoptotic (Bax and cas-
pase 9) markers indicating that mitochondria are key
elements involved in oxidative stress occurring in aged
and AD fibroblasts. However, the key finding of this

study is that LA and NAC exert substantial protection
against age- and AD-associated oxidative stress and
that this protection was more pronounced when both
agents are present simultaneously.

An accumulating body of knowledge suggests that
oxidative stress, and subsequent oxidative damage [55,
57] occurs early in the progression of AD, signifi-
cantly before the development of the pathologic hall-
marks, neurofibrillary tangles and senile plaques [50–
52,71]. In diseased neurons the interaction of abnormal
mitochondria, redox transition metals, and oxidative
stress response elements contributes to the generation
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Fig. 5. Immunostain of control fibroblasts demonstrating the increase in oxidative stress markers immunoreactivity after NMP treatment followed
by a decrease in immunoreactivity after LA and NAC treatment. Scale bar = 50 µM.

of ROS [55].
Accumulation of AGEs in the brain is a feature of

aging [45,67] and the Maillard reaction is implicated
in the development of pathophysiology in age-related
diseases such as diabetes mellitus, atherosclerosis and
AD [46,61,79]. CML, the predominant AGE that accu-
mulates in vivo [18,60] along with its glycation-specific
precursor hexitol-lysine are increased in neurons, es-
pecially those containing intracellular neurofibrillary
pathology in cases of AD [11]. Using immunocyto-
chemical methods, Girones et al. [24] examined the dis-
tribution of CML in brain tissue from AD and diabetes
mellitus subjects and aging controls. They observed
that CML reactivity was more evident in brains from
patients suffering from both AD and diabetes mellitus,
followed by AD, diabetes mellitus, and aging controls.
Accordingly, we observed the highest levels of CML
in AD fibroblasts (Fig. 1). Co-localization of CML
with adducts derived from products of lipid peroxida-

tion, HNE and MDA, supports the concept that lipid
peroxidation itself, in addition to and apart from ad-
vanced glycation, triggers the formation of CML [21].
Recently, Dei et al. [16] reported that while both MDA
and CML accumulate under oxidative stress, CML ac-
cumulation is largely limited to neurons, in normal ag-
ing, while MDA also accumulates in glia. However, in
AD, both MDA and CML are deposited in both astro-
cytes and neurons. Data from the literature indicates
that HNE is increased in brain tissue [39,63,77,82] and
cerebrospinal fluid [36] of AD patients. These findings
are supported by our results showing that AD fibrob-
lasts present higher levels of oxidative damage stress
when compared with control fibroblasts (Fig. 1).

HO-1, the rate-limiting step in heme catabolism,
plays an important role in AD [65]. The vasoactive
molecule carbon monoxide and the potent antioxidant
biliverdin, products of an HO-1-catalyzed reaction,rep-
resent a protective system, potentially active against
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Fig. 6. Effect of LA and/or NAC in the levels of apoptotic markers (caspase 9 and Bax) induced by NMP. The data are means (% of control)
± S.E.M. of four independent experiments with each fibroblast line. ∗∗∗p < 0.001 when compared with untreated fibroblasts. +++p < 0.001
when compared with NMP-treated fibroblasts.

brain oxidative injury. In accordance with previous re-
sults from our laboratory for olfactory neuroblasts [23,
56], we observed that AD fibroblasts present signif-
icantly higher levels of HO-1 when compared with
age-matched controls (Fig. 1). Studies in a transgenic
mouse model of AD showed that the expression of
CuZn superoxide dismutase and HO-1 is significantly
higher when compared with control mice [54]. Using
immunolabeling or PCR techniques, a robust overex-

pression of HO-1 proteins, or mRNA in brain sam-
ples of sporadic AD when compared with age-matched
controls was observed [58,64,66,68].

Mitochondrial dysfunction is characteristic of ag-
ing and several neurodegenerative conditions including
AD [30]. In the present study we induced mitochon-
drial dysfunction through heme deficiency promoted
by NMP. This compound interferes with the assembly
of mitochondrial cytochrome oxidase by inhibition of
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heme formation by ferrochelatase. A previous study
showed that NMP reduces the activity of ferrochelatase
by 15% [78]. Thus, inhibition of ferrochelatase leaves
the cell with a shortage of protohemes. Cytosolic and
mitochondrial enzymes catalyze the maturation of pro-
toheme to heme-a [7,33], suggesting that heme-a shut-
tles from the cytosol to mitochondria to be incorporated
into subunit I of cytochrome oxidase. Atamna et al. [4]
studied the effect of heme deficiency in young and old
normal human fibroblasts. They observed that regard-
less of age, heme deficiency increases the steady-state
levels of oxidants and lipid peroxidation and sensitizes
the cells to fluctuations in intracellular calcium. They
reported also a 95% decrease in the activity and protein
content of mitochondrial complex IV. The same group
reported that heme deficiency in brain cells decreas-
es mitochondrial complex IV activity, activates nitric
oxide synthase, alters amyloid-β protein precursor and
corrupts iron and zinc homeostasis [5]. In accordance,
our results show that NMP induces a concentration-
dependent decrease in cytochrome oxidase content (da-
ta not shown) and an increase in oxidative and apoptot-
ic markers (Figs 3–6). Interestingly, age-matched con-
trol fibroblasts in the presence of NMP present levels
of HNE and HO-1 similar to that of AD fibroblasts at
basal conditions (Fig. 3), which suggests that the ox-
idative stress phenomena occurring in AD fibroblasts
under basal conditions results from dysfunctional mi-
tochondria.

It is now well established that mitochondria might
also regulate and promote apoptosis by releasing cy-
tochrome c or other protease zymogens from the mi-
tochondrial intermembrane space into the cytosol [25]
and, through the activation of caspase-9 and -3, eventu-
ally lead to apoptosis [34]. Accordingly, we observed
that mitochondrial dysfunction induced by NMP leads
to an increase in caspase 9 immunoreactivity (Fig. 6).
Furthermore, we also observed that the presence of
NMP promotes an increase in Bax levels (Fig. 6). Bax
is a member of the Bcl-2 family of proteins, which can
promote apoptosis by forming oligomers in the mito-
chondrial outer membrane and creating a channel for
the release of cytochrome c and other apoptotic sub-
stances [3,19]. Another study indicated that Bax can
bind to the voltage-dependent anion channel (VDAC)
and promote the release of cytochrome c through this
channel [80]. Bax translocation onto the mitochon-
drial membrane therefore becomes one of the impor-
tant indicators for the onset of mitochondria-mediated
apoptosis.

By acting as a cysteine donor, NAC maintains intra-
cellular glutathione levels and is neuroprotective for a

range of neuronal cell types against a variety of apop-
totic stimuli in vitro [20,41,47]. NAC may therefore
reduce neuronal death by blocking attempted entry into
the cell cycle, by improving free radical surveillance, or
by preserving mitochondrial function. In turn, LA can
also scavenge ROS [8,9,53], regenerate endogenous
antioxidants [32], repair oxidative damage [10] and
chelate metals [32]. Furthermore, LA is a coenzyme
for mitochondrial pyruvate and α-ketoglutarate dehy-
drogenases. We observed that pre-treatment of fibrob-
lasts with LA and NAC leads to a decrease in age- and
AD-associated oxidative levels (Fig. 2). Furthermore,
these compounds protect against the increase in oxida-
tive and apoptotic markers induced by NMP (Figs 4–6).
In vitro studies showed that pretreatment of dissociated
primary hippocampal cultures with LA promote a sig-
nificant protection against amyloid-β and iron/H2O2

toxicity [37]. Furthermore, it has been shown that old
rats supplemented with (R)-α-lipoic acid showed an
improvement of mitochondrial function, decreased ox-
idative damage, and increased metabolic rate [26]. Ac-
cordingly, Suh et al. [74] reported that old rats inject-
ed with (R)-α-lipoic acid presented an improvement
in GSH redox status of both cerebral and myocardial
tissues when compared with control rats. Hager and
collaborators [28] reported that the administration of
600 mg α-lipoic acid/day to nine patients with AD
for an average of 337 days promoted the stabilization
of cognitive measures. Recently, Hart et al. [29] re-
ported that NAC preserves mitochondrial function and
protects sensory neurons after nerve injury. Further-
more, administration of NAC protects the brain from
free radical injury, apoptosis, and inflammation [15,
31]. Cocco et al. [13] reported that old rats treated
with NAC showed a slight brain-specific improvement
of mitochondrial energy production efficiency, mostly
with NAD-dependent substrates, together with a de-
crease in carbonyl protein content and an increase in
the amount of protein thiols of brain cytosolic fraction
when compared with untreated animals. Adair et al. [1]
performed a clinical trial where NAC or placebo was
administered in a double-blind fashion to patients with
probable AD. They observed that NAC has a positive
effect on nearly every outcome measure, although sig-
nificant differences were obtained only for a subset of
cognitive tasks.

Interestingly, we observed that co-incubation of fi-
broblasts with LA and NAC exert a more pronounced
protective effect (Fig. 2). Accordingly, a previous
study reported that acetyl-L-carnitine (ALCAR) plus
LA partially reversed the age-related decline in aver-
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age mitochondrial membrane potential and significant-
ly increased hepatocellular O2 consumption, indicat-
ing that mitochondrial-supported cellular metabolism
was markedly improved by the presence of both com-
pounds [2]. The same study indicates that ALCAR plus
LA also increased ambulatory activity in both young
and old rats, with this effect being significantly high-
er when compared with old rats fed ALCAR or LA
alone [27]. Liu et al. [35] reported that dietary adminis-
tration of ALCAR and/or LA to old rats improve perfor-
mance on memory tasks by lowering oxidative damage
and improving mitochondrial function. Recently, it has
been shown that co-supplementation of LA and carni-
tine has a beneficial effect in reversing the age-related
abnormalities seen in aging. This effect was associated
with the decrease in free radical production and rise in
antioxidant levels by carnitine and lipoic acid, thereby
lowering oxidative stress [62].

In conclusion, our results show that LA and NAC de-
crease the levels of oxidative and apoptotic markers via
protection of mitochondrial function. The combination
of both LA and NAC maximizes0 the protective effect
suggesting that the combination of both agents may
prevent mitochondrial decay associated with aging and
age-related disorders such as AD. Antioxidant thera-
pies based on LA and NAC seem promising since they
can act on mitochondria, one key source of oxidative
stress in aging and neurodegeneration.
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