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Slabs of stabilized jellium: Quantum-size and self-compression effects
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We examine thin films of two simple metals~aluminum and lithium! in the stabilized jellium model, a
modification of the regular jellium model in which a constant potential is added inside the metal to stabilize the
system for a given background density. We investigate quantum-size effects on the surface energy and the
work function. For a given film thickness we also evaluate the density yielding energy stability, which is found
to be slightly higher than the equilibrium density of the bulk system and to approach this value in the limit of
thick slabs. A comparison of our self-consistent calculations with the predictions of the liquid-drop model
shows the validity of this model.
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I. INTRODUCTION

Thin films or slabs are systems made out of a few lay
of atoms: they are finite in one direction and infinite in t
other two perpendicular directions. Various theoretical m
els are available to calculate the electronic structure of sl
One of the important features coming out of these calcu
tions is the so-called quantum-size effect1 ~QSE!, i.e., the
influence of the finite size on various physical properties
the slab. These effects, which can be experiment
recognized,2 decrease as the size of the slab increases
fact, surface energies and work functions of the semi-infin
system are often derived from thin-slab calculations, wh
are simply extrapolated to this limit.3–6

The simplest model to predict the electronic structure
simple sp-bonded metals is the jellium model, where t
ions are replaced by a positive neutralizing backgrou
Within this model, the QSE of thin films was examined
Schulte.1 He found an oscillatory behavior of the work fun
tion as a function of the thickness of the slab. The sa
oscillatory behavior is found for the surface energy, defin
as the energy required, per unit area of new surface form
to split the solid in two along a plane.7

The jellium model has been referred to as giving insig
into the realistic QSE appearing in real systems.8–10Notwith-
standing important differences, an oscillatory pattern also
pears in atomistic first-principles slab calculations of bo
the work function and the surface energy. Although the pr
ence of the lattice may obscure the periodicity and the a
plitude of the QSE, extrema were found at positions wh
agree with the jellium results. However, in the case of fir
principles calculations difficulties arise~due to the cumber-
some numerics! when one is to extract well-converged su
face properties from thin films made of typically 2 to 1
layers.5,6 Hence, the clean jellium QSE, with no uncertainti
in the extrapolated results, remains as a guide for more r
istic investigations.

In this paper, we consider slabs in the framework o
simple modification of the jellium model that yields ener
PRB 620163-1829/2000/62~3!/1699~7!/$15.00
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stability against changes in the background density. This
called stabilized jellium11 or structureless pseudopotenti
model yields realistic results, especially in the case of me
with high valence-electron density. For instance, the sta
lized jellium model predicts positive surface energies t
increase rapidly at high electron densities, as shown by
periment, while the jellium model predicts surface energ
that are strongly negative at these densities. The stabil
jellium model, first introduced by Perdew, Tran, and Smith12

and similar to the ideal-metal concept developed by Sh
and Rose,13,14 has been applied to the study of surfaces15,16

and clusters.17 In a way, the stabilized jellium is in betwee
the jellium model and more sophisticated atomistic a
proaches: although it is still a continuous model~one may
choose slabs with arbitrary thickness! with an analytical ex-
pression for the bulk energy, its physical predictions are
reasonable agreement with experiment. Besides includ
electrostatic corrections to the jellium model, the stabiliz
jellium model contains an averaged pseudopotential cor
tion.

We calculate the self-consistent energetics~surface en-
ergy and work function! of slabs of stabilized jellium, with
use of the local-density approximation~LDA ! of density-
functional theory~DFT!.18,19 We take two metals, Al (r s
52.07,Z53) and Li (r s53.24,Z51), investigate the QSE
and compare our self-consistent slab calculations with th
obtained for a semi-infinite stabilized jellium. We also te
an extrapolation rule,20 which has already been used to d
scribe nonlocal surface energies of the bounded elec
gas.21

Although the stabilized jellium model can be tailored
give face-dependent results,12,16,22 it cannot describe the in
homogeneous relaxation predicted by first-principles calcu
tions where the distances between atomic planes of the s
family are optimized. However, an interesting effect d
played by the stabilized jellium model, which cannot be a
counted for by the jellium model, is the so-calle
self-compression23 ~or self-expansion, in the case of charg
systems24,25! of clusters. This effect, which can be classica
1699 ©2000 The American Physical Society
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1700 PRB 62SARRIA, HENRIQUES, FIOLHAIS, AND PITARKE
viewed as the compression of a finite system due to the
face tension, is most prominent for small systems and alm
negligible in the case of large clusters.

We investigate here the self-compression of thin film
We fix the size of the system along the direction perpend
lar to the surface, and search for the background density
minimizes the total energy per valence electron of the s
The equilibrium density is found to increase as the thickn
of the slab decreases, and to converge to the bulk elec
density in the infinite-thickness limit. Furthermore, the eq
librium electron-density parameterr s* is found to oscillate
with the slab thickness, as a manifestation of the QSE,
the general trend is found to be well described within
liquid-drop model26,27 ~LDM ! based only on the knowledg
of the bulk energy per unit volume and the surface ener
We discuss the relationship between this self-compres
effect and the relaxation of metal slabs predicted by atom
tic first-principles calculations.

In Sec. II we present briefly the stabilized jellium mod
for slabs. In Sec. III we discuss the results we obtain
within this model. The main conclusions are drawn in S
IV, where further comments on the relationship between
stabilized jellium and more elaborated models are ma
Equations are written in atomic units throughout, i.e.,e2

5\5me51.

II. SLABS OF STABILIZED JELLIUM

The stabilized jellium model12 takes into account the lat
tice ions, but keeps the essential simplicity of the jelliu
model. The total energy is obtained as a functional of
electron densityn(r ), in the following way:

ESJ@n,n1#5EJ@n,n1#1~eM1w̄R!E d3rn1~r !

1^dv&WSE d3r
n1~r !

n̄
@n~r !2n1~r !#, ~1!

where

n15n̄Q~r ! ~2!

represents a positive neutralizing background density,Q(r )
being a function which equals 1 inside a given surface an
outside, and

n̄5
3

4pr s
3 ~3!

is the average valence-electron density.EJ is the regular-
jellium total energy,eM is the Madelung energy arising from
the Coulomb interaction between a uniform negative ba
ground inside the spherical Wigner-Seitz cell and a point
at its center,

eM52
9Z2/3

10r s
, ~4!

w̄R is the average value of the repulsive non-Coulomb par
the Ashcroft empty-core pseudopotential,
r-
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w̄R52pn̄r c
2 , ~5!

and ^dv&WS represents the difference between the lo
pseudopotential and the jellium potential, averaged over
Wigner-Seitz cell,

^dv&WS5
3r c

2

2r s
3 2

3Z2/3

10r s
. ~6!

The core radiusr c of the Ashcroft empty-core pseudopote
tial is chosen to stabilize the metal for given values of t
electron-density parameterr s and the chemical valenceZ.

The two terms added to the regular-jellium energyEJ are
a volume term and a surface term. They simply account
the subtraction of the spurious self-interaction of the posit
jellium background and the inclusion of a constant structu
less potential inside the metal. This procedure may be un
stood as a first-order perturbation to a jellium system,
with the perturbation treated in an averaged manner.

The density functional of Eq.~1! represents the total en
ergy of an arbitrary inhomogeneous system. In the case o
infinite uniform system, the equilibrium density is obtaine
from the bulk stability condition

deSJ
bulk

drs
50, ~7!

where

eSJ
bulk5eJ

bulk1eM1w̄R ~8!

represents the average bulk energy per valence electroeJ
being the regular-jellium contribution. Within this model an
individual metal minimizes the energy at a given equilibriu
density, while the jellium energy presents a single minimu
at r s;4.2 close to the electron-density parameter of sodiu

We consider slabs of stabilized jellium. Slabs are trans
tionally invariant in the plane of the surface, which is a
sumed to be perpendicular to thez axis. Hence, the single
particle wave functions can be separated into a plane w
along the surface and a componentf(z) describing motion
normal to the surface with energye. This component is ob-
tained by solving self-consistently the Kohn-Sham equat

F2
1

2

d2

dz2 1VH~z!1Vxc~z!1Vps~z!Gf~z!5ef~z!, ~9!

where VH(z) represents the Hartree electrostatic potent
Vxc(z) is the exchange-correlation potential, andVps(z) ac-
counts for the pseudopotential,

Vps~z!5^dv&WSQ~z!. ~10!

Vxc(z) is obtained in the LDA, using the electron-gas corr
lation energy of Ceperley and Alder,28 as parametrized by
Perdew and Wang.29 Essentially the same results are o
tained from the parametrizations of Vosko, Wilk, an
Nusair30 and of Perdew and Zunger.31 We have not chosen to
use extensions such as the generalized grad
approximation32 ~GGA!, since the LDA has been shown t
give surprisingly good results in describing the properties
jellium planar surfaces.33



ro

ce
tia
4
.

v
fo
em
he
em

e
Eq
tr

is
s

n

r
tl
c
d

la-

m
ob-

at

ng

m

n:

n-

m

al

l

re-

d
ed-
y of

eri-

om-
is-
en-
ent
tion
ere
ar-

lab

PRB 62 1701SLABS OF STABILIZED JELLIUM: QUANTUM-SIZE . . .
Outside the positive background the electron-density p
file n(z) decays rapidly from its bulk valuen̄. The electronic
system can therefore be taken to be finite in thez direction
by assuming thatn(z) actually vanishes at a given distan
z0 from the surface. Hence, we introduce infinite poten
walls at a distancez0 from each surface, and follow Ref. 3
to expand the wave functionsf(z) in a Fourier sine series
The distancez0 ~typically 2 or 3 Fermi wavelengths! and the
number of sine functions kept in the expansion of the wa
functionsf(z) have been chosen to be sufficiently large
our calculations to be insensitive to the precise values
ployed. These calculations have been compared with ot
that we have carried out for a semi-infinite electron syst
by using the Monnier-Perdew code35 for the numerical inte-
gration of Eq.~9!.

For a given thicknessL of the slab, we obtain the surfac
energy from the difference between the total energy of
~1! and the corresponding result for a homogeneous elec
gas of densityn1 , i.e.,

s~L !5
1

2A
@ESJ~L !2n̄LAeSJ

bulk#, ~11!

where A is the normalization area. The work function
obtained as the difference between the computed value
the vacuum and Fermi levels of our electron system.

III. RESULTS AND DISCUSSION

First of all, we compare jellium and stabilized-jellium
electron densitiesn(z) and effective potentials,

Ve f f~z!5VH~z!1Vxc~z!1Vps~z!. ~12!

Jellium and stabilized-jellium valence-electron densities a
effective potentials for an Al slab ofL52lF @lF
5(32p2/9)1/3r s is the Fermi wavelength# are shown in Fig.
1, together with the positive background densityn1 . We
note that the stabilized-jellium electron density is steepe
the two surfaces, so that the electronic spill-out is sligh
smaller within this model. This is due to the fact that ele
trons ‘‘feel’’ a deeper effective potential. Both jellium an

FIG. 1. Normalized valence-electron density in the jelliu
model~solid line! and in the stabilized-jellium model~dashed line!
for a slab of Al (r s52.07) with thicknessL52lF . The back-
ground density is represented by the dark area. The figure
displays the effective potentialVe f f(z) in each model~solid line for
the jellium model and dashed line for the stabilized-jellium mode!.
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stabilized-jellium electron densities exhibit quantum oscil
tions inside the metal, the so-called Friedel oscillations,7 and
an exponential decay outside.

Figures 2 and 3 show our calculated stabilized-jelliu
surface energies for slabs of Al and Li, respectively, as
tained from Eq.~11! versus the thicknessL of the slab. Both
curves show damped oscillations with minima occurring
the slab widthL;nlF/2 (n51,2, . . . ). Thesame QSE,
which reflects the quantization of the electronic motion alo
one direction, is known to occur within the jellium model.1

Both the average bulk energy per valence electroneSJ
bulk

and the surface energy of the semi-infinite stabilized jelliu

s5 lim
L→`

s~L ! ~13!

may be obtained from a linear fit of the following equatio

ESJ~L !

A
52s1n̄LeSJ

bulk , ~14!

whereESJ(L) represents the total energy of Eq.~1!. Follow-
ing this procedure, we reproduce the bulk energy of Eq.~8!
and predict surface energies of 925 erg/cm2 and
311 erg/cm2 for Al and Li, respectively. These surface e

so
FIG. 2. Surface energy and QSE in aluminum (r s52.07). Large

vertical marks across the horizontal axis show the widths of un
laxed fcc Al~111! slabs withn51, . . . ,12atomic planes. The width
L is given by L5n(A3/3)a, a being the lattice parametera
5(16pZ/3)1/3r s . The solid oscillating line shows our calculate
surface energy of flat stabilized-jellium slabs. Solid and dash
dotted horizontal lines represent our calculated surface energ
semi-infinite flat Al~solid line! and fcc Al~111! ~dashed-dotted line!
stabilized jellia. The zero-temperature extrapolation of the exp
mental liquid-metal surface tension of Ref. 44 divided by 1.2~Ref.
27!, is represented by an horizontal arrow. For comparison, at
istic first-principles calculations from Refs. 42 and 4 are also d
played, by solid circles and triangles, respectively. The surface
ergies of Ref. 42 were obtained using the self-consist
pseudopotential method combined with an independent calcula
of the bulk energy per electron. The surface energies of Ref. 4 w
obtained within an all-electron scheme with the use of a line
combination-of-Gaussian-type-orbitals fitting function~LCGTO
FF! and with the bulk energy per electron extracted from the s
calculations. Dashed lines are to guide the eye.
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ergies, represented in Figs. 2 and 3 by horizontal solid lin
agree with those reported in Ref. 16 for semi-infinite med

An alternative procedure to extrapolate the surface ene
s of the semi-infinite medium from our calculated thin-fil
surface energiess(L) is to use the relation20

s5
s~Ln2lF/4!1s~Ln!1s~Ln1lF/4!

3
, ~15!

whereLn represents the threshold width for which thenth
subband for thez motion is first occupied. Analytical insigh
for this procedure is encountered within the infinite-barr
model ~IBM !, where the effective potentialVe f f(z) is re-
placed by an infinite square well and the one-particle w
functionsf(z) are simply sines. Based on this procedure,
numerical error introduced ins by our slab calculations is
found to be within 0.1%. The advantage of this algorithm
that we simply need three points to obtain the asympt
limit, while the linear fitting may yield erroneous results
one only takes a few thin films.

Slabs withL,0.5lF are interesting in their own, sinc
they can be constructed in the laboratory, e.g., by joining
different semiconductors. Nevertheless, we do not give
sults for these ultrathin slabs, since they fall within the tw
dimensional limit where the three-dimensional LDA a
GGA formulas for exchange and correlation are known
fail.36

For comparison, first-principles thin-film calculations
the surface energy of the densest faces of Al and Li@~111!
for fcc Al and ~0001! for hcp Li# are represented in Figs.

FIG. 3. Surface energy and QSE in lithium (r s53.24). Large
vertical marks across the horizontal axis show the widths of un
laxed hcp Li~0001! slabs with n51, . . . ,12 atomic planes@c/a
51.64~Ref. 38!, which corresponds tor s53.13]. The slab width is
L5na/2 and the structural-parameter ratioc/a5(16A3pZ/9)
3(r s /a)3. The solid oscillating line shows our calculated surfa
energy of flat stabilized-jellium slabs. Solid and dashed-dotted h
zontal lines represent our calculated surface energy of semi-infi
flat Li ~solid line! an hcp Li~0001! ~dashed-dotted line! stabilized
jellia. The horizontal arrow has the same meaning as in Fig. 2.
comparison, atomistic all-electron calculations from Refs. 38
39 are also displayed, by solid circles. These surface energies
obtained with the use of a LCGTO FF and with the bulk energy
electron extracted from the slab calculations. Dashed lines ar
guide the eye.
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and 3 by solid circles and triangles, with the slab width o
n-layer unrelaxed crystalline film taken to ben times the
interplanar distance. For Al there is reasonable agreem
between our stabilized-jellium results and atomistic fir
principles calculations, the amplitude of the stabilize
jellium oscillations being comparable to that exhibited
first-principles calculations. For Li, however, there is a se
ous discrepancy between stabilized-jellium and fir
principles calculations. Since lithium has been found to
have to some extent like a covalent solid rather than a fr
electron gas,37–40 it is not expected to be well described by
jellium-like model.

A face-dependent approach extension of the stabiliz
jellium model consists in obtaining the self-consistent el
tron density by adding to the constant potential^dv&WS a
structure-dependent corrugation factor.12,16 This procedure
yields an increased surface energy~horizontal dashed-dotted
lines of Figs. 2 and 3!, which in the case of Al is found to be
close to the experimental result.

Figures 4 and 5 exhibit our calculated stabilized-jelliu
work functions for slabs of Al and Li, respectively, as
function of the thicknessL of the slab, together with first-
principles thin-film calculations. As in the case of the surfa
energy, a procedure similar to that of Eq.~15! yields a work
function ~represented by horizontal solid lines! that agrees
within less than 0.1% with the result we also obtain af
solving Eq.~9! for the semi-infinite medium, a precision tha
is difficult to achieve by a fitting procedure. ForL;0.5lF ,
the QSE yields oscillations with relative amplitudes
;20% and;10% for Al and Li, respectively. For Al both
the amplitude and the oscillation pattern are comparable
those exhibited by atomistic calculations. In the case o
three-layer film of Al~111!, the slab width isL;4(lF/2).
Hence, the stabilized-jellium model predicts a minimum f
this film, which is in reasonable agreement with the de
minimum exhibited by atomistic calculations withn53. In
the case of Li~0001!, the stabilized-jellium model predicts

-

i-
ite

or
d
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r
to

FIG. 4. Work function and QSE in aluminum (r s52.07). All
symbols have the same meaning as in Fig. 2. For comparison,
mistic all-electron calculations from Refs. 8 and 45 are also d
played, by solid squares and rhombs, respectively. The work fu
tions of Ref. 8 were obtained within the LCAO scheme, and th
of Ref. 45 were obtained with the use of surface linearized a
mented plane waves~SLAPW!. The experimental polycrystalline
work function of Ref. 46 is represented by an horizontal arrow.
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PRB 62 1703SLABS OF STABILIZED JELLIUM: QUANTUM-SIZE . . .
minimum for a one-layer film@L;1(lF/2)#, also in agree-
ment with the minimum exhibited by first-principles calcul
tions with n51. Finally, we note that adding a structur
dependent corrugation factor to the slabilized-jellium^dv&WS
constant potential yields a smaller value of the work funct
~horizontal dashed-dotted lines of Figs. 4 and 5!, which in
the case of Al is in reasonable agreement with the exp
ment. For Li, both the stabilized-jellium model and firs
principles calculations predict work functions that are w
above the experimental result.

For given values of the equilibrium-density parameterr s
and the valenceZ, all these calculations have been carri
out with the core radiusr c ~characteristic of each metal! that
is obtained from the bulk stability condition expressed
Eq. ~7!. However, while at the equilibrium densityn̄ of Eq.
~3! the infinite homogeneous system is stable, at this den
a finite system is not stable against changes of the b
ground density, i.e.,

d~E/N!

drs
Þ0, ~16!

whereN represents the particle number. Instead, there
modified equilibrium-density parameterr s* , which stabilizes
the finite system. This modified parameter depends on
size L of our system and is expected to approachr s as L
→`.

Figure 6 shows the result of our full self-consistent Koh
Sham calculations of the deviationr s* 2r s , as a function of
the thicknessL of the slab. These calculations indicate th
there is a self-compression effect, which is more pronoun
when the two surfaces are separated by a multiple of;lF/2.

The self-compression effect exhibited in Fig. 6 may
approximately predicted with use of the LDM, a simp
model to evaluate the total energy of a finite system.26,27 In
this model, the energy is the sum of a volume term~the bulk
energy per unit volume,n̄ebulk , times the volume! and a
surface term~the surface energys times the transversa
area!:

ELDM5n̄ebulkV1sA. ~17!

FIG. 5. Work function and QSE in lithium (r s53.24). All sym-
bols have the same meaning as in Fig. 3. The experimental p
crystalline work function of Ref. 46 is represented by an horizon
arrow.
n
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ity
k-
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For fixed r c , and evaluated at thebulk equilibrium-density
parameterr s ,

d~ELDM /N!

drs
5

A

N

ds

drs
1s

d~A/N!

drs
.0. ~18!

The first term is positive, as can be found from the data
Table I of Ref. 23. For a fixed slab widthL, the second term
is also positive, and the surface term self-compresses, th
fore, stabilized-jellium slabs. The deviation of the electro
density parameterr s* obtained from the LDM stability con-
dition

d~ELDM /N!

drs
50 ~19!

with respect to thebulk equilibrium density parameterr s is
also plotted in Fig. 6, showing that the LDM provides a ni
average of our self-consistent Kohn-Sham calculations
previously demonstrated in the case of clusters.23

In Ref. 9, thin films of Be with one to three layers we
examined and a jellium version of a crystalline calculati
was considered. The electron density parameterr s* needed to
define each slab was derived from the optimized~relaxed!
structural parameters. The results reported in Ref. 9 ar
agreement with the compression effect we report here, w
r s* increasing with the number of layers and approaching
bulk equilibrium-density parameterr s as L→`. These re-
sults show deviations of the electron density parameterr s*
2r s of ;3.2%, 1.9%, and 0.9% for thin films with one
two, and three layers, respectively. This is in agreement w
our stabilized-jellium calculations, which in the case of th
films with ;2 layers of Li and Al predict~see Fig. 6! dif-
ferences betweenr s* and r s of ;1.6% and 1.8%, respec
tively. The self-compression of structural parameters in
trathin crystalline films has also been discussed in terms
the so-called coordination model, which, however, seem
fail in some cases~see, e.g., Ref. 41!.

Finally, we note that if for each value ofL the correspond-
ing equilibrium-density parameterr s* is taken instead of the
bulk parameterr s , modified surface energies and work fun

ly-
l

FIG. 6. Relative difference between the actual equilibriu
density parameterr s* and thebulk density parameterr s for alumi-
num ~dashed lines! and lithium~solid lines! stabilized-jellium films
as a function of the slab widthL.
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1704 PRB 62SARRIA, HENRIQUES, FIOLHAIS, AND PITARKE
tions are obtained that are quite similar to those displaye
Figs. 2–5. This is in contrast with the discussion of Ref.

IV. CONCLUSIONS

We have modeled thin films of two simple metals, alum
num and lithium, using the stabilized-jellium model, a
have studied the convergence of some physical quant
~work function and surface energy! to the semi-infinite
planar-surface results. We have found the same oscilla
behavior that is typical of the QSE in jellium. Although th
behavior also shows up in atomistic first-principles thin-fi
calculations, the clean QSE of continuous background m
els is obscured in the more realistic calculations. A tre
consisting of surface energy minima coinciding with wo
function maxima was reported for first-principles crystalli
calculations.42,43 However, within the stabilized-jellium
model we have found minima and maxima of both quantit
at the same positions@as also reported in Ref. 4 from firs
principles for Al~111!#. On the other hand, we have foun
that both the absolute and the relative amplitude
stabilized-jellium QSE oscillations are larger for aluminu
than for lithium, in agreement with first-principles evalu
tions. The disagreement between our stabilized-jellium
sults for lithium and the more realistic atomisticall-electron
calculations cannot be attributed to some property of
pseudopotential, and simply shows that this metal does
display free-electron behavior.

Stabilized-jellium slabs of aluminum and lithium hav
been found not to be stable at thebulk equilibrium density,
tt
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the size-dependent equilibrium density being larger. T
self-compression effect, which was already known to ex
for clusters, has been found to become more important as
slab width decreases. Both LDM and full self-consiste
DFT calculations have shown a larger self-compression
aluminum than for lithium, which is a consequence of t
larger surface energy of the former material. The se
compression of thin simple-metal films is a general rule t
is also exhibited by atomistic first-principles calculation
where the unitary cell of thin films is found to be slight
smaller than that of the bulk solid.

The stabilized jellium model is computationally as simp
as the jellium model; however, for the two high-density m
als we have considered, it is much more realistic. In parti
lar, we have found it to be more realistic for aluminum th
for lithium. The stabilized-jellium model is adequate to o
tain general qualitative conclusions and an understandin
trends of simple metals but, obviously, is unable to prov
precise quantitative conclusions on particular metals. Th
can only be extracted from the now standard first-principl
but computationally more demanding, calculations.
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