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Slabs of stabilized jellium: Quantum-size and self-compression effects
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We examine thin films of two simple meta{aluminum and lithium in the stabilized jellium model, a
modification of the regular jellium model in which a constant potential is added inside the metal to stabilize the
system for a given background density. We investigate quantum-size effects on the surface energy and the
work function. For a given film thickness we also evaluate the density yielding energy stability, which is found
to be slightly higher than the equilibrium density of the bulk system and to approach this value in the limit of
thick slabs. A comparison of our self-consistent calculations with the predictions of the liquid-drop model
shows the validity of this model.

[. INTRODUCTION stability against changes in the background density. This so-
called stabilized jelliurht or structureless pseudopotential
Thin films or slabs are systems made out of a few layersnodel yields realistic results, especially in the case of metals
of atoms: they are finite in one direction and infinite in thewith high valence-electron density. For instance, the stabi-
other two perpendicular directions. Various theoretical moddized jellium model predicts positive surface energies that
els are available to calculate the electronic structure of slab$crease rapidly at high electron densities, as shown by ex-
One of the important features coming out of these calculaperiment, while the jellium model predicts surface energies
tions is the so-called quantum-size effe¢®@SB), i.e., the that are strongly negative at these densities. The stabilized
influence of the finite size on various physical properties ofiellium model, first introduced by Perdew, Tran, and Shfith
the slab. These effects, which can be experimentallyand similar to the ideal-metal concept developed by Shore
recognized, decrease as the size of the slab increases. Iand Rosé?!* has been applied to the study of surfdcés
fact, surface energies and work functions of the semi-infiniteand clusters! In a way, the stabilized jellium is in between
system are often derived from thin-slab calculations, whichthe jellium model and more sophisticated atomistic ap-
are simply extrapolated to this limfit® proaches: although it is still a continuous modehe may
The simplest model to predict the electronic structure ofchoose slabs with arbitrary thicknesgith an analytical ex-
simple sp-bonded metals is the jellium model, where the pression for the bulk energy, its physical predictions are in
ions are replaced by a positive neutralizing backgroundreasonable agreement with experiment. Besides including
Within this model, the QSE of thin films was examined by electrostatic corrections to the jellium model, the stabilized
Schulte! He found an oscillatory behavior of the work func- jellium model contains an averaged pseudopotential correc-
tion as a function of the thickness of the slab. The samédion.
oscillatory behavior is found for the surface energy, defined We calculate the self-consistent energetisarface en-
as the energy required, per unit area of new surface formeargy and work functionof slabs of stabilized jellium, with

to split the solid in two along a plarfe. use of the local-density approximatidghDA) of density-
The jellium model has been referred to as giving insightfunctional theory(DFT).?81° We take two metals, Alr(
into the realistic QSE appearing in real systém$ Notwith- =2.07,Z=3) and Li (r¢=3.24,Z=1), investigate the QSE,

standing important differences, an oscillatory pattern also apand compare our self-consistent slab calculations with those
pears in atomistic first-principles slab calculations of bothobtained for a semi-infinite stabilized jellium. We also test
the work function and the surface energy. Although the presan extrapolation rulé® which has already been used to de-
ence of the lattice may obscure the periodicity and the amscribe nonlocal surface energies of the bounded electron
plitude of the QSE, extrema were found at positions whichgas?*
agree with the jellium results. However, in the case of first-  Although the stabilized jellium model can be tailored to
principles calculations difficulties ariselue to the cumber- give face-dependent results!®?2it cannot describe the in-
some numerigswhen one is to extract well-converged sur- homogeneous relaxation predicted by first-principles calcula-
face properties from thin films made of typically 2 to 15 tions where the distances between atomic planes of the same
layers>® Hence, the clean jellium QSE, with no uncertaintiesfamily are optimized. However, an interesting effect dis-
in the extrapolated results, remains as a guide for more reaplayed by the stabilized jellium model, which cannot be ac-
istic investigations. counted for by the jellium model, is the so-called
In this paper, we consider slabs in the framework of aself-compressidft (or self-expansion, in the case of charged
simple modification of the jellium model that yields energy system&*? of clusters. This effect, which can be classically
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viewed as the compression of a finite system due to the sur-

face tension, is most prominent for small systems and almost

negligible in the case of large clusters. and (6v)ws represents the difference between the local
We investigate here the self-compression of thin films.pseudopotential and the jellium potential, averaged over the

We fix the size of the system along the direction perpendicuWigner-Seitz cell,

lar to the surface, and search for the background density that

minimizes the total energy per valence electron of the slab. 3r 3773

The equilibrium density is found to increase as the thickness (6v)ws= 2_3 10 (6)

of the slab decreases, and to converge to the bulk electron s

density in the infinite-thickness limit. Furthermore, the equi-The core radius. of the Ashcroft empty-core pseudopoten-

librium electron-density parametef is found to oscillate tial is chosen to stabilize the metal for given values of the

with the slab thickness, as a manifestation of the QSE, buglectron-density parameteg and the chemical valencé

the general trend is found to be well described within the The two terms added to the regular-jellium enekyyare

liquid-drop modei®?” (LDM) based only on the knowledge a volume term and a surface term. They simply account for

of the bulk energy per unit volume and the surface energythe subtraction of the spurious self-interaction of the positive

We discuss the relationship between this self-compressiojellium background and the inclusion of a constant structure-

effect and the relaxation of metal slabs predicted by atomisless potential inside the metal. This procedure may be under-

tic first-principles calculations. stood as a first-order perturbation to a jellium system, but
In Sec. Il we present briefly the stabilized jellium model with the perturbation treated in an averaged manner.

for slabs. In Sec. lll we discuss the results we obtained The density functional of Eq.l) represents the total en-

within this model. The main conclusions are drawn in Secergy of an arbitrary inhomogeneous system. In the case of an

IV, where further comments on the relationship between thénfinite uniform system, the equilibrium density is obtained

stabilized jellium and more elaborated models are madefrom the bulk stability condition

Equations are written in atomic units throughout, i€,

Wg=2mnr2, (5)

—h=me=1. dedulk
drS =0, @
Il. SLABS OF STABILIZED JELLIUM
where
The stabilized jellium modéf takes into account the lat-
tice ions, but keeps the essential simplicity of the jellium eQulk=gbulki o +wp (8)

model. The total energy is obtained as a functional of the
electron densityi(r), in the following way: represents the average bulk energy per valence eleagon,
being the regular-jellium contribution. Within this model any

_ 5 individual metal minimizes the energy at a given equilibrium
Esin.,n.]= EJ[nvn+]+(eM+WR)f d°rn(r) density, while the jellium energy presents a single minimum
atrs~4.2 close to the electron-density parameter of sodium.

5 We consider slabs of stabilized jellium. Slabs are transla-
+<5U>st d°r [n (—ny(r], (1) tionally invariant in the plane of the surface, which is as-
sumed to be perpendicular to theaxis. Hence, the single-
where particle wave functions can be separated into a plane wave
along the surface and a componefi(iz) describing motion
=F®(r) @) normal to the surface with energy This component is ob-
tained by solving self-consistently the Kohn-Sham equation
represents a positive neutralizing background denéity,) 1 P
being a function which equals 1 inside a given surface and 0 | _
outside, and 5 92 T VH(@ TVl 2) +V(2) | #(2) = €b(2), (9)
_ 3 where Vy(z) represents the Hartree electrostatic potential,
=23 (3)  Vy(2) is the exchange—corrglation potential, avigh(z) ac-
s counts for the pseudopotential,

is the average valence-electron densky. is the regular- -~
jellium total energygy, is the Madelung energy arising from Ves(2) =(60)ws9(2). (10

the Coulomb interaction between a uniform negative backv «(2) is obtained in the LDA, using the electron-gas corre-
ground inside the spherical Wigner-Seitz cell and a point loﬂanon energy of Ceperley and Aldét,as parametrized by

at its center, Perdew and Wan@. Essentially the same results are ob-
o tained from the parametrizations of Vosko, Wilk, and
o —_ 9z " Nusair® and of Perdew and Zung&rWe have not chosen to
M 10rg’ use extensions such as the generalized gradient

approximatiori’ (GGA), since the LDA has been shown to
Wr is the average value of the repulsive non-Coulomb part ofjive surprisingly good results in describing the properties of
the Ashcroft empty-core pseudopotential, jellium planar surfaces’
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FIG. 1. Normalized valence-electron density in the jellium 0 2 L?x 6 8
model(solid line) and in the stabilized-jellium modétiashed ling F
for a slab of Al (s=2.07) with thicknessL=2\¢. The back- FIG. 2. Surface energy and QSE in aluminurg=2.07). Large
ground density is represented by the dark area. The figure alsgatical marks across the horizontal axis show the widths of unre-
displays the effective potenti®.;(z) in each mode(solid line for laxed fcc A(111) slabs withv=1, . . ., 12atomic planes. The width

the jellium model and dashed line for the stabilized-jellium madel L is given by L:v(\/§/3)a, a being the lattice parameten
) . , =(167Z/3)"%r,. The solid oscillating line shows our calculated
Outside the positive background the e_leCtron'denS'ty PrOsurface energy of flat stabilized-jellium slabs. Solid and dashed-
file n(z) decays rapidly from its bulk value. The electronic  dotted horizontal lines represent our calculated surface energy of
system can therefore be taken to be finite in ztgirection  semi-infinite flat Al(solid line) and fcc A(111) (dashed-dotted line
by assuming thamn(z) actually vanishes at a given distance stabilized jellia. The zero-temperature extrapolation of the experi-
z, from the surface. Hence, we introduce infinite potentialmental liquid-metal surface tension of Ref. 44 divided by (Ref.
wallls at a distance, from each surface, and follow Ref. 34 27), is represented by an horizontal arrow. For comparison, atom-
to expand the wave functions(z) in a Fourier sine series. istic first-principles calculations from Refs. 42 and 4 are also dis-
The distance, (typically 2 or 3 Fermi wavelengthsnd the played, by solid circles and triang!es, respgctively. The surfa;e en-
number of sine functions kept in the expansion of the wavedies of Ref. 42 were obtained using the self-consistent

functions¢(z) have been chosen to be sufficiently large forpseudopotential method combined with an independent calculation
of the bulk energy per electron. The surface energies of Ref. 4 were

our calculations to be insensitive to the precise values em= - - .
tained within an all-electron scheme with the use of a linear-

ployed. These calculations have been compared with Othe}(:ombination-of-Gaussian-type-orbitals fitting functioCGTO

that we have Ca”"?d out for a semi-infinite eIeCFron _systerrh:) and with the bulk energy per electron extracted from the slab
by using the Monnier-Perdew cotidor the numerical inte- calculations. Dashed lines are to guide the eye

gration of Eq.(9).
For a given thicknes of the slab, we obtain the surface stabilized-jellium electron densities exhibit quantum oscilla-

energy from the difference between the total energy of Eq'[ions inside the metal, the so-called Friedel oscillatibasd

(1) and the corresponding result for a homogeneous electrop . ;
an exponential decay outside.

gas of densityn., i.e., Figures 2 and 3 show our calculated stabilized-jellium
1 o surface energies for slabs of Al and Li, respectively, as ob-
o(L)= ﬂ[ESJ(L)—nLAegLJ"k , (11)  tained from Eq(11) versus the thickneds of the slab. Both

curves show damped oscillations with minima occurring at

where A is the normalization area. The work function isthe slab widthL~n\g/2 (n=1,2,...). Thesame QSE,
obtained as the difference between the computed values favhich reflects the quantization of the electronic motion along

the vacuum and Fermi levels of our electron system. one direction, is known to occur within the jellium model.
Both the average bulk energy per valence elech'gijﬁk
IIl. RESULTS AND DISCUSSION and the surface energy of the semi-infinite stabilized jellium
First of aII,. we compare jel[ium and 'stabilized-jellium o= lim o (L) (13
electron densities(z) and effective potentials, Lo
Veii(2) =Vy(2) +Vy(2) + Vpe(2). (12 may be obtained from a linear fit of the following equation:
Jellium and stabilized-jellium valence-electron densities and )
effective potentials for an Al slab ofL=2\r [Ag EsAL) —  bulk
=(327%19)Y% ¢ is the Fermi wavelengihare shown in Fig. A~ 2otnbesy (14

1, together with the positive background density. We

note that the stabilized-jellium electron density is steeper atvhereEg (L) represents the total energy of Ed). Follow-
the two surfaces, so that the electronic spill-out is slightlying this procedure, we reproduce the bulk energy of @By.
smaller within this model. This is due to the fact that elec-and predict surface energies of 925 ergicnand
trons “feel” a deeper effective potential. Both jellium and 311 erg/crf for Al and Li, respectively. These surface en-
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FIG. 3. Surface energy and QSE in lithiumg€3.24). Large FIG. 4. Work function and QSE in aluminunt4=2.07). All
Vertical mal’kS across the horizontal aXiS ShOW the W|dths Of Unresymb0|s have the same meaning as in F|g 2. For Comparison’ ato-
laxed hcp L{000) slabs withv=1,...,12atomic planesc/a  mjstic all-electron calculations from Refs. 8 and 45 are also dis-

=1.64(Ref. 38, which corresponds to,=3.13]. The slab widthis  played, by solid squares and rhombs, respectively. The work func-
L=va/2 and the structural-parameter rativa=(16y37Z/9) tions of Ref. 8 were obtained within the LCAO scheme, and those
X(rs/@)%. The solid oscillating line shows our calculated surface of Ref. 45 were obtained with the use of surface linearized aug-
energy of flat stabilized-jellium slabs. Solid and dashed-dotted hOTimented p|ane Wave@LAPV\/)_ The experimentaj po]ycrysta"ine
zontal lines represent our calculated surface energy of semi-infinitgork function of Ref. 46 is represented by an horizontal arrow.
flat Li (solid line) an hcp L{000)) (dashed-dotted linestabilized
jellia. The horizontal arrow has the same meaning as in Fig. 2. Fopnd 3 by solid circles and triangles, with the slab width of a
comparison, atomistic all-electron calculations from Refs. 38 andv-layer unrelaxed crystalline film taken to betimes the
39 are also displayed, by solid circles. These surface energies weieterplanar distance. For Al there is reasonable agreement
obtained with the use of a LCGTO FF and with the bulk energy petbetween our stabilized-jellium results and atomistic first-
electron extracted from the slab calculations. Dashed lines are tprinciples calculations, the amplitude of the stabilized-
guide the eye. jellium oscillations being comparable to that exhibited by
first-principles calculations. For Li, however, there is a seri-
ergies, represented in Figs. 2 and 3 by horizontal solid linespus discrepancy between stabilized-jellium and first-
agree with those reported in Ref. 16 for semi-infinite mediaprinciples calculations. Since lithium has been found to be-
An alternative procedure to extrapolate the surface energiave to some extent like a covalent solid rather than a free-
o of the semi-infinite medium from our calculated thin-film electron gas/~*Cit is not expected to be well described by a

surface energies(L) is to use the relatioc jellium-like model.
A face-dependent approach extension of the stabilized-
o(Ly—=Ngld)+a(L,)+a(L,+Ng/4) jellium model consists in obtaining the self-consistent elec-
o= 3 ’ 15 ‘tron density by adding to the constant potentjab)s a

structure-dependent corrugation factdt® This procedure

whereL, represents the threshold width for which thth  vyields an increased surface enefbyprizontal dashed-dotted
subband for the motion is first occupied. Analytical insight lines of Figs. 2 and 3 which in the case of Al is found to be
for this procedure is encountered within the infinite-barrierclose to the experimental result.
model (IBM), where the effective potential;¢(z) is re- Figures 4 and 5 exhibit our calculated stabilized-jellium
placed by an infinite square well and the one-particle wavavork functions for slabs of Al and Li, respectively, as a
functions¢(z) are simply sines. Based on this procedure, thefunction of the thicknes$ of the slab, together with first-
numerical error introduced ir by our slab calculations is principles thin-film calculations. As in the case of the surface
found to be within 0.1%. The advantage of this algorithm isenergy, a procedure similar to that of E5) yields a work
that we simply need three points to obtain the asymptotidunction (represented by horizontal solid linethat agrees
limit, while the linear fitting may yield erroneous results if within less than 0.1% with the result we also obtain after
one only takes a few thin films. solving Eq.(9) for the semi-infinite medium, a precision that

Slabs withL<0.5\¢ are interesting in their own, since is difficult to achieve by a fitting procedure. Fbr0.5\,
they can be constructed in the laboratory, e.g., by joining twahe QSE Yyields oscillations with relative amplitudes of
different semiconductors. Nevertheless, we do not give re—-20% and~10% for Al and Li, respectively. For Al both
sults for these ultrathin slabs, since they fall within the two-the amplitude and the oscillation pattern are comparable to
dimensional limit where the three-dimensional LDA andthose exhibited by atomistic calculations. In the case of a
GGA formulas for exchange and correlation are known tothree-layer film of A(111), the slab width isL~4(\g/2).
fail.%® Hence, the stabilized-jellium model predicts a minimum for

For comparison, first-principles thin-film calculations of this film, which is in reasonable agreement with the deep
the surface energy of the densest faces of Al an@(112) minimum exhibited by atomistic calculations with=3. In
for fcc Al and (0001) for hcp Li] are represented in Figs. 2 the case of L(0001), the stabilized-jellium model predicts a
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FIG. 5. Work function and QSE in lithiunr (= 3.24). All sym- FIG. 6. Relative difference between the actual equilibrium-

bols have the same meaning as in Fig. 3. The experimental polydensity parameter? and thebulk density parameter for alumi-
crystalline work function of Ref. 46 is represented by an horizontalnum (dashed lingsand lithium(solid lineg stabilized-jellium films
arrow. as a function of the slab width.

minimum for a one-layer filnfL~1(\¢/2)], also in agree- For fixedr., and evaluated at thieulk equilibrium-density
ment with the minimum exhibited by first-principles calcula- parameter q,

tions with v=1. Finally, we note that adding a structure-

dependent corrugation factor to the slabilized-jelli{# )\ s d(ELpm/N) A do  d(A/N)

constant potential yields a smaller value of the work function drq N d_fs o drg >0. (18)

(horizontal dashed-dotted lines of Figs. 4 angd Wwhich in ) ) - )
ment. For Li, both the stabilized-jellium model and first- Table I of Ref. 23. For a fixed slab width the second term

principles calculations predict work functions that are welliS also positive, and the surface term self-compresses, there-
above the experimental result. fore, stabilized-jellium slabs. The deviation of the electron-

For given values of the equilibrium-density parametgr ~density parameters obtained from the LDM stability con-
and the valencg, all these calculations have been carrieddition
out with the core radius, (characteristic of each mejahat d(E N
is obtained from the bulk stability condition expressed by (ELom ):0
Eqg. (7). However, while at the equilibrium density of Eq. drg
3) the infinite homogeneous system is stable, at this density . e ; ;
g)finite system is n%t stable g ainst changes of the bact%”th respect to t.hebulk equ[hbnum density parameter, Is

Y 9 9 l?also plotted in Fig. 6, showing that the LDM provides a nice

(19

ground density, i.e., average of our self-consistent Kohn-Sham calculations, as
d(E/N) previously demonstrated in the case of clustérs.
, (16 In Ref. 9, thin films of Be with one to three layers were
drs examined and a jellium version of a crystalline calculation

where N represents the particle number. Instead, there is was considered. The electron density parametereeded to
modified equilibrium-density parametef , which stabilizes define each slab was derived from the optimizezlaxed
the finite system. This modified parameter depends on thetructural parameters. The results reported in Ref. 9 are in

size L of our system and is expected to approaghasL ~ agreement with the compression effect we report here, with

—0 r¥ increasing with the number of layers and approaching the

Figure 6 shows the result of our full self-consistent Kohn-bulk equilibrium-density parametars as L—«. These re-
Sham calculations of the deviatiod —r, as a function of sults show deviations of the electron density paramefer
the thicknesd. of the slab. These calculations indicate that—rg of ~3.2%, 1.9%, and 0.9% for thin films with one,
there is a self-compression effect, which is more pronouncetivo, and three layers, respectively. This is in agreement with
when the two surfaces are separated by a multiple /2.  our stabilized-jellium calculations, which in the case of thin

The self-compression effect exhibited in Fig. 6 may befilms with ~2 layers of Li and Al predic{see Fig. & dif-
approximately predicted with use of the LDM, a simple ferences between? andrg of ~1.6% and 1.8%, respec-
model to evaluate the total energy of a finite syst&fi.In tively. The self-compression of structural parameters in ul-
this model, the energy is the sum of a volume téthe bulk  trathin crystalline films has also been discussed in terms of
energy per unit volumeﬁebulk, times the volumeand a the so-called coordination model, which, however, seems to

surface term(the surface energy times the transversal fail in some casessee, e.g., Ref. 41
area: Finally, we note that if for each value tfthe correspond-

o ing equilibrium-density parametef is taken instead of the
Elpm=nep iV + oA, (17) bulk parameterg, modified surface energies and work func-
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tions are obtained that are quite similar to those displayed ithe size-dependent equilibrium density being larger. This
Figs. 2-5. This is in contrast with the discussion of Ref. 9. self-compression effect, which was already known to exist
for clusters, has been found to become more important as the

IV. CONCLUSIONS slab width decreases. Both LDM and full self-consistent

o i _ DFT calculations have shown a larger self-compression for

We have modeled thin films of two simple metals, alumi- 5jyminum than for lithium, which is a consequence of the

num and lithium, using the stabilized-jellium model, and |grger surface energy of the former material. The self-
have studied the convergence of some physical quantitiegompression of thin simple-metal films is a general rule that

(work function and surface enerpyto the semi-infinite s gls0 exhibited by atomistic first-principles calculations,
planar-surface results. We have found the same oscillatoryhere the unitary cell of thin films is found to be slightly

behavior that is typical of the QSE in jellium. Although this gmaller than that of the bulk solid.

behavior also shows up in atomistic first-principles thin-film  The stabilized jellium model is computationally as simple
calculations, the clean QSE of continuous background modys the jellium model; however, for the two high-density met-
els is obscured in the more realistic calculations. A trendyis we have considered, it is much more realistic. In particu-
consisting of surface energy minima coinciding with work |ar we have found it to be more realistic for aluminum than
function maéizr;a was reported for first-principles crystalline for |ithjum. The stabilized-jellium model is adequate to ob-
calculations’®*® However, within the stabilized-jellium tajn general qualitative conclusions and an understanding of
model we have found minima and maxima of both quantitiesyends of simple metals but, obviously, is unable to provide
at the same positionss also reported in Ref. 4 from first- yrecise quantitative conclusions on particular metals. These
principles for A{111)]. On the other hand, we have found can only be extracted from the now standard first-principles,

that both the absolute and the relative amplitude ofyyt computationally more demanding, calculations.
stabilized-jellium QSE oscillations are larger for aluminum

than for lithium, in agreement with first-principles evalua- ACKNOWLEDGMENTS
tions. The disagreement between our stabilized-jellium re-
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