
  
 

Ana Rita das Neves Lagarto Bento 

Universidade de Coimbra 
2009 

OO  eeffeeiittoo  ddaa  mmeettaannffeettaammiinnaa  nnaa  

nneeuurrooggéénneessee  ddaa  zzoonnaa  ssuubbvveennttrriiccuullaarr::  

mmoorrttee  cceelluullaarr,,  pprroolliiffeerraaççããoo  ee  

ddiiffeerreenncciiaaççããoo..  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Ana Rita das Neves Lagarto Bento 

 

 

 

O efeito da metanfetamina na neurogénese da zona 

subventricular: morte celular, proliferação e 

diferenciação. 

 

 

The effect of methamphetamine on subventricular zone 

neurogenesis: cell death, proliferation and 

differentiation. 

 

 

 

 

 

 

 

Universidade de Coimbra 

2009 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Ana Rita das Neves Lagarto Bento 

 

 

 

O efeito da metanfetamina na neurogénese da zona 

subventricular: morte celular, proliferação e 

diferenciação. 

 

 

The effect of methamphetamine on subventricular zone 

neurogenesis: cell death, proliferation and 

differentiation. 

 

 

Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade de 

Coimbra, para cumprimento dos requisitos necessários à obtenção do grau de Mestre em 

Engenharia Biomédica, com especialização em Neurociências. 

 

Este trabalho foi realizado no Centro de Neurociências e Biologia Celular de Coimbra e 

na Faculdade de Medicina da Universidade de Coimbra, sob a orientação da Doutora 

Fabienne Agasse e co-orientação da Doutora Ana Paula da Silva Martins. 

 

Universidade de Coimbra 

2009 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Agradecimentos 

 

 

 À Doutora Fabienne Agasse e à Doutora Ana Paula Silva por me terem orientado 

e supervisionado o trabalho que realizei durante a cadeira de Projecto, por me terem 

ensinado e ajudado a construir o trabalho, pela amizade, simpatia e paciência apoiando 

sempre nos bons e maus momentos.  

 

Ao Professor Doutor João Malva pelo apoio e críticas que ajudaram a 

desenvolver o trabalho. 

  

 Ao Professor Doutor Miguel Morgado, coordenador da cadeira de Projecto em 

que se insere a dissertação da Tese de Mestrado, que promoveu a possibilidade de 

realizar o trabalho e pelo apoio, simpatia e disponibilidade. 

 

À minha família que constituiu o meu maior apoio neste período, em especial ao 

meu pai, à minha irmã e à minha mãe que é o meu exemplo de luta, esforço e dedicação.  

 

Aos amigos que me apoiaram nesta fase e que me acompanham até hoje, 

obrigada pelos conselhos, pelos sorrisos, por tudo! 

 

 Aos colegas de trabalho por toda a ajuda, pela simpatia, apoio e críticas, em 

especial à Joana Gonçalves, Sofia Baptista, Sofia Grade e Alexandra. 

  

  

 

 

 

 



 

 

 

 

 

 

 

 

 



Index  

I 

Index 

 

Abbreviations         1 

Abstract          3 

Resumo          5 

 

CHAPTER 1 – Introduction       7  

1.1. Methamphetamine as a highly drug of abuse     7 

1.2. Neurogenesis in the adult brain: focus on the subventricular zone  11 

1.2.1. Neurogenesis in the dentate gyrus     12 

1.2.2. Neurogenesis in the SVZ      13 

1.2.3. Notion of neurogenic niche      14 

1.2.4. SVZ and brain repair       14 

1.3. Methamphetamine and neurogenesis      15 

1.4. Objectives          16 

 

CHAPTER 2 – Material and Methods      17 

2.1. Animal experimental procedures      17 

2.2. Subventricular zone cell cultures      17 

2.3. Immunocytochemistry        19  

2.4. Neuronal cell death assay       20 

2.5. Progenitor cell death assay       21 

2.6. Proliferation assay        22 

2.7. Data analysis and statistics       22 

 

CHAPTER 3 – Results        25 

3.1. Methamphetamine exerts toxic effects in SVZ cell cultures   25 

3.2. Methamphetamine triggers stem/progenitor cells apoptosis but does not  

affect preferentially immature neurons      31



Index 

 

II 

3.3. Methamphetamine has no effect on cell proliferation    35 

3.4. Methamphetamine decreases neuronal differentiation and axonogenesis  37 

 

CHAPTER 4 – Discussion         43 

 

CHAPTER 5 – Conclusions        49 

5.1. Methamphetamine, SVZ and challenge of brain repair capacity   49 

5.2. Strategies to protect the source of stem/progenitor cells in the human adult brain 50 

 

References           53 

 

 

 

                                                                                                                                                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abbreviations 

1 

Abbreviations 

 

BrdU   5-bromo-2’-deoxyuridine 

DCX   doublecortin 

DNA   deoxyribonucleic acid 

DG   dentate gyrus 

EGF    epidermal growth factor 

FGF-2   fibroblast growth factor-2 

ICC   immunocytochemistry 

JNK   c-Jun-NH2-terminal kinase 

NeuN   neuronal nuclear protein 

METH  methamphetamine 

P-SAPK/JNK phosphorylated form of stress activated protein kinase/c-Jun-NH2-

terminal kinase 

PFA   paraformaldehyde 

PI   propidium idodide 

SFM   serum-free culture medium 

SGZ   subgranular zone 

SOX-2  sex-determining region Y related high-mobility box gene 2 

SVZ   subventricular zone 

TUNEL  terminal deoxynucleotidyl transferase dUTP nick-end labelling 

ZVAD   z-Val-Ala-DL-Asp (OMe)-fluoromethylketone 
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Abstract 

 

Methamphetamine (METH) is a highly toxic and addictive psychostimulant 

widely consumed over the world which constitutes the second drug most abused after 

cannabis. METH abusers show brain abnormalities in function and in structure. 

Moreover, impairment in memory often observed in METH abusers suggests that, 

besides the toxic effect, METH may also alter neurogenesis. The born of new neurons 

takes place in the adult mammalian brain, including in humans. Indeed, hippocampal 

neurogenesis is associated with improved capacity to memorize. Accordingly, in 

animals injected with METH, the proliferation and genesis of granule cells are 

decreased in the dentate gyrus of the hippocampus and might account for the decrease 

in memory function observed in METH users.  

The subventricular zone (SVZ) is the major neurogenic site of the mammalian 

brain and contains stem cells. New neurons produced in the SVZ migrate through the 

rostral migratory stream and add to the olfactory bulb. After differentiation into 

interneurons, the new added cells improve olfactory function. Interestingly, following 

several brain damages, such as ischemia, epilepsy, head trauma, neuronal and glial cells 

degeneration, proliferation increases in the SVZ. Newborn cells are able to migrate out 

of the SVZ towards injured site. The SVZ represents a major pool of repairing cells in 

the adult brain. However, little is known about the effect of METH on SVZ stem cells 

dynamic and neurogenesis.  

We undertook this work in order to disclose the effects of METH on 

neurogenesis in SVZ cultures. SVZ neurospheres were cultured from early postnatal 

mice and subjected to growing doses of METH while in free floating or 48 hours 

following plating. We observed that METH at concentrations of and above 100 µM 

increases cell death by both necrosis and apoptosis in 24 hours treated cultures. 

Moreover, METH does not preferentially trigger the death of doublecortin neuroblasts. 

However, stem/progenitor cells expressing SOX2 are sensitive to the toxic effect of 

METH. At the non-toxic concentration of 1 µM, METH does not affect cell 

proliferation as assessed by the BrdU incorporation assay. However, the number of 
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NeuN-positive neurons decreases, as well as P-JNK-dependent axonogenesis in cultures 

treated with 1 µM METH for 7 days and 6 hours, respectively. 

In conclusion, our results show that METH is toxic to SVZ cells and reduces 

neuronal differentiation and maturation at non toxic concentrations.  
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Resumo 

 

A metanfetamina é um psicoestimulante muito tóxico e viciante consumido no 

mundo inteiro, sendo a segunda droga mais consumida a seguir à cannabis. Os 

consumidores de metanfetamina demonstram alterações significativas na função e na 

estrutura do cérebro. Além disso, o défice de memória frequentemente observado nos 

consumidores de metanfetamina sugere que, para além do seu efeito tóxico, a 

metanfetamina poderá alterar a neurogénese. A produção de novos neurónios ocorre no 

cérebro adulto de mamíferos, incluindo nos humanos. No hipocampo, a neurogénese 

está associada à capacidade de memorização. Estudos comprovam que em animais 

injectados com metanfetamina, a proliferação e a génese de células granulares no giro 

dentado do hipocampo diminuem, o que provavelmente contribui para o decréscimo da 

memória observado nos consumidores de metanfetamina.  

A zona subventricular (ZSV) é a principal região neurogénica no cérebro dos 

mamíferos e contém células estaminais. Novos neurónios produzidos na ZSV migram 

através da via rostral migratória e chegam ao bolbo olfactivo. Depois de se 

diferenciarem em interneurónios, as células recém-chegadas melhoram a função 

olfactiva. É interessante referir que após haver danificação do cérebro, como em 

situações de isquémia, epilepsia, trauma cerebral, degeneração de neurónios ou células 

da glia, a proliferação aumenta na ZSV. As células recém-nascidas abandonam a ZVS e 

migram em direcção ao local lesado. A ZSV representa a maior fonte de células com 

potencial reparador no cérebro adulto. Contudo, o conhecimento acerca dos efeitos da 

metanfetamina na neurogénese e dinâmica das células estaminais da ZSV é reduzido. 

 Este trabalho foi realizado com o propósito de estudar os efeitos da 

metanfetamina na neurogénese em culturas celulares da ZSV. Para tal, culturas de 

neurosferas da ZSV foram obtidas a partir de ratinhos recém-nascidos e expostas a 

doses crescentes de metanfetamina em condições de suspensão ou aderentes a lamelas 

durante 48 horas. Desta forma, observámos que a metanfetamina induz morte celular 

por necrose e apoptose em culturas tratadas durante 24 horas, para concentrações iguais 

ou maiores que 100 µM. Além disso, demonstrou-se ainda que a metanfetamina não 

afecta preferencialmente os neuroblastos. No entanto, as células estaminais ou 
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progenitoras que expressam o factor de transcrição SOX2 são sensíveis ao efeito tóxico 

da metanfetamina. Relativamente à proliferação, avaliada pelo ensaio de incorporação 

de BrdU, observámos que a concentrações não tóxicas de 1 µM a metanfetamina não 

exerce qualquer efeito. Porém, o número de neurónios marcados com NeuN diminui, 

assim como a axonogénese dependente da fosforilação da JNK em culturas expostas a 1 

µM de metanfetamina durante 7 dias e 6 horas, respectivamente. 

 Em conclusão, os resultados obtidos demonstram que a metanfetamina é tóxica 

para as células da ZSV e reduz a diferenciação e maturação neuronial a concentrações 

não tóxicas. 
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CHAPTER 1 

 

Introduction 

 

 

1.1. Methamphetamine as a highly toxic drug of abuse 

 

Methamphetamine (METH) is a potent addictive psychostimulant that has dramatic 

effects on the central nervous system (CNS), and widely abused for its ability to 

increase wakefulness and physical activity as well as to decrease appetite (Fleckenstein 

et al., 2007). According to the World Health Organization (http://www.who.int/en), the 

abuse of amphetamines has become an international public health problem with an 

estimated 35 million users worldwide, a total which exceeds the number of people who 

abuse heroin and cocaine. Indeed, methamphetamine constitutes the second most widely 

abused drug after cannabis (Hamamoto et al., 2009). Importantly, it is estimated that 

methamphetamine consumption is around 16 million people prevailing upon 

amphetamine use (United Nations 2007 World Drug Report; Fig. 1.1). 

 

 

Figure 1.1. Prevalence of methamphetamine, amphetamines and other 
amphetamines and diverted licit amphetamines use worldwide. (Adapted 
from the United Nations 2007 World Drug Report.) 
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In addition, amphetamines consumption affected 1.3% of the young adult 

Portuguese people in 2007, which was increased comparing to 2001 (Annual Report of 

the Portuguese Institute for Drugs and Dependence, 2007; Fig. 1.2).  

 

 

Figure 1.2. Prevalence of drug use in Portugal of total (right) and young 

adult (left) populations. Amphetamines consumption is indicated with an 
arrow. (Adapted from the Annual Report of the Portuguese Institute for 
Drugs and Dependence, 2007; Balsa et al., 2008.) 

 

 

It has been shown that METH induces neuronal degeneration, apoptosis and 

neuroinflammation in the brains of human abusers (Zhu et al., 2005; Sekine et al., 

2008), which is traduced in several abnormalities in brain function and structure 

observed in METH abusers (Salo et al., 2009). Additionally, cognitive impairments 

have also been observed in METH abusers on tasks that require the suppression of task-

irrelevant information (Salo et al., 2007), decision making (Paulus et al., 2003) and 

working memory (McKetin et al., 1998).  
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Figure 1.3. Molecular structures of dopamine, amphetamine, 

methamphetamine and methylenedioxymethamphetamine (MDMA). 
The three amphetamines share structural features with the neurotransmitter 
dopamine, consisting of a phenyl ring, a two-carbon side chain (represented 
in blue) and an amino group bound to carbon-2. METH differs from 
amphetamine by an additional methyl group connected to the amine that 
confers METH a lipophylic character able to cross plasmatic membranes of 
the cells. (Adapted from Fleckenstein et al., 2007.) 
 

METH is highly toxic to the brain acting through several mechanisms that 

culminate in cell death. Due to the similarity of its chemical structure to dopamine (DA) 

(Fig 1.3), METH enters to dopaminergic terminals (Iversen, 2006), inhibiting the 

reuptake of DA via the vesicular monoamine transporter 2 (VMAT-2) and reverting the 

DA transporter (DAT) of the plasmatic membrane resulting in the increase DA levels in 

both the cytoplasm and the synaptic cleft (Sulzer et al., 2005; Fig. 1.4). After its 

displacement to the cytoplasm by METH, DA rapidly auto-oxidizes to form potentially 

toxic substances including superoxide radicals, hydroxyl radicals, hydrogen peroxide 

and DA quinones (for review, see Krasnova and Cadet, 2009). These toxic compounds 

lead to the formation of reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) that lead to an increase in the levels of oxidative stress inside the cell (Sayre et 

al., 2008). Indeed ROS formation and associated oxidative stress may be involved in 

METH-related neuronal apoptosis with upregulation of death cascades (Deng and 

Cadet, 2000).  
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Figure 1.4. Scheme of the cellular and molecular events involved in DA 

terminal degeneration and neuronal apoptosis induced by METH. 

(Adapted from Krasnova and Cadet, 2009.) 

 

Glutamate (GLU) is the major excitatory neurotransmitter in the brain and is also 

a key player of adult neurogenesis. METH increases glutamate levels in the mammalian 

brain, leading to the hyperactivation of ionotropic receptors, such as N-methyl-D-

aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors. Consequently, there is an increase in the levels of intracellular 

calcium and activation of nitric oxide synthase (NOS) which induces the formation of 

RNS and ROS present in the cytoplasm (Hendrickson et al., 2006; Cadet et al., 2007), 

leading non-exhaustively to DNA, protein and lipid oxidation and cytoskeletal damage 

(Davidson et al., 2001; Quinton et al., 2006). Moreover, since METH is a small and 

lipophylic molecule, it enters directly the cell acting on several organelles. Some 

evidences suggest that METH leads to an increase in the intracellular calcium 

concentrations which, in turn, alters the mitochondrial permeability transition pore 

(PTP) and results in mitochondria disruption, depletions in ATP levels and necrosis 
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(Davidson et al., 2001). Moreover, when METH enters the mitochondria, the proton 

gradient is disrupted triggering apoptosis (Davidson et al., 2001). Some accumulated 

evidence also indicates that METH causes oxidative stress by switching the balance 

between ROS production and the capacity of antioxidant enzyme systems to scavenge 

ROS (Krasnova and Cadet, 2009) 

 Overall, the neurotoxic effects of METH may contribute to the cognitive deficits 

adjacent to the drug use. Indeed, METH induces apoptosis of pyramidal and 

interneurons in the cortex, dopaminergic and serotoninergic neurons as well as of 

hippocampal projection neurons of the CA1 and CA3 regions. Consistently, loss of gray 

matter is observed in METH abusers. However, neuronal death may not be the only 

outcome of METH intake. Indeed, the observation of learning and memory impairments 

in METH-intoxicated patients suggests a deleterious effect of this drug onto 

hippocampal neurogenesis (Thompson et al., 2004). 

 

1.2. Neurogenesis in the adult brain: focus on the subventricular zone 

 

For almost one century the brain was considered immutable, it was believed that 

no new neurons were generated in adult brain to replace the dead ones. However in 

1969, Joseph Altman showed for the first time that cells in the olfactory bulb, the 

subventricular zone (SVZ) and in the hippocampus incorporated radioactive thymidine, 

an indicator of cell proliferation. These cells were identified as being glial cells in the rat 

and primate brain (Privat and Leblond, 1972; Rakic, 1985). Later, neurogenesis was 

identified in the adult songbird brain: new neurons are born in the ventricular zone and 

incorporate into neuronal circuits of the high vocal centre, a telencephalic nucleus 

involved in song elaboration (Alvarez-Buylla et al., 1992). Evidence of mammalian 

neurogenesis occurred in 1992, where Reynolds and Weiss demonstrated that the SVZ 

of mouse contains a population of self-renewing and multipotent cells, displaying the 

cardinal features of stem cells described by Hall and Watt in 1989. 

Neurogenesis begins in the embryo, continues postnatally and into adult life and 

it can be defined as the process by which a population of neural stem cells generates 

new neurons. In the adult brain, neurogenesis is a process central to the generation and 

integration of new neurons into pre-existing neural circuitry, and is crucial for the 
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maintenance of brain integrity, plasticity and optimal function (Ming and Song, 2005) 

The genesis of new neurons occurs in the adult mammalian brain in two restricted areas: 

the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus and the 

subventricular zone (SVZ) located in the walls of the lateral ventricles. Both niches 

contain a population of multipotent and self-renewing neural stem/progenitor cells.  

 

1.2.1.  Neurogenesis in the dentate gyrus 

 

 In the DG, new neurons emerge from stem-like cells residing in the SGZ of the 

hippocampus, lying between the granule cell layer (GCL) and the hilus. In the SGZ, 

stem-like cells, identified as astrocytes (B cells), give rise to precursors (D cells) that 

rapidly divide and differentiate into immature granule cells (type G cells) (Doetsch, 

2003). New granule cells migrate locally to the GCL, achieve their maturation and 

functionally integrate into the pre-existing circuits, receiving inputs from the entorhinal 

cortex and sending outputs to the CA3 and hilus regions (Zhao et al., 2008; Fig. 1.5). 

Neurogenesis in the hippocampus is known to be correlated with learning and memory. 

Accordingly in rodents, stimulation of hippocampal neurogenesis through 

environmental enrichment and voluntary running increases performances in learning 

and memory tasks while pharmaceutical suppression of hippocampal neurogenesis 

impairs the capacity of learning new hippocampus-dependent tasks (for review see Zhao 

et al., 2008). 

 

 

Figure 1.5. Scheme of a coronal section of the adult mouse brain 

showing the SGZ in the dentate gyrus of the hippocampus. In the SGZ, 
progenitor cells give rise to granule cells which integrate in existing circuits 
contributing to learning and memory. (Adapted from Kaneko et al., 2009.) 
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1.2.2.  Neurogenesis in the SVZ 

 

The SVZ is located throughout the lateral wall of the lateral ventricle (Fig. 1.6) 

and  harbours the largest population of proliferating cells in the adult brain of rodents 

(Gotz and Huttner, 2005), non-human primates (Gould et al., 1999; Pencea et al., 2001) 

and humans (Bédard and Parent, 2004; Curtis et al., 2007; Sanai et al., 2004 and 2007). 

In the rodent, adult neurogenesis begins with the proliferation of SVZ neural stem cells, 

type B astrocytes, which can give rise to fast-cycling transiently proliferating precursor 

cells that are called type C precursors or progenitor cells. Type C cells, in turn, start to 

differentiate into type A neuroblasts that are immature neurons mitotically active. These 

neuroblasts migrate tangentially along the rostral migratory stream (RMS) up to the 

olfactory bulb (OB) where they drift radially to complete their maturation into neurons 

(Lois and Alvarez-Buylla, 1994; Wichterle et al., 2001). After maturation, neurons are 

able to integrate circuits in the olfactory bulb and form synapses (Lledo et al., 2006; 

Zhao et al., 2008). The new cells have morphological characteristics of granule and 

periglomerular cells and are important for odour discrimination (Doetsch et al., 1999).  

 

Figure 1.6. Scheme of coronal and sagittal section of the adult mouse 

brain showing the SVZ adjacent to the lateral ventricle. A subpopulation 
of SVZ astrocytes (B, blue) displays stem cell properties and generate 
rapidly dividing transit-amplifying cells (C, green), which differentiate into 
migrating neuroblasts (A, red) destined for the olfactory bulb. Neuroblasts 
migrate in chains travelling through tunnels formed by processes of SVZ 
astrocytes that constitute the rostral migratory stream (RMS). A specialized 
basal lamina contacts all cell types. (Adapted from Kaneko et al., 2009.) 
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1.2.3.  Notion of neurogenic niches  

 

In the SVZ and the SGZ, the microenvironment is critical for neural 

stem/progenitor maintenance and neurogenesis. Indeed, proliferation, differentiation, 

survival and migration of the stem/progenitor cells and their progeny are tightly 

regulated by diffusible factors, cell-to-cell contact including contacts with the basal 

lamina and the blood vessels (Alvarez-Buylla and Lim, 2004; Fuchs et al., 2004; Shen et 

al., 2008; for review see Riquelme et al., 2008). The neurogenic competence of the 

niches relies on the capacity of grafting neuronal progenitors into these regions to 

develop into fully mature neurons while they do not in other brain regions (Lois and 

Alvarez-Buylla, 1994; Ortega-Perez et al., 2007). 

 

1.2.4.  SVZ and brain repair 

 

Neurodegenerative disorders are generally characterized by the loss of neurons 

from specific regions of the brain. Moreover, some data in the literature demonstrate 

that neurogenesis is altered in the damaged brain (Abdipranoto et al., 2008). Namely, 

upon injury proliferation increases in the SVZ and newborn cells migrate out of the SVZ 

towards lesioned areas. In fact, when the brain is subjected to a local aggression, as in 

striatal ischemic stroke, progenitor cells are recruited from the SVZ and differentiate 

into neuroblasts that migrate to the boundary of the ischemic lesion, replacing dead 

striatal spiny neurons (Arvidsson et al., 2002; Jin et al., 2003 and 2006; Zhang et al., 

2008). Furthermore, it has been observed that following cortical injury, proliferation and 

expression of immature neuronal markers are increased in the SVZ and neuroblasts 

migrate out of the SVZ, reaching the damaged cortical territories (Faiz et al., 2008). 

Neurogenesis is also increased in the SVZ of patients suffering from Huntington’s 

disease (Curtis et al., 2003) as well as in the hippocampus of Alzheimer’s disease 

patients (Jin et al., 2004). Besides, it has been observed in the brain of patients suffering 

from multiple sclerosis that repairing potential is acquired through the production of 

myelinating SVZ-derived oligodendrocytes for the corpus callosum (Nait-Oumesmar et 

al., 2007). Overall, the accumulated data demonstrate the importance of the SVZ as a 

source of cell for brain repair. 
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1.3. Methamphetamine and neurogenesis 

 

Drugs of abuse have been shown to affect adult hippocampal neurogenesis. 

Accordingly, morphine decreases cell proliferation in the DG (Eisch et al., 2000) while 

cannabis exert the opposite in cultures of adult progenitor cells (Jiang et al., 2005). 

Moreover, it was demonstrated that self-administration of nicotine in rats decreases cell 

proliferation in the SGZ (Abrous et al., 2002).  

Concerning the psychostimulants, there is a relative consensus on the fact that 

these drugs of abuse decrease SGZ and SVZ cell proliferation (Teuchert-Noodt et al., 

2000; Yamagushi et al., 2004; Maeda et al., 2007; Noonan et al., 2008). However 

proliferation is restored to basal levels both in the SVZ and the SGZ following 

withdrawal from cocaine administration (Noonan et al., 2008). In 2008, Mandyam and 

colleagues found that intermittent (occasional access) and daily (limited and extended 

access) self-administration of METH have an impact on different aspects of 

neurogenesis, the former producing initial pro-proliferative effects and the latter 

producing downregulating effects. Regarding toxicity, METH was shown to induce cell 

death in progenitor cells cultures from embryonic rat hippocampus (Tian et al., 2009).  

Deng and co-workers (2007) found that periglomerular dopaminergic neurons generated 

in the olfactory bulb of mice are killed by METH altering olfactory processing (Deng et 

al., 2007). It is noteworthy that few studies address the effect of METH on 

neurogenesis. Among these studies, attention is mainly focused onto proliferation and 

little is known about the effect of METH onto stem/progenitor toxicity and capacity of 

neuronal differentiation. 
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1.4. Objectives 

 

Therefore, the aim of the present work was to study the effects of METH on 

SVZ neurogenesis. Despite the fact that olfactory neurogenesis does not occur in 

humans, human SVZ cells keep neurogenic properties in vitro (Sanai et al., 2004 and 

2007).  For that reason, as being a promising source of repairing cells, the effects of 

METH on SVZ neurogenesis deserve to be examined.  

We treated SVZ cultures derived form early postnatal mice brains with different 

concentrations of METH. Overall, we evaluated the effect of METH on (1) cell death: 

as METH neurotoxicity has been reported, METH may trigger cell death in the SVZ 

cultures both by apoptosis and/or necrosis; (2) cell proliferation: data of the literature 

point to a inhibitory effect of METH on proliferation, thus proliferation in SVZ cells 

challenged by METH might decrease; (3) neuronal differentiation; and (4) 

axonogenesis:  impaired neuronal functions in METH abusers suggest alteration in the 

processes of neuronal differentiation and maturation. 
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CHAPTER 2 

 

Materials and Methods 

 

 

2.1. Animal experimental procedures 

  

Experiments were performed in accordance with European Union (86/609/EEC) 

guidelines for the care and use of laboratory animals. All efforts were made to minimize 

and to reduce the numbers of animals used. 

 

2.2. Subventricular zone cell cultures 

 

SVZ cells were cultured from 0- to 3-day-old C57Bl/6 donor mice. Animals 

were sacrificed by decapitation, brains were removed and put in Hanks’ balanced saline 

solution (HBSS, Gibco®, Rockville, MD, http://www.invitrogen.com) during the 

procedures. Fragments of SVZ were dissected out from 450-µm-thick coronal brain 

sections, digested in 0.025% trypsin and 0.265 mM EDTA (Gibco) in HBSS solution, 

followed by mechanical dissociation with a P1000 pipette. The cell suspension was 

diluted in serum-free culture medium (SFM) composed of Dulbecco’s modified Eagle’s 

medium/Ham’s F-12 medium GlutaMAX-I (Gibco) supplemented with 100 U/ml 

penicillin, 100 µg/ml streptomycin, 1% B27, 10 ng/ml epidermal growth factor, and 5 

ng/ml fibroblast growth factor-2 (all from Gibco). Single cells (Fig. 2.1A) were then 

plated on uncoated Petri dishes at a density of 3 000 cells per cm2. The neurospheres 

were allowed to develop in a 95% air-5% CO2 humidified atmosphere at 37°C. Six- to 

8-day-old neurospheres (Fig. 2.1B) were adhered for 48 hours onto poly-D-lysine-

coated glass coverslips in SFM devoid of growth factors. Then, the neurospheres were 

allowed to develop for 6, 24, 48 hours or 7 days at 37°C in the absence or in the 

presence of 1 µM, 10 µM, 100 µM, 250 µM or 500 µM methamphetamine ((+)-
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Methamphetamine hydrochloride, C10H15N·HCl, from Sigma-Aldrich®, St. Louis, MO), 

as depicted in the figure 2.2. 

 

A)      B)      C) 

 

Figure 2.1. Transmission photos of SVZ cell cultures. (A) SVZ 
neurospheres were obtained from the dissociation of 0- to 3-day-old 
C57BL/6 mice SVZ explants into single cells and allowed to grow in serum 
free medium (SFM) in the presence of EGF and FGF-2.  (B) 6- to 8-day-old 
neurospheres were plated onto poly-D-lysine coated coverslips and 
incubated with SFM devoid of growth factors. (C) 48 hours of incubation in 
differentiating conditions provided the formation of a carpet of differentiated 
cells where the analyses were performed. 

 

 

 

 

Figure 2.2. Scheme for general protocol. SFM, serum-free culture 
medium; ICC, immunocytochemistry. 
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2.3. Immunocytochemistry 

 

 After fixation for 30 minutes in 4% paraformaldehyde (PFA) in phosphate-

buffered saline (PBS) at room temperature (RT), cells were permeabilized and non-

specific binding sites were blocked for 1 hour and 30 minutes with 0.25% Triton X-100 

(Sigma-Aldrich) and 6% bovine serum albumin (BSA, Sigma-Aldrich) dissolved in 

PBS. Cells were then subsequently incubated overnight at 4°C with the following 

primary antibodies: mouse monoclonal anti-neuronal nuclear protein (anti-NeuN, 1:100; 

Chemicon®, Temecula, CA, http://www.chemicon.com), rabbit polyclonal anti-

doublecortin (anti-DCX, 1:200), mouse monoclonal anti-Tau (1:500), rabbit polyclonal 

anti-phosphorylated form of stress-activated protein kinase/c-Jun-NH2-terminal kinase 

(anti-P-SAPK/JNK, 1:100; all from Cell Signaling Technology®, Danvers, MA, 

http://www.cellsignal.com) or goat polyclonal anti-SOX2 (1:100; from Santa Cruz 

Biotechnology®, Santa Cruz, U.S.A.). Thereafter, coverslips were rinsed in PBS and 

incubated for 1 hour at RT with the appropriate secondary antibodies as following: anti-

rabbit IgG labelled with Alexa Fluor 488 or Alexa Fluor 594 (1:200), anti-mouse IgG 

labelled with Alexa Fluor 488 or Alexa Fluor 594 (1:200) or anti-goat IgG labelled with 

Alexa Fluor 594 (1:200; all from Molecular Probes®, Oregon, USA). The list of 

antibodies used in immunocytochemistry is resumed below in Table I. Nuclei were 

counterstained with Hoechst 33342 (2 µg/ml in PBS containing 0.25% BSA; Molecular 

Probes). Preparations were mounted in DakoCytomation® fluorescent medium 

(DakoCytomation, CA, http://www.dakocytomation.com). 
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Table I - Antibodies used in immunocytochemistry. 

 

BrdU, 5-bromo-2’-deoxyuridine; DCX, doublecortin; P-SAPK/JNK, 
phosphorylated form of stress-activated protein kinase/c-Jun-NH2-terminal 
kinase; NeuN, neuronal nuclear protein. 
For more details see http://www.cellsignal.com, http://www.invitrogen.com, 
http://www.scbt.com. 
 
 
 

 2.4. Neuronal cell death assay 

 

Both cell death by necrosis and apoptosis were detected. The number of necrotic 

cells was measured using the propidium iodide assay (PI, 3,8-diamino-5-(3-

(diethylmethylamino)propyl)-6-phenyl phenanthridinium diiodide; from Sigma-

Aldrich). PI is a fluorescent dye that enters the cells when plasmatic membrane is 

damaged, which when exposed to blue-green light (493 nm) emits a bright red 

fluorescence (630 nm). Living cells were incubated with 3 µg/µl PI for the last 40 

minutes of the culture session that had a total duration of 24 hours (Fig. 2.2). Cells were 

fixed in 4% PFA in PBS. Thereafter, the terminal deoxynucleotidyl transferase dUTP 

Target Primary 

antibody 

Dilution Origin Secondary 

antibody 

Dilution Origin 

Mature 
neurons 

Mouse 
monoclonal 
anti-NeuN 
(MAB317) 

1:100 Cell Signaling 
Technology, 
Danvers, MA 

Alexa Fluor 
488 goat anti-
mouse IgG 
(A11001) 

1:200 Molecular 
Probes, 
Oregon, 
USA 

Migratting 
immature 
neurons 

Rabbit 
polyclonal 
anti-DCX 
(4604) 

1:200 Cell Signaling 
Technology 

Alexa Fluor 
594 goat anti-
rabbit IgG 
(A11012) 

1:200 Molecular 
Probes 

Developing 
and mature 
neurons 

Mouse 
monoclonal 
anti-Tau 
(4019) 

1:500 Cell Signaling 
Technology 

Alexa Fluor 
594 goat anti-
mouse IgG 
(A11005) 

1:200 Molecular 
Probes 

Growing 
axons 

Rabbit 
polyclonal 
anti-
SAPK/JNK 
(9251) 

1:100 Cell Signaling 
Technology 

Alexa Fluor 
488 goat anti-
rabbit IgG 
(A11008) 

1:200 Molecular 
Probes 

Stem/ 
progenitor 
cells 

Goat 
polyclonal 
anti-SOX2 
(sc-17320) 

1:100 Santa Cruz 
Biotechnology, 
Santa Cruz, 
U.S.A. 

Alexa Fluor 
594 rabbit anti-
goat IgG 
(A11080) 

1:200 Molecular 
Probes 

Dividing 
cells 

Anti-BrdU monoclonal antibody Alexa Fluor 594 conjugate 
(A21304) 

1:100 Molecular 
Probes 
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nick-end labelling (TUNEL) method was performed to detect apoptotic nuclei. The 

TUNEL method is based on the activity of the enzyme terminal transferase which 

attaches labelled nucleotides (biotin-dUTP) to the 3’-OH ends of the DNA generated 

during apoptotic-induced DNA fragmentation. Briefly, cells were permeabillized in 

0.25% Triton-X-100 and subsequently incubated in terminal deoxynucleotidyl 

transferase buffer (pH 7.5) containing terminal transferase (0.25 U/µl) and biotinylated 

dUTP (6 µM) (all from Roche Diagnosis®, Mannheim, Germany) for 1 hour at 37°C. 

Enzymatic reaction was stopped by incubating the cells in TB buffer (300 mM NaCl: 30 

mM sodium citrate). The biotinylated dUTPs were revealed by fixation of Fluorescein 

Avidin D (1:100; from Vector Laboratories®, Burlingame, CA) for 30 minutes. Nuclei 

counterstaining and mounting were performed as described previously. Moreover, in 

order to confirm the pro-apoptotic effect of METH observed by the TUNEL assay, cells 

were incubated with a specific general caspase, z-Val-Ala-DL-Asp (OMe)-

fluoromethylketone (ZVAD, 20 mM; Calbiochem®, California, USA). ZVAD was 

diluted in 1:800 DMSO to obtain a final concentration of 25 µM.  

 

2.5. Progenitor cell death assay  

 

Quantification of progenitor cells death was performed in 4-5 day-old 

neurospheres, treated for the last 24 hours of the culture session in the absence (control) 

or the presence of 250 µM of METH, dissociated using a P1000 pipette and adhered to 

SuperFrost® Plus glass slides (Thermo Scientific®, Menzel GmbH & Co KG®, 

Braunscheweig, Germany; http://www.menzel.de) by centrifugation (425g/2000 rpm, 5 

min; Cellspin I®, Tharmac GmbH®, Waldsoms, Germany; http://www.tharmac.de). 

Cells were then fixed with 4% PFA in PBS for 30 minutes, and further labelled with the 

transcription factor SOX2. Subsequently, TUNEL assay was performed and nuclei 

counterstaining was performed as described previously. The treatments applied to the 

cells are summarized in the following timeline (Fig. 2.3). 
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Figure 2.3. Scheme for experimental protocol. After dissociation of SVZ 
explants into single cells, the cells were allowed to grow in serum free 
medium (SFM) in the presence of EGF and FGF-2 for 4 to 5 days. To 
evaluate cell death in stem/progenitor cells, treatments were applied for 24 
hours on free-floating neurospheres before fixation.  

 

2.6. Proliferation Assay 

 

5-Bromo-2’-deoxyuridine (BrdU, 10 µM; Sigma-Aldrich) was added in the last 

4 hours of the culture session that had a total duration of 48 hours (Fig. 2.2). BrdU is a 

thymidine analogue that is incorporated in the DNA of cells in the S-phase of the cell 

cycle. BrdU was then unmasked following successive passages in 1% Triton X-100 for 

30 minutes, ice-cold 0.1 N HCl for 20 minutes, and finally 2 N HCl for 40 minutes at 

37°C. After that, acid was neutralized by incubating the cells with borate buffer (0.1 M 

Na2B4O7·10H2O, pH 8.5) for 15 minutes at RT. Subsequently, coverslips were rinsed in 

PBS and non-specific binding sites were blocked with 3% BSA (Sigma-Aldrich) and 

0.3% Triton X-100 in PBS for 30 minutes at RT. Cells were then incubated with the 

anti-BrdU monoclonal antibody Alexa Fluor 594 conjugate (1:100; from Molecular 

Probes) in PBS containing 0.3% BSA (Sigma-Aldrich) and 0.3% Triton-X100 for 1 

hour and 30 minutes at RT and left overnight at 4°C. After rinsing the coverslips, nuclei 

counterstaining and mounting were performed as described previously. 

 

2.7. Data analysis and Statistics  

 

Transmission images were took using a Zeiss®/P.A.L.M. Laser Dissecting 

Microscope and fluorescent images were recorded using a LSM 510 Meta® confocal 

microscope or an Axioskop 2 Plus® fluorescent microscope (all from Carl Zeiss®, 

Göttingen, Deutschland). Except for the progenitor cell death assay for which 

Proliferative conditions 
SFM + EGF + FGF-2 
Without poly-D-lysine 

D0 D4-5 

PFA 4% 
SOX2 ICC and 
TUNEL assay 

250 µM 

METH 

D5-6 
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measurements were achieved in a monolayer of dissociated cells, measurements were 

performed at the border of the neurospheres, where migrating cells emerged, forming a 

dense cell monolayer. Each experimental condition was assayed in two or three 

different wells. Except where otherwise specified, the experiments were duplicated. 

Percentages of BrdU- and NeuN-immunoreactive cells, as well as TUNEL and/or PI 

labelled cells were derived from cells counted in five independent microscopy fields in 

each coverslip with a ×40 objective (approximately 200 cells per field). Percentages of 

the numbers of DCX-immunoreactive and TUNEL labelled cells were derived from 

cells counted in ten independent microscopy fields in each coverslip with a ×40 

objective (approximately 200 DCX-immunoreactive cells per coverslip). Percentages of 

the numbers of SOX2-immunoreactive and TUNEL labelled cells were derived from 

cells counted in dissociated neurospheres adhered to a microscope slide (in a density of 

200 to 300 SOX2-immunoreactive cells per coverslip). Cells were counted in two 

different slides for each condition from two different cultures. Quantifications of P-

SAPK/JNK-positive nuclei at 6 hours were done in two independent cultures in at least 

20 non-overlapping fields (magnification, ×400). Measurements of total length (µm) of 

the ramifications and quantification of the number of ramifications per neurosphere 

were done in approximately 20 non-overlapping fields in each coverslip using digital 

images (two coverslips from two different cultures). Percentages of statistical 

significance were determined using two-tailed Student’s t test for comparison between 

two groups and one-way ANOVA analysis of variance for comparison between more 

than two groups followed by Dunnett’s multiple comparison test or Bonferroni’s 

multiple comparison test to compare groups to control or pairs of groups, respectively. 

All data are presented as means ± SEM (standard error of the mean). Statistical 

significance level was set for p values < 0.05. 
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CHAPTER 3 

 

Results 

 

 

3.1. Methamphetamine exerts toxic effects in SVZ cell cultures 

 

To investigate the effect of METH, single cells obtained from 6-8 day-old 

primary neurospheres, were incubated in the absence (control) or the presence of 1 µM 

and 250 µM of METH and secondary neurospheres were allowed to develop for 4 days 

(Fig. 3.1). At the end of the culture session, round shaped neurospheres presenting a 

diameter of 100 to 300 µm are found in the control cultures (Fig. 3.2A). METH at 1 µM 

seemingly has no effect on neurosphere development as cultures display a similar aspect 

comparing to the control cultures (Fig. 3.2B). However, neurospheres appeared 

shrunken and in a lesser density in cultures treated with 250 µM METH. Moreover, 

cellular debris was often observed in the 250 µM METH treated cultures (Fig. 3.2C). 

These observations allow us to conclude that METH, at 250 µM but not at 1 µM, 

impairs neurosphere development and cellular viability.  

 

 

 

 

Figure 3.1. Scheme for experimental protocol. 
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 A)                 B)                 C)  

     

 

Figure 3.2. Transmission photos for culture growth. (A) Representative 
transmission photos of SVZ neurospheres cultured in the absence (control) 
(B) or presence of 1 µM (C) or 250 µM of methamphetamine. 

 

To disclose whether METH is toxic for SVZ cells, 6-8 day-old neurospheres 

were adhered for 48 hours on poly-D-lysine coated coverslips and then treated for 24 

hours with 1 to 500 µM of METH. Propidium iodide (PI) is added for the last 40 min of 

the culture session. Cells are then fixed with PFA 4% in PBS and proceeded for 

TUNEL staining to reveal apoptotic cell nuclei (Fig. 3.3A). As described by Kelly and 

collaborators (2003), necrotic cells and apoptotic cells can be visualized and 

discriminated using the TUNEL reaction sequentially to PI uptake assay. During 

necrosis upon an injury, cells swell and their plasmatic membrane eventually ruptures. 

PI binds to double-stranded DNA, but it can only enter the cells when plasmatic 

membrane is damaged, so cells in necrosis or in late apoptosis uptake PI. Apoptosis or 

programmed cell death relies in the fragmentation of the chromatin. The TUNEL 

staining labels specifically the apoptotic cells as it consists in the addition of labelled 

dUTPs to the free DNA ends generated by activated endonucleases during the apoptotic 

cycle. In this way, apoptotic cells present TUNEL-positive nuclei and in the case of 

cells being in late apoptosis they are also PI-positive. Confocal photos depict PI (red) 

and TUNEL (green) staining in control and 250 µM treated cultures (Fig. 3.3B). For 

clarity, in these figures only some examples of each type of nuclear staining are 

labelled. 

Total cell death is evaluated by counting of both PI- and TUNEL-positive cells 

and expressed as percentages of total cells stained with Hoechst 3342. As represented in 

figure 3.3C, METH induces cell death in SVZ cell cultures in a concentration-

dependent manner. No effect of METH was observed at a concentration of 1 µM and 10 

100 µm 
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µM. In control, the level of cell death is around 15% according to basal cell death 

inherent to SVZ cultures (Control: 14.42 ± 0.37%, METH: 1 µM: 15.48 ± 1.03%, 10 

µM: 15.87 ± 0.68%, 100 µM: 19.83 ± 1.68%, 250 µM: 20.93 ± 1.37%, 500 µM: 23.02 ± 

1.48%; Fig. 3.3C). 
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Figure 3.3. Methamphetamine induces cell death in SVZ cell cultures. 
(A) Scheme for experimental protocol. (B) Representative confocal photos of 
cell nuclei in SVZ cell cultures maintained for 24 hours in the absence 
(control) or presence of 250 µM METH, labelled for TUNEL (green) and PI 
(red). (C) Bar graph depicts the numbers of dead cells that are PI-positive 
and/or TUNEL-positive cells, expressed as percentages of the total number 
of nuclei per culture, in treated and non-treated cultures. Data are expressed 
as a mean ± SEM (n = 2 independent experiments). ** p < 0.01 using one-
way ANOVA analysis of variance followed by Dunnett’s multiple 
comparison test for comparison with SVZ control cultures. ea, early 
apoptosis; la, late apoptosis; n, necrosis. PI, propidium iodide; TUNEL, 
terminal deoxynucleotidyl transferase dUTP nick-end labelling. 

 

Necrosis is induced by METH only at the highest concentration, while at lower 

concentrations of METH levels of necrosis remained close to control (Control: 4.98 ± 

0.50%; METH: 1 µM: 4.80 ± 1.12%, 10 µM: 6.93 ± 0.51%, 100 µM: 6.56 ± 1.13%, 250 

µM: 6.81 ± 0.59%, 500 µM: 10.69 ± 1.58%; Fig. 3.4A).  

METH triggers apoptosis from 100 to 250 µM, while at the highest 

concentration no effect on apoptosis was observed (Control: 9.44 ± 0.54%, METH: 1 

µM: 10.67 ± 1.45%, 10 µM: 8.94 ± 0.93%, 100 µM: 15.50 ± 1.37%, 250 µM: 14.61 ± 

1.40%, 500 µM: 11.65 ± 1.51%; Fig. 3.4B). Activation of caspases is a biochemical 

hallmark of apoptosis. Caspases are intracellular proteases that propagate programmed 

cell death (apoptosis) and other biological processes. Studies on substrate specificity, 

prodomain structure and biological function have revealed that caspases are activated 

during apoptosis in a self-amplified cascade (Pop and Salvesen, 2009). To confirm that 
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METH triggers apoptosis in SVZ cell cultures, the specific general caspase inhibitor z-

Val-Ala-DL-Asp (OMe)-fluoromethylketone (ZVAD) was added to the control cultures 

and also to the cultures treated with 250 µM. A decrease in the numbers of TUNEL 

labelled cells was observed in SVZ cultures treated only with ZVAD, as compared to 

the control cultures, consistent with the blocking of basal apoptosis. In METH treated 

cultures, ZVAD prevented the increase in TUNEL-positive nuclei confirming that 

METH triggers apoptosis (250 µM + ZVAD: 5.74 ± 1.16%, ZVAD: 5.26 ± 0.40%; Fig. 

3.4B). Moreover, as ZVAD was diluted in DMSO, as described previously in section 

2.4, no toxic effect was induced by DMSO (DMSO: 9.05 ± 0.38% for two independent 

experiments), as in accordance to the described by Bernardino and collaborators (2008).  
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Figure 3.4. (A) METH induces necrosis in SVZ cell cultures. Bar graph 
depicts the numbers of PI-positive and TUNEL-negative cells, expressed as 
percentages of the total number of nuclei per culture, in treated and non-
treated cultures. (B) METH triggers apoptosis in SVZ cell cultures, which 

is prevented by the administration of ZVAD, a specific general caspase 
inhibitor. Bar graph depicts the numbers of TUNEL-positive cells, 
expressed as percentages of the total number of nuclei per culture, in treated 
and non-treated cultures. Data are expressed as a mean ± SEM (n = 2 
independent experiments). * p < 0.05, ** p < 0.01 using one-way ANOVA 
analysis of variance followed by Dunnett’s multiple comparison test for 
comparison with SVZ control cultures; °°° p < 0.001 using one-way 
ANOVA analysis of variance followed by Bonferroni’s multiple comparison 
test for comparison with SVZ cultures treated with 250 µM of METH for 24 
hours. ZVAD, z-Val-Ala-DL-Asp (OMe)-fluoromethylketone. 
 

 

3.2. Methamphetamine triggers stem/progenitor cells apoptosis but does not 

affect preferentially immature neurons 

  

We then determined which cellular populations were targeted by METH-induced 

toxicity. To investigate whether METH triggers apoptosis in stem/progenitor cells, 4-5 

day-old neurospheres were treated for 24 hours with 250 µM METH, dissociated into 

single cells and adhered to microscope slides by centrifugation in a cytospin. After 
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SOX2 TUNEL Merged 

50 µm 

fixation with PFA 4% in PBS, cells were proceeded for SOX2 immunocytochemistry 

and TUNEL staining (Fig. 3.5A). Fluorescence photos depict SOX2-positive 

stem/progenitor cells and TUNEL-positive cells in control and METH treated cultures. 

As expected, more TUNEL-positive cells are present in METH treated cultures (Fig. 

3.5B). The total numbers of SOX2- and TUNEL-positive cells were counted and 

represented as percentages of total SOX2-immunoreactive cells. METH increases the 

number of SOX2- and TUNEL-positive cells while comparing to the control cultures, 

indicating that METH is toxic for stem/progenitor cells (Control: 0.41 ± 0.16%, 250 µM 

METH: 1.78 ± 0.14%; Fig. 3.5C). 
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Figure 3.5. METH induces death of stem/progenitor cells in SVZ cell 
cultures. (A) Scheme for experimental protocol. (B) Representative 
fluorescence photos of SVZ cell nuclei in SVZ cell cultures maintained in 
suspension for 24 hours in the absence (control) or in the presence of 250 µM 
METH and labelled for TUNEL (green) and SOX2 (red). Cellular nuclei are 
stained with Hoechst 33342 (blue). (C) Bar graph depicts the numbers of 
SOX2-positive and TUNEL-positive cells, expressed as percentage of SOX2 
labelled cells, in control cultures and in cultures exposed to 250 µM METH for 
24 hours. Data are expressed as a mean ± SEM (n = 2 independent 
experiments). ** p < 0.01 using the unpaired student’s t test for comparison 
with SVZ control cultures. 

 

To determine whether the immature neurons were targeted by METH-induced 

toxic effects, SVZ cell cultures adhered for 48 hours on poly-D-lysine were incubated 

for 24 hours with 250 µM METH and proceeded for TUNEL staining and doublecortin 

(DCX) immunolabelling (Fig. 3.6A). DCX is a microtubule-associated protein that is 

exclusively expressed in post-mitotic neurons during periods of migration, and 

therefore, migrating immature neurons can be detected using DCX immunofluorescence 

(Gleeson et al., 1999). Representative photos of the DCX-immunoreactive immature 

neurons are represented below (Fig. 3.6B-C). The number of DCX- and TUNEL-

positive cells were counted and expressed as percentages of total DCX-positive cells. 

No differences in the numbers of DCX- and TUNEL-positive cells were observed in the 

cultures, although an increase in total cell death was visible when comparing treated to 

non-treated cultures (Control: 5.18 ± 0.44%, 250 µM METH: 6.48 ± 0.88%; Fig. 3.6D).   
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Figure 3.6. METH-induced toxic effects do not preferentially affect 

immature neurons. (A) Scheme for experimental protocol. (B) 

Representative confocal photos of DCX-stained immature neurons in SVZ 
cell cultures in the absence (control) or presence of 250 µM METH, labelled 
for TUNEL (green) and DCX (red). (C) Representative fluorescence photo of 
DCX-stained immature neurons colocalized with TUNEL labelling in SVZ 
cell cultures treated with 250 µM METH. (D) Bar graph depicts the numbers 
of DCX-positive and TUNEL-positive cells, expressed as percentages of 
DCX labelled cells, in treated and non-treated cultures. Data are expressed as 
a mean ± SEM (n = 2 independent experiments). DCX, doublecortin. 

 

3.3. Methamphetamine has no effect on cell proliferation 

 

To investigate the effect of METH on cell proliferation 6-8 day-old neurospheres 

were adhered for 48 hours on poly-D-lysine and treated with METH at a concentration 

of 1, 10, 100, 250 or 500 µM. For the last 4 hours of the culture session, with a total 

duration of 48 hours, the thymidine analogue 5-bromo-2’-deoxyuridine (BrdU) was 

added to the cultures (Fig. 3.7A). The numbers of BrdU-immunoreactive cells were 

counted and expressed as percentages of the total number of nuclei. A decrease in the 

numbers of BrdU-positive nuclei was observed in the cultures treated with 100, 250 and 

500 µM METH. However, since at these concentrations METH was found to be toxic 

for the cells, as described previously in section 3.1 (Fig. 3.3C), the decrease in BrdU 

incorporation is rather due to cell death than to an inhibition of proliferation. 

Additionally, at non-toxic concentrations, no differences in the numbers of BrdU-



Results 

36 

positive cells were observed as compared to control, which led to conclude that METH 

does not affect cell proliferation (Control: 8.63 ± 0.69; METH: 1 µM: 8.10 ± 1.06%, 10 

µM: 7.89 ± 0.74%, 100 µM: 5.89 ± 0.33%, 250 µM: 5.18 ± 0.58%, 500 µM: 4.72 ± 

0.93%; Fig. 3.7B). 
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Figure 3.7. METH decreases BrdU incorporation in SVZ cell cultures. 
(A) Scheme for experimental protocols. (B)  Bar graph depicts the numbers 
of BrdU-positive, expressed as percentages of total number of nuclei per 
culture, in treated and non-treated cultures. Data are expressed as a mean ± 
SEM (n = 2 independent experiments). * p < 0.05, ** p < 0.01 using one-way 
ANOVA analysis of variance followed by Dunnett’s multiple comparison 
test for comparison with SVZ control cultures. BrdU, 5-bromo-2’-
deoxyuridine. 
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3.4. Methamphetamine decreases neuronal differentiation and axonogenesis 

 

To investigate the effect of METH on neuronal differentiation, SVZ 

neurospheres adhered for 48 hours onto poly-D-lysine-coated coverslips were incubated 

for 7 days in the absence (control) or presence of non-toxic concentrations of METH 

(Fig. 3.8A). At the end of the culture session, mature neurons expressing the nuclear 

marker NeuN were labelled as illustrated below (Fig. 3.8B). The numbers of NeuN-

positive cells were counted and expressed as percentages of total cells. METH at 1 and 

10 µM significantly decreases the numbers of NeuN neurons as compared to control 

cultures, suggesting that METH, at a non-toxic concentration, impairs neuronal 

differentiation in SVZ cell cultures (Control: 10.72 ± 1.61%, METH: 1 µM: 7.00 ± 

0.40%, 10 µM: 6.81 ± 0.75%; Fig. 3.8C).  
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Figure 3.8. METH decreases neuronal differentiation in SVZ cell 

cultures. (A) Representative confocal photos of SVZ cell nuclei in SVZ cell 
cultures in the absence (control) or presence of 1 µM or 10 µM METH and 
labelled for NeuN (red). (B) Bar graph depicts the numbers of NeuN-positive 
cells, expressed as percentages of the total number of nuclei per culture, in 
treated and non-treated cultures. Data are expressed as a mean ± SEM (n = 2 
independent experiments). * p < 0.05 using one-way ANOVA analysis of 
variance followed by Dunnett’s multiple comparison test for comparison 
with SVZ control cultures. NeuN, neuronal nuclear protein. 

 

We then determined whether METH alters neuronal maturation, precisely 

whether METH affects neurite outgrowth and especially axonogenesis. The neuronal 

maturation goes through different stages in which a critical transition in neuron 

development is the formation of the axon. Oliva and collaborators (2006) showed that 

the phosphorylation of the stress-activated kinase (SAPK), also called c-Jun-NH2-

terminal kinase (JNK) is required for axonogenesis. They demonstrated that the 

phosphorylated form of JNK (P-JNK) is enriched in the developing axon and that the 

inhibition of JNK selectively prevents axon formation. Given this, immunolabelling of 

P-JNK-positive ramifications constitutes a reliable method to study and detect 

axonogenesis and neurite outgrowth. Moreover, previous studies performed in our 

laboratory showed a robust P-SAPK/JNK immunoreactivity in growth-cone like 

projections and in neurites emerging from the neurospheres in SVZ cultures treated for 

6 hours with pro-neurogenic factors (Agasse et al., 2008; Bernardino et al., 2008).   
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To investigate the effect of METH on axonogenesis, 6-8 day-old SVZ 

neurospheres were adhered for 48 hours onto poly-D-lysine coated coverslips and 

incubated with a non-toxic concentration of METH for 6 hours (Fig. 3.9A). Growing 

axons were labelled with the rabbit polyclonal anti-phosphorylated form of stress-

activated protein kinase (anti-P-SAPK)/c-Jun-NH2-terminal kinase (JNK) antibody. To 

ascertain that P-SAPK/JNK localization was associated with axons, double labelling 

immunocytochemistry was performed to visualize both P-SAPK/JNK and tau, a 

microtubule-associated protein that induces bundling and stabilization of axonal 

microtubules, found in developing and mature neurons (Jiménez-Mateos et al., 2006; 

Hong et al., 2008). A representative confocal photo of a non-treated SVZ cell culture 

illustrates a tau- and P-SAPK/JNK-positive developing axon (Fig. 3.9B). A diffuse P-

SAPK/JNK staining throughout the cytoplasm was observed in the control cultures and 

also in the treated cultures. In the SVZ cell cultures treated with METH was observed a 

reduced branching of neuronal processes, and interestingly no clear distinction of an 

axon-like process could be observed since neurites were almost equal in length. 

Axonogenesis was evaluated by quantification of the total length of tau- and P-

SAPK/JNK-positive ramifications per neurosphere and also the total numbers of 

ramifications per neurosphere. For a non-toxic concentration METH decreased the total 

length of ramifications per neurosphere in SVZ cell cultures (Control: 228.70 ± 23.49 

µm, 1 µM METH: 123.90 ± 20.20 µm; Fig. 3.9C). A non-significant decrease in the 

total numbers of ramifications per neurosphere in the treated SVZ cell cultures was 

observed (Control: 2.01 ± 0.11, 1 µM METH: 1.28 ± 0.30; Fig. 3.9D). Hence, METH 

impairs the formation of new axons. 
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Figure 3.9. (A) Scheme for experimental protocol. (B) Representative 
confocal photo of non-treated SVZ cells labelled for P-SAPK/JNK (green) 
and Tau (red). (C) METH decreases axonogenesis. Bar graph depicts the 
total length of ramification (µm) per neurosphere in treated and non-treated 
cultures. (D) Bar graph depicts the total numbers of ramifications per 
neurosphere in treated and non-treated cultures. Data are expressed as a mean 
± SEM (n = 2 independent experiments). * p < 0.05 using the unpaired 
student’s t test for comparison with SVZ control cultures. P-SAPK/JNK, 
phosphorylated form of stress-activated protein kinase/ c-Jun-NH2-terminal 
kinase. 
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CHAPTER 4 

 

Discussion 

 

 

The main objective of this work was to study in vitro the toxic effects of 

methamphetamine (METH) on subventricular zone (SVZ) neurogenesis in murine SVZ 

cell cultures and to unveil some of the underlying mechanisms. 

As the majority of the reports upon METH point to a toxic effect of the drug, we 

first investigated cell survival in SVZ cultures challenged with METH.  As described by 

Kelly and collaborators (2003), cell death by necrosis and apoptosis can be 

discriminated thank to the use of the propidium iodide uptake and the TUNEL staining. 

Using these specific assays, we found that METH induces cell death in SVZ cell 

cultures in a concentration-dependent manner both by necrosis and apoptosis. METH 

causes necrosis in the SVZ cell cultures at 500 µM, the highest concentration tested. 

However, in this situation, we observed that the levels of apoptosis remained close to 

control, which is probably due to the outcome of massive necrosis. In fact, at this high 

toxic concentration cells are killed rapidly and do not enter in apoptosis. Nevertheless, 

for the rest of the concentrations tested apoptosis prevails upon necrosis. Moreover, we 

demonstrated that METH specifically triggers apoptosis as the pro-apoptotic effect is 

prevented by the addition of the general specific caspase inhibitor ZVAD to the SVZ 

cell cultures treated with a toxic concentration of METH. In accordance, Zhu and 

collaborators showed an increase in the number of TUNEL-positive cells in the striatum 

of mice, as well as an increase in the death of striatal projection neurons, cholinergic 

and GABA-parvalbumin interneurons (Zhu et al., 2005 and 2006). Additionally, in an 

acute model of METH-induced neurotoxicity, where mice were injected with a single 

dose in the olfactory bulb, Deng and coworkers (2007) showed an increase in the 

TUNEL-positive neurons together with an increase in the levels of the pro-apoptotic 

proteins Bax and Bid and a decrease in the levels of the anti-apoptotic protein Bcl-2 in 

the olfactory bulb. 
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METH was proved to be toxic to different brain regions and cell populations. It 

is well known that this drug induces loss of pyramidal neurons and interneurons in the 

cortex and also damages the dopaminergic and serotoninergic neurons, as well as the 

projection neurons form the CA3 and CA1 regions of the hippocampus (for review, see 

Krasnova and Cadet, 2009). Moreover, in the present study, we also discriminated 

which cellular populations were affected by the drug. Indeed, SVZ cultures are 

heterogeneous and composed of neurons, astrocytes, oligodendrocytes and 

stem/progenitor cells in different maturation stages. We disclosed a putative selective 

toxicity of METH towards stem/progenitor cells (expressing SOX2) and neuroblasts 

(labelled for DCX). METH triggers stem/progenitor cell death, however, the number of 

DCX- and TUNEL-double-positive cells in METH treated and non-treated cultures are 

similar indicating that METH does not selectively kills immature neurons. To date, no 

studies report a preferential METH-induced toxic effect on SVZ stem/progenitor cells. 

A non significant increase in the TUNEL-positive immature neurons co-expressing 

DCX was found in this investigation. In accordance, Mandyam and co-workers (2008) 

showed no effect of METH intake on DCX-immunoreactive cells of rat SGZ. In 

addition, a study with the psychostimulant cocaine revealed that cocaine self-

administration in rats do not decrease the numbers of immature neurons labelled with 

DCX in the SGZ (Noonan et al., 2008).  

According to our and other data, it is clear that METH is toxic, but the 

mechanisms of METH-induced toxicity in SVZ cells are not yet known. Indeed, there 

are several questions raised by the present study that will be answered in a near future 

project. Even though, a lot of knowledge was already achieved concerning the 

mechanisms of METH-induced cell death in other models and rely mainly on dopamine, 

glutamate and calcium deregulation (for review see Krasnova and Cadet, 2009). As a 

lipophylic molecule, METH diffuses into the cells leading to a highly increase of 

intracellular calcium resulting in mitochondria disruption that can outcome in depletions 

in the levels of ATP and further necrosis (Li et al., 2008). Indeed, METH penetrates into 

intracellular organelles, like mitochondria, dissipating the electrochemical gradient 

which leads to cell apoptosis (Davidson et al., 2001). In specific, lost of the 

mitochondria membrane potential results in the release of mitochondrial proteins such 

as cytochrome c, apoptosis-inducing factor (AIF) and Smac/Diablo that initiate 
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apoptosis (Jayanthi et al., 2004; for review see Krasnova and Cadet, 2009). Of note, 

necrosis and apoptosis can occur in combination or sequentially, rarely the processes 

occur alone (Davidson et al., 2001). Additionally, METH decreases levels of anti-

apoptotic proteins Bcl-2, Bcl-XL while increasing pro-apoptotic Bax, Bad and Bid 

(Jayanthi et al., 2001; Deng et al., 2002).  

In addition to mitochondrial dysfunction, METH toxicity is caused by the rapid 

and excessive release of dopamine (DA). METH enters dopaminergic neurons and 

provokes the release of DA from the synaptic vesicles into cytoplasm and by reverse 

transport into the synaptic cleft. Shortly after administration, METH dramatically 

increases DA levels (Brown et al., 2000). In the cytoplasm, DA rapidly auto-oxydizes to 

form toxic substances, such as superoxide radicals, hydroxyl radicals, hydrogen 

peroxide and DA quinones. Moreover, via activation of the DA receptors, METH may 

contribute to cell death. Indeed, antagonists for D1 (SCH23390) or D2 (sulpiride, 

eticlopride, raclopride) receptors reduce METH-induced cell death in the striatum 

(Jayanthi et al., 2005; Xu et al., 2005; Kranova and Cadet, 2009). Given that SVZ-

derived cells in vivo can display a dopaminergic phenotype (Arrias-Carrión et al., 2006) 

the release of DA following METH treatment possibly mediates the observed cell death. 

In the future, we intend to clarify the possible involvement of DA in mediating the pro-

apoptotic effects of METH.  

Data in the literature also show that METH can trigger excitotoxicity mediated 

by the excessive release of glutamate. Additionally, glutamate receptor antagonists are 

proved to reduce METH-induced neurodegeneration of dopaminergic and 

serotoninergic neuronal terminals. Indeed, excessive release of this excitatory 

neurotransmitter might hyperactivate NMDA and  AMPA receptors, leading to a 

deregulation of calcium homeostasis and formation of potentially toxic substances like 

superoxide radicals and nitric oxide that in combination form peroxynitrite, damaging 

the cells (for review see Cadet et al., 2007; Krasnova and Cadet, 2009). Since glutamate 

receptors play a key role in neurogenesis both in the SGZ and the SVZ (Brazel et al., 

2005; Nacher et al., 2006), we will disclose the possible involvement of glutamate in 

mediating the pro-apoptotic effects of METH. Characterization of the expression of 

glutamate receptors in the SVZ cell cultures is already being performed in our 

laboratory.  
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Deregulation of the endoplasmic reticulum (ER) function, which is the 

intracellular store for Ca2+, seems to be also involved in METH-induced toxicity. A 

high release of Ca2+ from the ER initiates calcium-dependent apoptosis. Indeed, METH 

increases calpain protease activity (a calcium responsive cytosolic protease involved in 

ER dependent apoptosis) that cleaves cytoskeletal molecules such as tau (Warren et al., 

2007). In parallel, METH increases also the levels of caspase-12, glucose-regulated 

protein 78kD (GRP78) and CHOP that participate in ER dependent apoptosis (Jayanthi 

et al., 2004; Marciniak and Ron, 2006). We plan to clarify whether METH-induced cell 

death is due to calcium deregulation and will monitor calcium levels using the single 

cell calcium imaging technique in cells treated with METH as compared to non-treated 

cells. 

Very recently, Tian and colleagues (2009) showed that besides the toxic effect of 

METH in rat hippocampal neural progenitor cell cultures, this drug of abuse also 

inhibits proliferation. However, the authors did not clarify whether this is due to a direct 

effect on cell proliferation rather than a consequence of the METH pro-apoptotic effect, 

as they measured proliferation using toxic concentrations of METH. In fact, we also 

observed that METH decreases BrdU incorporation at 48 hours in the SVZ for 

concentration of and above 100 µM. However, as METH increases cell death at these 

concentrations, the decrease of BrdU incorporation is probably due to the toxic effect 

rather than to a dynamic inhibition of proliferation. But to conclude on the effect of 

METH on cell proliferation, we carefully looked at the levels of BrdU incorporation for 

non-toxic concentrations of METH. Therefore, no differences in the numbers of BrdU-

positive cells were observed at non-toxic concentrations as compared to control, which 

led to conclude that METH does not affect cell proliferation. Nevertheless, to disclose 

whether an inhibition of proliferation could concomitantly occur together with cell 

death at toxic concentrations, it is necessary to evaluate proliferation in cultures treated 

with METH and the inhibitor of apoptosis ZVAD. In this way, if a significantly 

decrease in the BrdU incorporation is observed when apoptosis is inhibited we can 

guarantee that METH inhibits proliferation. Indeed, several studies claim that METH 

inhibits proliferation of neural cells in the hippocampus of gerbils and mice 

(Hildebrandt et al., 1999; Teuchert-Noodt et al., 2000; Maeda et al., 2007). However, no 

detection of cell death is performed in these studies and, consequently, it is difficult to 
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conclude that METH is actually having an inhibitory effect on cell proliferation. It is 

noteworthy that in a paradigm of short access to the drug, a decrease in proliferation 

together with an increase in cell death was observed in the rat DG (Mandyam et al., 

2008). Moreover, the psychostimulant cocaine at a non-toxic concentration is able to 

decrease proliferation of fetal human cortical cells, an effect mediated by a down-

regulation of the expression of the cyclin A, a protein required for the G1 to S phase 

transition (Lee et al., 2008). To finally disclose whether METH decrease proliferation, 

levels of cyclin D1, a protein required for cell cycle G1/S transition which is expressed 

by SVZ cells in vitro (Coronas et al., 2004), will be evaluated in control and METH 

treated cultures. 

 In this work, we also showed that METH impedes neuronal differentiation. 

Neurons seem to be primarily affected by METH and this effect may be due to the 

inhibition of neuronal differentiation. Mandyam and collaborators (2008) reported that 

daily access to METH alters in vivo neurogenesis and neuronal maturation in the SGZ 

of the dentate gyrus in the hippocampus. Also, another study performed by Maeda and 

colleagues (2007) reported that phencyclidine (PCP), a synthetic hallucinogenic and 

psychostimulant, decreases neurogenesis and suggested a decrease in the total amount 

of mature neurons using an in vivo model with administration of non-toxic doses. Given 

all the accumulated data, we hypothesized that METH would be inhibiting 

differentiation in SVZ cell cultures. Indeed, the numbers of NeuN-positive neurons 

significantly decreased when a non-toxic concentration of METH was added to the SVZ 

cell cultures. Our studies revealed that METH affects neuronal maturation, precisely 

METH impedes axonogenesis as P-JNK labelling was decreased for a non-toxic 

concentration. The phosphorylation of SAPK/JNK proved to be necessary to the 

formation of new axons in hippocampal neurons (Oliva et al., 2006). Noteworthy, the 

JNK pathway is involved in cell migration and neuronal polarization (Bogoyevitch and 

Kobe, 2006; Mingorance-Le Meur, 2006). Extracellular stimuli, such as serum, 

epidermal growth factor and transforming growth factor-β involved in the maintenance 

of neural progenitors’ cell cultures in vitro, activate several MAP kinases that 

phosphorylate and activate JNK. The activated JNK in turn phosphorylates DCX and 

MAPs, promoting microtubule dynamics, thus enhancing neuronal migration. This 

signalling module is present in migrating neurons and in the marginal zone of the 
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developing cerebral cortex. Furthermore, DCX phosphorylated by JNK affects neurite 

outgrowth and neuronal motility (Gdalyahu et al., 2004; Huang et al., 2004; Reiner et 

al., 2004; Bogoyevitch and Kobe, 2006). Indeed, besides inhibiting neuronal 

differentiation and impeding axonogenesis, METH may be also affecting SVZ cell 

motility and migration probably in the migrating neurons. None is known about the 

effect of METH on neurons migration. In the immature and adult brain, neural 

progenitor transplantation studies have shown that cells are able to migrate towards 

areas of brain damage (Shin et al., 2000; Riess et al., 2002; Jin et al., 2005) and studies 

of endogenous progenitor cells in the adult brain have shown new cells in the damaged 

areas following several types of injury (Magavi et al., 2000; Parent et al., 2002; Jin et 

al., 2003 and 2006). We intend to further disclose the effect of METH in cell migration. 

Immature neurons will be immunolabelled with anti-PSA-NCAM and further 

quantified. Nevertheless, studies on migration remain necessary and so the Boyden-

Chamber assay constitutes a task to consider in this work. 

Although it remains to be addressed, METH could act at the transcription levels 

and decrease the levels of transcription factors necessary for neuronal differentiation 

and commitment. Among the possible transcription factors are Dlx2, NeuroD and 

Mash1. Dlx2 is a transcription factor involved in the development of neurons and Dlx-

positive cells are the first progenitors to make terminal divisions and differentiate as 

neurons (Doetsch et al., 2002). Mash1 gene has been found to be related to neuronal 

commitment and differentiation and there is evidence for cross-regulation between 

Mash1 and the Dlx genes (Parras et al., 2007; Roybon et al., 2009). NeuroD is a 

transcription factor involved in a variety of developmental functions including cell fate 

determination, differentiation and neuron survival (Morrow et al., 1999; Roybon et al., 

2009). No studies are yet available regarding the regulation of the transcription of Dlx2, 

Mash1 or NeuroD by METH or any other related psychostimulant drug. However, this 

METH-inducing specific inhibition of neuronal differentiation may occur by inhibition 

of these transcription factors. To dissect the molecular mechanisms adjacent to the 

effect of METH on neuronal differentiation in the SVZ the expression levels of the 

transcription factors NeuroD, Dlx2 and/or Mash1 will be analysed whether by Northern 

blotting or qPCR in control and METH treated cultures.  
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CHAPTER 5 

 

Conclusions 

 

 

In conclusion, we demonstrated that: (1) METH induces cell death in a 

concentration-dependent manner in SVZ cell cultures, both by apoptosis and necrosis, 

(2) METH-induced toxicity have primarily effects on stem/progenitor cells but not on 

immature migrating neurons, (3) METH does not affect proliferation, and (4) at non-

toxic concentrations, METH decreases neuronal differentiation and axonogenesis in 

SVZ cell cultures.  

 

5.1. Methamphetamine, SVZ and challenge of brain repair capacity 

 

The stem/progenitor cells residing in the SVZ of the adult brain constitute the 

biggest pool of neural stem cells during adult life. Hence, SVZ cells promote functional 

recovery in several models of neurodegeneration. The reconstruction of neuronal 

circuits by transplantation of stem/progenitor SVZ cells represents a promising strategy 

for brain repair and treatment of some of the neurological disorders affecting a local 

population of neurons such as in Parkinson’s or Huntington’s diseases, stroke, head 

trauma and demyelinating diseases. According to our study, a straight correlation 

between METH consumption and lost of brain regeneration is easy to speculate. Indeed, 

Tavazoie and co-workers (2008) showed in vivo that stem/progenitor cells contact the 

vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of 

the blood-brain barrier that is necessary for the maintenance of neurogenesis in the 

intact and damaged brain. Additionally, it is considered that direct contact between 

vessels and stem cells probably increases the susceptibility of SVZ stem/progenitor cells 

to be affected by METH-induced toxicity and damage. Afterwards, METH users might 

display a drastic depletion in their stock of repairing cells impairing cell replacement in 

the case of brain damage. With the purpose of developing efficient therapies based on 
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SVZ cells as a reservoir of replacing cells it is important to assure the maintenance of 

the pool of stem cells in the SVZ. For that reason, to understand the effect of METH in 

the SVZ niche in vivo is a critical task. Given that, we aim to study SVZ cell dynamic in 

mice injected with METH. In order to show whether METH decrease the number of 

stem/progenitor cells in the SVZ in vivo, we will notably assess the self-renewal 

capacity of SVZ-derived single cells. SVZ cells dissociated from control and METH 

intoxicated mice will be challenged in their capacity to form primary and secondary 

multipotent neurospheres. 

 

5.2. Strategies to protect the source of stem/progenitor cells in the human adult 

brain 

 

We showed that METH is toxic for stem/progenitors cells which may hamper 

brain regeneration. We also unveiled that METH induces massively cell death in neural 

population which is in accordance to other studies that determined that METH-induced 

neurotoxicity overwhelm in a huge loss of brain cells. Overall, treatments to 

counterbalance the neurodegeration and damage induced by METH are needed. Thiriet 

and co-workers showed that neuropeptide Y (NPY) protects against METH-induced 

neuronal apoptosis in the mouse striatum and maintains neuronal integrity during 

cellular stress, being considered a neuroprotective agent (Thiriet et al., 2005). NPY 

rescues glutamate-induced excitotoxicity caused by METH exposure in hippocampal 

organotypic cultures (Silva et al., 2003) and also NPY protects retinal neural cells from 

3,4-methylenedioxymethamphetamine (MDMA), a toxic psychostimulant (Álvaro et al., 

2008). Additionally, NPY has been proved to be a potent pro-neurogenic substance, 

promoting neuronal differentiation and improving brain regeneration both in the dentate 

gyrus and in the SVZ (Howell et al., 2005; Agasse et al., 2008). In our laboratory, we 

observed that an acute high dose of METH significantly increases the levels of NPY 

mRNA levels in the mice hippocampus. These results allow us to hypothesize that up-

regulation of NPY expression following METH intoxication may result from an attempt 

to promote neuroprotection or cell replacement through neurogenesis. As a 

neuroprotective agent NPY has to be administrated before the METH exposure, and as a 

pro-neurogenic factor it should be administrated after or before the METH exposure. 
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Indeed, to improve the preventing effect it would be optimal to administrate before and 

after drug exposure.  The glial cell line-derived neurotrophic factor (GDNF) has been 

proved to rescue cells from the METH-induced neurotoxicity (Cass et al., 1996 and 

2006). Additionally, GDNF infused into the ischemic striatum stimulates SVZ 

neurogenesis and the recruitment of surrogate cells (Kobayashi et al., 2006). Also, 

GDNF treatment should be seen as a preventive treatment and administrated before 

METH exposure. 

Several investigations report that antioxidant molecules are efficient in 

preventing METH-induced oxidative stress in vitro. Moreover, antioxidant defence 

systems play a role for detoxification of METH-induced toxicity by the scavenging of 

free radicals within the cell, since a significant decline in this system may result in the 

disruption of mitochondrial function. Zhang and coworkers (2009) have proved that N-

acetylcysteine amide (NACA), a novel antioxidant, protects against METH-induced 

oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Zinc 

pre-treatment was proved to provide mitochondria protection and rescue METH-

induced neurotoxicity in a dopaminergic human neuroblastoma cell line (Ajjimaporn et 

al., 2008). Other antioxidants have been shown to reduce the damage induced by METH 

suppressing the ROS production, like vitamin E (Wu et al., 2007) or selenium (Kim et 

al., 1999; Imam and Ali., 2000). Interestingly, melatonin, a hormone secreted by the 

pineal gland, that also acts a direct free radical scavenger, reduces induction of Bax, 

cleaved caspase-3 and cell death in METH treated human neuroblastoma cultures 

(Wisessmith et al., 2009). Moreover, melatonin levels have a key role in modulating 

neurogenesis in the hippocampus as melatonin increased the number of new neurons 

derived from adult hippocampal neural precursor cells in vitro by promoting cell 

survival (Ramírez-Rodríguez et al., 2009). Pre-treatment with several antioxidants like 

NACA or Zinc or even with melatonin may account to protect the SVZ cells against 

METH-induced toxicity. Additionally, to improve protection treatment and pre-

treatment should be performed along with METH consumption. 
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