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P,bstract 

Using the liquid drop model and the jellium model, we calculate fission barrier heights as a function of charge and mass 
asymmetry for a family of shapes consisting of two spheres connected by a quadratic surface. We find the fissibility for 
which a mass asymmetric splitting gives place to the symmetric one (Bussinaro-Gallone point) and evaluate the size of 
charged clusters of alkali metals for which the fission barrier height is equal to the evaporation energy (critical sizes). The 
rc:sults for the critical sizes agree very well with experiment. 

FACS: 36.40.4~; 36.4O.Wa 

1 a Introduction 

We know from experiment that metallic atomic 
clusters with excess charge are unstable due to the 
magnitude of their Coulomb energy. These clusters 
lnclergo two processes: breaking out in charged 
pieces (fission) or expelling a neutral atom (evapora- 
tion). Evaporation is preferred for large clusters, but 
fission prevails for small clusters. For a critical 
cluster size, N,, where fission barriers and evapora- 
tion energies are comparable, the two decay pro- 
cesses compete [l]. 

From the theoretical point of view, the liquid drop 
model (LDM) combined with the jellium model [2] 
C-where the ions are replaced by a continuous positive 
background) is a useful tool to explain cluster fis- 
Lion. In a charged cluster two opposite forces exist. 
The surface tension obliges the system to have a 

minimal surface. On the other side, the electrostatic 
repulsive force due to the extra charge drives to 
expansion and deformation. Fission occurs when the 
second force surpasses the first. This can only hap- 
pen if the energy of the fragments is lower than the 
energy of the mother cluster, i.e., when the reaction 
heat (or Q-value) is negative. However, since the 
process is controlled by a barrier, knowledge of the 
barrier height is essential to evaluate the decay prob- 
ability associated to each channel. 

Fission of metallic clusters displays remarkable 
similarities with nuclear fission where the LDM is 
well known. But metallic clusters show an additional 
degree of freedom with respect to nuclei, namely that 
we are, in principle, free to consider any charge in 
the parent and daughter clusters. Based on the LDM, 
we will evaluate, for different charged metal clusters 
fission barriers along different fission channels. We 
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compute the Coulomb energy exactly, for a given 
family of shapes [3], assuming that the charge is 
bound to the surface. Based on the barrier heights, 
we analyze the asymmetry in mass distribution be- 
tween the fragments. The critical numbers N, are 
also estimated for multiply charged clusters of some 
alkali metals. 

Cluster fission has been studied by several au- 
thors. Bre’chignac et al. [l] measured the critical size 
for doubly charged clusters of sodium and potas- 
sium, and were also able to determine the fission 
barrier for some doubly charged clusters [4]. NZher 
et al. [5,6] obtained the critical size of alkali metal 
clusters with up to seven electrons removed. 

On the theoretical side, Saunders [7] used the 
LDM to predict some critical sizes for doubly charged 
clusters of sodium and gold. He calculated N, = 30 
for Na and N, = 18 for Au using the LDM, but 
considering only symmetric reactions. NZher et al. 
[6] applied the LDM, with the so-called “funny 
hills” parametrization for the cluster shapes (includ- 
ing asymmetric configurations), but did not predict 
the observed critical numbers. Garcias et al. [S] used 
a semi-empirical model for the Coulomb interaction 
between the emergent fragments, obtaining a good 
description of the critical numbers. Similar results 
were achieved by Frijbrich [9], employing an empiri- 
cal model for that interaction and using fission decay 
rates. Recently, Vieira and Fiolhais [lo] and Yan- 
nouleas and Landman [l l] have used the two-centre 
shell model to obtain shell corrections to the LDM 
fission barriers of small clusters. There are also a 
few molecular dynamics calculations of fission [12]. 

The LDM is introduced in Section 2, where we 
compare reaction heats with fission barriers heights 
as a function of mass and charge asymmetry and 
evaluate the Bussinaro-Gallone point, i.e., the fissi- 
bility corresponding to the instability of the barrier 
against mass asymmetry. Section 3 contains the re- 
sults on critical sizes, and conclusions. 

2. Liquid drop model and fission barriers 

In the framework of the LDM, the energy of a 
spherical metallic cluster with N monovalent atoms 

and z lacking electrons (the charge is 4 = +ez), is 
given by 

E,,,(N, z) =a,V+u.S+yC 

(1) 
where V = $TTR~ is the volume, S = 4~Rt is the 
surface area, C = 2~7R, is half the mean curvature, 
and R, = r,N113 is the radius of the cluster, I, 
being the density parameter. The parameters a,, cr , y 
are the liquid drop coefficients for a neutral cluster. 
The term with c is a first order quanta1 correction to 
the work function W related to the finite size of the 
cluster. The last term is the classical electrostatic 
energy, obtained under the assumption that the clus- 
ter is a perfect conductor. The parameter d, accounts 
for the charge spill-out effect: the excess charge lies 
on a radial centroid displaced d, from the jellium 
surface. The volume term will not be considered 
since volume is conserved during deformation and 
fragmentation. 

The LDM is known to provide a good average of 
quanta1 density functional results for the reaction 
heats [13]. Let us consider the binary fission of a 
spherical cluster with N atoms and charge z in two 
spherical pieces with N, and N2 = N - N, atoms 
and charges Z, and z2 = z - zi, respectively. For 
simplicity and convenience, we set, for the time 
being, y = c = d, = 0. The energy released, divided 
by the surface energy Ei, may be written as 

Q(xy (~3 P) = [EL,, (NIT z,> +ELDM(~, zz> 

-E,rm(N~ z)]/E,O 

= 
[ a2’3 + (1 - (Y)2’3 - l] 

+2x 

i 

P2 (l-PI2 -1 
(y1/3 (1 - (g’/3 

I 
’ 

(2) 

where x = (e~)~/l6~u TIN is the quotient between 
the Coulomb and twice the surface energy, called the 
fissibility parameter. For x = 1, the initial system is 
unstable relatively to fission, while, for x = 0, the 
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system is neutral and cannot fragment. The parame- by a smooth neck [3,16]. This family of shapes is 
ters cx = N,/N and p = z,/z measure the asymme- described by three parameters measuring elongation, 
try of mass and charge of the fragments. Eq. (2) neck width, and mass asymmetry, defined respec- 
Ijolds in nuclear physics with p = Q [14]. tively by: 

Fig. la shows Q(x = 0.5, (Y, /3). The minimum 
of Q is located at ( cx = 0.07, /3 = 0.32). If x in- 
creases, this minimum moves up along the bold line, 
,Limi, = A(a), with 

d 1, +‘2 
P=mR, +R,’ 

A=---- R, - R2 
R,+R,’ 

A=----- 
R,+R,’ 

(4) 

cy .li(cr) = 

113 - (1 - #3 

ai/3 + (1 - (-#3. 
(3) 

Reactions with high /3 and low CY and vice versa are 
nighly disfavorable. 

A negative reaction heat is only a necessary con- 
dition for a cluster to break. In order to estimate 
decay probabilities of charged clusters we need to 
evaluate barriers heights for each channel. In particu- 
lar, we should look for the channels with the lowest 
energy barriers. 

where d is the center to center distance, R, = 
R, al/3 and R, = R,(l - (Y)‘/~ are the radii of the 
two fragments, and I, and I, are the thickness of the 
lens-shaped piece of a sphere which lies within the 
matching quadratic surface. The parameter A is the 
same as in Eq. (3). 

If we define B, = Es/E: and B, = E&E:, the 
LDM energy for a deformed cluster, E,,, = 
ELDM(N, q. p, A, A), after convenient normaliza- 
tion, is given by 

To know the barrier height we need to extend the 
LDM formula to deformed shapes, corresponding to 
mtermediate fission configurations. The surface term 
in Eq. (1) is then replaced by Es = C/ d A, while the 
(electrostatic energy, EC, is calculated numerically 
assuming, as before, that all excess charge is dis- 
tributed on the surface. We solve the Poisson equa- 
tion following the method described in Ref. [15]. 

E LDM 
- =B,+2xB,. 

E,O 
(5) 

The normalized energy barrier becomes 

5= E~~M-EE’PDM =(B~d-])+2x(B~d-1), 

E,o 

(6) 
To parametrize the cluster surface we adopt 

Blocki’s shapes, which consists of two spheres joined 
where EFgM and EtptM are the energies of the 
saddle and the spherical shapes, and BTd and BFd 

Fig. 1. (a) Q-values Q(x = 0.5, a, p) (only negative values are represented) as a function of mass and charge asymmetry (see text for the 
definition of u and p ). The bold line represents Pmin = A( LI) (see Eq. (3)). (b) Barrier height divided by the surface energy of the initial 
spherical cluster, c(x = 0.5, DI, /3), as a function of the same variables. 
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Fig. 2. Dimensionless barrier height, 5(x, LY, p = (Y), for several 
values of the fissibility x. The Bussinaro-Gallone i’issibility, xao , 
occurs when the second derivative of 5 with respect to a, at 
(Y = 0.5, changes sign. We found xao = 0.57. 

are B, and B, evaluated at the saddle point in the 
variables p, h (A is fixed). 

To search for the saddle point, we started by 
evaluating the minimum of the energy along the 
fission line defined by the equation A = 1 - l/p. 
We then proceeded backwards following the line of 
fast variation of the neck [ 10,161, A = 1 - da, 
with k a constant, up to h = 1. From there, we have 
followed the path A = 1 - AZ/p. For small X, the 
saddle point is located close to the fission line. As x 
approaches 1, the saddle point moves to configura- 
tions closer to a sphere. Since we have assumed a 
path, our evaluation of the saddle point is only 
approximative. For small X, this approximation is 
very good, while it is only reasonable for large X. 

Fig. lb shows c( x = 0.5, LY, p >. The minimum 
is located approximately at (cy = 0.01, /3 = 0.10). 
The similarity with Fig. la should be pointed out. 

In Fig. 2 we present e( x, (Y, /3 = (Y). As in nu- 
clear fission, the asymmetric reaction is preferred for 
small x and the symmetric reaction is preferred for 
large x. However, the transition from asymmetric to 
symmetric fission, the so-called Bussinaro-Gallone 
point, occurs at xao = 0.57, where for nuclei xao = 
0.40, the precise value depending on the particular 
shape parametrization [ 17- 191. This disagreement 
should be due to the difference in the charge distri- 
bution. 

3. Critical numbers 

A very important number is the cluster size N = N, 
for which the barrier height equals the evaporation 
energy. For each charge Z, we have searched for a 
solution of the equation 

E&,,(N, z, a, p) -E;&(N, z) =EeYa(N, z), 

(7) 

where E,,,( N, Z) = E,,,(N - 1, Z) + E,,,( 1, 0) 
-Z&&N, z> is the evaporation energy. We as- 
sume, as in Ref. [8], that the preferred fission chan- 
nel is [NIZ+-+ [N- 3]‘-‘++[3]+, i.e., (Y= 3/N 
and p = l/z. This channel is the most common in 
the experimental data. 

Since we have assumed an asymmetric channel, 
we consider now, for the sake of precision, the 
curvature energy, the size correction of the work 
function and the spill-out effect in the LDM formula. 
In the curvature term we use is C= f)Xl/R,i, + 
l/R,,,) d A, with Rmin and R,, the principal radii 
of curvature at a point of the surface. For the first 
order correction to the work function we use a 
simple interpolation between the initial spherical 

Table 1 
LDM coefficients for Na, K and Cs. The values of a, = 4nur,2 and a, = 2ryr,, were taken from Ref. [20], c from Ref. [21], and d, from 
Ref. [22] 

Metal r. (bohr) a. (eV) a (eV) c (ev> d, (bohr) D. a 

Na 3.93 0.57 0.25 - 2.26 1.32 
K 4.96 0.54 0.17 - 2.26 1.17 
CS 5.62 0.50 0.09 - 2.26 1.02 
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LDM critical sizes, N,, of charged clusters of Na, K and Cs, in comparison with experimental data and other theoretical results 

F:a 

K 

CS 

our work 
Ref. [8] 
Ref. [9] 
exp. (Ref. [61) 
our work 
Ref. [S] 
exp. (Ref. [6]) 
our work 
Ref. [8] 
exp. (Ref. [6]) 

2 3 4 5 6 I 

26 68 129 209 311 404 
26 63 117 185 268 366 
22 62 123 208 316 451 
21 rt 1 63 + 123 52 206 + 4 310 + 10 445+10 
23 58 110 176 242 344 
24 59 110 173 249 337 
20+ 1 55 + 1 110*5 
22 57 105 168 233 330 
23 57 105 165 236 319 
19+ 1 49* I 94+ 1 155 i 2 230 + 5 325 + 10 

(cluster and final spherical fragments. The spill-out 
(effect is taken into account by placing the charge on 
a surface which is separated by d, from the cluster 
surface. Table 1 shows the values of the LDM 
coefficients used in our calculations. 

Table 2 displays the critical numbers N, obtained 
for several clusters of simple metals and compares 
them with experimental results. A very good agree- 
lnent between our LDM theory and experiment is 
observed (for potassium we are not aware of data for 
z > 4). We should remark that the LDM does not 
predict necessarily the channel [3]+. 

Included in Table 2 are the results of Garcias et 
al. [ 161 and FrGbrich [9]. The first authors have used 

‘11 ’ 
/ ’ v CS 

q K 

UT 
3 13 15 20 

Lr; (z) 

Fig. 3. Logaritbm of the critical size, In N,, as a function of the 
logarithm of the number of missing elections, In z, for clusters of 
Na, K and Cs. determined in the framework of the LDM theory. A 
straight line fits the results very well. 

a different surface energy and have not included R 
and l/R effects. They have fitted the Coulomb 
energy to Thomas-Fermi results in a somewhat ad 
hoc fashion. On the other hand, the comparison of 
the fission and evaporation decay rates as done by 
Friibrich [9] is, in principle, a better method for 
estimating N, than the rule given by Eq. (7). (In that 
method the Q-values are also taken into account.) 
But we stress that the Coulomb energy is computed 
exactly in our work, while in Ref. [9] it is fitted to 
reproduce experimental results. Moreover this author 
considers the fragmentation channel 1 NIX+ + 
[N- l]‘-‘++[l]+ which is unlikely to occur in 
practice since it has a higher Q than the channel we 
take. 

If we plot the critical sizes in a logarithmic scale, 
the points lie approximately on a straight line, ln( NC> 
= s In(z) + const (Fig. 3). We find s = 2.20 for Na, 
s = 2.15 for K and s = 2.16 for Cs. These slopes are 
lower than the average experimental value 2.3 ob- 
tained in Ref. [6]. They are higher than the value 2 
proposed by Rayleigh on the simple assumption that 
a charged drop breaks when the electrostatic energy 
equals the surface energy. 

In the present work, we have shown how the mass 
distribution and the fission threshold are evaluated in 
the LDM. In a pure LDM analysis shell effects are 
absent. The role of shell fluctuations in the barrier 
height should be investigated systematically. How- 
ever, we expect the LDM to have a reasonable 
predictive power for critical numbers of large enough 
clusters, for which shell corrections are less 
important. 
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