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Abstract. One of the most efficient approaches in computational cluster physics uses a plane-wave basis
set and pseudopotentials to describe electron–ion interactions. This method – where the clusters are placed
inside supercells – is restricted in its usual form to neutral systems because of the long-range interaction
between a charged cluster and its periodic images. To eliminate this restriction, we propose to shield each
charged cluster with a spherical shell having a symmetric charge that neutralizes the supercell. Furthermore,
the shell is placed in such a way that it cancels the electric dipole of the charged cluster. We present relaxed
geometries and cohesive energies of Na+

N , N = 2−9 and 21, obtained with Langevin quantum molecular
dynamics. Our local density approximation structures are very similar to those found in other first princi-
ples calculations. Vertical and adiabatic ionization energies of NaN ,N = 2, 3, 6, and 8 are displayed. We also
show results for Na2+

8 , Na−5 and Na−7 .

PACS. 36.40.Wa Charged clusters – 31.15.Ar Ab initio calculations

1 Introduction

The calculation of the ground-state properties of complex
systems is a challenging problem in material physics. In
the Born–Oppenheimer (BO) approximation, the electrons
feel an external potential due to the nuclei. The many-body
problem is then reduced to a many-electron system under
external forces. In density-functional theory, the total en-
ergy of the many-electron system is a functional of the
single-particle electronic density, and its variational mini-
mum with respect to the density would be the true ground-
state energy if the exact functional were known. Minimiz-
ing the energy functional with respect to the density is
equivalent to solving the Kohn–Sham equations. In this
formulation, the unknown part of that functional is the
exchange-correlation energy, for which the local density
approximation (LDA) may be considered.

A practical approximation is to treat only the valence
electrons, using pseudopotentials to represent their inter-
action with the ionic cores. This approach not only gives
a more convenient energy scale but also removes the strong
wiggles of the exact wave functions in the core region.

To solve the Kohn–Sham equations for infinite periodic
systems, such as bulk solids, a plane-wave expansion of
the wave functions is the natural choice [1]. This method
has been widely used and optimized [2] and also allows
for ab initio calculations of nonperiodic systems such as
atomic clusters. In fact, we may calculate physical proper-
ties of clusters as if they were a periodic system: We place
them in a very large unit cell (supercell) in order to pre-
vent the periodic images of the cluster from interacting

with each other. The plane-wave basis set is orthonormal,
and the convergence of the calculations increases systemat-
ically with the number of plane waves. Gaussian basis sets,
on the other hand, do not provide a clear and systematic
way to improve the convergence of the calculations and do
not form an orthonormal set. As a result, the calculations
often depend on the choice of basis set. Another advan-
tage of plane waves is that the evaluation of forces for mo-
lecular dynamics is straightforward (the Pulay forces are
identically zero). All these advantages have led to a consid-
erable use of plane waves for ab initio calculations of finite
systems [3].

However, this approach implies periodic boundary con-
ditions and, therefore, spurious interactions between the
periodic images of the system. The long-range interaction
requires a large supercell to minimize this effect. In the case
of a neutral system with a dipole moment, even bigger su-
percells are required, sometimes making the calculations
impractical.

Charged clusters pose yet another problem, as they
have a divergent Coulomb energy that must be removed.
A common method is to neutralize the supercell through
the introduction of a compensating jellium background [4].
This leads to spurious effects which are not always under
control. A recent method [5] consists in using a cutoff in
the Coulomb interaction. Here, we propose a new method
to avoid the difficulties with charged systems: We place
each image of the cluster within a spherical shell with
total charge that neutralizes the supercell; if this shell
is suitably positioned, the total electric dipole is zero
and one is left with only quadrupolar interactions be-
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tween the periodic images of the charged cluster and
its shell.

After a brief presentation of the method in Sect. 2, we
present in Sect. 3 some of its results for charged sodium
clusters and conclude in Sect. 4.

2 Method

The total energy in the pseudopotential Kohn–Sham for-
malism may be written as

E[n] = T0[n] +Exc[n] +EeI[n] +ECoul[n] +EII, (1)

where n(r) is the valence-electron density, T0 is the kinetic
energy of a noninteracting system with the same density as
the real one, Exc is the exchange-correlation energy, EeI is
the electron–ion interaction energy, ECoul is the Hartree
energy of the valence electrons, andEII is the ion–ion inter-
action energy. The electron–ion interaction energy can be
written, for local pseudopotentials w(i), as

EeI =

∫
d3r n(r)

∑
m,i

w(i)(r−Rm− ti), (2)

with Rm a Bravais lattice vector and ti a vector locating
ion i within the unit cell. The Hartree energy is

ECoul =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
(3)

and the ion–ion interaction energy is

EII =
1

2

∑
(m,i)6=(m′,i′)

ZiZi′

|Rm+ ti−Rm′− ti′ |
, (4)

with Zi the charge of the ion located at ti. Atomic units
(h̄= 1, me = 1, e2/4πε0 = 1) are used in this paper.

In a periodic system, the ion–ion energy is a divergent
quantity. In reciprocal space, the Coulomb and pseudopo-
tential contributions each diverge at the reciprocal lattice
vector G = 0. If the system is neutral, the three divergent
terms cancel each other, and their sum is simply the sum of
two finite quantities [1, 2, 6]: Erep, the repulsive part of the
pseudopotential, given by

Erep =

(∑
i

αi

)(
1

Ω

∑
i

Zi

)
, (5)

with Ω the supercell volume, and

αi =
1

Ω

∫
d3r

(
w(i)(r) +

Zi

r

)
, (6)

and EEwald, the so-called Ewald energy [6]. The total en-
ergy in reciprocal space then becomes

E = T0[n] +Exc[n] +E′eI[n] +E′Coul[n] +Erep +EEwald,
(7)

Fig. 1. Schematic illustration of the method used to calculate
charged clusters: First, the periodic copies of the clusters are
shielded from one another (left); then, the shielding is removed
from one of the systems at the end of the self-consistent cycle
(right).

where

E′eI = Ω
∑
i,G6=0

n(G)w(i)(G)e−iG·ti (8)

and

E′Coul =
Ω

2

∑
G6=0

4π

G2
|n(G)|2 . (9)

n(G) is the Fourier transform of the electronic density
and w(i)(G) are the Fourier transforms of the pseudo-
potentials.

We may search for the equilibrium cluster geometry by
molecular dynamics (MD) methods. These consist basi-
cally in solving classical equations of motion for the ions,
with forces on them evaluated from the electronic structure
(using the Hellman–Feynman theorem). This requires that
the total energy gradient with respect to the ionic positions
be calculated at each MD time step. Other local minimiza-
tion procedures, like steepest descent methods, also require
the computation of the gradient of (7).

To deal with charged clusters with a supercell method,
we add a compensating charge with the form of a spherical
shell. Since the system is neutral, all the above cancella-
tions apply. If the shell is thin enough, the potential is
constant in its interior, and the charged shell will not intro-
duce spurious forces on the ions. Furthermore, if the shell
is placed inside the supercell such as to cancel the dipole
moment of the charged cluster, the cell–cell interactions
will be at most quadrupolar, falling off as r−4. At the end
of the calculation, the spurious interaction energy between
the shell and the charged cluster is subtracted (Fig. 1).

The charged shell can be simply inserted in a plane-
wave code as a pseudopotential. A fake ionic species is
introduced in the simulation, with a pseudopotential that
emulates the potential created by the shell. The contribu-
tion of this ion to the total energy will amount to a con-
stant, as long as the electronic density and the charged
shell do not overlap. In this way, the introduction of the
fake ion will simply shift the zero of the Kohn–Sham poten-
tial. To maintain the cancellation of the divergent terms,
the repulsive part of this fake pseudopotential must be con-
sidered in (5). At the end of each self-consistency cycle, the
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interaction energy between the fake pseudopotential and
the valence electrons has to be removed (if the shell is thin
enough, this is the product of the shell potential at its cen-
ter and the number of valence electrons). The fake ion will
introduce spurious interactions in the Ewald energy and
forces. We remove all those terms from the total energy and
its gradient. For simplicity, only local potentials were con-
sidered in (2)–(9). Besides, as nonlocal terms arising from
the use of nonlocal pseudopotentials are short-range, they
do not affect the charge correction procedure.

3 Results

Sodium is the most studied of the simple metals, and this
makes it the ideal test system. Its average valence-electron
density is close to the equilibrium density of the jellium
model, and the LDA is a very good approximation for the
jellium surface problem [7].

In this section we present some results for Na clus-
ters obtained with our method. Exchange and correla-
tion effects are included with the Perdew and Zunger [8]
parametrization of the Ceperley–Alder results [9]. For the
shape of the charged shell we simply chose a Gaussian

%(r) =A e−(r−R)2/d2
, (10)

with A a constant chosen to give the desired total shell
charge, R the middle radius of the shell, and d�R a con-
venient width. The radius of the shell of charge was cho-
sen to be R = 12.7 bohr and its width d = 0.21 bohr (for
Na+

21, we used R = 15.9 bohr and d = 0.27 bohr). All the
calculations were performed in an fcc supercell with lat-
tice constant a= 40 bohr (except Na+

21, for which we took
a= 50 bohr). The plane-wave energy cutoff was 9 Ry. Con-
vergence of the calculated cluster energies with both lattice
constant and energy cutoff was better than 1 mRy. Only
the Γ point was considered when the reciprocal space was
sampled, as is appropriate in a supercell calculation, and
we used a Gaussian level broadening of 0.01 Ry [10]. We
used the Troullier–Martins soft pseudopotential[11] with
the cutoff radius rc = 2.6 bohr, and s and p nonlocality.
The pseudopotential was cast into the Kleinman and By-
lander separable form [12], with l= 1 as the local potential.

In order to find the equilibrium positions {ti} we used
the Langevin quantum molecular dynamics (LQMD) me-
thod developed in [4]. This method is adequate for dealing
with metallic clusters, since the dynamics is performed on
the BO surface. The LQMD simulations started at 300 K,
the cluster being cooled down to 10 K in an exponen-
tially decaying annealing schedule. The Langevin time step
was 410 a.u. and the friction parameter 10 a.u. At the end
of the LQMD run, a steepest descent optimization was
performed.

As a first test, we calculated the equilibrium bond
length of Na+

2 , and found de = 6.89 bohr, 2.5% higher than
the experimental value of 6.72 bohr [13]. Part of this dis-
crepancy is due to the use of LDA instead of the local spin-
density approximation for the single electron. For the neu-

Fig. 2. Ground-state structures for Na+
N clusters with N =

3−9, and 21. Na+
3 , Na+

9 , and Na+
21 are magic clusters.

tral dimer, we obtained de = 5.68 bohr, in very good agree-
ment (−2.4%) with the experimental value 5.82 bohr [14].

We performed an unrestricted LQMD search for the
minimum energy structures of Na+

N , withN = 3−9 and 21.
The lowest-energy isomers are shown in Fig. 2. These
structures are very similar to those obtained by quantum
chemistry methods [15], which generally lead to an optical
response that compares well with experiment.

Figure 3 shows the cohesive energies

Ec =
(N −1)E(Na) +E(Na+)−E(Na+

N )

N
(11)

for these structures. The values obtained are systemati-
cally higher than those obtained in the configuration in-
teraction (CI) calculation shown for comparison. This is
a manifestation of the over-binding characteristic of the
LDA. However, the expected odd–even alternation in the
cohesive energies is clearly seen in Fig. 3. The cohesive
energies increase more with cluster size than in the CI
calculation.

Figure 4 shows the adiabatic and vertical ionization en-
ergies of the Na2, Na3, Na6, and Na8 clusters. The agree-
ment with CI is fairly good, given that spin-polarization
effects play a significant role in the ionization energies.

As an example of the applicability of the method to
double-positively and negatively charged clusters, we show
in Figs. 5 and 6 the ground-state structures of Na2+

8 , Na−5 ,
and Na−7 . Na8 is the smallest cluster which can be double-
positively ionized in the present approach. In a jellium



232 The European Physical Journal D

Fig. 3. Cohesive energies, in eV, for small cationic sodium clus-
ters. Results are from the plane-wave method presented here
(PW), and the configuration interaction (CI) [15] and Hartree–
Fock (HF) [15] calculations.

Fig. 4. Vertical (PW-V) and adiabatic (PW-A) ionization en-
ergies, in eV, of the NaN clusters with N = 2, 3, 6, and 8. The
configuration interaction (CI-V) vertical ionization energies are
from [17].

model, Na2+
4 is the smallest stable doubly ionized clus-

ter [16]. The structure of Na2+
8 is much different from that

of Na+
8 . Its average bond length (6.97 bohr) is larger than

that of the singly ionized cluster (6.65 bohr) and that of the
neutral cluster (6.50 bohr). This charge-induced expansion
was also found in a jellium model [16]. The equilibrium
shape of Na−5 is planar, as was also found from CI calcula-
tions [17].

Fig. 5. Ground-state structure for Na2+
8 .

Fig. 6. Ground-state structures for Na−5 and Na−7 .

4 Conclusions

We introduced a novel method for ab initio simulations of
finite charged systems in a plane-wave basis. This method
allows one to deal accurately with positively or negatively
charged clusters without artificial cutoffs or compensat-
ing jellium backgrounds that may affect the dynamics. Our
LDA results are similar to those obtained in previous first
principles calculations. With our method, we may study
the stability of clusters with higher numbers of atoms
and/or higher charges [18].

The LQMD minimization procedure employed effici-
ently samples the configuration space and can be used to
perform finite-temperature simulations and evaluate ther-
modynamic and transport properties. In fact, cluster ex-
periments are performed at some finite temperature. Tem-
perature effects require further study.

We thank Dr. Jorge M. Pacheco for very fruitful discussions.
This work has been partially supported by the PRAXIS XXI
program (PRAXIS/2/2.1/FIS/26/94).
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