

Thesis submitted to the

UNIVERSITY OF COIMBRA

for the partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Informatics Engineering

A Transactional Model For

Automatic Exception Handling

Bruno Miguel Brás Cabral

Under supervision of

Prof. Paulo Jorge Pimenta Marques
Dep. de Engenharia Informática

Universidade de Coimbra, Portugal

Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Julho 2009

Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologia

Universidade de Coimbra

ISBN 978-989-96001-1-9
Coimbra – Portugal, Julho 2009

This investigation was partially supported by the
Portuguese Research Agency – FCT,

through a scholarship (SFRH/BD/12549/2003),
by CISUC (R&D Unit 326/97), by POCI 2010,

and by the European Social Fund

 To my lovely wife

Abstract

Exception handling mechanisms have been around for more than 30 years. Although

modern exceptions systems are not very different from the early models, the large majority

of modern programming languages rely on exception handling constructs for dealing with

errors and abnormal situations. Exceptions have several advantages over other error

handling mechanisms, such as the return of error codes or the usage of global state flags.

Exceptions eliminate, for instance, the semipredicate problem, which occurs when a function

fails to execute correctly but returns a valid value, thus leaving the caller unaware that an

error occurred. Furthermore, exception mechanisms give the programmer an efficient error

notification instrument, allow better recovery strategies based on the rich error data

available on the exception objects, and allow the programmer to deal with abnormal

situations in a civilized way. Nonetheless, and despite the mechanism’s broadly

recognized qualities on handling and recovering from errors, on our work we show that

programmers are not using exception handling constructs as a recovery mean. Most times,

when an error occurs, exceptions are silenced or just used to terminate a program in an

orderly fashion, not really to recover. We show that the strategies for dealing with

exceptions on non-critical programs are commonly non-existent or serve the final purpose

of keeping track of problems for later analysis (debugging). Very little effort is normally

spent trying to understand exceptions, their causes, and planning recovery actions. As a

result, the amount of code found in these applications that is exclusively dedicated to

exception handling is usually reduced. This is an unexpected fact. We would anticipate a

much larger chunk of code dedicated to exception handling if we consider that: a) Simple

operations, such as accessing a file on disk or sending a query to a database, can raise a

large number of different exceptions; b) Each different exception type can have several

distinct handling actions that may vary with location and time; c) Code for handling an

exception can be as or more complex as the code raising the exception; d) In some

programming languages (e.g., Java) it is mandatory to handle exceptions and declare their

existence.

The unwillingness of software designers to correctly deal with exceptions and follow some

well known best-practices for exception handling contributes to the lowering of the quality

of programs and their resilience to errors. The premise for our work is that something is

not right with current exception handling models: they are not adequate enough for

developers. The problem is even more worrisome if we consider that programming

X ABSTRACT

languages designers often neglect the exception mechanism and look at it more like an

add-on for their language instead of a central part. As a consequence, software quality

suffers as programmers feel that the task of writing good error handling code is too

complex, unattractive and inefficient.

In this dissertation we propose a new model that automates the handling of exceptions by

the runtime platform. The Automatic Exception Handling (AEH) model frees the

programmer from having to write exception handling code and, at the same time,

successfully increases the resilience of programs to abnormal situations. The case for

automatic exception handling is that, for the majority of situations, benign recovery blocks

of code should be part of the runtime platform and should be automatically executed

when exceptions are raised. By doing so, the programmer is freed from the “burden” of

writing exception handling code for a large number of situations.

The proposed model is influenced by three fundamental concepts: Exception Handling;

Software Transactional Memory (STM); and Recovery Blocks. We incorporate many concepts

from traditional exception handling models in order to keep the essential features already

available. But, in broader terms, we allow the user to define handler-free try blocks, while,

at the same time, we set a transactional environment for the execution of these blocks and

system-defined recovery blocks. Transactions are essential to our model since they provide

for atomicity during the execution of protected code blocks and multiple recovery actions.

Furthermore, they provide a simple and transparent way of eliminating the effects of failed

recovery blocks executions. Our model guarantees that there are no collateral effects

arising from the execution of multiple recovery blocks, when it is necessary to execute

several of these blocks in order to handle an exception that is repetitively being raised

inside a protected block. On the other hand, not all recovery has to be done automatically.

The programmer may still deal with a situation on his own, if he or she wishes to do so.

We conclude this thesis by describing and testing an implementation of the proposed

model. The results of our experiments are very promising. We obtained a substantial

decrease on the amount of exception handling that has to be coded (less 30%), the

reliability of programs was improved, and the performance penalty was negligible.

Moreover, we were able to propose recovery actions for more than 60% of the exception

types we analyzed. We show that the automatic exception handling model: a) can be

implemented and incorporated onto existent platforms; b) is easily and almost

transparently integrated with object-oriented languages; c) is effective on reducing the

amount of exception handling code that programmers have to produce; d) has the

 xi

potential to avoid some programming bad practices in terms of reliability and improve the

quality of code; e) can reduce development time; and, f) effectively increases the resilience

of a system in the presence of errors.

Resumo

Os primeiros mecanismos de detecção e tratamento de excepções surgiram há quatro

décadas. Curiosamente, apesar dos mecanismos actuais não serem muito diferentes dos

primeiros modelos, a grande maioria das linguagens de programação modernas confia

nestes para lidar com erros e situações anormais. As excepções apresentam múltiplas

vantagens quando comparadas com outros mecanismos de detecção e tratamento de erros,

como por exemplo, a utilização de códigos de erro e variáveis de estado globais. As excepções

eliminam o problema dos semi-predicados, caracterizado por funções que mesmo

executando incorrectamente devolvem um valor válido, impossibilitando assim a detecção

do problema. O mecanismo de excepções dá ao programador os meios para comunicar e

detectar a ocorrência de situações anormais, permite a definição de estratégias de

recuperação mais elaboradas (com base na informação existente nos objectos que

representam excepções), e permite ao programador lidar com situações anormais de uma

forma civilizada. No entanto, e apesar das reconhecidas qualidades do mecanismo na

detecção e tratamento de situações anormais, os programadores não estão a utilizar os

mecanismos de tratamento de excepções como ferramentas para recuperar o estado dos

programas após a ocorrência de um de erro. Na maioria dos casos, quando ocorre um erro,

as excepções são silenciadas ou utilizadas apenas para terminar o programa de uma forma

ordenada.

Neste trabalho, mostramos que as estratégias para tratamento de excepções em sistemas

não críticos não existem ou servem apenas o propósito final de manter registo dos

problemas para posterior análise (depuração ou “debugging”.) Os programadores dedicam

pouco tempo a tentar compreender as excepções, a sua origem e a planear métodos de

recuperação. Como resultado, a percentagem de código nestas aplicações exclusivamente

dedicado ao tratamento de excepções é muito reduzida. Este facto é inesperado se

considerarmos que: a) até mesmo operações simples, como aceder a um ficheiro em disco

ou executar uma pesquisa numa base de dados, podem originar um grande número de

excepções; b) o mesmo tipo de excepção pode requerer diferentes tratamentos e estes

podem variar com o momento ou localização do evento anormal; c) o código para

tratamento de uma excepção pode ser tão ou ainda mais complexo que o código que

originou a excepção; d) em algumas linguagens de programação (e.g., Java) o tratamento

de excepções ou a declaração da sua existência é obrigatório.

 xiii

Este comportamento negligente, por parte dos programadores, parece evidenciar que os

mecanismos de tratamento de excepções actuais não se adequam ao perfil dos seus

utilizadores. Os programadores consideram a escrita de código de tratamento de

excepções uma tarefa complexa, ineficiente e pouco atraente. Esta situação é ainda mais

preocupante, tendo em conta que, normalmente, os projectistas de linguagens de

programação olham para os mecanismos de tratamento de excepções como um

componente periférico ao seu sistema e não como uma parte central. Consequentemente, a

qualidade do software irá sofrer.

Nesta dissertação propomos um novo modelo de tratamento de excepções que automatiza

o tratamento de situações anormais e o torna numa responsabilidade da plataforma de

execução. O nosso modelo liberta o programador da tarefa de escrever código para lidar

com erros ou situações inesperadas e, simultaneamente, aumenta a resiliência dos

programas aos erros. O modelo de Tratamento Automático de Excepções (TAE)

proporciona uma forma efectiva de lidar com excepções sem interferir com a

produtividade dos programadores. Para um grande número de excepções é possível que a

própria plataforma de execução forneça, aquando de uma excepção, blocos de código de

recuperação benignos capazes de recuperar o estado de um programa e permitir a

continuação da execução. Desta forma, os programadores ficam livres da tarefa de escrever

código de tratamento para um grande número de excepções.

O modelo proposto tem por base três fontes de influência muito díspares: os modelos de

tratamento de excepções existentes; o mecanismo de blocos de recuperação; e o mecanismo de

memória transaccional por software. De forma a preservar algumas funcionalidades já

existentes, incorporámos no nosso modelo muitos conceitos associados aos mecanismos de

tratamento de excepções mais eficientes. No entanto, permitimos que o programador

defina blocos try{} sem ter de criar blocos de tratamento associados (e.g., blocos catch ou

finally) e, simultaneamente, definimos um ambiente de execução transaccional para

esses blocos try e para os blocos de recuperação de excepções automáticos implementados

ao nível do sistema. As transacções são essenciais ao nosso modelo, sendo que, garantem a

atomicidade da execução dos blocos try{} e dos múltiplos blocos de recuperação. Mais

importante ainda, é o facto das transacções permitirem eliminar de uma forma limpa e

transparente, os efeitos da execução de blocos de código onde ocorreram excepções.

O ambiente de execução transaccional assume uma importância ainda maior quando

constatamos que a forma de recuperar de uma excepção, apesar de ser correcta numa

XIV RESUMO

situação, pode mostrar-se totalmente inadequada noutra, para o mesmo tipo de excepção.

Assim, em certas ocasiões, será necessário experimentar diferentes tipos de tratamento

antes de o sistema conseguir recuperar da excepção. O nosso modelo assegura que quando

é necessário executar mais do que um bloco de recuperação, de forma a eliminar uma

excepção reincidente dentro do bloco de código protegido, não irão existir efeitos colaterais

da execução dos vários blocos de recuperação ou das várias tentativas de execução do

bloco de código protegido. Por outro lado, o tratamento de excepções não tem de ser

totalmente automático. O programador pode optar por ser ele a definir o tratamento para

uma ocorrência excepcional específica, se assim o preferir.

Concluímos esta dissertação com a discussão, teste e validação de uma implementação do

modelo proposto. Os nossos testes mostram que é possível obter uma redução substancial

na quantidade de código de tratamento de excepções que é necessário escrever (menos

30%). Também é perceptível um aumento assinalável na resiliência aos erros dos

programas analisados. Além destas melhorias, foi possível observar que o impacto da

utilização do novo modelo na performance dos sistemas estudados pode ser considerado

negligenciável. Finalmente, para provar que é exequível a criação de acções para

recuperação automática de excepções ao nível do sistema, desenvolvemos um conjunto

acções benignas capazes de lidar com mais de 60% dos tipos de excepções analisados. No

geral, mostramos que o modelo de tratamento automático de excepções: a) é passível de

ser implementado e incorporado em plataformas de execução e desenvolvimento já

existentes; b) é facilmente e quase de forma transparente integrável com linguagens de

programação orientadas-aos-objectos; c) é eficaz a reduzir a quantidade de código dedicada

ao tratamento de excepções que os programadores têm de escrever; d) tem potencial para

melhorar a qualidade do código final das aplicações e evitar que o programador “caia” em

más práticas de programação no que diz respeito à robustez dos programas; e) pode

reduzir os tempos de desenvolvimento; e, por último, f) aumentar globalmente a robustez

de um sistema.

Acknowledgments

The conclusion of this work is, without any doubt, among the most important moments of

my life. Therefore, I can not let it pass without thanking everyone that accompanied me

through these years and that supported me unconditionally.

I would like to start by thanking my advisor, Professor Paulo Marques, without whom I

would not be concluding this work. He was responsible for opening to me the doors of this

“curious” world of research. First, when he invited me to work as developer on the RAIL

project, and later when he challenged me to do this PhD. But, above all, I want to thank

him the privilege that was for me to work and learn with someone that lives his work with

such an intense way and that shows an energy, knowledge, wisdom, dedication, and

enthusiasm hard to beat.

I also wish to thank Professor Luís Silva for taking me as his student on the early stages of

this dissertation and for the trust that he always put on my work. I am also truly grateful

to Paulo Sacramento and Hugo Matos for their contribution to this dissertation. Both

developed part of the software used on the studies and tests that we performed. Paulo also

conducted his graduation work with me and co-authored two articles. I also want to

acknowledge Patrício Domingues, my lab colleague, which with whom was a joy to work!

Finally, I want to thank my lovely wife Rita for making me happy. I am also deeply

thankful to my parents, my sister and all my family for their amazing support and care. I

also wish to thank my friends, whose contributions took many different forms and were

more significant than they probably realize - Dorita, Granjal, Barreto, Ana, Joana,

Sebastião, Lúcia, Dulce, Jorge, Cláudio Jorge and Ana Pinto, I thank you all.

Table of Contents

ABSTRACT ... IX

RESUMO ..XII

ACKNOWLEDGMENTS..XV

TABLE OF CONTENTS .. XVII

LIST OF FIGURES.. XIX

LIST OF TABLES.. XXI

LIST OF CODE SAMPLES .. XXIII

1. INTRODUCTION .. 1
1.1. Motivation ... 2

1.1.1. A first glance at exception handling mechanisms.. 4
1.1.2. Exception Handling Design Issues ... 9

1.2. Research Objectives... 21
1.3. Contributions.. 22
1.4. Structure of the Dissertation ... 22

2. CURRENT APPROACHES TO EXCEPTION HANDLING ... 25
2.1. Introduction... 26

2.1.1. First efforts in the definition of a standard notation.. 27
2.2. Handling models: features and propagation ... 30

2.2.1. Handling models.. 31
2.2.2. Features.. 33

2.3. Evaluation and quality metrics ... 52
2.3.1. Evaluation ... 53
2.3.2. Quality requirements .. 59

2.4. Backward error recovery... 62
2.5. Real-time concerns... 65
2.6. Other approaches ... 66

2.6.1. Aspect Oriented Programming ... 67
2.6.2. Exception handling for Futures... 68
2.6.3. Compensation stacks... 70

2.7. Summary.. 73

3. A FIELD STUDY IN EXCEPTION HANDLING... 77
3.1. Introduction... 78
3.2. Programming with exceptions .. 81

3.2.1. Methodology... 81
3.2.2. Results.. 86

xviii TABLE OF CONTENTS

3.2.3. Related work ...108
3.3. Documenting exceptions ..113

3.3.1. Motivation ...113
3.3.2. Methodology and Tools ..115
3.3.3. Results ..120

3.4. Summary...126

4. AUTOMATIC EXCEPTION HANDLING: A PROPOSAL ...129
4.1. Introduction ...130
4.2. The Model ..131

4.2.1. Benign Recovery Actions ..133
4.2.2. Programming Model..136
4.2.3. Transactional System ...138
4.2.4. Exception Parameters ..142
4.2.5. Exception Handling Model Features ..144

4.3. Related Work...149
4.4. Summary...153

5. IMPLEMENTATION AND VALIDATION..155
5.1. Introduction ...156
5.2. Framework implementation...156

5.2.1. The STM Library...161
5.2.2. The AEH Class Loader ..164

5.3. Validation and Testing..171
5.3.1. Source Code...172
5.3.2. Resilience ...174
5.3.3. Recovery Actions..180

5.4. The Perfect Exception Handling Model ..186
5.5. Summary...188

6. CONCLUSION ..189
6.1. Overview ..189
6.2. Contributions ..189
6.3. Future Work ...189

LIST OF PUBLICATIONS ...189

BIBLIOGRAPHY..189

List of Figures

Figure 1.1 – Example of source code in Java using exception handling constructs 5
Figure 1.2 – A simplified flowchart for exception propagation outside try{} blocks.......... 8
Figure 1.3 – A simplified flowchart for exception propagation from inside a try{} block . 9
Figure 2.1 – Label variables usage example ... 30
Figure 2.2 – Java code exemplifying the termination model ... 31
Figure 2.3 – Retry model exemplified with Eiffel notation.. 32
Figure 2.4 – Resumption model exemplified with Smalltalk notation 33
Figure 2.5 – Coordinated Atomic Actions scheme overview .. 51
Figure 3.1 – Amount of exception handling code ... 87
Figure 3.2 – Catch handler actions for .NET programs. ... 90
Figure 3.3 – Catch handler actions for Java programs.. 92
Figure 3.4 – Count of actions for Finally handlers in .NET programs. 93
Figure 3.5 – Count of actions for Finally handlers in Java programs. 94
Figure 3.6 – .NET classes being used as catch arguments.. 96
Figure 3.7 – Java classes being used as catch arguments. .. 97
Figure 3.8 – Handler actions distribution for the most used catch handler classes. 98
Figure 3.9 – Most commonly handled exception types in .NET. .. 102
Figure 3.10 – Most commonly handled exception types in Java... 103
Figure 3.11 – Call stack levels for caught exceptions.. 104
Figure 3.12 – Handlers size in number of IL code instructions for .NET. 105
Figure 3.13 – Number of catch handlers per protected block. .. 107
Figure 3.14 –Automatic documentation of an exception using specialized tags. 114
Figure 3.15 – Dictionary: IL instruction/opcode/list of exceptions....................................... 117
Figure 3.16 – Scheme of the code analysis process.. 118
Figure 3.17 – Documentation of exceptions in four different assemblies. 123
Figure 4.1 – The runtime system provides recovery... 138
Figure 4.2 – Passing parameters to recovery blocks. .. 142
Figure 5.1 – AEH system architecture. .. 158
Figure 5.2 – Loading and running applications using the AEH. .. 159
Figure 5.3 – Eclipse plug-in. .. 170
Figure 5.4 – Configuration interface. ... 171
Figure 5.5 – Testing framework.. 174
Figure 5.6 – Analysis of the executions times. ... 178
Figure 5.7 – Description of the experience.. 179
Figure 5.8 – JMeter workload run summary. ... 180

List of Tables

Table 1.1 – Exception handling best practices.. 14
Table 1.2 – Exception handling antipatterns. ... 16
Table 1.3 – Exception handling and the object-oriented paradigm.. 19
Table 2.1 – Identification of the exception handling models evaluation items. 53
Table 3.1 – Applications listed by group. ... 83
Table 3.2 – List of Assemblies and Java Packages analyzed.. 85
Table 3.3 – Description of the Handler’s actions categories. ... 89
Table 3.4 – Java and .NET exception classes for bytecode and IL code instructions........... 101
Table 3.5 – Number of protected blocks, catch handlers and finally handlers. 106
Table 3.6 – Usage of Unchecked exceptions in Java catch handlers....................................... 107
Table 3.7 – Group Characterization. .. 119
Table 3.8 – Assemblies used in the study. .. 119
Table 3.9 – Documented vs. Undocumented exceptions. .. 121
Table 3.10 – Types of exceptions most likely to be documented. ... 122
Table 3.11 – Suspects for all eight Assemblies. .. 124
Table 3.12 – Type of detections responsible for code suspects.. 125
Table 3.13 – Proportion of detections due to lack of documentation..................................... 125
Table 5.1 – Causes for JMSException to be raised... 173
Table 5.2 – Exception Injection Results (all apps.)... 175
Table 5.3 – Results with content checking (3 apps.).. 176
Table 5.4 – System availability, MTTR, MTBF and error rate. .. 180
Table 5.5 – Recovery actions for Java’s IOException class tree... 181
Table 5.6 – Applications source code decrease analysis... 184
Table 5.7 – Healing strategies. .. 185
Table 5.8 – Exception model features list.. 187

List of Code Samples

Listing 1.1 – Sample from LimeWire ... 11
Listing 1.2 – Writing to a file ... 12
Listing 2.1 – Multiple derivation for derived exceptions... 34
Listing 2.2 – Bound exceptions and conditional handling... 35
Listing 2.3 – Dynamic propagation through an invisible scope. .. 40
Listing 2.4 – Recursive resuming example ... 41
Listing 2.5 – Handler’s static context in C++ and Ada ... 43
Listing 2.6 – The notation for a recovery blocks structure... 63
Listing 2.7 – Futures utilization within the DBLFutures framework.. 69
Listing 2.8 – Examples of exception handling in DBLFutures ... 70
Listing 4.1 – Writing to a file in a transactional try block .. 132
Listing 4.2 – swap method using an atomic block and alternative execution paths. 149
Listing 4.3 – Implicit and Explicit reconstructors declaration... 151
Listing 4.4 – Context management integration in try/catch blocks. 152
Listing 5.1 – The Transaction class. .. 160
Listing 5.2 – The commit() method. .. 162
Listing 5.3 – The ITransObject interface.. 162
Listing 5.4 – The canCommit() method.. 163
Listing 5.5 – The doFinalCommitTasks() method.. 164
Listing 5.6 – The TransactionClassAdapter() methods.. 166
Listing 5.7 – Recovery actions for the JMSException class. ... 168
Listing 5.8 – Configuration file example. .. 169

Introduction

This thesis is the result of research done in exception handling mechanisms for object-

oriented programming languages at the Software and Systems Engineering Group of the

University of Coimbra, Portugal.

In this opening chapter, the motivation and research objectives of the investigation are

described, providing a foundation for the upcoming discussion. Finally, a brief summary

of the contributions of the dissertation is presented.

Chapter

1

2 CHAPTER 1 — INTRODUCTION

1.1. Motivation
For more than one hundred years, since the time when the word computer still referred to

the “person who performed computation” and not a machine, programmers have been

worried about faults and errors that they may raise in calculations [Randell1982]. These

faults can have many different natures and causes. They can be accidental or intentional,

malicious or not-malicious, physical (hardware) or human. The main concern is that,

independently of their nature, they can cause errors [Laprie1995b].

To avoid these errors many approaches have been taken, most of them at hardware level.

These included the widespread use of error detecting and correcting codes1, the use of

replicated2 processors, voting3, masking4 and automatic reconfiguration. Hardware fault

tolerance schemes [Randell1978] try to be as simple as possible to avoid expensive trade

offs like lost of performance and computation power, increased cost and energy

consumption. Nevertheless, even if we could eliminate hardware faults, residual software

design faults would continue to affect programs. Therefore, extra care had to be taken at

software level to prevent or handle these faults in the quest to avoid errors. Some of these

solutions mingled hardware and software approaches such as fault avoidance,

redundancy, masking and reconfiguration. Others, to ensure better portability and avoid

the need for dedicated hardware, preferred a software-only approach.

One of the most popular software programming languages mechanisms for dealing with

abnormal behaviors is exception handling. Since the seminal work of John B. Goodenough

 [Goodenough1975] in the definition of a notation for exception handling and Flaviu

Cristian [Cristian1980] in defining its usage, the programming language constructs for

handling and recovering from exceptions have not changed much. Exception handling is

basically a civilized way of dealing with exceptional situations (occurrence of a condition

that changes the normal flow of execution of a program). It represents a significant

improvement over other error handling mechanisms like checking return codes, additional

boolean state flags, among others. For instance, exception handling eliminates the

1 A method and apparatus for detecting and correcting bit errors in data streams [Hamming1950].
2 Replication is based on the usage of multiple instances of the same system that are able to execute the

same function is parallel.
3 Mechanism used in systems with replicated components (3 or more) to mask the faulty components.
4 Masking is used to manipulate the effects of faults in order to ensure that systems always behave as

specified and, hence, users always observe the expected behavior [Jalote1994.]

 SECTION 1.1 — MOTIVATION 3

Semipredicate Problem that occurs when a function fails to execute correctly but returns a

valid value, thus leaving the caller unaware that an error occurred. Furthermore,

exceptions give the programmer an efficient error notification mechanism, allow better

recovery strategies based on the rich error data available on the exception objects, and

improve readability by separating exception handling code from the business logic code.

Exceptions introduce their own error handling flow-of-control to the program. When an

exception is raised, the execution flow is diverted to the appropriate error handling code.

Exceptions can have three different origins [Doshy2003]:

1. Programming errors: exceptions can be raised due to programming errors, such as

accessing null references. The code which invokes the function raising the

exception (client code) cannot do anything about programming errors;

2. Client code errors: exceptions can be raised when the calling code attempts to

perform some operation not allowed by the API, thus violating the contract. If the

exception provides enough information, the client code can try an alternative

path;

3. Resource failures: exceptions can be raised to acknowledge resource failures, such

as when the system runs out memory or a network connection fails. The client

code response is context-driven. The operation could be retried after some time or

the application halted.

If we consider that there are an infinite number of computations that one can think of,

there will also be an infinite number of reasons for a program to raise an exception. For

instance, a program may: try to access an out-of-bounds array element; try to access

members on a null reference; perform an integer “divide by zero” operation; try to

unsuccessfully parse a string to an integer; try to open a file that does not exist; or get an

IO error. Depending on the exception being raised, the location and the moment (where

and when it is raised) in the program, the cost of mishandling such an event can be high –

e.g., “not handling a failure on a withdraw operation on an ATM machine may lead to an

improper decrement of the client’s account balance if he or she does not receives the

requested amount”.

4 CHAPTER 1 — INTRODUCTION

1.1.1. A first glance at exception handling mechanisms
Exception handling models and their implementations vary from programming language

to programming language1. But, in general, when an abnormal situation is detected the

program raises an exception. When an exception is raised inside a protected region of code

(guarded code block), the execution flow is transferred to a predefined location known as

the exception handler. Usually, the stack is unwound and the extra-information necessary

to handle the exception, such as its name, description, location, and severity is

communicated either by the code that has raised the exception, or by the exception

handling supporting mechanism. The handler code determines what happens next: the

program may try to recover from the exception; just log its occurrence and terminate the

application in an orderly fashion; or simply ignore the exception. In some cases, after the

execution of the handler, it may be possible to resume the execution of the program at the

original location and reset the program’s state prior to the exception occurrence2.

Exception handlers can be associated with exception types, classes, methods, objects, or

blocks of code. Handlers that remain valid in any part of an application are called default

handlers. When an exception is raised, the normal flow of execution of the application is

deviated allowing the system to search for a suitable handler. The execution returns to the

normal flow immediately after the invocation of the selected handler (when found). The

point where the normal flow of execution is to be resumed depends of the model for the

continuation (termination/resumption model). If no suitable handler is found, the

execution of the program is terminated.

The example in Figure 1.1 illustrates the usage of the exception handling constructs in an

object-oriented programming language – Java [Gosling2005]. This piece of source code is

useful to help understand the concepts and the execution flow issues associated with

nowadays exception handling models. Although existent exception handling models do

not differ much, there are still some important differences between implementations. This

example (and its subsequent analysis) does not intend to address or represent all the

1 Chapter 2 provides a thorough discussion on exception handling models.
2 This behavior, associated with the resumption model [Goodenough1975], is not supported in all

platforms and programming languages. The most widely used approach is the termination model
[Goodenough1975]. In the termination model, control flow after the handler execution continues as
if the failed instruction in the protected block is terminated without encountering the exception.

 SECTION 1.1 — MOTIVATION 5

models available in modern programming languages1. It is merely an illustration of how

things can work, how the source code is organized (when using exception handling

constructs), and how the program behaves in the presence of exceptions.

In the example of Figure 1.1, the source code for method foo() is divided in six different

parts. Parts A and F represent the first and the last instructions on the method. Part B is

bordered by a try{} block, it corresponds to a protected region of code where the

programmer knows that some exceptions are prone to happen. Parts C and D are the

handlers for the exceptions being raised in part B. The catch instruction is used to mark

the beginning of the handler block (that is limited by braces) and accepts, as a parameter,

the name of the class for the exception to handle. For instance, the catch handler in part C

deals with all the exceptions raised in B that are instances of (or descend from) the

IOException class, and the catch handler in part D handles the remaining exception types

derived from the Exception class. Part E represents a special block of code (finally{})

1 The Java Programming Language was chosen for this and other examples on this document because

it is a well known mainstream programming language with a state-of-the-art exception handling
mechanism.

Figure 1.1 – Example of source code in Java using exception handling
constructs

6 CHAPTER 1 — INTRODUCTION

that will always execute, independently of an exception being raised or not inside parts B,

C and D.

Checked and unchecked exceptions
Exception handling is more than just try-catch-finally blocks. It also encompasses two

important aspects, related between them. One is the conceptual relation between a method

and the exceptions it can throw; the other is the existence of an obligation to handle the

exceptions that are thrown by a method. These aspects define the essence of two different

exception models, the checked exceptions model and the unchecked exceptions model

[Gosling2005].

For instance, the Java programming language designers (among others) believe that certain

exceptions impact the functionality of a method so intrinsically that they should be

explicitly declared, being the programmer forced to handle them – thus justifying the

option of implementing the checked exceptions model. On the other hand, other designers

[ISO23271:2006] believe that the programmer should not be forced to handle all the

exceptions. In Java, for instance, a small set of exceptions (runtime exceptions) are

explicitly marked as unchecked. The programmer is free to choose which exceptions he or

she wants to explicitly deal with and which prefers not to. Checked exceptions can

interfere with the programmers’ productivity, since they cannot concentrate in business

logic and are constantly forced to think about errors. Furthermore, .NET [ISO23271:2006]

creators (in particular) advocate that errors should be “exonerated” by exhaustive testing.

I.e., a sufficiently accurate test suite should be able to expose dormant exceptions, and

corresponding abnormal situations. For the problems that remain latent, it is better that

they appear as a clean exception that terminates the application rather than having them

being swallowed in a generic catch statement which can lead to a corrupt state.

In the checked exception model, programmers have to declare the exceptions that a

method throws. For this purpose, the programming language provides the constructs

necessary do create a list of exceptions in the method’s signature. As a consequence, code

invoking methods with a declared exception list has only two options:

 Handle the declared exceptions with a try-catch-finally structure;

 Declare to propagate the same set of exceptions that the invoked method does.

 SECTION 1.1 — MOTIVATION 7

Failing to comply with the previous rules will result in a compile error. This prevents a

known problem from being propagated throughout the program or remaining unhandled

on the final software product.

Systems that implement the unchecked exception model are not able to provide this kind

of safeguard. The developer is able to declare the exceptions that a method throws, but he

or she is not forced to handle any exceptions. The compiler will never emit warnings about

unhandled exceptions thus an error, which otherwise would not be fatal, can be

unstoppably propagated on the call stack and cause the program termination. The only

way to detect this kind of problem is through code analysis or exhaustive testing. To know

what exceptions an operation may raise, the developer has to trust the documentation. To

simplify the documentation task, some languages provide meta-tags allowing the

generation of automatic documentation.

Explicitly raising an exception gives the programmer the opportunity to fill the exception

object with all the relevant information necessary for dealing with the abnormal occurrence

at hands. Exception types can be user-defined or predefined. User-defined exceptions are

created and detected at application level. Predefined exceptions are built-in into the

runtime platform libraries and detected by the runtime platform. Consider the following

example: a program tries to open a file that does not exist – in these circumstances the program

will raise an exception. But, if the programmer whishes to prepare the application to

recover from this exception, he or she needs more information:

1. The correct classification of the error – a well designed exception will transmit

this information merely by its type (e.g., the class FileNotFoundException is self

explanatory);

2. The path for the missing file;

3. The name of the file.

If this information is attached to the exception at the time of its generation, the

programmer can use it to design a handler that, for instance, will look for the file and open

it in a different location – local folder, network folder, URL, etc. Thus, if successful in

opening the file, the program is able to continue the computation in a valid and clean state.

8 CHAPTER 1 — INTRODUCTION

Execution flow and exception propagation
A fundamental issue with exception handling mechanisms is what happens when an

exception is raised: a) how is the execution flow affected; b) what happens to the stack

information; c) how is the correct handler for a particular exception elected; and d) where

will the execution continue after the completion of the handling actions. Many of these

aspects will vary with the chosen programming language and its corresponding exception

handling model1. For the purpose of this section, an explanatory example will give a first

insight on how exception flow can be driven inside a running application.

The flowchart in Figure 1.2 describes the propagation of an exception raised inside parts A

or F of the code on Figure 1.1. This exception must be an unchecked exception. Otherwise,

as it has been described before, the compiler would have complained and aborted the

compilation (because the method does not declare the exceptions that it may raise). In the

code example, one can observe that parts A and F are not protected regions of code since

they are not inside a try{} block. Thus, when the exception is raised, the runtime aborts

the execution of the method foo(), unwinds the stack, and propagates the exception up

the call stack to foo()’s caller. This is done in order to look for a suitable handler. In Java, a

handler is considered suitable if it catches the class of the exception or a parent class of the

1 Once more, Chapter 2 provides a thorough discussion about different exception handling models

implementations.

Figure 1.2 – A simplified flowchart for exception propagation outside try{} blocks

 SECTION 1.1 — MOTIVATION 9

exception class. If a handler is selected for execution, the program normal execution

continues in the instruction that immediately follows the handler finale. If no handler is

found, the runtime repeats the process and continues to unwind the stack, propagating the

exception, until the corresponding thread terminates.

The flowchart in Figure 1.3 illustrates a different scenario. In this example the exception is

raised inside the try{} block (B). Afterwards, depending on the class of the exception, the

execution will continue in the first instruction of the IOException class handler (C) or of

the Exception class handler (D). Independently of which of the handlers is executed, the

first instruction on E (finally block) is always executed next. If no other exception is

raised, the flow of execution will continue through F until the method’s return point. In the

event that no exception occurs in B, or that an exception occurs in C or D, the code in part B

will always be executed but, in the later case, the method returns immediately and the

exception is propagated up the call stack.

1.1.2. Exception Handling Design Issues
Exception handling mechanisms represent an improvement over traditional error handling

mechanisms. They introduced an organized, reliable, focused and self-explanatory way to

deal with errors and abnormal situations. But, besides the obvious benefits, exception

handling is far from perfect. In fact, it can be argued that the mechanism is seriously

Figure 1.3 – A simplified flowchart for exception propagation from inside a try{} block

10 CHAPTER 1 — INTRODUCTION

limited if not even flawed as a programming construct. Most times, when an error occurs,

exceptions are silenced or just used to terminate a program in an orderly fashion, not really

to recover.

In most cases, strategies to deal with exceptions are non-existent or just serve the final

purpose of keeping track of problems for later analysis. Very little effort is normally spent

trying to understand exceptions, their causes, and planning recovery actions. Christian

[Chistian1995] argued that more than two thirds of a program’s code is often devoted to

detecting and handling errors and exceptions, and, according to Utas [Utas2004], three

quarters of the code are dedicated to error and exception handling. An important part of

our work was devoted to identifying exception handling patterns and exception

programming problems in modern software1. We now know that most of the software

running in our computers, servers, networks, at home or at work, is prone to have less

than 10% of code dedicated to exception handling and the most common percentage is

around 5% [Cabral2007]. Our conclusions are supported by Shah’s recent work

[Shah2008a] on explaining why “developers neglect exception handling code”. This is an

unexpected fact. We would anticipate a much larger chunk of code dedicated to exception

handling if we consider that:

1. Simple operations, such as accessing a file on disk or sending a query to a

database, can raise a large number of different exceptions;

2. Each different exception type can have several distinct handling actions that may

vary with location and time;

3. Code for handling an exception can be as or more complex as the code raising the

exception;

4. In some programming languages (e.g., Java) it is mandatory to handle exceptions

and declare their existence.

1 Chapter 3 presents a field study on exception handling

 SECTION 1.1 — MOTIVATION 11

More important than the amount of code dedicated to exception handling is the quality of

the code and its ability to recover the program to a valid state. Writing good exception

handling code is complex, cumbersome and error-prone task. As an example, the Java code

block in Listing 1.1 is a small portion of the source code of the LimeWire client for the

Gnutella peer-to-peer network [Limewire2009]. This widely used piece of code is

responsible for the sending of UDP packets in the application. The example shows that the

single operation of sending a DatagramPacket over the network is prone to raise several

exceptions. In ideal conditions, the programmer may have to provide a different handler

for each exception. This means that a different catch block is expected for each different

exception type being raised. In theory, these handlers could implement the code necessary

to recover from the raised exception and correctly complete the method’s execution.

Unfortunately, providing the recovery code is a complex error prone task and, in

consequence, programmers prefer to ignore the exceptions or deal with them later (even if

the stack and other useful information are no longer available). Furthermore, the code for

handling the raised exceptions may originate other exceptions by itself. This can lead to

possible undesired sceneries where protected blocks (try blocks) are nested inside other

protected blocks, introducing a great level of tangling in the flow of execution of the

program. This escalating complexity is certainly influencing the programmers to keep their

exception handling code as simple as possible or, in many cases, completely inexistent.

try
{
 _socket.send(_dp);
}
catch(ConnectException ce)
{
 // oh well, can't connect, ignore it...
}
catch(BindException be)
{
 // oh well, if we can't bind our socket, ignore it..
}
catch(NoRouteToHostException nrthe)
{
 // oh well, if we can't find that host, ignore it ...
}
catch(IOException ioe)
{
 if(isIgnoreable(ioe, ioe.getMessage()))
 return;

 String errString = "ip/port: " +
 _dp.getAddress() + ":" +
 _dp.getPort();
 _err.error(ioe, errString);
}

Listing 1.1 – Sample from LimeWire

12 CHAPTER 1 — INTRODUCTION

Listing 1.2 helps to illustrate the potential increase in the complexity of code as one adds

exception handling. Consider that the programmer just wants to write some data into a

file. The data itself is not of much importance, just the fact that the programmer wants to

correctly save it to disk. From a “core” algorithmic perspective, the intent of the

programmer is to write a couple of lines similar to the ones shown with the grey

shadowing in the example. Now consider what happens on a language that uses checked

exceptions, like Java, or even a language that does not have checked exceptions, like C#,

but on which the programmer wants to correctly deal with possible abnormal situations.

(After all, if one wants to develop robust software, exception handling is necessary.) The

programmer ends up having to write code for dealing with exceptions like

FileNotFoundException, SecurityException, DiskFullException, just to name a few,

or other I/O-related problems (IOException).

// The FileWriter must be declared outside of the try block
// and be pointing to something (null is a common choice)
FileWriter file = null;

try
{
 // Open file
 file = new FileWriter("data.txt");

 // Write some data into it
 for (int i=0; i<1024; i++)
 file.write("Here’s the data: " + i);
}
catch (FileNotFoundException e)
{
 // Deal with filename problems
}
catch (SecurityException e)
{
 // Deal with problems like wrong permissions
}
catch (IOException e)
{
 // Deal with other (generic?) I/O problems
 // How do I do this???
}
finally
{
 try
 {
 file.close();
 }
 catch (IOException e)
 {
 // What should I do???
 }
}

Listing 1.2 – Writing to a file

 SECTION 1.1 — MOTIVATION 13

Already a problem can be seen. The programmer is trying to write some data into a file.

But, in order to do so, it is being forced to think about all possible problems that can

happen in the process. That is not a bad thing per se, but is happening at the wrong time.

Writing data into a file is most likely part of a larger algorithm, which may itself be

complicated. Thus, in most cases, the programmer is concentrating on that application

logic and not really on what goes on when an exception is thrown, or exactly what

exceptions can be thrown and their associated recovery actions. A common consequence of

this mismatch (thinking about application logic vs. thinking about exception handling) is

that many programmers actually silence exceptions in order to be able to keep

implementing the core application logic. The rationale is that latter on they will deal with

the exceptions, which in many cases never happens.

To complicate things further, in the example, an experienced programmer may argue that

if an exception occurs, we should probably try to close the file. That is normally done on a

finally block or inside an exception handling block. But, in order to so, a valid file

reference must exist at that point. Thus, the declaration of FileWriter must be performed

outside of the try block and the variable must actually be initialized to something (null is

a common choice). (If the variable is not initialized, the compiler would complain that on

the finally block the variable could have not been initialized due to an exception during

the object instantiation.) There is also the problem of what to do if an exception is thrown

while trying to close the file inside of the finally block. Silencing1 the exception is a

common approach.

Comparing the code that the programmer wants to write (shadowed text in Listing 1.2)

with the code that the programmer ends up writing (all the code in Listing 1.2), something

is clearly wrong with the model. It is what in McConnell’s nomenclature would be

classified as a “coding horror” [McConnel2004], greatly contributing to fragile code and

substandard quality. While the programmer is just trying to write some data into a file, it is

nonetheless being forced to massively deal with error handling. And, in the case of this

example we have not even discussed the code that would be included inside of the

exception handlers for error recovery. If one considers medium to large scale applications,

with possibly hundreds or thousands of exceptions having to be addressed, this is clearly

problematic.

1 Silencing exceptions is a well known bad practice for exception handling. It consists in an empty

catch block with no other purpose than avoiding the propagation of an exception occurring inside
a try block.

14 CHAPTER 1 — INTRODUCTION

Best practices for exception handling
The software industry and the programming community in general have established a set

of design patterns and guidelines for writing better software using exception handling.

These best practices are well known in the software industry and have been thoroughly

discussed by several authors in recent years. Nevertheless, programmers are not always

keen on following such directives as we will discuss next. Table 1.1 summarizes several

widespread exception handling best practices [Wirfs-Brock2006,Muller2002,Doshy2003].

Table 1.1 – Exception handling best practices.

Guideline Description

Key design issue Exception handling must be taken seriously as key design
issue throughout the whole software life cycle. It is important
to start collecting exception handling and logging
requirements early. The design of the exception hierarchy
must be completed before the start of the implementation.

Indicative exception
names

Exceptions should be named after what went wrong and not,
for instance, who raised it.

Custom exception
types should
always provide
extra and useful
information

Creating a new exception type that does not gives any useful
information to the client code, other than an indicative
exception name, is not useful. Exception type should provide
functionality and information that will help treating the
abnormal situation.

Do not declare lots
of exception types

Only create a new exception type when its occurrence will be
handled differently.

Document custom
exception types

Exceptions being thrown by a method should always be
documented.

Know when to use
checked exceptions
and when not to

The usage of checked exceptions is not a reason per se for
disregarding the usage of unchecked exceptions. If possible,
both models should coexist: exceptions that signal an
untreatable situation should be unchecked; exceptions that
signal an abnormal situation which might be treatable should
be checked.

Preserve
encapsulation

Implementation-specific exceptions must never escalate to
higher layers. Recast lower-level exceptions to higher-level
ones when raising the abstraction level.

Providing context The exception should carry the necessary context information
in order to allow an informed response by the handling code.

Handling code
must be close to the
problem

The longer an exception propagates in the call stack, the more
difficult will be for the handling code to make meaningful
decisions.

Use decision
empowered objects
to handle
exceptions

Usually the objects better equipped to treat exceptions are the
ones closer to the problem, but, some times the most able
object is the one that was designed to control actions and
make decisions.

 SECTION 1.1 — MOTIVATION 15

Guideline Description

Chaining
exceptions

In some cases, to maintain encapsulation and hide
implementation details that are not useful for the user
(another program or a person), it is useful to change the class
of the exceptions on their way up the call stack.
Unfortunately, this practice inevitably leads to the loss of the
stack and possible error information available on the original
exception object. If the programming language permits it, a
good practice is to chain the original exception inside the
newly created one, thus keeping all the information available.

Do not use
assertions inside
catch blocks

Assertions have no place inside catch blocks, it is just too late
to use them: assertions do not provide means to chain an
original exception. Making an assertion always false is an
abuse of the concept, if assertions are disabled, the catch
block ends up empty.

Clean up Always clean up resources like database connections,
network connections, and others. If the programming
language allows the usage of finally blocks, be sure to use
them for the clean up actions.

Never use
exceptions for flow
control

Exceptions should not be used to control de execution flow of
an application, they should only be raised on emergencies.
Generating stack traces is expensive and their information is
only useful for debugging purposes.

Do not ignore
exceptions

If a software designer deliberately declares that a method
throws an exception, he his telling the programmer that the
exception must not be silenced or ignored but dealt with. If
the programmer believes that handling the exception does
not make sense, he or she should catch it, convert it to
another form, and re-throw it (possibly as an unchecked
exception if the model allows it).

Do not catch top-
level exceptions

General (top-level) exception types, like Java’s
java.lang.Exception, do not give much information about
the underlying problem. The programmer should catch the
exact exceptions types that the invoked functions declare to
throw and treat them separately. Putting all the “occurrences
in the same bag” is a poor error recovery practice since no
detailed information about the problem is available.

Do not try to
handle coding
errors

The cost of trying to handle coding errors is extraordinary,
thus, only high fault-tolerant systems will require such
extraordinary measures.

Log only what is
important

Log should be done as late as possible and each exception
must be logged exactly once. Do not use handlers that only
log and repeatedly re-throw the same exception (this is an
expensive practice). The best moments to log an exception are
when it is: being treated; leaving a physical tier/virtual
machine through a remote call; leaving a logical tier with its
own log file.

16 CHAPTER 1 — INTRODUCTION

It is interesting that many of the discussions about exception handling programming rules

are currently evolving into the discussion of exception handling design patterns, much

inspired by the well known object-oriented design patterns [Gamma1995]. The first steps

in this direction are already visible at Portland Pattern Repository [Portland2007].

Exception handling antipatterns
No one argues that the described best practices help to increase the overall software

quality, but, we can say that for each good design pattern there is always opposed an antipattern

(this could certainly be the software world equivalent to the Newton’s third law of

motion). Tim McCune was the first author to introduce the concept of Exception Handling

Antipatterns [McCune2006], much inspired by the 1998 release of AntiPatterns: Refactoring

Software, Architectures, and Projects in a Crisis [Brown1998]. The author argues that for many

novice to mid-level developers exception handling tends to be an afterthought -“try-catch-

print the stack trace” is the most common exception handling pattern used by these

developers - and, if they attempt to incorporate elaborated schemes, they will most

probably stumble with a common exception handling antipattern.

Exception handling antipatterns are, in most cases, the outcome of not following the

previously described best practices for exception handling (details can be found on Table

1.2). And, although the community is well aware of these malpractices and knows that

they are extremely widespread, there are no studies showing how exactly spread their

usage is and how they affect the overall software resilience to errors.

Table 1.2 – Exception handling antipatterns.

Antipattern Description

Log and throw Logging and throwing results in multiple log messages for a
single exception in the program. It makes log files unreadable
and makes the debug task harder.

Throwing top-level
exceptions

This is the same as saying that the function may have some
problem without giving any hint about what that problem
might be. If something happens, the client code will hardly
have the chance to do anything to recover.

Throwing the
unnecessary
multiple exceptions

When a method declares throwing multiple exception types,
it should only differentiate them if multiple treatments apply.
Otherwise, exceptions should be wrapped on a single type.

Catching top-level
exception

If a method declares to throw some specific exception type, it
means that the calling code should handle that exception. By
catching a general exception type, the client code will not be
aware of what was the problem.

 SECTION 1.1 — MOTIVATION 17

Antipattern Description

Destructive
wrapping

Re-throwing an exception wrapped on a different type
results in the loss of the stack trace, if the original exception is
not included in the wrap.

Log and return null When a handler treats an exception by logging it and
returning from the method with a null. This practice may be
valid in some cases but, usually it is not. The best practice is
to throw the exception and let the client code deal with it.

Silencing the
exception

Also known as swallow the exception. It consists in providing
an empty handler (or one that just returns from a method) to
avoid an exception manifestation. In some cases it may be a
valid behavior but, most times, it does more harm than good
because it hides the reason for a possible problem.

Throw from within
a finally block

An exception thrown inside a protected block will be lost
forever if afterwards another one is raised inside the finally
block.

Multi-line log
messages

Using multiple calls to the logger inside a handler can lead to
a log file where related lines may end up spaced by
thousands of lines. Imagine a server app with 500 thread
running in parallel and writing to the log.

Do not ignore
exceptions

A method throws an exception because it is important for the
client code to know that something happened. The action to
take should be in conformity with the gravity of the
exception.

Check for the cause Some exception instances allow the client code to access the
original exception in the base of a series of chained
exceptions. But, note that there can be several exception
chained simultaneous and, in this case, to access the original
exception it may require more than one call to the method
providing this functionality.

Throw when not
implemented

If a declared method is not implemented in some class (or
version of a class), be sure to throw an exception that will
inform the user of that fact. Practices like just returning null
will not suffice and may lead to undesired behaviors.

A fundamental part of our work was dedicated to quantifying how exception handling

antipatterns influence software quality. We discovered that, in general, exceptions are not

being correctly used as an error handling tool [Cabral2007]. This also means that if the

programming community at large does not use them correctly, probably it is a symptom of

a serious design flaw in the mechanism: exception constructs, as they are, are not fully

appropriate for handling errors.

Exception documentation
Exception documentation also plays an important role in the quality of the code of an

application. Even more if the language does not have checked exceptions, like C#, but on

18 CHAPTER 1 — INTRODUCTION

which the programmer wants to correctly deal with possible abnormal situations. Checked

exceptions allow the programmer to discover which exceptions may be raised by a method

at compile-time but do not force the programmer to deal with them. On systems

implementing the unchecked exceptions model, programmers are not forced to declare the

exceptions that a method may raise. Thus, programmers are more dependent of the

available documentation to ensure the handling of every possible exception.

Unfortunately, exception documentation in most programs and software libraries is of

poor quality or completely inexistent [Cabral2007b,Sacramento2006]. To minimize the

damages, some development platforms have implemented mechanisms, on compilers and

IDEs, to inform the developer of possible problems on the code. But, even these

mechanisms are highly dependent of the quality of the exception handling code.

Concluding remarks
The unwillingness of software designers to deal with exceptions correctly and follow some

well known best practices for exception handling will, undoubtedly, contribute to the

lowering of the quality of programs and their reliability. It is obvious that something is not

right with the current exception handling models: they are not adequate enough for

developers.

The resilience to do proper error handling has multiple origins: the need to concentrate on

the design/implementation of business code; ignorance about possible abnormal

behaviors in the code; the need to speed up development; incomplete testing batteries and

code coverage tests; among others. Nevertheless, these are only suggestions about what

could be the problem behind exception handling poor practices. There is no sound theory

about what is really keeping programmers from implementing valid recovery strategies

but, as some argue, the mechanism itself can be seriously flawed. For instance, Garcia et al.

[Garcia2001] have identified several design issues on the exception handling models

available in modern programming languages. The authors claim that most of the existing

exception handling models rely on classical design solutions, some of them too general or

too complex, making harder the task of developing dependable object-oriented software.

Nowadays exception models make the writing of exception handling code with quality a

cumbersome task.

Some researchers have even stronger views about the application of exception handling

models to object-oriented programming languages. They imply that “exception handling

can contradict the conventional object oriented paradigm” [Miller1997]. The authors

 SECTION 1.1 — MOTIVATION 19

identified four aspects of exception handling that are different from normal object

orientation:

1. Complete exception specification – A handler may require extra information to be

available on the exception specification than what is in the object interface;

2. Partial states – Object-orientation does not defines partial states but exceptions

may occur in state transitions, thus giving birth to partial states;

3. Exception conformance – Overloaded methods have the same meaning in different

situations but, exception information usually needs to be specific;

4. Exception propagation – Propagation can change the control flow of a program

giving birth to two different execution paths: the normal execution path, and the

exception handling path.

Miller et al. also describe how the exception handling model corrupts the four major

elements of object-orientation: abstraction, encapsulation, modularity, and inheritance

(Table 1.3). These incompatibilities will undoubtedly create difficulties to the designers of

object-oriented software that are, at the same time, concerned with reliability, fault

tolerance level and object-orientation.

Table 1.3 – Exception handling and the object-oriented paradigm.

OO Topic Objective Incompatibility with exception handling

Abstraction Hide implementation
details of an object from
its users. Expose only the
necessary functionality.

Many times, in order to generalize operations and
make them usable in a wider range of conditions,
the exception handling mechanism may require
exposing more implementation details, as a part of
the abstraction, to the object’s users. For instance, a
method on an object may declare to throw an
exception type that will give more information
about the method’s implementation details than the
user would ever know if the exception was not
there.

Encapsulation Hide the internal data
and functionality of an
object from outside
referrers/users.

When an object raises an exception, it runs the risk
of exposing its internals, if the raised exception
contains more information than what is permitted
by the encapsulation.

20 CHAPTER 1 — INTRODUCTION

OO Topic Objective Incompatibility with exception handling

Modularity Ensure that the changes
in one module have little
effect on other modules.

Exception handling often increases the coupling
between modules. Changes and evolution of the
functionality of a module often require the module
to expose more exceptions to the other modules
than those initially planned. Thus, the other
modules will have to adapt to the new exception
interface members.

Inheritance Promote code reuse and
conceptual specialization.

The problem arises when a subclass’s exception
handling replaces rather than augments the parent’s
handling of exceptions.

The motivation for our work was that, quoting Garcia et al. [Garcia2001] - “We believe that

an ideal object-oriented exception model is urgently needed to guide the design of effective

exception handling mechanisms”. In our case, we believe that the model should provide

effective exception handling and do not lower the productivity of programmers; it should

free the programmer from the burden of having to deal with all possible exceptions and

yet keep him informed about all the potential problems that can occur in a function call; it

should decrease the amount of code that the programmer effectively writes, increase code

quality, speed up testing procedures/development time, and, at the same time, eliminate

some common exception handling malpractices. Furthermore, we believe that exception

handling mechanisms should, to an appropriate level, become transparent for the

developer.

Consider the analogy with Garbage Collectors (GC). Before garbage collection became

mainstream, programmers had to handle memory manually, at many locations in the

source code. They had to reserve memory, free memory, and manage all memory usage

related details. Automatic memory allocation and the GC freed the programmers from

these tasks by automatically managing memory space as required by the running

applications. This technology, besides making the job of the developer simpler, helped to

avoid many memory related errors. Exception handling should work as a GC for

exceptions in the sense that, without (or with minimal) programmer intervention, the

mechanism should automatically execute sets of benign recovery actions for the exceptions

being raised in the running code. The mechanism should also allow the running

application to re-execute the problematic instructions a second time without problems or

just continue its execution in a valid state.

 SECTION 1.2 — RESEARCH OBJECTIVES 21

1.2. Research Objectives
When the ideas behind this thesis first begin began to emerge, they were fueled by the

unsettling feeling that something was not right with nowadays exception handling

approaches. Current work at that time involved the study of the source code of several

open source applications available on the internet. Many of these applications were

servers, programming libraries, and middleware software with thousands or even millions

of users all over the world. And, although we were not looking for coding errors, or coding

patterns of any kind, the by-product of this task was the discovery that developers were

not dedicating enough attention to the exceptions and that, in fact, the exception handling

code in these programs could be much better. We believed that we could help to improve

the quality of software, if we provided the right tool for exception handling to the

developers. The following goals were set at the start of this investigation:

1. Identify and quantify the problems behind the general lack of efficiency on

exception handling code. Assess the true influence of programmers’ exception

handling mal-practices on the quality of the code;

2. Investigate how the identified problems can be related to current exception

handling approaches. Propose new exception handling and programming models

that are more attractive to developers, thus eliminating the shortcomings of the

existing models, and, at the same time, improve the resilience of programs to

errors;

3. Assess the advantages and disadvantages of the new model when compared with

previous approaches. For doing so, a number of prototypes and tools, either for

implementing or supporting the new model, should be built.

It must be mentioned that from the start it was neither an objective to develop a new

runtime environment nor a new programming language. The work should be as close as

possible of the existent mainstream solutions, languages and platforms. We believe that the

success of the new model is not only dependent of its novelty and efficiency but also of the

easiness of integration with the most popular platforms in the market.

22 CHAPTER 1 — INTRODUCTION

1.3. Contributions
The authors of this work secretly expect that their research might one day influence the

development of future programming languages and runtime environments. But, for the

moment, the major achievements resulting from this work are:

1. To present the most comprehensive study done on exception handling to date,

providing a quantitative measure useful for guiding the development of new

error handling mechanisms;

2. To provide a novell exception handling programming model that automates the

handling of some exceptions and makes their treatment a platform issue. The

proposed model uses a Software Transactional Memory (STM) [Shavit1995]

approach in a way that is completely transparent for the developer;

3. To show that it is possible to define sets of benign recovery actions that can be

automatically executed by the runtime platform when an exception is raised

inside a running program;

4. To demonstrate that it is possible to apply the new model to existent mainstream

object-oriented platforms with the advantages of: diminish the amount of

exception handling code that developers have to write in their programs;

decrease the development time (programmers write less code and have less code

to test); increase the overall quality of the code (developers can concentrate on the

writing of business code); and, at the same time, increase the software resilience

to errors.

1.4. Structure of the Dissertation
The thesis is organized in six chapters:

 Chapter 1, this chapter, presents the motivation for the undergone investigation,

initial research objectives and contributions of the thesis;

 Chapter 2 discusses the state of the art on exception handling models and

presents a brief overview of the implementations and exception handling

constructs available in the most relevant programming languages;

 SECTION 1.4 — STRUCTURE OF THE DISSERTATION 23

 Chapter 3, provides quantitative measures on how programmers are currently

using exception handling constructs in modern object-oriented programming

languages. It aims to contribute to the discussion about current exception

handling limitations;

 Chapter 4 presents the Automatic Exception Handling mechanism and describes

the associated programming model;

 Chapter 5 describes how a prototype of the new exception model was actually

implemented, in terms of architecture and coding, and discusses the validation

process and the model’s assessment results;

 Chapters 6 concludes the thesis by summing up the major results from the

research and describing venues for future work.

Current Approaches to
Exception Handling

This chapter examines the current state of the art in exception handling. It addresses the

origins of the concept and the first efforts, on the late seventies, for defining the

architecture, language constructs, and usage semantics. The strengths and limitations of

modern exception handling mechanisms are also discussed. Whenever relevant, we

emphasize the features of the exception models that may have a positive or negative

influence on the quality of the produced code, in terms of reliability.

Chapter

2

26 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

2.1. Introduction
The mid-1950’s saw the birth of the first exception-like language construct. The language

designed by John McCarthy, Lisp, featured a language construct that allowed the

interpreter and compiler to gracefully exit from an error when one occurred

[McCarthy1965]. The function ERRSET permitted the controlled execution of code that

might cause errors. The special form (errset form) evaluates the execution of form in a

context in which errors do not terminate the program or enter the debugger. If form

executes successfully, ERRSET returns a singleton list of the value. If the execution of form

goes wrong, the ERRSET form quietly returns NIL.

Later, MacLisp [Eastlake1968,Moon1974] added the function ERR to signal errors. If ERR is

invoked within form, then the argument to ERR is returned as the value of form.

Unfortunately, these constructs soon began to be misused by programmers that did not

used them to trap and signal errors but for execution control purposes1. This behavior

made debugging harder because unexpected errors were also trapped within ERRSET. In

order to limit the use of ERRSET to error trapping, MacLisp designers introduced a new pair

of primitives, CATCH and THROW [Eastlake1972].

This historic note is useful to help us understand that careful design of a new language

construct is not enough to assure its success. In the next sections, we will present and

describe several features (and their evolution) of existent exception handling mechanisms.

But, despite such technical advances, it is important to keep in mind that the unintended

(miss-directed) use of error trapping mechanisms, as occurred in Lisp, is still a problem for

modern programming language designers. In many cases, designers are forced to go back

and redesign the mechanism in order to comply with the users’ expectations and the

system correctness requirements [Steele1993]. We would have though that the lessons

learnt with Lisp would prevent the same from happening in modern programming

languages. Unfortunately, this was not the case. Modern exception handling mechanisms

are as prone, or even more, to misuse by programmers as its Lisp ancestor.

1 It is interesting to note that, in many cases, modern exception handling mechanisms are currently

being misused in the same way.

 SECTION 2.1 — INTRODUCTION 27

2.1.1. First efforts in the definition of a standard notation
Facilities for dealing with exceptional conditions, such as variable overflow, end-of-file, and

bad data, were fairly common in the 1960’s programming languages. But, it was not until

the development of the IBM PL/I programming language [IBM1968,Radin1981] that we

saw the usage of high level control flow constructs exclusively dedicated to enabling the

writing of reliable and safe programs.

PL/I featured a construct, the ON condition, which allowed the specification of the actions

to be undertaken when one abnormal condition, of a set of 23, occurred during the

execution of a program (e.g., NDFILE = 0; ON ENDFILE(SYSIN) NDFILE=1;). The ON unit

is not lexically associated with a statement/operation that might present an abnormal

behavior. Instead, its invocation is dynamically associated with the occurrence of an

exceptional condition. This construct has been proven to be difficult to use, much because

there is no dedicated way to share data with the ON unit code. In fact, it is necessary to use

global variables.

Independently of the discussed shortcomings, the PL/I’s ON condition was useful to

demonstrate that such a mechanism, or a similar one, was essential for the development of

reliable software. We must recall that previously known error handling techniques had

even more fallacies. For instance, return of error codes1 and status flags2 techniques have

noticeable drawbacks:

1. An error is handled only when it is detected. Hence, programmers have to

explicitly check/test the return values or status flags. Failing to do so will allow

the program to continue its execution after an error occurrence. This can lead to

the state of a program being corrupted and erroneous computation;

2. The code for testing return values or status flags has to be located throughout the

program. This reduces the readability and, consequently, the maintainability of

the code;

1 This technique requires that each routine must return a value on its completion. Different values

have different meanings and will indicate if an abnormal condition was encountered during the
routine execution.

2 The status flag technique might be used alone or in conjunction with the previous technique. It is
based on setting the value of a shared variable (status flag) to indicate that a rare condition has
occurred. The value remains until it is overwritten.

28 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

3. It is difficult to ensure that all the error cases being produced by a routine are

being handled;

4. The code for testing return values and status flags is coded inline with normal

code, thus making the removal, modification or addition of return or status

values very difficult;

5. The return values technique allows the mingling of error values among the range

of good return values of a function. Changing a value representing a exception to a

good return value, or vice versa, can be a difficult and error prone task that will

affect every piece of software using that function;

6. A function will leave the caller unaware that an error occurred if it fails to execute

but still returns a valid value. This is known as the Semipredicate problem.

These initial efforts were followed by more complex attempts to provide the programmer

with better tools to deal with abnormal situations: (a) Subroutines were handlers that were

passed as a parameter on an operation invocation; (b) Labels marked the start of the

handling code and were passed as parameters to operations in order to allow execution to

continue on the labeled instruction after an exception detection; (c) Object-oriented exception

handlers [Ross1967] were subroutines associated with an object that were executed when

the object encountered certain conditions; (d) Handler setup calls [Softec1972] allowed the

association of a handler with an exception being subsequently raised by some operation;

(e) Hoare otherwise statement [Hoare1973] permitted the specification of the policy Q1

otherwise Q2 – meaning that if Q1 fails, then Q2 should be performed; there were similar

techniques, such as backtracking [Golomb1965] and the recursive cache [Horning1974]

methods.

In 1975, John B. Goodenough published his seminal work on exception handling

[Goodenough1975] and become the first author to propose a notation for working with

exceptions – the programmed exception handling model. His article in the Communications of

the ACM was the first to discuss the issues associated with exception handling and the

language features necessary for dealing with exceptions. And, although this work is more

than three decades old, it remains up to date and many of its proposals are still found in

nowadays exception handling mechanisms.

Goodenough gives a simplistic definition of what an exception is - “Of the conditions

detected while attempting to perform some operation, exception conditions are those

 SECTION 2.1 — INTRODUCTION 29

brought to the attention of the operation’s invoker.” Although very simple, this definition

is essential to understand the fundamental issues behind the exception handling concept. He

continues by defining the raising of an exception as the act of bringing one of these

conditions to the attention of the invoker; and classifying the invoker’s response as the

handling of the exception.

Contrary to what one might expect, the author explains that exceptions are not necessarily

activated in rare occasions. They are also an elegant means of interleaving actions

belonging to different levels of abstraction [Liskov1974,Dijkstra1968,Liskov1972a,

Liskov1972b,Woodger1972,Dahl1972]. In essence, exceptions make operations usable in a

wider variety of contexts than would otherwise be the case. Exceptions serve to generalize

operations. They allow the user of an operation to extend the set of inputs for which effects

are defined and its range in order to fulfill a particular purpose. Exceptions can be useful

to indicate the meaning of a valid result, the conditions under which it was obtained, or to

monitor the progress of an operation.

Even more important is the role that exceptions play when dealing with an operation’s

impending or actual failure. For instance, two failure types were identified: range failures

and domain failures [Goodenough1975]. In the first case, the failure is caused by the

operation being incapable (or deciding it may not ever be able) of satisfying its output

assertion. In this case, the operation may need to be aborted, retried or terminated yielding

partial results. Domain failure occurs when an operation’s input does not respect the pre-

conditions for its acceptability. This may cause the operation termination or require the

modification of the input.

The notation proposed by Goodenough addressed four distinct classes of topics:

 Association of handlers with invocations of operations – issues related with how the

association of a handler to the invocation of a given operation can be made.

Handlers can be associated with blocks of code, methods, objects, classes,

exception types and instances;

 Control flow issues – issues related with the execution flow following the execution

of the handler after the occurrence of an exception, namely the applicability of the

resumption or the termination model [Goodenough1975f];

 Default exception handling – in some cases it is useful to provide default handlers

for exceptions that are not handled by the operation’s invoker;

30 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

 Hierarchies of operations and their exceptions – differences found between the

handling of an exception by the operation’s invoker and the handling of the

exception by and indirect invoker.

Goodenough proposed three different constructs for signaling exceptions: (a) SIGNAL,

which permits the operation raising the exception to be either terminated or resumed; (b)

NOTIFY, which forbids termination of the operation and requires resuming; and (c)

ESCAPE, which forbids resuming and requires the operation termination. Furthermore,

the author also proposed the use of the ENDED exception type for signaling a valid

termination of an operation. Thus, allowing the execution of a handler specially created for

execution after a normal termination.

These and other topics are, in part, what characterizes an exception handling mechanism

and will be addressed in the following sections of this chapter where a discussion about all

the attributes of modern exception handling models will take place.

2.2. Handling models: features and propagation
The literature on exception handling has already provided a thorough description of the

existent exception handling models and their attributes. This section discusses the relevant

literature in order to give a general, but clear, perspective of the capabilities of nowadays

exception handling models.

Figure 2.1 – Label variables usage example

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 31

2.2.1. Handling models
Exception handling models are differentiated by their control flow policies. An exception

handling mechanism can implement more than one exception handling model, their usage

is not mutually exclusive. Yemeni et al. [Yemini1985] identified the following models:

 Nonlocal transfer – few programming languages support nonlocal transfer. PL/I is

one of those languages, it uses label variables as arguments for goto statements in

order to redirect the control flow. The label variables contain both a point of

transfer and a pointer to an activation record on the stack containing the transfer

point. An exception handling mechanism that uses the nonlocal transfer model

can be constructed by labeling code, to identify handlers, and perform branches

to those labels for terminating operations - Figure 2.1. However, this model

suffers from a well known structured programming problem: it allows branching

to almost anywhere, making the code difficult to reason about, less maintainable

and error prone.

 Termination model – this is the most commonly used model. When an exception is

raised inside a protected block of code, control flow is transferred to a handler

and the intervening blocks are terminated; after the completion of the handler,

control flow continues as if the operation in the protected block terminated

without showing any abnormal symptoms - Figure 2.2. The handler is, in this

model, an alternative set of operations that are executed after the problematic

ones in the protected region.

Figure 2.2 – Java code exemplifying the termination model

32 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

 Retrying model – this model extends the previous model. It allows the failing

operation to be re-executed after the execution of the handler for the raised

exception. Usually the execution is retried from the beginning of the protected

region of code where the exception was raised or from the beginning of the one

associated with the handler used to treat the exception - Figure 2.3. The re-

execution of code blocks can have unpleasant side effects that the programmer

must be aware and that have to be dealt with in the most appropriate way:

counters not reset; invocation of non-idempotent operations; existence of several

handlers for the same reentry point; etc. Other authors [IBM1981] have shown

that it is possible to mimic the retry model by using a loop and the termination

model. Because the later alternative is more readable, all looping is the result of

explicit loop instruction and not from a hidden language feature; its use has been

considered preferable when compared with the model itself.

 Resumption model – the control flow in this model is in many ways similar to a

normal routine call: when an exception is raised, control flow is transferred from

the raise point to a handler, to treat the problem at hands, and then back to the

raise point - Figure 2.4. In fact, the main difference between a normal routine call

and a resuming call is that in the second one the handler is located dynamically.

The main argument against the resumption model is its complexity. The

Goodenough model and the Mesa model [Mitchel1979,Yemini1985] (based on the

first) are good examples of that complexity. Implementation difficulties and

complexity apart, the remaining problem with this model is recursive resumption

[Liskov1979,Stroustrup1994]. Recursive resumption occurs, for instance, when a

handler for a resuming exception resumes the same event.

Figure 2.3 – Retry model exemplified with Eiffel notation

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 33

2.2.2. Features
Control flow issues are fundamental when distinguishing exception handling models and

mechanisms. However, there many other features that can make a difference when dealing

with exceptions. Burh et al. identified a set of the most fundamental features available in

modern exception handling mechanisms [Burh2000]. We will discuss these features on the

following sections.

Derived Exceptions
An exception type can derive from another exception type, much like a class can derive

from another class in the object-oriented paradigm. This allows the developer to organize

his exceptions in a way similar to a class hierarchy. Furthermore, by doing so the

developer is able to handle an exception at different degrees of specialization along the

hierarchy. This feature allows a more flexible programming style.

Multiple derivation [Koenig1990] is a feature that is often rejected in object-oriented

languages due to the complexity and problems that it introduces. Multiple derivation for

derived exception types is also rejected because it would create significant difficulties for

the mechanism semantics. Consider the example on Listing 2.1. In this example, a new

exception class, InputException, is declared as being derived from the classes

IOException and EOFException. The difficulties arise when an exception instance of

InputException is raised inside a guarded block that has two handlers, one for

IOException exceptions and another one for EOFException. This situation causes

ambiguity: without the specific knowledge of the exception hierarchy it is not possible to

say for sure which of the handlers will be activated. Moreover, in the event that one of the

handlers (or both) is executed, none of the parent classes might be equipped for dealing

with the derived exception, but, are forced to do so.

Figure 2.4 – Resumption model exemplified with Smalltalk notation

34 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

Exception Parameters
Raising an exception would be almost irrelevant if the exception handling mechanism did

not allow the passing of information about the problem to the exception handler. This

could be accomplished by using shared variables but, in environments with concurrency

concerns, the usage of locks or other access control mechanisms would be mandatory.

Exception parameters allow the source code to pass information to the handler without

any side-effects or locking requirements. There are, of course, mechanisms without

exception parameters and mechanisms that, on the other hand, allow passing one or more

parameters.

In concurrent environments, where the faulting execution1 is different from the source

execution2, the access to the exception parameters must be properly synchronized. Burh et

al. [Burh2000] defend that synchronization should not be a concern of the exception

mechanism - “leaving the synchronization to the programmer simplifies the exception

handling mechanism interface and hardly loses any capabilities” – the programmer can

use monitors, futures, conditional variables, and other facilities for synchronization.

1 The execution that changes its control flow due to a raised exception. Control flow is routed to the

handler.
2 The execution raising the exception.

class InputException extends IOException,EOFException {…}
__
…
try
{
 // operation raises an InputException
}
catch (IOException …)
{
 // Will this handler be activated?
 // if so, does IOException have
 // enough information/functionality
 // to deal with the descendent exception
}
catch (EOFException …)
{
 // Or this one?
 // Would this be able to handle it?
}
…

Listing 2.1 – Multiple derivation for derived exceptions

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 35

Derived exception parameters deserve special attention to prevent handlers from accessing

un-initialized parameters on the exception object.

Bound exceptions and conditional handling
When an exception is raised inside a guarded block and a handler is activated, the handler

should know which object was the origin of the exception. In Ada, this question has a

simple answer: an exception declared in a generic package creates a new instance for each

package instantiation. Thus, a different handler can be activated for each different package.

On the other hand, in other systems, it may be necessary to pass additional information

from the source code that generated the exception to the handler.

Consider the example in Listing 2.2. In some models it is possible to declare an exception

in a class (e.g., setting up the exception overflow on the stack class). This exception can

then be interpreted by the exception handling mechanism as being associated with the

class or with each object instantiated from it. In the source code example, the handler

marked as option 1 acts like there is only one overflow exception for all stack objects

created. Hence, this handler is activated regardless of which stack object raises the

exception. The handler marked as option 2, on the other hand, is activated only if the object

raising the overflow exception is s1. This is what is called a bound exception; the exception

overflow is bound to a particular class instance.

class stack
{
 exception overflow;
 boolean empty;
 …
}

…
stack s1, s2;
try
{
 …
 s1.push(…); //may raise overflow
 s2.push(…); //may raise overflow
 …
}
catch (stack::overflow) … //option 1
catch (s1.overflow) … //option 2
catch (s2.overflow) when (s2.empty) … //option 3
catch (s2.overflow) when (!s2.empty) … //option 4
…

Listing 2.2 – Bound exceptions and conditional handling

36 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

Bound exceptions can be mimicked in systems that do not support them. Unfortunately,

the cost in terms of code growth can be too high. For instance, consider that (1) a new

exception instance would have to be created for each stack object, (2) that the stack object

reference, of the object raising the exception, can be passed to the exception and,

subsequently, to the handler through the exception parameters, (3) and that the

programmer would have to check if the object referenced by the exception is the one that

he or she wants to handle (comparing references) and, if it is not, he or she is obliged to re-

raise the exception in order to let the search for the appropriate handler continue. This last

coding convention is also considered to be unreliable. Mimicking the bound exceptions

feature is unfeasible for derived exceptions, especially in the cases that the exception has to

be re-raised, after entering in an inappropriate handler (set for a parent exception), and

ignores the right handler if it is also associated with the same guarded block.

The concept of bound exceptions can be extended with conditional handling [Mok1997].

Options 2 and 3 of Listing 2.2 are a good examples of how conditional handling works. By

checking the value of the variable empty, the system can decide which handler is activated.

Furthermore, conditional handling can be used to mimic bound events just by checking if

the object parameter is equal to the desired object. While, the literature has already given

us proofs of the usefulness of bound exceptions [Burh1992], we have none on conditional

handling.

The .NET framework, for instance, provides four different kinds of handlers:

 Fault handlers are called whenever an exception occurs. After their execution the

exception keeps propagating up the stack;

 Type-filtered handlers handle exceptions of a specified type or a subtype of that

type, and are executed when such an exception is thrown;

 User-filtered handlers decide whether to handle an exception or not based on

custom logic; if the test passes the handler will cope with the exception, otherwise

the exception survives;

 Finally handlers are executed under any circumstance, regardless whether an

exception occurs or not and can be used to close critical resources such as files or

handles.

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 37

User-filtered handlers are the .NET implementation/construct used for conditional

handling. Unfortunately, user-filtered handlers are not available either in C# or in Visual

Basic, two of the core programming languages of the .NET platform.

Exception list
The exception list is an extremely useful feature that allows a method to declare which

exceptions it might raise. For doing so, the programmer has to include in the method’s

signature a list of exception types. In most programming languages, by doing so, the

programmer is explicitly saying that the method in question can only propagate in the call

stack the exceptions being declared. Any other attempt of throwing or propagating an un-

declared exception would result in a compile error. This feature gives the developer the

privilege of always being aware of the potential problems that his code might face when in

execution and avoids the existence of unattended exceptions. An exception list is also very

useful for the development of static code analysis tools because it allows the observation of

potential exception propagation paths.

Some developers think of this feature as a restriction for their coding styles. They claim

that is not always useful to handle all the declared exceptions and re-declaring the not-

handled ones in the method signatures is, in some sense, a unnecessary and ugly coding

practice. Furthermore, this technique can raise some difficulties for object-oriented

software designers. For instance, when overriding an inherited method and the new

implementation does not throws the same exceptions as the parent method, it is impossible

to add or remove items on the inherited exception list. It would be possible to add the

necessary exceptions (to cover all possible exceptions in all existing implementations) to

the declaration on the top of the hierarchy but, this practice would make the program less

reliable because the signature would cover a large range of exceptions.

Propagation mechanisms
There are two kinds of propagation: throwing and resuming. The first is associated with the

termination model while the other one corresponds to the resumption model. Exception

handling mechanisms are free to implement only one or both of them.

In the throwing propagation, the execution flow of the program never returns to the point

where an exception is raised immediately after the handler execution. Furthermore, the

propagation requires that every block in the stack, between the raise and the handler, must

be destroyed. This is known as stack unwinding.

38 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

In the resuming propagation, the execution flow returns to the point where the exception

was raised after the execution of the handler, thus, there is no stack unwinding. However,

the handling code is free to decide not to resume the execution and perform the unwinding

of the stack. This ability to explicitly request the stack unwind must be supported by the

programming language (a special statement must be available). This feature may lead to

unsafe resumptions given that the source code (where the exception is raised) loses the

ability to order the unwinding of the stack.

Liskov and Snyder [Liskov1979] have discussed the suitability of each approach in terms

of software reliability. Their findings do not come as a surprise. For instance, in terms of

control flow (and in the absence of recursion) it is safe to assume that the caller of a

function is dependent of the function being called but, the called function is not dependent

of its caller. Nonetheless, with resuming propagation the later can happen, and both the

caller and the callee can be mutually dependent. For instance, not only the caller of a

function is dependent of the invoked function but also the callee becomes dependent of the

caller when an exception is raised (and the handler is located on the caller). This

characteristic influences the way applications are designed. It is necessary to include extra

information on the design that will identify, not only every possible termination state

(when non recoverable exceptions occur), but also all possible behaviors that can be

expected from the handlers when exceptions are signaled.

Resumption requires additional language support. The “normal case” in a resuming

environment is having exceptions that are resumable but this is not always possible. Every

system has to cope with situations where the signaler of an exception may not be resumed,

must be resumed, or where resumption is optional. Language designers have to outfit their

languages with the necessary tools to support these three possibilities and differentiate the

signals used to communicate them. Furthermore, in the event that an exception is not

resumable, the signaler must have the means to restore the global variables to a valid state

and perform all the necessary clean up actions before its activation is terminated. This kind

of system also requires a termination-like functionality in order to handle its own exceptions

in the event that the caller does not. Thus, the termination model has simpler linguistics

and does not require multiple kinds of signals. On the other hand, it is also true that the

resumption model will provide a more expressive (and more intuitive) way to deal with

exceptions in specific scenarios such as the following:

 “when the exception is signaled, the signaler is in the middle of a computation

that can be completed by performing additional computation upon receipt of a

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 39

value from the handler. Resumption permits completion of the computation in

this situation without redoing work already performed” [Liskov1979]

In [Goodenough1975, Levin1977] the authors present strong cases in defense of the

resumption model. Nonetheless, their examples are simpler deviations of the scenario just

described. It is arguable that the solutions using resumption feel more natural (or not) than

those possible without resumption. But, even if resumption can relieve the programmers’

task in these cases, it is necessary to measure how common these scenarios really are to

know if the tradeoff between the added extra complexity and the more natural code in

such specific conditions is justified.

When developing software for a platform using an exception handling mechanisms that

implements both propagation mechanisms, the programmer must have in mind that a new

class of problems will arise. Consider the following example: in a program it is possible to

have a throw statement overriding a resume statement. Nonetheless, it is not possible to

have a resume statement overriding a throw statement because the stack is already

unwind after the throw.

Until now, it has been assumed that the handling model, termination or resumption,

matches the propagation mechanism, throwing and resuming respectively. But, this is not

necessarily always the case. For instance, a handler with resuming semantics is not able to

handle a thrown exception because a terminated operation cannot be resumed. On the

other hand, the best option for a handler under the termination model to handle a

resumable exception is to unwind the stack and follow the termination semantics.

Handler search
One fundamental issue, associated with propagation mechanisms, is the selection of a

suitable handler for an exception occurrence. Most systems adopt what is known as

dynamic propagation. The alternative method is named static propagation. In dynamic

propagation, the call stack is searched to find an appropriate handler. The second one,

static propagation, performs the search on the lexical hierarchy of the program’s code.

Dynamic propagation is often the best guarantee that an exception will be handled near to

the point where it was first raised, and by the handler that is closest to the block where the

propagation started. It is even feasible that the block on the top of the stack will be elected

to handle the event if it has an appropriate handler.

40 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

Handling an exception high in the call stack allows the handler to perform more specific

actions, whether, if the exception is handled down in the call stack a more general

(accordingly to the higher abstraction level) action would be in place. Most times, it is

easier to handle an exception in a specific context than in a more general context. Dynamic

propagation also minimizes the extension of stack unwinding.

However, dynamic propagation can cause an exception to be propagated through a block

in a different lexical scope. For instance, in C++ it would be impossible to provide an

exception list within the declaration of a template routine. The problem is that there can be

many implementations for the same routine and the exceptions thrown by each one of

them can be different. Consider the template routine template<class T> void sort(T

items[]). This routine uses the operator routine < to compare pairs of items on the list

(bool operator<(const T &a, const T &b)) and sort them. The implementation of

the routine operator < is dependent of the objects being compared thus it is impossible to

know which exceptions can be raised in advance. Another example, adapted from

[Burh2000], is presented on Listing 2.3, it shows that while method B::h is equipped to

deal with exception E, method A::f is not even aware of the exception. Since B::h invokes

A::f and A::f invokes B::g, A::f will propagate E without even knowing the exception.

This is an undesirable behavior [Motet1996]. Some designers suggest that “an exception

class A
{
 virtual int g() {}
 int f()
 {
 …
 g();
 …
 }
};

class B: public A
{
 int g() raises(E) {raise E;}
 int h()
 {
 try {
 …
 f();
 …
 }
 catch (E) { … }
 }
};

Listing 2.3 – Dynamic propagation through an invisible scope.

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 41

should never be propagated into a scope where it is invisible, or if allowed, the exception

should lose its identity and be converted into a general failure exception.” [Burh2000]

Dynamic propagation allows handlers to be selected dynamically, thus, the handler chosen

to deal with an exception cannot be identified through static analysis. But, at the same

time, it is this functionality that allows software libraries designers to develop an API

without providing handlers for the exceptions raised in their software.

Recursive resuming is a problem that can arise in systems implementing dynamic and

resuming propagation. Mostly because, in these systems, due to the dynamic choice of

handlers, it is difficult to discover, both at runtime and compile time, the existence of

problem.

The simplest example that can illustrate the recursive resuming problem is presented in

Listing 2.4. In this example, the try block resumes R and consequently the handler H(R)

is activated and also resumes R. Considering that the blocks in the stack are organized as

follows: bottom of the stack … T(H(R)) H(R); the handler for the latter resuming R is

located just above itself in the stack, it is T(H(R)). Thus, H(R) is called again and continues

to be invoked until the stack overflows.

There have been attempts to prevent recursive resuming from occurring, since it is the only

serious problem attributed of resuming propagation. This was first done by Mesa

[Mitchel1979] designers and latter by Burh et al. [Burh2000].

The Mesa’s approach consists in marking every handler activated for an event as being

unhandled and not re-usable. These marked handlers cannot not elected twice for the same

block. Besides its conceptual simplicity, this approach as been classified confusing when

used in practice and the source of semantic negative attributes: language designers are

concerned that, at certain moments, it is difficult to know if an exception generated inside a

handler will be handled by blocks bellow or above it in the stack. To use resuming

programmers have to have knowledge about the internals of the libraries they are using,

try
{
 resume R; // T(H(R)) try block with handler for R
}
catch (R) resume R; // H(R) handler for R

Listing 2.4 – Recursive resuming example

42 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

because some exceptions might be handled by higher stack blocks (abstraction violation.)

Exceptions are not only being communicated from the callee to the caller, but also in the

inverse direction.

Burh’s approach introduced two new concepts, consequent events and consequencial

propagation:

 Consequent event – the raising of an exception constitutes an event. Sometimes, a

handler deals with events by raising a new exception (new event). This second

event is considered a consequent of the first one.

 Consequential propagation – is a different propagation mechanism that eliminates

part of the semantic confusion associated with the approach in Mesa.

Consequential propagation goes through the stack in the normal way but marks

all the inspected handlers as ineligible (even the chosen handler). This way, any

consequent event will see the marks and will be unable to use any of the marked

handlers. The marks are cleared only after the event has been handled. The

propagation is simplified by the fact that non-resumable exceptions cause the

stack to unwind, thus eliminating the need for marking.

Static propagation was proposed by Knudsen [Knudsen1984,Knudsen1987] and promised to

solve the dynamic propagation problems. This approach was based on the Tennent’s sequel

construct [Tennent1980]. A sequel is similar to a routine in many aspects but possesses a

fundamental difference: when a sequel ends, execution continues at the end of the block

where the sequel was declared and not after the sequel call.

Using sequels to handle exceptions is a guarantee that propagation is done along the

lexical hierarchy (because of the static name binding), hence, for each exception occurrence

the respective handler is known at compile-time. Unfortunately, static propagation is only

able to solve dynamic propagation issues for monolithic applications: sequels cannot be

referenced from code separately compiled. This difficulty can be overcome by passing the

sequel as parameter when invoking the pre-compiled code. Thus making the handler

selection dynamic (only the propagation search is eliminated). Furthermore, declarations

and calls will need potentially more arguments putting additional execution cost in every

call. This propagation mechanism has not succeeded on replacing dynamic propagation.

The reason, besides the described shortcomings, is that it is possible to mimic the model’s

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 43

syntax and semantics using some advanced language features, such as generics and

overloading, and other exception handling features.

Handler’s context
The static context of handlers can vary from one programming language to another. For

instance, in C++ and Ada the scope of the referenced variables is very different: while

Ada’s handlers are nested inside the guarded block, C++ handlers execute in a scope

outside of their guarded block. Listing 2.5 illustrates the differences in handlers’ context

between the two languages.

Handler and exception partitioning
An exception handling mechanism can implement both termination and resumption

models. As a consequence, programming language designers proposed that it should be

possible to declare at compile-time which exceptions and which handlers act in accordance

with the termination model and which use the resumption policy. This feature is known as

handler and exception partitioning.

Handlers can be declared at compile-time as being either resuming or terminating

[Gehani1992,Burh1992,Madsen1993]. For doing so, the general catch statement is replaced

by two new clauses: resume and terminate. An exception thrown inside the guarded

block is handled by the terminating handler and a resuming exception by the resuming

handler.

C++

int foo; // outer
try
{
 int foo; // inner
} catch (…)
{
 foo = … // outer
}

Ada

VAR foo: INTEGER; -- outer
BEGIN
 VAR foo: INTEGER; -- inner
EXCEPTION WHEN Others
 foo := … -- inner
END;

Listing 2.5 – Handler’s static context in C++ and Ada

44 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

If the programmer prefers to delay the choice of the type of handler until run-time, a

different way of achieving the same principle is the usage of a state flag declared on the

global application context. If the flag is set for resumable, the handler should provide for a

resuming exception, otherwise, a terminating handler is chosen.

In some circumstances, an exception can be handled by the wrong type of handler. The

partitioning of exceptions can help avoiding these situations. Exceptions can be throw-only,

resume-only, or have a dual nature (the default) [Goodenough1975]. Throw-only exceptions

can only be handled by terminating handlers, resume-only exceptions can only be handled

by resuming handlers, and dual exceptions can either be thrown or resumed.

The separation in the nature of exceptions is potentially beneficial because it increases the

expressive power of exceptions. For instance, the Unix SIGTERM and SIGBUS signals

always lead to the termination of an operation and hence, should be declared throw-only.

Some problems arise regarding the programmability of a hierarchy of patitioning

exceptions. For instance, consider the case where a parent exception is throw-only and the

child exception is resume-only. If the derived exception is thrown but the parent exception

is caught, the stack is unwind and the resume point of the child exception is invalidated.

The inverse, where the parent exception is resume-only and the child throw-only, is also

problematic. If the throw-only exception is raised but the resume-only is caught, the event

could be resumed but the termination at the raise point is invalidated.

Handler selection
The selection of a handler during propagation obeys the three orthogonal criteria: agreement,

closeness, and specificity [Burh2000]. The first two criterions are straightforward but, the last

one can be difficult to evaluate.

 Agreement – This criterion is applied in systems with more than one propagation

mechanism and assures that the selected handler matches the propagation

mechanism;

 Closeness – This criterion decides which handler is selected due to its proximity

with the raise point. A handler is considered to be closer that the rest if,

accordingly to the propagation mechanism, it is located prior to others on the

stack and is able to deal with the exception;

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 45

 Specificity – In the event that more than one handler is considered eligible, after

consideration of the previous two criterions, the Specificity criterion is used to

decide which is more specific. For instance, if both handle the same exception, the

one using conditional handling is considered more specific; the handler for a

derived exception of the exception being handled by a second handler is

considered more specific.

Sometimes, it is difficult to declare a handler as being more specific than another: a handler

for a particular exception is considered as specific as a handler for a parent exception of the

former but using conditional handling.

To avoid potential conflicts on handler selection, language designers have to set priorities

for each one of the criterions. Normally, agreement has the highest priority followed by

closeness. Specificity comes last. On cases where two handlers on a specific handler clause

are equally specific, the system opts by the activation of the one that appears first in the

clause declaration.

Catch-any and Re-raise
Almost all known exception handling mechanism allow its users to specifically catch some

type of exception and to raise some specific exception. But, simple mechanisms are

sometimes the most useful ones. In some situations, the desired behavior is to have the

ability to catch any type of exception and re-throwing it afterwards, without loosing any

information about the original exception. For instance, when an exception is not handled

on the raising block, it is still possible to perform some kind of finalization/clean-up tasks

before re-raising it.

This feature is also useful on the resumption model. It allows the gathering of extra-

information before resuming normal execution flow.

Checked Vs Unchecked Exceptions
The checked exceptions model is clearly influenced by the exceptions list feature. In this

model, the exceptions weight in the functionality of a method is considered so significant

that they must be explicitly declared, being the programmer forced to handle them. On the

other hand, the unchecked exceptions model allows developers to ignore all the exceptions

that a method throws. The discussion surrounding both models has been going on for

almost a decade but, no consensus has come from it yet. Given these approaches, at

46 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

present time, this discussion also means Java’s vs. .NET’s way of dealing with exceptions.

.NET uses exclusively unchecked exceptions and Java uses both kinds, unchecked

exceptions for dealing with runtime abnormal situations and checked exceptions for the

rest.

In the checked exception model, programmers have to declare the exceptions that a given

method, m1, throws (e.g., void m1() throws IOException {…}). There are also special

instructions used to explicitly raise exceptions in the method’s body – such as the Java or

the C# [ISO23270:2006] throw instruction (e.g., throw new Exception(“”);). In most

platforms, by using these constructs the exception information is naturally bound to m1

and becomes connected to that method (it can even be accessed through reflection in

reflection-enabled systems). This also has the effect of forcing programmers of another

method, m2, which calls m1, to either setup a try-catch-finally block to handle m1’s

possibly thrown exceptions, or declare m2 as thrower of those exceptions, using the same

process as for m1. For instance, a Java compiler will refuse to compile a program in which a

programmer does not use one of these possibilities for all exceptions that methods called

by that program are declared to throw.

On systems implementing the unchecked exceptions model, programmers can, if they

wish to, declare a method as thrower of an exception, but, the relation between a method

and the exceptions it can throw is weaker because the programmer is not forced to do so.

Plus, another programmer, reflectively accessing a method entity, has no possibility of

discovering which exceptions it may throw if the developer of that method opted for not

declaring the potential exceptions1. Nevertheless, a throw instruction can still exist, which

means programmers can use it to raise exceptions.

The checked vs. unchecked exceptions discussion has had numerous interesting episodes.

Ryder and Soffa [Ryder2003] present an historical overview of some of the older ones,

stating that “there is a symbiotic relationship between software engineering research and

the design of exception handling in programming languages”. What is interesting to notice

is that Ryder and Soffa end by saying that “strong typing in programming languages,

desirable in new language designs, was a direct answer to concerns about software

reliability and correctness” which agrees with Goodenough’s advocating of “compile-time

checking of the completeness of exception handling”. This means that for at least the last

30 years, checked exceptions have been regarded as good for reliability. But the modern

1 In some cases the information about exceptions might be available on the software documentation.

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 47

try-catch construction only appeared a little over 15 years ago in C++ [Koenig1993], and

Java, the most popular language to use checked exceptions, in 1996. This means that

hands-on experience with this topic is still recent.

Robillard and Murphy [Robillard2000] are critics of the checked exceptions approach.

Using a practical example, they conclude that “although checked exceptions have many

benefits, they can be expensive to implement”. This is due to the fact that checked

exceptions force programmers to alter every method in the call chain, connecting an

exception thrower to an exception handler, whenever the group of types of exceptions

possibly thrown is modified. In the presence of large method call propagation graphs, this

is impractical. It can be argued that checked exceptions clutter the object interfaces and

induce complicated catch blocks. On the other hand, checked exceptions could be

considered as a required language feature for ensuring reliability in applications. In the

absence of documentation or in the presence of bad documentation, not checking for

exceptions could mean not documenting exceptions.

The unchecked exceptions approach, defended by Microsoft, seems to imply that the

programmers can be trusted to document exceptions. Sun believes that this is

unreasonable and that a mechanism to enforce reliability is in order. Either way, the

special documentation tags that both companies introduced tell us that they also agree on

the importance of good exception documentation.

Cheng et al. [Cheng2005] shows that checked and unchecked exceptions can be

consistently used: “through the use of an architectural model, an application can benefit

from a separation of exceptions in terms of recoverability beyond distinguishing checked

and unchecked exceptions.” The architectural models presented in [Cheng2005] help to

evaluate and balance conflicting quality requirements such as modifiability, readability,

and reliability. The models are useful to guide developers in using checked and unchecked

exceptions.

Concurrent exception handling
Exception handling in concurrent systems differs significantly from sequential exception

handling. Moreover, we believe that exception handling mechanisms should rely on the

way the system is structured and be an integral part of system design. This raises some

difficulties in terms of concurrent execution of handlers, exception signaling and

communications between handlers. And, although the development of exception handling

48 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

models for sequential object-oriented systems has a long history, the same is not true for

concurrent object-oriented systems. Research in this area is still very active and most

concurrent system nowadays still use sequential exception handling.

It is difficult to design, analyze, modify and, sometimes, understand concurrent object-

oriented systems. Thus, in many situations it is not possible to guarantee that erroneous

information is always contained inside an object. In such systems, and in the presence of

an abnormal situation, we will most probably have to deal with several interconnected

objects simultaneously. In Client-Server architectures is not uncommon to observe server

errors affecting several client objects. Dealing with the error only on one side (the client or

the server) is unfeasible in most cases.

Concurrent systems can be designed to work independently (disjoint), competing or

cooperating. Competitive systems are composed of two or mores individual components

developed independently one from the other; which run not aware of each other, but use

the same passive components (competitive concurrent activities). Cooperative systems are

designed to work together to accomplish a joint goal. The components of these systems can

communicate among themselves and share results or functionality.

Concurrent systems, when organized in small execution units, are easier to build,

understand, and able to deal with complexity in a scalable way

[Best1996,KurkiSuonio1997]. These units can encapsulate objects and method calls. Hence,

assuring that no information crosses the units’ borders. The nesting of atomic units

provides for a scalable growth in complexity and, at the same time, for the confinement of

error information inside the unit boundaries, facilitating reliability procedures

[Romanovsky1999].

Concurrency introduces new challenges for systems development and concurrent

exception handling is also a main concern when designing such systems. More than

confining developers to the usage of sequential exception handling techniques, language

designers face the challenge of integrating exception handling into a new complex

environment in a way that respects the structure of programs, their organization and goals.

Atomic units [Romanovsky2001] provide the perfect context for implementing concurrent

exception handling mechanisms. They allow the definition of dedicated handling policies

for the abnormal events occurring on the actions performed inside the unit. They avoid the

linking of the exception effects outside the boundaries of a unit and provide an elegant

way of communicating to the outside the failure of a unit’s execution.

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 49

In terms of concurrency, transactions have been the battle horse for many years. They

provide for the atomicity, consistency, isolation and durability (ACID) [Gray1993]

properties required on systems that access resources concurrently (competitive systems).

But, even if the development language has exception handling capabilities, it is usual for

these to be completely separated from the transactional structure of the system. For

instance, in Multithreaded Transactional (MTT) systems [Kienzle2001b], such as the one in

CORBA [OMG1996], developers have an extremely powerful transactional service but they

still have to use the sequential exception handling mechanisms available in the selected

programming language (e.g., C++ or Java). By doing so, developers have to deal with some

anti-paradigmatic problems. For instance, the raised exceptions are certain to cross

transaction boundaries if not handled inside the transaction. Each participant in a

transaction deals with its own exceptions separately and the exception context does not

match the transaction context. Furthermore, the transactional environment is no longer

viable (valid or consistent) if an exception crosses the transaction boundaries.

Platform and language designers have already attempted to introduce exception handling

functionality inside MTT models by giving transactions the ability to explicitly re-raise an

exception, abort a transaction or deal with the exception and continue execution (e.g., EJB

[Sun2006]). Nevertheless, even with such improvements, transactional systems are still not

able to cope with complex exception handling procedures that require inter-transaction

communication. The simplest solution to incorporate exception handling into concurrent

competitive systems is to separate the exceptions that are raised and handled inside a

transaction from those declared on the transaction interface (external exceptions). Some

systems implement this model by declaring methods as atomic transactions (e.g., Argus

[Liskov1988]), thus enabling the definition of external exceptions on the method’s

interface, and forcing threads to synchronize after each commit or abort. Others simply

abort the transaction if an exception is not handled inside the transaction boundaries (e.g.,

Vinari/ML [Haines1994] and Drago [Jimenez2000]). When the participants of a transaction

are unable do deal with an abnormal event locally and the transaction is aborted, all the

calling threads (the invokers of the transaction participants) are informed of the exception

occurrence [Kienzle2001a,Issarny1993]. Hence, the calling threads will deal with the

signalized external exceptions independently.

In the atomic actions scheme [Campbell1986] several participants join an action and

cooperate to achieve a joint goal. This is the essence of cooperative systems: atomic action

participants can share data and work in order to complete their objective with the

50 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

guarantee that no information will cross the action boundaries. Furthermore, atomic

actions can be divided into smaller and nested actions, thus providing for a higher degree

of scalability. The major difference that atomic actions introduce when compared with the

simpler transactional execution units is the fact that if an error is detected inside an action,

all participants take part in a cooperative recovery instead of each one trying to overcome

the problem independently.

Each atomic action has a set of internal and external exceptions. The external exceptions of

a nested action are seen as internal exceptions on the containing action. Errors occurring

inside an action can affect all the participants in that action. Thus, when it is necessary to

deal with an exception in one single participant, all the remaining action members are

called to intervene. Each participant has its own set of exception handlers (for the action’s

internal exceptions). These handlers, as happens in normal execution, cooperate when

dealing with abnormal events in order to return the system to a consistent state.

Conversations [Campbell1986,Randell1995] are a special instance of the atomic actions

scheme. The conversation scheme represents a natural evolution, necessary to extend the

concept of recovery blocks1 to concurrent execution environments. It provides the means

to allow backward error recovery in concurrent systems while avoiding the domino effect2.

Coordinated Atomic action (CA action) [Xu1995] is a mechanism for structuring fault-

tolerant concurrent systems that unifies the notions of forward and backward error

recovery. Concurrent software systems, most times, involve both competitive and a

cooperative components. CA actions provide a means for dealing with abnormal events in

systems with this dual nature by enclosing and coordinating interactions among threads.

CA actions combine and extend the previously discussed concepts of atomic actions and

atomic transactions3.

1 Section 2.4 gives more information on backward error recovery mechanisms and recovery blocks.
2 Backward error recovery mechanisms allow a running application to revert to a previously known

valid state (checkpoint) in the occurrence of an error. “However, if recovery and communication
operations are not performed in a coordinated fashion, then the rollback of a process can result in a
cascade of rollbacks that could push all the processes back to their starting points — the domino
effect. This causes the loss of the entire computation performed prior to the detection of the error.”
[Randell1995]

3 Atomic actions allow the system to recover cooperatively while transactions are used to maintain the
consistency of shared resources.

 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 51

Figure 2.5 illustrates the fundamental concepts involved in the CA actions scheme. The

execution of a CA action looks like an atomic transaction for the outside. CA actions can be

nested inside other CA actions. Concurrent nested CA actions behave like nested

transactions with respect to external atomic objects involved in transactions with their

parent action. Inside of a transaction, participants cooperate and interact through local

objects. In the presence of an exception each participant is forced to handle it

independently of the fact of which participant first observed the abnormal occurrence.

Internal exceptions raised concurrently are resolved using a resolution graph. The

exception graph approach is used in order to find the exception that covers all the

exceptions raised concurrently, the exception that is the root of the smallest sub-tree

containing all the raised exceptions.

Not all CA actions conclude their execution successfully, sometimes it is not possible to

achieve the goal set for an action and execution ends abnormally. In such cases, the CA

action interfaces can contain one or more abort exceptions (when signaled the CA action is

aborted and local objects destroyed), a predefined failure exception and a number of

Figure 2.5 – Coordinated Atomic Actions scheme overview

52 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

exceptions corresponding to partial (committed and consistent) results which the action

can provide. This is useful to inform the containing CA action of the impossibility of

producing the required results. The state of all transactional objects is aborted when an

interface exception, corresponding to a partial result, is signaled.

Even the CA action scheme has its limitations. External exceptions are explicitly signaled

from a CA action participant thus, in some cases, it might not be possible to detect

abnormal conditions outside the participants. Furthermore, concurrently signaled

exceptions are expected to be related in some way so that the exception resolution

mechanism can pull off a meaningful result. But, the main problem with concurrent

exception handling is determining which is the correct handler to invoke (it may be

different for each participant) – “Relying on handler communication to ensure the correct

handlers are invoked may be a highly complex task“- The authors of the Guardian model

[Miller2002] have addressed this issue. The Guardian model, contrary to what happens in

the prior model, does not raise the same exception in all action participants to notify the

occurrence of an abnormal event. By raising in each process a possibly different exception

and specifying the context in which it should be handled by the process, the Guardian

model guides each process to a correct exception handler, thus orchestrating the recovery

action. Miller et al. demonstrate the concepts behind their model by providing a simple

example: “… say there is a pipeline of three processes A, B, and C. Should B fail, the

guardian would signal to A an exception that its downstream neighbor has failed, and to C

an exception that its upstream neighbor has failed. With a guardian, participants are freed

from the burden of maintaining any configuration information and relating it to a process

failure to determine the semantically correct recovery action. No transaction-like structure

is needed for the correct exception handlers to be invoked (though that structure may be

useful for other reasons).” [Miller2002]

2.3. Evaluation and quality metrics
Garcia et al. [Garcia2001] have done a thorough work comparing existent exception

handling mechanisms, in regard of their strengths and weakness, as a tool for building

dependable object-oriented software.

The most important contributions arising from that work was the definition of a complete

taxonomy for classifying the different design approaches to object-oriented exception

handling mechanisms, and the definition of a set of quality requirements for the design of

 SECTION 2.3 — EVALUATION AND QUALITY METRICS 53

future exception handling mechanisms. Both contributions are useful for the assessment of

nowadays and future exception handling mechanisms.

2.3.1. Evaluation
Accordingly to Garcia’s study, exception handling mechanisms can be compared in ten

different aspects (Table 2.1).

Table 2.1 – Identification of the exception handling models evaluation items.

Evaluation item

Exception representation
External exceptions in signatures
Separation between internal and external exception
Attachment of handlers
Handler binding
Propagation of exceptions
Continuation of the control flow
Clean-up actions
Reliability checks
Concurrent exception handling

The topics on the previous list are discussed on the next sections. Some of these topics have

already been addressed, thus, on those cases, and to avoid duplication we will only

mention them briefly.

Exception representation
Exception handling mechanisms have different structures for representing exceptions:

symbols, data objects, and full objects.

The classic approach is associated with the first kind, symbols. Exceptions are strings or

numerical values that are passed to the caller of an operation when an abnormal situation

is detected during the execution of that operation. When exceptions are represented by

data objects, or full objects, they are created as instances of a class that identifies on

exception type (e.g., Java’s IOException). These exception instances are passed to the

exception handler when raised. Exceptions represented by data objects require special

support from the programming language, such as a keyword to trigger the exception

raising operation (e.g., Java’s throw statement). Full objects, on the other hand, are just as

any other object and have to implement themselves (or some class up in the hierarchy) the

54 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

raise operation. Both object representations are preferable to the use of symbols in object-

oriented languages. Objects guarantee the uniformity of the programming paradigm;

objects do not require the usage of extra global variables for passing information to the

exception handler, thus benefiting modularity.

Object-oriented programming languages such as Ada 95 [ISO8652:1995], Smalltalk

[Goldberg1989], Eiffel [Meyer1988], Modula3 [Nelson1991], Guide [Balter1994], and Extended

Ada [Cui1992] use symbols to represent exceptions. Lore [Caseu1987] and BETA

[Madsen1993], for instance, use full objects, while other languages like C# [ISO23270:2006],

C++ [Koenig1990], Java [Arnold2000], Arche [Issarny1993], and Delphi [Kimmel2001] use

data objects.

External exceptions in signatures
Exception handling mechanisms can make the usage of an exception list a mandatory

feature or not. In some cases, designers of these mechanisms opt for providing a hybrid

solution (e.g., Java). The discussion about the benefits associated with the compulsory

usage of an exception list - in opposition to the non-existent or non-compulsory practice -

is closely related with the discussion on checked vs. unchecked exceptions (section 2.2.2).

For instance, programming languages like C#, Ada 95, Smalltalk, Eiffel, Delphi, and BETA

do not support exception lists. Languages like C++, Lore, and Arche make its usage

optional. Modula3, Guide, and Extended Ada use a compulsory approach, while only Java

allows a hybrid solution (distinguishing checked exceptions from runtime exceptions).

In terms of reliability, exception lists are an extremely helpful feature because they

describe all the abnormal responses of a method in its signature. Its compulsory usage

guarantees that the programmer is aware of the potential problems that his code will face

and is able to provide handlers for those abnormal situations. On the other hand, forcing

the programmer to declare all the exceptions that are propagated outside method

boundaries, or to handle all the not declared exceptions, can lead to less recommended

programming practices such as exception silencing, or log and terminate for non-fatal

exceptions.

Separation between internal and external exceptions
Some systems allow the distinction between internal and external exceptions. External

exceptions are those exceptions that the caller of an operation takes knowledge and has to

 SECTION 2.3 — EVALUATION AND QUALITY METRICS 55

handle when the called operation terminates with an unexpected result. Internal

exceptions, on the other hand, are not visible to the caller of an operation. They are raised

and handled internally and never propagated outside the lexical boundaries that limit the

operation. The distinction between these kinds of exceptions can be done, for instance,

through the usage of different raising statements: if an exception is activated through the

signal keyword it will be handled externally; if the exception is activated with raise, it is

meant to be handled and known only internally.

Currently we are not aware of any object-oriented programming language that implements

this separation between internal and external exceptions. Nevertheless, the rules necessary

for operating such distinction can be easily verified at compile-time.

Attachment of handlers
The definition of the protected region to which an exception handler is associated can

differ in many aspects. For example, a handler can be associated with (i) a statement, (ii) a

block of statements, (iii) a method, (iv) an object, (v) a class, or (vi) an exception class. The

definition of handlers for a statement or a code block needs special support from the

programming language, which must provide keywords and semantics for marking the

beginning and the end of the block of code. Associating a handler with a method is the

same of associating a handler with a block of code that starts when the method starts and

ends when the method ends. A handler can be associated with a particular instance of a

class (object handler), thus, each instance of a class can have a different set of handlers.

Class handlers allow the definition of the same handling actions for every instance of a

class. Handlers associated with exceptions can be activated at any time and anywhere in a

program. These handlers are triggered by the raising of an instance of the exception that

they are associated with.

Garcia et al. argued against the usage of block handlers. For all possible association kinds,

the authors consider this the weakest type. The authors defend that “the use of block

handlers violates explicit separation of concerns, since exceptional code is intermingled

with normal code albeit moved to the end of the block”. Other authors

[Lang1998,Papurt1998] have also shown that, most times, the blocks of statements are

defined with the sole purpose of attaching an handler. This practice can lead to the

development of software which is difficult to read, maintain and test.

56 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

Modula3, Ada 95, C#, C++, Java, Delphi, and Arche programming languages allow the

usage of both statement and block handlers. Lore allows statement, class and exception

handlers. Guide has statement, method, and class handlers. BETA allows all kinds of

handlers associations except block handlers. Eiffel has method and class handlers.

Extended Ada uses object and class handlers. Smalltalk only permits class handlers.

Handler binding
On Section 2.2.2 we identified two approaches for discovering the handler that should be

executed when an abnormal situation is detected: the static approach; and the dynamic

approach. Garcia suggests that the dynamic approach actually represents two different

approaches: the fully dynamic; and the semi-dynamic (hybrid) approach.

On the static binding approach, handlers are lexically associated with the exception and

comply with the lexical hierarchy of the code. On the dynamic approach, the handler for

an exceptional event is not known until the exception occurrence. The runtime system

inspects the handlers available on the execution stack and chooses the most suitable

candidate for treating the exception. The hybrid approach mingles the two previous

techniques: a handler can be statically associated with an exception occurrence but, in the

event that no suitable handler is found on the immediate lexical context, the runtime

system is responsible of dynamically selecting the appropriate handler.

Statically binding a handler to an exception occurrence leads to better readability, it is

possible to verify statically which actions will be taken for dealing with a particular event.

On the dynamic and semi-dynamic approaches, this kind of analysis are more difficult to

perform because binding is dependent of the control flow at run-time. On the other hand,

static models do not allow the propagation of exceptions and do not take the call history in

consideration when choosing a handler for an exception. Usually, the operation invoker is

better suited to handle an exception then the raising code.

Smalltalk, Extended Ada and BETA are examples of programming languages that

implement the static approach. Currently, no object-oriented language implements the

dynamic model. The hybrid solution is the most common choice for mainstream

languages, such as C#, Java, C++, Eiffel, and Delphi.

 SECTION 2.3 — EVALUATION AND QUALITY METRICS 57

Propagation of exceptions
Garcia et al. identified two design solutions for exception propagation: explicit propagation;

and automatic (implicit) propagation. The first kind is also known as single-level [Liskov1979]

propagation because it only allows the propagation of the exception to the immediate

caller of the failing operation. However, the raised exception or a new exception can be

signaled explicitly from a handler (attached to the caller) to a higher-level component. This

kind of propagation is often associated with the static propagation model. In the cases that

an exception is not handled locally, it is transformed into a general exception type and

propagated to higher-levels or the application is terminated. The second kind of

propagation, automatic or multi-level [Liskov1979], allows exceptions to be transmitted

through multiple levels on the call stack until a suitable handler is found or the program is

terminated.

Programming languages implementing static binding (e.g., Smalltalk, Extended Ada, and

BETA) do not support any kind of propagation. Most language designers elect the

automatic propagation of exceptions as the default behavior on their exception handling

models. This technique can be considered unsafe, in terms of exception handling, because

it gives no any guarantees that an exception occurrence will be bound to the most

appropriate handler. In some cases, explicit propagation can coexist with automatic

propagation but, even then, the outcome of the mechanism for handler selection is not

entirely predictable. Furthermore, the propagation of an exception through different levels

of abstraction (on object-oriented software) can cause the unexpected exposition of

implementation details, the degradation of encapsulation and modularity [Yemini1985].

The majority of the object-oriented programming languages use both the explicit

propagation and the automatic propagation of exceptions (e.g., C#, Java, C++, Ada 95, and

Delphi). Eiffel is a good example of a language that chose to only allow explicit

propagation.

Continuation of control flow
As described in the previous section, there are two fundamental propagation models that

delineate where the normal flow of execution is resumed after the execution of an exception

handler: the termination (simple and retry) and resumption models.

As far as we know, all exception handling mechanisms (available in object-oriented

programming languages) implement the termination model. Nonetheless, some language

58 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

designers, such as the creators of Smalltalk and BETA, decided to implement both models

simultaneously. Their decision to include both features is clearly influenced by the power

and the flexibility that the resumption model evidences as a programming tool (in some

circumstances). Such flexibility comes with a high price: the overall programming model is

more complex and, therefore, more error-prone. It is the general understanding that the

simpler linguistic and the clearer semantics of the termination model make it preferred, in

terms of reliability, to the resumption model.

Clean-up actions
An operation will either terminate correctly or with errors. In both cases, it is important

that the program state remains coherent. Clean-up actions allow the program to recover to

a valid state, or undo the effects of some actions. There are three design solutions for the

implementation of the clean-up mechanism: (i) associated with explicit propagation; (ii)

usage of a specific construct; and (iii) performing automatic clean-up. When explicit

propagation is used, clean-up should take place in the local handler before the exception is

propagated. Using a specific construct, the clean-up is associated with the guarded

protected block and will be executed independently of the occurrence or not of an

exception. The third solution makes clean-up a platform issue: the system will

automatically perform the necessary actions to take the program to a valid state.

Programming languages such as Ada 95, Eiffel, C++ and Archie use explicit propagation.

But, the most common approach is the usage of a specific construct, such as the Java’s or

C#’s finally clause.

The most interesting solution in our perspective is making the clean-up actions a platform

issue with automatic clean-up. This approach is not currently implemented by any

programming language. Thus, in this thesis we will propose a solution for putting into

practice this kind of functionality in a transparent and elegant way.

Reliability checks
Some systems implement static or dynamic checks that test for possible errors introduced

by the use of an exception handling mechanism. Yemini and Berry [Yemini1985] suggested

several kinds of checks that can be performed by the exception mechanism in order to

improve software reliability. Consider, for instance, the following examples: (a) checking

the correctness of the parameters used on the exception signaling operations; (b) checking

the correctness of the formal set of parameters used on the definition of each exception

 SECTION 2.3 — EVALUATION AND QUALITY METRICS 59

handler; (c) checking that only those exceptions that are defined by a signaler are signaled

by it; (d) checking that the exceptions are raised and handled in the correct scope. (Note:

some of these reliability checks might not be applicable to all mechanisms.)

The first kind of reliability checks are performed by the compiler while the second kind is

performed by the runtime system. Ideally, both kinds of checks should be implemented.

For assuring a minimal overhead, the larger and more time-consuming set of verifications

should be performed statically at compile time. Most object-oriented programming

languages and platforms already implement this dual version (e.g., C#, Java, Eiffel, Delphi,

and Guide). Ada 95 and Smalltalk are examples of languages that only implement

dynamic checks.

Concurrent exception handling
The support for concurrent programming within an exception handling mechanism can be

classified in three distinct ways: (i) unsupported; (ii) limited; and, (iii) complete [Garcia2001].

The first kind is the total absence of support for concurrent activities in the mechanism.

Systems with limited support provide the means for notifying all the threads involved in a

computation of the occurrence of an exception. Thus, the exception can be handled by

multiple threads simultaneously and in different ways. A system with complete support

for concurrent exception handling provides the facilities to combine the concept of atomic

actions with concurrent exception handling. Such system usually implements the means to

allow the final synchronization of all the participants in an action, the resolution and

propagation of an exception through multiple threads, and the invocation of the different

handlers associated with each of the action participants.

2.3.2. Quality requirements
Garcia et al. [Garcia2001] proposed a criteria for guiding the design of an effective

exception mechanism for object-oriented software development. The authors have an

extensive experience designing and developing dependable object-oriented systems and

exception handling mechanisms. Based on their collective experience, they defined a well

structured list of guidelines to help developers create the best possible exception handling

mechanisms in terms of software reliability. These guidelines are spawn over twelve items:

Readability; Modularity; Maintainability; Reusability; Testability; Writeability;

Consistency; Reliability; Simplicity; Uniformity; Traceability; and Performance.

60 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

Q1. Readability – Exception handling mechanisms must provide for better code readability

in programs that have to deal with (and recover from) errors or any other kind of

abnormal event. It is consensual that software complexity has, undoubtedly, grown with

the advances in systems and development tools. The number of exception types and

instances that are possible to find in modern programs is just overwhelming. Furthermore,

automatic code generation tools are becoming popular and, for these specific source code

producers, size is not an issue. To increase code readability it is important to allow a clear

separation between exceptional code and normal/business code. Systems must provide for:

(a) a clear definition (identification) of the protected regions of code; (b) an easy

recognition of the exception handling code, its boundaries and control flow behavior.

Q2. Modularity – An important characteristic of object-oriented systems is encapsulation.

An effective exception handling mechanism must be able to maintain object encapsulation

as much as possible. For that effect, exceptions occurring inside a component must be

confined to that component or propagated to immediate neighbors in a controlled manner.

Avoiding the unnecessary propagation of exceptions outside the raising component’s

borders prevents the disclosing of internal implementation details and complies with the

information hiding policy inherent to every object-oriented system.

Q3. Maintainability – In 1988, Bertrand Meyer stated on his book “Object-Oriented Software

Construction” [Meyer1988] that 70% of software cost is directly related with software

maintenance. Both the maintenance costs and the probability of introducing new errors

during maintenance tasks increase with software complexity. To prevent causing more

harm than good when performing such actions, exception handling mechanisms must be

projected for simplicity and readability, thus making software easy to modify and/or

correct.

Q4. Reusability – One of the main features of object-oriented software is component

reusability. Reusability is achieved through good software design and a clear separation of

concerns among system components. Reusability of both business and exceptional code is

enhanced by a straight separation between exception handlers’ code and business code.

Q5. Testability – The purpose of testing is exposing the potential faults in systems, thus

avoiding their subsequent manifestation at run-time. The existence of multiple execution

paths, due to the introduction of exception handling code, makes software testing harder

and more complex. It also raises the problem of achieving full code coverage in tests (it can

be difficult to test the code inside exception handlers). Object-oriented software testing is

 SECTION 2.3 — EVALUATION AND QUALITY METRICS 61

still an evolving area with many concerns to be addressed [Pezz2004]. When testing, it is

important to verify that each exception if being correctly handled, and that the exception

handling code does not introduce new errors. While projecting a new exception handling

mechanism, designers must have in mind that their structural design must not impose

further weight on the testing procedure.

Q6. Writeability – For the programmer, the task of writing error recovery code can be

difficult and complex. For the programming language designer, it is also hard to control

the emerging complexity of his language. Some systems, due to their nature, size or

complexity, may require more expressive languages constructs or even the means to

separate different error handling policies throughout different applications levels.

Occasionally, too much expressive power can be counter-productive and lead to the

creation of code that is harder to read.

Q7. Consistency – For achieving maximum dependability in object-oriented systems, it is

mandatory keeping each system component in a consistent state, even in the presence of

errors. To prevent catastrophic failures, systems must be able to continue their execution in

a consistent state even if a component fails to complete a requested operation.

Q8. Reliability – Exception handling mechanisms are, by nature, tools to construct reliable

systems. Thus, it is capital that the mechanism itself is error-free. Such reliability level is

achieved (among other reasons) through exhaustive testing, careful design, a correct

expressiveness level, and complete integration with the programming language and/or

framework. By themselves, the mechanism and the exception handling code must not be

the source of new failures. The system has got to provide means to permit the verification

and testing of the error handling code.

Q9. Simplicity – The task of writing exception handling code ought not to impose itself over

the task of writing the application’s business code. Many critical systems developers may

not be completely sympathetic with this point of view but, ultimately, the truth is that the

business code is the core responsible for providing the expected system functionality while

the exception handling code is responsible for avoiding the program’s premature or

invalid termination. To let developers concentrate on the writing the application’s business

code, exception handling mechanisms should not increase the overall system complexity.

Exception handling code must be easy to write, maintain and read. Thus it must be as

simple as possible, have clear semantics, and its behavior must be well defined for all

execution scenarios.

62 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

Q10. Uniformity – The syntax and the concepts introduced by the exception handling

mechanism cannot violate the object-oriented nature of a system. Abstraction,

encapsulation, modularity, and inheritance must not be broken by the establishment of an

exception handling system. Failing to fulfill this requirement causes a serious handicap in

terms of software reusability, modularity and testability. Moreover, the mechanism’s

constructs should stick to consistent syntactic conventions and should not provide

multiple representations for the same concept.

Q11. Traceability – The exception handling mechanism ought to provide the means to

assess the nature of an abnormal occurrence and deal with it. In both cases, it is necessary

to gather all the available information about the exception and pass it to the right entity

(handler). The exception handling systems must provide the means to communicate the

name, description, location, and severity of an exception (and further relevant information)

to its handler (or handlers).

Q12. Performance – Performance is traditionally a major concern in systems design. The

exception handling mechanism should not undermine the overall system’s performance by

introducing unnecessary overhead. Language designers usually try to ensure the best

possible performance from two different perspectives: (a) allowing systems, either using

exceptions or not, to offer equal response times if no abnormal occurrences are detected;

(b) minimizing the time spent searching for the suitable handler to deal with an

exceptional event. Nonetheless, the prime concern of an exception handling system should

be to provide the means to implement error handling while allowing fast recovery.

2.4. Backward error recovery
Exception mechanisms can use both forward error recovery and backward error recovery

strategies for dealing with occurring exceptions. The aim of a forward error recovery

mechanism is to move the system into a correct state using knowledge about the current

erroneous state. The state recovery actions are application-specific by their nature and are

based on correcting or isolating the effects of a fault. This allows the normal operations to

be continued. Forward error recovery techniques are useful for handling anticipated faults,

which can be detected and abstracted as exceptions. Backward error recovery, on the other

hand, returns the system to a previously consistent state (saved before the failure

manifestation). The techniques used for accomplishing this objective are, typically,

application-independent, transparent for the application (e.g., atomic transactions and

 SECTION 2.4 — BACKWARD ERROR RECOVERY 63

checkpoints). Such techniques involve the rollback of the system state and undoing of the

effects of the computation performed since that state. Backward recovery techniques are

broadly applicable in dealing with unanticipated error conditions.

The recovery block construct [Horning1974] is a program-controlled backward error

recovery technique used in sequential programs. It provides mechanisms for specifying

recovery points, acceptance tests, and alternate program code for execution.

Horning et al. proposed the notation for the recovery blocks mechanism in 1974. This

language construct allows developers to define tests of acceptability and correctness on

intermediate stages of execution of the program and also to declare alternative courses of

action should the tests prove negative. Recovery blocks have been described by Randell as

a structure for software fault tolerance [Randell1975] and by Anderson as “a proof-guided

methodology for constructing the checks for acceptable program behavior”

[Anderson1975].

Listing 2.6 illustrates the usage of a recovery blocks structure. The acceptance test1 yields a

logical value and must not have any side effects. Its evaluation allows the developer to

verify the acceptability of some condition. Each alternate is a block of code with finite set of

statements. The execution of an alternate is dependent of the last logical value yielded by

the acceptance test. The test is first performed when execution reaches the recovery blocks

structure, and the execution of the first alternate is dependent of the value yielded at that

point (if the test proves negative the first alternate is executed). The acceptance test is then

performed each time an alternate concludes its execution (error-free) and, in the case that

the test result as not changed, the next alternate is executed. A fundamental feature of this

technique is the setting of the program state to what it was on entry to the recovery block

1 The writing of good acceptance tests is a complex and error-prone task. It is considered the major

shortcoming of this technique.

ensure <acceptance test>
 by <1st (primary) alternate>
 else by <2nd alternate>
 else by <3rd alternate>
 .
 .
 .
 else by <nth alternate>
 else error

Listing 2.6 – The notation for a recovery blocks structure

64 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

before the execution of an alternate. The execution of the recovery block ends when the

acceptance test yields “true” or there are no more alternates, in which case an error

condition is raised externally to the (concluded) recovery block and any further recovery

can only be performed by an enclosing recovery block. If there are no more recovery

blocks, the system terminates the program. In terms of error handling, a failed acceptance

text means that an erroneous condition has been generated (raise). In some cases,

acceptance tests might be unable to detect internal errors1. In these situations, in the

presence of internal error conditions, the acceptance tests may still yield “true” and

therefore acceptable results. Internal errors can also arm the information structures upon

which the recovery mechanism operates.

The intent underlying the execution of each alternate is satisfying the acceptance test. This

does not mean that each acceptance test implements the same functionality, in fact, it is

quite the opposite. The lesser the degree of similarity between two alternates, lesser are the

chances of both sharing a common design inadequacy.

Early systems implementing the recovery blocks mechanism relied on a recovery cache

[Horning1974] for performing the state restoration between alternates execution. The

recovery cache approach offered certain advantages over conventional checkpointing

techniques. It assured that only the values affected by the test and alternates execution are

preserved for the life-times of the appropriate recovery blocks. Furthermore, the

preservation and reinstatement of these values was completely automated and not

susceptible to human errors of omission.

The usefulness of recovery blocks rests on the effectiveness of the acceptance tests on

detecting abnormal end error conditions. If the acceptance test is something more than the

“most simple as possible” there will be a significant chance that it will itself contain design

faults. In such cases, tests can fail to detect errors or give origin to false-positive results.

Moreover, too complex acceptance tests can be the source of unacceptable run-time

overhead. Developing simple, objective, and effective tests can thus be a difficult and

potentially harmful task for the program’s overall reliability.

Acceptance tests should not be the only means of error detection. For instance, assertions

and hardware run-time checks should be on the front line of error detection. Any

exceptions raised inside an alternate will activate the same recovery action as for

1 Errors that are not pure algorithmic but due to the violation of the machine specifications and can

cause normal systems to abandon execution.

 SECTION 2.5 — REAL-TIME CONCERNS 65

acceptance test failure. Thus, each alternate should implement its own fault-tolerance

mechanisms and, in the cases where this does not suffice, an exception is raised to notify

the run-time mechanism that the recovery block was unable to accomplish is objective and

execution should be handled by upper-level recovery blocks (if it exists).

Besides recovery blocks, the best known technique based on design diversity is probably

N-Version programming [Avizienes1977]. N-Version programming is a software diversity

technique in which all the versions are designed to satisfy the same requirements and

output. Correctness is based on the comparison of all the outputs. In contrast with the

recovery blocks approach, this technique uses a generic decision algorithm (usually a

voter) to select the correct output. Creating different algorithms to achieve the same end-

goal does not necessarily mean that development is more complex than for a single

version. Nevertheless, it requires substantially more development time and effort. The

design diversity is useful to minimize the probability that two or more versions will

produce similar erroneous results for the same decision action (e.g., voting). The support for

N-Version software is provided by a dedicated execution environment, which implements

the decision algorithms and all the necessary means for the execution of the

versioned-software.

Other multi-version software approaches for fault-tolerance were developed based on the

Recovery Blocks and N-Version programming techniques. This is the case of N Self-

Checking programming [Laprie1987,Laprie1990,Laprie1995a], that uses separate

acceptance tests for each version. The Consensus Recovery Blocks [Scott1987] approach

combines N-Version Programming and Recovery Blocks to improve the reliability. And,

the t/(n-1)-Variant Programming [Xu1997] that implements a different output selection

mechanism that guarantees that at least one non-faulty execution unit exists.

2.5. Real-time concerns
In our work, we do not address any issues related with real-time systems. Nevertheless,

we feel that it is important to have a look into the difficulties that such systems impose, in

terms of exception handling, in order to provide a thorough perspective on the current

state of art.

The truth is that exception handling mechanisms for real-time systems have never been a

priority for programming language designers. The execution principles behind real-time

66 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

software have always been, in a sense, prohibited for any type of functionality that might

raise uncertainty about the time necessary to complete an operation [Lang1998].

A real-time system1 has to comply with predetermined execution deadlines.

Unfortunately, traditional exception handling mechanisms do not offer any time-related

guarantees. They can introduce overhead in the execution of normal code and do not allow

the predetermination of exception handlers execution times. Thus, when an exception is

raised, there is no efficient way of predicting what will be the delay introduced by the

exception handling system or by the recovery actions. In real time systems, it would be

acceptable to have longer startup times in order to allow an application to offer time-

bounded detection and handling of exceptions. Unfortunately, no current performance

optimization design trend (as we have seen in Section 2.3.2) follows such direction. The

most common optimization effort is on having applications exhibit the same response

times under normal system operation, either when an exception mechanism is being used

or not.

Real time processes and threads are usually scheduled in accordance with their priorities.

A lower priority process cannot preempt a higher priority one. On the other hand, a higher

priority process can preempt a lower priority execution, if necessary. The same should be

true with exceptions code: a lower priority exception handler should never preempt a

higher priority execution. Furthermore, exceptions should also have priorities associated,

in a way that higher priority exceptions should be handled prior to their lower priority

counterparts when multiple occurrences are detected simultaneously.

In an ideal real-time system, the overhead imposed by the definition of exception types,

exception handlers, exception detection and handling, should be tuned in order to allow

the application to execute within pre-established time constraints, either under normal or

exceptional execution. Compilers and automatic testing tools could play an important role

in this respect.

2.6. Other approaches
The exception handling mechanisms described so far represent, what we consider to be,

the more relevant advances in terms of exception handling in recent history. Nonetheless,

1 In Hard-real-time systems, it is a fatal error for a function not to attain its time constraints. In soft-

real-time systems, having a function not meeting its time constraints is a serious problem but not
fatal.

 SECTION 2.6 — OTHER APPROACHES 67

there have been other important efforts for improving systems resilience to exceptional

events that are worth mentioning.

2.6.1. Aspect Oriented Programming
The current trend in the design of exception handling mechanisms is making systems that

impose some kind of separation between the code for implementing different aspects of a

program. For instance, in [Lemos2001], Lemos and Romanovsky propose an approach that

separates the handling of requirements-related, design-related, and implementation-

related exceptions during the software life cycle.

With the advent of Aspect Oriented Programming (AOP) [Kiczales1997,Elrad2001] a new

approach was introduced. AOP is a programming paradigm that increases modularity by

allowing the separation of cross-cutting concerns. In the object-oriented paradigm, different

concerns are grouped (packaged) inside methods, objects, classes, and packages. But, in

some cases, there are concerns that are transversal to such kinds of packaging and/or do

not share a hierarchical relation, thus are called cross-cutting concerns.

Exception handling has been considered a potential application area for AOP since its

origin in the early 1990’s at the Xerox Park [Kiczales1997]. Some authors have suggested

that the AOP approach can be used to separate exception handling code from business-

logic code [Lippert2000], proposing the treatment of exceptional behaviors as a cross-

cutting concern to the application. Additionally, this approach can contribute to increase

the readability of both normal and exceptional code, and to avoid the mingling between both

kinds of code by allowing the developer to focus on each one of the following tasks

separately: writing the exception handling code and writing the business logic code.

Martin Lippert and Cristina Lopes [Lippert2000] have shown how an AOP tool for Java

can be used to modify an application source code to apply exception handling and

detection as a crosscutting concern. The exception detection and handling code of the

JWAM [JWAM2008] framework were partially re-engineered using AspectJ [Lopes1998],

an AOP extension to Java. AspectJ was essential for re-writing the framework’s source

code. The authors collected information from the source code, pre and post reengineering,

to analyze the advantages and disadvantages of the process.

Rewriting JWAM’s code using AspectJ represented a cut of ¾ of the original exception

handling code. Most of the redundant code (imposed by the programming language) was

eliminated using AOP. The experiment demonstrated that the code that deals with

68 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

exception detection and handling can be substantially reduced if applied in a cross-cutting

manner. Furthermore, using AOP to develop exception handling code increases code

reusability, makes the code clearer, provides better support for different configurations,

better tolerance for changes in the specifications, and better support for incremental

development. On the other hand, the authors reported that it is difficult to reconstruct the

local effects of the insertion of aspects into the code. The AOP tools available do not

provide sufficient support and do not allow seeing the “whole picture” in a convenient

manner. The developer is forced to browse through several source code files if he or she

wishes to understand the complete functionality associated with a single location in the

program.

Filho et al. [Filho2006,Filho2007] are strong supporters of using AOP to introduce

exception tolerance capabilities into a program. They suggest lexically separating error-

handling code from normal code so that both code types can be independently

implemented by different developers and modified separately. In addition, they propose

leveraging AOP to enhance the separation between error-handling code and normal code.

2.6.2. Exception handling for Futures
Zhang et al. [Zhang2007a] defined a future as “a simple and elegant construct that

programmers can use to identify potentially asynchronous computation and to introduce

parallelism into serial programs”. Several languages implement the futures mechanism

[Halstead1985,JSR166,Charles2005,Zhang2007a] and implementations vary in terms of

syntax and semantics. For instance, some systems provide a list of interfaces that can be

used to mark classes or methods in serial programs as futures (able to execute concurrently)

[Halstead1985] while other systems use annotations to identify the same kind of

computations on the code [Zhang2007a].

Futures represent an extremely valuable mechanism for creating concurrent applications in

a simple way, either from the ground-up or by transforming serial programs into new

parallel versions. But, although futures make concurrent programming a much simpler

task, they also introduce new difficulties in terms of exception handling.

 SECTION 2.6 — OTHER APPROACHES 69

With futures, it is possible, for instance, to start a parallel computation of a variable value

and continue the main execution until the value is first used. When the main computation

reaches this point, either the value is ready to be used or the program waits for the

completion of the execution of the parallel thread (Listing 2.7). The future value can be

computed asynchronously independently of the location where it is defined in the code.

This allows the system to organize the code in several distinct blocks of code that can be

executed concurrently.

In terms of exception handling, futures introduce uncertainty about where is the correct

location to handle an exception raised by a future value computation. Exceptions can either

be handled in the serial way, at the same location where the future is first declared, or at

the point where the future value is used. On the later case, the exception is kept inside the

future and delivered to the calling code when the future return value is requested1.

There are two different approaches for dealing with exceptions in the DBLFutures

[Zhang2007a] (and in all futures mechanism implementations in general). The code

snippets in Listing 2.8 illustrate both of them. Method f1() returns the sum of variable x

and y. Variable x holds the value returned by a call to A() and y the value returned by a

call to B(). Variable x is declared as a future, thus A() can be executed concurrently,

independently of the place where it is invoked in the code, even if the code is written is a

serial form. In a) any exception raised in A() is delivered to the same point that it would be

delivered if the program executed sequentially. This is what the authors call the as-if-serial

exception handling mechanism. On the other hand, in b) exceptions will be delivered to the

point where the future return value is used. Just looking at the examples, we can conclude

that the second implementation, if depleted of DBLFutures semantics, is incorrect for

1 In Java 5.0 Future APIs, exceptions from future execution are propagated to the point in the program

at which future values are used.

public class Fib
{
 public int fib(int n) {
 if (n < 3) return n;
 @future int x = fib(n-1); //declaration
 int y = fib(n-2);
 return x + y; //point of usage
 }
 ...
}

Listing 2.7 – Futures utilization within the DBLFutures framework

70 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

compilation in its serial form, while the first version remains correct. Furthermore, the first

approach provides programmers with more intuitive understanding of the exception

handling behavior and control, while the second one can be harder to read and less

intuitive.

To allow the employment of true as-if-serial semantics for exception handling in futures,

the authors in [Zhang2007a] suggest that it will be necessary to resort to a Software

Transactional Memory (STM) mechanism [Shavit1995] in order to ensure that the global

side effects of parallel execution of a program (using futures) is consistent with that of the

serial execution. As far as we know, no current approach truly implements the as-if-serial

semantics for exception handling using STM.

The combination of the futures mechanism with the as-if-serial semantics for exception

handling turns the development of concurrent programs into a much simpler and

straightforward task than in the past. We risk saying that the development software for

multi-core (multi-processor; or cluster) architectures in the future will undoubtedly be

linked with the advances in the support for the futures mechanism in the mainstream

programming languages. Fortress [Allan2005] and X10 [Charles2005] are two

programming languages, currently under active development, that are expected to

simplify the way concurrent applications are written. Both languages have constructs

similar to futures.

2.6.3. Compensation stacks
Weimer et al. in their work on “Exceptional Situations and Program Reliability”

[Weimer2008] describe two interesting and self-complementing ideas than can help

improve the reliability of programs: (1) a mechanism that allows an in-deep analysis of a

public int f1() {
 @future int x;
 try{
 x = A();
 }catch (Exception e){
 x = default;
 }
 int y = B();
 return x + y;
}

a)

public int f1() {
 @future int x;
 x = A();
 int y = B();
 try {
 return x + y;
 }catch (Exception e){
 return default + y;
 }
}

b)

Listing 2.8 – Examples of exception handling in DBLFutures

 SECTION 2.6 — OTHER APPROACHES 71

program code for finding all defects that can lead to resource-handling failures in

exceptional situations; (2) based on this work finding defects, the authors propose a

language feature, named compensation stacks, for ensuring that simple resources and API

rules are handled correctly even in the presence of run-time errors.

Weimer et al. describe a static data-flow analysis for finding program defects. This analysis

uses a fault model and a formal specification of proper resource handling to guide the defect

detection process. As an output, the analysis creates a defect report that includes a program

path, one or more run-time errors and one or more resources governed by the

specification. In broader terms, if a run-time error occurs at any point identified in the

report, the program is prone to violate the specification for the resources in use. A

fundamental aspect of this analysis is the fact that it considers not only the code in the

normal control flow but also the control flow related to the exceptions in the fault model.

The main goal of the Weimer analysis is to identify a path, with its origin in the start of

method and ceasing at the end of the same method, where a resource is not in an accepting

state. This process requires the construction of control flow graph accordingly to the pre-

defined fault model as well as the formal specification. The specification is responsible for

describing what the program must do and the fault model will describe what can go

wrong. To formalize the way how programs should manage and use certain resources and

interfaces, the authors propose the utilization of Finite State Machine diagrams diagrams

(FSMs) [Ball2001,Deline2001].

Weimer et al. alerted that their technique may “spuriously report correct code as having

defects and may fail to report real defects”. Nevertheless, they declare to have obtained no

false positives in their experiments while covering over five million lines of code and

having found over 1300 defects.

Based on the results encountered during the previous experiments, the authors claim that

“try-finally blocks are ill-suited for handling certain classes of resources in the presence of

run-time errors. (…) In essence, however, exceptions create hidden control-flow paths that

are difficult for programmers to reason about”.

Features existing in programming languages, such as destructors and finalizers, can assist

programmers in the task of preparing their code for correctly dealing with resources in the

presence of run-time errors. Destructors provide guaranteed cleanup actions for stack

allocated objects even in the presence of exceptions because they are tied to the dynamic

72 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

call stack of a program in the same way that local variable are1. A finalizer has a different

way of assuring the correct release of resources, it executes on an instance of a class only

when that instance is about to be reclaimed by the garbage collector. The garbage collector

gives no guarantees about which instances will be reclaimed, the order they will be

reclaimed or the time-frame for the operation. Finalizers perform, in a certain way, a kind

of lazy clean-up.

Weimer and colleagues propose a new approach for assuring the execution of resource

cleanup actions even in the presence of exceptions, the compensation stack. This language

feature is influenced by the concepts of compensating transactions2 [Korth1990], linear

sagas3 [Alonso1994,GarciaMol1987], and linear types [Deline2001] to create a model in

which obligations are recorded at run-time and are guaranteed to be executed along all

paths.

Compensation stacks are seen as a kind of a generalized destructor that can be used to

execute arbitrary code and not just to invoke functions upon object destruction. Based on

the fact that many program actions require that multiple resources are handled in

sequence, the compensation stack system links actions with compensations, and

guarantees that if an action is taken, the program will not end without executing the

associated compensation. Compensation stacks deallocate resources based on lexical scope,

much like a destructor do, but they are also first-class objects that make use of finalizers to

ensure that their contents are eventually executed.

A compensation stack contains several closures. Closures are run automatically (in a last-in,

first-out order) when a stack-allocated compensation stack goes out of scope or when a

heap-allocated compensation stack is finalized. Nevertheless, programmers are still free to

arbitrarily push closures onto compensation stacks and run closures ahead of time. This is

important to allow the usage of an ordinary programming idiom where resources must be

freed as early as possible along each path. Upon termination of the execution of a

1 The programmer must still remember to explicitly delete heap-allocated object along all paths.
2 A compensating transaction semantically undoes the effect of another transaction after that

transaction has committed.

3 A saga is a long-lived transaction seen as a sequence of atomic actions a1 … an with compensating
transactions c1 … cn. Either a1 … an executes or a1 … akck … c1 executes. Note that the compensations
are applied in reverse order.

 SECTION 2.7 — SUMMARY 73

compensating action, either normally or exceptionally, the compensation is eliminated

from the compensation stack.

Another interesting argument about compensation stacks is the fact that the system

ensures that the execution of compensation will continue even if a compensating action

raises an exception during its execution (the exception is simply logged).

Compensation stacks provide more flexibility than standard language approaches to

adding linear types or transactions by moving bookkeeping from compile-time to run-time

and enforcing a certain ordering on the execution of compensations.

2.7. Summary
Early error detection and handling mechanisms, such as error codes and status flags, were

proven to be insufficient for dealing with all possible abnormal situations and with the

overall increase in the complexity of programs. The exception handling model emerged as

a first effort to regulate the way programs deal with exceptional situations.

Exceptions eliminate many of their ancestors’ shortcomings. From our point of view, the

most important contributions of the exception handling mechanism in terms of reliability

are:

 Preventing any abnormal or erroneous situation of passing undetected, thus

avoiding the continuous execution of a program in a corrupted state or based on

false premises;

 Providing the means for a programmer to plan a set of handling actions for

dealing with abnormal occurrences at location, thus allowing the retrying of a

failed operation or its replacement with a working version;

 Allowing the communication of a error condition to different locations in the

program in a structured fashion;

 Improving error handling in distributed systems;

 Increasing code readability.

Unfortunately, such improvements have a cost - the overall complexity of systems and

their code will increase. The original Goodenough’s specification [Goodenough1975] has

74 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

evolved and been extended originating different flavors of the exception detection and

handling mechanism.

The main factor of distinction between modern exception handling mechanisms is the way

execution flow is continued after an exceptional occurrence. Existing systems can

implement the termination model, the retry model, or the resumption model. In some cases,

the same system can provide more that one way of dealing with control flow. We have

attested the positive and negative features of each model and concluded that each one

excels in different scenarios. Nonetheless, the termination model continues to be the

preferred option for the great majority of programming language designers, due to its

overall simplicity and clear semantics. In addition, we can state that it also covers most

situations that occur in practice and, under specific circumstances, it can mimic the

remaining models.

Exceptions provide better means for classifying errors and abnormal occurrences. It is

fairly straightforward to create classes representing exceptions, to derive sub-types and

create class-like exception hierarchies in order to fine tune the exception identification

process. In general, most systems deal with occurring exceptions independently of who

raises the exception. But, some models allow the programmer to bound exception handling

actions to exception occurrences inside specific components, other can even make

exception handling conditional and impose that several pre-conditions are met before

entering an exception handler.

Some exception models allow the declaration of the exceptions being raised inside a

component on that component’s interface. This is, simultaneously, a way of civilizing

exception propagation between application components and publicly declaring which

exceptions might occur during on a certain function call. Components missing an exception

list will require solid and thorough documentation of its exceptions in order to alert

programmers for their hidden hazards. On the checked vs unchecked exceptions discussion,

such feature is also a point of rupture. Moreover, we can say that checked models give

privilege to the obligation of detecting, handling and communicating occurring exceptions,

while unchecked models, on the other hand, give privilege to the writing of normal

application logic code. Checked models allow the compile-time checking of the

completeness of the exception handling code. Unchecked models, on the other hand,

require exhaustive testing in order to assess the complete coverage of the error handling

code.

 SECTION 2.7 — SUMMARY 75

Garcia et al. [Garcia2001] proposed a criteria to evaluate the quality of an exception

handling model in terms of reliability. At the same time, they were also able to provide a

set of quality metrics to help guiding the development of future exception handling

models. Among the programming languages currently better suited in terms of exception

handling, using the Garcia classification, are Guide and Java.

Along this chapter we mentioned several problems or difficulties associated with the usage

of exception handling mechanisms. These problems are summarized on the following list:

 It can be difficult to use testing techniques to find defects and evaluate programs’

behavior in exceptional situations [Sinha1999,Malayeri2006]. For instance,

coverage metrics tests require previous knowledge of the implicit control flow on

an exceptional situations and to validate exception handling code one might have

to use fault injection techniques;

 Building a complete list of the exceptions that are prone to be raised by a

component, prone to be raised at specific location in the code, or knowing the

origin of the identified exceptions, and their propagation path is an

overwhelming task;

 Language-level exceptions introduce implicit control flow which can mine

software reliability;

 Exception handlers are usually lexically scoped and might be quite labyrinthic ;

 Handling failures from multiple resources in a location where they are used

lexically close one to another is difficult and a potential cause for code errors;

 Handling multiple cascading exceptions (nested protected blocks and handlers)

can lead to serious program defects;

 The inclusion of exception handling code into the application logic code of a

program increases the distance between a resource allocation, its usage, and its

consequent release;

 Goodenough [Goodenough1975] proposed that exceptions should not be used

only on rare occasions. Nowadays, programming languages, software libraries,

operating systems, execution platforms, middleware and development

frameworks, all declare and use different types of exceptions. The number of

76 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING

different exceptions existing in a medium-size application can reach impressive

numbers, in the order of thousands. Dealing with all exceptions types (and

subtypes) is a cumbersome, complex and error-prone task. The option of handling

none is unfeasible in terms of reliability. Handling only a smaller part might no be

sufficient.

We can safely conclude that existing exception handling mechanisms, if correctly used, are

a great tool for improving software reliability. Exception handling is, by far, the most

popular reliability mechanism in use in modern programming languages. Regrettably, the

overwhelming complexity of dealing with all possible abnormal situations is making

exception handling less attractive for programmers, and, in the end, making programs less

reliable.

In the next chapter, we will show how the problems just mentioned are affecting the way

programmers use exception handling mechanisms and how that can be a reason for

concern in terms of the overall software reliability. As we mentioned in the introduction of

this chapter, sometimes programming language designers are forced to go back to the

design table and adapt their models in order to comply with the way users relate with

them.

We believe that a possible solution for this problem is making the developers’ task simpler.

It is necessary to create smarter tools. Tools that can, for instance: help detecting exceptions

before run-time; help creating the code for handling exceptions; automatically verify

handlers’ code during testing; among others.

A Field Study in Exception
Handling

Most modern programming languages rely on exceptions for dealing with abnormal

situations. Although exception handling was a significant improvement over other

mechanisms like checking return codes, it is far from perfect. In fact, it can be argued that

this mechanism is seriously limited, if not, flawed. This chapter aims to contribute to the

discussion by providing quantitative measures on how programmers are currently using

exception handling. We examined 32 different applications, both for Java and .NET, and,

by doing so, we were able to conclude that exceptions are not being correctly used as an

error recovery mechanism.

Another aspect taken into consideration when reasoning about the efficiency of exception

handling code in programs is the quality of the existing documentation for exceptions. For

years, programmers trusted in the correct documentation for error codes returned by

procedures to correctly handle erroneous situations. Now, they have to focus on the

documentation of exceptions for the same effect. In the second part of this chapter, we

show to what extent can exception documentation be trusted and how it tends to be scarce.

This study provides a useful quantitative measure for guiding the development of new

error handling mechanisms.

Chapter

3

78 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

3.1. Introduction
In order to develop robust software, a programming language must provide the

programmer with primitives that make it easy and natural to deal with abnormal

situations and recover from them. Robust software must be able to perceive and deal with

the temporary disconnection of network links, disks that are full, authentication

procedures that fail and so on.

Since the appearance of exception handling mechanisms their importance has been

steadily increasing. Being a part of modern object-oriented programming languages such

as Sun’s Java [Sun2006] and Microsoft’s .NET [ISO23271:2006], exceptions have been

slowly replacing the error codes that are widely used in procedural languages like C.

Nonetheless, the exception handling mechanism is far from perfect. Problems include1:

 Due to the large amount of existing exception types (and their subtypes) in

modern software, programmers tend to use and throw generic exceptions,

making it almost impossible to properly handle errors and recover for abnormal

situations without shutting down the application;

 Programmers are also prone to catch generic exceptions, not providing proper

error handling, and making the programs continue to execute with a corrupt state

(e.g., in Java). On the other hand, in some platforms, programmers do not catch

enough exceptions making applications crash even on minor error situations (e.g.,

in C#/.NET);

 On the other hand, programmers that try to provide proper exception handling

see their productivity seriously impaired. A task as simple as providing exception

handling for writing a file to disk may imply catching and dealing with tens of

exceptions (e.g., FileNotFoundException, DiskFullException,

SecurityException, IOException, etc.). As productivity decreases, cost

escalates, programmer’s motivation diminishes and, as a consequence, software

quality suffers;

 Due to the semantics and expressiveness level imposed by programming

languages onto exception constructs, providing proper exception handling can be

1 Please, refer to Chapter 2 for a more detailed discussion on the mechanism shortcomings

 SECTION 3.1 — INTRODUCTION 79

quite a challenging and error prone task. Depending on the condition, it may be

necessary to enclose try-catch blocks within loops in order to retry operations.

In some cases it may be necessary to abort the program or perform different

recovery procedures. Bizarre situations, like having to use nested try-catch

blocks to deal with an exception while trying to close a file on a catch or a

finally block, are common. Dealing with such issues correctly is quite difficult,

error prone, not to say, time consuming.

To make things interesting, the debate about error handling mechanisms in programming

languages has been refueled with the launch of Microsoft’s .NET platform. Currently, the

Java Platform and the .NET platform constitute the bulk of the modern development

environments for commercial software applications. Curiously, Microsoft opted to have a

different exception handling approach than Java. In .NET the programmer is not forced to

declare which exceptions can occur or even deal with them. Whenever an exception

occurs, if unhandled, it propagates across the stack until it terminates the application. On

the other hand, in Java, in most cases, the programmer is forced to declare which

exceptions can occur in its code and explicitly deal with exceptions that can occur when a

method is called. The rationale for this is that if the programmer is forced to immediately

deal with errors that can occur, or re-throw the exception, the software will be more

robust. This way the programmer must be constantly thinking about what to do if an error

occurs and acknowledge the possibility of errors.

On the .NET’s camp, the arguments for not having checked exceptions that are normally

used are [Gunnerson2000]:

 Checked exceptions interfere with the programmers’ productivity since they

cannot concentrate in business logic and are constantly forced to think about

errors;

 Since the programmer is mostly concentrated in writing business logic and not

dealing with errors, it tends to shut-up exceptions, which actually makes things

worse. Corrupt state is much more difficult to debug and correct than a clean

exception that terminates an application;

 Errors should be “exonerated” by exhaustive testing. A sufficiently accurate test

suite should be able to expose dormant exceptions, and corresponding abnormal

situations. For the problems that remain latent, it is better that they appear as a

80 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

clean exception that terminates the application than having them being

swallowed in a generic catch statement which leads to corrupt state.

Obviously, both camps cannot be 100% right. But, overall, the important message is that in

order to develop high-quality robust software, in a productive way, new advances in error

handling and new perspectives into the subject are needed. Our work aims to contribute to

the discussion by providing quantitative measures on how programmers are currently

using exception handling. This chapter aims to contribute to the discussion by providing

quantitative measures on how programmers are currently using exception handling. We

targeted in particular the .NET and Java platforms, as well as the C# and Java

programming languages.

The use of unchecked exceptions, more precisely the difficulty that their usage introduces

due to the lack of an exception list mechanism when a programmer needs to know what

exceptions a method call may raise, increases the importance of good exception

documentation. In our days, if a programmer expects his code to be used by others, or

even himself, he or she has to spend time and effort documenting his methods, explaining

the circumstances in which a given erroneous situation can occur and how methods act on

those events. This documentation process, being mostly a manual one, is subject to

incompleteness and faults. The absence of good code documentation is bound to cause

programming errors, because unless there is a way of examining the source code of the

software module a programmer is interacting with, documentation is all he or she can

trust.

These problems are known by programmers who spend precious time wrestling with bad

code documentation, and especially by those used to the older way of error code

identifiers. Nowadays, because error codes can still be used, for some developers exception

handling is an optional way of dealing with erroneous situations [Ryder2003].

Consequently, the full impact of the problem of poor exceptions documentation in modern

programming languages is not known. We propose to assess the impact of such problem

by analyzing the code and the documentation released with a set of open-source programs.

To our knowledge, this is the most comprehensive study done to date on exception

handling. The data presented on this chapter is important to guide the development of

new mechanisms and approaches to exception handling.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 81

3.2. Programming with exceptions
To understand the way programmers use exception handling constructs in modern

programming languages, we have to look into both the source code and the executable

files.

We examined 32 different applications, both for Java and .NET, covering 4 different

software categories: libraries; stand-alone applications; servers; and applications running

on servers. Overall, this corresponds to 3 410 294 lines of source code of which 137 720 are

dedicated to exception handling. For this work, we have processed 18 589 try blocks and

corresponding handlers.

In this section, we assess the usage of exception handling code in the targeted programs

regarding the following topics:

a) percentage of exception handling code;

b) the type of actions performed inside exception handlers;

c) the classes used as exception handler arguments;

d) the exception types most frequently caught;

e) the call stack levels that an exception travels before it is caught;

f) the size of handlers;

g) the types of handlers;

h) the usage of checked or unchecked exceptions;

i) the usage of a retry-like functionality.

3.2.1. Methodology
Selecting an adequate set of applications for processing was quite an important step. It was

necessary to guarantee that both the source code and the binaries of the applications were

available. The source code of each application had to be representative of common

programming practices for the target platforms. Also, care had to be taken so that these

would be “real world” applications developed for production use (i.e., not simply

prototypes or beta versions). This was so in order not to bias the results towards immature

82 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

applications where much less care with error handling exists. Overall, the applications

chosen should be mature and widely used.

Globally, we analyzed 16 .NET programs and 16 Java programs. Each one of these sub-sets

was organized in four categories accordingly to their nature:

 Libraries: software libraries providing a specific application-domain API.

 Applications running on servers (Server-Apps): Servlets, JSPs, ASPs and related

classes.

 Servers: server programs.

 Stand-alone applications: desktop programs.

The complete list of applications is shown in Table 3.1.

The test applications were analyzed at source code level (C# and Java sources) and at

binary level (metadata and bytecode/IL code) using different processes.

To perform the source code analysis two parsers were generated using antlr [Parr2006], for

C#, and javacc [Javacc2008] for Java. These parsers were then modified to extract all the

exception handling code into one text file per application. These files were then manually

examined to build reports about the content of exception handlers.

We examined the source code of all applications, except for Mono. Indeed, due to its huge

size, on Mono we focused on its "corlib" module.

The parsers were also used to identify and collect information about try blocks inside

loops (i.e., detect try statements inside while and do..while loops). The reason why we

have done this was because this type of computation can correspond to retrying a block of

code, which was responsible for raising an exception, in order to recover from an abnormal

situation.

The main objective of this study was to understand how programmers use the exception

handling mechanisms available in programming languages. Nevertheless, the analysis of

the applications source code is not enough by itself when trying to distinguish between the

exceptions that the programmer wants to handle and the exceptions that might occur at

run-time. The main reason for this is that the generated code (the product of the source

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 83

code compilation) can produce more and different exceptions than the ones that are

declared in the applications source code by means of throw and throws statements.

Table 3.1 – Applications listed by group.

SmartIRC4NET IRC library

Report.NET PDF generation library

Mono (corlib) Open-source CLR implementation L
ib

ra
ri

es

NLog Logging library

UserStory.Net
Tool User Story tracking in Extreme
Programming projects

PhotoRoom
ASP.NET web site for managing on-line photo
albums

SharpWebMail
ASP.NET webmail application that is written in
C# Se

rv
er

-A
p

ps

SushiWiki WikiWikiWeb like Web application

NeatUpload
Allows ASP.NET developers to stream files to
disk and monitor progress

Perspective Wiki engine

Nhost Server for .NET objects

Se
rv

er
s

DCSharpHub Direct connect file sharing hub

Nunit Unit-testing framework for all .NET languages

SharpDevelop IDE for C# and VB.NET projects

AscGen
Application to convert images into high quality
ASCII text

.N
E

T

St
an

d
-a

lo
ne

SQLBuddy
SQL scripting tool for use with Microsoft SQL
Server and MSDE

Thought River Commons General purpose library

Javolution Real-time programming library

JoSQL SQL for Java Objects querying L
ib

ra
ri

es

Kasai Authentication and authorization framework

Exoplatform
Corporate portal and Enterprise Content
Management

GoogleTag Library Google JSP Tag Library

Xplanner
Project planning and tracking tool for Extreme
Programming

Ja
va

Se
rv

er
-A

p
p

s

Mobile platform
Banks and mobile operators software for SMS
and MMS services in cellular networks (not
open-source)

84 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Jboss J2EE application server

Apache Tomcat Servlet container

JCGrid Tools for grid-computing Se
rv

er
s

Berkeley DB High performance, transactional storage engine

Compiere
ERP software application with integrated CRM
solutions

J-Ftp Graphical Java network and file transfer client

Columba Email Client

St
an

d
-a

lo
ne

Eclipse Extensible development platform and IDE

To perform the analysis of the .NET assemblies1 and of the Java class files two different

applications were developed: one for .NET and another one for Java. To develop the

analysis software for .NET, we were also forced to create and use our own IL code

instrumentation library because none was available for that platform at the time. Thus, we

created and used the RAIL assembly instrumentation library [Cabral2005] to access assembly

metadata and IL code and extract all the information about exceptions, exception handlers

and exception protection blocks in .NET assemblies. The second application targeted the

Java platform and used the Javassist bytecode engineering library [Chiba2000] to read class

files and extract exception handlers’ information.

All data was stored on a relational database for easy statistical treatment.

For each application only one file or package of classes was analyzed. Table 3.2 shows the

names of the files and packages that were used in this study. The criterion followed to

select these targets was the size of the files (larger files were preferred) and their relevance

in the implementation of the application core (more relevant ones were preferred).

When performing the parsing of the applications source code, both for Java and .NET

applications, we only had to consider the identification of the protected regions of code

(try blocks), of the handlers and finalizers for those blocks (catch and finally blocks),

and the occurrence of throw statements in the code (and throws in Java), while, when

1 A .NET Assembly is a PE (portable executable) file for Windows GUI on Intel x86. There are two

kinds of these fyles: process assemblies (EXE) and library assemblies (DLL). An assembly is
composed by metadata and IL (Intermediate Code). IL code is the “machine code” executed by the
.NET platform runtime.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 85

performing the analysis of the executable files, we had to look not only into the code (IL

and bytecode) but also, and more importantly, to the metadata inside the files.

Table 3.2 – List of Assemblies and Java Packages analyzed.

NET Java

Meebey.SmartIrc4net.dll
Reports.dll
mscorlib.dll
NLog.dll
rq.dll (UserStory)
PhotoRoom.dll
SharpWebMail.dll
SushiWiki.dll
Brettle.Web.NeatUpload.dll
Perspective.dll
nhost.exe
DCSharpHub.exe
nunit.core.dll
SharpDevelop.exe
Ascgen dotNET.exe
SqlBuddy.exe

ThoughRiverCommons (all)
Javolution (all)
JoSQL (all)
org.manentia.kasai
Exoplatform (all)
GoogleTagLibrary (all)
XPlanner (all)
Mobile platform (all)
JBoss (all)
org.apache
JCGrid (all)
Berkeley DB (all)
org.compiere
net.sf.jftp
org.columba
org.eclipse

In a .NET assembly all the metadata is organized into tables [ISO23271:2006]. There are

tables that hold information about the types defined and referenced in the assembly,

modules, methods, parameters, resources, etc. Entries in each table can reference other

tables and even other entries in different tables through tokens (encoded index values). For

instance, each entry in the Method table has the following fields: RVA (4 byte constant);

ImplFlags (bitmask); Flags (bitmask); Name (index into String heap); Signature (index into

Blob heap); ParamList (index into Param table). The ParamList attribute is a token value that

represents an index into another metadata table, the Params table. In the same sense, Name

is a relative pointer to the zone in memory where all the strings used in the assembly are

stored and Signature is a memory pointer into the zone where all unsorted byte streams

within the assembly are kept.

The Method table only contains information about the method (or pointers to the location

of that information), it does not contain any actual IL code or information about the

method body. The IL code for all the methods in the assembly is kept on another section of

the assembly. In this section, IL methods are organized in three different parts: header, body,

and extra data sections. Currently, these data sections are used to store information about

the exception handling code in the method. A typical exception handling data section

86 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

contains several clauses, each clause identifies the start point of a try block and the block

length in bytes, the start point of an handler and the handler code length in bytes, the type

of the handler (type-based or catch, finally, filter or fault), the token for the identification of

the exception type in a type-based handler, and the offset into the code for filter-based

handlers. With this information and the parsing of the IL code instructions in each method

body, we were able to isolate the exception handling code inside the assemblies studied.

In Java the process is similar, but .class files are very simple, in terms of metadata and

size, when compared to .NET assemblies. For example, a .class file only implements one

class while an assembly contains several modules, each composed by one or more files

which contain the metadata and code of all classes in the application.

A fundamental difference between the information available about exception handlers in

Java and .NET is that Java does not provides any data about the length (or the

identification of the) final instruction of exception handlers [Gosling2005] like .NET does.

3.2.2. Results
In the following sections we will present the results of this study, drawing some

observations about their significance. The topics under analysis were already presented at

the beginning of this section, but for the sake of easiness we will enumerate them once

again: (a) percentage of exception handling code; (b) the type of actions performed inside

exception handlers; (c) the classes used as exception handler arguments; (d) the exception

types most frequently caught; (e) the call stack levels that an exception travels before it is

caught; (f) the size of handlers; (g) the types of handlers; (h) the usage of checked or

unchecked exceptions; (i) the usage of a retry-like functionality.

We should caution that although the number of applications that were used was relatively

large (32), it is not possible to generalize the observations to the whole .NET/Java

universe. For that, it would be necessary to have a very significant number of applications,

possible consisting in hundreds programs. Even so, due to the care taken in selecting the

target applications, we believe that the results allow a relevant glimpse into current

common programming practices in exception handling.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 87

Error Handling Code in Applications
One important metric for understanding current error handling practices is the percentage

of source code that is used in that task. For gathering this metric, we compared the number

of lines of code inside all catch and finally1 handlers to the total number of lines of the

program. The results are shown in Figure 3.1.

It is quite visible that in Java there is more code dedicated to error handling than in .NET.

This difference can be explained by the fact that in Java it is compulsory to handle or

declare all exceptions a method may throw, thus increasing the total amount of code used

for error handling. Curiously, there is an exception to this pattern. In the Server

Application group, the difference is almost non-existent. To explain this result we

examined the applications’ source code. For this class of applications, both in Java and

.NET, programmers wrote quite similar code. Meaning that they expect the same kind of

errors (e.g., database connections loss, communication problems, missing data, etc.) and

1 Note that finally code blocks are not really exception handlers in the technical sense of the word.

Even so, for simplicity, we will use the term “finally handler” when referring to code blocks
related to clean-up actions. The same term is used in the ECMA specs of the CLR.

Figure 3.1 – Amount of exception handling code

88 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

they use the same kind of treatment (the most common handler action in this type of

applications is logging the error).

One surprising result is that the total amount of code dedicated to exception handling is

much less than what would be expected. This is even more surprising in Java where using

exceptions is almost mandatory even in small programs. Our results show that the

maximum amount of code used for error handling was 7% in the Servers group. Overall,

the result is 5% for Java, with a 2% standard deviation, and 3% for .NET, with a standard

deviation of 1%. It should be noted that, as we have already mentioned in the prior section,

the applications used in this study are quite mature, being widely used.

We reason that the effort dedicated to writing error protection mechanisms is not as high

as expected, even for highly critical applications like servers. The forceful of declaring and

catching checked exceptions in Java effectively increases (almost doubles) the amount of

error handling code written, even though it is still represents a small fraction of all the

code of an application. The critical issue is that normally error handling code is being used

more to alert the user, to abort the applications or to force them to continue their execution,

than to actually recover from existing errors.

The amount of exception handling code in the Stand-Alone group is smaller than the

amount of error handling code in infrastructure software. This is unexpected if we

consider exception handling to be an application-specific error recovery technique. A

simple explanation can be that infrastructure software needs to run 24x7 with a minimum

of human supervision. This fact may influence developers to produce “better” (albeit more

complex) recovery code, whereas stand-alone applications developers can limit their error

handling code to warnings, hoping that the user is able to correct the cause of the

erroneous behavior. In the next sections we will provide an in depth analysis of the error

handling actions present in the four application groups.

Code in Exception Handlers
Apart from measuring the amount of the code that deals with errors, to find out how

programmers use exception handling mechanisms, it is important to know what kind of

actions are performed when an error occurs.

To be able to report on this subject we had to inspect sets of ten thousand lines of

application source code. As a matter of fact, we covered all the handlers (catch and

finally) in all the applications except for JBoss and Eclipse. For these two, due to their

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 89

dimension, only 10% of the 96 405 lines of code existing inside of exception handlers were

examined. Even so, we believe that they are representative of the rest.

To simplify the classification of these error handling actions, we propose a small set of

categories that enable the grouping of related actions. These categories are summarized in

Table 3.3.

Table 3.3 – Description of the Handler’s actions categories.

Category Description

Empty
The handler is empty. It has no code and does
nothing more than cleaning the stack.

Log
Some kind of error logging or user
notification is carried out.

Alternative
Configuration

In the event of an error or in the execution of
a finally block some kind of pre-determined
(alternative) object state configuration is used.

Throw
A new object is created and thrown or the
existing exception is re-thrown.

Continue
The protected block is inside a loop and the
handler forces it to abandon the current
iteration and start a new one.

Return

The handler forces the method in execution to
return or the application to exit. If the handler
is inside a loop, a break action is also assumed
to belong to this category.

Rollback

The handler performs a rollback of the
modifications performed inside the protected
block or resets the state of all/some objects
(e.g., recreating a database connection).

Close

The code ensures that an open connection or
data stream is closed. Another action that
belongs to this category is the release of a lock
over some resource.

Assert

The handler performs some kind of assert
operation. This category is separated because
it happens quite a lot. Note that in many
cases, when the assertion is not successful,
this results in a new exception being thrown
possibly terminating the application.

Delegates
(only for .NET)

A new delegate is added. The delegate object
contains information about what to do when
a specific event occurs.

Others
Any kind of action that does not correspond
to the previous ones.

90 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Note that an exception handler may contain actions that belong to more than one category.

In fact, this is the common case. For instance, a handler can log an error, close a connection

and exit the application. These actions are represented by three distinct categories: Log,

Close and Return. Thus, in the results, this handler would be classified in all these three

categories.

Since catch and finally handlers have different purposes, we opted for doing separate

counts for each type of handler. Finally, the distribution of handler actions for each

application was calculated as a weighted average accordingly to the number of actions

found in each application. This is so that small applications do not bias the results towards

their specific error handling strategy.

The results obtained for each application group are shown in next four graphs.

The graph of Figure 3.2 shows the average of results by application group for .NET catch

handlers. In the four application groups 60% to 75% of the total distribution of handler

actions is composed of three categories: Empty, Log and Alternative Configuration.

Figure 3.2 – Catch handler actions for .NET programs.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 91

Empty handlers are the most common type of handler in Servers and the second largest in

Libraries and Stand-alone applications. This result was completely unexpected in .NET

programs since there are no checked exceptions in the CLR and, therefore, programmers

are not obliged to handle any type of exception. Checked exceptions can sometimes lead

lazy programmers to “silence exceptions” with empty handlers only to be able to compile

their applications. From the analysis of the source code we concluded that its usage in

.NET is not related with compilation but with avoiding premature program termination on

non-fatal exceptions. A typical example is the presence of several linear protected blocks

containing different ways of performing an operation. This technique assures that if one

block fails to achieve its goal, the execution can continue to the next block without any

error being generated.

Logging errors is also one of the most common actions in the handlers of all the

applications. In fact, it is the most common action in Server-Apps and Stand-alone groups.

Considering web applications and desktop applications, this typically corresponds to the

generation of an error log, the notification of the user about the occurrence of a problem

and the abortion of the task. This idea is re-enforced by the value of the Return action

category in these two application groups which is the identical and the highest of all four

groups.

The number of Alternative Configuration actions reports on the usage of alternative

computation or object’s state reconstruction when the code inside a protected block fails in

achieving its objective. These actions are by far the most individualized and specialized of

all. In some cases they are used to completely replace the code inside the protected block.

In the Libraries applications group, Assert operations are the second most common error

handling action. Asserts ensure that if an error occurs, the cause of the error is well known

and reported to the user/programmer. In Servers there is also a high distribution value for

the Others category. These actions are mainly related with thread stopping.

Another category of actions with some weight in the global distribution is the Throw

action. This is mainly due to the layered and component based development of software.

Layers and components usually have a well defined interface between them. It is a fairly

popular technique to encapsulate all types of exceptions into only one type when passing

an exception object between layers or software components. This is typically done with a

new throw.

92 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Empty, Log, Alternative Configuration, Throw and Return are the actions most frequently

found in the catch handlers of .NET applications. By opposition, Continue, Rollback, Close,

Assert, Delegate and Others actions are rarely used in .NET.

Figure 3.3 shows the results for catch handlers in Java programs. Only in the Stand-alone

and Server-Apps groups we found some similarity with .NET. Despite this fact, it is

possible to see the same type of clustering found in .NET. The cluster of categories that

concentrate the highest distribution of values is composed by Empty, Log, Alternative

Configuration, Throw and Continue actions.

The distribution values on the Empty category surprised us once again. This value is lower

than the ones found in .NET. This suggests that the checked exception mechanism has little

or no weight on the decision of the programmer to leave an exception handler empty:

another reason must exist to justify the existence of empty handlers besides silencing

exceptions. In .NET this happen quite frequently for building alternative execution blocks.

We risk saying that in Java exception mechanisms are no longer being used only to handle

Figure 3.3 – Catch handler actions for Java programs.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 93

“exceptional situations” but also as control/execution flow construct of the language.

(Note that even the Java API sometimes forces this. For instance, the detection of an end-

of-file can only be done by catching an exception.)

The Log actions category takes the first place for Server-apps, Server and Stand-alone

application groups and the second place in Libraries group. In this last group, Log is only

surpassed by Throw, another common action in the Server-Apps and Server groups. In

Java, the Log and Throw actions are highly correlated. We observed that in the majority of

cases, when an object is thrown the reason why it happens is also logged.

Return is also a common action in all the application groups. Between 7% and 15% of all

handlers terminate the method being executed, returning or not a value.

Figure 3.4 illustrates the results for finally handlers in .NET. The distribution of the

several actions is different from the one found in catch handlers. Nevertheless, it is visible

that the most common handler action category in .NET, for all application groups, is Close.

Figure 3.4 – Count of actions for Finally handlers in .NET programs.

94 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

I.e., finally handlers, in our test suite, are mainly used to close connections and release

resources.

Alternative Configuration is the second mostly used handler action in all application

groups with the exception of Libraries. A typical block of code usually found in finally

handlers is composed by some type of conditional test that enables the execution of some

predetermined configuration. In some cases, that alternative configuration is done while

resetting some state. In those cases, they were classified as Rollback and not Alternative.

Another common category present in finally handlers of .NET applications is Others.

These actions include file deletion, event firing, stream flushing, and thread termination,

among other less frequent actions. In Server applications it is also common to reset the

state of an object or rollback previous actions.

Finally, on Stand-alone applications there are some empty finally blocks that we can not

justify since they perform no easily understandable function.

Figure 3.5 – Count of actions for Finally handlers in Java programs.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 95

In Java applications (Figure 3.5) the scenario is very similar to the one found in .NET. Close

is the most significant category in all application groups. There are also some actions

classified as Others, which are similar to the ones of .NET. In Java they have more weight

in the distribution, indicating a higher programming heterogeneity in exception handling.

Rollback and Alternative Configuration actions are also used as handler actions in Java

finally handlers.

It is possible to observe that there is some common ground between application groups in

Java and .NET in what concerns exception handling. For the most part, Empty and Log are

the most common actions in all catch handlers and Close is the most used action in

finally handlers.

Classes Used as Exception Handler Arguments
After identifying the list of actions performed by handlers, we concentrated on finding out

if there is some relation between catch handlers for the same type of exception classes. For

this, we developed two programs: one to process .NET’s IL code and another to process

Java bytecode. These IL code/bytecode analyzers were used to discover what exceptions

classes were most frequently used as catch arguments. We opted by performing this

analysis at bytecode/IL level and not at source code level because it is simpler to obtain

this information from assemblies or class metadata than from C# or Java code.

Figure 3.6 shows the most common classes used as argument of catch instructions in .NET

applications. The results are grouped by application type and the values represent the

weighted average of the distribution among applications of the same group. Thus,

programs with the largest number of handlers have more weight in the final result.

96 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

It is possible to observe that programmers prefer to use the most generic exception classes

like System.Exception and System.Object for catching exceptions. Note that .NET, not

C#, allows any type of object to be used as an exception argument. When the argument

clause of a catch statement is left empty, the compiler assumes that any object can be

thrown as an exception. This explains the large presence of System.Object as argument.

The use of generic classes in catch statements can be related to the two of the most

common actions in handlers: Logging and Return. This means that for the largest set of

possible exceptions that can be thrown, programmers do not have particular exception

handling requirements: they just register the exception or alert the user of its occurrence.

Nevertheless, there are a lot of handlers that use more specific exception classes. These

different handlers do not have any weight by themselves in the distribution but all the

code that actually tries to perform some error recovery operations is concentrated around

these specialized handlers.

I/O related exception handlers are fairly used in Libraries and Servers. Also invalid

arguments types, number and format errors are treated as exceptions by all the

Figure 3.6 – .NET classes being used as catch arguments.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 97

applications as shown by the presence of System.ArgumentException handlers and

System.FormatException handlers.

There are not many differences between Java and .NET in terms of catch arguments.

Figure 3.7 shows the results for Java. It is possible to conclude that the most generic

exception classes are the preferred ones: Exception, IOException, and

ClassNotFoundException. We tried to found out why ClassNotFoundException is so

commonly used by analyzing the source code. For the most part, most of the handlers

associated to the use of this class are empty, just log the error or throw a new kind of

exception. Others try to load a parent class of the class not found or another completely

different class. In general, these handlers are associated with “plug-in” mechanisms or

modular software components using dynamic class loading. An example is the way JDBC

database drivers are loaded by using Class.forName(). [Gosling2005]

Figure 3.7 – Java classes being used as catch arguments.

98 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Finally, we did an analysis of all the applications source code to find out what was the

distribution of handler actions by catch handler argument class for the most commonly

used classes. The results can be found in Figure 3.8 and quite different from one type of

exception class to another. Even so, it is still possible to say that the dominant handler

actions are the ones belonging to the categories: Empty, Log, Alternative Configuration,

Throw and Return.

Figure 3.8 – Handler actions distribution for the most used catch handler classes.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 99

It is interesting to notice that in .NET catch instructions with no arguments are directly

associated with the largest number of Empty handlers.

In Java, in particular for ClassNotFoundException, Alternative Configuration actions are

common. This behavior is understandable if we consider that, if a class is not found then a

new one should be suggested as alternative. (This is quite common in database

applications, while loading JDBC drivers.)

Handled Exceptions
On the previous section, we reported the exceptions used in catch statements.

Nevertheless, a catch statement can catch the specific exception that was listed or more

specific ones (i.e., derived classes). We will now discuss exception handling code from the

point of view of possible handled exceptions. As previously discussed, we used IL

code/bytecode analyzers to collect all the exceptions that the applications could throw

because this information is not completely available at source code level. For instance, the

set of exceptions that an application can throw at run-time is not completely defined by the

applications source code throw and throws statements. Therefore, a profound analysis of

the compiled applications was required for gathering this information.

Exception Universe

In Java, thanks to the checked exception mechanism, we are able to discover and locate all

the exceptions that an application can throw by analyzing its bytecode and metadata. To

know what exceptions may be thrown by a method it is necessary to know:

 All the exceptions that the bytecode instructions of a method may raise

accordingly to the Java specs [Gosling2005];

 All the exception classes declared in the throws statement of the methods being

called;

 All the exceptions that are produced inside a protected block and are caught by

one of its handlers;

 All the exception classes in the method own throws statement.

100 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

In .NET, finding the exceptions that might be thrown is a more difficult task. Indeed,

because there are no checked exceptions, to discover what exceptions a method may raise

it is necessary to know:

 All the exceptions that can be raised by each one of the IL instructions accordingly

to the ECMA specs of the CLR [ISO23271:2006];

 All the exceptions that the method being called may raise;

 All the exception classes present in explicit throw statements;

 All the exceptions that are produced inside a protected block and are not caught

by one of its handlers.

When we started to work on which exceptions could occur in .NET and Java, the results of

the analysis were quite biased. This happened because:

 Almost all instructions can raise one or more exceptions, accordingly to CLR

ECMA specs and Java specs, making the total number of exceptions reported

grow very fast and the occurrence of other types of exceptions not directly

associated with instructions almost irrelevant;

 In most cases, the exceptions that each low-level instruction could actually throw

would not indeed occur since some code in the same method would prevent it

(e.g., an explicit program termination if a database driver was not found, thus

making all ClassNotFoundException exceptions for that class irrelevant). Since it

is not possible to detect this code automatically, although the results could be

correct, the analysis would not reflect the reality of the running application or the

programming patterns of the developer.

To obtain meaningfully results we decided to perform a second analysis not using all the

data from the static analysis of bytecode and IL code instructions. In particular, we filtered

out a group of exceptions that are not normally related to the program logic, and that the

programmer should not normally handle, considering the rest. The list of exceptions that

were filtered out is shown in Table 3.4.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 101

Table 3.4 – Java and .NET exception classes for bytecode and IL code instructions.

NET Java

System.OverflowException
System.Security.SecurityException
System.ArithmeticException
System.NullReferenceException
System.DivideByZeroException
System.Security.VerificationException
System.StackOverflowException
System.OutOfMemoryException
System.TypeLoadException
System.MissingMethodException
System.InvalidCastException
System.IndexOutOfRangeException
System.ArrayTypeMismatchException
System.MissingFieldException
System.InvalidOperationException

java.lang.NullPointerException
java.lang.IllegalMonitorStateException
java.lang.ArrayIndexOutOfBoundsException
java.lang.ArrayStoreException
java.lang.NegativeArraySizeException
java.lang.ClassCastException
java.lang.ArithmeticException

Results for handled exceptions

Being aware of the complete list of exceptions that an application can raise and of the

complete list of handlers and protected blocks, it is possible to find out which ones are the

most commonly handled exception types. The results for .NET applications are shown in

Figure 3.9. The values represent the average of results by application group where every

application had a different weight in the overall result according to the total number of

results that they provided. It is possible to observe that the results are very different

between application groups. For instance, in the Libraries group, the most commonly

handled exceptions are ArgumentNullException and ArgumentException, resulting from

bad parameter use in method invocations. In the remaining three groups the number one

exception type is Exception, this can be a symptom of the existence of a larger and more

differentiated set of exceptions that can occur. If many different exceptions can occur it is

viable to assume that the most generalized type (i.e., Exception, IOException, etc.)

becomes the most common one.

Seeing exception types like HttpException, MailException, SmtpException and

SocketException in this top ten list and observing a distribution with such variations

from application group to application group, we are confident to say that the type of

exceptions that an application can raise and, in consequence, handle is strictly related with

the application nature.

102 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

There is a mismatch between the type of classes used as arguments to catch instructions

and the classes of the exceptions that are handled, i.e., throw statements use the exception

classes that best fit the situation (exception) but the handlers that will eventually “catch”

these exceptions use general exception classes like .NET’s and Java’s Exception as their

arguments.

In both Java and .NET, there is a large spectrum of exception types being handled. The

results for Java are illustrated in Figure 3.10. IOException is the most “caught” exception

type in all application groups. It is also possible to observe that the exception types are

tightly related to the applications. For instance in Stand-alone applications, three of the

exception classes are from Eclipse. Due to its huge size Eclipse carries a large weight in its

application group results and, as we are able to observe, its “private” exceptions are

present in this top ten.

Figure 3.9 – Most commonly handled exception types in .NET.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 103

Call Stack Levels Analysis
The analysis of the applications bytecode and IL code allows us to discover the number of

levels in the call stack that an exception travels before it is caught by some handler. Note

that an exception is caught if the catch argument class is the same of the exception or a

super-class of it.

One result that we can directly associate with the checked exceptions mechanism is the

difference in the number of levels that an exception travels before it is caught by some

handler in Java and .NET.

In Figure 3.11 it is possible to observe that in Java almost 80% of the exceptions are caught

one level up from where they are generated, 15% two levels up, 5% three levels up and all

the remaining are caught as high as five levels. On the other hand, in .NET, exceptions can

cover up to seventeen levels and the distribution of the exceptions per levels covered is

much sparser than in Java. The .NET programmer is not forced to catch exceptions and, as

Figure 3.10 – Most commonly handled exception types in Java.

104 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

a result, exceptions can be caught much later in the call stack and most times by exception

handlers with general catch arguments.

In .NET, 5% of the exceptions are caught before they cover any level in the call stack. This

result is unexpected and could only be explained by a detailed analysis of the IL code in

the assemblies and of the source code of the programs. At first we thought that this could

be the result of some code tangling at compile time but the analysis showed that the

exceptions were originated in throw instructions inside the protected blocks of methods.

Programmers raised these exceptions to pass the execution flow from the current point in

the method to code inside a handler – i.e., they use exceptions as a flow control construct.

Handler size
Another interesting measure that we withdraw from the analysis of assemblies IL code and

metadata was related with handler’s code size or, more precisely, the count of opcodes

inside a handler. This analysis could only be conducted in .NET because the metadata in

the assemblies clearly identifies the begin and end instructions for each handler while in

Java only the information about the beginning of a handler is available. To discover where

a handler finishes we would have to do a static flow control analysis and find the join

point in the code after the first instruction in the handler, which is outside of the scope of

this study.

Figure 3.11 – Call stack levels for caught exceptions.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 105

The graph in Figure 3.12 shows that the largest set of handlers in Server-Apps, Servers and

Stand-alone applications groups have 8 IL Code instructions. In the Libraries group more

than 40% of the handlers have 3 instructions. The second largest set of handlers in all

groups has 5 instructions. Obviously, there are larger handlers but they are so scarce that

we excluded them from the graph to improve its readability.

To understand the dominance and content of the small handlers, we analyzed the full IL

code in all handlers. We found the following interesting facts:

 In the 526 handlers with size 8, 500 (95%) invoked a Dispose() method in some

object; from this 500 there were two major sets of handlers with the exact same

opcodes, one with 329 elements and the other with 166; the remaining 5 handlers

were different between them; these handlers were all finally handlers;

 In the set of handlers with 5 instructions there were 194 elements; 74 disposed of

some object; 24 created and throwed a new exception; 36 stored some value;

 484 of the 498 handlers of size 3 were finally handlers; 426 handlers had exactly

the same opcodes and were responsible for closing a database connection; other

34 handlers also had the same code and invoked a Finalize() method in some

object;

Figure 3.12 – Handlers size in number of IL code instructions for .NET.

106 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

 The largest set of handlers with size 2 was empty handlers in the source code and

its actions consisted in cleaning the stack and returning; others re-throwed the

exception, and the rest called some Assert() method.

These lead us to the conclusion that many of the handlers with few instructions are very

similar between them and that the majority are finally handlers that do some kind of

method dispose or connection closing.

Types of handlers
Knowing that the majority of the handlers with few instructions were finally blocks, we

tried to discover which was the relation between the total number of protected blocks, the

total number of catch handlers and the total number of finally handlers.

The data in Table 3.5 shows that for the 1565 protected blocks found in the .NET

applications there are 1630 handlers; 1144 protected bocks (73%) have finally handlers;

but only 29% have catch handlers. On Java there are 18389 handlers distributed by 17024

protected blocks; 8109 protected blocks (48%) have finally handlers; 9402 (55%) have

catch handlers.

Table 3.5 – Number of protected blocks, catch handlers and finally handlers.

 Protected
Blocks

Handlers Protected Blocks with
Finally Handlers

Protected Blocks with Catch
Handlers

.NET 1565 1630 1144 (73%) 450 (29%)
Java 17024 18389 8109 (48%) 9402 (55%)

In our test set of applications, .NET programmers use much more finally handlers,

relatively to the total number of handlers, than Java programmers.

In the graph of Figure 3.13 it is possible to see that Java applications have higher maximum

values of catch handlers per protected block, while the average number of catch blocks

per try block is almost identical in all the application groups for the two platforms and has

the approximate value of one. The standard deviation values are also very low meaning

that the largest number of protected blocks has only one catch handler.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 107

Checked vs. Unchecked Exceptions
As mentioned before, the checked exceptions mechanism influences the way Java

programmers use the exception detection and handling language constructs. But

programmers can, alternatively, use unchecked exceptions in Java. For instance, there are

some libraries that use only unchecked exceptions (e.g., Java NIO).

We compared the number of catch instructions that have an unchecked exception class as

argument with the total number of catch instructions. The results are shown in Table 3.6.

It is possible to observe that except for the Stand-Alone application group, where the usage

reaches 36.7%, for the remaining groups, values are very low, never exceeding 9%.

Nevertheless, unchecked exceptions are indeed being used and, besides their extensive

usage by some dedicated libraries, they are largely used to report on underlying system

errors.

Table 3.6 – Usage of Unchecked exceptions in Java catch handlers.

 Unchecked

Libraries 8,90%
Servers 8,50%
Stand-Alone 36,70%
Server-Apps 6,50%

Figure 3.13 – Number of catch handlers per protected block.

108 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Retry functionality
Neither Java or .NET have nothing like a “retry” block functionality that would enable the

programmer to execute a try block in a loop until it succeeds or reaches a certain

condition. Other languages like Smalltalk [Goldberg1989] or Eiffel [Meyer1988] have this

kind of construct.

In Java and .NET, if a programmer wants to mimic this functionality he or she has to insert

a protected block inside a loop. For instance, insert a try block inside a while or do-while

loop.

Using source code parsers for accounting the number of protected blocks found inside

cycles or loops, we were able to obtain the total number of these occurrences. In Java we

found 1082 cases and in .NET 16.

This can be considered a sort of blind analysis, since we do not know if the programmer

really intended to do a “retry”. Nevertheless, 6% of all catch handlers in both Java and

.NET were inside loops and if the programmer really intended to do a “retry”, which

appears to be the most reasonably reason, that would be a fairly interesting result to justify

the addition of this functionality to both languages.

3.2.3. Related work
Since the pioneering work of John B. Goodenough in the definition of a notation for

exception handling [Goodenough1975] and Flaviu Cristian in defining its usage

[Cristian1980], several studies1 have been conducted over the years for validating the

options taken in each different implementation.

For instance, Alessandro Garcia, et al. did a comparative study on exception handling

mechanisms available developing dependable software [Garcia2001]. Garcia’s et al. work

consisted in a survey of exception handling approaches in twelve object-oriented

languages. Each programming language was analyzed in respect to ten technical aspects

associated with exception handling constructs: (1) exception representation; (2) external

exceptions in signatures; (3) separation between internal and external exceptions; (4)

attachment of handlers to program constructs (e.g., to statements, objects, methods, etc.);

1 Some of these studies have already been discussed in greater detail in Chapter 2 (when we assessed

the state of the art in exception handling). Nonetheless, for providing a suitable related work for
this section it is important to refer them here once again. We will only include brief descriptions
and literature references for the subjects that have already been addressed.

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 109

(5) dynamism of handler binding; (6) propagation of exceptions; (7) continuation of the

flow control (resumption or termination); (8) clean-up actions; (9) reliability checks; (10)

and concurrent exception handling. After the evaluation of all the programming languages

in terms of exception mechanisms, the major conclusion of the study was that “none of the

existing exception mechanisms has so far followed appropriate design criteria” and

programming language designers are not paying enough attention to properly supporting

error handling in programming languages.

Saurabh Sinha and Mary Jean Harrold performed an extensive analysis of programs with

exception handling constructs and discussed their effects on analysis techniques such as

control flow, data flow, and control dependence [Sinha2000]. In the analysis, the authors

also presented techniques to create intraprocedural and interprocedural representations of

Java programs that contain exception handling constructs and an algorithm for computing

control dependences in their presence. Using that work, the authors performed several

studies and showed that 8.1% of the methods analyzed used some kind of exception

mechanism and that these constructs had an important influence in control-dependence

analysis.

R. Miller and A. Tripathi identified several problems in exception handling mechanisms

for Object-Oriented software development [Miller1997]. In their work, it is shown that the

requirements of exception handling often conflict with some of the goals of object-oriented

designs, such as supporting design evolution, functional specialization, and abstraction for

implementation transparency. Being specific: object-oriented programming does not

support a complete exception specification (extra information may be needed for the

exception context not supported by an object interface); state transitions are not always

atomic in exception handling; exception information needs to be specific, but functions can

be overloaded to have a different meaning in different situations; the exception handling

control flow path is different from the normal execution path and is up to the programmer

to differentiate both of them. Thus, modifying an object-oriented framework to incorporate

an exception handling mechanism can have a negative impact. In the worst case we can

expect the introduction of partial states into the abstraction, the loss of object encapsulation

due to internal exception information leaking, a decrease in modularity, and inheritance

anomalies.

Martin P. Robillard and Gail C. Murphy in their article on how to design “robust Java

programs with exceptions”, classified exceptions as a global design problem and discussed

the complexity of exception structures [Robillard2000]. In their work, the authors pointed

110 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

out that the lack of information about how to design and implement with exceptions lead

to complex and spaghetti-like exception handling code. The main factors that contribute to

the difficulty of designing exception structures are the global flow of exceptions and the

emergence of unanticipated exceptions. To help control these factors, the authors refined

an existent software compartmenting technique for exception design and report about its

usage in the rewriting of three Java programs and the consequent improvements they

observed.

More recently, due to a new Aspect Oriented Programming (AOP) approach to exception

handling, two interesting studies were published emphasizing the separation of concerns

in error handling code writing [Lippert2000;Filho2005]. Martin Lippert and Cristina Lopes

rewrote a Java application using AspectJ. Their objective was to provide a clear separation

between the development of business code and exception handling code. This was

achieved by applying error handling code as an advice (in AOP terminology) [Elrad2001].

With this approach they also obtained a large reduction in the amount of exception

handling code present in the application. Their results show that without aspects, the

amount of code for exceptions is almost 11% of all the code; with aspects it represents only

2.9%. Lippert’s paper also accounts the total number of catch blocks in the code and the

most common exception classes used as parameters for these catch statements. One of the

measures they present to support their AOP approach is the reduction of the number of

different handlers effectively written for each one of the most commonly used exception

classes. For the top 5 classes it was observed a reduction in the number of implemented

handlers between 90.0% and 96.5%. F. Filho and C. Rubira conducted a similar study but

they were not so enthusiastic in their results. The authors presented four metrics to

evaluate the AOP approach to exception handling: separation of concerns; coupling

between components and depth of inheritance tree; cohesion in the access to fields by pairs

of method and advice; and dimension (size and number) of code. The work reports that

the improvements of using AOP do not represent a substantial gain in any of the presented

metrics showing that reusing handlers is much more difficult than is usually advertised.

Handler reuse depends of the type of exceptions being handled, on what the handler does,

the amount of contextual information needed, and what the method raising the exception

returns and what the throws clause actually specifies.

The objective of our study is different from its predecessors. It does not directly target the

quality of the mechanisms available in programming languages but the usage that

programmers make of them. The emphasis is on understanding how programmers write

 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 111

exception handling code, how much of the code of an application is dedicated to error

recovery and identifying possible flaws in their usage.

Recently, Hina Shah et al. have made the question “Why Do Developers Neglect Exception

Handling?” [Shah2008a]. In their paper, the authors explore the problems associated with

exception handling from a new dimension: the human. The article describes a study where

the focus was on evaluating different perspectives of software developers to understand

how they perceive exception handling and what methods they adopt to deal with

exception handling constructs. The authors also mention that, based on previous studies,

they have developed a tool for visualizing the exception handling constructs inside

programs. In this study, the usefulness of such tool, as a software development aid, was

assessed.

Based on the results from a previous survey1, Shah et al. have created the ENHANCE

[Shah2008b] software (ExceptioN HANdling Centric visualization). ENHANCE offers

three views of the exception handling constructs inside Java programs:

 The Quantitative View presents high-level information about throw-catch pairs at

the level of packages, classes, or methods;

 The Flow View provides details about multiple exceptions flows at abstracted

level; the view presents type definitions, throw clauses, and catch clauses as

abstract icons on separate layers; exception flow is represented as links between

them;

 The Contextual View uses an abstract code view of the system where exception-

handling constructs and their flows are put into perspective.

The preliminary evaluation of the ENHANCE tool involved three graduate students from

the software-engineering group at the Georgia Institute of Technology. The results were

surprising - “the participants often ignored exception-handling constructs. (e.g., the ignore-

for-now approach in which developers ignore exception handling until there is an error or

until they are forced to address it).” [Shah2008a]

In order to better understand the significance of the previous results, the authors extended

their study to include insights from industry software developers1. The study focused on

1 Survey conducted with 34 software developers to understand their needs in terms of exception-

handling constructs in Java programs.

112 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

understanding the approach software developers adopt to deal with exception handling-

related tasks, such as designing, coding, reviewing, refactoring, testing, and debugging.

These results were consistent with the ones of the initial study. To avoid giving a

misguided interpretation of the study participant answers, we will be quoting Shah et al.

on their own explanation of the interviewees’ answers:

 “All the participants we interviewed stated that they use exception handling

primarily for debugging purposes”…”they use the names of the exceptions to

understand the context of the surrounding program code. However, most of the

participants agreed that in cases where Java’s defined exceptions (e.g.,

ClassNotFoundException) are used, they tend to ignore understanding the

exception handling implemented around these exceptions.”

 “The only exception to the ignore-for-now behavior occurs in scenarios where the

code on which the participants were working already had some useful

implementation of exception handling. In such scenarios, the participants agreed

that they try to mimic the existing code. Thus, in general, participants try to avoid

handling exceptions unless some support structure is already available.”

 “They [the participants] explained this by stating that they will not use exception

handling if the compiler does not prompt them with compile-time errors when

the appropriate exception-related code was missing (e.g., declaration of throws

clause, or implementation of respective try-catch block). Therefore, the two

similar attitudes of “avoiding exception handling” that developers carry on both

the occasions—when no support for exception handling is available and when

support is available—indicate that developers are less willing to deal with

exception handling.”

 “Another common attitude held by the participants is that they do not think that

exception handling is a high-priority task. Participants think that it is time

consuming and hence, a waste of time, to design exception-handling code in

advance.”

From this analysis we can conclude that there has been an evolution on the way exception

handling is used. Originally, exception handling mechanisms were designed to do error

1 Eight developers with three to ten years of experience plus one with more than ten years.

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 113

handling and recovery (proactively) but, nowadays, developers use them as a debugging

tool (reactively) and a way to understand programs. Additionally, it is safe by now to say

that developers “tend not to invest time in implementing code for proper handling of error

conditions unless its implementation helps with debugging”.

As a consequence of such approach to exception handling, error handling code exhibits

poor quality. And, forcing developers to implement exception handling code is not a

solution - when such policy is in use, developers tend not to implement code as

thoughtfully as it would be necessary.

Our study and Shah’s study agree on two fundamental aspects - developers are not

satisfied with the existing exception handling mechanisms; and the complexity of some

mechanisms is, in many cases, completely overwhelming and un-productive.

3.3. Documenting exceptions
Documentation plays a very important role in software development. This role is even

more important when developing for platforms, like the .NET platform, that do not

support the checked exceptions model in programming languages such as C#.

In this section, we present a study on the efficiency of existent exceptions documentation

(for .NET applications) in alerting developers to the dangers involved in a method

invocation. We want to know how well documentation performs such task when

compared with the usage of checked exceptions. In broader terms, we determine which

exceptions a selected set of programs might raise and verify which of these are

documented and which are not.

3.3.1. Motivation
When all exceptions are unchecked, programmers are not forced to declare a method as

thrower of an exception, and so, the relation between a method and the exceptions it can

throw is weaker. Thus, in the absence of such declarations, a programmer will never be

warned by the compiler if he or she forgets to handle an exception. Furthermore, a

programmer using Reflection to access a method is not able to discover which exceptions

that method throws just by looking at its declaration. Thus, .NET reflection does not give

programmers access to the complete exception information of a method. Yet, it is possible

114 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

to utilize reflection to analyze the throw instructions in the code, used by programmers to

throw exceptions in their code.

Of course, C# designers did not neglect the fact that programmers need to be aware of a

method’s behavior in certain exceptional circumstances. Their answer resides in special

documentation tags that programmers can use to document their code with respect to

exceptions.

Specially designed tools can then parse the code looking for those tags and automatically

generate suitable documentation files (e.g., NDoc - http://ndoc.sourceforge.net/). In

.NET, custom-formatted XML files are generated by Visual Studio .NET (VS.NET)

[Microsoft2008]. A number of other tools can then convert from this XML to Compiled

HTML (CHM) format and from this to HTML. For instance, writing the following tag

“<exception cref="System.DivideByZeroException"> This exception thrown when

<c>parm2 = 0</c> </exception>” before a method declaration in a C# program will

result on the documentation info shown in Figure 3.14 after the execution of a automatic

documentation generation tool. In Java, the same kind of tags is available and HTML files

can be generated by Javadoc [Sun2004].

The exception handling code existent in C# and Java applications is available after source

code compilation. At Java’s Bytecode and .NET’s IL code level, the information required by

the exception handling mechanisms is kept in tables, being part of the class file or

assembly metadata. These table entries identify: the start and end instructions of the

protected blocks of code inside each method; the presence of handlers for the previously

mentioned blocks; the type of exception being handled by each handler; the start

instruction of each handler in Java; and the start and end instruction of each handler in

.NET. Furthermore, in Java, it is possible to know which exceptions a method throws just

by looking at the method’s metadata. In .NET, for doing so, it is necessary to perform a

detailed static analysis of all methods invoked, starting from the target method.

There are more differences between the two languages approaches at low level. The .NET

exception model has more functionality available than the one made available at the C#

Figure 3.14 –Automatic documentation of an exception using specialized tags.

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 115

language level. As an example, .NET’s metadata structures allow compilers to generate

code for Filter handlers. These handlers allow the execution of code if an associated

conditional expression evaluates to true.

The question that arises from the previous considerations in the scope of this section is that

of the possibility to determine, by looking at exception documentation quality, the

effectiveness of the unchecked exceptions approach - is existent documentation (for .NET

applications) as efficient as checked exceptions in alerting developers to the dangers involved on a

method invocation?

On the following sections we will focus on studying the existent documentation available

for .NET applications and we will leave the Java platform aside for now. The reason why

we are doing this is because on the .NET platform, and contrary to what happens in Java,

only the unchecked exceptions model is available, making the importance and need for

good exception documentation higher on .NET.

3.3.2. Methodology and Tools
The strategy followed in this work was to take a set of software components and examine

both the binary file containing their code looking for unhandled exceptions, and the

corresponding documentation to evaluate the extent to which one corresponds to the

other.

For performing the current analysis, it was required going through every instruction in

each software component. Since no access to high-level source code could be assumed

(important for the analysis of commercial-off-the-shelf components), this needed to

happen at a lower level. All .NET programs, regardless of the original language they are

written in are transformed into the low-level common form known as Microsoft

Intermediate Language (MSIL or IL), an assembly-like language which is our real object of

analysis. The Runtime Assembly Instrumentation Library (RAIL) [Cabral2005] provides us

with this kind of access, effectively establishing a bridge between .NET reflection, which

goes as far as the method level, and IL code.

Once the tool was ready and hence a mechanism to compare code and documentation was

available, a set of software components to analyze was chosen. Some of these components

are core parts of certain applications while others extend the functionality of bigger

infrastructures. Some were not built with re-use in mind while others were built especially

116 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

for re-use. Finally, the tool was run for each component and its documentation, and results

were gathered.

The Analyzer tool was especially developed for conducting the tests in this work. It consists

in a command-line program written entirely in C#, one of .NET’s high-level languages. As

input, the Analyzer receives a .NET Assembly (a DLL or EXE file) location and optionally a

documentation file location (Visual Studio .NET generated XML format). A number of

switches can be used to specify different options. As output, an XML report is generated.

The format of this report depends on the command-line options but, in general, consists of

a list of the methods found in the assembly given as input. For each of those methods, a

number of exception detections are depicted. Each of those exception detections represents

one of two things:

 That an exception not handled by any try-catch blocks can be generated by a

given instruction (i.e., line) in the method’s code (referred to as code exceptions);

 That an exception was identified as possibly thrown by a method in that method’s

documentation (referred to as documentation exceptions).

Exception detections result respectively from code analysis and documentation analysis.

At the end of the report, a large number of statistics are displayed, along with some

information about exception classification into groups. Also, if the Analyzer is instructed

to do so, it can automatically check the differences between what it detected in the code

and in the documentation. In this case, the report will also contain a section dedicated to

suspects. Further discussion of suspects will take place later on. For now, it is important to

know that suspects roughly represent exception detections corresponding to situations

where the programmer could have done a better job of documenting his code.

Suspects are important for two reasons. First, the Analyzer is very thorough in its analysis

and although it detects huge amounts of uncaught exceptions, only a relatively small

number can be realistically expected to be documented by a programmer. Second, there

are situations where there is a total absence of documentation. So, suspects are a way of

filtering the relevant detections.

The documentation analysis process is straightforward. It consists of parsing the given

documentation looking for the specific XML tags that identify the documentation of an

exception.

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 117

The code analysis process is much more complicated. It consists of going through an

Assembly’s members, IL instruction by IL instruction, keeping track of entries/exits

into/out of try-catch blocks through the use of data structures such as stacks and queues.

For each instruction in the code, four different types of detection are performed, searching

for possible exceptions thrown by that instruction. The first type of detection consists of a

simple search in a manually generated dictionary which associates IL instructions with the

exceptions they can throw, as defined in the .NET platform specification [ISO23271:2006].

Figure 3.15 shows an extract of that dictionary. We will call this type of detection, IL

instruction detection (ILI).

The second type of detection is called method call detection (MC) and is only applied to five

IL instructions that correspond to the execution of another method – call, calli,

callvirt, newobj and jmp. For these instructions, we perform documentation parsing

looking for exception documentation for the called method, i.e., documentation on the

callee’s side.

The third and fourth types of detection are explicit throw detection (T) and explicit re-throw

detection (RT). They apply, respectively, to the throw IL instruction and the rethrow IL

instruction. Explicit throw detection is straightforward, but explicit re-throw detection

involves keeping track of the type of the exception being re-thrown, which is declared at

the corresponding catch block (rethrow instructions only make sense inside catch

blocks).

When these four types of detection are concluded, we have a set of exceptions that a given

IL instruction can throw. But obviously, that doesn’t mean that they are not being caught.

So, we have to check if the analysis is currently being performed inside one or more nested

try blocks, to determine which of the previously gathered exceptions are being caught and

which are not. This process requires the complete knowledge of the exception class

hierarchies.

Figure 3.15 – Dictionary: IL instruction/opcode/list of exceptions.

118 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

The code analysis process is sketched in Figure 3.16. Both caught and uncaught exceptions

are represented in the final report, because it is of interest to check which types of

exception programmers catch and which they do not.

Code and documentation analyses produce two sets of exception detections. If so

instructed, the Analyzer then checks for the differences between these two sets, producing

a final set of documented and undocumented exception detections for the target programs

(assemblies).

Selecting the study’s target assemblies was the most tedious and difficult part of this work.

For two main reasons: the lack of available and especially popular .NET applications; and

the lack of proper documentation for the existing applications.

The first reason is due to of the lack of penetration of the .NET platform at the time. In fact,

the .NET platform was still an alternative, rather than a first choice, for developers and

decision-makers. For this work, this meant having to search in forums aimed at the sharing

of .NET applications (e.g., [CodeProj2008]), opposed to the more usual, like

[SourceFrg2008].

Figure 3.16 – Scheme of the code analysis process.

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 119

The second reason is even more serious and penalizing, because there were many cases

where promising candidate applications were excluded solely because of lacking proper

documentation. Proper documentation means the inexistence of VS.NET XML-format files

accompanying the Assemblies. This can have two causes: simple skipping of this step by

programmers using VS.NET (or not using of VS.NET at all); or lack of proper

documentation tags throughout the source code.

Although the first cause is perfectly possible, especially in cases where VS.NET is not used

at all (e.g., the Mono [Mono2008] development is completely independent of VS.NET),

browsing through the source code of the discarded applications clearly indicates that the

lack of proper documentation is quite common.

Actually, both the lack of proper XML documentation files and lack of XML

documentation tags in source code make interesting points towards one of the major

findings of this study: programmers cannot be trusted to document exceptions.

Six Assemblies were chosen as the targets for this study. They span a range of different

purposes and sizes. To help in the characterization of the Assemblies, a division into

groups of similar purpose was created. This division is shown in Table 3.7.

Table 3.8 presents a summary of the eight assemblies chosen for this study, identifying

their source application, and emphasizing their division into the groups in Table 3.7.

Table 3.7 – Group Characterization.

Group Characterization

Applications Application Assemblies. Low re-use expected.
Few public documentation needs.

Libraries Libraries. High re-use expected and
high public documentation needs.

Infrastructure Infrastructure Assemblies. Highest re-use expected
and high documentation needs.

Table 3.8 – Assemblies used in the study.

Group Assembly Application

Applications NAnt.Core.dll
NDoc.Core.dll

NAnt
NDoc

Libraries SharpZipLib.dll
CpSphere.Mail.dll

SharpZipLib
CpSphere

Infrastructure System.Runtime.Remoting.dll
System.XML.dll

.NET platform

120 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

NAnt [NAnt2008] is the .NET port of the Ant build tool; NDoc [NDoc2008] is an extensible

code documentation generation tool for .NET. Due to the size of the applications, only the

main assembly of each one was analyzed. Even so, exactly due to their size, they are

representative of the rest of the code.

SharpZipLib [SharpZipL2008] is a .NET data archiving/compression library supporting all

popular standards like Zip, Tar, GZip, BZip, etc; and CpSphere [CpSphere2008] is an

implementation of the SMTP protocol which can be used to add mail sending capabilities

to .NET applications. The first library is single-Assembly, and that Assembly is the target.

For CpSphere, the main Assembly was selected as a target.

Finally, two of the .NET core platform Assemblies were chosen, mainly based on relevance

(they are highly used) and documentation availability. Both Mono and SSCLI (codename

Rotor) [SSCLI2008] were also considered as sources for the Infrastructure Assemblies. But,

while in the first case the documentation style is different from that of VS.NET1, in the

second case, the examined source files (XML documentation is not included) contained no

exception documentation.

These applications were chosen considering their popularity, number of users, complexity,

bug reports, application support given by the developers and availability of source code.

The application designers and programmers expertise for developing fault tolerant

software could not be assessed. But, such attribute is not relevant in the spirit of this study.

Otherwise, the study would be targeting the experiences of a small group of expert

programmers and not the broader and more common programmer that has no special

training in writing fault tolerant software but still uses the same tools (available in modern

programming languages) as the experts.

3.3.3. Results
Table 3.9 summarizes the results obtained by running the Analyzer for the six targets,

showing the percentage of documented and undocumented exceptions.

1 Some of Mono’s Assemblies include excellent exception documentation despite not using Microsoft

style documentation tags. This just emphasizes the lack of agreement between different players and
the fragility of this method.

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 121

Table 3.9 – Documented vs. Undocumented exceptions.

Group Assembly
%

Documented

%
Not

Documented

NAnt.Core.dll 3.4 96.6 Applications
NDoc.Core.dll 0.5 99.5
SharpZipLib.dll 21.2 78.9

Libraries
CpSphere.Mail.dll 8.4 91.6
System.Runtime.Remoting.dll 16.2 83.8

Infrastructure System.XML.dll 23.5 76.6
Average 12.2 87.9
Average for Applications 1.9 98.1
Average for Libraries 14.8 85.2

 Average for Infrastructure 19.8 80.2

ILI detections were not considered in this analysis although they represent a huge amount

of exceptions. This is because we think it is not reasonable to expect programmers to

document them. They are thrown by the low-level IL instructions at the virtual machine

level, which do not correspond to problems that the programmer should usually deal with.

Unfortunately, this means that they can still cause problems, but it also means that they are

usually poorly documented or documented “by coincidence” (read ahead for an

explanation). Normally, programmers will only marginally be aware of them.

The results show that for the set of 6 different Assemblies over 87% of the relevant

exceptions that the code can throw are not documented. For code directed mainly towards

the end-user, this value goes up to 98%. For code aimed towards re-use by other

programmers (libraries), it stands at about 85%. For infrastructure code, providing basic

services for the .NET platform, this value is still as high as 80%.

Table 3.10 discriminates the types of exceptions that in the previous table are mentioned as

documented. Thus, it offers insight into the types of exceptions that programmers are most

likely to document.

122 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Table 3.10 – Types of exceptions most likely to be documented.

Group Assembly % ILIs % MCs % Ts % RTs

NAnt.Core.dll 0.0 24.5 73.5 2.0 Applications
NDoc.Core.dll 0.0 0.0 100.0 0.0
SharpZipLib.dll 4.6 11.4 84.1 0.0

Libraries
CpSphere.Mail.dll 0.0 17.2 82.8 0.0
System.Runtime.Remoting.dll 0.0 100.0 0.0 0.0

Infrastructure
System.XML.dll 24.4 41.9 33.7 0.0
Average 4.8 32.5 62.3 0.3
Average for Group A 0.0 12.2 86.7 1.0
Average for Group L 2.3 14.3 83.4 0.0

Average for Group IS 12.2 71.0 16.9 0.0

The four most interesting graphs are also shown in the next figure (Figure 3.17).

More than 60% of the documented exceptions represent explicit throws. This value is about

85% for application and library code and about 17% for infrastructure code. This huge

discrepancy may be attributed to the presence of outliers in the target Assemblies but is

more likely to be caused by very specific documenting styles/procedures of Microsoft for

the .NET platform.

Most of the other documented exceptions represent exceptions that result from method

calls. This value is about 32.5% for all Assemblies, but only about 13% for application and

library code, and as high as 71% for infrastructure code.

This data seems to indicate that Microsoft has an automatic way of documenting its code,

particularly with respect to method calls, because unlike most code, where documentation

about exceptions resulting from method calls is rare, Microsoft code is much more

complete in this regard.

For all assemblies, explicit re-throws represent very low values.

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 123

It is very interesting to note that despite not having included ILIs in our analysis, they still

appear as documented for two of the target Assemblies. These represent simple

coincidences that occur when a programmer involuntarily documents an ILI exception by

documenting one of the other types of exception (e.g., imagine that a programmer

explicitly throws a NullReferenceException and documents that fact using

documentation tags before the method header. If the IL instructions in that method throw

a NullReferenceException, he or she will have documented more than expected,

Figure 3.17 – Documentation of exceptions in four different assemblies.

124 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

possibly misleading anyone using his code as to the circumstances in which an exception

occurred).

Although the preceding results may be very useful, they still represent a simple analysis,

only taking into account what can be determined by looking directly at IL code and

respective documentation. They tell us about problems we can expect to encounter when

using these Assemblies. But they do not tell us which of these problems are of the direct

responsibility of programmers, mainly because they consider cases where there is no

documentation available and cases where exceptions were not documented in the existing

documentation.

To solve this problem, the concept of suspects, mentioned in the previous section, was

created. Suspects represent cases where we can state for sure that programmers could have

done a better job on documenting their code. There are two types of suspects: code

suspects and documentation suspects. Code suspects represent uncaught exceptions,

detected in the code analysis and not in the documentation analysis, not originating from

ILIs and that were found in methods for which there is documentation. Documentation

suspects were a completely unexpected finding. They represent exceptions that the

programmer marked as possible to occur in his code but were not detected in the code

analysis and are, therefore, impossible to occur. Prior to running the Analyzer, we did not

expect to find any documentation suspects, but Table 3.11, summarizing the results, shows

that we still did find some of these cases.

Table 3.11 – Suspects for all eight Assemblies.

Assembly Code Doc Total

NAnt.Core.dll 854 0 854
NDoc.Core.dll 387 0 387
SharpZipLib.dll 276 5 281
CpSphere.Mail.dll 221 2 223
System.Runtime.Remoting.dll 155 0 155
System.XML.dll 421 16 437

The documentation suspects we found are all, without exception, due to a specific feature

of .NET – properties. Properties are internally implemented in .NET as one or two methods

(depending on whether the property is read-only or not), a get_<Property> method and,

possibly, a set_<Property> method. But the documentation tags only allow documenting

a property as a whole (the internal methods are completely transparent to the

 SECTION 3.3 — DOCUMENTING EXCEPTIONS 125

programmer). This carries more than one consequence. First, it means that if the

documentation is not specific enough (it can explicitly say that the exception occurs only in

setting the property), the programmer cannot know if the exception occurs in the getting

or the setting of the property. Second, it renders attempts to do automatic exception

handling or exception analysis like ours even more difficult, because it is almost

impossible to have the computer read and interpret what someone wrote. We chose to

have the Analyzer signal all these cases as suspects.

For the cases where we can state for sure that existing documentation is lacking in quality,

around 90% of missing documentation is related to insufficient accounting of the

exceptions that can occur by calling other methods, the rest being explicit throws, which

are fairly well documented (as one would expect).

Finally, it is possible to compare the numbers presented in Figure 3.17 and Table 3.12 to get

an estimate of the proportion of undocumented cases that are due to the plain absence of

documentation. For this, we can take the number of undocumented detections from

Figure 3.17 (joining in the values for the other 4 assemblies) and the number of code

suspects from Table 3.12. The results of this comparison are shown in Table 3.13.

Table 3.12 – Type of detections responsible for code suspects.

Assembly Code
Suspects

#MCs (%) #Ts (%) #RTs (%)

NAnt.Core.dll 854 793 (93%) 60 (7%) 1 (0.1%)
NDoc.Core.dll 387 374 (97%) 13 (3%) 0 (0%)
SharpZipLib.dll 276 236 (86%) 40 (14%) 0 (0%)
CpSphere.Mail.dll 221 217 (98%) 4 (2%) 0 (0%)
System.Runtime.Rtg.dll 155 139 (90%) 16 (10%) 0 (0%)
System.XML.dll 421 373 (89%) 48 (11%) 0 (0%)

Table 3.13 – Proportion of detections due to lack of documentation.

Assembly
Undocumented

Detections
Code Suspects

Lacking
Proportion

NAnt.Core.dll 1410 854 39.4%
NDoc.Core.dll 430 387 10.0%
SharpZipLib.dll 328 276 15.9%
CpSphere.Mail.dll 315 221 29.8%
System.Runtime.Rtg.dll 466 155 66.7%
System.XML.dll 911 421 53.8%

126 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

Given the way that the Analyzer statistics were calculated, these numbers can be

extrapolated to represent the percentage of methods for which there is no documentation

despite the inclusion of documentation for the assembly. There is a large variability in the

results, but there are still cases for which more than 50% of the methods did not have

documentation, including both the Microsoft .NET core platform ones.

3.4. Summary
This chapter aimed to show how programmers use the exception handling mechanisms

available in two modern programming languages: C# and Java. To our knowledge, this is

the most extensive study done on exception handling by programmers in both platforms.

And, although we have detailed the results individually for both platforms and found

some differences, in the essential results are quite similar.

We discovered that the amount of code used in error handling is much less than what

would be expected, even in Java where programmers are forced to declare or handle

checked exceptions.

More importantly, it confirmed that most of the exception classes used as catch arguments

are quite general and do not represent specific treatment of errors, as one would expect.

We have also seen that these handlers are empty in most cases or are exclusively dedicated

to log, re-throw of exceptions or return, exit the method, or program. On the other hand,

the exception objects “caught” by these handlers are from very specific types and closely

tied to application logic. This demonstrates that, although programmers are very

concerned in throwing the exception objects that best fit a particular exceptional situation,

they are not so keen in implementing handling code with the same degree of

specialization.

Exception handlers are not specific enough to deal with the detail of the occurring errors.

The most preferable behavior is logging the problem or alerting the user about the error

occurrence and abort the on-going action. Empty handlers, used to “silence” exceptions,

will frequently hide serious problems or encourage bad utilization of programming

language error handling constructs. Other detected problems, like the duplication of code

between handlers, and the mingling of business code with exceptions handling code,

among other problems are still to be tackled and represent an important research target.

 SECTION 3.4 — SUMMARY 127

This chapter also shows the magnitude of the problems of documentation absence and

documentation quality in several .NET applications. More emphasis was put on the

problem of documentation quality but Table 3.13, together with the great difficulties found

when collecting Assemblies for this work, are a testimony of the problem of

documentation absence.

Regarding documentation quality we found out that, on average, 87% of relevant

exceptions thrown are not documented. These values range from around 80% to almost

98% growing as the amount of expected re-use declines. For the cases where it is possible

to state for sure that the existing documentation is lacking in quality, most of the missing

data is related to insufficient accounting of the exceptions that can occur by calling other

methods, the rest being explicit throws, which are fairly well documented. This fact

indicates that there may be benefits in developing ways of somehow automatically

documenting methods by following call chains looking for the exceptions that may be

propagated.

Ultimately, this study brings us to the checked vs. unchecked exceptions discussion. Why?

Because checked exceptions are a means of getting exception information directly from a

method, not having to manually go through all the chain of calls looking for exceptions,

which is one of the downsides of unchecked exceptions. If the exception information

associated to the method is accurate (which is very likely, because it is a compile-time

check), programmers have one less excuse for not documenting their code. Furthermore,

checked exceptions give us the possibility of providing techniques like automatic

exception handling and even automatic code documentation.

Thus, our opinion is that checked exceptions, or a variation on them, may prove more

beneficial to dependability. Our thought is that checked exceptions will not make

programmers be more inclined to document. But they will at least make automation

techniques, which seem to deserve a lot of support, much easier. Even so, probably the

major conclusion that can be drawn from the use of exceptions and of the checked vs. non-

checked exceptions discussion is that currently the error handling mechanisms available in

programming languages are not good enough and that more research in this important

area is needed.

The use of the unchecked model in .NET, and the lack of proper documentation about

exceptions in these applications, can be seen as two of the causes for the fact that most of

the exception classes used as catch arguments are quite generic and do not represent

128 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING

specific treatment of errors, as one would expect. The lack of information about the

exceptions that a method may throw can lead the programmer to perform a “catch-

everything and do nothing” approach when facing problematic method calls.

The results discussed in this chapter lead us to the conclusion that, in general, exceptions

are not being correctly used as an error handling tool. This also means that if the

programming community at large does not use them correctly, probably this is a symptom

of a serious design flaw in the mechanism: exception constructs, as they are, are not fully

appropriate for handling application errors.

One may argue that the results would have been different if the programmers had been

educated in the development of reliable software. But, this would not represent the

broader community of developers. It is not even viable to assume that the large majority of

developers worldwide will ever be educated in such way.

We believe that more work is needed on error handling mechanisms for programming

languages. Modern exception handling constructs are the result of more than 30 years of

research in the area. Also, any programmer that tries to develop code in a programming

language, such as C# or Java, is forced to use exceptions. Programmers do know how

exceptions are supposed to work and should be used. It is not the lack of this knowledge

that leads them to write catch blocks that simply silence exceptions or log the problems.

There are other reasons for justifying this practice and some of them can be related with

the EH mechanism itself. The current exception handling mechanisms may indeed have

the necessary semantics for being able to deal with problems, but if they are too

cumbersome for the huge majority of developers to use them correctly, then these

mechanisms must be revised. Future exception handling mechanisms should encourage

the programmers to adopt best practices and use sound exception handling patterns.

In our work we approach the problem by trying to create automatic exception handling for

the cases where “benign exception handling actions” can be defined (e.g., compressing a

file on a disk full exception). In general, we try to free the programmer from the task of

writing all the exception handling code by hand, forcing the runtime itself to automatically

deal with the problems whenever possible. A complete description of the technique is

discussed in the next chapter.

Automatic Exception
Handling: A Proposal

In this chapter we present our automatic exception handling model. We will briefly

introduce the motivations for our work, present the model’s architecture, features, and

programming model.

We will discuss how this model makes object-oriented software development simpler,

quicker, cheaper, and, at the same time, how it is able to elevate the overall reliability of

programs.

We conclude by showing in what aspects our model relates with its predecessors and in

which it represents an innovation.

Chapter

4

130 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

4.1. Introduction
In Chapter 2 we discussed the current state of the art in exception handling. We have

assessed existing exception handling mechanisms strengths and weaknesses, discussed

what could be done to improve current approaches, and set the guidelines for the

development of an improved model. In Chapter 3 we discussed how the limitations

inherent of existing exception handling models are affecting the way programmers use

them when writing programs. Our conclusions on are quite alarming – programmers are not

correctly using exception handling mechanism for performing error recovery.

Other authors have also questioned the programmers willeness and qualifications to write

good exception handling code (e.g., [Shah2008a]). Based on our experience and the

referenced work, it is safe to assume that many software developers consider writing code

to deal with abnormal situations a dispensable task that only diverts them from their main

objective: writing the application’s business logic code. Furthermore, we have witnessed a

shift in how exception handling is perceived – “developers have shifted their perspective

on exception handling from the intended proactive approach (i.e., how to handle possible

exceptions) to a reactive approach (i.e., using exception handling as debugging aids).”

[Shah2008a]

In some sense, we agree that exception handling in today’s applications has become a

cumbersome task. There are thousands of possible exceptions types for developers to deal

with when writing software. Each application (or software library) introduces its own

types of exceptions and, many times, it is not clear what the problem behind an exception

occurrence is. Also, error handling code is scattered along the entire program’s code and

mingled with business logic, making control flow difficult to track in the presence of

errors. Another problem is that the rules enforced by compilers and run-time platforms for

checking the code safety are (sometimes) considered intrusive by developers because they

force them to alter their code writing style. Last but not least, testing of exception handling

code is not a simple task.

The unwillingness of software designers to deal with exceptions correctly and follow some

well known best-practices for exception handling [Wirfs-Brock2006], undoubtedly,

contributes to the lowering of the quality of programs and their resilience to errors. It is

obvious that something is not right with current exception handling models: they are not

adequate enough for developers.

 SECTION 4.2 — THE MODEL 131

We claim that, in many situations, a platform level automatic system capable of providing

benign recovery actions for exceptions would achieve better results in terms of reliability

than the programmers’ exception handling code. An exception handling mechanism

should provide effective exception handling and not lower the productivity of

programmers. This may seem a tall claim but, considering that for a large number of

exception types it is possible to have the runtime providing a set of benign recovery

actions that automatically recover the system when an exception is raised, the problem

becomes treatable. The case for Automatic Exception Handling (AEH)

[Cabral2006,Cabral2008] is that, for the majority of cases, the programmer should not have

to write exception handling code. Benign recovery actions should be part of the runtime

platform and should be automatically executed when an exception is raised. By doing so,

the programmer is freed from the “burden” of writing exception handling code for a large

number of situations. In a sense, automatic exception handling should work as a Garbage

Collector for exceptions. Without, or with minimal, programmer intervention, the

mechanism should automatically execute benign recovery actions for the exceptions being

raised in the running code.

We propose an exception handling model where the most common exceptions are dealt

automatically by the runtime environment without forcing the programmer to write any

code. To be viable, our model must effectively lead to less code being written by the

programmer, while at the same time allowing the development of more robust

applications.

The proposed system is based on a Software Transactional Memory (STM) [Shavit1995]

approach for maintaining state consistency while benign recovery blocks [Horning1974] are

tried for recovering the application (backward error recovery).

4.2. The Model
In this section we discuss the core model of an automatic exception handling system using

a transactional approach. For a question of easiness and readability, the discussion uses the

Java exception model and language notation. Nevertheless, automatic exception handling

is applicable and readily adaptable to any modern managed programming language

environment (e.g., C#/.NET, Python, etc.).

132 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

To understand the programming model for automatic exception handling, consider the

following grammar fragment, adapted from the Java Language Specification

[Gosling2005]:

Statement ::=

 try Block (Catches | [Catches] finally Block)

 try Block

 …

We introduce a simple modification, shown in bold: try blocks do not need to have a

catch handler, which becomes optional.

When the application is deployed it contains a number of benign recovery blocks,

configured by exception type, which may be executed when an exception occurs. These

recovery blocks can be shipped directly with the virtual machine, or correspond to custom

code shipped with the application. The system can execute multiple recovery blocks for

each exception occurrence inside a try block. After the execution of each recovery block,

the code inside the try block is re-attempted. A transactional system ensures that the

effects of a failed try block are discarded prior to the execution of the recovery blocks and

the try block own re-execution.

Going back to the example of Listing 1.2 (page 12), the programmer would only have to

write the application logic code, that is, saving the data into the file, enclosing it in a try

block. This is shown in Listing 4.1. If an exception is raised, the runtime system provides

the necessary benign recovery actions for trying to solve the problem. Each recovery action

is executed once, after which a new re-execution of the faulty try block is attempted.

FileWriter file = null;

try
{
 // Open file
 file = new FileWriter("data.txt");

 // Write some data into it
 for (int i=0; i<1024; i++)
 file.write("Here’s the data: " + i);
 // Close file
 file.close();
}

Listing 4.1 – Writing to a file in a transactional try block

 SECTION 4.2 — THE MODEL 133

4.2.1. Benign Recovery Actions
The central argument of this model is that for a large number of abnormal situations, the

runtime system should be able to deal with the problem without having to force the

programmer to write code. In fact, in many situations the runtime should be able to

provide better solutions than what the programmer would, since most programmers do

not focus on error handling but on writing application logic.

Consider an example like writing a file to disk. During that operation, a

DiskFullException can occur. Instead of directly throwing an exception, for which the

programmer has to explicitly provide an exception handling block, the runtime system

could benignly try different recovery operations. For instance:

1. Remove temporary files on disk;

2. Compress not frequently used folders;

3. Reduce the size of the swap file;

4. Move selected files to a remote server;

5. Mount an extra disk;

6. Notify the user asking for help on the problem.

A key point of these actions is that they are benign. They do not affect the environment on

which the program is executing in a harmful or potentially destructive way. A

counterexample of a non-benign action would be to automatically erase some user files to

make space available.

Similarly to the six recovery actions for DiskFullException defined above, it is also

possible to define them for a large number of platform-level exceptions. For instance, if a

network connection is broken: the system can try to reconnect to the server automatically;

try to connect to a different server (or servers); try to use a different network interface; and

so on. If an update on a transactional database fails, it is possible to try to re-execute the

transaction. If an authentication process fails, a different authentication module can be

tried, etc.

For sure, application-specific exceptions can only be dealt explicitly by the programmer.

But for a number of common application exceptions, benign recovery actions can be

134 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

provided1. These actions can be made available off-the-shelf with the runtime environment

and configured when the application is either developed or deployed. Notice that the

objective is not to provide automatic exception for all types of exceptions. Instead, the goal

is to provide automatic handling for the most common types of exceptions associated with

a particular development platform, substantially easing the life of the programmer.

In our model, recovery actions are defined at platform level and shipped with the platform

itself. These default recovery actions will be associated to the exception types defined on

the platform and on the system’s libraries. As an example, let us consider which recovery

actions could be provided by default by the Java virtual machine for the

NoRouteToHostException or the PortUnreachableException:

1. Rollback the failing try block and re-execute the instructions inside the protected

block;

2. Rollback the failing try block and re-execute after pausing for predefined time

period;

3. Rollback the failing try block and connect to a different host and re-execute. A

location for the alternative connections can be provided by the programmer once

or every time;

4. Notify the user of the problem and provide details on the exception cause,

allowing him to manually correct the problem. Afterwards, rollback and re-

execute the try block;

5. Re-throw the exception and propagate upper the call stack.

But, independently of the form how recovery actions are built into the platform, the

fundamental rules that a system has to follow to implement the automatic exception model

are:

1. The code of recovery actions must be available for execution from any location on

the run-time environment;

1 In the next chapter we will assess to which degree benign exception handling actions can be defined

for a large set of platform specific exception types.

 SECTION 4.2 — THE MODEL 135

2. Recovery code must be able to control the rollback of the code raising the

exception. In some situations, it may be desirable not to rollback the failing code.

Thus, the transactional mechanism controls must be accessible from inside the

recovery blocks;

3. It must be possible to pass values and object references (memory references) from

the location where an exception is raised to the recovery action code. By doing so,

system designers will be able to provide more powerful benign recovery actions;

4. Recovery functions do not need to change the code inside the protected region

where their activation took place but they must be able to change the execution

environment state where that code will re-execute;

5. Exceptions occurring inside a recovery action must be handled locally or

propagated to the upper transaction or element in the call stack;

6. The transaction where the exception that activated the recovery action was raised

is aborted before the execution of the recovery actions and the new transaction

begin at the start of the recovery code;

7. The runtime environment must be able to control the serial execution of the

different recovery actions for an exception occurrence. It must ensure that an

action is not repeated (executed more than once) for the same occurrence, that all

actions predefined for that abnormal event are executed until the exception

manifestation is eliminated, and that the adequate actions are bound to the correct

exceptional events.

Furthermore, to improve performance and avoid the execution of inapplicable recovery

actions, recovery actions can be bound to exception occurrences in several forms:

1. Globally, by exception type (default);

2. By exception type and application (program, software component, package,

assembly, etc);

3. By exception type and class (i.e., the class where a certain exception type can be

raised);

136 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

4. By exception type and method (i.e., the method and class where a certain

exception type can be raised);

5. Specifically to a try block.

Customizing the binding of recovery blocks to particular exceptional occurrences is

achieved through the use of configuration files.

4.2.2. Programming Model
In terms of the programming model, the system works as follows:

1. While writing code where exceptions can be raised, the programmer demarks

them with a normal try statement (or block). The catch part is optional;

2. If a catch block is present, this means that the programmer wants to explicitly

handle the exception. The provided code is executed when a corresponding

exception is raised. This corresponds to the normal exception handling model;

3. If a catch block is not present, then the corresponding try block is a candidate

for being handled automatically by the runtime system;

At run-time:

1. Every time a try block is reached, a new transactional context is created. All

object and variable accesses are recorded inside the block and, later on, can either

be committed or aborted. Nested try blocks correspond to nested transactions.

2. On exiting a try block normally (i.e., no exception occurred), the transaction

commits.

3. If an exception occurs during the try block and if a suitable catch block exists,

either in the current method or above, the flow of execution passes to that block.

This corresponds to the normal exception handling model. Note that before

passing the flow of execution to the catch handler, the execution commits

making visible the modifications that occurred on the try visible. It may also be

necessary to perform stack unwind if the exception is being propagated.

 SECTION 4.2 — THE MODEL 137

4. If an exception occurs within a try block with no catch statement or without a

suitable catch statement1, that block is a candidate for automatic exception

handling. If a suitable benign recover block exists (i.e., of the correct type),

automatic recovery is tried. If not, the transaction commits and the exception is

propagated as in the normal exception handling mechanism.

5. For performing automatic exception recovery, the system rolls-back the current

transaction. That ensures that the application is in a clean state. The runtime then

tries to execute each of the configured recovery blocks, one-at-a-time. After each

recovery block is executed, the try block is re-executed from the beginning. This

happens until either the execution succeeds or all options are exhausted. At that

point, according to a deployment configuration file, either a “Log&Abort”

operation is executed, which terminates the program, or the original exception is

re-thrown at the offending statement.

Since a try block can be executed multiple times, a critical aspect of this framework is that

they (try blocks) must be transactional. This means that after a recovery block is executed,

the application state must be automatically restored to its condition as of when the block

was first entered. This aspect will be discussed in the next section in greater detail.

Going back to the example on Listing 4.1, if a DiskFullException is thrown on the

file.write() operation, the first recovery block is executed and the try block re-executed

from the beginning. If on the second execution an exception is still thrown, the second

recovery block is tried. This happens until either the execution succeeds or all options are

exhausted leading the program to be terminated or the original DiskFullException being

re-thrown. Figure 4.1 illustrates this mechanism.

The information that associates exception occurrences with concrete handling actions is

kept on a runtime system configuration file which is shipped with the runtime platform.

Nevertheless, the system leaves room for customizing its behavior. Other configuration

files can be released with the application itself, specifying what happens for each exception

type across the program. It is also possible to specify what happens for each class, method,

or specific try block. Possible actions include: i) execute a number of recovery actions

before throwing an exception; ii) directly throwing the exception assuming that it will be

caught at a higher level in the stack, or eventually abort the program.

1 This happens if the existing catch statements do not correspond to the exception type being thrown.

138 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

4.2.3. Transactional System
As it was previously mentioned, a key point of the whole approach is that try blocks are

executed transitionally. When repeating the execution of a try block it is essential to

guarantee:

1. The application state (variables, data structures, etc.) is as it was on the first

execution of the block;

2. The execution of the try block is isolated. This means that if external I/O

operations are executed, it must be possible to undo them, or they must be

idempotent (i.e., can be repeated).

These important aspects are discussed next.

Restoring Application State
Restoring application state is vital in order to guarantee that the intent of the programmer

is preserved. For instance, if a programmer is incrementing a variable total inside a try

block, if the block is re-executed due to an exception, after exiting the block the variable

must only have been incremented once. That is to say that the program semantic should

remain the same independently of the recovery system in place.

Figure 4.1 – The runtime system provides recovery.

 SECTION 4.2 — THE MODEL 139

For restoring the application state several approaches are possible. Typically methods

include:

1. When entering a protected block, create a copy of all touched objects. These

copies are used whenever updates are made. If the block exits normally, the

original objects are replaced by the updated ones. If a re-execution takes place, the

copies are discarded, being the original objects preserved.

2. No copies are made. Instead updates are done in place. All changes to objects are

logged. If a block exists normally, the logs can be discarded. If a re-execution

takes place the logs are used to restore the objects to their initial state.

The details regarding each method are actually somewhat tricky to implement and incur in

different overheads. For instance, in object-oriented platforms, the first approach feels

more natural, though it may require more memory than the second one and rely heavily

on the execution of the garbage collector.

Suffice to say that this transactional type of system actually corresponds to having a

Software Transactional Memory (STM) framework [Shavit1995] in place where the atomic

keyword corresponds to a try block. Though the STM model is essential to our system, its

definition is not the core of this proposal. There is currently very active research on how to

optimize such systems and make them available on the mainstream. In our case we not

only benefit from those systems becoming available (e.g., AtomJava [Hindman2006], Atomos

[Carlstrom2006]), but also the associated overheads for exception handling can be much

lower. In general, we expect try blocks to succeed, thus the system can be heavily

optimized in that direction.

As a general guideline, an STM system for usage with our model must support, at least,

closed nested transactions [Moss2006].

Isolation in try blocks
As it was mentioned, preserving only application state is not enough. For instance, on the

example of Listing 4.1, if the FileWriter class (or the runtime system) is not aware that a

transaction is taking place, data can end up being written twice into the file. What this

means is that the transaction is not isolated from the exterior. It leaks information.

140 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

For dealing with this problem, as a general rule, if an unprepared class (i.e., non-

transactional aware) is detected inside of a try block, the compiler forces the programmer

to write a catch handler. This means that for legacy code, the programmer is in the same

situation as today – the runtime system cannot help him. Also, some I/O actions cannot

ever be undone (e.g., consider the case of “firing a missile”). Again, classes that

encapsulate that kind of operations are not candidates for automatic exception handling

recovery. If exception handling is involved, the programmer must explicitly deal with it.

Nevertheless, transactional and non-transactional code can coexist in the same program

but, the transactional code cannot reference non-transactional classes and methods.

Classes that can be made transaction-aware must somehow be recognized by the runtime

system. A simple approach for this problem is making them implement a Transactional

interface. Transactional-aware classes must explicitly provide at least three callback

methods on this interface: one for the runtime system to signal that a transactional context

is being entered; one for the runtime system to signal that the changes are to be committed;

and one for the runtime system to signal that the operations have to be undone. Since try

blocks can be nested, an identifier for each transactional context must also be passed.

Although using this approach may apparently seem complicated or cumbersome it is not

so in practice. For once, only classes that perform external I/O operations must be marked

in this way. Ordinary objects are already automatically made transactional by the normal

STM system. The complexity of implementing the callback methods varies, but their

semantic is clear.

In terms of the classes that can be made transactional, several alternatives exist:

1. If I/O is involved, it may be possible to temporarily buffer it, until a commit is

possible;

2. In some cases, it is possible to create idempotent operations for the class allowing

operations to be repeatable.

Considering once again the FileWriter class, an example of the first approach would be

to write the data into a temporary file. If the try block commits, the temporary file could

be renamed to the correct name. An example of the second is actually the FileWriter as

implemented on Sun’s JDK, and as it is used on this example. When the FileWriter

constructor is executed it creates a new file on disk, truncating any existing one, the try

block can be executed without any side-effects (i.e., in an idempotent way). However, this

 SECTION 4.2 — THE MODEL 141

would not be case if the FileWriter constructor, which supports appending to the file,

would be used.

On a final note, it should be mentioned that the same problems that occur in database

systems and STM systems can also take place. For instance, in the context of a transaction,

reading data previously written can lead to problems. Consider the case where inside a

try block a FileReader tries to read data that has just been written. Since the writer has

not yet committed, the reader may not be able to read it on a naïve implementation. There

is currently no general solution for those problems. The developer of these classes must

take care in preventing them. In most cases it is simple to provide hooks for undoing the

operations or detect conflicts with other operations. Also, in a general development

platform, the number of classes that are directly involved with external I/O is limited. In

any case, if supporting a certain class proves to be too hard, the platform provider can

always opt for making it non-transactional. In that case, the application developer has to

explicitly write exception handlers for try blocks that use it.

Nested try blocks
Our model allows the nesting of try blocks. This is the same as saying that the model

implements closed nested transactions. Changes made by the nested transaction are not

visible to the parent transaction until the nested transaction is committed. This follows

from the isolation property of transactions. But, the most important aspect related with

nested transactions in our model is the definition of what happens when an exception is

raised inside one.

Exceptions raised inside a protected block will be handled by the system preset recovery

actions or by an explicitly designed catch handler. If the handling code is not successful

on eradicating the exceptional occurrence, the exception is re-thrown and passed to the

upper transaction (upper try block on the call stack). At this point the process repeats

itself: the exception will be handled by the system preset recovery actions or by an

explicitly designed catch handler, the current try block can be re-executed (an undefined

number of times) and as a consequence the inner transaction is also re-executed. If the

exception does not manifest itself again the inner transaction can attempt to commit and its

results become visible for the parent transaction. If the exception does not disappears, the

parent transaction will ultimately fail and the exception re-thrown to any upper

transaction or to the runtime system causing the program execution to terminate.

142 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

4.2.4. Exception Parameters
To provide automatic recovery actions that can, in fact, help recover systems in the

presence of a large number of distinct errors, it is necessary to implement a system capable

of efficiently communicating values and object references from the location where

exceptions are raised to recovery blocks. In the example of Figure 4.2, in the event of an

exception being raised inside the try block, one or more recovery blocks might attempt to

recover and request the re-execution of the failed try block. In the example, the recovery

block needs three input parameters. But, since the recovery code is shipped with the

platform it is difficult for the programmer to define which references should be passed.

In simpler cases, the selection of references and values to use as parameters for the

recovery blocks can be made automatically, and the necessary references held by the

exception object itself. In more complex computations, a more demanding list of

parameters will be necessary. In these cases, it would be very difficult for the system to

automatically define which references to use. Thus, in such cases, the system will require

human intervention.

Figure 4.2 – Passing parameters to recovery blocks.

 SECTION 4.2 — THE MODEL 143

For selecting the variables in the code which will be used as parameters for the recovery

actions, and considering that one of our main objectives is to minimize the work of

programmers in the development of exception handling code, we opted on using

configuration files instead of creating new language constructs. Using language support

for defining the parameters for recovery actions would only be viable if the code using

such constructs is located near to the exception raising point. With our approach we avoid

scattering the exception handling code through out the entire program code.

On the other hand, defining configuration files (e.g., such as the XML formatted files we

will present and discuss in the next chapter) can be a hard and cumbersome task. It can

even raise code visibility and readability concerns when a developer needs to know the

control flow of its program in the presence of an exception. We expected such problems to

occur and we believe that the solution is in the automatic or semi-automatic generation of

the configuration files and in resorting to visual programming aid tools.

As an example, we propose the incorporation of an exception alert and configuration

system into source code editing program in such a way that:

1. When a programmer is writing the application logic code, whenever he or she

writes the code to invoke a method, the development environment automatically

verifies the exception list for the called method and alerts the programmer (using

a visual callout for instance) if that method can raise an exception. The system

emits the alert when the problematic method call is not inside a try block and

the exception type is not on the list of exceptions being raised on the calling

method. The alert will also be issued if the call is inside a protected block, the

exception is not on the exception list, the system does not possesses benign

recovery actions for that particular exception type and the programmer does not

defines a catch block for the exception.

2. If the called method is inside a try block and the system has automatic recovery

code for the exceptions being raised inside, the system verifies the need for

selecting parameters for the recovery methods. If the parameters cannot be

automatically set by the system, the programmer is informed by a visual callout

that he or she must select the adequate list of variables to be used as parameters

for the exception handing process. If the programmer opts for defining those

parameters immediately, the system can provide him with a window interface

for doing so. In this visual interface, he or she is able to know which exception

144 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

type is to be automatically handled by the system and which class implements

the recovery actions and which actions are to be tried. At this point, the

developer can select the variables in the code that will be passed to each recovery

method. The configuration files for the application are based on the introduced

data and automatically generated.

The way systems actually make the selected variables and references available to the

handling code can vary for each implementation. In our test platform, we used a hybrid

approach: in some cases the code for the handling actions was inlined with the code

causing the exception; and, in other situations, the variables (their values or references)

where made available on the stack of the recovery method. Short recovery procedures

where inlined to avoid heavier performance penalties by cutting the extra-costs involved in

method invocations.

4.2.5. Exception Handling Model Features
Garcia et al. [Garcia2001] defined ten different aspects through which an exception

handling model can be characterized. We will use the same notation to describe the

automatic exception handling model:

Exception representation
As we have already discussed in Chapter 2, exception handling mechanisms can have

different structures for representing exceptions: symbols, data objects, and full objects. Objects

guarantee the uniformity of the programming paradigm; objects do not require the usage

of extra global variables for passing information to the exception handler, thus benefiting

modularity.

In our model, in resemblance with what happens in languages such as C++, Java, C# and

Delphi, we use data objects to represent exceptions. Being data objects, exceptions do not

implement their own functionality and thus require special support from the runtime. We

provide a special keyword (throw) to allow the programmer to raise exceptions.

External exceptions in signatures
Exception lists are mechanisms that allow a method to declare to the outside world which

exceptions its actions can produce that are not being handled inside, thus being

propagated to the outside. Systems implementing checked exceptions make exception lists

 SECTION 4.2 — THE MODEL 145

mandatory while unchecked systems make its usage optional. Exception lists are, in our

perspective, an essential feature for developing highly dependable software since, as we

have observed in prior work [Cabral2007b,Sacramento2006], programmers cannot be

trusted to document their exceptions.

In our model exception lists are mandatory. Nevertheless, we expect that in most cases the

handling of the potential exceptions will be done by the platform and not by the

programmer’s code, thus, making our checked exceptions model much less demanding for

the programmer than its predecessors. Most times the declaration of a try block will

suffice.

Our model guarantees that the programmer is aware of the potential problems that his

code will face, but, at the same time, tries to prevent the programmer from being tempted

to fall into some less recommended programming practices such as silencing exception, or

log and terminate on non-fatal exceptional occurrences, because he or she is not forced to

provide handing code for all exceptions.

Separation between internal and external exception
In some situations, it can be useful to differentiate which exceptions are to be handled

inside a method and which are to be dealt with outside the method. Such feature requires a

special support by the programming language that must provide different ways to raise

both kinds of exceptions.

In our model, we do not provide any special means to implement such feature. We believe

that object-oriented exceptions can mimic this functionality. It is possible to use object-

oriented inheritance to create new types of exceptions so that these new types can be

handled differently: the descendents of one type can be treated as internal exceptions,

while the descendents of the other type can be treated as external exceptions.

Attachment of handlers
We have also mentioned in Chapter 2 that the definition of the protected region to which

an exception handler is associated can differ in many aspects. For example, a handler can

be associated with (i) a statement, (ii) a block of statements, (iii) a method, (iv) an object, (v)

a class, or (vi) an exception class.

146 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

Garcia et al. argued against the usage of block handlers. From all association kinds the

authors consider this the weakest type. The authors defend that “the use of block handlers

violates explicit separation of concerns, since exceptional code is intermingled with normal

code albeit moved to the end of the block”. Most times, blocks of statements are defined

with the sole purpose of attaching a handler. This practice can lead to the development of

software which is difficult to read, maintain and test.

Our model supports all kinds of attachments, including block handlers. But, we take things

a step further, in the sense that we allow the attachment of multiple recovery blocks to the

same entity (or even code block). In the case of an exception occurrence, one or all the

recovery blocks can be executed.

Handler binding
There are three approaches1 for discovering (identifying) the handler that should be

executed when an abnormal situation is detected: the static approach; the dynamic approach;

and the semi-dynamic approach (hybrid). The hybrid approach mingles the two previous

techniques: a handler can be statically associated with an exception occurrence but, in the

event that no suitable handler is found on the immediate lexical context, the runtime

system is responsible of dynamically selecting the appropriate handler.

Our approach is hybrid. In our model it is possible to provide lexical association of

handlers, perform dynamic search of handlers up the call stack at runt-time, and associate

recovery actions with exception types (at program-, class-, method-, or block-level) based

on configuration data available (and changeable) at run-time.

Propagation of exceptions
Garcia et al. identified two design solutions for exception propagation: explicit

propagation; and automatic (implicit) propagation. The first kind only allows the

propagation of the exception to the immediate caller of the failing operation. The second

kind of propagation, allows exceptions to be transmitted through multiple levels on the

call stack until a suitable handler is found or the program is terminated.

We opted for the automatic approach since it requires less intervention (and less code)

from the programmer. Nonetheless, this approach has its shortcomings. Automatic

1 Please consult Chapter 2 for more detailed information.

 SECTION 4.2 — THE MODEL 147

propagation allows exceptions to be transmitted through multiple levels on the call stack

until a suitable handler is found or the program is terminated. The problem is that there

are no guarantees that an exception occurrence will be bound to the most appropriate

handler and, at the same time, the propagation of an exception through different levels of

abstraction can cause the unexpected exposition of implementation details and the

corresponding degradation of encapsulation and modularity.

On the other hand, using checked exceptions helps minimizing some negative aspects: all

methods in the call stack are aware of the exceptions being propagated; implementation

details can remain hidden by transforming internal exception type into different types for

the communicating to the exterior; and different exception types can be associated with

different components thus maintaining some degree of modularity and re-usability. In our

case, exceptions are not only propagated in the call stack vertically but also in a transversal

way to the recovery blocks code.

Continuation of the control flow
There are two different propagation models that delineate where the normal flow of

execution is resumed after the execution of an exception handler: the termination (simple

and retry) and resumption models. The termination model has simpler linguistics and does

not require multiple kinds of signals for raising different types of exceptions. The

resumption model introduces a new level of indirection, not only the caller of a function is

dependent of the invoked function, but also the callee becomes dependent of the caller

when an exception is raised.

The termination is the best option for our model, both in terms of software reliability and

simplicity. Besides the traditional control flow, where execution is transferred to a handler

and continues in the normal path after the handler completion, the principal kind of

control flow in our model involves transferring execution to a set of recovery blocks made

available by the platform itself, restoring the application state using transactions, and the

re-execution of the protected region of code until the exception stops or there are no more

recovery blocks to try.

Clean-up actions
An operation will either terminate correctly or with errors. In both cases, it is important

that the program state remains coherent. Clean-up actions allow the program to recover to

a valid state, or undo the effects of some actions.

148 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

Our model allows the usage of specific construct (similar to Java’s finally) to perform

clean-up actions and, at the same time, provides an automatic mechanism (software

transactional memory) that allows the effects of the code inside a protected region to be

rollbacked in the occurrence of an exception.

Reliability checks
Our model uses both static and dynamic checks. The first kind of reliability checks (the

larger set) are performed by the compiler while the second kind is performed by the

runtime system. These checks must verify the correct utilization of the checked exception

model. At run-time, checks are reduced to the operation of finding the most adequate

handling code for the raised exceptions and raising an error if none is found.

Concurrent exception handling
Concurrent systems offer a completely new set of challenges in terms of exception

handling. It is difficult to design, analyze, modify and, sometimes, understand concurrent

object-oriented systems. Thus, in many situations it is not possible to guarantee that

erroneous information is always contained inside an object. In such systems, and in the

presence of an abnormal situation, we will most probably have to deal with several

interconnected objects simultaneously.

At the present time we do not include any special way of automating the communication

of exceptional information between concurrent handlers. It is extremely difficult to

preview what the requirements, the architecture, the number of participants that a

concurrent application will have at run-time. And, it is even harder to forecast what will

happen in the presence of an abnormal situation. The complexity of the problem represents

a real barrier for the design and implementation of a cooperating automatic exception

handling mechanism. In terms of reliability it may be preferable to leave the coding of

concurrent exception handling facilities on the programmers’ hands. Nonetheless, the

existence of a transactional mechanism in our model can help on cleaning-up the post-

exception application state and in creating “virtual” checkpoints for recovery to

commence. Furthermore, the simpler serial exception handling, that does not require

communication with concurrent handlers, can still be dealt by the platform automatically.

 SECTION 4.3 — RELATED WORK 149

4.3. Related Work
The initial proposal for our automatic exception handling model using transactions was

first published in 2006 at the USENIX HotDep’06 workshop [Cabral2006]. Since then, our

ideas evolved into a mature model. During this time, other authors, with similar

motivation, have also advanced the sate of the art in exception handling in directions

analogous to ours. In this section we will discuss these new approaches and, whenever

relevant, we will point out the similarities with our work or show how these proposals can

be supportive of our model.

Recently, we encountered an article by Christof Fetzer and Pascal Felber [Fetzer2007] that

explores the concept of using atomic blocks for improving program correctness. The

authors suggest not using exception handling mechanisms to deal with errors and

abnormal situations. Instead, they recommend using atomic blocks to delimit parts of the

code where problems might arise. Inside these blocks, programmers can explicitly detect

errors and perform the necessary corrective operations in order to abandon the failed

atomic block or rollback and retry its execution.

Listing 4.2 illustrates the approach proposed by Fetzer and Felber. If the exchange

operation fails in the do block, it is automatically retried by executing the or else clause

that uses another strategy. If both fail, the stack objects are rejuvenated and the complete

atomic block is retried (starting with the default execution path).

void swap(Stack a, Stack b) {
 atomic {
 do {
 Object item1 = a.pop(); // Might throw exception
 Object item2 = b.pop(); // Might throw exception
 a.push(item2); // Might throw exception
 b.push(item1); // Might throw exception
 } or else {
 Object value = a.top().getValue();
 a.top().setValue(b.top.getValue());
 b.top().setValue(value);
 }
 } on failure {
 a.rejuvenate();
 b.rejuvenate();
 retry;
 }
}

Listing 4.2 – swap method using an atomic block and alternative execution paths.

150 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

Though, this work presents perceptible similarities with ours, the bulk of the concepts on

our model, such as automatic exception handling, the usage of recovery blocks, and the

complete separation between exceptional and normal code, are not mentioned on the cited

article. Furthermore, the authors do not provide any implementation or validation of their

ideas. Their work is limited to the proposal.

Daniel Lanvin et al. [Lanvin2009] introduced the concept of reconstructor. A reconstructor

is an extension of the semantics of common object-oriented languages to restore the

previous consistent state of a system in the presence of error, avoiding some of the tasks

that exception handling mechanisms delegate to developers. In the past, there have been

several attempts to integrate some form of automatic object-state recovery into object-

oriented systems [Cristian1979,Campbell1983,Oki1983, Plank1996,Tikhomirova1997,

Silva1997,Garthwaite1998,Shinnar2004,Fetzer2004]. But, a solution is yet to be adopted by

any mainstream programming language or platform. Lavin et al. explain that the costs

involved on incorporating this kind of mechanism into a program, in a general way, are

just too high. Memory consumption is usually the most serious problem because this kind

of mechanism commonly relies on some sort of checkpointing. To lower memory

consumption, Lanvin et al. proposed a way to restrict the number of objects that should be

recovered and use specialized reconstructor methods to control the object’s state recovery

process.

There are two kinds of reconstructors, implicit and explicit. Implicit reconstructors are

automatically generated for each attribute in an object. For each change made to the value

of an attribute, and consequently to the state of the object owning that attribute, there will

be a reconstructor method capable of undoing the modification. Lanvin et al. limited the

creation of implicit reconstructors to accesses made through setter methods. Explicit

reconstructors, are different from implicit reconstructors since they have a more ambitious

goal than just recovering the state of an object. Explicit reconstructors are designed for

recovering the consistency of a system. These reconstructors must be designed by the

developer in the form of a compensable method. This method is responsible for performing

the actions that will return consistency to the system. Compensable methods are invoked

by a specialized object which is also responsible for managing the parameters that are

passed to the method.

 SECTION 4.3 — RELATED WORK 151

The code in Listing 4.3 is an adaptation of the examples provided by Landin et al. in

[Lanvin2009] and illustrates the way a programmer declares implicit and explicit

reconstructors. The authors use @Reconstructable to indicate a code pre-processor that an

implicit reconstructor must be implemented. The pre-processor will introduce new code to

implement the implicit reconstructor. There is also a @Unreconstructable tag for marking

attributes that should not be reconstructed thus avoiding unnecessary overload. The

@Reconstructor tag is used to define a method as being the compensable method for

another method. The relation between a method and its reconstructor is defined by the

application of a pre-defined naming convention. The reconstructor is able to receive the

same arguments as the method that it is reconstructing, but it is possible to pass additional

parameters by marking variable inside the first method as @ToReconstructor.

Lanvin et al. have to delimit the reconstruction scope. Each time something goes wrong,

the reconstructors in the execution path are activated in the reverse order of their creation.

If there was only one context, each time reconstruction was activated the program would

return to its initial state. Thus, the authors associated the functionality of reconstructors

with the scope of try/catch blocks as shown in Listing 4.4. As happens with transactions

in our model, a context initiates at the start of a try block and is closed at the end. If

something goes wrong, the state of the objects accessed inside the protected region is

returned to what it was at the start of the context. Our model goes a step further: we not

only allow the automatic rollback of the state of objects, without the need for specialized

tags, but we also provide automatic recovery for whatever went wrong in the execution of

// Declararion of an implicit reconstructor
class ExampleClass {

 @Reconstructable private int counter;
 public void setCounter(int value) {
 counter = value;
 }

}
…

// Declaration of an explicit reconstructor for the
// prepareDelivary method
public void prepareDelivery(Type1 param1, …, TypeN paramN) {
 …
}

@Reconstructor public void __prepareDelivery(
 Type1 param1, …, TypeN paramN) {
 …
}

Listing 4.3 – Implicit and Explicit reconstructors declaration.

152 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

the try block. In terms of recovering the consistency of a system or undoing external

nonidempotent operations our approaches are comparable. Both require the intervention

of the developer to write the necessary code. Lavin et al. use compensable methods for this

while we allow the developer to write handling for each particular abnormal occurrence.

In [Chang2009] the authors propose a methodology and self-healing technology that can

reduce the occurrence of failures caused by common integration problems that are

identified and documented by COTS developers. With this methodology, application

developers inject healing connectors into their systems to automatically repair problems

caused by misuses of COTS products. If something goes wrong in the execution of a

method m(), when component A invokes m() on component B, an exception is raised and

passed from B to A. Healing connectors stand between the two components and intercept

the exception. Next, the connectors try to remove the problem using any available healing

strategies and re-invoke the failed method. If the method executes without throwing any

exception, the result is passed to A, if not the exception is propagated to A. Healing

strategies are defined by COTS developers.

The authors use Aspect Oriented Programming (AOP) to add healing connectors into

programs. A healing connector is composed of three parts: the connector that intercepts

exceptions propagated between components and represents the aspect; the healing strategies

that are defined in classes and implement the healing actions or, in AOP terminology, the

advices; and the identification of the locations where to inject the code, also known as pointcuts

and joinpoints. Much of the information used for defining code injection points and linking

exceptions with healing actions is defined by developers in XML configuration files. As in

our model, this system allows attempting several healing actions in a serial way if the first

attempts are not successful in removing the problem. But, this system does not provide a

ContextHandler ctx = ContextFactory.createContext();
try {

 …

}
catch (…) {
 ctx.reconstruct();
}
finally (…) {
 ctx.discard();
}

Listing 4.4 – Context management integration in try/catch blocks.

 SECTION 4.4 — SUMMARY 153

way to automatically restore the system state after the occurrence of an exception.

Furthermore, healing actions can be very specialized and, as in traditional exception

handling, require the developers’ expertise and implementation skills.

4.4. Summary
The exception handling model that we proposed in this chapter has a highly demanding

set of objectives:

1. Our main objective is to influence developers to use exception handling

mechanisms as a error recovery tool, and not only as a debugging aid;

2. At the same time, we want our model to be more tolerant to common exception

handling programming bad practices – e.g., silencing exception, log-and-abort,

code duplication, among others;

3. We want a model that is less intrusive to the programmer. A model that lets the

programmer write business logic code without having to include large chunks of

exception handling code just to deal with a potential exception;

4. The exception handling model must also contribute to increase code readability

and comprehension. It must assure that the developer is aware of when

exceptions can be raised and how they are handled, even if he or she did not

write the exception handling code by himself;

5. Finally, the model has to provide for faster development and greater software

reliability.

We believe that to achieve such objectives, our model as to take the greater part of the

exception handling responsibilities away from the hands of the programmer. It must be

able to prevent the programmer from writing as much of the exception handling code on

an application as possible. In a sentence – “exception handling must become a platform

issue, rather than the programmer responsibility”.

In our model, exception handling is automatically performed by the runtime, as currently

happens with memory allocation and garbage collectors.

Our proposal is supported by recent studies indicating that programmers neglect

exception handling, that the quality and quantity of the code written for dealing with

154 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL

errors is diminishing, and that the overall resilience to errors is condemned to suffer the

effects of programming bad practices. Exception handling mechanisms are not being

correctly used as an error recovery tool and the overall quality of exception handling code

is very low. The source of the problem can be linked with design issues on the models

themselves, with development strategies and weak requirements, and with the

programmers lack of commitment with reliability issues. We believe that by freeing the

programmer from writing error handling code, whenever viable, applications will be more

robust and contain less latent bugs. Also, programmer productivity will be increased since

much less code will have to be written, being that code non-trivial.

To provide developers with an automatic exception handling model, we have combined

concepts from traditional exception handling mechanisms, backward error recovery

systems (recovery blocks), and software transactional memory. Although, other techniques

could be used to implement this model (e.g., AOP), our options provide automatic

exception handling in a way that is completely transparent for the programmer.

The existence of a runtime level repository of recovery actions allows extensive

reutilization of exception handling code. Being this code potentially heavily shared and

used across applications means that more hidden bugs will be found and corrected, thus

increasing the overall robustness of error handling and of the applications that rely on it.

This approach also diminishes the mingling of business logic code and error handling

code. The programmer, in general, does not have to think about error handling while

thinking and concentrating on writing business code.

Implementation and
Validation

This chapter presents a description of the implementation of the framework that supports

the proposed exception model along with its evaluation.

We discuss the evaluation process and its results in order to assess the viability of

automatically handling exceptions.

Chapter

5

156 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

5.1. Introduction
It is impossible to advocate the qualities of a theoretical model without creating a real-

world-usable implementation and running it through a set of well designed tests.

Furthermore, when that model is about performing exception handling, thorough testing

becomes even more important. Nonetheless, we are not recklessly assuming that only

testing is, by any means, sufficient or complete. Our implementation of the Automatic

Exception Handling (AEH) model, the tools that we have developed, and the tests that we

performed can only take us so far as defending the model’s viability and showing its main

strengths/weaknesses. We are aware that the true value of the model will only be fully

assessed when it is used “on the field”, by thousands of developers, on projects with high

reliability requirements. Our experiences, here discussed, are intended to show to the

programming community at large that this model can represent a step forward for the

development of more reliable software.

Our main objectives in the chapter are to:

1. Discuss a design for implementing the automatic exception handling model;

2. Assess the effectiveness of the model.

5.2. Framework implementation
The model described in the previous chapter was implemented for the Java 6 platform. It

consists in three major components:

1. A modified Java compiler which makes catch blocks non-compulsory. The

compiler is responsible for enforcing the semantics of the new exception handling

mechanism are followed (e.g., non-transactional classes are not present in try

blocks with no catch; exceptions are correctly re-raised; etc.). We used the open-

source Jikes compiler [IBM2008], which was modified accordingly.

2. A custom-made Software Transactional Memory System implemented as a

library. Although it would be possible to use other available STM libraries for

Java, when we started the project there was a definite lack of such

implementations. That led us to rollout our own system. It is a simple STM

implementation based on object shadowing and supporting closed nested

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 157

transactions. It is aimed at supporting our proposed exception handling

mechanism and not concurrency. Admittedly, in the future, we may replace it by

a more mainstream STM library.

3. A Java system class loader which performs bytecode instrumentation at load

time. That instrumentation supports the mechanism for proper invocation of the

correct recovery blocks for each transactional try block, according to the

application deployment configuration file, and the insertion of the appropriate

code so that the transactional system is correctly invoked. It is also responsible for

making sure that the correct application state is available for the recovery blocks

so that they can, if needed, internally reconfigure the application.

Additionally, we have also implemented a small application that helps the programmer, or

the person who deploys the application, to write the exception handling configuration file.

It allows specifying for each exception type what recovery blocks should be executed and

in what order. It also supports configuring specific recovery blocks to be executed by

specific try locations. This application also allows specifying which state should be passed

to each recovery block so that, if necessary, recovery blocks can internally reconfigure the

application. Using this tool is not mandatory for our model since its main purpose is to

free the programmer, as much as possible, from exception handling configuration-related

tasks. Nevertheless, in practice, it is quite useful for deploying applications. This

application will be described with greater detail later on this chapter but, for now, it is

important to mention that it was implemented as an Eclipse plug-in. It identifies the blocks

of instructions that are prone to raise exceptions and allows the developer to associate

automatic recovery actions with the offending code, while ensuring that the corresponding

deployment configuration file is updated on-the-fly.

The architecture of our system is illustrated in Figure 5.1. We have modified the Sun Java 6

JVM in order to implement our AEH model. In the figure, it is possible to observe the

building blocks of the system organized accordingly to their run-time relationships.

The Java 6 JVM provides an ideal virtual run-time environment for applications using the

AEH model. The JVM “sits” over the existent operating systems and uses a just-in-time

compilation technique to allow the execution of the bytecode on the .class files of a

program. In order to implement the AEH model, it was necessary to modify some of the

system’s classes and libraries, providing new transactional implementations (Transactional

158 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

Java Libraries.) These libraries still work with the remaining default system libraries (left

unmodified.)

Additionally, two new software packages were incorporated into the JVM: the STM library;

and the Recovery library. The first package implements the types, interfaces and

functionality necessary for creating the transaction environment for program execution,

while the second implements the system recovery actions, and the methods for handler

lookup and execution.

Figure 5.2 illustrates the process of loading and preparing a class for execution using the

AEH model. Note that the applications do not know anything about transactions or

recovery actions. The only modification introduced into the language and enforced by the

modified compiler is possibility to use try blocks without catch or finally handlers.

Thus, it is necessary to modify or introduce new code into the programs before execution

in order to allow them to benefit from the AEH implementation. The Class Loader

mechanism of the JVM allows us to perform such modifications on programs by

intercepting the loading of new classes into the JVM, and allowing the modification of

their code before they get executed for the first time. The AEH Class Loader has the tasks of:

parsing the loading classes bytecode looking for pre-defined protected blocks of code;

inserting the code that allows transactional execution of the classes’ methods; inserting the

code that allows the adequate binding of recovery actions to each exception occurrence;

and inserting the code to execute the bound recovery actions when necessary. Basically,

the AEH Class Loader is responsible for interconnecting the functionality provided by the

STM library, the Recovery library, and the Transactional Java Library, with the code of the

running programs. This functionality is provided by two adapters: the

TransactionClassAdapter and the RBClassAdapter. The TransactionClassAdapter

modifies the classes being loaded in order to incorporate the STM-related code and the

RBClassAdapter modifies classes to append the recovery functionality. Both adapters use

bytecode instrumentation to alter programs at load-time. Since we cannot intercept the

Figure 5.1 – AEH system architecture.

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 159

loading of system classes, we needed to add some system specific classes by hand

(Transactional Java Libraries package.)

The principles guiding the integration of our model into object-oriented software, using

the AEH Class Loader, are similar to the basic concepts found on Aspect Oriented

Programming methodologies. I.e., the functionality provided by our system is integrated

into the targeted software in a crosscutting manner. On the other hand, our approach does

not require that software developers must be aware of AOP concepts and language

extensions since it is completely transparent and well integrated with object-oriented

models.

Figure 5.2 – Loading and running applications using the AEH.

160 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

public class Transaction {
 // transaction status: committed, aborted, running
 public int status;

 // thread id
 public long thread_id;

 // sequential transaction id
 public long trans_id;

 // reference to parent transaction in nested transactions
 public Transaction parent_trans = null;

 // local time at start
 public long start_time;

 // local time at end
 public long end_time;

 // list of objects touched by write operations in the
 // transaction
 public Set<ITransObject> wObjects;

 // list of objects touched by read operations in the
 // transaction
 public Set<ITransObject> rObjects;

 // Object to use for synchronization operations between
 // concurrent transactions when acessing the transactional
 // environment state
 public static Object trans_operations_lock = new Object();

 // List of transactions
 public static LinkedList<Transaction> transactionList =
 new LinkedList<Transaction>();

 // Contructor for a new tansaction
 private Transaction() ...

 // Singleton method for creating and starting a new
 // transaction
 public static Transaction startTransaction() ...

 // The commit operation
 public boolean commit() throws Exception ...

 // The abort/rollback operation
 public void abort() ...

 // Remove a transaction from the list
 public void removeTransaction(Transaction t) ...

 // Get a sequential number representing time evolution
 public static long get_time() ...

}

Listing 5.1 – The Transaction class.

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 161

5.2.1. The STM Library
At the core of the STM library there is the Transaction class (Listing 5.1). This class

implements the methods for creating, committing, and aborting a transaction. The

transactional system contains a list of the transactions.

Transaction has a number of key operations and data structures. In particular, it holds a

read-set (rObjects) and write-set (wObjects) of objects that have either been read or

touched during the transaction. When a new transaction is initiated, the system registers

its parent thread identification, provides a new transaction identifier (sequential number),

records the transaction start_time (sequential number representing time evolution), sets

the transaction status to “running”, and adds the new Transaction object to the list of

transactions. This list contains the transactions which are in execution, and which have

been commit or aborted. Each time a transaction commits or aborts, the system performs a

clean-up of the list eliminating terminated transactions. Note that not all objects can be

removed from the list upon termination. In some situations, information about terminated

transactions might still be needed to decide whether a running transaction will be able to

commit or not.

Each transactional class in our system has to implement the interface shown on Listing 5.3.

The methods in the interface are created on each class automatically using bytecode

instrumentation techniques (see the AEH Class Loader section). These methods are

essential for controlling object versions for each transaction. Since changes made inside the

transactions are not visible to other concurrent transactions, it is necessary to maintain a

list of object versions for each time a nested transaction is started. Objects on the system

are organized on a double linked list. At the head of the list, we have the original object

(the first instance to be created) and the following objects are copies made inside

successive nested transactions. The first time a transaction touches an object with the

intention of modifying it, the system makes a copy (the clone) and adds it to the instances

list for that object. The copy can be based on the original object or on the active version on

the parent transaction. When commit is performed, the system locates the original instance

of the clone object being committed on the ending transaction and moves the changes of

the clone onto the original.

162 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

A commit() method (Listing 5.2) performs several verifications before allowing the

changes made on ending transaction to be persisted. This method starts by setting the

current end_time for the transaction (sequential number representing time evolution).

Afterwards, the execution enters a mutual exclusive section of the code where it checks if

there are any conflicting exceptions that can prevent the transaction from committing.

Basically, if the read-set of a transaction intercepts with the write-set of another in the time

intervals defined by the transaction start_time and end_time values.

public boolean commit() throws Exception
{
 boolean toCommit = true;
 // if the transaction is not running return
 if (this.status != RUNNING)
 return this.status == 0 ? true : false;
 this.end_time = Transaction.get_time();
 // access transaction environment constructs in mutual
 // exclusion
 synchronized (Transaction.trans_operations_lock) {
 // If there are no conflits the transaction can commit
 if ((toCommit==canCommit())) {
 doFinalCommitTasks();
 }
 // else abort the transaction
 else {
 abort();
 }
 }
 return toCommit;
}

Listing 5.2 – The commit() method.

public interface ITransObject {
 public ITransObject getNextTransObject();
 public ITransObject getPreviousTransObject();
 public Transaction getOwnerTrans();
 public void copy(Object destiny);
 public void updatePrevious();
 public void updateNext();
}

Listing 5.3 – The ITransObject interface.

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 163

The method canCommit(), shown on Listing 5.4, is responsible for checking for possible

conflicts while performing commit(). If this method returns false, the transaction is

aborted, otherwise the changes on each object that was modified during the transaction are

persisted (by execution of doFinalCommitTasks()). Each time this method executes, it

verifies if there was any other transaction being committed after the current transaction

was initiated and, if that was the case, ensures that there are no conflicts. This happens

private boolean canCommit() {
 boolean toCommit = true;
 // verify if a conflicting transaction exists
 for (Transaction t : Transaction.transactionList) {
 // if another transaction committed, after this one had
 // already started, on a different thread
 // check for conflicts
 if (t.trans_id != this.trans_id
 && t.status == COMMITTED
 && t.end_time > this.start_time
 && t.thread_id != this.thread_id) {
 for (ITransObject o1 : t.wObjects) {
 for (ITransObject o2 : this.rObjects)
 if (o1.id == o2.id) {
 // if this transaction reads from an object that
 // was modified on the previously committed
 // transaction it should not be allowed to commit
 // because commit occurred after the transaction
 //started and the new value was not considered
 toCommit = false;
 break;
 }
 for (ITransObject o3 : this.wObjects)
 if (o1.id == o3.id) {
 // the same as above but for write operations
 toCommit = false;
 break;
 }
 if (!toCommit)
 break;
 }
 for (ITransObject o1 : t.rObjects) {
 for (ITransObject o2 : this.wObjects)
 if (o1.id == o2.id) {
 // if this transaction modified an object
 // that was read on the committed transaction
 // it should not commit because the new value
 // was not accessible for the previously committed
 // transaction
 toCommit = false;
 break;
 }
 if (!toCommit)
 break;
 }
 }
 }
 return toCommit;
}

Listing 5.4 – The canCommit() method.

164 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

because changes made inside the transactions are only visible to other transactions after

commit. The canCommit() method will only return true if objects modified on a

transaction that was committed after the current one had already been initiated were not

accessed (read or write) on the current transaction.

The doFinalCommitTasks() method (Listing 5.5) uses the information (and methods) on

each transactional object to locate the original instance of the clone object being committed

on the ending transaction and to make persistent the changes of the clone onto the original.

5.2.2. The AEH Class Loader
A custom class loader is used to intercept the loading of classes into the runtime system

(JVM). By doing so, we are able to instrument the original code of the classes and provide

the JVM with new transaction-enabled implementations of those classes.

private void doFinalCommitTasks() {
 ITransObject original = null;
 ITransObject clone = null;
 // For each object modified inside the transaction
 // Make the changes persistent on the original instance
 for (ITransObject o : this.wObjects) {
 if (this.parent_trans != null) {
 original = o;
 while (true) {
 original = original.getNextTransObject();
 if (original == null)
 break;
 if (original.getOwnerTrans().trans_id ==
 this.parent_trans.trans_id)
 break;
 }
 }
 if (original == null)
 original = o;
 clone = o;
 while (true)
 {
 clone = clone.getNextTransObject();
 if (clone == null)
 throw new Exception("Clone not found");
 if (clone.getOwnerTrans()trans_id == this.trans_id)
 break;
 }
 clone.copy(original);
 clone.updatePrevious();
 if (clone.getNextTransObject() != null)
 clone.updateNext();
 clone = null;
 original = null;
 }
 this.status = COMMITTED;
}

Listing 5.5 – The doFinalCommitTasks() method.

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 165

To perform the instrumentation of metadata and the bytecode on the .class files, we used

the ASM library [Bruneton2002]. Although, there are other options in terms of Java

bytecode instrumentation libraries (e.g., [Dahm1999,Chiba2000]), ASM, due to its design

and operating model, provides excellent performance and a low memory footprint, being

these qualities essential to our system.

We used the ASM library to create two class adapters, which are called by the

AEHClassLoader to perform the actual instrumentations:

1. TransactionClassAdapter – makes the loading classes transaction-aware;

2. RBClassAdapter – inserts the code to invoke the recovery actions when

exceptions are raised inside try blocks.

The Transactions Class Adapter
The TransactionClassAdapter is responsible, among other things, to assure that the

loaded classes implement the ITransObject interface correctly. The

TransactionsClassAdpater class extends the org.objectweb.asm.ClassAdapter class

and implements the org.objectweb.asm.Opcodes interface. The first reference is the base

class for all adapters implemented for the ASM, and the second an interface used for

allowing the access to the bytecode instrumentation functionality inside ASM. The

complete list of the methods available on this class is shown on Listing 5.6.

The ASM library implements the Visitor design pattern [Gamma1995]. This allows our

modifications to propagate through an application’s code in a systematic way. The visitor

pattern provides the means to instrument (visit) each component of a program (classes,

fields, methods, and constructors) in a different way.

When a class is first loaded by the class loader, ASM adds a new interface to it

(ITransObject). This interface allows the runtime system to duplicate objects as needed by

the transactional system. It also allows the transactional system to navigate through the list

of shadow copies created when a new transaction is started, committed or aborted, adding,

removing or updating the corresponding copies as needed. Finally, this interface allows

the runtime system to gather context information about parent transactions when nested

transactions are taking place.

166 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

A TransactionMethodAdapter is used for modifying the bytecode of each method on the

loaded classes. Just adding mechanisms for creating and updating objects by using code

public class TransactionClassAdapter extends ClassAdapter
implements Opcodes {

 // The constructor
 public TransactionClassAdapter(ClassVisitor cv, ClassNode
cn);

 /* Methods used by the ASM ClassAdapter to implement the
 * Visitor design pattern and apply transformations to
 * the applications' code
 */

 // The class visitor
 public void visit(int version, int access, String name,
 String signature, String superName, String[] interfaces);

 // The method visitor
 public MethodVisitor visitMethod(int access, String name,
 String desc, String signature, String[] exceptions);

 // The fields visitor
 public FieldVisitor visitField(int access, String name,
 String desc, String signature, Object value);

 // The instrumentation finisher
 public void visitEnd();

 /* Private methods used to implement the new components
 * into the existing classes
 */
 // If the class has static fields, we build a class wraper
 // for dealing with them
 private void buildStaticClass();

 // Add the fields and the fields’ acessor methods required
 // by the transactional functionality and the
 // getOwnerTrans() method
 private void addFields();

 // Add the getNextTransObject() and getPreviousTransObject()
 private void addGettersAndSetters();

 // Add the copy() method, used by the transactional system
 // to make the values of the clone objects permanent on
 // commit
 private void addCopyMethod();

 // Add the updateNext() and updatePrevious() methods
 private void addTransObjectUpdaters();

 // Add cloning method
 private void addCloneMethod();

}

Listing 5.6 – The TransactionClassAdapter() methods.

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 167

instrumentation is not enough. It is essential to ensure that the code of the modified classes

uses the fields and variables of the correct objects within a transaction. This means that the

bytecode of the classes has to be modified or it would access the original object references.

Thus, the following modifications are made:

1. Replace the PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC instructions by calls to

new field access methods;

2. Replace the ILOAD, FLOAD, ALOAD, LLOAD, DLOAD, ISTORE, FSTORE, ASTORE, LSTORE,

DSTORE, and RET instructions by call to the local variables access methods;

3. Locate the retry instructions (actually, for simplicity we opted for using a

method call instead of special instruction) on the code and replace them by jumps

to beginning of the try code block to be retried [Cabral2009];

4. Insert the calls to startTransaction(), commit(), and abort() methods at start

of try blocks, at the start of finally blocks (in some cases it is necessary to

append a new finally block where one does not exists), and exception handlers

respectively.

The Recovery Actions Adapter
The RBClassAdapter is instantiated (for each class being loaded) only after the

TransactionClassAdapter finishes its execution. This adapter is responsible for including

the automatic recovery code into the program. Basically, the adapter uses the

RBMethodAdpater to modify the target bytecode for each method in a class.

AEHClassLoader, and RBMethodAdapter in particular, use the information on

configuration files to control the process of inserting the recovery code into applications at

load-time. The adapter uses that knowledge base to know which recovery actions are to be

associated with a particular exception type, class, method or protected block. The adapter

detects any transactional try blocks present in the code and, with this information and the

configuration data, either inserts the functionality of the handler directly on the target code

if the code is small or inserts a selection mechanism controlling the invocation of the

adequate recovery methods. These calls will require establishing a relation between the

failing component’s local variables and the recovery methods’ parameters.

168 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

In our system, we defined recovery actions as methods, belonging to special classes. These

classes are part of the runtime platform. Listing 5.7 shows an example of one of these

classes. This particular class was used for testing the platform, as we will describe on the

next section. In the virtual machine, default recovery actions can be defined inside sister

import javax.jms.*;

public class JMSExceptionRecovery {

 public static void recovery_01() {
 retry;
 }

 public static void recovery_02() {
 Thread.sleep(1000);
 retry;
 }

 public static void recovery_03(
 ConnectionFactory connectionFactory,
 Connection connection, Session session, Queue queue,
 String queueName) throw JMSException
 {
 connectionFactory =
 SampleUtilities.getConnectionFactory();
 connection = connectionFactory.createConnection();
 session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = SampleUtilities.getQueue(queueName, session);
 retry;
 }

 public static void recovery_04(ConnectionFactory
 connectionFactory,
 Connection connection, Session session, Queue queue)
 throws JMSExcpetion
 {
 Properties properties = new Properties();
 properties.load(new
 FileInputStream("execution.properties"));
 connectionFactory =
 SampleUtilities.getConnectionFactory();
 connection = connectionFactory.createConnection();
 session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = SampleUtilities.getQueue(
 properties.getProperty("queueNameAlternative"),
 session);
 retry;
 }

 public static void recovery_05() {
 System.out.println("The system was not able to recover
 from the exception automatically." +
 "\nDo you wish to (T)ry again, (R)ethrow the exception,
 (A)bort the program execution?");
 ...
 }
}

Listing 5.7 – Recovery actions for the JMSException class.

 SECTION 5.2 — FRAMEWORK IMPLEMENTATION 169

classes of the existent exception classes. Meaning that, for each exception type, a set of

recovery actions can be defined inside a new class. To differentiate these sister classes from

normal classes, they must be marked. And, although we can find many different forms of

inserting a distinguishing factor in classes, such as Java Annotations, .NET Custom

Attributes, or simple object-oriented inheritance, we believe that the most traditional

approach of making these classes implement a basic interface is the most benefic. Not only

interfaces are useful to define the core functionality that these classes must offer, they are

also an excellent way for creating compile-time checks and verifications on the safety and

correctness of code.

As the class name suggests, this recovery class is generally associated (at platform level)

with the JMSException type. Nevertheless, other bindings can be set. The system

configuration file, formatted as an XML file, can be freely modified and adapted to the

requirements of each application. It is also possible to provide new configuration files for

different programs.

Listing 5.8 shows an extract of a configuration file used for testing purposes. In this

example, we are binding the JMSExceptionRecovery class to the occurrences of the

JMSException on the main() method of SenderToQueue class.

Another important aspect that can emerge from the example is the overall complexity of

configuration files, and how that complexity can become overwhelming for larger

<?xml version=”1.0” encoding=”UTF-8”?>
<recovery_bindings>
 …
 <entry exception=”JMSException”
 recovery_class=”JMSExceptionRecovery”>
 <packages />
 <classes />
 <methods>
 <method>
 <className>SenderToQueue</className>
 <methodName>main</methodName>
 <desc>([Ljava/lang/String;)V</desc>
 <recovery_method name=”recovery_03”>
 <parameter_var name=”connection”>
 connection
 </parameter_var>
 …
 </recovery_method>
 …
 </method>
 </methods>
 </entry>
</recovery_bindings >

Listing 5.8 – Configuration file example.

170 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

programs. For instance, setting up the binding between the method’s local variables/fields

and the recovery methods’ parameters is relatively cumbersome. Fortunately, many of the

elements on the file can be left blank most times, because the system is able to

automatically generate most of that information. On more complex situations, the

programmer can be aided by visual tools that make the generation of configuration file

semi-automatic.

Consider, for example, that when using an IDE, such as Eclipse, the editor alerts the

programmer of any unhandled exceptions, and gives him different options on how to deal

with those exceptions (Figure 5.3). In the figure, our Eclipse plug-in is alerting the

programmer for an unhandled JMSException on the code and proposes four different

ways of dealing with the exception. The first two options are inherited from the traditional

Java exception handling model, the last two are new:

1. Setup recovery action – This option will automatically surround the code line with

a transactional try block and open a configuration window that will help the

programmer setup the recovery action, methods and parameters for dealing with

the exception. We have developed the application on Figure 5.4 to help us build

configuration files.

Figure 5.3 – Eclipse plug-in.

 SECTION 5.3 — VALIDATION AND TESTING 171

2. Surround with transactional try block - This option will automatically surround the

code line with a transactional try block and let all configuration to be performed

automatically by the run-time system. If the system is unable to setup the

handling actions alone, it will alert the developer for that fact during compilation

or later execution.

5.3. Validation and Testing
To evaluate the effectiveness of the approach, we used 11 different programs. These

consisted in the applications that come with the Sun’s Community Version of its Java

System Message Queue (MQ) framework on the GlassFish framework [Sun2008],

implementing the JMS standard. We have chosen this system because it is a widely used

platform and, at the same time, the test applications are not so complex, allowing focused

experiments to be made.

Since the main goal of the proposed approach is to increase application resilience and, at

the same time, decrease the amount of exception handling code written by the

programmer (whenever possible). Four vectors of evaluation were used:

1. Amount of source code written by the programmer;

Figure 5.4 – Configuration interface.

172 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

2. Effect on the application’s resilience;

3. Performance penalty imposed by the exception runtime;

4. Viability of providing general recovery actions.

5.3.1. Source Code
Using a parser (the same we used for parsing Java code on Chapter 3), we analyzed all the

exception handling code both from the JMS server and the 11 applications. Exception

handling code corresponds to 10% of the overall code, which consists in 21.666 lines of

code. We also verified that in many cases the exception handling code inside the JMS

server transforms raised exceptions into a generic exception type: JMSException. This

exception is then re-thrown.

Overall to the test applications and server, 2.170 lines correspond to code that handle

JMSException, accounting for 1% of all code, being the most common exception used.

Being the JMSException so central, it was a prime candidate for being handled

automatically.

We analyzed the documentation associated to the JMSException, its semantics, and how it

is actually being used in the code base. Twenty five causes were identified as a reason for

such exception to occur. These are shown on Table 5.1.

Many of these problems can actually be solved (or be tried to solve) using a small set of

benign recovery actions:

1. Immediately re-execute the operation;

2. Pause for a predetermined time and re-execute again;

3. Reinitialize the connection to the JMS broker and re-execute;

4. Modify the connection properties to use a different broker, if configured, and re-

execute;

5. Notify the user of the problem (detail on the exception cause), allowing him to

manually correct the problem before re-executing.

If all actions fail, the exception is simply re-thrown.

 SECTION 5.3 — VALIDATION AND TESTING 173

Table 5.1 – Causes for JMSException to be raised.

JMSException’s causes

Error validating the host:port string format
Error reading properties
Invalid object class when wrapping a standard JMS
 ConnectionFactory administered object
Invalid JMSSelector
Null client id in connection object
Invalid client id
Invalid client id in Connection
Invalid connection on the current session
Invalid URL string in connection object
Connection is closed
Connection object is null
Connection not started
There is an active consumer on destination when
doing delete
There is an active consumer on destination when
doing unsubscribe
Unsupported operations
Invalid Queue object
Invalid Topic object
Invalid Queue or topic name
Invalid message status (properties)
Invalid delivery mode
Invalid priority
Invalid time to live
Decompression error
Invalid acknowledge mode

The 11 test applications were re-written using the proposed exception model. This

consisted mostly in removing the catch blocks that deal with JMSException, becoming

that handling automatic. It allowed us to remove 143 exception handling blocks,

representing more than 30% of all exception handling source code. This is significant since

it shows that, when it is possible to use automatic exception handling, the programmer

will be able to write much more concise code1.

1 Note that if the programmer wants to manually treat an exception, that is always possible since
catch blocks take precedence over automatic handling.

174 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

5.3.2. Resilience
In the following subsections we will describe the usage of the Automatic Exception

Handling model on two distinct scenarios and discuss its influence on the overall systems

resilience to errors.

Use case: Java Messaging System
For testing the robustness of the code written using the automatic exception handling

model relatively to the original code, we built a fault injector that systematically raises

exceptions inside of try blocks, monitoring the subsequent behavior of the applications.

The rationale is simple: if there is a try block for handing an exception, if the application is

robust, then when such exception occurs the application should behave in a sensible way.

It should not produce an incorrect result nor crash.

Figure 5.5 illustrates the overall functionality of the exception injection software and the

testing framework. The injector software creates a list of all possible locations in the target

programs where an exception can be raised. For each exception and location identified on

Figure 5.5 – Testing framework.

 SECTION 5.3 — VALIDATION AND TESTING 175

this list, the injector creates a new version of the target software where the exception is

raised at the desired location. This faulting version is then executed on a normal JVM and

on a JVM implementing the AEH mechanism. The output of each execution is then

registered for posterior analysis.

In our system, after raising an exception, its effect on the program is observed from the

injector software, which records the outcome in a database. The effects are classified in one

of three different categories:

1. Abort: the application aborts its execution;

2. Successful: the application does not abort and its output is the same as an

execution with no errors;

3. Incorrect: the application does not abort but its output is different from an

execution with no errors.

Table 5.2 shows the overall results of injecting 216 JMSException across the applications.

Table 5.2 – Exception Injection Results (all apps.)

 # Exceptions Successful Abort Incorrect

Unmodified
Applications

100%
(216)

20%
(44)

79%
(171)

1%
(1)

Automatic
Exception
Handling

100%
(216)

100%
(216)

0%
(0)

0%
(0)

As it can be seen, on the unmodified applications, 20% of the raised exceptions did not

produce any different observable result compared with a normal execution (“golden run”).

Note that this does not mean that the applications did what they should. It only means that

their output was identical. 79% of the injected exceptions led to the applications crashing.

In 1% of the cases, the output of the applications was different from the one that would be

obtained on a non-erroneous execution. When we performed the same experiments using

automatic exception handling, in all cases, the simple five recovery mechanisms that were

implemented lead to “Successful” executions. Again, this does not mean that the internal

state of the applications was not corrupted; it only means that no external effects were

seen. Even so, the results are somewhat impressive: by using simple recovery strategies

there are less 79% application crashes. And, at the same time, 699 lines of code are

176 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

eliminated, corresponding to 143 handlers. This is code that the programmer will not have

to write. With less code we are achieving higher resilience. Of course, the original

programmers could have embedded the five recovery blocks that we designed in the

original catch handlers. But, the facts are: a) they did not; b) the overall code would have

been much more complicated and long. These finding are in line with the results presented

in [Cabral2007], where 32 highly used applications were examined, and with [Shah2008a].

As we mentioned before, the fact that applications did not produce different results does

not mean that they were doing what they should. This is especially true on our set of

applications since they mostly send and receive JMS messages. For investigating this issue,

three applications were selected where it was easy to monitor if sent messages actually

reached the destination and their contents were uncorrupted. Again, exceptions were

raised, and both the execution of the source application and the contents of messages at the

receiving application were examined. The effects of the exceptions were classified in the

following categories:

1. Abort – Correct Delivery: the application aborts but the message it tried to send

reached its destination correctly;

2. Abort – Incorrect Delivery: the application aborts and the message it tried to

send either did not reach its destination or its contents were corrupted;

3. Successful: the application does not abort and the message reached the

destination correctly.

Notice that the “Incorrect” category does not exist in this case since the sending

applications do not produce output. The next table (Table 5.3) summarizes the results.

Table 5.3 – Results with content checking (3 apps.)

 # Exceptions Successful Abort –
Correct

Delivery

Abort –
Incorrect
Delivery

Unmodified
Applications

100%
(25)

12%
(3)

24%
(6)

64%
(16)

Automatic
Exception
Handling

100%
(25)

100%
(25)

0%
(0)

0%
(0)

 SECTION 5.3 — VALIDATION AND TESTING 177

The most interesting result from Table 5.3 is that in 24% of the cases, although the

applications aborted, they were able to send their messages correctly, which was their

primary goal. This suggests that with little effort these applications could be much more

resilient, which is actually verified by looking at the results of the automatic exception

handling.

Overall, although our experiments were limited in scope, the results appear to indicate that

the automatically exception handling approach can have a dramatic impact on the

robustness of applications.

Performance Analysis

Our approach to exception handling has some performance overhead. Since each block is

transactional, in our implementation, it implies to create a shadow copy of each object that

is updated inside a try block. Even so, the impact is not as high as one might expect. The

reasons are: 1) try blocks are normally relatively short and are not deeply nested. This

means that the number of objects that are touched inside of a block is typically small. 2)

try blocks are not normally re-executed. This means that when a block commits, most of

the work consists in a small number of checks and on substituting the original object

references by the updated copies. Comparing with “normal” STM systems, our case is

similar to the situation where the code executes without contention from other threads and

commits almost every time. This means it can be heavily optimized.

For assessing performance we used the test applications which could be run in a loop (6 of

the applications), sending/receiving or processing messages. Each application was run for

100 loops. As it can be seen on the graph (Figure 5.6), the overall performance impact is

negligible.

Use case: Hipergate server
Despite the promising results, we decided to evaluate the reliability of our model in more

realistic scenario. For doing so, we selected an application that uses a database server for

persisting data - the Hipergate CRM Groupware tool [Knowgate2006] and prepared a test

where the connection to the database was lost, during execution, in order to observe the

system behavior while using automatic recovery.

178 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

Hipergate is a CRM dynamic web application that runs on top of the Tomcat

[Apache2009a] server and uses a MySQL [Sun2009] database to persist data. After

installing, configuring, and inserting the initial data into the application, we used Jakarta

JMeter [Apache2009d] to simulate a workload of 10 accesses per second to Hipergate

during a 10 minutes run with a 30 second timeout for each request. What this means is that

a user would never wait more than 30 seconds for a web page, independently of the cause

of the delay. Furthermore, to evaluate the system recovery ability using automatic

exception handling, we planned to shutdown the database for 30 seconds after the first 5

minutes of the test. On this scenario, the Mean-Time-Between-Failures (MTBF) is 9,5

minutes and the Mean-Time-To-Repair (MTTR) is 0,5 minutes. Thus the system availability

is 95%. This is shown in Figure 5.7. In broader terms, if we do not use automatic exception

handling, the system will not be able to respond to the caller with a valid page (code 200 in

the HTML protocol) 5% of time, i.e., in 30 seconds.

We prepared our application to automatically handle the SQLException type. For testing

purposes we consider that the only cause for the occurrence of this exception is the use of a

lost or previously closed database connection. The system recovery code reacts to the

exception by executing 3 retry attempts separated by 5 seconds each. Each time the

application retries it also attempts to open a valid database connection. This means that if

the connection is re-established during this 15 seconds interval, the application will be able

to respond with a valid result. If not, the exception is propagated in a normal way. Going

back to the scenario previously described, and looking at the 30 seconds interval when the

Figure 5.6 – Analysis of the executions times.

 SECTION 5.3 — VALIDATION AND TESTING 179

database is down, we can expect that the requests made during the first 15 seconds will not

be fulfilled but the ones done on the second half will be able to obtain a valid response.

This would represent 2,5% less errors and an error rate of 2,5%. The system availability

should increase to 97,5%. To validate our predictions we used two separate machines, a

server, where Hipergate, Tomcat 6 and a MySQL were running, and a client machine

where we executed the JMeter workload and saved the results. Figure 5.7 illustrates the

experience. We performed 2 types of runs always using the workload configuration but

changed the server settings: (a) in the first run we did not shutdown the database and

obtained a 0% error rate; (b) on the second run we shut down the database and obtained an

error rate of 2,62% (Figure 5.8). The value of the standard deviation shown on Figure 5.8 is

very high because: a) when the database is running, response times are usually very quick

(less than 1 second); but when the database is down, b) responses will timeout after 30

seconds; or c) require up to 15 seconds to be fulfilled.

These tests have shown that the system availability increased up to 97,38% when using

automatic exception handling. Nonetheless, as it can be observed in Table 5.4, the error

rate is slightly superior to the predicted value. There are mainly two reasons that can

contribute this outcome: (i) the throughput is not exactly 10 requests/second but 9,9

Figure 5.7 – Description of the experience.

180 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

requests/second; and, (ii) we cannot control in detail the down time of the database, we

can only guarantee that between the issuing of the stop and start commands there is a 30

seconds interval, we do not know how much time the database takes to start and stop its

service (our experiments show that this interval varies between 1 and 3 seconds.)

Table 5.4 – System availability, MTTR, MTBF and error rate.

Description System Availability MTTR MTBF Error Rate

System run without
interruption of the DB
service

100% 0.00 min N/A 0.00%

System run
experiencing the
interruption of the DB
service

95% 0.50 min 9.50 min 5.00%

System run using
automatic exception
handling while
experiencing the
interruption of the DB
service

97.38% 0.26 min 9.74 min 2.62%

It is perceptible that our model promotes an effective increase on the overall reliability of

the targeted system with a very simple recovery strategy. If we consider that this increase

is obtained with the same amount of source code or even less, the drop of nearly 50% on

the error rate is a remarkable result.

5.3.3. Recovery Actions
Recovery actions are a core component of our model. Thus, it is essential to measure to

what extent will system designers be able to ship sets of automatic and benign recovery

Figure 5.8 – JMeter workload run summary.

 SECTION 5.3 — VALIDATION AND TESTING 181

actions with their products. Though, only real world experience will give us an

undoubtedly perspective on the subject, the model evaluation would not be complete

without tackling this issue.

Our experiments, while simple are also very promising. We decided to select a large

number of the Java’s platform system exceptions and provide automatic handlers for them.

By doing so, we intended to show that it is possible to define automatic recovery actions

for a large number of exception types. Secondly, we tried to assess the impact that those

automatic handling policies would have on the reduction of length of programs’ source

code.

We decided to tackle all the exceptions types that directly or indirectly descend from the

java.io.IOException class on the Java 6 API. Our choices are summarized on Table 5.5.

Table 5.5 – Recovery actions for Java’s IOException class tree.

Exception Class Recovery Actions
ChangedCharSetException Obtain the charset from the exception object and

replace the charset on the
reader/streamreader object

MalformedInputException getInputLength() can be called to determine the
length of the bad input and throw it out or fix it

UnmappableCharacterException getInputLength() can be called to determine
the length of the bad input and throw it out or fix it

ClosedChannelException Re-open the channel;
Re-open the channel with privileges for the desired
operation

AsynchronousCloseException Re-open the channel
FileLockInterruptionException Retry
HttpRetryException Disable streaming mode and retry
InterruptedIOException Resume the transfer from the interruption point in

the data (bytesTransferred)
SocketTimeoutException Retry;

Re-open socket and retry
InvalidClassException Try to load the class from a different location;

Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

SocketSecurityException *Obsolete
UnknownHostException Connect to a different host and retry;

Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

182 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

Exception Class Recovery Actions
ConnectException
ConnectIOException
ConnectException
NoRouteToHostException
PortUnreachableException

Retry ;
Retry after pausing for predefined time period;
Connect to a different host and retry;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

BindException Retry;
Retry after pausing for predefined time period;
Bind another alternative port;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

SSLHandshakeException Retry;
Modify connection settings, reconnect and retry;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

SyncFailedException Retry;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

UnknownHostException Modify or replace the host name;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

UnsupportedDataTypeException Use alternative data type and retry;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

UnsupportedEncodingException Use alternative character encoding;
Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

UTFDataFormatException
ZipException
JarException
UnknownServiceException
FileNotFoundException
FilerException
IIOException
InvalidPropertiesFormatException
JMXProviderException
JMXServerErrorException
MalformedURLException
InvalidObjectException
OptionalDataException
ProtocolException
AccessException
AuthenticationException
SSLKeyException
SSLPeerUnverifiedException

Notify the user of the problem (detail on the
exception cause), allowing him to manually correct
the problem before retrying or aborting

 SECTION 5.3 — VALIDATION AND TESTING 183

Exception Class Recovery Actions
SSLProtocolException
SSLException
SocketException
ActivityCompletedException
ServerError
ServerException
ServerRuntimeException
StubNotFoundException
TransactionRequiredException
CharConversionException
EOFException
IIOInvalidTreeException
ObjectStreamException
RemoteException
UnexpectedException

Not possible to handle automatically

NotActiveException
NotSerializableException
StreamCorruptedException
WriteAbortedException
ActivateFailedException
ActivityRequiredException
ExportException
InvalidActivityException
InvalidTransactionException
MarshalException
NoSuchObjectException
TransactionRolledbackException
UnmarshalException
SaslException

Not possible to handle automatically due to
insufficient information about internal details

From the 70 exception classes under analysis, we were able to define benign automatic

recovery actions for 41 (60%). We decided not to handle 15 (21%) exception types

automatically. And, we were not able to decide which would be the preferable course of

action on 14 (19%) situations. This was mostly due to the lack of information on the

documentation about the internal details associated with raising and handling these

exception types.

Considering that we were able to automatically handle more than half the IO-related

exceptions on a system, these results look quite promising. Consequently, we believe that

the robustness, development time, and simplicity of source code would be positively

influenced by these actions. Of course, our recovery actions do not guarantee that

exception occurrences will always be successfully handled. The outcome of the execution

of each recovery block and, subsequently, the re-execution of the protected regions will

always depend of the runtime state and environment when the exception occurs.

Nevertheless, if we recall what we have already learned about nowadays exception

handling code and practices, our automatic system provides higher guarantees of success.

184 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

As we have already seen, providing recovery code for occurring exceptions allows the

programmer not to write exception handling code for every exception on his programs.

Thus, the overall size of programs’ source code will decrease. To assess the impact of the

recovery actions that we propose on the size of the source code of existing applications, we

selected a set of applications with high IO demands and accounted for the amount of code

that would be unnecessary if the referred exceptions were automatically handled. The

results are listed on Table 5.6.

Table 5.6 – Applications source code decrease analysis.

A
pp

lic
at

io
ns

L

O
C

E

H
 L

O
C

E

H
 L

O
C

(I
O
E
x
c
e
p
t
i
o
n

fa

m
ily

)

E

H
 L

O
C

(a

u
to

m
at

ic
al

ly
 h

an
d

le
d

ty

p
es

)

C

at
ch

 B
lo

ck
s

C

at
ch

 B
lo

ck
s

(I
O
E
x
c
e
p
t
i
o
n

fa

m
ily

)

#C
at

ch
 B

lo
ck

s
(a

u
to

m
at

ic
al

ly
 h

an
d

le
d

ty

p
es

)

M
ax

im
u

m
-M

in
im

um

d
ec

re
as

e
on

 E
H

 c
od

e
si

ze

j-ftp 15359 690 148 10 244 48 4 21%-2%
Lucene 56362 1087 447 27 434 175 15 41%-3%
Tapestry 65984 1259 72 22 490 34 9 6%-2%
Columba 89325 2291 597 193 787 184 57 26%-8%
Limewire 342393 6853 2596 471 3327 1216 258 38%-7%
Legend: (a) Applications, name of the programs under analysis; (b) #LOC, total number of lines of code on each program; (c) #EH
LOC, number of lines of code dedicated to exception handling on each program; (d) #EH LOC (IOException family), number of
lines of code dedicated to detecting and handling exceptions on the IOException class hierarchy; (e) #EH LOC (automatically
handled types), number of lines of code dedicated to detecting and handling the exception types chosen for automatic recovery and
identified on Table 5.5; (f) #Catch Blocks, total number of catch blocks on each program; (g) #Catch Blocks (IOException
family), number of catch blocks dedicated to handling exceptions on the IOException class hierarchy; (h) #Catch Blocks
(automatically handled types), number of catch blocks dedicated to handling exceptions of the types chosen for automatic
recovery and identified on Table 5.5; (i) Maximum-Minimum decrease on EH code size, the minimum decrease corresponds to the
elimination of all handling code for the exception types chosen for automatic recovery and identified on Table 5.5, the maximum
decrease corresponds to the elimination of all code dedicated to handling all the exceptions on the IOException family.

When analyzing the results on the table, we have to consider several aspects associated

with design options taken on these programs. First, these applications were not written

with our exception model in mind. Moreover, most of these applications rarely use

exception handling code for recovery. Thus, the amount of code dedicated to promoting

reliability on these programs is very small. This fact is visible when comparing the values

of the overall number of lines of code in each program with the total number of lines of

code dedicated to exception handling. In average, only 2,6% of the code in these

applications, with a standard deviation of 1%, is dedicated to exception handling.

Furthermore, most of code in exception handlers is used to silence exceptions, log exceptions

 SECTION 5.3 — VALIDATION AND TESTING 185

or log and abort the program. Since the AEH model promotes recovery, it is no surprise that

it shows a higher influence on the resilience of existing applications, designed for using the

traditional exception models, than on the size of their source code. On the other hand, if

we were to incorporate the code of all recovery blocks into the exception handlers on these

applications to make them more robust, the amount of code dedicated to exception

handling would grow exponentially and become less readable.

Other authors have also shown that it is possible to use sets of pre-defined recovery

patterns to heal a system. For instance, the authors of [Chang2009] defined several healing

patterns in order to evaluate the effectiveness of their healing connectors1 mechanism. These

healing patterns were implemented on the healing connectors used for testing purposes

with applications such as Apache ActiveMQ [Apache2009b], Apache Service Mix

[Apache2009c], JBoss [JBoss2009], among others. The problems that these healing patterns

try to eliminate were carefully selected from the lists of bugs available on-line for each one

of these projects. In a way, these patterns can be considered very similar to our recovery

actions. Furthermore, the manner they were produced, by collecting bug-reports and

repair information available on-line, can also be used for the development of system level

recovery actions. Table 5.7 was adapted from [Chang2009] and shows 5 healing strategies

of a total of 31 that were proven valid on the cited work.

Table 5.7 – Healing strategies.

Application COTS
component

where
failure

originates

Failure description Healing strategy

Apache
Geronimo

Sun JRE 1.6
(ClassLoader
component)

At startup, a faulty
implementation of
classloader.loadClass raises an
exception when used to load an
array with name specified with
array syntax

Substitute the invocation of
classLoader.loadClass() with
Class.forName()

JBoss Sun JRE 1.6
(ClassLoader
component)

At startup, a faulty
implementation of
classloader.loadClass raises an
exception when used to load an
array with name specified with
array syntax

Substitute the invocation of
classLoader.loadClass() with
Class.forName()

1 Healing connectors were already discussed on Section 4.3.

186 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

Application COTS
component

where
failure

originates

Failure description Healing strategy

Developer
application
reproduced
from bug
report
GERONIMO-
1669

Apache
Geronimo
(JavaMail
component)

Disconnected smtp transport
raises an exception when
sending a mail Message

Call the transport connect()
operation before re-invoking
the send the message

Apache
ActiveMQ

Sun JRE
(JavaNet
component)

Starting ActiveMQ raises
exceptions when hostname
contains underscore characters

Replace the hostname string
parameter by its IP address,
and re-invoke the original
operation

Apache
ServiceMix

Sun JRE
(JavaNet
component)

Starting ServiceMix raises
exceptions when hostname
contains underscore characters

Replace the hostname string
parameter by its IP address,
and re-invoke the original
operation

Magnolia
CMS

Xalan XSLT Magnolia cannot run and raises
exceptions when initializing its
content repositories

Dynamically load the jar files,
delete the corrupted
repository directories, and re-
invoke the original operation

5.4. The Perfect Exception Handling Model
Garcia et al. [Garcia2001] have given us the criteria to evaluate the quality of an exception

handling model in terms of reliability. At the same time, they were also able to provide us

with a set of quality metrics to help guiding the development of future exception handling

models. In

Table 5.8 we confront the attributes of our model with the desirable attributes of Garcias’s

“perfect” model for exception handling.

Our AEH model is:

 Modular – In our system, recovery code is included as a plug-in component.

Recovery blocks can be added, removed or modified on the deployed system

without requiring changes to the remaining facilities;

 Reusable – The recovery code is intended to be portable across applications and

platforms;

 SECTION 5.4 — THE PERFECT EXCEPTION HANDLING MODEL 187

Table 5.8 – Exception model features list.

 AEH
Model

Exceptions represented as objects Yes
Exception list Yes
Internal exceptions should be differentiated from external exceptions No1
Avoid the definition of code blocks for the sole purpose of attaching an
handler

Yes

Allow an hybrid binding (dynamic + static) of exception handlers Yes
Allow for both explicit (one-level) and automatic propagation of exceptions Yes
Perform automatic clean-up actions Yes

(transactions)
Implement the termination model Yes
Allow for static and dynamic reliability checks Yes
Fully support concurrent and distributed models No

 Maintainable – Modifications on recovery policies can be done in a centralized

manner;

 Reliable – As shown on this chapter, system reliability is prone to increase when

compared with existent software using the traditional approach;

 Simple – The programmer can concentrate on writing the business logic code. The

binding between business code and error recovery code can be completely

transparent or customized with the aid of specialized visual tools;

 Uniform – Recovery actions can be made global to a program, platform, or system.

The programming model is the same independently of the abstraction level. Also,

the expected behavior on the presence of an error is common to all components;

 Easily testable – Recovery code can be tested separately from business code. Tests

can concentrate on business code and its integration with the general recovery

policies;

1 On object-oriented systems we consider that this characteristic can be mimicked by the use of

inheritance.

188 CHAPTER 5 — IMPLEMENTATION AND VALIDATION

 Traceable – The execution of the recovery actions is the responsibility of the

execution platform and it is controllable by the usage of configuration files.

Monitoring is also privileged under this conditions;

 Increases code readability – Business logic code is separated from error handling

code. There is less code to read and less control flow paths to understand;

 Simplifies code writing – In most cases, the programmer can concentrate on writing

business code alone.

5.5. Summary
In this chapter we described and tested an implementation of the Automatic Exception

Handling Model. Our framework allows the programmer to use the programming model

proposed on Chapter 4 and provides the entire model’s functionality.

We discussed the architecture of the development/execution framework and detailed the

implementation of two core components: the STM library and the AEH Class Loader.

The STM library contains the basic functions and types associated with transactional

model. The AEH Class Loader modifies the classes being loaded into the runtime

environment by inserting the new transactional and recovery code.

We discussed the binding of exceptional occurrences with their respective system recovery

actions. We have shown that configuration files can be quite large and complex to the

human reader. Thus, we proposed and exemplified two mechanisms (tools) that simplify

and aid on the creation of configuration files while coding.

On the second half of the chapter we validated the exception handling model and

evaluated its implementation on four distinct vectors: a) amount of source code written by

the programmer; b) effect on the application’s resilience; c) performance penalty imposed

by the exception runtime; d) viability of providing general recovery actions. Our results

are very promising. We obtained a substantial decrease on the amount of exception

handling that has to be written (less 30%), program’s reliability improved, the performance

penalty is negligible, and we were able to propose recovery actions for more than 60% of

the exception types we analyzed.

 SECTION 5.5 — SUMMARY 189

We are convinced that an exception handling model evaluation can only be done on “the

field”. The synthetic tests that we performed on this chapter are not sufficient for justifying

the adoption of the model per se. The major problem is the lack of critical mass, this kind

of proposal has to be used and evaluated by thousand of developers before definitive

conclusions can be taken. Only when many companies, software designers, and

programmers start using the new model on their development process, its true qualities

and shortcomings will surface. Nonetheless, our validation efforts show that the model is

feasible, can be implemented and incorporated into production-state development

frameworks, can contribute to increase the quality of programs’ code, increase software

reliability, and, at the same time, lower development times.

Conclusion

This is the final chapter of the dissertation and it provides an overview of the work done,

the problems that have been addressed and the contributions to the current state of the

technology. A perspective on possible future work is also given.

Chapter

6

192 CHAPTER 6 — CONCLUSION

6.1. Overview
Exception handling mechanisms are the de facto mechanism for error handling on modern

object-oriented programming languages. Exceptions provide an elegant and civilized way

of dealing with abnormal events. Nevertheless, the mechanism has flaws and some pose as

threats for the reliability of programs and systems.

In this thesis we identified the major design shortcomings associated with existent

exception handling models. We have shown how those weaknesses affect the way

programmers are writing exception handling code today, and how, ultimately, they affect

the quality of error recovery code and the resilience of programs to errors.

The main objective of this work was to propose a new exception handling model and

demonstrate how it successfully mitigates some of the problems with current exception

handling models. Our model deals with exceptions automatically. Thus, exceptions

become much more a platform issue rather than the programmer’s responsibility. This

ultimately contributes to increase applications resilience to errors because, as we have

shown, programmers are neglecting exception handling code and an automated approach

currently offers better guarantees of recovery than the code that programmers typically

write. Writing error recovery code is not a major concern for nowadays developers and

consequently exception handling code quality is very low.

Our ambition for the automatic exception handling model is that it will some day

represent to programs reliability what garbage collectors symbolize to memory

management. Our model automates not only recovery code and its execution, but also the

clean-up of the effects of unsuccessful executions. To achieve such a goal, we resort to a

transactional mechanism that controls the execution of the protected regions on the code

(try blocks) and of recovery actions. The proposed model mingles the concepts of

traditional exception handling, software transactional memory and recovery blocks in

order to achieve its objectives.

We described the architecture of the automatic exception handling model on Chapter 4

and discussed a possible implementation on Chapter 5. We also conducted several tests in

order to evaluate both the proposed model and its implementation. Our experiences

involved the modification of several applications in order to make them use the new

exception handling approach. Results are very promising. There was a substantial decrease

on the amount of exception handling that had to be written on the selected test programs;

 SECTION 6.2 — CONTRIBUTIONS 193

the programs reliability was improved on the new versions; and the performance penalty

was negligible. Furthermore, we showed that it is possible to define automatic recovery

actions for a large number of exception types on the Java platform.

In general, we are confident that the proposed model represents a step forward in terms of

software reliability for object-oriented programming languages. We feel that the automatic

exception handling model fulfilled its objectives, showing that it is possible to improve

software resilience while effectively decreasing the amount of exception handling code

that programmers have to write.

6.2. Contributions
The major contributions of this dissertation can be summed up as:

 Providing a clear assessment of how programmers are using the existent

exception handling mechanisms on their programs, exposing the problems

behind the lack of quality of exception handling code, and identifying common

bad practices, thus providing a clear base to guide the development of future

exception handling models;

 Providing an exception handling model that is able to comply with the

developers natural tendency to write business logic code without the

“distraction” of considering exceptional situations. A model that it is able to

increase the resilience of programs to abnormal situations even when developers

pay no attention to error recovery, and which has the potential to eliminate many

known exception programming bad practices. Thus, overall a model that

simplifies the task of producing reliable code, with automatic recovery and clean-

up, in a transparent way without resorting to complex language artifacts;

 To demonstrate that it is possible to integrate the new model into a production

platform, such as the Java platform, in a simple way, with minimal lexical

changes to an object-oriented programming language and a negligible

performance overhead.

Recently, we witnessed, from the programming languages and models community, a

growing effort to understand why programmers neglect exception handling [Shah2008a]

and why changes are occurring on the way exception handling constructs are used. We

194 CHAPTER 6 — CONCLUSION

know that exception handling practice has shifted from an error recovery approach to a

debugging approach (exception detection->log->program termination). Exceptions are no

longer being used to provide proper error recovery. Many platform designers, such as

.NET designers, support this move. They believe that latent errors should be eliminated

through exhaustive testing. We, on the other hand, consider that programming techniques

are constantly evolving, and, from our point of view, the correct path is creating

frameworks that can offer a high degree of resilience to errors even when developers give

no special attention to the subject. And if the programmer prefers to focus on writing

program business logic code without immediately having to consider the abnormal cases

that might occur, he or she should not be forced to do the opposite. Nonetheless, such

power must come without jeopardizing the resilience of programs to errors.

6.3. Future Work
Future work, from our point of view, poses as three distinct challenges:

 Develop a production ready framework with all the necessary tools to write,

compile, test, deploy, execute and maintain software using the automatic

exception handling model. This includes creating a complete set of recovery

actions for system (and system libraries) exception types to deploy with the

platform;

 Conduct experiments that can help understand how developers relate to the new

model in respect to the traditional approaches;

 Explore the model’s applicability to the area of concurrent programming

upgrading the model to allow the execution of cooperative and concurrent

automatic error recovery actions.

Exception handling plays a vital role in the overall reliability of software. It is an often

neglected design area of programming languages that has a crucial impact on the overall

quality and robustness of applications. Due to the increasing demand for easier ways of

dealing with abnormal events, the ubiquity of concurrent programming and the need to

provide end-users with more reliable software, the research activity in this area has been

steadily increasing. Furthermore, it is also interesting to see modern programming

languages and platforms incorporating more advanced and sophisticated ways of dealing

 SECTION 6.3 — FUTURE WORK 195

with errors. In the future, we hope to continue to contribute to the state-of-the-art on

exception handling and help support the growth of this important research area.

List of Publications

The following publications are the result of the investigation undertaken during this thesis.

Publications on journals

 B. Cabral, P. Marques, “A Model For Automatic Exception Handling” (currently

submitted to IEEE Transactions on Software Engineering)

 B. Cabral, P. Sacramento, P. Marques, “The Hidden Truth Behind .NET Exception

Handling Today”, in IET Software Journal, Vol. 1(6), pp. 223-250, IET, December

2007.

 B. Cabral, P. Marques, L. Silva, “IL Code Instrumentation with RAIL”, in .NET

Developers Journal, Vol. 2(1), pp. 34-35, SYS-CON Media Publishers, January

2004.

Publications on conference proceedings

 B. Cabral, P. Marques, “Implementing Retry – featuring AOP”, in Proc. of the Latin-

American Symposium on Dependable Computing (LADC’09), IEEE Computer

Society Press, João Pessoa, Paraíba, Brazil, September 2009.

 B. Cabral, P. Marques, “A Case For Automatic Exception Handling”, in Proc. of the

23rd IEEE/ACM International Conference on Automated Software Engineering,

IEEE Computer Society Press, L'Aquila, Italy, September 2008.

 B. Cabral, P. Marques, “Exception Handling: A field study in Java and .NET”, in Proc.

of the European Conference in Object-Oriented Programming 2007 (ECOOP'07),

Berlin, Germany, July 2007.

 B. Cabral, P. Marques, “Making Exception Handling Work” (extended abstract), in

Proc. of the USENIX Second Workshop on Hot Topics in System Dependability

(HotDep'06) , USENIX, Seattle, USA, November 2006 .

 P. Sacramento, B. Cabral, P. Marques, “Unchecked Exceptions: Can the Programmer

be Trusted to Document Exceptions?”, in Proc. of the International Conference on

198 LIST OF PUBLICATIONS

Innovative Views of .NET Technologies (IVNET'06), Springer-Verlag, October

2006. (Best Paper Award)

 B. Cabral, P. Marques, L. Silva, “RAIL: Code Instrumentation for .NET”, in Proc. of

the 2005 ACM Symposium On Applied Computing (SAC'05), ACM Press, Santa

Fé, New Mexico, USA, March 2005.

 B. Cabral, P. Marques, L. Silva, “RAIL: Code Instrumentation for .NET” (extended

abstract), in Proc. of the ACM OOPSLA'04 Conference Companion, ACM Press,

Vancouver, Canada, October 2004.

Bibliography

[Allan2005] E. Allan, D. Chase, V. Luchangco, J. Maessen, S. Ryu, G. Steele, and S.

Tobin-Hochstadt, “The Fortress language specification version 0.785.

Technical report”, Sun Microsystems, 2005.

[Alonso1994] G. Alonso, M. Kamath, D. Agrawald, A. E. Abbadi, R. Gunthor, C.

Andmohan, “Failure handling in large-scale workflow management

systems”, Techical Report RJ9913, IBM Almaden Research Center, San

Jose, CA, November 1994.

[Anderson1975] T. Anderson, “Provably Safe Programs”, Technical Report 70,

Computing Laboratory, University of Newcastle upon Tyne, 1975.

[Apache2009a] The Apache Software Foundation, “Tomcat 6”, 2009, available at:

http://tomcat.apache.org/ .

[Apache2009b] The Apache Software Foundation, “ActiveMQ”, 2009, available at:

http://activemq.apache.org/.

[Apache2009c] The Apache Software Foundation, “ServiceMix”, 2009, available at:

http://servicemix.apache.org/home.html .

[Apache2009d] The Apache Software Foundation, “JMeter”, 2009, available at:

http://jakarta.apache.org/jmeter/ .

[Arnold2000] K. Arnold, J. Gosling, and D. Holmes, “The Java Programming

Language”, 3rd Edition, Addison-Wesley Longman Publishing Co., Inc.,

2000.

[Avizienes1977] A. Avizienis, and L. Chen, “On the implementation of N-version

programming for software fault tolerance during execution”, in Proceedings

of IEEE COMPSAC 77, November 1977.

[Ball2001] T. Ball, and S. K. Rajamani, “Automatically validating temporal safety

properties of interfaces”, in SPIN 2001, Workshop on Model Checking of

Software, LCNS 2057, Springer-Verlag, New York, 2001.

200 BIBLIOGRAPHY

[Balter1994] R. Balter, S. Lacourte, and M. Riveill, "The Guide Language", in The

Computer Journal, Vol. 37(6), British Computer Society, 1994.

[Best1996] E. Best, “Semantics of Sequential and Parallel Programs”, Prentice Hall,

Upper Saddle River, NJ, USA, 1996.

[Brown1998] W. J. Brown, R. C. Malveau, H. W. McCormick, T. J. Mowbray,

“Antipatterns: Refactoring Software, Architectures, and Projects in Crisis”,

1st Edition, Wiley, March 1998.

[Bruneton2002] E. Bruneton, R. Lenglet, and T. Coupaye, "ASM: a code manipulation

tool to implement adaptable systems", in ACM SIGOPS Adaptable and

Extensible Component Systems, ACM Press, Grenoble, France,

November 2002.

[Burh1992] P. A. Buhr, H. I. Macdonald, and C. R. Zarnke, “Synchronous and

asynchronous handling of abnormal events in the System”, Software:

Practice and Experience, Vol. 22(9), September 1992.

[Burh2000] P. A. Buhr, and W. Y. Mok, “Advanced Exception Handling Mechanisms”,

in IEEE Transactions on Software Engineering, Vol. 26(9), IEEE,

September 2000.

[Cabral2005] B. Cabral, P. Marques, and L. Silva, “RAIL: Code Instrumentation for

.NET”, in Proceedings of the 2005 ACM Symposium On Applied

Computing (SAC'05), ACM Press, Santa Fé, New Mexico, USA, March

2005.

[Cabral2006] B. Cabral, P. Marques, “Making Exception Handling Work” (extended

abstract), in Proceedings of the USENIX Second Workshop on Hot

Topics in System Dependability (HotDep'06) , USENIX, Seattle, USA,

November 2006.

[Cabral2007] B. Cabral and P. Marques, “Exception Handling: A Field Study in Java

and .NET”, in Proceedings of the 21st European Conference on Object-

Oriented Programming (ECOOP ’07), LNCS 4609, Springer-Verlag,

2007.

 BIBLIOGRAPHY 201

[Cabral2007b] B. Cabral, P. Sacramento, P. Marques, “The Hidden Truth Behind .NET

Exception Handling Today”, in IET Software Journal, Vol. 1(6), pp. 223-

250, IET, December 2007.

[Cabral2008] B. Cabral, P. Marques, “A Case For Automatic Exception Handling”, in

Proceedings of the 23rd IEEE/ACM International Conference on

Automated Software Engineering, IEEE Computer Society Press,

L'Aquila, Italy, September 2008.

[Cabral2009] B. Cabral, P. Marques, “Implementing Retry – featuring AOP”, in

Proceedings of the Latin-American Symposium on Dependable

Computing (LADC’09), , IEEE Computer Society Press, João Pessoa,

Paraíba, Brazil, September 2009.

[Campbell1983] R. H. Campbell, T. Anderson, B. Randell, “Practical Fault Tolerance

Software for Asynchronous Systems”, in IPAC Safecomp’83, Cambridge,

UK, 1983.

[Campbell1986] R. H. Campbell, B. Randell, “Error Recovery in Asynchronous Systems”,

in IEEE Transactions on Software Engineering, Vol. SE-12(8), 1986.

[Carlstrom2006] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C.

Kozyrakis, and K. Olukotun, “The Atomos transactional programming

language”, SIGPLAN Notices Vol. 41(6), Jun. 2006.

[Caseu1987] Y. Caseau, "Etude et realisation d'un langage objet: LORE", PhD

dissertation, Paris XI University, Orsay, November 1987.

[Charles2005] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K.

Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented approach

to non-uniform cluster computing”, in ACM Conference on Object

Oriented Programming Systems Languages and Applications, 2005.

[Chang2009] H. Chang, L. Mariani, and M. Pezze, “In-field healing of integration

problems with COTS components”, in Proceedings of the 2009 IEEE 31st

International Conference on Software Engineering, IEEE CS Press,

Washington, DC, 2009.

202 BIBLIOGRAPHY

[Cheng2005] Y. C. Cheng, C. Chen, and J. Jwo, “Exception Handling: An Architecture

Model and Utility Support”, in Proceedings of the 12th Asia-Pacific

Software Engineering Conference (APSEC’05), Taiwan, China,

December, 2005.

[Chiba2000] S. Chiba, “Load-Time Structural Reflection in Java”, in Proceedings of the

European Conference on Object-Oriented Programming (ECOOP’00),

Springer-Verlag, LNCS 1850, Sophia Antipolis and Cannes, France,

June 2000.

[CodeProj2008] “The Code Project – Free Source Code and Tutorials”, available at:

http://www.codeproject.com/.

[CpSphere2008] “CpSphere Email Component for .NET”, available at:

http://www.codeproject.com/dotnet/cpSphereEmailComponent.asp

[Cristian1979] F. Cristian, “A recovery mechanism for modular software”, in Proceedings

of the 4th International Conference on Software Engineering,

Piscataway, IEEE Press, New Jersey, 1979.

[Cristian1980] F. Cristian, “Exception Handling and Software Fault Tolerance”, In

Proceedings of FTCS-25, 3, IEEE, 1996 (reprinted from FTCS-IO 1980,

97-103).

[Chistian1995] F. Cristian, “Exception handling and tolerance of software faults”, In

Software Fault Tolerance, Wiley, 1995.

[Cui1992] Q. Cui, and J. Gannon, “Data-Oriented Exception Handling”, in IEEE

Transactions on Software Engineering, Vol. 18(5), May 1992.

[Dahl1972] O-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, “Structured

Programming”, Academic Press, New York, N.Y., 1972.

[Dahm1999] M. Dahm, “Byte Code Engineering”, in Java-Informations-Tage,

Springer-Verlag, Dusseldorf, Germany, September 1999.

[Deline2001] R. Deline, and M. Fahndrich, “Enforcing high-level protocols in low-level

software”, in Proceedings of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, June 2001.

 BIBLIOGRAPHY 203

[Dijkstra1968] E. W. Dijkstra, “The structure of the 'THE'-multiprogramming system”, in

Communications of the ACM, Vol. 11(5), ACM Press, May 1968.

[Doshy2003] G. Doshy, “Best Practices for Exception Handling”, in ONJava.com,

O’Reilly, 2003, accessed 2008/04/01, available at:

http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.htm

l .

[Eastlake1968] D. Eastlake, R. Greenblatt, J. Holloway, T. Knight, and S. Nelson, “ITS

1.5 Reference Manual”, in AI Memo 161, MIT Artificial Intelligence

Laboratory, Cambridge, Massachusetts, June 1968. Revised as Memo

161A, July 1969.

[Eastlake1972] D. Eastlake, “ITS Status Report”, in AI Memo 238, MIT Artificial

Intelligence Laboratory, Cambridge, Massachusetts, April 1972.

[Elrad2001] T. Elrad, R. E. Filman, and A. Bader, “Aspect-Oriented Programming”, in

Communications of the ACM, Vol. 44(10), ACM Press, New York,

New York, USA, October 2001.

[Fetzer2004] C. Fetzer, P. Felber, and K. Hogstedt, “Automatic detection and masking

of nonatomic exception handling”, in IEEE Transactions on Software

Engineering, IEEE Press, 2004.

[Fetzer2007] C. Fetzer and P. Felber, “Improving Program Correctness with Atomic

Exception Handling”, in Journal of Universal Computer Science, Vol.

13(8), 2007.

[Filho2005] F. Filho, C. Rubira, and A. Garcia, “A Quantitative Study on the

Aspectization of Exception Handling”, in Workshop on Exception

Handling in Object-Oriented Systems (held in ECOOP 2005), Glasgow,

Scotland, July 2005.

[Filho2006] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia, and C. M.

F. Rubira, “Exceptions and aspects: the devil is in the details”, in

Proceedings of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, ACM Press, New York, NY,

USA, 2006.

204 BIBLIOGRAPHY

[Filho2007] F. C. Filho, A. Garcia, and C. M. F. Rubira, “Error handling as an aspect”,

in Proceedings of the 2nd workshop on Best Practices in Applying

Aspect-Oriented Software Development, ACM Press, New York, NY,

USA, 2007.

[Gamma1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:

elements of reusable object-oriented software”, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1995.

[Garcia2001] A. Garcia, C. Rubira, A. Romanovsky, and J. Xu, “A Comparative Study

of Exception Handling Mechanisms for Building Dependable Object-

Oriented Software”, in The Journal of Systems and Software, Vol. 59(2),

2001.

[GarciaMol1987] H. Gracia-Molina, and K. Salem, “Sagas”, in Proceedings of the ACM

Conference on Management of Data, ACM Press, New York, 1987.

[Garthwaite1998] A. Garthwaite and S. Nettles, “Transactions for Java”, in Proceedings of

the International Conference in Computer Languages, IEEE Press,

Chicago, Illinois, USA, 1998.

[Gehani1992] N. H. Gehani, “Exceptional C or C with Exceptions”, Software: Practice

and Experience, Vol. 22(10), October 1992.

[Goldberg1989] A. Goldberg, and D. Robson, "Smalltalk-80: The Language", Addison-

Wesley, 1989.

[Golomb1965] S. W. Golomb, and L. D. Baumert, “Backtrack programming”, Journal of

ACM, Vol. 12(4), October 1965.

[Goodenough1975] J. B. Goodenough, “Exception handling: issues and a proposed notation”,

In Communications of the ACM, Vol. 18(12), ACM Press, December

1975.

[Gosling2005] J. Gosling, B. Joy, G. Steele, and G. Bracha, “The Java(TM) Language

Specification”, 3rd Edition, Prentice Hall , June 2005.

[Gray1993] J. N. Gray, A. Reuter, “Transaction Processing: Concepts and Techniques”,

Morgan Kaufmann, San Mateo, California, 1993.

 BIBLIOGRAPHY 205

[Gunnerson2000] E. Gunnerson, “C# and exception specifications”, Microsoft, 2000,

available at:

http://discuss.develop.com/archives/wa.exe?A2=ind0011A&L=DOT

NET&P=R32820 .

[Hamming1950] R. W. Hamming, “Error Detecting and Error Correcting Codes”, In The

Bell System Technical Journal, American Telephone and Telegraph

Company, New York, April 1950.

[Haines1994] N. Haines, D. Kindred, J. G. Morrisett, A. M. Nettles, J. M. Wing,

“Composing First-Class Transactions”, in ACM Transactions on

Programming Languages and Systems, Vol. 16(6), 1994.

[Halstead1985] R. Halstead, “Multilisp: a language for concurrent symbolic computation”,

in ACM Transactions on Programming Languages and Systems, Vol.

7(4), 1985.

[Hindman2006] B. Hindman and D. Grossman, “Atomicity via source-to-source

translation”, in The 2006 workshop on Memory system performance

and correctness, ACM Press, 2006.

[Hoare1973] C. A. R. Hoare, “Parallel programming: an axiomatic approach”, STAN-

CS-73-394, AD769674, Department of Computer Science, Stanford

University, October 1973.

[Horning1974] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith and B. Randell, “A

Program Structure for Error Detection and Recovery”, in Proceedings of

the Conference on Operating Systems, LCNS, Vol. 16, Springer-Verlag,

London, 1974.

[IBM1968] International Business Machines (IBM), “IBM System/360 PL/I Reference

Manual”, SRL Form C28-8201-1, 1968.

[IBM1981] International Business Machines (IBM), “OS and DOS PL/I Reference

Manual”, 1st Edition, September 1981.

[IBM2008] International Business Machines (IBM), Jikes Compiler Homepage,

available at: http://jikes.sourceforge.net/.

206 BIBLIOGRAPHY

[Issarny1993] V. Issarny, “An Exception Handling Mechanism for Parallel Object-

Oriented Programming: Towards Reusable, Robust Distributed Software”,

in Journal of Object-Oriented Programming, Vol. 6(6), 1993.

[ISO23270:2006] ISO/IEC, “Information Technology – Programming Languages - C#”, 2nd

Edition, ISO/IEC, Switzerland, 2006.

[ISO23271:2006] ISO/IEC, “Information Technology – Common Language Infrastructure

(CLI) Partition I to VI”, 2nd Edition, ISO/IEC, Switzerland, 2006.

[ISO8652:1995] Intermetrics (Ed.), “Information Technology - Programming Languages –

Ada”, ISO/IEC 8652:1995(E), 1995.

[Jalote1994] P. Jalote, “Fault Tolerance in Distributed Systems”, Prentice-Hall, Inc,

Upper Saddle River, NJ, USA, 1994.

[Javacc2008] Javacc - Java Compiler Compiler, available at:

https://javacc.dev.java.net/.

[JBoss2009] JBoss Community, “JBoss”, 2009, available at:

http://www.jboss.org/about.html .

[Jimenez2000] R. Jimenez-Peris, M. Patino-Martinez, S. Arevalo, “TransLib: An Ada 95

Object Oriented Framework for Building Transactional Applications”, in

Computer Systems: Science & Engineering Journal, Vol. 15(1), 2000.

[JSR166] JSR166: Concurrency utilities, Sun Microsystems, available at:

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency.

[JWAM2008] JWAM web site, 2008, available at: http://www.c1-

wps.de/nc/loesungen/jwam/?sword_list[0]=jwam .

[Kienzle2001a] J. Kienzle, A. Romanovsky, “Combining Tasking and Transactions: Open

Multithreaded Transactions”, Ada Letters, Vol. 21(1), 2001.

[Kienzle2001b] J. Kienzle, A. Strohmeier, and A. Romanovsky, “Open Multithreaded

Transactions: Keeping Threads and Exceptions under Control", in

Proceedings of the Sixth International Workshop on Object-Oriented

Real-Time Dependable Systems (WORDS'01), IEEE Computer Society,

Los Alamitos, CA, USA, 2001.

 BIBLIOGRAPHY 207

[Kiczales1997] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.

Loingtier, and J. Irwin, “Aspect-Oriented Programming”, in Proceedings

of the 11th European Conference on Object-Oriented Programming

(ECOOP ‘97), Springer-Verlag, Finland, 1997.

[Kimmel2001] P. Kimmel, “Delphi 6 Developer's Guide”, McGraw-Hill School

Education Group, 2001.

[Knowgate2006] Knowgate, “Hipergate: Free CRM Groupware and Intranet Software”,

2009, available at: http://www.hipergate.org/ .

[Knudsen1984] J. L. Knudsen, “Exception handling - a static approach”, in Software:

Practice and Experience, Vol. 14(5), May 1984.

[Knudsen1987] J. L. Knudsen, “Better exception handling in block structured systems”, in

IEEE Software, Vol. 4(3), May 1987.

[Koenig1990] A. Koenig, and B. Stroustrup, “Exception handling in C++”, in the

Journal of Object-Oriented Programming, Vol. 3(2), July/August 1990.

[Koenig1993] A. Koenig, B. Stroustrup, “Exception handling for C++”, in The

evolution of C++: language design in the marketplace of ideas, MIT

Press, 1993.

[Korth1990] H. F. Korth, E. Levy, and A. Silberschatz, “A formal approach to recovery

by compensating transactions”, Technical Report, UMI Order Number:

CS-TR-90-14., University of Texas at Austin.

[KurkiSuonio1997] R. Kurki-Suonio, T. Mikkonen, “Liberating object-oriented modeling from

programming-level abstractions”, in Proceedings of the Workshops on

Object-Oriented Technology, LNCS 1357, Springer-Verlag, London,

1997.

[Lang1998] J. Lang, D. Stewart, “A Study of the Applicability of Existing Exception

Handling Techniques to Component-Based Real-Time Software Technology”,

ACM Transactions on Programming Languages Systems, Vol. 20(2),

March 1998.

208 BIBLIOGRAPHY

[Lanvin2009] D. Lanvin, R. I. Castanedo, A. Fuente, A. Álvarez, “Extending object-

oriented languages with backward error recovery integrated support”, in

Computer Languages, Systems & Structures, Elsevier Ltd., May 2009.

[Laprie1987] J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, and C. Hourtolle,

“Hardware and software fault-tolerance: definition and analysis of

architectural solutions”, in Proceedings of the 17th International

Symposium on Fault-Tolerant Computing, IEEE, 1987.

[Laprie1990] J. C. Laprie, J. Arlat, C. Beounes, K. Kanoun, “Definition and Analysis of

Hardware- and Software-Fault-Tolerance Architectures”, IEEE Computer,

Vol. 23(7), 1990.

[Laprie1995a] J. C. Laprie, J. Arlat, C. Béounes, K. Kanoun, “Architectural Issues in

Software Fault Tolerance”, Software Fault Tolerance, John Wiley & Sons,

1995.

[Laprie1995b] J. C. Laprie, “Dependable Computing: Concepts, Limits, Challenges”, in

Proceedings of the 25th IEEE International Symposium on Fault-

Tolerant Computing - Special Issue, Pasadena, California, USA, IEEE,

1995.

[Lemos2001] R. de Lemos, and A. B. Romanovsky, “Exception Handling in the

Software Lifecycle”, in International Journal of Computer Systems

Science and Engineering, Vol. 16(2), 2001.

[Levin1977] R. Levin, "Program structures for exceptional condition handling", Ph.D.

dissertation, Dep. Computer Science, Carnegie-Mellon University,

Pittsburgh, PA, June 1977.

[Limewire2009] Lime Wire LLC, ”Limewire”, 2009, available at:

http://www.limewire.com .

[Lippert2000] M. Lippert, C. V. Lopes, “A Study on Exception Detection and Handling

Using Aspect-Oriented Programming”, in Proceedings of the 22nd

International Conference on Software Engineering (ICSE 2000), ACM

Press, New York, NY, USA, 2000.

 BIBLIOGRAPHY 209

[Liskov1972a] B. H. Liskov, “A design methodology for reliable software systems”, in

Proceedings of the AFIPS Fall Joint Computer Conference, Vol. 41(1),

AFIPS Press, Montvale, N. J., 1972.

[Liskov1972b] B. H. Liskov, “The design of the VENUS operating system”, in

Communications of the ACM, Vol. 15(3), ACM Press, March 1972.

[Liskov1974] B. H. Liskov, and S. Zilles, “Programming with abstract data types”, in

SIGPLAN Notices (ACM Newsletter), Vol. 9(4), April 1974.

[Liskov1979] B. H. Liskov, and A. Snyder, “Exception Handling in CLU”, in IEEE

Transaction on Software Engineering, Vol. SE-5(6), 1979.

[Liskov1988] B. H. Liskov, “Distributed Programming in Argus”, in Communications

of the ACM, Vol. 31(3), 1988.

[Lopes1998] C. Lopes, G. Kiczales, “Recent Developments in AspectJ”, in European

Conference on Object-Oriented Programming (ECOOP ’98) Workshop

Reader, Springer-Verlag, 1998.

[Madsen1993] O. Madsen, B. Møller-Pedersen, and K. Nygaard, “Object-oriented

Programming in the BETA Programming Language”, Addison-Wesley,

1993.

[Malayeri2006] D. Malayeri, and J. Aldrich, “Practical exception specifications”, in

Advanced Topics in Exception Handling Techniques, LCNS 4119,

Springer-Verlag, New York, 2006.

[Martin2006] M. Martin, C. Blundell and E. Lewis, “Subtleties of Transactional

Memory Atomicity Semantics”, in IEEE Computer Architecture

Letters, Vol. 5(2), IEEE Press, 2006.

[McCarthy1965] J. McCarthy, P. W. Abrams, D. J. Edwards, T. P. Hart, and M. Levin,

“LISP 1.5 Programmers Manual”, MIT Press, 1965.

[McConnel2004] S. McConnel, “Code Complete”, 2nd Edition, Microsoft Press, Redmond,

WA, USA, 2004.

[McCune2006] T. McCune, “Exception-Handling Antipatterns”, in Java.net, Sun

Microsystems, Inc., O’Reilly, and Collabnet, 2006, available at:

210 BIBLIOGRAPHY

http://today.java.net/pub/a/today/2006/04/06/exception-

handling-antipatterns.html .

[Meyer1988] B. Meyer, “Object-Oriented Software Construction”, Prentice-Hall, 1988.

[Microsoft2008] Microsoft Visual Studio 2008, Microsoft Corporation, available at:

http://msdn.microsoft.com/en-us/vstudio/default.aspx.

[Miller1997] R. Miller and A. Tripathi, “Issues with exception handling in object-

oriented systems”, in Proceedings of European Conference on Object-

Oriented Programming (ECCOP ’97), LCNS 1241, Springer-Verlag,

1997.

[Miller2002] R. Miller, A. Tripathi, “The guardian model for exception handling in

distributed systems”, in Proceedings of the 21st IEEE Symposium on

Reliable Distributed Systems (SRDS 2002), IEEE, Piscataway NJ, USA,

2002.

[Mitchel1979] J. G. Mitchell, W. Maybury, and R, Sweet, “Mesa language manual”,

Technical Report CSL–79–3, Xerox Palo Alto Research Center, April

1979.

[Mok1997] W. Y. R. Mok, “Concurrent abnormal event handling mechanisms”, M.S.

thesis, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1,

September 1997, available at: ftp://plg.uwaterloo.ca/pub/uSystem/-

MokThesis.ps.gz.

[Mono2008] “Mono”, available at: http://www.go-mono.com.

[Moon1974] D. A. Moon, “MacLISP Reference Manual”, MIT Project MAC,

Cambridge, Massachusetts, April 1974.

[Moss2006] J. Moss and A. Hosking, “Nested Transactional Memory: Model and

Architecture Sketches”, in Science of Computer Programming, Vol.

63(2), Elsevier Science, December 2006.

[Motet1996] G. Motet, A. Mapinard, and J. C. Geoffroy, “Design of Dependable Ada

Software”, Prentice Hall, 1996.

 BIBLIOGRAPHY 211

[Muller2002] A. Müller and G. Simmons, “Exception Handling: Common Problems and

Best Practice With Java 1.4”, in Proceedings of Net.ObjectDays 2002,

Erfurt, Germany, October 2002.

[NAnt2008] “NAnt – A .NET Build Tool”, available at: http://nant.sourceforge.net.

[NDoc2008] “NDoc Code Documentation Generator for .NET”, available at:

http://ndoc.sourceforge.net.

[Nelson1991] G. Nelson (Ed.), “System Programming with Modula-3”, in Prentice Hall

Series in Innovative Technology, ISBN 0-13-590464-1, L.C.

QA76.66.S87, 1991.

[OMG1996] Object Management Group Object Transaction Service, Draft 4, OMG,

OMG Document, 1996.

[Oki1983] B. M. Oki, “Reliable object storage to support atomic actions”, MSc thesis,

MIT Department of EE and CS, May 1983.

[Papurt1998] D. Papurt, “The Use of Exceptions”, in the Journal of Object-Oriented

Programming, 1998.

[Parr2006] T. Parr, “ANTLR – Another Tool for Language Recognition”, University of

San Francisco, 2006, available at: http://www.antlr.org/.

[Pezz2004] M. Pezz, M. Young, "Testing Object Oriented Software", in Proceedings

of the 26th International Conference on Software Engineering

(ICSE'04), 2004.

[Plank1996] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory

Exclusion: Optimizing the Performance of Checkpointing Systems”, in

Software - Practice and Experience, Vol. 29(2), 1996.

[Portland2007] Portland Exception Patterns Repository, accessed 2008/04/01,

available at: http://c2.com/cgi/wiki?ExceptionPatterns .

[Radin1981] G. Radin, “The early history and characteristics of PL/I”, in History of

Programming Languages, Academic Press, 1981.

212 BIBLIOGRAPHY

[Randell1975] B. Randell, “System structure for software fault tolerance”, in Proceedings

of the International Conference on Reliable Software, ACM Press, New

York, NY, USA, 1975.

 [Randell1978] B. Randell, P. Lee, and P. C. Treleaven, “Reliability Issues in Computing

System Design”, in ACM Computing Surveys, Vol. 10(2), ACM Press,

New York, NY, USA, 1978.

[Randell1982] B. Randell, “The Origins of Digital Computers: Selected Papers”, 3rd

Edition, Springer-Verlag, Heidelberg, 1982.

[Randell1995] B. Randell, A. Romanovsky, C. M. F. Rubira-Calsavara, R. J. Stroud, Z.

Wu, and J. Xu, “From Recovery Blocks to Concurrent Atomic Actions”, in

Predictably Dependable Computing Systems, ESPRIT Basic Research

Series, Springer-Verlag, Brussels, 1995.

[Robillard2000] M. P. Robillard, and G. C. Murphy, “Designing robust Java programs

with exceptions”, in Proceedings of the 8th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, Vol. 25(6), ACM

Press, November 2000.

[Romanovsky1999] A. Romanovsky, “On Structuring Cooperative and Competitive

Concurrent Systems”, Computer Journal, Vol. 42(8), 1999.

[Romanovsky2001] A. Romanovsky, and J. Kienzle, “Action-Oriented Exception Handling in

Cooperative and Competitive Concurrent Object-Oriented Systems”, In

Advances in Exception Handling Techniques, LNCS-2022, Springer-

Verlag, 2001.

[Ross1967] D. T. Ross, “The AED free storage package”, in Communications of the

ACM, Vol. 10(8), August 1967.

[Ryder2003] B. G. Ryder, M. L. Soffa, “Influences on the design of exception handling:

ACM SIGSOFT project on the impact of software engineering research on

programming language design”, in SIGPLAN Notices, Vol. 38(6), ACM

Press, 2003.

[Sacramento2006] P. Sacramento, B. Cabral, and P. Marques, “Unchecked Exceptions: Can

the Programmer be Trusted to Document Exceptions?”, in Proceedings of

 BIBLIOGRAPHY 213

the International Conference on Innovative Views of .NET

Technologies (IVNET'06), Springer-Verlag, October 2006.

[Scott1987] R. K. Scott, J. W. Gault, and D. F. McAllister, “Fault-Tolerant Software

Reliability Modeling”, in IEEE Transactions on Software Engineering,

Vol. SE-13(5), May 1987.

[Shah2008a] H. Shah, C. Görg, and M. J. Harrold, “Why do developers neglect

exception handling?”, in Proceedings of the 4th international Workshop

on Exception Handling, WEH '08, ACM Press, New York, NY, 2008.

[Shah2008b] H. Shah, C. Görg, and M. J. Harrold, “Visualization of exception handling

constructs to support program understanding”, in Proceedings of the

ACM Symposium on Software Visualization, ACM Press, New York,

NY, 2008.

[SharpZipL2008] “SharpZipLib, The Zip, GZip, BZip2 and Tar Implementation For .NET”,

available at: http://www.icsharpcode.net/OpenSource/

SharpZipLib/Default.aspx.

[Shavit1995] N. Shavit, and D. Touitou, “Software Transactional Memory”, in

Proceedings of the Fourteenth Annual ACM Symposium on Principles

of Distributed Computing, ACM Press, New York, New York, USA,

1995.

[Shinnar2004] A. Shinnar, D. Tarditi, M. Plesko and B. Steensgaard, “Integrating

Support for Undo with Exception Handling”, Microsoft Research,

December 2004.

[Silva1997] A. Silva, J. Pereira, and J. Marques, “Customizable Object Recovery

Pattern”, Pattern Languages of Program Design 3, Addison-Wesley,

1997.

[Sinha1999] S. Sinha, and M. J. Harrold, “Criteria for testing exception-handling

constructs in Java programs”, in Proceedings of the International

Conference on Software Maintenance (ICSM’99), IEEE Computer

Society, available at: http://computer.org/proceedings/icsm/

0016/0016toc.htm, 265–276.

214 BIBLIOGRAPHY

[Sinha2000] S. Sinha, and M. Harrold, “Analysis and Testing of Programs with

Exception-Handling Constructs”, in IEEE Transactions on Software

Engineering, Vol. 26(9), SEPTEMBER 2000.

[Softec1972] SofTech, Inc, AED Programmer's Guide, SofTech, Inc., Waltham,

Massachusetts, 1972.

[SourceFrg2008] “Sourceforge.net”, available at: http://sf.net.

[Sun2004] Sun Microsystems, Inc., Javadoc 1.5.0, Sun Microsystems, Inc., available

at: http://java.sun.com/j2se/javadoc/

[Sun2006] Sun Microsystems, Inc., Enterprise JavaBeans Specification, v.3.0, Sun

Microsystems, Inc. 2006.

[Sun2008] Sun Microsystems, Inc., GlashFish Open Message Queue, available at:

http://java.sun.com/products/jms/.

[Sun2009] Sun Microsystems, Inc., “MySQL”, 2009, available at:

http://www.mysql.com/.

[SSCLI2008] “The Microsoft Shared Source CLI Implementation”, available at:

http://msdn.microsoft.com/net/sscli.

[Steele1993] G. L. Steele Jr., R. P. Gabriel, “The Evolution of Lisp”, in ACM SIGPLAN

Notices, Vol. 28, ACM Press, March 1993.

[Stroustrup1994] B. Stroustrup, “The Design and Evolution of C++”, Addison-Wesley,

1994.

[Tennent1980] R. D. Tennent, “Language design methods based on semantic principles”, in

Acta Infomatica, Vol. 8(2), 1977. Reprinted in Tutorial: Programming

Language Design, A. I. Wasserman (Ed.), Computer Society Press,

1980.

[Tikhomirova1997] N. V. Tikhomirova, I. V. Shturtz, and A. Romanovsky, “Object-oriented

approach to state restoration by reversion in fault tolerant systems”,

Computing Science, Newcastle, University of Newcastle upon Tyne,

United Kingdom, 1997.

 BIBLIOGRAPHY 215

[Utas2004] G. Utas, “Robust Communications Software: Extreme Availability,

Reliability and Scalability for Carrier-Grade Systems”, Wiley, 2004.

[Weimer2008] W. Weimer, and G. C. Necula, “Exceptional situations and program

reliability”, in ACM Transactions on Programming Languages and

Systems, Vol. 30(2), March 2008.

[Wirfs-Brock2006] R. J. Wirfs-Brock, “Towards Exception-Handling Best Practices and

Patterns”, in IEEE Software, Vol. 23 (5), IEEE Computer Society,

September/October 2006.

[Woodger1972] M. Woodger, “On semantic levels in programming”, in Proceedings of

the IFIP World Computer Congress, North-Holland Pub. Co.,

Amsterdam, 1972.

[Xu1995] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, Z. Wu, “Fault

Tolerance in Concurrent Object-Oriented Software through Coordinated

Error Recovery”, in Proceedings of the 25th FTCS - International

Symposium on Fault-Tolerant Computing, Pasadena, USA, 1995.

[Xu1997] J. Xu, and B. Randell, “Software Fault Tolerance: t/(n-1)-Variant

Programming”, in IEEE Transactions on Reliability, Vol. 46(1), March

1997.

[Yemini1985] S. Yemini, D. Berry, “A Modular Verifiable Exception Handling

Mechanism”, in ACM Transactions on Programming Languages and

Systems, Vol. 7(2), 1985.

[Zhang2007a] L. Zhang, C. Krintz, and P. Nagpurkar, “Supporting exception handling

for futures in java”, in Proceedings of the 5th International Symposium

on Principles and Practice of Programming in Java (PPPJ ’07), ACM

Press, New York, NY, USA, 2007.

[Zhang2007b] L. Zhang, C. Krintz, and P. Nagpurkar, “Language and Virtual Machine

Support for Efficient Fine-Grained Futures in Java”, in the 16th

International Conference on Parallel Architectures and Compilation

Techniques (PACT), September 2007.

