
REVIEW

Role of the brain-derived neurotrophic factor at
glutamatergic synapses

AL Carvalho, MV Caldeira, SD Santos and CB Duarte

Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, Portugal

The neurotrophin brain-derived neurotrophic factor (BDNF) plays an important role in the activity-dependent regulation of
synaptic structure and function, particularly of the glutamatergic synapses. BDNF may be released in the mature form, which
activates preferentially TrkB receptors, or as proBDNF, which is coupled to the stimulation of the p75NTR. In the mature form
BDNF induces rapid effects on glutamate release, and may induce short- and long-term effects on the postsynaptic response to
the neurotransmitter. BDNF may affect glutamate receptor activity by inducing the phosphorylation of the receptor subunits,
which may also affect the interaction with intracellular proteins and, consequently, their recycling and localization to defined
postsynaptic sites. Stimulation of the local protein synthesis and transcription activity account for the delayed effects of BDNF
on glutamatergic synaptic strength. Several evidences show impaired synaptic plasticity of glutamatergic synapses in diseases
where compromised BDNF function has been observed, such as Huntington’s disease, depression, anxiety, and the BDNF
polymorphism Val66Met, suggesting that upregulating BDNF-activated pathways may be therapeutically relevant. This review
focuses on recent advances in the understanding of the regulation of the glutamatergic synapse by BDNF, and its implications
in synaptic plasticity.
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Introduction

Neurotrophins control survival, differentiation and synapto-

genesis, and play important roles in activity-dependent

forms of synaptic plasticity in the CNS. The physiological

responses to neurotrophins are mediated by activation of

two distinct classes of transmembrane receptors, the tropo-

myosin-related kinase (Trk) family of receptors and the

p75NTR (reviewed in: Reichardt, 2006; Manadas et al., 2007).

The Trk family of receptor tyrosine kinases includes the TrkA,

TrkB and TrkC receptors, which are activated preferentially

by nerve growth factor, brain-derived neurotrophic factor

(BDNF), NT-4/5 and NT-3, respectively. In contrast with the

specificity displayed by the Trk family of receptors, the

p75NTR binds both the mature form of the neurotrophins

and their uncleaved (precursor) forms (pro-neurotrophins)

(Lee et al., 2001; Teng et al., 2005). Sortilin, a member of the

Vps10p-domain family of transmembrane receptors, acts as a

p75NTR coreceptor to mediate pro-neurotrophin-induced cell

death (Nykjaer et al., 2004; Teng et al., 2005).
The levels and secretion of BDNF can be regulated by

activity, and BDNF colocalizes with its receptor, TrkB, at

glutamatergic synapses both presynaptically and postsynap-

tically. This makes BDNF attractive as a bidirectional

modulator of excitatory synaptic transmission and plasticity.

GABAergic synapses are also regulated by BDNF, which has

been shown to act pre- and postsynaptically (for example,

Frerking et al., 1998; Wardle and Poo, 2003; Jovanovic et al.,

2004; Baldelli et al., 2005; Matsumoto et al., 2006). Moreover,

BDNF modulates growth and complexity of dendrites, and

changes spine density and morphology. This review focuses

on the role of BDNF as a synaptic modulator through its

pre- and postsynaptic actions at the glutamate synapse. The

following sections will consider how BDNF is produced,

processed and released, the signalling pathways that are
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activated through activation of TrkB, how BDNF regulates

glutamate release and how it regulates glutamate receptor

function. The final sections summarize recent progress in

understanding the role of BDNF in synapse formation and

stabilization, and in synaptic plasticity. A model for some of

the mechanisms of action of BDNF on the glutamatergic

synapse is depicted in Figure 1.

BDNF transport and release

Neurotrophins, including BDNF, are synthesized as pre-pro-

neurotrophin precursors that undergo post-translational

modifications before giving rise to mature homodimeric

proteins. proBDNF is present in many regions of the CNS,

including the hippocampus, cerebral cortex, cerebellum,

hypothalamus, substantia nigra, amygdala and spinal cord

(Zhou et al., 2004). Expression of the bdnf gene is tightly

controlled by neuronal activity, through mechanisms de-

pendent on the [Ca2þ ]i (reviewed in Mellstrom et al., 2004).

The pro-neurotrophins produced in the endoplasmic

reticulum (ER) then transit to the Golgi apparatus and

finally accumulate in the trans-Golgi network. A model was

proposed according to which proBDNF binds to sortilin in

the Golgi, facilitating the correct folding of the mature

domain. In the appropriate conformation, the mature

domain of BDNF binds to carboxipeptidase E, thereby sorting

the neurotrophin to the regulated secretory pathway (Chen

et al., 2005; Lou et al., 2005; Lu et al., 2005). The sorting of

BDNF to this secretory pathway is impaired by a BDNF

polymorphism consisting in a valine to methionine sub-

stitution at codon 66 in the prodomain, which affects

human memory and hippocampal function (Egan et al.,

2003). It remains to be determined whether the missorting

phenotype of this BDNF polymorphism implies the existence

of an additional, and independent, sorting motif in the

prodomain of the neurotrophin. A recent study also

suggested that huntingtin, a protein mutated in patients

with Huntington’s disease, plays an important role in the

post-Golgi transport of BDNF (del Toro et al., 2006).

Brain-derived neurotrophic factor produced in the cell

body is transported to postsynaptic dendrites, in secretory

granules (Goodman et al., 1996; Haubensak et al., 1998;

Hartmann et al., 2001; Kohara et al., 2001; Adachi et al.,

2005; Brigadski et al., 2005). Alternatively, the neurotrophin

contained within large dense core vesicles is delivered to the

presynaptic axon terminals, by anterograde transport

(Fawcett et al., 1998; Kohara et al., 2001; Adachi et al.,

2005). Accordingly, BDNF was found in a vesicular fraction

isolated from nerve endings (Fawcett et al., 1997), and

electron microscopy studies showed that it is stored in dense

core vesicles, together with neuropeptide transmitters, in the

amygdala (Salio et al., 2007). The release of BDNF from the

synaptic terminals of cerebellar granule neurons is mediated

by Ca2þ -dependent activator protein for secretion, type 2, a

protein that interacts with the secretory granules containing

the neurotrophin (Kawaguchi et al., 2004; Sadakata et al.,

2007). The BDNF vesicle clusters, pre- and postsynaptic, are

found close to active synapses and their content is released

in response to synaptic stimulation (Hartmann et al., 2001;

Kohara et al., 2001; Kojima et al., 2001). Depolarization of

cultured neurons with KCl or electrical stimulation, or

stimulation with glutamate, induces the release of endo-

genous proBDNF/BDNF and BDNF-green fluorescent protein

(GFP) fusion protein in a Ca2þ -dependent manner (Goodman

et al., 1996; Hartmann et al., 2001; Kojima et al., 2001;

Balkowiec and Katz, 2002; Lou et al., 2005). The specificity in

the location of BDNF release, together with the fact that the

release occurs by a regulated mechanism, is an important

issue in determining the specificity of the effects of the

neurotrophin in the modulation of synaptic activity and

neuronal connectivity.

Interestingly, BDNF mRNA is accumulated in dendrites of

cultured hippocampal neurons following KCl depolarization,

Figure 1 Brain-derived neurotrophic factor (BDNF) modulates glutamatergic synapses through pre- and postsynaptic targets. ProBDNF is
secreted in an activity-regulated way, processed by extracellular proteases, such as plasmin, and acts on pre- and postsynaptic TrkB receptors.
Presynaptically, BDNF regulates glutamate release, whereas the postsynaptic actions of BDNF include changes in glutamate receptor
phosphorylation and synthesis, changes in gene expression and local alterations in protein synthesis. These effects of BDNF influence synaptic
plasticity, and spine density and morphology.
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by a mechanism involving Ca2þ influx, glutamate receptor

activation and stimulation of TrkB receptors by endogenous

BDNF (Tongiorgi et al., 1997; Righi et al., 2000). Under the

same conditions there was an increase in dendritic BDNF

immunoreactivity, even in the presence of dendritic trans-

port blockers, suggesting that the neurotrophin is synthe-

sized locally (Tongiorgi et al., 1997). Dendritic targeting of

BDNF mRNA and accumulation of the neurotrophin were

also observed in the rat hippocampus following epilepto-

genic stimuli, and may contribute to the cellular changes

leading to epilepsy (Tongiorgi et al., 2004).

The 32 kDa proBDNF is the main form of the neurotrophin

secreted from cultured neurons (Mowla et al., 1999, 2001;

Chen et al., 2004), indicating that the mature form originates

mainly from the extracellular cleavage of proBDNF by

extracellular proteases. The most relevant extracellular

protease in the cleavage of neurotrophins, including BDNF,

is plasmin (Lee et al., 2001; Pang et al., 2004). This serine

protease is expressed as an inactive zymogen, plasminogen,

which becomes activated upon cleavage by tissue plasmino-

gen activator (Plow et al., 1995). The cleavage of proBDNF by

tPA/plasmin plays a key role in hippocampal long-term

potentiation (LTP) (see below) (Pang et al., 2004). However, it

remains to be determined whether the activation of plasmin

can be regulated to tightly control the extracellular concen-

tration of BDNF.

Brain-derived neurotrophic factor has also been found in

some of the neurons that lack BDNF mRNA transcripts,

which are unable to synthesize the neurotrophin (Conner

et al., 1997). This indicates that extracellular BDNF may be

taken up by pre- or postsynaptic neurons, as observed in

cultured cortical neurons transfected with GFP-tagged BDNF

(Kohara et al., 2001). In vivo studies also showed transneu-

ronal transport of BDNF following injection of BDNF into

the eyes of chick embryos (von Bartheld et al., 1996; Butowt

and von Bartheld, 2001) or adult rodents (Caleo et al., 2000,

2003; Butowt and von Bartheld, 2005). Following uptake by

retinal ganglion cells, BDNF is transported to the nerve

terminals and released, increasing the survival of target

neurons (von Bartheld et al., 1996; Caleo et al., 2000, 2003).

In addition to the long-range transport to distal synapses,

BDNF may also be recycled locally. In the hippocampus, the

complex formed by BDNF and its receptor (TrkB) is inter-

nalized by Pincher (pinocytic chaperone)-mediated macro-

endocytosis-dependent mechanism, in axons and dendrites,

and enters rapidly into a local recycling pathway indepen-

dent of the ER and the Golgi (Valdez et al., 2005). The

internalized BDNF may be released following stimulation of

the neurons, allowing the recycling of the neurotrophin, and

the recycled BDNF was shown to contribute to the

maintenance of LTP (see below) (Santi et al., 2006).

TrkB receptors and signalling pathways

The TrkB receptors are activated by BDNF and NT-4/5

(reviewed in: Reichardt, 2006; Manadas et al., 2007).

Neurotrophins bind to the Trk receptors as dimers, thus

promoting receptor dimerization (Jing et al., 1992) and

transphosphorylation on specific tyrosine residues located in

the intracellular domain. This, in turn, creates docking sites

for different adaptor proteins and signalling enzymes, setting

in motion various parallel signal transduction cascades,

with distinct functions (Atwal et al., 2000; Reichardt, 2006;

Manadas et al., 2007). The signalling activity of the various

Trk receptors is rather similar, due to the high homology

between their intracellular domains (Atwal et al., 2000).

Phosphorylation of two tyrosine residues located outside the

kinase activation domain of the Trk receptors mediates the

interaction with Shc (Src homology 2-containing protein)

and phospholipase C g (PLC g; reviewed in: Reichardt, 2006;

Manadas et al., 2007). Shc recruitment to the active Trk

receptors is followed by phosphorylation of the adaptor

protein, leading to the activation of the Ras/extracellular

signal-regulated kinase (ERK) signalling pathway through

recruitment of Grb2 and SOS. The Shc docking site on active

Trk receptors may also allow binding of the adaptor protein

fibroblast growth factor receptor substrate 2, which becomes

phosphorylated on tyrosine residues, thus creating binding

sites for the adaptor proteins Grb2 and Crk, the phosphatase

SH-PTP2, the tyrosine kinase Src and the cyclin-dependent

kinase substrate p13 suc 1. Crk binds and activates the

exchange factor C3G, which in turn stimulates a small G

protein, Rap-1, thereby activating the downstream kinase

B-raf and the MEK/ERK signalling cascade (Reichardt, 2006).

Alternatively, CrkL can be recruited to the activated Trk

receptor through binding to the tyrosine-phosphorylated

ARMS/Kidins220 (ankyrin-rich membrane spanning do-

main), resulting in the activation of Rap1 through C3G

(Arevalo et al., 2006). Activation of ERK influences transcrip-

tion events, such as the activation of cAMP-response element

binding (CREB) transcription factor (Shaywitz and Green-

berg, 1999).

Binding of Shc to the Trk receptors also activates the

phosphatidylinositol 3-kinase (PI3K) pathway, either by

direct interaction of Ras with PI3K or through recruitment

of the adaptor protein Gab1. Activation of PI3K changes the

composition of inositol phospholipids in the inner leaflet

of the plasma membrane, resulting in the translocation of

PKB (also known as Akt) to the plasma membrane, where it

is activated through phosphorylation by upstream kinases,

including phosphoinositide-dependent protein kinases 1

and 2 (possibly the rictor–mTOR complex; Sarbassov et al.,

2005). Akt may change transcription activity, but may also

induce rapid and local changes in the proteome by regulating

the translation machinery (Takei et al., 2001, 2004). This

signalling pathway plays an important role in cell survival

(Brunet et al., 2001; Almeida et al., 2005; Manadas et al.,

2007).

Phosphorylation of TrkB on Tyr785 recruits PLC g to the

receptors, and the enzyme becomes activated upon tyrosine

phosphorylation (Pereira et al., 2006; Reichardt, 2006). A

recent study showed that full activation of this signalling

pathway requires TrkB translocation to lipid rafts, possibly

through a Fyn-dependent mechanism (Pereira and Chao,

2007). PLCg hydrolyses phosphatidylinositol 4,5-bisphos-

phate, giving rise to diacylglycerol, which activates protein

kinase C (PKC), and inositol 1,4,5-trisphosphate

(Ins(1,4,5)P3), which releases Ca2þ from intracellular stores.

In cultured cerebellar granule cells, the BDNF-induced
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mobilization of intracellular Ca2þ stores acts together with

the diacylglycerol generated by PLCg in the activation of

plasma membrane transient receptor potential canonical

subfamily 3/6 (TRPC3/6) channels. The influx of Ca2þ

through these channels contributes to ERK and CREB

activation, increasing cell survival (Jia et al., 2007). Activa-

tion of this pathway also plays a key role in synaptic

plasticity (see below; Minichiello et al., 2002).

Little is known about the role of the p75NTR in the

regulation of the glutamatergic synapses. These receptors

lack intracellular catalytic activity and, therefore, their

signalling activity is initiated by binding to several adaptor

proteins, including Traf6, neurotrophin receptor-interacting

factor, melanoma-associated antigen, neurotrophin receptor

p75-interacting melanoma-associated antigen homologue,

Schwann cell factor 1, RhoGDI and other proteins (reviewed

in: Harrington et al., 2004; Nykjaer et al., 2005; Schor, 2005).

Activation of p75NTR by proBDNF facilitates long-term

depression (LTD) in the hippocampus, but the signalling

mechanism involved is still unknown (Woo et al., 2005).

Subcellular distribution of TrkB receptors and
regulation of glutamate release by BDNF

The TrkB mRNA and protein are widely distributed through-

out the brain, including the cerebral cortex, hippocampus,

striatum, septal nuclei, substantia nigra, cerebellar Purkinje

neurons, brain stem and spinal cord motor neurons (Kokaia

et al., 1993; Zhou et al., 1993; Muragaki et al., 1995; Shelton

et al., 1995; Fryer et al., 1996; Yan et al., 1997). The

subcellular localization of these receptors has been investi-

gated in great detail in the hippocampus and cerebral cortex,

given their role in synaptic plasticity (see below). In the adult

rat hippocampus, the TrkB receptors are present in the

glutamatergic pyramidal and granule cells, mainly in axons,

nerve terminals and dendritic spines. The receptors are also

present to a lower extent in the cell bodies and dendritic

shafts (Drake et al., 1999), and in dendritic spines of the rat

brain cortex (Aoki et al., 2000). Subcellular fractionation of

the rat hippocampus showed that TrkB receptors are present

in about one-third of the glutamatergic nerve terminals,

being evenly distributed between the presynaptic active zone

and the postsynaptic density (Pereira et al., 2006). However,

with the exception of the dendritic spines, most of the TrkB

receptors appear to be intracellular and, therefore, should

not respond to extracellular BDNF (Drake et al., 1999; Pereira

et al., 2006). Interestingly, the cellular response to BDNF may

depend on the recent history of the cell since plasma

membrane depolarization and an increase in the intra-

cellular cAMP concentration rapidly increase the amount

of receptors associated with the plasma membrane (Meyer-

Franke et al., 1998). Local protein synthesis also contributes

to the increase in BDNF and TrkB protein levels in distal

dendrites following depolarization of cultured hippocampal

neurons (Tongiorgi et al., 1997).

In agreement with the presynaptic expression of TrkB

receptors, BDNF was shown to potentiate the depolarization-

evoked Ca2þ -dependent release of glutamate from isolated

hippocampal and cerebrocortical nerve terminals (Sala et al.,

1998; Jovanovic et al., 2000; Gooney and Lynch, 2001;Canas

et al., 2004; Pereira et al., 2006). This effect is mediated by

mitogen-activated protein kinase (ERK1/2)-dependent phos-

phorylation of synapsin I/II, since it was significantly

reduced in synaptosomes isolated from mice deficient in

each or both synapsins (Jovanovic et al., 2000). Mitogen-

activated protein kinase phosphorylation of synapsin I

reduces its ability to promote G-actin polymerization into

actin filaments (Jovanovic et al., 1996). In addition to the

contribution of the mitogen-activated protein kinase path-

way, PLC may also contribute to the effects of BDNF on the

depolarization-evoked exocytotic release of glutamate, as

shown in cultured cerebrocortical neurons (Matsumoto et al.,

2001). Furthermore, a recent study showed that BDNF-

induced potentiation of neurotransmitter release depends on

the interaction of myosin VI, a minus end-directed actin-

based motor, and the GIPC1 adaptor protein. GIPC1 binds

directly to myosin VI and the Trk receptors (Yano et al.,

2006).

In cultured neurons from the cerebral cortex, cerebellum,

striatum and hippocampus, BDNF induces the release of

glutamate in the absence of other depolarizing stimuli, and

this effect is dependent on the mobilization of Ca2þ from

Ins(1,4,5)P3-sensitive stores (Takei et al., 1998; Numakawa

et al., 1999, 2001). The BDNF-induced release of glutamate in

cultured neurons is mainly mediated by reversal of the

plasma membrane transporter and is dependent on extra-

cellular Naþ (Numakawa et al., 2001), suggesting that it may

be secondary to the activation of the Naþ /Ca2þ exchanger.

Studies using cultured hippocampal neurons also showed an

increase in the frequency, but not amplitude, of miniature

excitatory postsynaptic current (mEPSC) following stimula-

tion with BDNF, showing a presynaptic effect of the

neurotrophin on excitatory synapses (Li et al., 1998).

Control of glutamate receptors by BDNF

AMPA receptor structure, diversity and traffic

Ionotropic glutamate receptors mediate most of the excita-

tory synaptic transmission in the brain where they also play

key roles in synaptic plasticity and pathology. In view of

pharmacological and electrophysiological criteria, ionotropic

glutamate receptors have been classified into three major

subtypes: a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA), kainate and N-methyl-D-aspartate (NMDA)

receptors, named after their most selective agonist (Watkins

et al., 1981). AMPA receptors (AMPARs) are responsible for

the primary depolarization in glutamate-mediated neuro-

transmission. They are largely Ca2þ impermeable, display

exceptionally fast kinetics and mediate moment-to-moment

synaptic signalling (Jonas, 2000). These characteristic func-

tional properties depend on the subunit composition and on

subunit modifications introduced by alternative splicing.

AMPARs assemble in tetrameric structures of four subunits,

GluR1–GluR4 (or GluRA–GluRD), in various combinations

(Laube et al., 1998; Mano and Teichberg, 1998; Rosenmund

et al., 1998). The subunit stoichiometry determines channel

function (that is desensitization/resensitization kinetics and

conductance properties) (Ozawa et al., 1998) and trafficking
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to synapses (Malinow et al., 2000). Stargazin and other

transmembrane AMPAR regulatory proteins also coassemble

stoichiometrically with native AMPARs. The transmembrane

AMPAR regulatory proteins act as auxiliary subunits that are

required for AMPAR maturation, trafficking and channel

function (Korber et al., 2007; Ziff, 2007). The C-terminus of

AMPAR subunits is intracellular and shows differences

between the subunits. GluR1, GluR4 and an alternative

splice form of GluR2 (GluR2L) have longer cytoplasmic tails

that are homologous. In contrast, the predominant splice

form of GluR2, GluR3 and an alternative splice form of

GluR4 (GluR4c) have shorter, homologous cytoplasmic tails.

Receptors composed of subunits with short cytoplasmic

C-termini (GluR2/3) cycle continuously in and out of the

synapse with a time constant of B15 min (Passafaro et al.,

2001; Shi et al., 2001), whereas receptors that contain long

C-termini (GluR1/2 and GluR2/4) are added into synapses in

an activity-dependent manner (Hayashi et al., 2000; Shi

et al., 2001). Through their C-terminal tail, each subunit

interacts with specific cytoplasmic proteins, which play

important roles in controlling the trafficking of AMPARs

and/or their stabilization at the synapses.

AMPAR subunits are synthesized and assembled in the

rough ER and then inserted into the plasma membrane after

crossing the Golgi apparatus. The final step of insertion of

the receptors in the synaptic membrane involves tightly

regulated events that depend on the subunit composition of

the receptor and on specific signals contained within the

C-termini. Several PDZ domain-containing proteins, such as

SAP97, glutamate receptor-interacting protein (GRIP1),

AMPAR-binding protein (ABP) and protein interacting with

C-kinase-1 (PICK1), have been shown to participate in the

process. GluR2 also binds N-ethylmaleimide-sensitive factor,

an ATPase required for membrane fusion events, which

interacts with a membrane proximal segment of the

C-terminus of GluR2. This protein helps to maintain the

synaptic expression of GluR2-containing AMPARs. Several

recent reviews summarize in detail the literature in this field

(Bredt and Nicoll, 2003; Gomes et al., 2003; Derkach et al.,

2007; Elias and Nicoll, 2007; Greger and Esteban, 2007).

Phosphorylation is a key post-translational modification

in regulating AMPAR function (Carvalho et al., 2000). It can

regulate the physiological properties of the channel as well

as protein trafficking. GluR1 subunit has been described to

be phosphorylated at three sites located in the intracellular

C-terminus: serine 831 (Ser831) can be phosphorylated by

both PKC (Roche et al., 1996) and calcium- and calmodulin-

dependent protein kinase II (CaMKII) (Mammen et al., 1997);

serine 845 (Ser845) is a protein kinase A (PKA) phosphoryla-

tion site (Roche et al., 1996) and serine 818 (Ser818) is a

substrate for PKC (Boehm et al., 2006). LTP induction

increases the CaMKII-dependent phosphorylation of GluR1

at Ser831 (Mammen et al., 1997). Although such phosphory-

lation may enhance the function of synaptic receptors

(Benke et al., 1998), it does not seem to be required for

receptor delivery, since mutations on GluR1–Ser831 that

prevent its phosphorylation by CaMKII do not prevent

delivery of the receptor to synapses by active CaMKII

(Hayashi et al., 2000). Interestingly, mutations at Ser845,

the PKA phosphorylation site of GluR1 (Roche et al., 1996),

do prevent delivery of GluR1 to synapses by active CaMKII or

LTP (Esteban et al., 2003). On the other hand, PKA activity is

necessary but not sufficient for the CaMKII-driven incor-

poration of GluR1 into synapses (Esteban et al., 2003). It is

important to note that both Ser831 and Ser845 are necessary,

but not sufficient to deliver AMPARs into synapses, which

requires the activation of the CaMKII-Ras-mitogen-activated

protein kinase (Esteban, 2003). Phosphorylation of GluR1–

Ser818 by PKC is critical in LTP-driven incorporation of

AMPARs into the postsynaptic membrane and is suggested to

exert its function by facilitating the interaction between

GluR1 and a delivery or tethering protein (Boehm et al.,

2006).

Regulation of AMPAR expression and traffic by BDNF

In addition to the presynaptic effects of BDNF on glutama-

tergic synapses, the neurotrophin may also act postsynapti-

cally, through regulation of the abundance of the plasma-

membrane-associated glutamate receptors. Stimulation of

cultured hippocampal neurons with BDNF increases the

amount of GluR1 associated with the plasma membrane, by

a protein synthesis-dependent mechanism, without affecting

the distribution of GluR2. BDNF also promotes the synaptic

delivery of homomeric GluR1 AMPARs in cultured organo-

typic hippocampal slices by a mechanism dependent on the

activation of Trk receptors (presumably TrkB) (Caldeira et al.,

2007a). The synaptic delivery of GluR1 induced by BDNF is

associated with the phosphorylation of the protein in

Ser831, the CaMKII and PKC phosphorylation site, but no

phosphorylation was detected in Ser845 (Caldeira et al.,

2007a). Because GluR1 phosphorylation in Ser831 is not

sufficient to induce synaptic delivery of AMPARs (Hayashi

et al., 2000), the effect of BDNF may require GluR1

phosphorylation on Ser818, a PKC phosphorylation site

(Boehm et al., 2006), or changes in a protein involved in

GluR1 traffic.

Similarly, BDNF induces the synaptic delivery of GluR1-

containing AMPARs in cultured cerebrocortical neurons,

from a local pool, and by a mechanism dependent on the

mobilization of Ca2þ from Ins(1,4,5)P3-sensitive internal

stores (Nakata and Nakamura, 2007). [3H]AMPA-binding

studies showed that the surface translocation of AMPARs to

the membrane induced by BDNF requires intracellular Ca2þ

and is sensitive to blockers of exocytosis (Narisawa-Saito

et al., 2002). It remains to be determined whether the

population of GluR1-containing AMPARs recruited to the

synapse following stimulation with BDNF is synthesized

locally. This may occur by TrkB-induced activation of the

mammalian target of rapamycin (mTOR)-PI3K-dependent

pathway, as shown in isolated rat forebrain synaptoneuro-

somes (Schratt et al., 2004).

Activation of Trk receptors, presumably TrkB, increases the

protein expression of the AMPAR subunits GluR1, GluR2 and

GluR3 in cultured hippocampal neurons, by a mechanism

dependent on transcription activation (Caldeira et al.,

2007a). Chronic stimulation with BDNF also increases GluR1

and GluR2/3 protein levels in cultured rat neocortical

neurons, probably by activation of Fyn, a non-receptor-type

tyrosine kinase of the Src family, which is known to be
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activated by Trk receptors (Narisawa-Saito et al., 1999). Under

the same conditions, there is an upregulation of several

postsynaptic density proteins known to interact with

AMPARs, including SAP97, GRIP1, PICK1, and an increase

in the interaction between GluR1 and SAP97, and GluR2/3

with GRIP1 (Jourdi et al., 2003), which may in turn stabilize

AMPARs at the membrane. However, the mechanisms that

act downstream of the Trk receptors in the upregulation of

the expression of AMPAR subunits in hippocampal and

cerebrocortical neurons remain to be determined. In agree-

ment with the observed upregulation of AMPAR subunits

following long-term stimulation of cultured neurons with

BDNF, chronic treatment with BDNF increases the inward

membrane currents evoked by AMPA and, consequently,

AMPA-triggered GABA release in neocortical GABAergic

neurons (Nagano et al., 2003). Also, long-term treatment of

hippocampal cultures with BDNF potentiates excitatory

transmission by augmenting the amplitude of AMPAR-

mediated miniature EPSCs (Bolton et al., 2000). In contrast,

BDNF was shown to strongly inhibit postsynaptic AMPAR-

mediated currents in a large subset of newborn nucleus

tractus solitarius neurons (Balkowiec et al., 2000). These

BDNF induced-changes in synaptic activity may be due to

the insertion or removal of AMPARs from potentiated and

depressed synapses (Carroll et al., 1999; Lissin et al., 1999),

respectively, or to changes in the phosphorylation state of

AMPA-type glutamate receptors (Wu et al., 2004).

NMDA receptor structure, diversity and traffic

N-Methyl-D-aspartate receptors are glutamate, glycine (or

D-serine) and voltage-dependent receptors that mediate a

relatively slow and long-lasting excitatory postsynaptic

current component (reviewed in Chen and Wyllie, 2006).

These receptors are ligand-gated cation channels characte-

rized by their high Ca2þ permeability (Ascher and Nowak,

1988). The NMDA receptor family is made of NR1, NR2 and

NR3 subunits. NR1 contains the glycine-binding site and is

essential for the NMDA receptor function, but the glutamate-

binding site is contained within the NR2 subunits. Therefore,

functional NMDA receptors are thought to be tetramers of

two NR1 and two NR2 subunits, and their activity requires

the binding of the co-agonists glycine and glutamate (or

NMDA) (Kew and Kemp, 2005; Chen and Wyllie, 2006). The

NR3 subunits can assemble with NR1–NR2 complexes to

depress NMDA receptor responses, and may interact with

NR1 subunits to form excitatory glycine receptors, insensi-

tive to glutamate or NMDA, calcium impermeable and

resistant to Mg2þ blockade (Chatterton et al., 2002; Kew

and Kemp, 2005). NMDA receptor diversity arises from

alternative splicing at three sites in the NR1 mRNA, giving

rise to eight distinct functional splice variants, and one non-

functional truncated splice variant of NR1 (McBain and

Mayer, 1994). The existence of four NR2 subunits (NR2A–

NR2D), and two NR3 subunits (NR3A and NR3B) further

contributes to the diversity of NMDA receptors. Each NR2

subunit is encoded by its own gene, and is unable to form

functional channels on its own, but greatly enhances NMDA

receptor function when coexpressed with NR1 (Cull-Candy

et al., 2001). Regional and developmental regulation of NR2

subunit expression underlies much of the diversity of NMDA

receptor responses in the CNS (Wenthold et al., 2003). Thus,

during development there is a general trend towards a

decreasing contribution of NR2B, associated with an increasing

contribution of NR2A-containing NMDA receptors to the

synaptic currents. This shift in the subunit composition of

the NMDA receptors causes a significant decrease in the

deactivation time of the NMDA receptors (Cull-Candy et al.,

2001).

NMDA receptors are targeted to the postsynaptic sites in

glutamatergic synapses at an initial stage after the contact

between axons and dendrites (Friedman et al., 2000). NMDA

receptors are synthesized in the ER and delivered to the

synapse, and localization signals at the intracellular C-

terminal tail of the NR1 and NR2 subunits regulate NMDA

receptors delivery to and retrieval from the plasma mem-

brane. Longer splice variants of NR1 are retained in the ER

due to the presence of an ER retention motif in the

alternatively spliced C1 cassette present in these forms.

Assembly of these NR1 forms with the NR2 subunits masks

the retention motif and allows traffic of the assembled

receptors to the cell surface and targeting to dendritic spines

(for a review, see Wenthold et al., 2003).

The targeting of NMDA receptors to the synapse and their

stabilization at the synapse depend on interactions with

other proteins, and many of these interactions involve the

intracellular C-terminus of the receptor subunits. Accord-

ingly, mice expressing NR2A or NR2B subunits truncated at

the C-terminus show compromised synaptic localization of

NMDA receptors (Mori et al., 1998; Steigerwald et al., 2000).

The NR2 subunits have been shown to bind, through PDZ

recognition motifs at the distal end of the C-terminal tail, to

the first two PDZ domains of PSD95, PSD93 and SAP102.

These scaffolding proteins bind other intracellular proteins

and can therefore link NMDA receptors to other glutamate

receptors and to ion channels in the postsynaptic reticulum.

Moreover, PSD95 promotes the surface expression and

clustering of NMDA receptors containing NR2A, enhances

NMDA channel opening, reduces the desensitization of

NMDA responses and links synaptic NMDA receptors to

downstream signalling molecules, such as neuronal nitric

oxide synthase (for a review, see Lau and Zukin, 2007).

Phosphorylation of NMDA receptors is another major

mechanism for regulating receptor trafficking at the synapse.

Phosphorylation of NR1 by PKC at serine residues near the

ER retention motif promotes NMDA receptor traffic to the

cell surface on a timescale of hours (Scott et al., 2001). In

parallel, activation of PKC increases NMDA channel opening

and plasma membrane expression of NMDA receptors in

hippocampal neurons, through a mechanism not involving

direct phosphorylation of the receptors (Lan et al., 2001).

PKA phosphorylates NR1, NR2A and NR2B (Leonard and

Hell, 1997), and mediates activity-regulated synaptic target-

ing of NMDA receptors (Crump et al., 2001). PKA is anchored

to NMDA receptors via yotiao, a protein that binds to the C1

cassette present in the C-terminus of some splice variants,

and therefore counteracts constitutive type I protein

phosphatase activity, and enhances NMDA receptor

currents (Westphal et al., 1999). Fyn, a kinase of the Src

protein tyrosine kinase family, phosphorylates NR2A in a
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PSD95-dependent manner (Tezuka et al., 1999), and PSD95 is

required for Src-mediated potentiation of the NR1/NR2A

receptor currents in Xenopus oocytes (Liao et al., 2000).

Moreover, Fyn phosphorylates NR2B (Nakazawa et al., 2001).

Finally, NMDA receptors are regulated by cyclin-dependent

kinase-5, which phosphorylates NR2A. In fact, roscovitine,

a selective cyclin-dependent kinase-5 inhibitor, blocks

both LTP induction and NMDA-evoked currents in rat CA1

hippocampal neurons (Li et al., 2001), suggesting that cyclin-

dependent kinase-5 upregulates NMDA receptors.

N-Methyl-D-aspartate receptors are relatively stable at the

synapse when compared to AMPARs, but recent evidences

indicate that NMDA receptors are internalized in a regulated

manner (for a review, see Lau and Zukin, 2007). NMDA

receptor internalization is mediated by the tyrosine-based

internalization motifs in the C-terminus of NR2 subunits,

and NR2B shows stronger internalization, and sorting to

recycling endosomes. Phosphorylation of this internaliza-

tion motif in NR2B by Fyn suppresses internalization of

NMDA receptors. Moreover, endocytic motifs present in the

membrane-proximal region of the C-terminus of NR1, NR2A

and NR2B also drive internalization, and drive receptors to

recycling endosomes.

The activity-dependent changes in NMDA receptor traffic

may provide an additional mechanism for regulating

synaptic efficacy. In fact, the primary mechanism for LTP

and LTD involves alterations in the number of synaptic

AMPARs, but there are also evidences for changes in the

currents conducted by NMDA receptors triggered by LTP and

LTD (Lau and Zukin, 2007). Moreover, the forms of synaptic

plasticity that operate over longer timescales, such as

synaptic scaling and metaplasticity, seem to rely on mechan-

isms that involve activity-dependent alterations in NMDA

receptor trafficking (Perez-Otano and Ehlers, 2005).

BDNF modulation of NMDA receptors

The current understanding of the regulation of NMDA

receptors by BDNF is not as extensive as for AMPARs. BDNF

increases the amount of NR1, NR2A and NR2B NMDA

receptor subunits associated with the plasma membrane in

cultured hippocampal neurons (Caldeira et al., 2007b). The

BDNF-induced delivery of NMDA receptors to the plasma

membrane is correlated with an increase in the activity of

the receptors, as measured by the [Ca2þ ]i response to NMDA

stimulation. However, in addition to the effect of the

neurotrophin on the number of receptors associated with

the plasma membrane, BDNF may also change the responses

to NMDA by regulating the biophysical properties of the

receptors. Activation of TrkB receptors was shown to

potentiate NMDA receptor currents in Xenopus oocytes

micro-transplanted with rat forebrain postsynaptic densities

(Sandoval et al., 2007). Furthermore, BDNF increases NMDA

receptor single channel open probability in cultured hippo-

campal neurons (Levine et al., 1998), presumably through

phosphorylation of the receptors. BDNF induces tyrosine

phosphorylation of NR1 and NR2B subunits in hippocampal

and cortical neurons, but not NR2A (Suen et al., 1997; Lin

et al., 1998; Alder et al., 2005), and the effects of BDNF on the

NMDA receptor open probability depend on the presence of

NR2B subunits (Levine and Kolb, 2000). Phosphorylation of

NR2B may be mediated by Fyn, a member of the Src family of

non-receptor tyrosine kinases, since this kinase is activated

by TrkB receptors (Narisawa-Saito et al., 1999), phosphory-

lates this NMDA receptor subunit (Nakazawa et al., 2001) and

contributes to BDNF-induced increase in synaptic transmis-

sion (Wang and Salter, 1994; Alder et al., 2005). CaMKII and

PKC may also contribute to the potentiation of NMDA

receptors by BDNF, as demonstrated in cultured hippocam-

pal neurons (Crozier et al., 1999; Lan et al., 2001). Both

kinases are activated downstream of TrkB, following stimula-

tion of PLC, which gives rise to Ins(1,4,5)P3 and DAG. The

Ins(1,4,5)P3 mobilizes Ca2þ from intracellular stores and

DAG stimulates PKC (see above).

In addition to the effects on the activity and trafficking of

NMDA receptors, BDNF upregulates the expression of NR1,

NR2A and NR2B NMDA receptor subunits in cultured

hippocampal neurons, by a transcription-dependent me-

chanism (Caldeira et al., 2007b). NR2A mRNA and protein

levels are also upregulated in cultured cerebrocortical

neurons stimulated with BDNF (Small et al., 1998), and the

neurotrophin regulates NR2A expression in the developing

visual cortex (Margottil and Domenici, 2003). In fact, NR1

expression is regulated by different transcription factors,

including the NF-kB (Liu et al., 2004) and CREB (Lau et al.,

2004), and the latter is a major mediator of neuronal

neurotrophin responses (Finkbeiner et al., 1997). NR2B

expression is also regulated by CREB (Rani et al., 2005) and

AP-1 (Qiang and Ticku, 2005), which may be activated by

BDNF-induced signalling (Li et al., 2004). Recent studies have

also shown that BDNF increases the translation of the NR1

subunit mRNA in cultured cerebrocortical neurons (Schratt

et al., 2004), suggesting that the neurotrophin may regulate

the abundance of NMDA receptors in the hippocampus by

acting at the translation level.

Role of BDNF in synapse formation and
stabilization

The fast changes in synaptic efficacy triggered by BDNF may

be translated to structural changes if the synapses are

exposed to BDNF for longer periods. These alterations

include axonal branching and dendritic growth (McAllister

et al., 1999), but there is also ample evidence that BDNF

influences the formation, stability and morphology of

excitatory synapses, probably through presynaptic as well

as postsynaptic mechanisms. TrkB receptors have been found

in postsynaptic densities in adult rat cerebral cortex and

hippocampus (Wu et al., 1996), and surface TrkB was found

to be enriched at glutamatergic synapses in cultured cortical

neurons (Gomes et al., 2006). In this preparation, before

synapse formation some TrkB puncta in dendrites colocalize

with NMDA receptors, and almost all TrkB puncta in axons

colocalize with synaptic vesicle proteins; moreover, surface

TrkB is found in structures that participate in synapse

formation, such as axonal growth cones and dendritic

filipodia (Gomes et al., 2006). The distribution of TrkB in

cortical neurons in culture suggests that TrkB is correctly

localized to play a role in glutamatergic synapse formation.
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The first evidence that BDNF is involved in regulating

synapse number came from a study using electron micro-

scopy to analyse the phenotype of hippocampal connections

in Trkb-knockout mice, which showed lower densities of

synaptic contacts and important structural alterations of

presynaptic boutons, such as decreased density of synaptic

vesicles, in P13–P14 Trkb (�/�) mice when compared to

wild-type littermates (Martinez et al., 1998). Another early

study using hippocampal cultures prepared from embryonic

day 16 rat embryos, which form presynaptically silent

synapses, showed that functional connectivity between

these neurons could be established by 1–3 days exposure of

the culture to BDNF (Vicario-Abejon et al., 1998).

Later studies using organotypic hippocampal slice cultures

from postnatal rats showed that exogenous BDNF applica-

tion increases the number of synapses per neuron, and the

number of docked vesicles at the active zone of excitatory

synapses onto CA1 pyramidal neurons (Tyler and Pozzo-

Miller, 2001). Using the same system, Tyler and Pozzo-Miller

(2003) found that BDNF increases the proportion of short

stubby spines, which are thought to promote synchronous

widespread of Ca2þ transients among adjacent spines

(Nimchinsky et al., 2002). Moreover, it was found that

spontaneous, action potential-independent, synaptic trans-

mission is sufficient for BDNF to induce spine formation and

increase the proportion of stubby spines (Tyler and Pozzo-

Miller, 2003), and that ERK1/2 activation is necessary for

BDNF to increase dendritic spine density in hippocampal

CA1 pyramidal neurons (Alonso et al., 2004). A recent study

from the laboratory of Pozzo-Miller showed that BDNF elicits

a postsynaptic slowly developing and sustained non-selec-

tive cationic current in hippocampal CA1 pyramidal neurons,

which was blocked by anti-TRPC3 channel antibodies, and

that functional TRPC3 channels are required for BDNF to

increase dendritic spine density (Amaral and Pozzo-Miller,

2007). On the other hand, in dissociated cultures of

hippocampal neurons, cAMP was found to specifically

facilitate the increase in dendritic spine density induced by

BDNF, and to recruit TrkB to the postsynaptic densities (Ji

et al., 2005).

Exogenous BDNF application for 2 weeks to cocultures of

cerebellar Purkinje and granular cells increased the density of

Purkinje cell dendritic spines, without causing alterations in

the spine morphology, whereas treatment with TrkB-immuno-

globulin G alone increased the length of spine necks

(Shimada et al., 1998).

In the visual cortex, overexpression of BDNF caused

destabilization of dendritic spines, suggesting that BDNF

allows for activity-dependent morphological changes in

dendritic spines by causing local dendritic instability (Horch

et al., 1999). A recent study shows that BDNF treatment of

cultured visual cortical neurons increases the size of synaptic

PSD95 puncta, and that dendritic transport of PSD95 is

facilitated by a pathway initiated by NMDA receptor

stimulation of BDNF-TrkB signalling (Yoshii and Constantine-

Paton, 2007).

Taken together, the evidences provided by these studies

using several different systems indicate a contribution of

BDNF to sculpture synapses through both pre- and post-

synaptic effects.

Role of BDNF in synaptic plasticity

The role of BDNF and TrkB in LTP is well documented in the

adult hippocampus and visual cortex (Bramham and

Messaoudi, 2005). Thus, LTP in the hippocampus is attenuated

by the TrkB-immunoglobulin G fusion protein, which

sequesters endogenous BDNF, and is also reduced in BDNF-

or TrkB-knockout mice (Korte et al., 1995, 1998; Patterson

et al., 1996; Chen et al., 1999; Minichiello et al., 1999; Xu

et al., 2000). The impairment of LTP in BDNF-knockout mice

can be rescued by acute application of BDNF (Figurov et al.,

1996; Patterson et al., 1996; Pozzo-Miller et al., 1999) or by

virus-mediated transfer of the neurotrophin (Korte et al.,

1996a, b). A role for BDNF in synaptic potentiation in the

hippocampus was also found in studies where stimulation

with the neurotrophin was associated with synaptic stimula-

tion that would not normally induce potentiation (Figurov

et al., 1996; Kovalchuk et al., 2002). Acute application of

BDNF to hippocampal slices also induces synaptic potentia-

tion in the hippocampal CA1 region (Kang and Schuman,

1995; Kang et al., 1997), and similar results were obtained in

the dentate gyrus following intrahippocampal infusion of

the neurotrophin (Messaoudi et al., 1998). However, the

effect in hippocampal slices was not occluded by tetanus-

induced LTP (and vice versa), suggesting that the mechanism

involved is distinct from the one involved in LTP (Kang and

Schuman, 1995). Also, the acute effects of BDNF on the

excitatory synaptic transmission have been controversial,

with some groups reporting minimal or no effects (Frerking

et al., 1998). Similar to the effects reported in the hippo-

campus, BDNF induces a long-lasting potentiation of

synaptic transmission in the developing visual cortex (Jiang

et al., 2001), and BDNF-heterozygous mice show an impair-

ment of LTP in the visual cortex due, at least in part, to a

reduction in glutamate release (Jiang et al., 2001; Abidin

et al., 2006).

The role of BDNF in LTP is correlated with its contribution

to the mechanisms of learning and memory. Thus, an

impairment of spatial leaning was observed in BDNF- or

TrkB-knockout mice, and in rats subjected to chronic

injection of antibodies to BDNF, in contrast with the

improved spatial learning and memory formation observed

in transgenic mice overexpressing TrkB (Linnarsson et al.,

1997; Minichiello et al., 1999; Mu et al., 1999; Koponen et al.,

2004). Deletion of the BDNF gene in the hippocampus of

adult mice impaired spatial learning and novel object

recognition (Heldt et al., 2007). Animals with deletions in

hippocampal BDNF also showed significantly reduced ex-

tinction of conditioned fear (Heldt et al., 2007). Interestingly,

the BDNF val66met polymorphism that affects the activity-

dependent release of BDNF is associated with poorer episodic

memory in human subjects (Egan et al., 2003). Taken

together, these evidences suggest that a decrease in hippo-

campal BDNF may account for the cognitive deficits and the

impairment in extinction of aversive memory characteristic

of depression and anxiety disorders (Heldt et al., 2007).

Stimulation of the BDNF-activated pathways may, therefore,

be therapeutically relevant under these conditions.

The rapid activity-dependent release of BDNF from the

nerve terminals of hippocampal neurons may contribute to
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the induction phase of LTP (Kohara et al., 2001). This may be

followed by postsynaptic release of the neurotrophin, but

the relative role of the dendritic BDNF in synaptic potentia-

tion remains to be determined. The BDNF pool that is

relevant in LTP is thought to be released as proBDNF, and

cleaved by the extracellular protease plasmin. This protease

is activated by the tissue plasminogen activator (Plow et al.,

1995), which can also be secreted from stimulated nerve

terminals in a Ca2þ -dependent manner (Krystosek and

Seeds, 1981; Gualandris et al., 1996). According to this

hypothesis, tPA- or plasminogen-knockout mice show a

severe impairment of late LTP, and this phenotype can be

rescued by the mature form of BDNF (Pang et al., 2004; Pang

and Lu, 2004). The extracellular BDNF may be then

internalized upon binding to the TrkB receptors, and this

pool of endocytosed neurotrophin contributes to the release

of BDNF necessary to maintain LTP (Santi et al., 2006).

However, the relative roles of anterograde and retrograde

BDNF signalling in LTP remain to be determined.

The signalling mechanisms that operate downstream of

the TrkB receptors in LTP have been investigated using

mice with targeted mutations in either the Shc- or the PLCg-

binding sites of TrkB (Minichiello et al., 2002). These studies

showed that the early and late phases of LTP in the CA1

region of the hippocampus are dependent on the TrkB

coupling to PLCg, whereas mutation of the Shc docking site

on TrkB was without effect on LTP. Selective pre- and

postsynaptic expression of the PLCg pleckstrin homology

domain with viral vectors, which blocks PLCg signalling and

Ins(1,4,5)P3 production, abrogated the effect of TrkB recep-

tors on LTP. However, selective blockade of pre- or post-

synaptic signalling alone did not result in a significant

reduction of LTP, indicating that both sides contribute to the

effects of BDNF (Gartner et al., 2006; Gruart et al., 2007). The

role of TrkB coupling to PLCg in LTP induced by high-

frequency stimulation correlates with a role of this signalling

pathway in associative learning (Gruart et al., 2007).

The presynaptic role of BDNF in the early phase of LTP has

been attributed to an enhancement in the synaptic responses

to tetanic stimulation and to the facilitation in synaptic

vesicle docking to the plasma membrane (Gottschalk et al.,

1998; Pozzo-Miller et al., 1999; Jovanovic et al., 2000; Xu

et al., 2000; Tyler and Pozzo-Miller, 2001). Furthermore, the

induction of LTP by tetanic stimulation of hippocampal

slices from P12–13 mice, which requires the addition of

exogenous BDNF, depends on the presynaptic interaction of

TrkB receptors with the minus end-directed actin-based

motor myosin VI and its binding protein GIPC1 (Yano

et al., 2006). The presynaptic effects of BDNF enable

sustained glutamate release during bursts of action poten-

tials, thereby facilitating LTP induction in response to high-

frequency stimulation.

Brain-derived neurotrophic factor also induces postsynap-

tic responses, some of them contributing to the development

of late stages of LTP. Thus, pairing of a weak burst of synaptic

stimulation with a brief dendritic application of BDNF

induces a rapid and robust LTP, by a mechanism dependent

on the activation of postsynaptic Ca2þ channels and NMDA

receptors (Kovalchuk et al., 2002). Furthermore, BDNF was

shown to induce delivery of GluR1-containing AMPARs to

the synapse in hippocampal slices (Caldeira et al., 2007a),

which may also account for the earlier postsynaptic effects

of BDNF in LTP. Interestingly, the BDNF-induced delivery of

AMPARs to the synapse depends on Ins(1,4,5)P3 receptor and

TRPC calcium signalling (Nakata and Nakamura, 2007),

initiated by the PLCg pathway, a mechanism that resembles

the role of the TrkB–PLCg coupling in LTP (Minichiello et al.,

2002). However, there is yet no direct evidence that BDNF

regulates AMPAR trafficking during LTP.

Delayed BDNF signalling coupled to local dendritic

protein synthesis and stimulation of transcription in the

postsynaptic cell is also required for the late phase of LTP,

which is mimicked by BDNF application to hippocampal

slices and in vivo (Soule et al., 2006). Anatomical evidences

for the presence of ribosomes in dendrites date from several

decades ago (Bodian, 1965; Steward and Levy, 1982), and

were followed by evidences for the incorporation of

radiolabelled amino acids into proteins in synaptosomes

(Rao and Steward, 1991; Weiler and Greenough, 1991). Since

then, many observations in several different systems support

a role for local protein synthesis in dendrites in synaptic

plasticity and memory (Sutton and Schuman, 2006). Inter-

estingly, BDNF induced potentiation of the synaptic trans-

mission between CA3 and CA1 neurons in hippocampal

slices where the CA1 dendrites were surgically isolated from

their cell bodies, in a manner dependent on protein

synthesis (Kang and Schuman, 1996), suggesting that BDNF

regulates synaptic function at least in part by activating

dendritic protein synthesis. In an elegant study using a

dendritic protein synthesis reporter, Aakalu et al. (2001) have

shown that protein synthesis can be stimulated in dendrites

by BDNF. The protein synthesis reporter consists of GFP

flanked by the 50 and 30 untranslated regions from the

CaMKII a-subunit, since these regions contain information

sufficient for the dendritic localization of the mRNA. BDNF

treatment for 4 h of hippocampal neurons expressing the

reporter construct resulted in increased GFP synthesis in

both the cell body and dendrites. BDNF also stimulates

protein synthesis in mechanically or optically isolated

dendrites, and the protein synthesis reporter is concentrated

near sites of translation and synapses (Aakalu et al., 2001).

Synaptic potentiation induced by BDNF injection into the

rat dentate gyrus is accompanied by a rapid phosphorylation

of two key translation factors, the eukaryotic initiation factor

4E (eIF4E) and elongation factor-2, and enhanced expression

of eIF4E (Kanhema et al., 2006). However, BDNF treatment of

synaptoneurosomes, which contain the pre- and postsynap-

tic components, selectively induced a transient phosphory-

lation of eIF4E and upregulated the CaMKII, but had no

effect on elongation factor-2. These evidences suggest that

BDNF-induced translation is initiated at synapses, whereas

initiation and elongation are regulated at non-synaptic sites

(Kanhema et al., 2006; see also Smart et al., 2003; Schratt

et al., 2004). The regulation of eIF4E by BDNF also includes

the translocation of the initiation factor to mRNA granules,

by an F-actin-dependent mechanism (Smart et al., 2003). In

vivo studies suggested that the effects of BDNF on the

initiation and elongation steps of translation in the dentate

gyrus are mediated by ERK (Kanhema et al., 2006). In

contrast, several studies have indicated a role for the
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mTOR-PI3K-dependent pathway in the regulation of den-

dritic protein synthesis by BDNF. A genome-wide screen for

mRNAs whose translation is regulated by BDNF in a mTOR

signalling-dependent manner in cortical neurons 4 and 14

DIV was performed using RNA associated with the polysomal

fraction, presumably being translated, and using Affymetrix

DNA microarrays (Schratt et al., 2004). This screening led to

the identification of several genes whose transcripts are

associated with polysomes in an mTOR-sensitive way and

among them several transcripts are present in dendrites,

such as those for CaMKIIa, Homer2 and NR1. Moreover, the

BDNF-induced synthesis of activity-regulated cytoskeleton-

associated protein (Arc) and CaMKII in synaptoneurosomes

is partially blocked by rapamycin (Takei et al., 2004). This

study describes how BDNF activates the translation

machinery in dendrites, through the activation of mTOR

and its downstream translation regulatory molecules, such as

3EBP, p70S6K and S6, in dendrites. The role proposed for the

rapamycin (mTOR)-PI3K-dependent pathway and the ERK

signalling pathway in activation of translation at the

dendritic level contrasts with the key role proposed for the

PLCg in the signalling activity of TrkB coupled to synaptic

potentiation (Minichiello et al., 2002).

Dendritic mRNAs are transported to synapto-dendritic

compartments in RNA granules. The translation of these

mRNA molecules may be suppressed during their transport

and at synaptic sites until factors released during synaptic

stimulation activate their translation. BDNF was recently

found to induce the expression of Limk1, a protein kinase

whose mRNA translation is inhibited by a brain-specific

microRNA, miR-134 (Schratt et al., 2006). miR-134 is present

within dendrites and partially colocalizes with synapsin,

indicating that it is present near synaptic sites. Moreover,

overexpression of miR-134 in hippocampal neurons in

culture leads to a decrease in spine size, through repression

of Limk1 mRNA translation. The translation of Limk1 mRNA

is regulated by BDNF. In fact, BDNF treatment significantly

increases the synthesis of Limk1 protein in isolated synapto-

neurosomes, in a rapamycin-sensitive manner, and BDNF

relieves the suppression of Limk1 mRNA translation by miR-

134 (Schratt et al., 2006). The regulation of translation in

dendrites by microRNAs, in a BDNF-sensitive manner, may

constitute a mechanism whereby the neurotrophin regulates

the postsynaptic proteome during the late phases of LTP.

Studies performed in synaptoneurosomes showed that

activation of the dendritic translation machinery by BDNF

leads to the local synthesis of GluR1 (Schratt et al., 2004),

Arc/Arg3.1 (Yin et al., 2002; Takei et al., 2004) and CaMKII

(Takei et al., 2004). Moreover, intrahippocampal microinfu-

sion of BDNF to trigger LTP at medial perforant path-granule

cell synapses in vivo leads to the upregulation of mRNA and

protein for Arc, and the Arc transcripts are rapidly delivered

to granule cell dendrites after BDNF infusion (Ying et al.,

2002). The synthesis of Arc in particular is necessary for the

induction of BDNF-LTP and its time-dependent consolida-

tion (Soule et al., 2005), and this protein was proposed to

regulate actin polymerization contributing to the formation

of stable LTP (Messaoudi et al., 2007). One or more proteins

synthesized locally in response to activation of TrkB

receptors may act locally as a ‘synaptic tag’ (Reymann and

Frey, 2007) to specifically bind pre-existing or newly

synthesized plasticity-related proteins at activated synapses

expressing LTP.

Importantly, a recent study shows that the presympto-

matic impairment in LTP in hippocampal slices from knock-

in mouse models of Huntington’s disease can be rescued

with BDNF, suggesting that the upregulation of this

neurotrophin and/or its signaling activity could be a possible

treatment for cognitive deficits in asymptomatic carriers of

Huntington’s disease (Lynch et al., 2007). The role of BDNF

in LTP contrasts with the effect of proBDNF in enhancing

NR2B-dependent long-term synaptic depression, and NR2B-

mediated synaptic currents, in the hippocampus (Woo et al.,

2005). The effect of proBDNF in LTD is mediated by p75NTR,

but the signalling mechanisms involved remain to be

determined.

Concluding remarks

Brain-derived neurotrophic factor is a strong molecular

candidate for regulating synaptic plasticity, over short time-

scales, which requires the involvement of post-translational

modifications of pre-existing synaptic components, and also

over longer timescales, which requires changes in gene

expression or in local protein synthesis. The direct roles for

BDNF in synaptic plasticity require synapse-specific actions

of the neurotrophin, and precise temporal resolution of

these actions. At present, it is still unresolved how the spatial

and temporal specificity of the actions of BDNF are assured.

Elucidation of these issues is crucial for understanding the

function of BDNF as a synaptic modulator.
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