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Abstract 

Exception handling mechanisms have been around for more than 30 years. Although 

modern exceptions systems are not very different from the early models, the large majority 

of modern programming languages rely on exception handling constructs for dealing with 

errors and abnormal situations. Exceptions have several advantages over other error 

handling mechanisms, such as the return of error codes or the usage of global state flags. 

Exceptions eliminate, for instance, the semipredicate problem, which occurs when a function 

fails to execute correctly but returns a valid value, thus leaving the caller unaware that an 

error occurred. Furthermore, exception mechanisms give the programmer an efficient error 

notification instrument, allow better recovery strategies based on the rich error data 

available on the exception objects, and allow the programmer to deal with abnormal 

situations in a civilized way. Nonetheless, and despite the mechanism’s broadly 

recognized qualities on handling and recovering from errors, on our work we show that 

programmers are not using exception handling constructs as a recovery mean. Most times, 

when an error occurs, exceptions are silenced or just used to terminate a program in an 

orderly fashion, not really to recover. We show that the strategies for dealing with 

exceptions on non-critical programs are commonly non-existent or serve the final purpose 

of keeping track of problems for later analysis (debugging). Very little effort is normally 

spent trying to understand exceptions, their causes, and planning recovery actions. As a 

result, the amount of code found in these applications that is exclusively dedicated to 

exception handling is usually reduced. This is an unexpected fact. We would anticipate a 

much larger chunk of code dedicated to exception handling if we consider that: a) Simple 

operations, such as accessing a file on disk or sending a query to a database, can raise a 

large number of different exceptions; b) Each different exception type can have several 

distinct handling actions that may vary with location and time; c) Code for handling an 

exception can be as or more complex as the code raising the exception; d)  In some 

programming languages (e.g., Java) it is mandatory to handle exceptions and declare their 

existence. 

The unwillingness of software designers to correctly deal with exceptions and follow some 

well known best-practices for exception handling contributes to the lowering of the quality 

of programs and their resilience to errors. The premise for our work is that something is 

not right with current exception handling models: they are not adequate enough for 

developers. The problem is even more worrisome if we consider that programming 
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languages designers often neglect the exception mechanism and look at it more like an 

add-on for their language instead of a central part. As a consequence, software quality 

suffers as programmers feel that the task of writing good error handling code is too 

complex, unattractive and inefficient.  

In this dissertation we propose a new model that automates the handling of exceptions by 

the runtime platform. The Automatic Exception Handling (AEH) model frees the 

programmer from having to write exception handling code and, at the same time, 

successfully increases the resilience of programs to abnormal situations. The case for 

automatic exception handling is that, for the majority of situations, benign recovery blocks 

of code should be part of the runtime platform and should be automatically executed 

when exceptions are raised. By doing so, the programmer is freed from the “burden” of 

writing exception handling code for a large number of situations. 

The proposed model is influenced by three fundamental concepts: Exception Handling; 

Software Transactional Memory (STM); and Recovery Blocks. We incorporate many concepts 

from traditional exception handling models in order to keep the essential features already 

available. But, in broader terms, we allow the user to define handler-free try blocks, while, 

at the same time, we set a transactional environment for the execution of these blocks and 

system-defined recovery blocks. Transactions are essential to our model since they provide 

for atomicity during the execution of protected code blocks and multiple recovery actions. 

Furthermore, they provide a simple and transparent way of eliminating the effects of failed 

recovery blocks executions. Our model guarantees that there are no collateral effects 

arising from the execution of multiple recovery blocks, when it is necessary to execute 

several of these blocks in order to handle an exception that is repetitively being raised 

inside a protected block. On the other hand, not all recovery has to be done automatically. 

The programmer may still deal with a situation on his own, if he or she wishes to do so. 

We conclude this thesis by describing and testing an implementation of the proposed 

model. The results of our experiments are very promising. We obtained a substantial 

decrease on the amount of exception handling that has to be coded (less 30%), the 

reliability of programs was improved, and the performance penalty was negligible. 

Moreover, we were able to propose recovery actions for more than 60% of the exception 

types we analyzed. We show that the automatic exception handling model: a) can be 

implemented and incorporated onto existent platforms; b) is easily and almost 

transparently integrated with object-oriented languages; c) is effective on reducing the 

amount of exception handling code that programmers have to produce; d) has the 
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potential to avoid some programming bad practices in terms of reliability and improve the 

quality of code; e) can reduce development time; and, f) effectively increases the resilience 

of a system in the presence of errors. 



Resumo 

Os primeiros mecanismos de detecção e tratamento de excepções surgiram há quatro 

décadas. Curiosamente, apesar dos mecanismos actuais não serem muito diferentes dos 

primeiros modelos, a grande maioria das linguagens de programação modernas confia 

nestes para lidar com erros e situações anormais. As excepções apresentam múltiplas 

vantagens quando comparadas com outros mecanismos de detecção e tratamento de erros, 

como por exemplo, a utilização de códigos de erro e variáveis de estado globais. As excepções 

eliminam o problema dos semi-predicados, caracterizado por funções que mesmo 

executando incorrectamente devolvem um valor válido, impossibilitando assim a detecção 

do problema. O mecanismo de excepções dá ao programador os meios para comunicar e 

detectar a ocorrência de situações anormais, permite a definição de estratégias de 

recuperação mais elaboradas (com base na informação existente nos objectos que 

representam excepções), e permite ao programador lidar com situações anormais de uma 

forma civilizada. No entanto, e apesar das reconhecidas qualidades do mecanismo na 

detecção e tratamento de situações anormais, os programadores não estão a utilizar os 

mecanismos de tratamento de excepções como ferramentas para recuperar o estado dos 

programas após a ocorrência de um de erro. Na maioria dos casos, quando ocorre um erro, 

as excepções são silenciadas ou utilizadas apenas para terminar o programa de uma forma 

ordenada. 

Neste trabalho, mostramos que as estratégias para tratamento de excepções em sistemas 

não críticos não existem ou servem apenas o propósito final de manter registo dos 

problemas para posterior análise (depuração ou “debugging”.) Os programadores dedicam 

pouco tempo a tentar compreender as excepções, a sua origem e a planear métodos de 

recuperação. Como resultado, a percentagem de código nestas aplicações exclusivamente 

dedicado ao tratamento de excepções é muito reduzida. Este facto é inesperado se 

considerarmos que: a) até mesmo operações simples, como aceder a um ficheiro em disco 

ou executar uma pesquisa numa base de dados, podem originar um grande número de 

excepções; b) o mesmo tipo de excepção pode requerer diferentes tratamentos e estes 

podem variar com o momento ou localização do evento anormal; c) o código para 

tratamento de uma excepção pode ser tão ou ainda mais complexo que o código que 

originou a excepção; d) em algumas linguagens de programação (e.g., Java) o tratamento 

de excepções ou a declaração da sua existência é obrigatório. 



  xiii 

 
 
Este comportamento negligente, por parte dos programadores, parece evidenciar que os 

mecanismos de tratamento de excepções actuais não se adequam ao perfil dos seus 

utilizadores. Os programadores consideram a escrita de código de tratamento de 

excepções uma tarefa complexa, ineficiente e pouco atraente. Esta situação é ainda mais 

preocupante, tendo em conta que, normalmente, os projectistas de linguagens de 

programação olham para os mecanismos de tratamento de excepções como um 

componente periférico ao seu sistema e não como uma parte central. Consequentemente, a 

qualidade do software irá sofrer.  

Nesta dissertação propomos um novo modelo de tratamento de excepções que automatiza 

o tratamento de situações anormais e o torna numa responsabilidade da plataforma de 

execução. O nosso modelo liberta o programador da tarefa de escrever código para lidar 

com erros ou situações inesperadas e, simultaneamente, aumenta a resiliência dos 

programas aos erros. O modelo de Tratamento Automático de Excepções (TAE) 

proporciona uma forma efectiva de lidar com excepções sem interferir com a 

produtividade dos programadores. Para um grande número de excepções é possível que a 

própria plataforma de execução forneça, aquando de uma excepção, blocos de código de 

recuperação benignos capazes de recuperar o estado de um programa e permitir a 

continuação da execução. Desta forma, os programadores ficam livres da tarefa de escrever 

código de tratamento para um grande número de excepções. 

O modelo proposto tem por base três fontes de influência muito díspares: os modelos de 

tratamento de excepções existentes; o mecanismo de blocos de recuperação; e o mecanismo de 

memória transaccional por software. De forma a preservar algumas funcionalidades já 

existentes, incorporámos no nosso modelo muitos conceitos associados aos mecanismos de 

tratamento de excepções mais eficientes. No entanto, permitimos que o programador 

defina blocos try{} sem ter de criar blocos de tratamento associados (e.g., blocos catch ou 

finally) e, simultaneamente, definimos um ambiente de execução transaccional para 

esses blocos try e para os blocos de recuperação de excepções automáticos implementados 

ao nível do sistema. As transacções são essenciais ao nosso modelo, sendo que, garantem a 

atomicidade da execução dos blocos try{} e dos múltiplos blocos de recuperação. Mais 

importante ainda, é o facto das transacções permitirem eliminar de uma forma limpa e 

transparente, os efeitos da execução de blocos de código onde ocorreram excepções.  

O ambiente de execução transaccional assume uma importância ainda maior quando 

constatamos que a forma de recuperar de uma excepção, apesar de ser correcta numa 
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situação, pode mostrar-se totalmente inadequada noutra, para o mesmo tipo de excepção. 

Assim, em certas ocasiões, será necessário experimentar diferentes tipos de tratamento 

antes de o sistema conseguir recuperar da excepção. O nosso modelo assegura que quando 

é necessário executar mais do que um bloco de recuperação, de forma a eliminar uma 

excepção reincidente dentro do bloco de código protegido, não irão existir efeitos colaterais 

da execução dos vários blocos de recuperação ou das várias tentativas de execução do 

bloco de código protegido. Por outro lado, o tratamento de excepções não tem de ser 

totalmente automático. O programador pode optar por ser ele a definir o tratamento para 

uma ocorrência excepcional específica, se assim o preferir. 

Concluímos esta dissertação com a discussão, teste e validação de uma implementação do 

modelo proposto. Os nossos testes mostram que é possível obter uma redução substancial 

na quantidade de código de tratamento de excepções que é necessário escrever (menos 

30%). Também é perceptível um aumento assinalável na resiliência aos erros dos 

programas analisados. Além destas melhorias, foi possível observar que o impacto da 

utilização do novo modelo na performance dos sistemas estudados pode ser considerado 

negligenciável. Finalmente, para provar que é exequível a criação de acções para 

recuperação automática de excepções ao nível do sistema, desenvolvemos um conjunto 

acções benignas capazes de lidar com mais de 60% dos tipos de excepções analisados. No 

geral, mostramos que o modelo de tratamento automático de excepções: a) é passível de 

ser implementado e incorporado em plataformas de execução e desenvolvimento já 

existentes; b) é facilmente e quase de forma transparente integrável com linguagens de 

programação orientadas-aos-objectos; c) é eficaz a reduzir a quantidade de código dedicada 

ao tratamento de excepções que os programadores têm de escrever; d) tem potencial para 

melhorar a qualidade do código final das aplicações e evitar que o programador “caia” em 

más práticas de programação no que diz respeito à robustez dos programas; e) pode 

reduzir os tempos de desenvolvimento; e, por último, f) aumentar globalmente a robustez 

de um sistema. 



Acknowledgments 

The conclusion of this work is, without any doubt, among the most important moments of 

my life. Therefore, I can not let it pass without thanking everyone that accompanied me 

through these years and that supported me unconditionally. 

I would like to start by thanking my advisor, Professor Paulo Marques, without whom I 

would not be concluding this work. He was responsible for opening to me the doors of this 

“curious” world of research. First, when he invited me to work as developer on the RAIL 

project, and later when he challenged me to do this PhD. But, above all, I want to thank 

him the privilege that was for me to work and learn with someone that lives his work with 

such an intense way and that shows an energy, knowledge, wisdom, dedication, and 

enthusiasm hard to beat. 

I also wish to thank Professor Luís Silva for taking me as his student on the early stages of 

this dissertation and for the trust that he always put on my work. I am also truly grateful 

to Paulo Sacramento and Hugo Matos for their contribution to this dissertation. Both 

developed part of the software used on the studies and tests that we performed. Paulo also 

conducted his graduation work with me and co-authored two articles. I also want to 

acknowledge Patrício Domingues, my lab colleague, which with whom was a joy to work! 

Finally, I want to thank my lovely wife Rita for making me happy. I am also deeply 

thankful to my parents, my sister and all my family for their amazing support and care. I 

also wish to thank my friends, whose contributions took many different forms and were 

more significant than they probably realize - Dorita, Granjal, Barreto, Ana, Joana, 

Sebastião, Lúcia, Dulce, Jorge, Cláudio Jorge and Ana Pinto, I thank you all. 

 





Table of Contents 

ABSTRACT ....................................................................................................................................... IX 

RESUMO ..........................................................................................................................................XII 

ACKNOWLEDGMENTS..............................................................................................................XV 

TABLE OF CONTENTS ............................................................................................................ XVII 

LIST OF FIGURES........................................................................................................................ XIX 

LIST OF TABLES.......................................................................................................................... XXI 

LIST OF CODE SAMPLES ...................................................................................................... XXIII 

1. INTRODUCTION .................................................................................................................... 1 
1.1. Motivation ..................................................................................................................... 2 

1.1.1. A first glance at exception handling mechanisms.............................................. 4 
1.1.2. Exception Handling Design Issues ....................................................................... 9 

1.2. Research Objectives................................................................................................... 21 
1.3. Contributions.............................................................................................................. 22 
1.4. Structure of the Dissertation ................................................................................... 22 

2. CURRENT APPROACHES TO EXCEPTION HANDLING ......................................... 25 
2.1. Introduction................................................................................................................. 26 

2.1.1. First efforts in the definition of a standard notation........................................ 27 
2.2. Handling models: features and propagation ....................................................... 30 

2.2.1. Handling models.................................................................................................... 31 
2.2.2. Features.................................................................................................................... 33 

2.3. Evaluation and quality metrics ............................................................................... 52 
2.3.1. Evaluation ............................................................................................................... 53 
2.3.2. Quality requirements ............................................................................................ 59 

2.4. Backward error recovery........................................................................................... 62 
2.5. Real-time concerns..................................................................................................... 65 
2.6. Other approaches ....................................................................................................... 66 

2.6.1. Aspect Oriented Programming ........................................................................... 67 
2.6.2. Exception handling for Futures........................................................................... 68 
2.6.3. Compensation stacks............................................................................................. 70 

2.7. Summary...................................................................................................................... 73 

3. A FIELD STUDY IN EXCEPTION HANDLING............................................................. 77 
3.1. Introduction................................................................................................................. 78 
3.2. Programming with exceptions ................................................................................ 81 

3.2.1. Methodology........................................................................................................... 81 
3.2.2. Results...................................................................................................................... 86 



xviii TABLE OF CONTENTS 

 

3.2.3. Related work .........................................................................................................108 
3.3. Documenting exceptions ........................................................................................113 

3.3.1. Motivation .............................................................................................................113 
3.3.2. Methodology and Tools ......................................................................................115 
3.3.3. Results ....................................................................................................................120 

3.4. Summary.....................................................................................................................126 

4. AUTOMATIC EXCEPTION HANDLING: A PROPOSAL .........................................129 
4.1. Introduction ...............................................................................................................130 
4.2. The Model ..................................................................................................................131 

4.2.1. Benign Recovery Actions ....................................................................................133 
4.2.2. Programming Model............................................................................................136 
4.2.3. Transactional System ...........................................................................................138 
4.2.4. Exception Parameters ..........................................................................................142 
4.2.5. Exception Handling Model Features ................................................................144 

4.3. Related Work.............................................................................................................149 
4.4. Summary.....................................................................................................................153 

5. IMPLEMENTATION AND VALIDATION....................................................................155 
5.1. Introduction ...............................................................................................................156 
5.2. Framework implementation...................................................................................156 

5.2.1. The STM Library...................................................................................................161 
5.2.2. The AEH Class Loader ........................................................................................164 

5.3. Validation and Testing............................................................................................171 
5.3.1. Source Code...........................................................................................................172 
5.3.2. Resilience ...............................................................................................................174 
5.3.3. Recovery Actions..................................................................................................180 

5.4. The Perfect Exception Handling Model ..............................................................186 
5.5. Summary.....................................................................................................................188 

6. CONCLUSION ......................................................................................................................189 
6.1. Overview ....................................................................................................................189 
6.2. Contributions ............................................................................................................189 
6.3. Future Work ...............................................................................................................189 

LIST OF PUBLICATIONS ...........................................................................................................189 

BIBLIOGRAPHY............................................................................................................................189 



 

List of Figures 

Figure 1.1 – Example of source code in Java using exception handling constructs ................ 5 
Figure 1.2 – A simplified flowchart for exception propagation outside try{} blocks.......... 8 
Figure 1.3 – A simplified flowchart for exception propagation from inside a try{} block . 9 
Figure 2.1 – Label variables usage example ................................................................................. 30 
Figure 2.2 – Java code exemplifying the termination model ..................................................... 31 
Figure 2.3 – Retry model exemplified with Eiffel notation........................................................ 32 
Figure 2.4 – Resumption model exemplified with Smalltalk notation .................................... 33 
Figure 2.5 – Coordinated Atomic Actions scheme overview .................................................... 51 
Figure 3.1 – Amount of exception handling code ....................................................................... 87 
Figure 3.2 – Catch handler actions for .NET programs. ........................................................... 90 
Figure 3.3 – Catch handler actions for Java programs.............................................................. 92 
Figure 3.4 – Count of actions for Finally handlers in .NET programs. ............................... 93 
Figure 3.5 – Count of actions for Finally handlers in Java programs. ................................. 94 
Figure 3.6 – .NET classes being used as catch arguments.......................................................... 96 
Figure 3.7 – Java classes being used as catch arguments. .......................................................... 97 
Figure 3.8 – Handler actions distribution for the most used catch handler classes. ............. 98 
Figure 3.9 – Most commonly handled exception types in .NET. ............................................ 102 
Figure 3.10 – Most commonly handled exception types in Java............................................. 103 
Figure 3.11 – Call stack levels for caught exceptions................................................................ 104 
Figure 3.12 – Handlers size in number of IL code instructions for .NET. ............................. 105 
Figure 3.13 – Number of catch handlers per protected block. ................................................ 107 
Figure 3.14 –Automatic documentation of an exception using specialized tags. ................ 114 
Figure 3.15 – Dictionary: IL instruction/opcode/list of exceptions....................................... 117 
Figure 3.16 – Scheme of the code analysis process.................................................................... 118 
Figure 3.17 – Documentation of exceptions in four different assemblies. ............................ 123 
Figure 4.1 – The runtime system provides recovery................................................................. 138 
Figure 4.2 – Passing parameters to recovery blocks. ................................................................ 142 
Figure 5.1 – AEH system architecture. ........................................................................................ 158 
Figure 5.2 – Loading and running applications using the AEH. ............................................ 159 
Figure 5.3 – Eclipse plug-in. .......................................................................................................... 170 
Figure 5.4 – Configuration interface. ........................................................................................... 171 
Figure 5.5 – Testing framework.................................................................................................... 174 
Figure 5.6 – Analysis of the executions times. ........................................................................... 178 
Figure 5.7 – Description of the experience.................................................................................. 179 
Figure 5.8 – JMeter workload run summary. ............................................................................. 180 





 

List of Tables 

Table 1.1 – Exception handling best practices.............................................................................. 14 
Table 1.2 – Exception handling antipatterns. ............................................................................... 16 
Table 1.3 – Exception handling and the object-oriented paradigm.......................................... 19 
Table 2.1 – Identification of the exception handling models evaluation items. ..................... 53 
Table 3.1 – Applications listed by group. ..................................................................................... 83 
Table 3.2 – List of Assemblies and Java Packages analyzed...................................................... 85 
Table 3.3 – Description of the Handler’s actions categories. ..................................................... 89 
Table 3.4 – Java and .NET exception classes for bytecode and IL code instructions........... 101 
Table 3.5 – Number of protected blocks, catch handlers and finally handlers. ................... 106 
Table 3.6 – Usage of Unchecked exceptions in Java catch handlers....................................... 107 
Table 3.7 – Group Characterization. ............................................................................................ 119 
Table 3.8 – Assemblies used in the study. .................................................................................. 119 
Table 3.9 – Documented vs. Undocumented exceptions. ........................................................ 121 
Table 3.10 – Types of exceptions most likely to be documented. ........................................... 122 
Table 3.11 – Suspects for all eight Assemblies. .......................................................................... 124 
Table 3.12 – Type of detections responsible for code suspects................................................ 125 
Table 3.13 – Proportion of detections due to lack of documentation..................................... 125 
Table 5.1 – Causes for JMSException to be raised................................................................. 173 
Table 5.2 – Exception Injection Results (all apps.)..................................................................... 175 
Table 5.3 – Results with content checking (3 apps.).................................................................. 176 
Table 5.4 – System availability, MTTR, MTBF and error rate. ................................................ 180 
Table 5.5 – Recovery actions for Java’s IOException class tree........................................... 181 
Table 5.6 – Applications source code decrease analysis........................................................... 184 
Table 5.7 – Healing strategies. ...................................................................................................... 185 
Table 5.8 – Exception model features list.................................................................................... 187 





 

List of Code Samples 

Listing 1.1 – Sample from LimeWire ............................................................................................... 11 
Listing 1.2 – Writing to a file ........................................................................................................... 12 
Listing 2.1 – Multiple derivation for derived exceptions........................................................... 34 
Listing 2.2 – Bound exceptions and conditional handling......................................................... 35 
Listing 2.3 – Dynamic propagation through an invisible scope. .............................................. 40 
Listing 2.4 – Recursive resuming example ................................................................................... 41 
Listing 2.5 – Handler’s static context in C++ and Ada ............................................................... 43 
Listing 2.6 – The notation for a recovery blocks structure......................................................... 63 
Listing 2.7 – Futures utilization within the DBLFutures framework........................................ 69 
Listing 2.8 – Examples of exception handling in DBLFutures ................................................... 70 
Listing 4.1 – Writing to a file in a transactional try block ...................................................... 132 
Listing 4.2 – swap method using an atomic block and alternative execution paths. ....... 149 
Listing 4.3 – Implicit and Explicit reconstructors declaration................................................. 151 
Listing 4.4 – Context management integration in try/catch blocks. ................................. 152 
Listing 5.1 – The Transaction class. ........................................................................................ 160 
Listing 5.2 – The commit() method. .......................................................................................... 162 
Listing 5.3 – The ITransObject interface................................................................................ 162 
Listing 5.4 – The canCommit() method.................................................................................... 163 
Listing 5.5 – The doFinalCommitTasks() method.............................................................. 164 
Listing 5.6 – The TransactionClassAdapter() methods................................................ 166 
Listing 5.7 – Recovery actions for the JMSException class. ..................................................... 168 
Listing 5.8 – Configuration file example. .................................................................................... 169 
 





 

Introduction 

 

This thesis is the result of research done in exception handling mechanisms for object-

oriented programming languages at the Software and Systems Engineering Group of the 

University of Coimbra, Portugal.  

In this opening chapter, the motivation and research objectives of the investigation are 

described, providing a foundation for the upcoming discussion. Finally, a brief summary 

of the contributions of the dissertation is presented. 

Chapter 

1 
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1.1. Motivation 
For more than one hundred years, since the time when the word computer still referred to 

the “person who performed computation” and not a machine, programmers have been 

worried about faults and errors that they may raise in calculations [Randell1982]. These 

faults can have many different natures and causes. They can be accidental or intentional, 

malicious or not-malicious, physical (hardware) or human. The main concern is that, 

independently of their nature, they can cause errors [Laprie1995b]. 

To avoid these errors many approaches have been taken, most of them at hardware level. 

These included the widespread use of error detecting and correcting codes1, the use of 

replicated2 processors, voting3, masking4 and automatic reconfiguration. Hardware fault 

tolerance schemes [Randell1978] try to be as simple as possible to avoid expensive trade 

offs like lost of performance and computation power, increased cost and energy 

consumption. Nevertheless, even if we could eliminate hardware faults, residual software 

design faults would continue to affect programs. Therefore, extra care had to be taken at 

software level to prevent or handle these faults in the quest to avoid errors. Some of these 

solutions mingled hardware and software approaches such as fault avoidance, 

redundancy, masking and reconfiguration. Others, to ensure better portability and avoid 

the need for dedicated hardware, preferred a software-only approach. 

One of the most popular software programming languages mechanisms for dealing with 

abnormal behaviors is exception handling. Since the seminal work of John B. Goodenough 

  [Goodenough1975] in the definition of a notation for exception handling and Flaviu 

Cristian [Cristian1980] in defining its usage, the programming language constructs for 

handling and recovering from exceptions have not changed much. Exception handling is 

basically a civilized way of dealing with exceptional situations (occurrence of a condition 

that changes the normal flow of execution of a program). It represents a significant 

improvement over other error handling mechanisms like checking return codes, additional 

boolean state flags, among others. For instance, exception handling eliminates the 

                                                                  
1 A method and apparatus for detecting and correcting bit errors in data streams [Hamming1950]. 
2 Replication is based on the usage of multiple instances of the same system that are able to execute the 

same function is parallel. 
3 Mechanism used in systems with replicated components (3 or more) to mask the faulty components. 
4 Masking is used to manipulate the effects of faults in order to ensure that systems always behave as 

specified and, hence, users always observe the expected behavior [Jalote1994.] 
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Semipredicate Problem that occurs when a function fails to execute correctly but returns a 

valid value, thus leaving the caller unaware that an error occurred. Furthermore, 

exceptions give the programmer an efficient error notification mechanism, allow better 

recovery strategies based on the rich error data available on the exception objects, and 

improve readability by separating exception handling code from the business logic code. 

Exceptions introduce their own error handling flow-of-control to the program. When an 

exception is raised, the execution flow is diverted to the appropriate error handling code. 

Exceptions can have three different origins [Doshy2003]: 

1. Programming errors: exceptions can be raised due to programming errors, such as 

accessing null references. The code which invokes the function raising the 

exception (client code) cannot do anything about programming errors; 

2. Client code errors: exceptions can be raised when the calling code attempts to 

perform some operation not allowed by the API, thus violating the contract. If the 

exception provides enough information, the client code can try an alternative 

path; 

3. Resource failures: exceptions can be raised to acknowledge resource failures, such 

as when the system runs out memory or a network connection fails. The client 

code response is context-driven. The operation could be retried after some time or 

the application halted. 

If we consider that there are an infinite number of computations that one can think of, 

there will also be an infinite number of reasons for a program to raise an exception. For 

instance, a program may: try to access an out-of-bounds array element; try to access 

members on a null reference; perform an integer “divide by zero” operation; try to 

unsuccessfully parse a string to an integer; try to open a file that does not exist; or get an 

IO error. Depending on the exception being raised, the location and the moment (where 

and when it is raised) in the program, the cost of mishandling such an event can be high – 

e.g., “not handling a failure on a withdraw operation on an ATM machine may lead to an 

improper decrement of the client’s account balance if he or she does not receives the 

requested amount”. 



4 CHAPTER 1 — INTRODUCTION 

 

1.1.1. A first glance at exception handling mechanisms 
Exception handling models and their implementations vary from programming language 

to programming language1. But, in general, when an abnormal situation is detected the 

program raises an exception. When an exception is raised inside a protected region of code 

(guarded code block), the execution flow is transferred to a predefined location known as 

the exception handler. Usually, the stack is unwound and the extra-information necessary 

to handle the exception, such as its name, description, location, and severity is 

communicated either by the code that has raised the exception, or by the exception 

handling supporting mechanism. The handler code determines what happens next: the 

program may try to recover from the exception; just log its occurrence and terminate the 

application in an orderly fashion; or simply ignore the exception. In some cases, after the 

execution of the handler, it may be possible to resume the execution of the program at the 

original location and reset the program’s state prior to the exception occurrence2. 

Exception handlers can be associated with exception types, classes, methods, objects, or 

blocks of code. Handlers that remain valid in any part of an application are called default 

handlers. When an exception is raised, the normal flow of execution of the application is 

deviated allowing the system to search for a suitable handler. The execution returns to the 

normal flow immediately after the invocation of the selected handler (when found). The 

point where the normal flow of execution is to be resumed depends of the model for the 

continuation (termination/resumption model). If no suitable handler is found, the 

execution of the program is terminated. 

The example in Figure 1.1 illustrates the usage of the exception handling constructs in an 

object-oriented programming language – Java [Gosling2005]. This piece of source code is 

useful to help understand the concepts and the execution flow issues associated with 

nowadays exception handling models. Although existent exception handling models do 

not differ much, there are still some important differences between implementations. This 

example (and its subsequent analysis) does not intend to address or represent all the 

                                                                  
1 Chapter 2 provides a thorough discussion on exception handling models. 
2 This behavior, associated with the resumption model [Goodenough1975], is not supported in all 

platforms and programming languages. The most widely used approach is the termination model 
[Goodenough1975]. In the termination model, control flow after the handler execution continues as 
if the failed instruction in the protected block is terminated without encountering the exception. 
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models available in modern programming languages1. It is merely an illustration of how 

things can work, how the source code is organized (when using exception handling 

constructs), and how the program behaves in the presence of exceptions. 

In the example of Figure 1.1, the source code for method foo() is divided in six different 

parts. Parts A and F represent the first and the last instructions on the method. Part B is 

bordered by a try{} block, it corresponds to a protected region of code where the 

programmer knows that some exceptions are prone to happen. Parts C and D are the 

handlers for the exceptions being raised in part B. The catch instruction is used to mark 

the beginning of the handler block (that is limited by braces) and accepts, as a parameter, 

the name of the class for the exception to handle. For instance, the catch handler in part C 

deals with all the exceptions raised in B that are instances of (or descend from) the 

IOException class, and the catch handler in part D handles the remaining exception types 

derived from the Exception class. Part E represents a special block of code (finally{}) 

                                                                  
1 The Java Programming Language was chosen for this and other examples on this document because 

it is a well known mainstream programming language with a state-of-the-art exception handling 
mechanism. 

 

Figure 1.1 – Example of source code in Java using exception handling 
constructs 
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that will always execute, independently of an exception being raised or not inside parts B, 

C and D. 

Checked and unchecked exceptions 
Exception handling is more than just try-catch-finally blocks. It also encompasses two 

important aspects, related between them. One is the conceptual relation between a method 

and the exceptions it can throw; the other is the existence of an obligation to handle the 

exceptions that are thrown by a method. These aspects define the essence of two different 

exception models, the checked exceptions model and the unchecked exceptions model 

[Gosling2005].  

For instance, the Java programming language designers (among others) believe that certain 

exceptions impact the functionality of a method so intrinsically that they should be 

explicitly declared, being the programmer forced to handle them – thus justifying the 

option of implementing the checked exceptions model. On the other hand, other designers 

[ISO23271:2006] believe that the programmer should not be forced to handle all the 

exceptions. In Java, for instance, a small set of exceptions (runtime exceptions) are 

explicitly marked as unchecked. The programmer is free to choose which exceptions he or 

she wants to explicitly deal with and which prefers not to. Checked exceptions can 

interfere with the programmers’ productivity, since they cannot concentrate in business 

logic and are constantly forced to think about errors. Furthermore, .NET [ISO23271:2006] 

creators (in particular) advocate that errors should be “exonerated” by exhaustive testing. 

I.e., a sufficiently accurate test suite should be able to expose dormant exceptions, and 

corresponding abnormal situations. For the problems that remain latent, it is better that 

they appear as a clean exception that terminates the application rather than having them 

being swallowed in a generic catch statement which can lead to a corrupt state. 

In the checked exception model, programmers have to declare the exceptions that a 

method throws. For this purpose, the programming language provides the constructs 

necessary do create a list of exceptions in the method’s signature. As a consequence, code 

invoking methods with a declared exception list has only two options: 

 Handle the declared exceptions with a try-catch-finally structure; 

 Declare to propagate the same set of exceptions that the invoked method does. 
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Failing to comply with the previous rules will result in a compile error. This prevents a 

known problem from being propagated throughout the program or remaining unhandled 

on the final software product. 

Systems that implement the unchecked exception model are not able to provide this kind 

of safeguard. The developer is able to declare the exceptions that a method throws, but he 

or she is not forced to handle any exceptions. The compiler will never emit warnings about 

unhandled exceptions thus an error, which otherwise would not be fatal, can be 

unstoppably propagated on the call stack and cause the program termination. The only 

way to detect this kind of problem is through code analysis or exhaustive testing. To know 

what exceptions an operation may raise, the developer has to trust the documentation. To 

simplify the documentation task, some languages provide meta-tags allowing the 

generation of automatic documentation. 

Explicitly raising an exception gives the programmer the opportunity to fill the exception 

object with all the relevant information necessary for dealing with the abnormal occurrence 

at hands. Exception types can be user-defined or predefined. User-defined exceptions are 

created and detected at application level. Predefined exceptions are built-in into the 

runtime platform libraries and detected by the runtime platform. Consider the following 

example: a program tries to open a file that does not exist – in these circumstances the program 

will raise an exception. But, if the programmer whishes to prepare the application to 

recover from this exception, he or she needs more information: 

1. The correct classification of the error – a well designed exception will transmit 

this information merely by its type (e.g., the class FileNotFoundException is self 

explanatory); 

2. The path for the missing file; 

3. The name of the file. 

If this information is attached to the exception at the time of its generation, the 

programmer can use it to design a handler that, for instance, will look for the file and open 

it in a different location – local folder, network folder, URL, etc. Thus, if successful in 

opening the file, the program is able to continue the computation in a valid and clean state. 
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Execution flow and exception propagation 
A fundamental issue with exception handling mechanisms is what happens when an 

exception is raised: a) how is the execution flow affected; b) what happens to the stack 

information; c) how is the correct handler for a particular exception elected; and d) where 

will the execution continue after the completion of the handling actions. Many of these 

aspects will vary with the chosen programming language and its corresponding exception 

handling model1. For the purpose of this section, an explanatory example will give a first 

insight on how exception flow can be driven inside a running application. 

The flowchart in Figure 1.2 describes the propagation of an exception raised inside parts A 

or F of the code on Figure 1.1. This exception must be an unchecked exception. Otherwise, 

as it has been described before, the compiler would have complained and aborted the 

compilation (because the method does not declare the exceptions that it may raise). In the 

code example, one can observe that parts A and F are not protected regions of code since 

they are not inside a try{} block. Thus, when the exception is raised, the runtime aborts 

the execution of the method foo(), unwinds the stack, and propagates the exception up 

the call stack to foo()’s caller. This is done in order to look for a suitable handler. In Java, a 

handler is considered suitable if it catches the class of the exception or a parent class of the 

                                                                  
1 Once more, Chapter 2 provides a thorough discussion about different exception handling models 

implementations. 

 

Figure 1.2 – A simplified flowchart for exception propagation outside try{} blocks 



 SECTION 1.1 — MOTIVATION 9 

 

exception class. If a handler is selected for execution, the program normal execution 

continues in the instruction that immediately follows the handler finale. If no handler is 

found, the runtime repeats the process and continues to unwind the stack, propagating the 

exception, until the corresponding thread terminates. 

The flowchart in Figure 1.3 illustrates a different scenario. In this example the exception is 

raised inside the try{} block (B). Afterwards, depending on the class of the exception, the 

execution will continue in the first instruction of the IOException class handler (C) or of 

the Exception class handler (D). Independently of which of the handlers is executed, the 

first instruction on E (finally block) is always executed next. If no other exception is 

raised, the flow of execution will continue through F until the method’s return point. In the 

event that no exception occurs in B, or that an exception occurs in C or D, the code in part B 

will always be executed but, in the later case, the method returns immediately and the 

exception is propagated up the call stack. 

1.1.2. Exception Handling Design Issues 
Exception handling mechanisms represent an improvement over traditional error handling 

mechanisms. They introduced an organized, reliable, focused and self-explanatory way to 

deal with errors and abnormal situations. But, besides the obvious benefits, exception 

handling is far from perfect. In fact, it can be argued that the mechanism is seriously 

 

Figure 1.3 – A simplified flowchart for exception propagation from inside a try{} block 
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limited if not even flawed as a programming construct. Most times, when an error occurs, 

exceptions are silenced or just used to terminate a program in an orderly fashion, not really 

to recover. 

In most cases, strategies to deal with exceptions are non-existent or just serve the final 

purpose of keeping track of problems for later analysis. Very little effort is normally spent 

trying to understand exceptions, their causes, and planning recovery actions. Christian 

[Chistian1995] argued that more than two thirds of a program’s code is often devoted to 

detecting and handling errors and exceptions, and, according to Utas [Utas2004], three 

quarters of the code are dedicated to error and exception handling. An important part of 

our work was devoted to identifying exception handling patterns and exception 

programming problems in modern software1. We now know that most of the software 

running in our computers, servers, networks, at home or at work, is prone to have less 

than 10% of code dedicated to exception handling and the most common percentage is 

around 5% [Cabral2007]. Our conclusions are supported by Shah’s recent work 

[Shah2008a] on explaining why “developers neglect exception handling code”. This is an 

unexpected fact. We would anticipate a much larger chunk of code dedicated to exception 

handling if we consider that: 

1. Simple operations, such as accessing a file on disk or sending a query to a 

database, can raise a large number of different exceptions; 

2. Each different exception type can have several distinct handling actions that may 

vary with location and time; 

3. Code for handling an exception can be as or more complex as the code raising the 

exception; 

4. In some programming languages (e.g., Java) it is mandatory to handle exceptions 

and declare their existence. 

                                                                  
1 Chapter 3 presents a field study on exception handling 



 SECTION 1.1 — MOTIVATION 11 

 

More important than the amount of code dedicated to exception handling is the quality of 

the code and its ability to recover the program to a valid state. Writing good exception 

handling code is complex, cumbersome and error-prone task. As an example, the Java code 

block in Listing 1.1 is a small portion of the source code of the LimeWire client for the 

Gnutella peer-to-peer network [Limewire2009]. This widely used piece of code is 

responsible for the sending of UDP packets in the application. The example shows that the 

single operation of sending a DatagramPacket over the network is prone to raise several 

exceptions. In ideal conditions, the programmer may have to provide a different handler 

for each exception. This means that a different catch block is expected for each different 

exception type being raised. In theory, these handlers could implement the code necessary 

to recover from the raised exception and correctly complete the method’s execution. 

Unfortunately, providing the recovery code is a complex error prone task and, in 

consequence, programmers prefer to ignore the exceptions or deal with them later (even if 

the stack and other useful information are no longer available). Furthermore, the code for 

handling the raised exceptions may originate other exceptions by itself. This can lead to 

possible undesired sceneries where protected blocks (try blocks) are nested inside other 

protected blocks, introducing a great level of tangling in the flow of execution of the 

program. This escalating complexity is certainly influencing the programmers to keep their 

exception handling code as simple as possible or, in many cases, completely inexistent.  

try  
{ 
  _socket.send(_dp); 
} 
catch(ConnectException ce) 
{ 
  // oh well, can't connect, ignore it... 
}  
catch(BindException be)  
{ 
  // oh well, if we can't bind our socket, ignore it..  
}  
catch(NoRouteToHostException nrthe)  
{ 
   // oh well, if we can't find that host, ignore it ... 
}  
catch(IOException ioe)  
{ 
  if(isIgnoreable(ioe, ioe.getMessage())) 
    return; 
 
  String errString = "ip/port: " +  
     _dp.getAddress() + ":" +  
     _dp.getPort(); 
     _err.error(ioe, errString); 
} 

Listing 1.1 – Sample from LimeWire 
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Listing 1.2 helps to illustrate the potential increase in the complexity of code as one adds 

exception handling. Consider that the programmer just wants to write some data into a 

file. The data itself is not of much importance, just the fact that the programmer wants to 

correctly save it to disk. From a “core” algorithmic perspective, the intent of the 

programmer is to write a couple of lines similar to the ones shown with the grey 

shadowing in the example. Now consider what happens on a language that uses checked 

exceptions, like Java, or even a language that does not have checked exceptions, like C#, 

but on which the programmer wants to correctly deal with possible abnormal situations. 

(After all, if one wants to develop robust software, exception handling is necessary.) The 

programmer ends up having to write code for dealing with exceptions like 

FileNotFoundException, SecurityException, DiskFullException, just to name a few, 

or other I/O-related problems (IOException).  

// The FileWriter must be declared outside of the try block 
// and be pointing to something (null is a common choice) 
FileWriter file = null; 
  
try 
{ 
    // Open file 
    file = new FileWriter("data.txt"); 
 
    // Write some data into it 
    for (int i=0; i<1024; i++) 
        file.write("Here’s the data: " + i); 
} 
catch (FileNotFoundException e) 
{ 
    // Deal with filename problems 
} 
catch (SecurityException e) 
{ 
    // Deal with problems like wrong permissions 
} 
catch (IOException e) 
{ 
    // Deal with other (generic?) I/O problems 
    // How do I do this??? 
} 
finally 
{ 
    try 
    { 
        file.close(); 
    } 
    catch (IOException e) 
    { 
        // What should I do??? 
    } 
} 

Listing 1.2 – Writing to a file 
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Already a problem can be seen. The programmer is trying to write some data into a file. 

But, in order to do so, it is being forced to think about all possible problems that can 

happen in the process. That is not a bad thing per se, but is happening at the wrong time. 

Writing data into a file is most likely part of a larger algorithm, which may itself be 

complicated. Thus, in most cases, the programmer is concentrating on that application 

logic and not really on what goes on when an exception is thrown, or exactly what 

exceptions can be thrown and their associated recovery actions. A common consequence of 

this mismatch (thinking about application logic vs. thinking about exception handling) is 

that many programmers actually silence exceptions in order to be able to keep 

implementing the core application logic. The rationale is that latter on they will deal with 

the exceptions, which in many cases never happens. 

To complicate things further, in the example, an experienced programmer may argue that 

if an exception occurs, we should probably try to close the file. That is normally done on a 

finally block or inside an exception handling block. But, in order to so, a valid file 

reference must exist at that point. Thus, the declaration of FileWriter must be performed 

outside of the try block and the variable must actually be initialized to something (null is 

a common choice). (If the variable is not initialized, the compiler would complain that on 

the finally block the variable could have not been initialized due to an exception during 

the object instantiation.) There is also the problem of what to do if an exception is thrown 

while trying to close the file inside of the finally block. Silencing1 the exception is a 

common approach. 

Comparing the code that the programmer wants to write (shadowed text in Listing 1.2) 

with the code that the programmer ends up writing (all the code in Listing 1.2), something 

is clearly wrong with the model. It is what in McConnell’s nomenclature would be 

classified as a “coding horror” [McConnel2004], greatly contributing to fragile code and 

substandard quality. While the programmer is just trying to write some data into a file, it is 

nonetheless being forced to massively deal with error handling. And, in the case of this 

example we have not even discussed the code that would be included inside of the 

exception handlers for error recovery. If one considers medium to large scale applications, 

with possibly hundreds or thousands of exceptions having to be addressed, this is clearly 

problematic.  

                                                                  
1 Silencing exceptions is a well known bad practice for exception handling. It consists in an empty 

catch block with no other purpose than avoiding the propagation of an exception occurring inside 
a try block. 
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Best practices for exception handling 
The software industry and the programming community in general have established a set 

of design patterns and guidelines for writing better software using exception handling. 

These best practices are well known in the software industry and have been thoroughly 

discussed by several authors in recent years. Nevertheless, programmers are not always 

keen on following such directives as we will discuss next. Table 1.1 summarizes several 

widespread exception handling best practices [Wirfs-Brock2006,Muller2002,Doshy2003]. 

Table 1.1 – Exception handling best practices. 

Guideline Description 

Key design issue Exception handling must be taken seriously as key design 
issue throughout the whole software life cycle. It is important 
to start collecting exception handling and logging 
requirements early. The design of the exception hierarchy 
must be completed before the start of the implementation. 

Indicative exception 
names 

Exceptions should be named after what went wrong and not, 
for instance, who raised it. 

Custom exception 
types should 
always provide 
extra and useful 
information 

Creating a new exception type that does not gives any useful 
information to the client code, other than an indicative 
exception name, is not useful. Exception type should provide 
functionality and information that will help treating the 
abnormal situation. 

Do not declare lots 
of exception types 

Only create a new exception type when its occurrence will be 
handled differently. 

Document custom 
exception types 

Exceptions being thrown by a method should always be 
documented. 

Know when to use 
checked exceptions 
and when not to 

The usage of checked exceptions is not a reason per se for 
disregarding the usage of unchecked exceptions. If possible, 
both models should coexist: exceptions that signal an 
untreatable situation should be unchecked; exceptions that 
signal an abnormal situation which might be treatable should 
be checked. 

Preserve 
encapsulation 

Implementation-specific exceptions must never escalate to 
higher layers. Recast lower-level exceptions to higher-level 
ones when raising the abstraction level. 

Providing context The exception should carry the necessary context information 
in order to allow an informed response by the handling code. 

Handling code 
must be close to the 
problem 

The longer an exception propagates in the call stack, the more 
difficult will be for the handling code to make meaningful 
decisions. 

Use decision 
empowered objects 
to handle 
exceptions 

Usually the objects better equipped to treat exceptions are the 
ones closer to the problem, but, some times the most able 
object is the one that was designed to control actions and 
make decisions. 
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Guideline Description 

Chaining 
exceptions 

In some cases, to maintain encapsulation and hide 
implementation details that are not useful for the user 
(another program or a person), it is useful to change the class 
of the exceptions on their way up the call stack. 
Unfortunately, this practice inevitably leads to the loss of the 
stack and possible error information available on the original 
exception object. If the programming language permits it, a 
good practice is to chain the original exception inside the 
newly created one, thus keeping all the information available. 

Do not use 
assertions inside 
catch blocks 

Assertions have no place inside catch blocks, it is just too late 
to use them: assertions do not provide means to chain an 
original exception. Making an assertion always false is an 
abuse of the concept, if assertions are disabled, the catch 
block ends up empty. 

Clean up Always clean up resources like database connections, 
network connections, and others. If the programming 
language allows the usage of finally blocks, be sure to use 
them for the clean up actions. 

Never use 
exceptions for flow 
control 

Exceptions should not be used to control de execution flow of 
an application, they should only be raised on emergencies. 
Generating stack traces is expensive and their information is 
only useful for debugging purposes. 

Do not ignore 
exceptions 

If a software designer deliberately declares that a method 
throws an exception, he his telling the programmer that the 
exception must not be silenced or ignored but dealt with. If 
the programmer believes that handling the exception does 
not make sense, he or she should catch it, convert it to 
another form, and re-throw it (possibly as an unchecked 
exception if the model allows it). 

Do not catch top-
level exceptions 

General (top-level) exception types, like Java’s 
java.lang.Exception, do not give much information about 
the underlying problem. The programmer should catch the 
exact exceptions types that the invoked functions declare to 
throw and treat them separately. Putting all the “occurrences 
in the same bag” is a poor error recovery practice since no 
detailed information about the problem is available. 

Do not try to 
handle coding 
errors 

The cost of trying to handle coding errors is extraordinary, 
thus, only high fault-tolerant systems will require such 
extraordinary measures. 

Log only what is 
important 

Log should be done as late as possible and each exception 
must be logged exactly once. Do not use handlers that only 
log and repeatedly re-throw the same exception (this is an 
expensive practice). The best moments to log an exception are 
when it is: being treated; leaving a physical tier/virtual 
machine through a remote call; leaving a logical tier with its 
own log file. 
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It is interesting that many of the discussions about exception handling programming rules 

are currently evolving into the discussion of exception handling design patterns, much 

inspired by the well known object-oriented design patterns [Gamma1995]. The first steps 

in this direction are already visible at Portland Pattern Repository [Portland2007]. 

Exception handling antipatterns 
No one argues that the described best practices help to increase the overall software 

quality, but, we can say that for each good design pattern there is always opposed an antipattern 

(this could certainly be the software world equivalent to the Newton’s third law of 

motion). Tim McCune was the first author to introduce the concept of Exception Handling 

Antipatterns [McCune2006], much inspired by the 1998 release of AntiPatterns: Refactoring 

Software, Architectures, and Projects in a Crisis [Brown1998]. The author argues that for many 

novice to mid-level developers exception handling tends to be an afterthought -“try-catch-

print the stack trace” is the most common exception handling pattern used by these 

developers - and, if they attempt to incorporate elaborated schemes, they will most 

probably stumble with a common exception handling antipattern. 

Exception handling antipatterns are, in most cases, the outcome of not following the 

previously described best practices for exception handling (details can be found on Table 

1.2). And, although the community is well aware of these malpractices and knows that 

they are extremely widespread, there are no studies showing how exactly spread their 

usage is and how they affect the overall software resilience to errors.  

Table 1.2 – Exception handling antipatterns. 

Antipattern Description 

Log and throw Logging and throwing results in multiple log messages for a 
single exception in the program. It makes log files unreadable 
and makes the debug task harder. 

Throwing top-level 
exceptions 

This is the same as saying that the function may have some 
problem without giving any hint about what that problem 
might be. If something happens, the client code will hardly 
have the chance to do anything to recover. 

Throwing the 
unnecessary 
multiple exceptions  

When a method declares throwing multiple exception types, 
it should only differentiate them if multiple treatments apply. 
Otherwise, exceptions should be wrapped on a single type. 

Catching top-level 
exception 

If a method declares to throw some specific exception type, it 
means that the calling code should handle that exception. By 
catching a general exception type, the client code will not be 
aware of what was the problem. 
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Antipattern Description 

Destructive 
wrapping 

Re-throwing an exception wrapped on a different type 
results in the loss of the stack trace, if the original exception is 
not included in the wrap. 

Log and return null When a handler treats an exception by logging it and 
returning from the method with a null. This practice may be 
valid in some cases but, usually it is not. The best practice is 
to throw the exception and let the client code deal with it.  

Silencing the 
exception 

Also known as swallow the exception. It consists in providing 
an empty handler (or one that just returns from a method) to 
avoid an exception manifestation. In some cases it may be a 
valid behavior but, most times, it does more harm than good 
because it hides the reason for a possible problem.  

Throw from within 
a finally block 

An exception thrown inside a protected block will be lost 
forever if afterwards another one is raised inside the finally 
block. 

Multi-line log 
messages 

Using multiple calls to the logger inside a handler can lead to 
a log file where related lines may end up spaced by 
thousands of lines. Imagine a server app with 500 thread 
running in parallel and writing to the log. 

Do not ignore 
exceptions 

A method throws an exception because it is important for the 
client code to know that something happened. The action to 
take should be in conformity with the gravity of the 
exception. 

Check for the cause Some exception instances allow the client code to access the 
original exception in the base of a series of chained 
exceptions. But, note that there can be several exception 
chained simultaneous and, in this case, to access the original 
exception it may require more than one call to the method 
providing this functionality. 

Throw when not 
implemented 

If a declared method is not implemented in some class (or 
version of a class), be sure to throw an exception that will 
inform the user of that fact. Practices like just returning null 
will not suffice and may lead to undesired behaviors. 

 

A fundamental part of our work was dedicated to quantifying how exception handling 

antipatterns influence software quality. We discovered that, in general, exceptions are not 

being correctly used as an error handling tool [Cabral2007]. This also means that if the 

programming community at large does not use them correctly, probably it is a symptom of 

a serious design flaw in the mechanism: exception constructs, as they are, are not fully 

appropriate for handling errors. 

Exception documentation 
Exception documentation also plays an important role in the quality of the code of an 

application. Even more if the language does not have checked exceptions, like C#, but on 
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which the programmer wants to correctly deal with possible abnormal situations. Checked 

exceptions allow the programmer to discover which exceptions may be raised by a method 

at compile-time but do not force the programmer to deal with them. On systems 

implementing the unchecked exceptions model, programmers are not forced to declare the 

exceptions that a method may raise. Thus, programmers are more dependent of the 

available documentation to ensure the handling of every possible exception. 

Unfortunately, exception documentation in most programs and software libraries is of 

poor quality or completely inexistent [Cabral2007b,Sacramento2006]. To minimize the 

damages, some development platforms have implemented mechanisms, on compilers and 

IDEs, to inform the developer of possible problems on the code. But, even these 

mechanisms are highly dependent of the quality of the exception handling code.   

Concluding remarks 
The unwillingness of software designers to deal with exceptions correctly and follow some 

well known best practices for exception handling will, undoubtedly, contribute to the 

lowering of the quality of programs and their reliability. It is obvious that something is not 

right with the current exception handling models: they are not adequate enough for 

developers. 

The resilience to do proper error handling has multiple origins: the need to concentrate on 

the design/implementation of business code; ignorance about possible abnormal 

behaviors in the code; the need to speed up development; incomplete testing batteries and 

code coverage tests; among others. Nevertheless, these are only suggestions about what 

could be the problem behind exception handling poor practices. There is no sound theory 

about what is really keeping programmers from implementing valid recovery strategies 

but, as some argue, the mechanism itself can be seriously flawed. For instance, Garcia et al. 

[Garcia2001] have identified several design issues on the exception handling models 

available in modern programming languages. The authors claim that most of the existing 

exception handling models rely on classical design solutions, some of them too general or 

too complex, making harder the task of developing dependable object-oriented software. 

Nowadays exception models make the writing of exception handling code with quality a 

cumbersome task. 

Some researchers have even stronger views about the application of exception handling 

models to object-oriented programming languages. They imply that “exception handling 

can contradict the conventional object oriented paradigm” [Miller1997]. The authors 
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identified four aspects of exception handling that are different from normal object 

orientation: 

1. Complete exception specification – A handler may require extra information to be 

available on the exception specification than what is in the object interface; 

2. Partial states – Object-orientation does not defines partial states but exceptions 

may occur in state transitions, thus giving birth to partial states; 

3. Exception conformance – Overloaded methods have the same meaning in different 

situations but, exception information usually needs to be specific; 

4. Exception propagation – Propagation can change the control flow of a program 

giving birth to two different execution paths: the normal execution path, and the 

exception handling path. 

Miller et al. also describe how the exception handling model corrupts the four major 

elements of object-orientation: abstraction, encapsulation, modularity, and inheritance 

(Table 1.3). These incompatibilities will undoubtedly create difficulties to the designers of 

object-oriented software that are, at the same time, concerned with reliability, fault 

tolerance level and object-orientation. 

Table 1.3 – Exception handling and the object-oriented paradigm. 

OO Topic Objective Incompatibility with exception handling 

Abstraction Hide implementation 
details of an object from 
its users. Expose only the 
necessary functionality. 

Many times, in order to generalize operations and 
make them usable in a wider range of conditions, 
the exception handling mechanism may require 
exposing more implementation details, as a part of 
the abstraction, to the object’s users. For instance, a 
method on an object may declare to throw an 
exception type that will give more information 
about the method’s implementation details than the 
user would ever know if the exception was not 
there. 

Encapsulation Hide the internal data 
and functionality of an 
object from outside 
referrers/users. 

When an object raises an exception, it runs the risk 
of exposing its internals, if the raised exception 
contains more information than what is permitted 
by the encapsulation. 
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OO Topic Objective Incompatibility with exception handling 

Modularity Ensure that the changes 
in one module have little 
effect on other modules. 

Exception handling often increases the coupling 
between modules. Changes and evolution of the 
functionality of a module often require the module 
to expose more exceptions to the other modules 
than those initially planned. Thus, the other 
modules will have to adapt to the new exception 
interface members. 

Inheritance Promote code reuse and 
conceptual specialization. 

The problem arises when a subclass’s exception 
handling replaces rather than augments the parent’s 
handling of exceptions. 

 

The motivation for our work was that, quoting Garcia et al. [Garcia2001] - “We believe that 

an ideal object-oriented exception model is urgently needed to guide the design of effective 

exception handling mechanisms”. In our case, we believe that the model should provide 

effective exception handling and do not lower the productivity of programmers; it should 

free the programmer from the burden of having to deal with all possible exceptions and 

yet keep him informed about all the potential problems that can occur in a function call; it 

should decrease the amount of code that the programmer effectively writes, increase code 

quality, speed up testing procedures/development time, and, at the same time, eliminate 

some common exception handling malpractices. Furthermore, we believe that exception 

handling mechanisms should, to an appropriate level, become transparent for the 

developer. 

Consider the analogy with Garbage Collectors (GC). Before garbage collection became 

mainstream, programmers had to handle memory manually, at many locations in the 

source code. They had to reserve memory, free memory, and manage all memory usage 

related details. Automatic memory allocation and the GC freed the programmers from 

these tasks by automatically managing memory space as required by the running 

applications.  This technology, besides making the job of the developer simpler, helped to 

avoid many memory related errors. Exception handling should work as a GC for 

exceptions in the sense that, without (or with minimal) programmer intervention, the 

mechanism should automatically execute sets of benign recovery actions for the exceptions 

being raised in the running code. The mechanism should also allow the running 

application to re-execute the problematic instructions a second time without problems or 

just continue its execution in a valid state. 
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1.2. Research Objectives 
When the ideas behind this thesis first begin began to emerge, they were fueled by the 

unsettling feeling that something was not right with nowadays exception handling 

approaches. Current work at that time involved the study of the source code of several 

open source applications available on the internet. Many of these applications were 

servers, programming libraries, and middleware software with thousands or even millions 

of users all over the world. And, although we were not looking for coding errors, or coding 

patterns of any kind, the by-product of this task was the discovery that developers were 

not dedicating enough attention to the exceptions and that, in fact, the exception handling 

code in these programs could be much better. We believed that we could help to improve 

the quality of software, if we provided the right tool for exception handling to the 

developers. The following goals were set at the start of this investigation: 

1. Identify and quantify the problems behind the general lack of efficiency on 

exception handling code. Assess the true influence of programmers’ exception 

handling mal-practices on the quality of the code; 

2. Investigate how the identified problems can be related to current exception 

handling approaches. Propose new exception handling and programming models 

that are more attractive to developers, thus eliminating the shortcomings of the 

existing models, and, at the same time, improve the resilience of programs to 

errors; 

3. Assess the advantages and disadvantages of the new model when compared with 

previous approaches. For doing so, a number of prototypes and tools, either for 

implementing or supporting the new model, should be built. 

It must be mentioned that from the start it was neither an objective to develop a new 

runtime environment nor a new programming language. The work should be as close as 

possible of the existent mainstream solutions, languages and platforms. We believe that the 

success of the new model is not only dependent of its novelty and efficiency but also of the 

easiness of integration with the most popular platforms in the market. 
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1.3. Contributions 
The authors of this work secretly expect that their research might one day influence the 

development of future programming languages and runtime environments. But, for the 

moment, the major achievements resulting from this work are: 

1. To present the most comprehensive study done on exception handling to date, 

providing a quantitative measure useful for guiding the development of new 

error handling mechanisms; 

2. To provide a novell exception handling programming model that automates the 

handling of some exceptions and makes their treatment a platform issue. The 

proposed model uses a Software Transactional Memory (STM) [Shavit1995] 

approach in a way that is completely transparent for the developer; 

3. To show that it is possible to define sets of benign recovery actions that can be 

automatically executed by the runtime platform when an exception is raised 

inside a running program; 

4. To demonstrate that it is possible to apply the new model to existent mainstream 

object-oriented platforms with the advantages of: diminish the amount of 

exception handling code that developers have to write in their programs; 

decrease the development time (programmers write less code and have less code 

to test); increase the overall quality of the code (developers can concentrate on the 

writing of business code); and, at the same time, increase the software resilience 

to errors. 

1.4. Structure of the Dissertation 
The thesis is organized in six chapters: 

 Chapter 1, this chapter, presents the motivation for the undergone investigation, 

initial research objectives and contributions of the thesis; 

 Chapter 2 discusses the state of the art on exception handling models and 

presents a brief overview of the implementations and exception handling 

constructs available in the most relevant programming languages;  
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 Chapter 3, provides quantitative measures on how programmers are currently 

using exception handling constructs in modern object-oriented programming 

languages. It aims to contribute to the discussion about current exception 

handling limitations;  

 Chapter 4 presents the Automatic Exception Handling mechanism and describes 

the associated programming model; 

 Chapter 5 describes how a prototype of the new exception model was actually 

implemented, in terms of architecture and coding, and discusses the validation 

process and the model’s assessment results;  

 Chapters 6 concludes the thesis by summing up the major results from the 

research and describing venues for future work. 





 

Current Approaches to 
Exception Handling 

  

This chapter examines the current state of the art in exception handling. It addresses the 

origins of the concept and the first efforts, on the late seventies, for defining the 

architecture, language constructs, and usage semantics. The strengths and limitations of 

modern exception handling mechanisms are also discussed.  Whenever relevant, we 

emphasize the features of the exception models that may have a positive or negative 

influence on the quality of the produced code, in terms of reliability.  

 

 

Chapter 

2 
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2.1. Introduction 
The mid-1950’s saw the birth of the first exception-like language construct. The language 

designed by John McCarthy, Lisp, featured a language construct that allowed the 

interpreter and compiler to gracefully exit from an error when one occurred 

[McCarthy1965]. The function ERRSET permitted the controlled execution of code that 

might cause errors. The special form (errset form) evaluates the execution of form in a 

context in which errors do not terminate the program or enter the debugger. If form 

executes successfully, ERRSET returns a singleton list of the value. If the execution of form 

goes wrong, the ERRSET form quietly returns NIL.  

Later, MacLisp [Eastlake1968,Moon1974] added the function ERR to signal errors. If ERR is 

invoked within form, then the argument to ERR is returned as the value of form. 

Unfortunately, these constructs soon began to be misused by programmers that did not 

used them to trap and signal errors but for execution control purposes1. This behavior 

made debugging harder because unexpected errors were also trapped within ERRSET.  In 

order to limit the use of ERRSET to error trapping, MacLisp designers introduced a new pair 

of primitives, CATCH and THROW [Eastlake1972]. 

This historic note is useful to help us understand that careful design of a new language 

construct is not enough to assure its success. In the next sections, we will present and 

describe several features (and their evolution) of existent exception handling mechanisms. 

But, despite such technical advances, it is important to keep in mind that the unintended 

(miss-directed) use of error trapping mechanisms, as occurred in Lisp, is still a problem for 

modern programming language designers. In many cases, designers are forced to go back 

and redesign the mechanism in order to comply with the users’ expectations and the 

system correctness requirements [Steele1993]. We would have though that the lessons 

learnt with Lisp would prevent the same from happening in modern programming 

languages. Unfortunately, this was not the case. Modern exception handling mechanisms 

are as prone, or even more, to misuse by programmers as its Lisp ancestor. 

                                                                  
1 It is interesting to note that, in many cases, modern exception handling mechanisms are currently 

being misused in the same way. 
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2.1.1. First efforts in the definition of a standard notation 
Facilities for dealing with exceptional conditions, such as variable overflow, end-of-file, and 

bad data, were fairly common in the 1960’s programming languages. But, it was not until 

the development of the IBM PL/I programming language [IBM1968,Radin1981] that we 

saw the usage of high level control flow constructs exclusively dedicated to enabling the 

writing of reliable and safe programs. 

PL/I featured a construct, the ON condition, which allowed the specification of the actions 

to be undertaken when one abnormal condition, of a set of 23, occurred during the 

execution of a program (e.g., NDFILE = 0; ON ENDFILE(SYSIN) NDFILE=1;). The ON unit 

is not lexically associated with a statement/operation that might present an abnormal 

behavior. Instead, its invocation is dynamically associated with the occurrence of an 

exceptional condition. This construct has been proven to be difficult to use, much because 

there is no dedicated way to share data with the ON unit code. In fact, it is necessary to use 

global variables.  

Independently of the discussed shortcomings, the PL/I’s ON condition was useful to 

demonstrate that such a mechanism, or a similar one, was essential for the development of 

reliable software. We must recall that previously known error handling techniques had 

even more fallacies. For instance, return of error codes1 and status flags2 techniques have 

noticeable drawbacks: 

1. An error is handled only when it is detected. Hence, programmers have to 

explicitly check/test the return values or status flags. Failing to do so will allow 

the program to continue its execution after an error occurrence. This can lead to 

the state of a program being corrupted and erroneous computation; 

2. The code for testing return values or status flags has to be located throughout the 

program. This reduces the readability and, consequently, the maintainability of 

the code; 

                                                                  
1 This technique requires that each routine must return a value on its completion. Different values 

have different meanings and will indicate if an abnormal condition was encountered during the 
routine execution. 

2 The status flag technique might be used alone or in conjunction with the previous technique. It is 
based on setting the value of a shared variable (status flag) to indicate that a rare condition has 
occurred. The value remains until it is overwritten. 
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3. It is difficult to ensure that all the error cases being produced by a routine are 

being handled; 

4. The code for testing return values and status flags is coded inline with normal 

code, thus making the removal, modification or addition of return or status 

values very difficult;  

5. The return values technique allows the mingling of error values among the range 

of good return values of a function. Changing a value representing a exception to a 

good return value, or vice versa, can be a difficult and error prone task that will 

affect every piece of software using that function; 

6. A function will leave the caller unaware that an error occurred if it fails to execute 

but still returns a valid value. This is known as the Semipredicate problem. 

These initial efforts were followed by more complex attempts to provide the programmer 

with better tools to deal with abnormal situations: (a) Subroutines were handlers that were 

passed as a parameter on an operation invocation; (b) Labels marked the start of the 

handling code and were passed as parameters to operations in order to allow execution to 

continue on the labeled instruction after an exception detection; (c) Object-oriented exception 

handlers [Ross1967] were subroutines associated with an object that were executed when 

the object encountered certain conditions; (d) Handler setup calls [Softec1972]  allowed the 

association of a handler with an exception being subsequently raised by some operation; 

(e) Hoare otherwise statement [Hoare1973] permitted the specification of the policy Q1 

otherwise Q2 – meaning that if Q1 fails, then Q2 should be performed; there were similar 

techniques, such as backtracking [Golomb1965] and the recursive cache [Horning1974] 

methods. 

In 1975, John B. Goodenough published his seminal work on exception handling 

[Goodenough1975] and become the first author to propose a notation for working with 

exceptions – the programmed exception handling model. His article in the Communications of 

the ACM was the first to discuss the issues associated with exception handling and the 

language features necessary for dealing with exceptions. And, although this work is more 

than three decades old, it remains up to date and many of its proposals are still found in 

nowadays exception handling mechanisms. 

Goodenough gives a simplistic definition of what an exception is - “Of the conditions 

detected while attempting to perform some operation, exception conditions are those 
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brought to the attention of the operation’s invoker.” Although very simple, this definition 

is essential to understand the fundamental issues behind the exception handling concept. He 

continues by defining the raising of an exception as the act of bringing one of these 

conditions to the attention of the invoker; and classifying the invoker’s response as the 

handling of the exception. 

Contrary to what one might expect, the author explains that exceptions are not necessarily 

activated in rare occasions. They are also an elegant means of interleaving actions 

belonging to different levels of abstraction [Liskov1974,Dijkstra1968,Liskov1972a, 

Liskov1972b,Woodger1972,Dahl1972]. In essence, exceptions make operations usable in a 

wider variety of contexts than would otherwise be the case. Exceptions serve to generalize 

operations. They allow the user of an operation to extend the set of inputs for which effects 

are defined and its range in order to fulfill a particular purpose. Exceptions can be useful 

to indicate the meaning of a valid result, the conditions under which it was obtained, or to 

monitor the progress of an operation.  

Even more important is the role that exceptions play when dealing with an operation’s 

impending or actual failure. For instance, two failure types were identified: range failures 

and domain failures [Goodenough1975]. In the first case, the failure is caused by the 

operation being incapable (or deciding it may not ever be able) of satisfying its output 

assertion. In this case, the operation may need to be aborted, retried or terminated yielding 

partial results. Domain failure occurs when an operation’s input does not respect the pre-

conditions for its acceptability. This may cause the operation termination or require the 

modification of the input. 

The notation proposed by Goodenough addressed four distinct classes of topics: 

 Association of handlers with invocations of operations – issues related with how the 

association of a handler to the invocation of a given operation can be made. 

Handlers can be associated with blocks of code, methods, objects, classes, 

exception types and instances; 

 Control flow issues – issues related with the execution flow following the execution 

of the handler after the occurrence of an exception, namely the applicability of the 

resumption or the termination model [Goodenough1975f]; 

 Default exception handling – in some cases it is useful to provide default handlers 

for exceptions that are not handled by the operation’s invoker; 
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 Hierarchies of operations and their exceptions – differences found between the 

handling of an exception by the operation’s invoker and the handling of the 

exception by and indirect invoker. 

Goodenough proposed three different constructs for signaling exceptions: (a) SIGNAL, 

which permits the operation raising the exception to be either terminated or resumed; (b) 

NOTIFY, which forbids termination of the operation and requires resuming; and (c) 

ESCAPE, which forbids resuming and requires the operation termination. Furthermore, 

the author also proposed the use of the ENDED exception type for signaling a valid 

termination of an operation. Thus, allowing the execution of a handler specially created for 

execution after a normal termination. 

These and other topics are, in part, what characterizes an exception handling mechanism 

and will be addressed in the following sections of this chapter where a discussion about all 

the attributes of modern exception handling models will take place. 

2.2. Handling models: features and propagation 
The literature on exception handling has already provided a thorough description of the 

existent exception handling models and their attributes. This section discusses the relevant 

literature in order to give a general, but clear, perspective of the capabilities of nowadays 

exception handling models. 

 

Figure 2.1 – Label variables usage example 
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2.2.1. Handling models 
Exception handling models are differentiated by their control flow policies. An exception 

handling mechanism can implement more than one exception handling model, their usage 

is not mutually exclusive. Yemeni et al. [Yemini1985] identified the following models: 

 Nonlocal transfer – few programming languages support nonlocal transfer. PL/I is 

one of those languages, it uses label variables as arguments for goto statements in 

order to redirect the control flow. The label variables contain both a point of 

transfer and a pointer to an activation record on the stack containing the transfer 

point. An exception handling mechanism that uses the nonlocal transfer model 

can be constructed by labeling code, to identify handlers, and perform branches 

to those labels for terminating operations - Figure 2.1. However, this model 

suffers from a well known structured programming problem: it allows branching 

to almost anywhere, making the code difficult to reason about, less maintainable 

and error prone. 

 Termination model – this is the most commonly used model. When an exception is 

raised inside a protected block of code, control flow is transferred to a handler 

and the intervening blocks are terminated; after the completion of the handler, 

control flow continues as if the operation in the protected block terminated 

without showing any abnormal symptoms - Figure 2.2. The handler is, in this 

model, an alternative set of operations that are executed after the problematic 

ones in the protected region. 

 

Figure 2.2 – Java code exemplifying the termination model 
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 Retrying model – this model extends the previous model. It allows the failing 

operation to be re-executed after the execution of the handler for the raised 

exception. Usually the execution is retried from the beginning of the protected 

region of code where the exception was raised or from the beginning of the one 

associated with the handler used to treat the exception - Figure 2.3. The re-

execution of code blocks can have unpleasant side effects that the programmer 

must be aware and that have to be dealt with in the most appropriate way: 

counters not reset; invocation of non-idempotent operations; existence of several 

handlers for the same reentry point; etc. Other authors [IBM1981] have shown 

that it is possible to mimic the retry model by using a loop and the termination 

model. Because the later alternative is more readable, all looping is the result of 

explicit loop instruction and not from a hidden language feature; its use has been 

considered preferable when compared with the model itself.  

 Resumption model – the control flow in this model is in many ways similar to a 

normal routine call: when an exception is raised, control flow is transferred from 

the raise point to a handler, to treat the problem at hands, and then back to the 

raise point - Figure 2.4. In fact, the main difference between a normal routine call 

and a resuming call is that in the second one the handler is located dynamically. 

The main argument against the resumption model is its complexity. The 

Goodenough model and the Mesa model [Mitchel1979,Yemini1985] (based on the 

first) are good examples of that complexity. Implementation difficulties and 

complexity apart, the remaining problem with this model is recursive resumption 

[Liskov1979,Stroustrup1994]. Recursive resumption occurs, for instance, when a 

handler for a resuming exception resumes the same event. 

 

Figure 2.3 – Retry model exemplified with Eiffel notation 
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2.2.2. Features 
Control flow issues are fundamental when distinguishing exception handling models and 

mechanisms. However, there many other features that can make a difference when dealing 

with exceptions. Burh et al. identified a set of the most fundamental features available in 

modern exception handling mechanisms [Burh2000]. We will discuss these features on the 

following sections. 

Derived Exceptions 
An exception type can derive from another exception type, much like a class can derive 

from another class in the object-oriented paradigm. This allows the developer to organize 

his exceptions in a way similar to a class hierarchy. Furthermore, by doing so the 

developer is able to handle an exception at different degrees of specialization along the 

hierarchy. This feature allows a more flexible programming style. 

Multiple derivation [Koenig1990] is a feature that is often rejected in object-oriented 

languages due to the complexity and problems that it introduces. Multiple derivation for 

derived exception types is also rejected because it would create significant difficulties for 

the mechanism semantics. Consider the example on Listing 2.1. In this example, a new 

exception class, InputException, is declared as being derived from the classes 

IOException and EOFException. The difficulties arise when an exception instance of 

InputException is raised inside a guarded block that has two handlers, one for 

IOException exceptions and another one for EOFException. This situation causes 

ambiguity: without the specific knowledge of the exception hierarchy it is not possible to 

say for sure which of the handlers will be activated. Moreover, in the event that one of the 

handlers (or both) is executed, none of the parent classes might be equipped for dealing 

with the derived exception, but, are forced to do so. 

 

Figure 2.4 – Resumption model exemplified with Smalltalk notation 
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Exception Parameters 
Raising an exception would be almost irrelevant if the exception handling mechanism did 

not allow the passing of information about the problem to the exception handler. This 

could be accomplished by using shared variables but, in environments with concurrency 

concerns, the usage of locks or other access control mechanisms would be mandatory. 

Exception parameters allow the source code to pass information to the handler without 

any side-effects or locking requirements. There are, of course, mechanisms without 

exception parameters and mechanisms that, on the other hand, allow passing one or more 

parameters. 

In concurrent environments, where the faulting execution1 is different from the source 

execution2, the access to the exception parameters must be properly synchronized. Burh et 

al. [Burh2000] defend that synchronization should not be a concern of the exception 

mechanism - “leaving the synchronization to the programmer simplifies the exception 

handling mechanism interface and hardly loses any capabilities” – the programmer can 

use monitors, futures, conditional variables, and other facilities for synchronization. 

                                                                  
1 The execution that changes its control flow due to a raised exception. Control flow is routed to the 

handler. 
2 The execution raising the exception. 

 
class InputException extends IOException,EOFException {…} 
______________________________________________________________ 
… 
try 
{ 
  // operation raises an InputException 
} 
catch (IOException …) 
{ 
  // Will this handler be activated? 
  // if so, does IOException have  
  // enough information/functionality 
  // to deal with the descendent exception 
} 
catch (EOFException …) 
{ 
  // Or this one? 
  // Would this be able to handle it? 
} 
… 
 

Listing 2.1 – Multiple derivation for derived exceptions 
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Derived exception parameters deserve special attention to prevent handlers from accessing 

un-initialized parameters on the exception object. 

Bound exceptions and conditional handling 
When an exception is raised inside a guarded block and a handler is activated, the handler 

should know which object was the origin of the exception. In Ada, this question has a 

simple answer: an exception declared in a generic package creates a new instance for each 

package instantiation. Thus, a different handler can be activated for each different package. 

On the other hand, in other systems, it may be necessary to pass additional information 

from the source code that generated the exception to the handler. 

Consider the example in Listing 2.2. In some models it is possible to declare an exception 

in a class (e.g., setting up the exception overflow on the stack class). This exception can 

then be interpreted by the exception handling mechanism as being associated with the 

class or with each object instantiated from it. In the source code example, the handler 

marked as option 1 acts like there is only one overflow exception for all stack objects 

created. Hence, this handler is activated regardless of which stack object raises the 

exception. The handler marked as option 2, on the other hand, is activated only if the object 

raising the overflow exception is s1. This is what is called a bound exception; the exception 

overflow is bound to a particular class instance. 

 
class stack  
{ 
  exception overflow; 
  boolean empty; 
  … 
} 
 
___________________________________________ 
… 
stack s1, s2; 
try 
{ 
  … 
  s1.push(…);                                //may raise overflow 
  s2.push(…);                                //may raise overflow 
  … 
} 
catch ( stack::overflow ) …                  //option 1 
catch ( s1.overflow ) …                      //option 2 
catch ( s2.overflow ) when (s2.empty) …      //option 3 
catch ( s2.overflow ) when (!s2.empty) …     //option 4 
… 
   

Listing 2.2 – Bound exceptions and conditional handling 
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Bound exceptions can be mimicked in systems that do not support them. Unfortunately, 

the cost in terms of code growth can be too high. For instance, consider that (1) a new 

exception instance would have to be created for each stack object, (2) that the stack object 

reference, of the object raising the exception, can be passed to the exception and, 

subsequently, to the handler through the exception parameters, (3) and that the 

programmer would have to check if the object referenced by the exception is the one that 

he or she wants to handle (comparing references) and, if it is not, he or she is obliged to re-

raise the exception in order to let the search for the appropriate handler continue. This last 

coding convention is also considered to be unreliable. Mimicking the bound exceptions 

feature is unfeasible for derived exceptions, especially in the cases that the exception has to 

be re-raised, after entering in an inappropriate handler (set for a parent exception), and 

ignores the right handler if it is also associated with the same guarded block. 

The concept of bound exceptions can be extended with conditional handling [Mok1997]. 

Options 2 and 3 of Listing 2.2 are a good examples of how conditional handling works. By 

checking the value of the variable empty, the system can decide which handler is activated. 

Furthermore, conditional handling can be used to mimic bound events just by checking if 

the object parameter is equal to the desired object. While, the literature has already given 

us proofs of the usefulness of bound exceptions [Burh1992], we have none on conditional 

handling. 

The .NET framework, for instance, provides four different kinds of handlers: 

 Fault handlers are called whenever an exception occurs. After their execution the 

exception keeps propagating up the stack; 

 Type-filtered handlers handle exceptions of a specified type or a subtype of that 

type, and are executed when such an exception is thrown; 

 User-filtered handlers decide whether to handle an exception or not based on 

custom logic; if the test passes the handler will cope with the exception, otherwise 

the exception survives; 

 Finally handlers are executed under any circumstance, regardless whether an 

exception occurs or not and can be used to close critical resources such as files or 

handles. 



 SECTION 2.2 — HANDLING MODELS: FEATURES AND PROPAGATION 37 

 

User-filtered handlers are the .NET implementation/construct used for conditional 

handling. Unfortunately, user-filtered handlers are not available either in C# or in Visual 

Basic, two of the core programming languages of the .NET platform. 

Exception list 
The exception list is an extremely useful feature that allows a method to declare which 

exceptions it might raise. For doing so, the programmer has to include in the method’s 

signature a list of exception types. In most programming languages, by doing so, the 

programmer is explicitly saying that the method in question can only propagate in the call 

stack the exceptions being declared. Any other attempt of throwing or propagating an un-

declared exception would result in a compile error. This feature gives the developer the 

privilege of always being aware of the potential problems that his code might face when in 

execution and avoids the existence of unattended exceptions. An exception list is also very 

useful for the development of static code analysis tools because it allows the observation of 

potential exception propagation paths. 

Some developers think of this feature as a restriction for their coding styles. They claim 

that is not always useful to handle all the declared exceptions and re-declaring the not-

handled ones in the method signatures is, in some sense, a unnecessary and ugly coding 

practice. Furthermore, this technique can raise some difficulties for object-oriented 

software designers. For instance, when overriding an inherited method and the new 

implementation does not throws the same exceptions as the parent method, it is impossible 

to add or remove items on the inherited exception list. It would be possible to add the 

necessary exceptions (to cover all possible exceptions in all existing implementations) to 

the declaration on the top of the hierarchy but, this practice would make the program less 

reliable because the signature would cover a large range of exceptions. 

Propagation mechanisms 
There are two kinds of propagation: throwing and resuming. The first is associated with the 

termination model while the other one corresponds to the resumption model. Exception 

handling mechanisms are free to implement only one or both of them. 

In the throwing propagation, the execution flow of the program never returns to the point 

where an exception is raised immediately after the handler execution. Furthermore, the 

propagation requires that every block in the stack, between the raise and the handler, must 

be destroyed. This is known as stack unwinding.  
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In the resuming propagation, the execution flow returns to the point where the exception 

was raised after the execution of the handler, thus, there is no stack unwinding. However, 

the handling code is free to decide not to resume the execution and perform the unwinding 

of the stack. This ability to explicitly request the stack unwind must be supported by the 

programming language (a special statement must be available). This feature may lead to 

unsafe resumptions given that the source code (where the exception is raised) loses the 

ability to order the unwinding of the stack. 

Liskov and Snyder [Liskov1979] have discussed the suitability of each approach in terms 

of software reliability. Their findings do not come as a surprise. For instance, in terms of 

control flow (and in the absence of recursion) it is safe to assume that the caller of a 

function is dependent of the function being called but, the called function is not dependent 

of its caller. Nonetheless, with resuming propagation the later can happen, and both the 

caller and the callee can be mutually dependent. For instance, not only the caller of a 

function is dependent of the invoked function but also the callee becomes dependent of the 

caller when an exception is raised (and the handler is located on the caller). This 

characteristic influences the way applications are designed. It is necessary to include extra 

information on the design that will identify, not only every possible termination state 

(when non recoverable exceptions occur), but also all possible behaviors that can be 

expected from the handlers when exceptions are signaled. 

Resumption requires additional language support. The “normal case” in a resuming 

environment is having exceptions that are resumable but this is not always possible. Every 

system has to cope with situations where the signaler of an exception may not be resumed, 

must be resumed, or where resumption is optional. Language designers have to outfit their 

languages with the necessary tools to support these three possibilities and differentiate the 

signals used to communicate them. Furthermore, in the event that an exception is not 

resumable, the signaler must have the means to restore the global variables to a valid state 

and perform all the necessary clean up actions before its activation is terminated. This kind 

of system also requires a termination-like functionality in order to handle its own exceptions 

in the event that the caller does not. Thus, the termination model has simpler linguistics 

and does not require multiple kinds of signals. On the other hand, it is also true that the 

resumption model will provide a more expressive (and more intuitive) way to deal with 

exceptions in specific scenarios such as the following:  

 “when the exception is signaled, the signaler is in the middle of a computation 

that can be completed by performing additional computation upon receipt of a 
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value from the handler. Resumption permits completion of the computation in 

this situation without redoing work already performed” [Liskov1979] 

In [Goodenough1975, Levin1977] the authors present strong cases in defense of the 

resumption model. Nonetheless, their examples are simpler deviations of the scenario just 

described. It is arguable that the solutions using resumption feel more natural (or not) than 

those possible without resumption. But, even if resumption can relieve the programmers’ 

task in these cases, it is necessary to measure how common these scenarios really are to 

know if the tradeoff between the added extra complexity and the more natural code in 

such specific conditions is justified.  

When developing software for a platform using an exception handling mechanisms that 

implements both propagation mechanisms, the programmer must have in mind that a new 

class of problems will arise. Consider the following example: in a program it is possible to 

have a throw statement overriding a resume statement. Nonetheless, it is not possible to 

have a resume statement overriding a throw statement because the stack is already 

unwind after the throw. 

Until now, it has been assumed that the handling model, termination or resumption, 

matches the propagation mechanism, throwing and resuming respectively. But, this is not 

necessarily always the case. For instance, a handler with resuming semantics is not able to 

handle a thrown exception because a terminated operation cannot be resumed. On the 

other hand, the best option for a handler under the termination model to handle a 

resumable exception is to unwind the stack and follow the termination semantics. 

Handler search 
One fundamental issue, associated with propagation mechanisms, is the selection of a 

suitable handler for an exception occurrence. Most systems adopt what is known as 

dynamic propagation. The alternative method is named static propagation. In dynamic 

propagation, the call stack is searched to find an appropriate handler. The second one, 

static propagation, performs the search on the lexical hierarchy of the program’s code.  

Dynamic propagation is often the best guarantee that an exception will be handled near to 

the point where it was first raised, and by the handler that is closest to the block where the 

propagation started. It is even feasible that the block on the top of the stack will be elected 

to handle the event if it has an appropriate handler. 



40 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING  

 

Handling an exception high in the call stack allows the handler to perform more specific 

actions, whether, if the exception is handled down in the call stack a more general 

(accordingly to the higher abstraction level) action would be in place. Most times, it is 

easier to handle an exception in a specific context than in a more general context. Dynamic 

propagation also minimizes the extension of stack unwinding.  

However, dynamic propagation can cause an exception to be propagated through a block 

in a different lexical scope. For instance, in C++ it would be impossible to provide an 

exception list within the declaration of a template routine. The problem is that there can be 

many implementations for the same routine and the exceptions thrown by each one of 

them can be different. Consider the template routine template<class T> void sort(T 

items[ ]). This routine uses the operator routine < to compare pairs of items on the list 

(bool operator<( const T &a, const T &b )) and sort them. The implementation of 

the routine operator < is dependent of the objects being compared thus it is impossible to 

know which exceptions can be raised in advance. Another example, adapted from 

[Burh2000], is presented on Listing 2.3, it shows that while method B::h is equipped to 

deal with exception E, method A::f is not even aware of the exception. Since B::h invokes 

A::f and A::f invokes B::g, A::f will propagate E without even knowing the exception. 

This is an undesirable behavior [Motet1996]. Some designers suggest that “an exception 

 
class A 
{ 
  virtual int g() {} 
  int f()  
  {  
    …  
    g();  
    … 
  }  
}; 
 
class B: public A 
{ 
  int g() raises(E) {raise E;} 
  int h() 
  { 
    try { 
      … 
      f(); 
      … 
    } 
    catch (E) { … } 
  } 
}; 
 

Listing 2.3 – Dynamic propagation through an invisible scope. 
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should never be propagated into a scope where it is invisible, or if allowed, the exception 

should lose its identity and be converted into a general failure exception.” [Burh2000] 

Dynamic propagation allows handlers to be selected dynamically, thus, the handler chosen 

to deal with an exception cannot be identified through static analysis. But, at the same 

time, it is this functionality that allows software libraries designers to develop an API 

without providing handlers for the exceptions raised in their software. 

Recursive resuming is a problem that can arise in systems implementing dynamic and 

resuming propagation. Mostly because, in these systems, due to the dynamic choice of 

handlers, it is difficult to discover, both at runtime and compile time, the existence of 

problem.  

The simplest example that can illustrate the recursive resuming problem is presented in 

Listing 2.4. In this example, the try block resumes R and consequently the handler H(R)   

is activated and also resumes R. Considering that the blocks in the stack are organized as 

follows: bottom of the stack  …   T(H(R))  H(R); the handler for the latter resuming R is 

located just above itself in the stack, it is T(H(R)). Thus, H(R) is called again and continues 

to be invoked until the stack overflows.  

There have been attempts to prevent recursive resuming from occurring, since it is the only 

serious problem attributed of resuming propagation. This was first done by Mesa 

[Mitchel1979] designers and latter by Burh et al. [Burh2000].  

The Mesa’s approach consists in marking every handler activated for an event as being 

unhandled and not re-usable. These marked handlers cannot not elected twice for the same 

block. Besides its conceptual simplicity, this approach as been classified confusing when 

used in practice and the source of semantic negative attributes: language designers are 

concerned that, at certain moments, it is difficult to know if an exception generated inside a 

handler will be handled by blocks bellow or above it in the stack. To use resuming 

programmers have to have knowledge about the internals of the libraries they are using, 

 
try 
{ 
  resume R;            // T(H(R))  try block with handler for R 
} 
catch ( R ) resume R;  // H(R)  handler for R 
 

Listing 2.4 – Recursive resuming example 
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because some exceptions might be handled by higher stack blocks (abstraction violation.) 

Exceptions are not only being communicated from the callee to the caller, but also in the 

inverse direction.  

Burh’s approach introduced two new concepts, consequent events and consequencial 

propagation: 

 Consequent event – the raising of an exception constitutes an event. Sometimes, a 

handler deals with events by raising a new exception (new event). This second 

event is considered a consequent of the first one. 

 Consequential propagation – is a different propagation mechanism that eliminates 

part of the semantic confusion associated with the approach in Mesa. 

Consequential propagation goes through the stack in the normal way but marks 

all the inspected handlers as ineligible (even the chosen handler). This way, any 

consequent event will see the marks and will be unable to use any of the marked 

handlers. The marks are cleared only after the event has been handled. The 

propagation is simplified by the fact that non-resumable exceptions cause the 

stack to unwind, thus eliminating the need for marking. 

Static propagation was proposed by Knudsen [Knudsen1984,Knudsen1987] and promised to 

solve the dynamic propagation problems. This approach was based on the Tennent’s sequel 

construct [Tennent1980]. A sequel is similar to a routine in many aspects but possesses a 

fundamental difference: when a sequel ends, execution continues at the end of the block 

where the sequel was declared and not after the sequel call. 

Using sequels to handle exceptions is a guarantee that propagation is done along the 

lexical hierarchy (because of the static name binding), hence, for each exception occurrence 

the respective handler is known at compile-time. Unfortunately, static propagation is only 

able to solve dynamic propagation issues for monolithic applications: sequels cannot be 

referenced from code separately compiled. This difficulty can be overcome by passing the 

sequel as parameter when invoking the pre-compiled code. Thus making the handler 

selection dynamic (only the propagation search is eliminated). Furthermore, declarations 

and calls will need potentially more arguments putting additional execution cost in every 

call. This propagation mechanism has not succeeded on replacing dynamic propagation. 

The reason, besides the described shortcomings, is that it is possible to mimic the model’s 
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syntax and semantics using some advanced language features, such as generics and 

overloading, and other exception handling features. 

Handler’s context 
The static context of handlers can vary from one programming language to another. For 

instance, in C++ and Ada the scope of the referenced variables is very different: while 

Ada’s handlers are nested inside the guarded block, C++ handlers execute in a scope 

outside of their guarded block. Listing 2.5 illustrates the differences in handlers’ context 

between the two languages. 

Handler and exception partitioning 
An exception handling mechanism can implement both termination and resumption 

models. As a consequence, programming language designers proposed that it should be 

possible to declare at compile-time which exceptions and which handlers act in accordance 

with the termination model and which use the resumption policy. This feature is known as 

handler and exception partitioning. 

Handlers can be declared at compile-time as being either resuming or terminating 

[Gehani1992,Burh1992,Madsen1993]. For doing so, the general catch statement is replaced 

by two new clauses: resume and terminate. An exception thrown inside the guarded 

block is handled by the terminating handler and a resuming exception by the resuming 

handler. 

 
C++ 
 
int foo;      // outer  
try 
{ 
  int foo;    // inner 
} catch (…) 
{ 
  foo = …     // outer 
} 
 
Ada 
 
VAR foo: INTEGER;               -- outer 
BEGIN 
  VAR foo: INTEGER;             -- inner 
EXCEPTION WHEN Others  
  foo := …                      -- inner 
END; 
 

Listing 2.5 – Handler’s static context in C++ and Ada 
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If the programmer prefers to delay the choice of the type of handler until run-time, a 

different way of achieving the same principle is the usage of a state flag declared on the 

global application context. If the flag is set for resumable, the handler should provide for a 

resuming exception, otherwise, a terminating handler is chosen. 

In some circumstances, an exception can be handled by the wrong type of handler. The 

partitioning of exceptions can help avoiding these situations. Exceptions can be throw-only, 

resume-only, or have a dual nature (the default) [Goodenough1975]. Throw-only exceptions 

can only be handled by terminating handlers, resume-only exceptions can only be handled 

by resuming handlers, and dual exceptions can either be thrown or resumed. 

The separation in the nature of exceptions is potentially beneficial because it increases the 

expressive power of exceptions. For instance, the Unix SIGTERM and SIGBUS signals 

always lead to the termination of an operation and hence, should be declared throw-only. 

Some problems arise regarding the programmability of a hierarchy of patitioning 

exceptions. For instance, consider the case where a parent exception is throw-only and the 

child exception is resume-only. If the derived exception is thrown but the parent exception 

is caught, the stack is unwind and the resume point of the child exception is invalidated. 

The inverse, where the parent exception is resume-only and the child throw-only, is also 

problematic. If the throw-only exception is raised but the resume-only is caught, the event 

could be resumed but the termination at the raise point is invalidated. 

Handler selection 
The selection of a handler during propagation obeys the three orthogonal criteria: agreement, 

closeness, and specificity [Burh2000]. The first two criterions are straightforward but, the last 

one can be difficult to evaluate. 

 Agreement – This criterion is applied in systems with more than one propagation 

mechanism and assures that the selected handler matches the propagation 

mechanism; 

 Closeness – This criterion decides which handler is selected due to its proximity 

with the raise point. A handler is considered to be closer that the rest if, 

accordingly to the propagation mechanism, it is located prior to others on the 

stack and is able to deal with the exception; 
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 Specificity – In the event that more than one handler is considered eligible, after 

consideration of the previous two criterions, the Specificity criterion is used to 

decide which is more specific. For instance, if both handle the same exception, the 

one using conditional handling is considered more specific; the handler for a 

derived exception of the exception being handled by a second handler is 

considered more specific. 

Sometimes, it is difficult to declare a handler as being more specific than another: a handler 

for a particular exception is considered as specific as a handler for a parent exception of the 

former but using conditional handling. 

To avoid potential conflicts on handler selection, language designers have to set priorities 

for each one of the criterions. Normally, agreement has the highest priority followed by 

closeness. Specificity comes last. On cases where two handlers on a specific handler clause 

are equally specific, the system opts by the activation of the one that appears first in the 

clause declaration. 

Catch-any and Re-raise 
Almost all known exception handling mechanism allow its users to specifically catch some 

type of exception and to raise some specific exception. But, simple mechanisms are 

sometimes the most useful ones. In some situations, the desired behavior is to have the 

ability to catch any type of exception and re-throwing it afterwards, without loosing any 

information about the original exception. For instance, when an exception is not handled 

on the raising block, it is still possible to perform some kind of finalization/clean-up tasks 

before re-raising it. 

This feature is also useful on the resumption model. It allows the gathering of extra-

information before resuming normal execution flow. 

Checked Vs Unchecked Exceptions 
The checked exceptions model is clearly influenced by the exceptions list feature. In this 

model, the exceptions weight in the functionality of a method is considered so significant 

that they must be explicitly declared, being the programmer forced to handle them. On the 

other hand, the unchecked exceptions model allows developers to ignore all the exceptions 

that a method throws. The discussion surrounding both models has been going on for 

almost a decade but, no consensus has come from it yet. Given these approaches, at 
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present time, this discussion also means Java’s vs. .NET’s way of dealing with exceptions. 

.NET uses exclusively unchecked exceptions and Java uses both kinds, unchecked 

exceptions for dealing with runtime abnormal situations and checked exceptions for the 

rest. 

In the checked exception model, programmers have to declare the exceptions that a given 

method, m1, throws (e.g., void m1() throws IOException {…}). There are also special 

instructions used to explicitly raise exceptions in the method’s body – such as the Java or 

the C# [ISO23270:2006] throw instruction (e.g., throw new Exception(“”);). In most 

platforms, by using these constructs the exception information is naturally bound to m1 

and becomes connected to that method (it can even be accessed through reflection in 

reflection-enabled systems). This also has the effect of forcing programmers of another 

method, m2, which calls m1, to either setup a try-catch-finally block to handle m1’s 

possibly thrown exceptions, or declare m2 as thrower of those exceptions, using the same 

process as for m1. For instance, a Java compiler will refuse to compile a program in which a 

programmer does not use one of these possibilities for all exceptions that methods called 

by that program are declared to throw. 

On systems implementing the unchecked exceptions model, programmers can, if they 

wish to, declare a method as thrower of an exception, but, the relation between a method 

and the exceptions it can throw is weaker because the programmer is not forced to do so. 

Plus, another programmer, reflectively accessing a method entity, has no possibility of 

discovering which exceptions it may throw if the developer of that method opted for not 

declaring the potential exceptions1. Nevertheless, a throw instruction can still exist, which 

means programmers can use it to raise exceptions. 

The checked vs. unchecked exceptions discussion has had numerous interesting episodes. 

Ryder and Soffa [Ryder2003] present an historical overview of some of the older ones, 

stating that “there is a symbiotic relationship between software engineering research and 

the design of exception handling in programming languages”. What is interesting to notice 

is that Ryder and Soffa end by saying that “strong typing in programming languages, 

desirable in new language designs, was a direct answer to concerns about software 

reliability and correctness” which agrees with Goodenough’s advocating of “compile-time 

checking of the completeness of exception handling”. This means that for at least the last 

30 years, checked exceptions have been regarded as good for reliability. But the modern 

                                                                  
1 In some cases the information about exceptions might be available on the software documentation. 
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try-catch construction only appeared a little over 15 years ago in C++ [Koenig1993], and 

Java, the most popular language to use checked exceptions, in 1996. This means that 

hands-on experience with this topic is still recent. 

Robillard and Murphy [Robillard2000] are critics of the checked exceptions approach. 

Using a practical example, they conclude that “although checked exceptions have many 

benefits, they can be expensive to implement”. This is due to the fact that checked 

exceptions force programmers to alter every method in the call chain, connecting an 

exception thrower to an exception handler, whenever the group of types of exceptions 

possibly thrown is modified. In the presence of large method call propagation graphs, this 

is impractical. It can be argued that checked exceptions clutter the object interfaces and 

induce complicated catch blocks. On the other hand, checked exceptions could be 

considered as a required language feature for ensuring reliability in applications. In the 

absence of documentation or in the presence of bad documentation, not checking for 

exceptions could mean not documenting exceptions. 

The unchecked exceptions approach, defended by Microsoft, seems to imply that the 

programmers can be trusted to document exceptions. Sun believes that this is 

unreasonable and that a mechanism to enforce reliability is in order. Either way, the 

special documentation tags that both companies introduced tell us that they also agree on 

the importance of good exception documentation. 

Cheng et al. [Cheng2005] shows that checked and unchecked exceptions can be 

consistently used: “through the use of an architectural model, an application can benefit 

from a separation of exceptions in terms of recoverability beyond distinguishing checked 

and unchecked exceptions.” The architectural models presented in [Cheng2005] help to 

evaluate and balance conflicting quality requirements such as modifiability, readability, 

and reliability. The models are useful to guide developers in using checked and unchecked 

exceptions. 

Concurrent exception handling 
Exception handling in concurrent systems differs significantly from sequential exception 

handling. Moreover, we believe that exception handling mechanisms should rely on the 

way the system is structured and be an integral part of system design. This raises some 

difficulties in terms of concurrent execution of handlers, exception signaling and 

communications between handlers. And, although the development of exception handling 
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models for sequential object-oriented systems has a long history, the same is not true for 

concurrent object-oriented systems. Research in this area is still very active and most 

concurrent system nowadays still use sequential exception handling. 

It is difficult to design, analyze, modify and, sometimes, understand concurrent object-

oriented systems. Thus, in many situations it is not possible to guarantee that erroneous 

information is always contained inside an object. In such systems, and in the presence of 

an abnormal situation, we will most probably have to deal with several interconnected 

objects simultaneously.  In Client-Server architectures is not uncommon to observe server 

errors affecting several client objects. Dealing with the error only on one side (the client or 

the server) is unfeasible in most cases. 

Concurrent systems can be designed to work independently (disjoint), competing or 

cooperating.  Competitive systems are composed of two or mores individual components 

developed independently one from the other; which run not aware of each other, but use 

the same passive components (competitive concurrent activities). Cooperative systems are 

designed to work together to accomplish a joint goal. The components of these systems can 

communicate among themselves and share results or functionality. 

Concurrent systems, when organized in small execution units, are easier to build, 

understand, and able to deal with complexity in a scalable way 

[Best1996,KurkiSuonio1997]. These units can encapsulate objects and method calls. Hence, 

assuring that no information crosses the units’ borders. The nesting of atomic units 

provides for a scalable growth in complexity and, at the same time, for the confinement of 

error information inside the unit boundaries, facilitating reliability procedures 

[Romanovsky1999].  

Concurrency introduces new challenges for systems development and concurrent 

exception handling is also a main concern when designing such systems. More than 

confining developers to the usage of sequential exception handling techniques, language 

designers face the challenge of integrating exception handling into a new complex 

environment in a way that respects the structure of programs, their organization and goals. 

Atomic units [Romanovsky2001] provide the perfect context for implementing concurrent 

exception handling mechanisms. They allow the definition of dedicated handling policies 

for the abnormal events occurring on the actions performed inside the unit. They avoid the 

linking of the exception effects outside the boundaries of a unit and provide an elegant 

way of communicating to the outside the failure of a unit’s execution. 
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In terms of concurrency, transactions have been the battle horse for many years. They 

provide for the atomicity, consistency, isolation and durability (ACID) [Gray1993] 

properties required on systems that access resources concurrently (competitive systems). 

But, even if the development language has exception handling capabilities, it is usual for 

these to be completely separated from the transactional structure of the system. For 

instance, in Multithreaded Transactional (MTT) systems [Kienzle2001b], such as the one in 

CORBA [OMG1996], developers have an extremely powerful transactional service but they 

still have to use the sequential exception handling mechanisms available in the selected 

programming language (e.g., C++ or Java). By doing so, developers have to deal with some 

anti-paradigmatic problems. For instance, the raised exceptions are certain to cross 

transaction boundaries if not handled inside the transaction. Each participant in a 

transaction deals with its own exceptions separately and the exception context does not 

match the transaction context. Furthermore, the transactional environment is no longer 

viable (valid or consistent) if an exception crosses the transaction boundaries. 

Platform and language designers have already attempted to introduce exception handling 

functionality inside MTT models by giving transactions the ability to explicitly re-raise an 

exception, abort a transaction or deal with the exception and continue execution (e.g., EJB 

[Sun2006]). Nevertheless, even with such improvements, transactional systems are still not 

able to cope with complex exception handling procedures that require inter-transaction 

communication. The simplest solution to incorporate exception handling into concurrent 

competitive systems is to separate the exceptions that are raised and handled inside a 

transaction from those declared on the transaction interface (external exceptions). Some 

systems implement this model by declaring methods as atomic transactions (e.g., Argus 

[Liskov1988]), thus enabling the definition of external exceptions on the method’s 

interface, and forcing threads to synchronize after each commit or abort. Others simply 

abort the transaction if an exception is not handled inside the transaction boundaries (e.g., 

Vinari/ML [Haines1994] and Drago [Jimenez2000]). When the participants of a transaction 

are unable do deal with an abnormal event locally and the transaction is aborted, all the 

calling threads (the invokers of the transaction participants) are informed of the exception 

occurrence [Kienzle2001a,Issarny1993]. Hence, the calling threads will deal with the 

signalized external exceptions independently. 

In the atomic actions scheme [Campbell1986] several participants join an action and 

cooperate to achieve a joint goal. This is the essence of cooperative systems: atomic action 

participants can share data and work in order to complete their objective with the 
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guarantee that no information will cross the action boundaries. Furthermore, atomic 

actions can be divided into smaller and nested actions, thus providing for a higher degree 

of scalability. The major difference that atomic actions introduce when compared with the 

simpler transactional execution units is the fact that if an error is detected inside an action, 

all participants take part in a cooperative recovery instead of each one trying to overcome 

the problem independently. 

Each atomic action has a set of internal and external exceptions. The external exceptions of 

a nested action are seen as internal exceptions on the containing action. Errors occurring 

inside an action can affect all the participants in that action. Thus, when it is necessary to 

deal with an exception in one single participant, all the remaining action members are 

called to intervene. Each participant has its own set of exception handlers (for the action’s 

internal exceptions). These handlers, as happens in normal execution, cooperate when 

dealing with abnormal events in order to return the system to a consistent state. 

Conversations [Campbell1986,Randell1995] are a special instance of the atomic actions 

scheme. The conversation scheme represents a natural evolution, necessary to extend the 

concept of recovery blocks1 to concurrent execution environments. It provides the means 

to allow backward error recovery in concurrent systems while avoiding the domino effect2. 

Coordinated Atomic action (CA action) [Xu1995] is a mechanism for structuring fault-

tolerant concurrent systems that unifies the notions of forward and backward error 

recovery.  Concurrent software systems, most times, involve both competitive and a 

cooperative components. CA actions provide a means for dealing with abnormal events in 

systems with this dual nature by enclosing and coordinating interactions among threads. 

CA actions combine and extend the previously discussed concepts of atomic actions and 

atomic transactions3. 

                                                                  
1 Section 2.4 gives more information on backward error recovery mechanisms and recovery blocks. 
2 Backward error recovery mechanisms allow a running application to revert to a previously known 

valid state (checkpoint) in the occurrence of an error. “However, if recovery and communication 
operations are not performed in a coordinated fashion, then the rollback of a process can result in a 
cascade of rollbacks that could push all the processes back to their starting points — the domino 
effect. This causes the loss of the entire computation performed prior to the detection of the error.” 
[Randell1995] 

3 Atomic actions allow the system to recover cooperatively while transactions are used to maintain the 
consistency of shared resources. 
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Figure 2.5 illustrates the fundamental concepts involved in the CA actions scheme. The 

execution of a CA action looks like an atomic transaction for the outside. CA actions can be 

nested inside other CA actions. Concurrent nested CA actions behave like nested 

transactions with respect to external atomic objects involved in transactions with their 

parent action. Inside of a transaction, participants cooperate and interact through local 

objects. In the presence of an exception each participant is forced to handle it 

independently of the fact of which participant first observed the abnormal occurrence. 

Internal exceptions raised concurrently are resolved using a resolution graph. The 

exception graph approach is used in order to find the exception that covers all the 

exceptions raised concurrently, the exception that is the root of the smallest sub-tree 

containing all the raised exceptions. 

Not all CA actions conclude their execution successfully, sometimes it is not possible to 

achieve the goal set for an action and execution ends abnormally. In such cases, the CA 

action interfaces can contain one or more abort exceptions (when signaled the CA action is 

aborted and local objects destroyed), a predefined failure exception and a number of 

 

Figure 2.5 – Coordinated Atomic Actions scheme overview 
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exceptions corresponding to partial (committed and consistent) results which the action 

can provide. This is useful to inform the containing CA action of the impossibility of 

producing the required results. The state of all transactional objects is aborted when an 

interface exception, corresponding to a partial result, is signaled. 

Even the CA action scheme has its limitations. External exceptions are explicitly signaled 

from a CA action participant thus, in some cases, it might not be possible to detect 

abnormal conditions outside the participants. Furthermore, concurrently signaled 

exceptions are expected to be related in some way so that the exception resolution 

mechanism can pull off a meaningful result. But, the main problem with concurrent 

exception handling is determining which is the correct handler to invoke (it may be 

different for each participant) – “Relying on handler communication to ensure the correct 

handlers are invoked may be a highly complex task“- The authors of the Guardian model 

[Miller2002] have addressed this issue. The Guardian model, contrary to what happens in 

the prior model, does not raise the same exception in all action participants to notify the 

occurrence of an abnormal event. By raising in each process a possibly different exception 

and specifying the context in which it should be handled by the process, the Guardian 

model guides each process to a correct exception handler, thus orchestrating the recovery 

action. Miller et al. demonstrate the concepts behind their model by providing a simple 

example: “… say there is a pipeline of three processes A, B, and C. Should B fail, the 

guardian would signal to A an exception that its downstream neighbor has failed, and to C 

an exception that its upstream neighbor has failed. With a guardian, participants are freed 

from the burden of maintaining any configuration information and relating it to a process 

failure to determine the semantically correct recovery action. No transaction-like structure 

is needed for the correct exception handlers to be invoked (though that structure may be 

useful for other reasons).” [Miller2002] 

2.3. Evaluation and quality metrics 
Garcia et al. [Garcia2001] have done a thorough work comparing existent exception 

handling mechanisms, in regard of their strengths and weakness, as a tool for building 

dependable object-oriented software. 

The most important contributions arising from that work was the definition of a complete 

taxonomy for classifying the different design approaches to object-oriented exception 

handling mechanisms, and the definition of a set of quality requirements for the design of 
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future exception handling mechanisms. Both contributions are useful for the assessment of 

nowadays and future exception handling mechanisms. 

2.3.1. Evaluation 
Accordingly to Garcia’s study, exception handling mechanisms can be compared in ten 

different aspects (Table 2.1). 

Table 2.1 – Identification of the exception handling models evaluation items. 

Evaluation item  

Exception representation 
External exceptions in signatures 
Separation between internal and external exception 
Attachment of handlers 
Handler binding 
Propagation of exceptions 
Continuation of the control flow 
Clean-up actions 
Reliability checks 
Concurrent exception handling 

 

The topics on the previous list are discussed on the next sections. Some of these topics have 

already been addressed, thus, on those cases, and to avoid duplication we will only 

mention them briefly. 

Exception representation 
Exception handling mechanisms have different structures for representing exceptions: 

symbols, data objects, and full objects.  

The classic approach is associated with the first kind, symbols. Exceptions are strings or 

numerical values that are passed to the caller of an operation when an abnormal situation 

is detected during the execution of that operation. When exceptions are represented by 

data objects, or full objects, they are created as instances of a class that identifies on 

exception type (e.g., Java’s IOException). These exception instances are passed to the 

exception handler when raised. Exceptions represented by data objects require special 

support from the programming language, such as a keyword to trigger the exception 

raising operation (e.g., Java’s throw statement). Full objects, on the other hand, are just as 

any other object and have to implement themselves (or some class up in the hierarchy) the 
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raise operation. Both object representations are preferable to the use of symbols in object-

oriented languages. Objects guarantee the uniformity of the programming paradigm; 

objects do not require the usage of extra global variables for passing information to the 

exception handler, thus benefiting modularity. 

Object-oriented programming languages such as Ada 95 [ISO8652:1995], Smalltalk 

[Goldberg1989], Eiffel [Meyer1988], Modula3 [Nelson1991], Guide [Balter1994], and Extended 

Ada [Cui1992] use symbols to represent exceptions. Lore [Caseu1987] and BETA 

[Madsen1993], for instance, use full objects, while other languages like C# [ISO23270:2006], 

C++ [Koenig1990], Java [Arnold2000], Arche [Issarny1993], and Delphi [Kimmel2001] use 

data objects. 

External exceptions in signatures 
Exception handling mechanisms can make the usage of an exception list a mandatory 

feature or not. In some cases, designers of these mechanisms opt for providing a hybrid 

solution (e.g., Java). The discussion about the benefits associated with the compulsory 

usage of an exception list - in opposition to the non-existent or non-compulsory practice - 

is closely related with the discussion on checked vs. unchecked exceptions (section 2.2.2). 

For instance, programming languages like C#, Ada 95, Smalltalk, Eiffel, Delphi, and BETA 

do not support exception lists. Languages like C++, Lore, and Arche make its usage 

optional. Modula3, Guide, and Extended Ada use a compulsory approach, while only Java 

allows a hybrid solution (distinguishing checked exceptions from runtime exceptions).  

In terms of reliability, exception lists are an extremely helpful feature because they 

describe all the abnormal responses of a method in its signature. Its compulsory usage 

guarantees that the programmer is aware of the potential problems that his code will face 

and is able to provide handlers for those abnormal situations. On the other hand, forcing 

the programmer to declare all the exceptions that are propagated outside method 

boundaries, or to handle all the not declared exceptions, can lead to less recommended 

programming practices such as exception silencing, or log and terminate for non-fatal 

exceptions. 

Separation between internal and external exceptions 
Some systems allow the distinction between internal and external exceptions. External 

exceptions are those exceptions that the caller of an operation takes knowledge and has to 
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handle when the called operation terminates with an unexpected result. Internal 

exceptions, on the other hand, are not visible to the caller of an operation. They are raised 

and handled internally and never propagated outside the lexical boundaries that limit the 

operation. The distinction between these kinds of exceptions can be done, for instance, 

through the usage of different raising statements: if an exception is activated through the 

signal keyword it will be handled externally; if the exception is activated with raise, it is 

meant to be handled and known only internally. 

Currently we are not aware of any object-oriented programming language that implements 

this separation between internal and external exceptions. Nevertheless, the rules necessary 

for operating such distinction can be easily verified at compile-time. 

Attachment of handlers 
The definition of the protected region to which an exception handler is associated can 

differ in many aspects. For example, a handler can be associated with (i) a statement, (ii) a 

block of statements, (iii) a method, (iv) an object, (v) a class, or (vi) an exception class. The 

definition of handlers for a statement or a code block needs special support from the 

programming language, which must provide keywords and semantics for marking the 

beginning and the end of the block of code. Associating a handler with a method is the 

same of associating a handler with a block of code that starts when the method starts and 

ends when the method ends. A handler can be associated with a particular instance of a 

class (object handler), thus, each instance of a class can have a different set of handlers. 

Class handlers allow the definition of the same handling actions for every instance of a 

class. Handlers associated with exceptions can be activated at any time and anywhere in a 

program. These handlers are triggered by the raising of an instance of the exception that 

they are associated with. 

Garcia et al. argued against the usage of block handlers. For all possible association kinds, 

the authors consider this the weakest type. The authors defend that “the use of block 

handlers violates explicit separation of concerns, since exceptional code is intermingled 

with normal code albeit moved to the end of the block”. Other authors 

[Lang1998,Papurt1998] have also shown that, most times, the blocks of statements are 

defined with the sole purpose of attaching an handler. This practice can lead to the 

development of software which is difficult to read, maintain and test. 



56 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING  

 

Modula3, Ada 95, C#, C++, Java, Delphi, and Arche programming languages allow the 

usage of both statement and block handlers. Lore allows statement, class and exception 

handlers. Guide has statement, method, and class handlers. BETA allows all kinds of 

handlers associations except block handlers. Eiffel has method and class handlers. 

Extended Ada uses object and class handlers. Smalltalk only permits class handlers. 

Handler binding 
On Section 2.2.2 we identified two approaches for discovering the handler that should be 

executed when an abnormal situation is detected: the static approach; and the dynamic 

approach. Garcia suggests that the dynamic approach actually represents two different 

approaches: the fully dynamic; and the semi-dynamic (hybrid) approach. 

On the static binding approach, handlers are lexically associated with the exception and 

comply with the lexical hierarchy of the code. On the dynamic approach, the handler for 

an exceptional event is not known until the exception occurrence. The runtime system 

inspects the handlers available on the execution stack and chooses the most suitable 

candidate for treating the exception. The hybrid approach mingles the two previous 

techniques: a handler can be statically associated with an exception occurrence but, in the 

event that no suitable handler is found on the immediate lexical context, the runtime 

system is responsible of dynamically selecting the appropriate handler.  

Statically binding a handler to an exception occurrence leads to better readability, it is 

possible to verify statically which actions will be taken for dealing with a particular event. 

On the dynamic and semi-dynamic approaches, this kind of analysis are more difficult to 

perform because binding is dependent of the control flow at run-time. On the other hand, 

static models do not allow the propagation of exceptions and do not take the call history in 

consideration when choosing a handler for an exception. Usually, the operation invoker is 

better suited to handle an exception then the raising code. 

Smalltalk, Extended Ada and BETA are examples of programming languages that 

implement the static approach. Currently, no object-oriented language implements the 

dynamic model. The hybrid solution is the most common choice for mainstream 

languages, such as C#, Java, C++, Eiffel, and Delphi. 
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Propagation of exceptions 
Garcia et al. identified two design solutions for exception propagation: explicit propagation; 

and automatic (implicit) propagation. The first kind is also known as single-level [Liskov1979] 

propagation because it only allows the propagation of the exception to the immediate 

caller of the failing operation. However, the raised exception or a new exception can be 

signaled explicitly from a handler (attached to the caller) to a higher-level component. This 

kind of propagation is often associated with the static propagation model. In the cases that 

an exception is not handled locally, it is transformed into a general exception type and 

propagated to higher-levels or the application is terminated. The second kind of 

propagation, automatic or multi-level [Liskov1979], allows exceptions to be transmitted 

through multiple levels on the call stack until a suitable handler is found or the program is 

terminated. 

Programming languages implementing static binding (e.g., Smalltalk, Extended Ada, and 

BETA) do not support any kind of propagation. Most language designers elect the 

automatic propagation of exceptions as the default behavior on their exception handling 

models. This technique can be considered unsafe, in terms of exception handling, because 

it gives no any guarantees that an exception occurrence will be bound to the most 

appropriate handler. In some cases, explicit propagation can coexist with automatic 

propagation but, even then, the outcome of the mechanism for handler selection is not 

entirely predictable. Furthermore, the propagation of an exception through different levels 

of abstraction (on object-oriented software) can cause the unexpected exposition of 

implementation details, the degradation of encapsulation and modularity [Yemini1985].  

The majority of the object-oriented programming languages use both the explicit 

propagation and the automatic propagation of exceptions (e.g., C#, Java, C++, Ada 95, and 

Delphi). Eiffel is a good example of a language that chose to only allow explicit 

propagation. 

Continuation of control flow 
As described in the previous section, there are two fundamental propagation models that 

delineate where the normal flow of execution is resumed after the execution of an exception 

handler: the termination (simple and retry) and resumption models. 

As far as we know, all exception handling mechanisms (available in object-oriented 

programming languages) implement the termination model. Nonetheless, some language 
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designers, such as the creators of Smalltalk and BETA, decided to implement both models 

simultaneously. Their decision to include both features is clearly influenced by the power 

and the flexibility that the resumption model evidences as a programming tool (in some 

circumstances). Such flexibility comes with a high price: the overall programming model is 

more complex and, therefore, more error-prone. It is the general understanding that the 

simpler linguistic and the clearer semantics of the termination model make it preferred, in 

terms of reliability, to the resumption model. 

Clean-up actions 
An operation will either terminate correctly or with errors. In both cases, it is important 

that the program state remains coherent. Clean-up actions allow the program to recover to 

a valid state, or undo the effects of some actions. There are three design solutions for the 

implementation of the clean-up mechanism: (i) associated with explicit propagation; (ii) 

usage of a specific construct; and (iii) performing automatic clean-up. When explicit 

propagation is used, clean-up should take place in the local handler before the exception is 

propagated. Using a specific construct, the clean-up is associated with the guarded 

protected block and will be executed independently of the occurrence or not of an 

exception. The third solution makes clean-up a platform issue: the system will 

automatically perform the necessary actions to take the program to a valid state. 

Programming languages such as Ada 95, Eiffel, C++ and Archie use explicit propagation. 

But, the most common approach is the usage of a specific construct, such as the Java’s or 

C#’s finally clause. 

The most interesting solution in our perspective is making the clean-up actions a platform 

issue with automatic clean-up. This approach is not currently implemented by any 

programming language. Thus, in this thesis we will propose a solution for putting into 

practice this kind of functionality in a transparent and elegant way. 

Reliability checks 
Some systems implement static or dynamic checks that test for possible errors introduced 

by the use of an exception handling mechanism. Yemini and Berry [Yemini1985] suggested 

several kinds of checks that can be performed by the exception mechanism in order to 

improve software reliability. Consider, for instance, the following examples: (a) checking 

the correctness of the parameters used on the exception signaling operations; (b) checking 

the correctness of the formal set of parameters used on the definition of each exception 
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handler; (c) checking that only those exceptions that are defined by a signaler are signaled 

by it; (d) checking that the exceptions are raised and handled in the correct scope. (Note: 

some of these reliability checks might not be applicable to all mechanisms.) 

The first kind of reliability checks are performed by the compiler while the second kind is 

performed by the runtime system. Ideally, both kinds of checks should be implemented. 

For assuring a minimal overhead, the larger and more time-consuming set of verifications 

should be performed statically at compile time. Most object-oriented programming 

languages and platforms already implement this dual version (e.g., C#, Java, Eiffel, Delphi, 

and Guide). Ada 95 and Smalltalk are examples of languages that only implement 

dynamic checks. 

Concurrent exception handling 
The support for concurrent programming within an exception handling mechanism can be 

classified in three distinct ways: (i) unsupported; (ii) limited; and, (iii) complete [Garcia2001]. 

The first kind is the total absence of support for concurrent activities in the mechanism. 

Systems with limited support provide the means for notifying all the threads involved in a 

computation of the occurrence of an exception. Thus, the exception can be handled by 

multiple threads simultaneously and in different ways. A system with complete support 

for concurrent exception handling provides the facilities to combine the concept of atomic 

actions with concurrent exception handling. Such system usually implements the means to 

allow the final synchronization of all the participants in an action, the resolution and 

propagation of an exception through multiple threads, and the invocation of the different 

handlers associated with each of the action participants. 

2.3.2. Quality requirements 
Garcia et al. [Garcia2001] proposed a criteria for guiding the design of an effective 

exception mechanism for object-oriented software development. The authors have an 

extensive experience designing and developing dependable object-oriented systems and 

exception handling mechanisms. Based on their collective experience, they defined a well 

structured list of guidelines to help developers create the best possible exception handling 

mechanisms in terms of software reliability. These guidelines are spawn over twelve items: 

Readability; Modularity; Maintainability; Reusability; Testability; Writeability; 

Consistency; Reliability; Simplicity; Uniformity; Traceability; and Performance. 
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Q1. Readability – Exception handling mechanisms must provide for better code readability 

in programs that have to deal with (and recover from) errors or any other kind of 

abnormal event. It is consensual that software complexity has, undoubtedly, grown with 

the advances in systems and development tools. The number of exception types and 

instances that are possible to find in modern programs is just overwhelming. Furthermore, 

automatic code generation tools are becoming popular and, for these specific source code 

producers, size is not an issue. To increase code readability it is important to allow a clear 

separation between exceptional code and normal/business code. Systems must provide for: 

(a) a clear definition (identification) of the protected regions of code; (b) an easy 

recognition of the exception handling code, its boundaries and control flow behavior. 

Q2. Modularity – An important characteristic of object-oriented systems is encapsulation. 

An effective exception handling mechanism must be able to maintain object encapsulation 

as much as possible. For that effect, exceptions occurring inside a component must be 

confined to that component or propagated to immediate neighbors in a controlled manner. 

Avoiding the unnecessary propagation of exceptions outside the raising component’s 

borders prevents the disclosing of internal implementation details and complies with the 

information hiding policy inherent to every object-oriented system. 

Q3. Maintainability – In 1988, Bertrand Meyer stated on his book “Object-Oriented Software 

Construction” [Meyer1988] that 70% of software cost is directly related with software 

maintenance. Both the maintenance costs and the probability of introducing new errors 

during maintenance tasks increase with software complexity. To prevent causing more 

harm than good when performing such actions, exception handling mechanisms must be 

projected for simplicity and readability, thus making software easy to modify and/or 

correct. 

Q4. Reusability – One of the main features of object-oriented software is component 

reusability. Reusability is achieved through good software design and a clear separation of 

concerns among system components. Reusability of both business and exceptional code is 

enhanced by a straight separation between exception handlers’ code and business code. 

Q5. Testability – The purpose of testing is exposing the potential faults in systems, thus 

avoiding their subsequent manifestation at run-time. The existence of multiple execution 

paths, due to the introduction of exception handling code, makes software testing harder 

and more complex. It also raises the problem of achieving full code coverage in tests (it can 

be difficult to test the code inside exception handlers). Object-oriented software testing is 
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still an evolving area with many concerns to be addressed [Pezz2004]. When testing, it is 

important to verify that each exception if being correctly handled, and that the exception 

handling code does not introduce new errors. While projecting a new exception handling 

mechanism, designers must have in mind that their structural design must not impose 

further weight on the testing procedure. 

Q6. Writeability – For the programmer, the task of writing error recovery code can be 

difficult and complex. For the programming language designer, it is also hard to control 

the emerging complexity of his language. Some systems, due to their nature, size or 

complexity, may require more expressive languages constructs or even the means to 

separate different error handling policies throughout different applications levels. 

Occasionally, too much expressive power can be counter-productive and lead to the 

creation of code that is harder to read.  

Q7. Consistency – For achieving maximum dependability in object-oriented systems, it is 

mandatory keeping each system component in a consistent state, even in the presence of 

errors. To prevent catastrophic failures, systems must be able to continue their execution in 

a consistent state even if a component fails to complete a requested operation. 

Q8. Reliability – Exception handling mechanisms are, by nature, tools to construct reliable 

systems. Thus, it is capital that the mechanism itself is error-free. Such reliability level is 

achieved (among other reasons) through exhaustive testing, careful design, a correct 

expressiveness level, and complete integration with the programming language and/or 

framework. By themselves, the mechanism and the exception handling code must not be 

the source of new failures. The system has got to provide means to permit the verification 

and testing of the error handling code. 

Q9. Simplicity – The task of writing exception handling code ought not to impose itself over 

the task of writing the application’s business code. Many critical systems developers may 

not be completely sympathetic with this point of view but, ultimately, the truth is that the 

business code is the core responsible for providing the expected system functionality while 

the exception handling code is responsible for avoiding the program’s premature or 

invalid termination. To let developers concentrate on the writing the application’s business 

code, exception handling mechanisms should not increase the overall system complexity. 

Exception handling code must be easy to write, maintain and read. Thus it must be as 

simple as possible, have clear semantics, and its behavior must be well defined for all 

execution scenarios. 
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Q10. Uniformity – The syntax and the concepts introduced by the exception handling 

mechanism cannot violate the object-oriented nature of a system. Abstraction, 

encapsulation, modularity, and inheritance must not be broken by the establishment of an 

exception handling system. Failing to fulfill this requirement causes a serious handicap in 

terms of software reusability, modularity and testability. Moreover, the mechanism’s 

constructs should stick to consistent syntactic conventions and should not provide 

multiple representations for the same concept. 

Q11. Traceability – The exception handling mechanism ought to provide the means to 

assess the nature of an abnormal occurrence and deal with it. In both cases, it is necessary 

to gather all the available information about the exception and pass it to the right entity 

(handler). The exception handling systems must provide the means to communicate the 

name, description, location, and severity of an exception (and further relevant information) 

to its handler (or handlers).  

Q12. Performance – Performance is traditionally a major concern in systems design. The 

exception handling mechanism should not undermine the overall system’s performance by 

introducing unnecessary overhead. Language designers usually try to ensure the best 

possible performance from two different perspectives: (a) allowing systems, either using 

exceptions or not, to offer equal response times if no abnormal occurrences are detected; 

(b) minimizing the time spent searching for the suitable handler to deal with an 

exceptional event. Nonetheless, the prime concern of an exception handling system should 

be to provide the means to implement error handling while allowing fast recovery. 

2.4. Backward error recovery 
Exception mechanisms can use both forward error recovery and backward error recovery 

strategies for dealing with occurring exceptions. The aim of a forward error recovery 

mechanism is to move the system into a correct state using knowledge about the current 

erroneous state. The state recovery actions are application-specific by their nature and are 

based on correcting or isolating the effects of a fault. This allows the normal operations to 

be continued. Forward error recovery techniques are useful for handling anticipated faults, 

which can be detected and abstracted as exceptions. Backward error recovery, on the other 

hand, returns the system to a previously consistent state (saved before the failure 

manifestation). The techniques used for accomplishing this objective are, typically, 

application-independent, transparent for the application (e.g., atomic transactions and 
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checkpoints). Such techniques involve the rollback of the system state and undoing of the 

effects of the computation performed since that state. Backward recovery techniques are 

broadly applicable in dealing with unanticipated error conditions.  

The recovery block construct [Horning1974] is a program-controlled backward error 

recovery technique used in sequential programs. It provides mechanisms for specifying 

recovery points, acceptance tests, and alternate program code for execution.  

Horning et al. proposed the notation for the recovery blocks mechanism in 1974. This 

language construct allows developers to define tests of acceptability and correctness on 

intermediate stages of execution of the program and also to declare alternative courses of 

action should the tests prove negative. Recovery blocks have been described by Randell as 

a structure for software fault tolerance [Randell1975] and by Anderson as “a proof-guided 

methodology for constructing the checks for acceptable program behavior” 

[Anderson1975]. 

Listing 2.6 illustrates the usage of a recovery blocks structure. The acceptance test1 yields a 

logical value and must not have any side effects. Its evaluation allows the developer to 

verify the acceptability of some condition. Each alternate is a block of code with finite set of 

statements. The execution of an alternate is dependent of the last logical value yielded by 

the acceptance test. The test is first performed when execution reaches the recovery blocks 

structure, and the execution of the first alternate is dependent of the value yielded at that 

point (if the test proves negative the first alternate is executed). The acceptance test is then 

performed each time an alternate concludes its execution (error-free) and, in the case that 

the test result as not changed, the next alternate is executed. A fundamental feature of this 

technique is the setting of the program state to what it was on entry to the recovery block 

                                                                  
1 The writing of good acceptance tests is a complex and error-prone task. It is considered the major 

shortcoming of this technique. 

 
ensure <acceptance test> 
       by <1st (primary) alternate> 
  else by <2nd alternate> 
  else by <3rd alternate> 
      . 
      . 
      . 
  else by <nth alternate> 
  else error 
 

Listing 2.6 – The notation for a recovery blocks structure 



64 CHAPTER 2 — CURRENT APPROACHES TO EXCEPTION HANDLING  

 

before the execution of an alternate. The execution of the recovery block ends when the 

acceptance test yields “true” or there are no more alternates, in which case an error 

condition is raised externally to the (concluded) recovery block and any further recovery 

can only be performed by an enclosing recovery block. If there are no more recovery 

blocks, the system terminates the program. In terms of error handling, a failed acceptance 

text means that an erroneous condition has been generated (raise). In some cases, 

acceptance tests might be unable to detect internal errors1. In these situations, in the 

presence of internal error conditions, the acceptance tests may still yield “true” and 

therefore acceptable results. Internal errors can also arm the information structures upon 

which the recovery mechanism operates. 

The intent underlying the execution of each alternate is satisfying the acceptance test. This 

does not mean that each acceptance test implements the same functionality, in fact, it is 

quite the opposite. The lesser the degree of similarity between two alternates, lesser are the 

chances of both sharing a common design inadequacy.  

Early systems implementing the recovery blocks mechanism relied on a recovery cache 

[Horning1974] for performing the state restoration between alternates execution. The 

recovery cache approach offered certain advantages over conventional checkpointing 

techniques. It assured that only the values affected by the test and alternates execution are 

preserved for the life-times of the appropriate recovery blocks. Furthermore, the 

preservation and reinstatement of these values was completely automated and not 

susceptible to human errors of omission. 

The usefulness of recovery blocks rests on the effectiveness of the acceptance tests on 

detecting abnormal end error conditions. If the acceptance test is something more than the 

“most simple as possible” there will be a significant chance that it will itself contain design 

faults. In such cases, tests can fail to detect errors or give origin to false-positive results. 

Moreover, too complex acceptance tests can be the source of unacceptable run-time 

overhead. Developing simple, objective, and effective tests can thus be a difficult and 

potentially harmful task for the program’s overall reliability. 

Acceptance tests should not be the only means of error detection. For instance, assertions 

and hardware run-time checks should be on the front line of error detection. Any 

exceptions raised inside an alternate will activate the same recovery action as for 
                                                                  
1 Errors that are not pure algorithmic but due to the violation of the machine specifications and can 

cause normal systems to abandon execution. 
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acceptance test failure. Thus, each alternate should implement its own fault-tolerance 

mechanisms and, in the cases where this does not suffice, an exception is raised to notify 

the run-time mechanism that the recovery block was unable to accomplish is objective and 

execution should be handled by upper-level recovery blocks (if it exists). 

Besides recovery blocks, the best known technique based on design diversity is probably 

N-Version programming [Avizienes1977]. N-Version programming is a software diversity 

technique in which all the versions are designed to satisfy the same requirements and 

output. Correctness is based on the comparison of all the outputs. In contrast with the 

recovery blocks approach, this technique uses a generic decision algorithm (usually a 

voter) to select the correct output. Creating different algorithms to achieve the same end-

goal does not necessarily mean that development is more complex than for a single 

version. Nevertheless, it requires substantially more development time and effort. The 

design diversity is useful to minimize the probability that two or more versions will 

produce similar erroneous results for the same decision action (e.g., voting). The support for 

N-Version software is provided by a dedicated execution environment, which implements 

the decision algorithms and all the necessary means for the execution of the 

versioned-software. 

Other multi-version software approaches for fault-tolerance were developed based on the 

Recovery Blocks and N-Version programming techniques. This is the case of N Self-

Checking programming [Laprie1987,Laprie1990,Laprie1995a], that uses separate 

acceptance tests for each version. The Consensus Recovery Blocks [Scott1987] approach 

combines N-Version Programming and Recovery Blocks to improve the reliability. And, 

the t/(n-1)-Variant Programming [Xu1997] that implements a different output selection 

mechanism that guarantees that at least one non-faulty execution unit exists. 

2.5. Real-time concerns 
In our work, we do not address any issues related with real-time systems. Nevertheless, 

we feel that it is important to have a look into the difficulties that such systems impose, in 

terms of exception handling, in order to provide a thorough perspective on the current 

state of art. 

The truth is that exception handling mechanisms for real-time systems have never been a 

priority for programming language designers. The execution principles behind real-time 
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software have always been, in a sense, prohibited for any type of functionality that might 

raise uncertainty about the time necessary to complete an operation [Lang1998]. 

A real-time system1 has to comply with predetermined execution deadlines. 

Unfortunately, traditional exception handling mechanisms do not offer any time-related 

guarantees. They can introduce overhead in the execution of normal code and do not allow 

the predetermination of exception handlers execution times. Thus, when an exception is 

raised, there is no efficient way of predicting what will be the delay introduced by the 

exception handling system or by the recovery actions. In real time systems, it would be 

acceptable to have longer startup times in order to allow an application to offer time-

bounded detection and handling of exceptions. Unfortunately, no current performance 

optimization design trend (as we have seen in Section 2.3.2) follows such direction. The 

most common optimization effort is on having applications exhibit the same response 

times under normal system operation, either when an exception mechanism is being used 

or not.  

Real time processes and threads are usually scheduled in accordance with their priorities. 

A lower priority process cannot preempt a higher priority one. On the other hand, a higher 

priority process can preempt a lower priority execution, if necessary. The same should be 

true with exceptions code: a lower priority exception handler should never preempt a 

higher priority execution. Furthermore, exceptions should also have priorities associated, 

in a way that higher priority exceptions should be handled prior to their lower priority 

counterparts when multiple occurrences are detected simultaneously. 

In an ideal real-time system, the overhead imposed by the definition of exception types, 

exception handlers, exception detection and handling, should be tuned in order to allow 

the application to execute within pre-established time constraints, either under normal or 

exceptional execution. Compilers and automatic testing tools could play an important role 

in this respect. 

2.6. Other approaches 
The exception handling mechanisms described so far represent, what we consider to be, 

the more relevant advances in terms of exception handling in recent history. Nonetheless, 
                                                                  
1 In Hard-real-time systems, it is a fatal error for a function not to attain its time constraints. In soft-

real-time systems, having a function not meeting its time constraints is a serious problem but not 
fatal. 
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there have been other important efforts for improving systems resilience to exceptional 

events that are worth mentioning.  

2.6.1. Aspect Oriented Programming 
The current trend in the design of exception handling mechanisms is making systems that 

impose some kind of separation between the code for implementing different aspects of a 

program. For instance, in [Lemos2001], Lemos and Romanovsky propose an approach that 

separates the handling of requirements-related, design-related, and implementation-

related exceptions during the software life cycle.  

With the advent of Aspect Oriented Programming (AOP) [Kiczales1997,Elrad2001] a new 

approach was introduced. AOP is a programming paradigm that increases modularity by 

allowing the separation of cross-cutting concerns. In the object-oriented paradigm, different 

concerns are grouped (packaged) inside methods, objects, classes, and packages. But, in 

some cases, there are concerns that are transversal to such kinds of packaging and/or do 

not share a hierarchical relation, thus are called cross-cutting concerns.  

Exception handling has been considered a potential application area for AOP since its 

origin in the early 1990’s at the Xerox Park [Kiczales1997]. Some authors have suggested 

that the AOP approach can be used to separate exception handling code from business-

logic code [Lippert2000], proposing the treatment of exceptional behaviors as a cross-

cutting concern to the application.  Additionally, this approach can contribute to increase 

the readability of both normal and exceptional code, and to avoid the mingling between both 

kinds of code by allowing the developer to focus on each one of the following tasks 

separately: writing the exception handling code and writing the business logic code. 

Martin Lippert and Cristina Lopes [Lippert2000] have shown how an AOP tool for Java 

can be used to modify an application source code to apply exception handling and 

detection as a crosscutting concern. The exception detection and handling code of the 

JWAM [JWAM2008] framework were partially re-engineered using AspectJ [Lopes1998], 

an AOP extension to Java. AspectJ was essential for re-writing the framework’s source 

code. The authors collected information from the source code, pre and post reengineering, 

to analyze the advantages and disadvantages of the process.  

Rewriting JWAM’s code using AspectJ represented a cut of ¾ of the original exception 

handling code. Most of the redundant code (imposed by the programming language) was 

eliminated using AOP. The experiment demonstrated that the code that deals with 
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exception detection and handling can be substantially reduced if applied in a cross-cutting 

manner. Furthermore, using AOP to develop exception handling code increases code 

reusability, makes the code clearer, provides better support for different configurations, 

better tolerance for changes in the specifications, and better support for incremental 

development. On the other hand, the authors reported that it is difficult to reconstruct the 

local effects of the insertion of aspects into the code. The AOP tools available do not 

provide sufficient support and do not allow seeing the “whole picture” in a convenient 

manner. The developer is forced to browse through several source code files if he or she 

wishes to understand the complete functionality associated with a single location in the 

program. 

Filho et al. [Filho2006,Filho2007] are strong supporters of using AOP to introduce 

exception tolerance capabilities into a program. They suggest lexically separating error-

handling code from normal code so that both code types can be independently 

implemented by different developers and modified separately. In addition, they propose 

leveraging AOP to enhance the separation between error-handling code and normal code. 

2.6.2. Exception handling for Futures 
Zhang et al. [Zhang2007a] defined a future as “a simple and elegant construct that 

programmers can use to identify potentially asynchronous computation and to introduce 

parallelism into serial programs”. Several languages implement the futures mechanism 

[Halstead1985,JSR166,Charles2005,Zhang2007a] and implementations vary in terms of 

syntax and semantics. For instance, some systems provide a list of interfaces that can be 

used to mark classes or methods in serial programs as futures (able to execute concurrently) 

[Halstead1985] while other systems use annotations to identify the same kind of 

computations on the code [Zhang2007a].  

Futures represent an extremely valuable mechanism for creating concurrent applications in 

a simple way, either from the ground-up or by transforming serial programs into new 

parallel versions. But, although futures make concurrent programming a much simpler 

task, they also introduce new difficulties in terms of exception handling. 
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With futures, it is possible, for instance, to start a parallel computation of a variable value 

and continue the main execution until the value is first used. When the main computation 

reaches this point, either the value is ready to be used or the program waits for the 

completion of the execution of the parallel thread (Listing 2.7). The future value can be 

computed asynchronously independently of the location where it is defined in the code. 

This allows the system to organize the code in several distinct blocks of code that can be 

executed concurrently.  

In terms of exception handling, futures introduce uncertainty about where is the correct 

location to handle an exception raised by a future value computation. Exceptions can either 

be handled in the serial way, at the same location where the future is first declared, or at 

the point where the future value is used. On the later case, the exception is kept inside the 

future and delivered to the calling code when the future return value is requested1. 

There are two different approaches for dealing with exceptions in the DBLFutures 

[Zhang2007a] (and in all futures mechanism implementations in general). The code 

snippets in Listing 2.8 illustrate both of them. Method f1() returns the sum of variable x 

and y. Variable x holds the value returned by a call to A() and y the value returned by a 

call to B(). Variable x is declared as a future, thus A() can be executed concurrently, 

independently of the place where it is invoked in the code, even if the code is written is a 

serial form. In a) any exception raised in A() is delivered to the same point that it would be 

delivered if the program executed sequentially. This is what the authors call the as-if-serial 

exception handling mechanism. On the other hand, in b) exceptions will be delivered to the 

point where the future return value is used. Just looking at the examples, we can conclude 

that the second implementation, if depleted of DBLFutures semantics, is incorrect for 

                                                                  
1 In Java 5.0 Future APIs, exceptions from future execution are propagated to the point in the program 

at which future values are used. 

 
public class Fib 
{ 
 public int fib(int n) { 
  if (n < 3) return n; 
  @future int x = fib(n-1);     //declaration 
  int y = fib(n-2); 
  return x + y;                 //point of usage 
 } 
 ... 
}  
 

Listing 2.7 – Futures utilization within the DBLFutures framework 
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compilation in its serial form, while the first version remains correct. Furthermore, the first 

approach provides programmers with more intuitive understanding of the exception 

handling behavior and control, while the second one can be harder to read and less 

intuitive. 

To allow the employment of true as-if-serial semantics for exception handling in futures, 

the authors in [Zhang2007a] suggest that it will be necessary to resort to a Software 

Transactional Memory (STM) mechanism [Shavit1995] in order to ensure that the global 

side effects of parallel execution of a program (using futures) is consistent with that of the 

serial execution. As far as we know, no current approach truly implements the as-if-serial 

semantics for exception handling using STM. 

The combination of the futures mechanism with the as-if-serial semantics for exception 

handling turns the development of concurrent programs into a much simpler and 

straightforward task than in the past. We risk saying that the development software for 

multi-core (multi-processor; or cluster) architectures in the future will undoubtedly be 

linked with the advances in the support for the futures mechanism in the mainstream 

programming languages. Fortress [Allan2005] and X10 [Charles2005] are two 

programming languages, currently under active development, that are expected to 

simplify the way concurrent applications are written. Both languages have constructs 

similar to futures. 

2.6.3. Compensation stacks 
Weimer et al. in their work on “Exceptional Situations and Program Reliability” 

[Weimer2008] describe two interesting and self-complementing ideas than can help 

improve the reliability of programs: (1) a mechanism that allows an in-deep analysis of a 

 
public int f1() { 
  @future int x; 
  try{ 
    x = A(); 
  }catch (Exception e){ 
    x = default; 
  } 
  int y = B(); 
  return x + y; 
} 
 
 

a) 

public int f1() { 
  @future int x; 
  x = A(); 
  int y = B(); 
  try { 
    return x + y; 
  }catch (Exception e){ 
    return default + y; 
  } 
} 
 

 
b)  

Listing 2.8 – Examples of exception handling in DBLFutures 
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program code for finding all defects that can lead to resource-handling failures in 

exceptional situations; (2) based on this work finding defects, the authors propose a 

language feature, named compensation stacks, for ensuring that simple resources and API 

rules are handled correctly even in the presence of run-time errors. 

Weimer et al. describe a static data-flow analysis for finding program defects. This analysis 

uses a fault model and a formal specification of proper resource handling to guide the defect 

detection process. As an output, the analysis creates a defect report that includes a program 

path, one or more run-time errors and one or more resources governed by the 

specification. In broader terms, if a run-time error occurs at any point identified in the 

report, the program is prone to violate the specification for the resources in use. A 

fundamental aspect of this analysis is the fact that it considers not only the code in the 

normal control flow but also the control flow related to the exceptions in the fault model. 

The main goal of the Weimer analysis is to identify a path, with its origin in the start of 

method and ceasing at the end of the same method, where a resource is not in an accepting 

state. This process requires the construction of control flow graph accordingly to the pre-

defined fault model as well as the formal specification. The specification is responsible for 

describing what the program must do and the fault model will describe what can go 

wrong. To formalize the way how programs should manage and use certain resources and 

interfaces, the authors propose the utilization of Finite State Machine diagrams diagrams  

(FSMs) [Ball2001,Deline2001]. 

Weimer et al. alerted that their technique may “spuriously report correct code as having 

defects and may fail to report real defects”. Nevertheless, they declare to have obtained no 

false positives in their experiments while covering over five million lines of code and 

having found over 1300 defects. 

Based on the results encountered during the previous experiments, the authors claim that 

“try-finally blocks are ill-suited for handling certain classes of resources in the presence of 

run-time errors. (…) In essence, however, exceptions create hidden control-flow paths that 

are difficult for programmers to reason about”. 

Features existing in programming languages, such as destructors and finalizers, can assist 

programmers in the task of preparing their code for correctly dealing with resources in the 

presence of run-time errors. Destructors provide guaranteed cleanup actions for stack 

allocated objects even in the presence of exceptions because they are tied to the dynamic 
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call stack of a program in the same way that local variable are1. A finalizer has a different 

way of assuring the correct release of resources, it executes on an instance of a class only 

when that instance is about to be reclaimed by the garbage collector. The garbage collector 

gives no guarantees about which instances will be reclaimed, the order they will be 

reclaimed or the time-frame for the operation. Finalizers perform, in a certain way, a kind 

of lazy clean-up. 

Weimer and colleagues propose a new approach for assuring the execution of resource 

cleanup actions even in the presence of exceptions, the compensation stack. This language 

feature is influenced by the concepts of compensating transactions2 [Korth1990], linear 

sagas3 [Alonso1994,GarciaMol1987], and linear types [Deline2001] to create a model in 

which obligations are recorded at run-time and are guaranteed to be executed along all 

paths. 

Compensation stacks are seen as a kind of a generalized destructor that can be used to 

execute arbitrary code and not just to invoke functions upon object destruction. Based on 

the fact that many program actions require that multiple resources are handled in 

sequence, the compensation stack system links actions with compensations, and 

guarantees that if an action is taken, the program will not end without executing the 

associated compensation. Compensation stacks deallocate resources based on lexical scope, 

much like a destructor do, but they are also first-class objects that make use of finalizers to 

ensure that their contents are eventually executed. 

A compensation stack contains several closures. Closures are run automatically (in a last-in, 

first-out order) when a stack-allocated compensation stack goes out of scope or when a 

heap-allocated compensation stack is finalized. Nevertheless, programmers are still free to 

arbitrarily push closures onto compensation stacks and run closures ahead of time. This is 

important to allow the usage of an ordinary programming idiom where resources must be 

freed as early as possible along each path. Upon termination of the execution of a 

                                                                  
1 The programmer must still remember to explicitly delete heap-allocated object along all paths. 
2 A compensating transaction semantically undoes the effect of another transaction after that 

transaction has committed. 

3 A saga is a long-lived transaction seen as a sequence of atomic actions a1 … an with compensating 
transactions c1 … cn. Either a1 … an executes or a1 … akck … c1 executes. Note that the compensations 
are applied in reverse order. 



 SECTION 2.7 — SUMMARY 73 

 

compensating action, either normally or exceptionally, the compensation is eliminated 

from the compensation stack. 

Another interesting argument about compensation stacks is the fact that the system 

ensures that the execution of compensation will continue even if a compensating action 

raises an exception during its execution (the exception is simply logged). 

Compensation stacks provide more flexibility than standard language approaches to 

adding linear types or transactions by moving bookkeeping from compile-time to run-time 

and enforcing a certain ordering on the execution of compensations. 

2.7. Summary 
Early error detection and handling mechanisms, such as error codes and status flags, were 

proven to be insufficient for dealing with all possible abnormal situations and with the 

overall increase in the complexity of programs. The exception handling model emerged as 

a first effort to regulate the way programs deal with exceptional situations.  

Exceptions eliminate many of their ancestors’ shortcomings. From our point of view, the 

most important contributions of the exception handling mechanism in terms of reliability 

are: 

 Preventing any abnormal or erroneous situation of passing undetected, thus 

avoiding the continuous execution of a program in a corrupted state or based on 

false premises;  

 Providing the means for a programmer to plan a set of handling actions for 

dealing with abnormal occurrences at location, thus allowing the retrying of a 

failed operation or its replacement with a working version; 

 Allowing the communication of a error condition to different locations in the 

program in a structured fashion; 

 Improving error handling in distributed systems; 

 Increasing code readability. 

Unfortunately, such improvements have a cost - the overall complexity of systems and 

their code will increase. The original Goodenough’s specification [Goodenough1975] has 
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evolved and been extended originating different flavors of the exception detection and 

handling mechanism. 

The main factor of distinction between modern exception handling mechanisms is the way 

execution flow is continued after an exceptional occurrence. Existing systems can 

implement the termination model, the retry model, or the resumption model. In some cases, 

the same system can provide more that one way of dealing with control flow. We have 

attested the positive and negative features of each model and concluded that each one 

excels in different scenarios. Nonetheless, the termination model continues to be the 

preferred option for the great majority of programming language designers, due to its 

overall simplicity and clear semantics. In addition, we can state that it also covers most 

situations that occur in practice and, under specific circumstances, it can mimic the 

remaining models. 

Exceptions provide better means for classifying errors and abnormal occurrences. It is 

fairly straightforward to create classes representing exceptions, to derive sub-types and 

create class-like exception hierarchies in order to fine tune the exception identification 

process. In general, most systems deal with occurring exceptions independently of who 

raises the exception. But, some models allow the programmer to bound exception handling 

actions to exception occurrences inside specific components, other can even make 

exception handling conditional and impose that several pre-conditions are met before 

entering an exception handler. 

Some exception models allow the declaration of the exceptions being raised inside a 

component on that component’s interface. This is, simultaneously, a way of civilizing 

exception propagation between application components and publicly declaring which 

exceptions might occur during on a certain function call. Components missing an exception 

list will require solid and thorough documentation of its exceptions in order to alert 

programmers for their hidden hazards. On the checked vs unchecked exceptions discussion, 

such feature is also a point of rupture. Moreover, we can say that checked models give 

privilege to the obligation of detecting, handling and communicating occurring exceptions, 

while unchecked models, on the other hand, give privilege to the writing of normal 

application logic code. Checked models allow the compile-time checking of the 

completeness of the exception handling code. Unchecked models, on the other hand, 

require exhaustive testing in order to assess the complete coverage of the error handling 

code.  
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Garcia et al. [Garcia2001] proposed a criteria to evaluate the quality of an exception 

handling model in terms of reliability. At the same time, they were also able to provide a 

set of quality metrics to help guiding the development of future exception handling 

models. Among the programming languages currently better suited in terms of exception 

handling, using the Garcia classification, are Guide and Java.  

Along this chapter we mentioned several problems or difficulties associated with the usage 

of exception handling mechanisms. These problems are summarized on the following list: 

 It can be difficult to use testing techniques to find defects and evaluate programs’ 

behavior in exceptional situations [Sinha1999,Malayeri2006]. For instance, 

coverage metrics tests require previous knowledge of the implicit control flow on 

an exceptional situations and to validate exception handling code one might have 

to use fault injection techniques; 

 Building a complete list of the exceptions that are prone to be raised by a 

component, prone to be raised at specific location in the code, or knowing the 

origin of the identified exceptions, and their propagation path is an 

overwhelming task; 

 Language-level exceptions introduce implicit control flow which can mine 

software reliability; 

 Exception handlers are usually lexically scoped and might be quite labyrinthic ; 

 Handling failures from multiple resources in a location where they are used 

lexically close one to another is difficult and a potential cause for code errors; 

 Handling multiple cascading exceptions (nested protected blocks and handlers) 

can lead to serious program defects; 

 The inclusion of exception handling code into the application logic code of a 

program increases the distance between a resource allocation, its usage, and its 

consequent release; 

 Goodenough [Goodenough1975] proposed that exceptions should not be used 

only on rare occasions. Nowadays, programming languages, software libraries, 

operating systems, execution platforms, middleware and development 

frameworks, all declare and use different types of exceptions. The number of 
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different exceptions existing in a medium-size application can reach impressive 

numbers, in the order of thousands. Dealing with all exceptions types (and 

subtypes) is a cumbersome, complex and error-prone task. The option of handling 

none is unfeasible in terms of reliability. Handling only a smaller part might no be 

sufficient. 

We can safely conclude that existing exception handling mechanisms, if correctly used, are 

a great tool for improving software reliability. Exception handling is, by far, the most 

popular reliability mechanism in use in modern programming languages. Regrettably, the 

overwhelming complexity of dealing with all possible abnormal situations is making 

exception handling less attractive for programmers, and, in the end, making programs less 

reliable.  

In the next chapter, we will show how the problems just mentioned are affecting the way 

programmers use exception handling mechanisms and how that can be a reason for 

concern in terms of the overall software reliability. As we mentioned in the introduction of 

this chapter, sometimes programming language designers are forced to go back to the 

design table and adapt their models in order to comply with the way users relate with 

them. 

We believe that a possible solution for this problem is making the developers’ task simpler. 

It is necessary to create smarter tools. Tools that can, for instance: help detecting exceptions 

before run-time; help creating the code for handling exceptions; automatically verify 

handlers’ code during testing; among others. 

 



 

A Field Study in Exception 
Handling 

  

Most modern programming languages rely on exceptions for dealing with abnormal 

situations. Although exception handling was a significant improvement over other 

mechanisms like checking return codes, it is far from perfect. In fact, it can be argued that 

this mechanism is seriously limited, if not, flawed. This chapter aims to contribute to the 

discussion by providing quantitative measures on how programmers are currently using 

exception handling. We examined 32 different applications, both for Java and .NET, and, 

by doing so, we were able to conclude that exceptions are not being correctly used as an 

error recovery mechanism. 

Another aspect taken into consideration when reasoning about the efficiency of exception 

handling code in programs is the quality of the existing documentation for exceptions. For 

years, programmers trusted in the correct documentation for error codes returned by 

procedures to correctly handle erroneous situations. Now, they have to focus on the 

documentation of exceptions for the same effect. In the second part of this chapter, we 

show to what extent can exception documentation be trusted and how it tends to be scarce. 

This study provides a useful quantitative measure for guiding the development of new 

error handling mechanisms. 

Chapter 

3 
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3.1. Introduction 
In order to develop robust software, a programming language must provide the 

programmer with primitives that make it easy and natural to deal with abnormal 

situations and recover from them. Robust software must be able to perceive and deal with 

the temporary disconnection of network links, disks that are full, authentication 

procedures that fail and so on. 

Since the appearance of exception handling mechanisms their importance has been 

steadily increasing. Being a part of modern object-oriented programming languages such 

as Sun’s Java [Sun2006] and Microsoft’s .NET [ISO23271:2006], exceptions have been 

slowly replacing the error codes that are widely used in procedural languages like C. 

Nonetheless, the exception handling mechanism is far from perfect. Problems include1: 

 Due to the large amount of existing exception types (and their subtypes) in 

modern software, programmers tend to use and throw generic exceptions, 

making it almost impossible to properly handle errors and recover for abnormal 

situations without shutting down the application; 

 Programmers are also prone to catch generic exceptions, not providing proper 

error handling, and making the programs continue to execute with a corrupt state 

(e.g., in Java). On the other hand, in some platforms, programmers do not catch 

enough exceptions making applications crash even on minor error situations (e.g., 

in C#/.NET); 

 On the other hand, programmers that try to provide proper exception handling 

see their productivity seriously impaired. A task as simple as providing exception 

handling for writing a file to disk may imply catching and dealing with tens of 

exceptions (e.g., FileNotFoundException, DiskFullException, 

SecurityException, IOException, etc.). As productivity decreases, cost 

escalates, programmer’s motivation diminishes and, as a consequence, software 

quality suffers; 

 Due to the semantics and expressiveness level imposed by programming 

languages onto exception constructs, providing proper exception handling can be 

                                                                  
1 Please, refer to Chapter 2 for a more detailed discussion on the mechanism shortcomings 
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quite a challenging and error prone task. Depending on the condition, it may be 

necessary to enclose try-catch blocks within loops in order to retry operations. 

In some cases it may be necessary to abort the program or perform different 

recovery procedures. Bizarre situations, like having to use nested try-catch 

blocks to deal with an exception while trying to close a file on a catch or a 

finally block, are common. Dealing with such issues correctly is quite difficult, 

error prone, not to say, time consuming. 

To make things interesting, the debate about error handling mechanisms in programming 

languages has been refueled with the launch of Microsoft’s .NET platform. Currently, the 

Java Platform and the .NET platform constitute the bulk of the modern development 

environments for commercial software applications. Curiously, Microsoft opted to have a 

different exception handling approach than Java. In .NET the programmer is not forced to 

declare which exceptions can occur or even deal with them. Whenever an exception 

occurs, if unhandled, it propagates across the stack until it terminates the application. On 

the other hand, in Java, in most cases, the programmer is forced to declare which 

exceptions can occur in its code and explicitly deal with exceptions that can occur when a 

method is called. The rationale for this is that if the programmer is forced to immediately 

deal with errors that can occur, or re-throw the exception, the software will be more 

robust. This way the programmer must be constantly thinking about what to do if an error 

occurs and acknowledge the possibility of errors. 

On the .NET’s camp, the arguments for not having checked exceptions that are normally 

used are [Gunnerson2000]: 

 Checked exceptions interfere with the programmers’ productivity since they 

cannot concentrate in business logic and are constantly forced to think about 

errors; 

 Since the programmer is mostly concentrated in writing business logic and not 

dealing with errors, it tends to shut-up exceptions, which actually makes things 

worse. Corrupt state is much more difficult to debug and correct than a clean 

exception that terminates an application; 

 Errors should be “exonerated” by exhaustive testing. A sufficiently accurate test 

suite should be able to expose dormant exceptions, and corresponding abnormal 

situations. For the problems that remain latent, it is better that they appear as a 
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clean exception that terminates the application than having them being 

swallowed in a generic catch statement which leads to corrupt state. 

Obviously, both camps cannot be 100% right. But, overall, the important message is that in 

order to develop high-quality robust software, in a productive way, new advances in error 

handling and new perspectives into the subject are needed. Our work aims to contribute to 

the discussion by providing quantitative measures on how programmers are currently 

using exception handling. This chapter aims to contribute to the discussion by providing 

quantitative measures on how programmers are currently using exception handling. We 

targeted in particular the .NET and Java platforms, as well as the C# and Java 

programming languages. 

The use of unchecked exceptions, more precisely the difficulty that their usage introduces 

due to the lack of an exception list mechanism when a programmer needs to know what 

exceptions a method call may raise, increases the importance of good exception 

documentation. In our days, if a programmer expects his code to be used by others, or 

even himself, he or she has to spend time and effort documenting his methods, explaining 

the circumstances in which a given erroneous situation can occur and how methods act on 

those events. This documentation process, being mostly a manual one, is subject to 

incompleteness and faults. The absence of good code documentation is bound to cause 

programming errors, because unless there is a way of examining the source code of the 

software module a programmer is interacting with, documentation is all he or she can 

trust. 

These problems are known by programmers who spend precious time wrestling with bad 

code documentation, and especially by those used to the older way of error code 

identifiers. Nowadays, because error codes can still be used, for some developers exception 

handling is an optional way of dealing with erroneous situations [Ryder2003]. 

Consequently, the full impact of the problem of poor exceptions documentation in modern 

programming languages is not known. We propose to assess the impact of such problem 

by analyzing the code and the documentation released with a set of open-source programs. 

To our knowledge, this is the most comprehensive study done to date on exception 

handling. The data presented on this chapter is important to guide the development of 

new mechanisms and approaches to exception handling. 
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3.2. Programming with exceptions 
To understand the way programmers use exception handling constructs in modern 

programming languages, we have to look into both the source code and the executable 

files. 

We examined 32 different applications, both for Java and .NET, covering 4 different 

software categories: libraries; stand-alone applications; servers; and applications running 

on servers. Overall, this corresponds to 3 410 294 lines of source code of which 137 720 are 

dedicated to exception handling. For this work, we have processed 18 589 try blocks and 

corresponding handlers. 

In this section, we assess the usage of exception handling code in the targeted programs 

regarding the following topics:  

a) percentage of exception handling code;  

b) the type of actions performed inside exception handlers;  

c) the classes used as exception handler arguments;  

d) the exception types most frequently caught;  

e) the call stack levels that an exception travels before it is caught;  

f) the size of handlers;  

g) the types of handlers;  

h) the usage of checked or unchecked exceptions;  

i) the usage of a retry-like functionality.  

3.2.1. Methodology 
Selecting an adequate set of applications for processing was quite an important step. It was 

necessary to guarantee that both the source code and the binaries of the applications were 

available. The source code of each application had to be representative of common 

programming practices for the target platforms. Also, care had to be taken so that these 

would be “real world” applications developed for production use (i.e., not simply 

prototypes or beta versions). This was so in order not to bias the results towards immature 
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applications where much less care with error handling exists. Overall, the applications 

chosen should be mature and widely used. 

Globally, we analyzed 16 .NET programs and 16 Java programs. Each one of these sub-sets 

was organized in four categories accordingly to their nature:  

 Libraries: software libraries providing a specific application-domain API. 

 Applications running on servers (Server-Apps): Servlets, JSPs, ASPs and related 

classes. 

 Servers: server programs. 

 Stand-alone applications: desktop programs. 

The complete list of applications is shown in Table 3.1. 

The test applications were analyzed at source code level (C# and Java sources) and at 

binary level (metadata and bytecode/IL code) using different processes. 

To perform the source code analysis two parsers were generated using antlr [Parr2006], for 

C#, and javacc [Javacc2008] for Java. These parsers were then modified to extract all the 

exception handling code into one text file per application. These files were then manually 

examined to build reports about the content of exception handlers. 

We examined the source code of all applications, except for Mono. Indeed, due to its huge 

size, on Mono we focused on its "corlib" module. 

The parsers were also used to identify and collect information about try blocks inside 

loops (i.e., detect try statements inside while and do..while loops). The reason why we 

have done this was because this type of computation can correspond to retrying a block of 

code, which was responsible for raising an exception, in order to recover from an abnormal 

situation.  

The main objective of this study was to understand how programmers use the exception 

handling mechanisms available in programming languages. Nevertheless, the analysis of 

the applications source code is not enough by itself when trying to distinguish between the 

exceptions that the programmer wants to handle and the exceptions that might occur at 

run-time. The main reason for this is that the generated code (the product of the source 
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code compilation) can produce more and different exceptions than the ones that are 

declared in the applications source code by means of throw and throws statements. 

Table 3.1 – Applications listed by group. 

SmartIRC4NET IRC library 

Report.NET PDF generation library 

Mono (corlib) Open-source CLR implementation L
ib

ra
ri

es
 

NLog Logging library 

UserStory.Net 
Tool User Story tracking in Extreme 
Programming projects 

PhotoRoom 
ASP.NET web site for managing on-line photo 
albums 

SharpWebMail 
ASP.NET webmail application that is written in 
C# Se

rv
er

-A
p

ps
 

SushiWiki WikiWikiWeb like Web application 

NeatUpload 
Allows ASP.NET developers to stream files to 
disk and monitor progress 

Perspective Wiki engine 

Nhost Server for .NET objects 

Se
rv

er
s 

DCSharpHub Direct connect file sharing hub 

Nunit Unit-testing framework for all .NET languages 

SharpDevelop IDE for C# and VB.NET projects 

AscGen 
Application to convert images into high quality 
ASCII text 

.N
E

T
 

St
an

d
-a

lo
ne

 

SQLBuddy 
SQL scripting tool for use with Microsoft SQL 
Server and MSDE 

Thought River Commons General purpose library 

Javolution Real-time programming library 

JoSQL SQL for Java Objects querying L
ib

ra
ri

es
 

Kasai Authentication and authorization framework 

Exoplatform 
Corporate portal and Enterprise Content 
Management 

GoogleTag Library Google JSP Tag Library 

Xplanner 
Project planning and tracking tool for Extreme 
Programming 

Ja
va

 

Se
rv

er
-A

p
p

s 

Mobile platform 
Banks and mobile operators software for SMS 
and MMS services in cellular networks (not 
open-source) 
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Jboss J2EE application server 

Apache Tomcat Servlet container 

JCGrid Tools for grid-computing Se
rv

er
s 

Berkeley DB High performance, transactional storage engine 

Compiere 
ERP software application with integrated CRM 
solutions 

J-Ftp Graphical Java network and file transfer client 

Columba Email Client 

St
an

d
-a

lo
ne

 

Eclipse Extensible development platform and IDE 

 

To perform the analysis of the .NET assemblies1 and of the Java class files two different 

applications were developed: one for .NET and another one for Java. To develop the 

analysis software for .NET, we were also forced to create and use our own IL code 

instrumentation library because none was available for that platform at the time. Thus, we 

created and used the RAIL assembly instrumentation library [Cabral2005] to access assembly 

metadata and IL code and extract all the information about exceptions, exception handlers 

and exception protection blocks in .NET assemblies. The second application targeted the 

Java platform and used the Javassist bytecode engineering library [Chiba2000] to read class 

files and extract exception handlers’ information. 

All data was stored on a relational database for easy statistical treatment. 

For each application only one file or package of classes was analyzed. Table 3.2 shows the 

names of the files and packages that were used in this study. The criterion followed to 

select these targets was the size of the files (larger files were preferred) and their relevance 

in the implementation of the application core (more relevant ones were preferred). 

When performing the parsing of the applications source code, both for Java and .NET 

applications, we only had to consider the identification of the protected regions of code 

(try blocks), of the handlers and finalizers for those blocks (catch and finally blocks), 

and the occurrence of throw statements in the code (and throws in Java), while, when 

                                                                  
1 A .NET Assembly is a PE (portable executable) file for Windows GUI on Intel x86. There are two 

kinds of these fyles: process assemblies (EXE) and library assemblies (DLL). An assembly is 
composed by metadata and IL (Intermediate Code). IL code is the “machine code” executed by the 
.NET platform runtime. 
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performing the analysis of the executable files, we had to look not only into the code (IL 

and bytecode) but also, and more importantly, to the metadata inside the files. 

Table 3.2 – List of Assemblies and Java Packages analyzed. 

NET Java 

Meebey.SmartIrc4net.dll 
Reports.dll 
mscorlib.dll 
NLog.dll 
rq.dll (UserStory) 
PhotoRoom.dll 
SharpWebMail.dll 
SushiWiki.dll 
Brettle.Web.NeatUpload.dll 
Perspective.dll 
nhost.exe 
DCSharpHub.exe 
nunit.core.dll 
SharpDevelop.exe 
Ascgen dotNET.exe 
SqlBuddy.exe 

ThoughRiverCommons (all) 
Javolution (all) 
JoSQL (all) 
org.manentia.kasai 
Exoplatform (all) 
GoogleTagLibrary (all) 
XPlanner (all) 
Mobile platform (all) 
JBoss (all) 
org.apache 
JCGrid (all) 
Berkeley DB (all) 
org.compiere 
net.sf.jftp 
org.columba 
org.eclipse 

 

In a .NET assembly all the metadata is organized into tables [ISO23271:2006]. There are 

tables that hold information about the types defined and referenced in the assembly, 

modules, methods, parameters, resources, etc.  Entries in each table can reference other 

tables and even other entries in different tables through tokens (encoded index values). For 

instance, each entry in the Method table has the following fields: RVA (4 byte constant); 

ImplFlags (bitmask); Flags (bitmask); Name (index into String heap); Signature (index into 

Blob heap); ParamList (index into Param table). The ParamList attribute is a token value that 

represents an index into another metadata table, the Params table. In the same sense, Name 

is a relative pointer to the zone in memory where all the strings used in the assembly are 

stored and Signature is a memory pointer into the zone where all unsorted byte streams 

within the assembly are kept. 

The Method table only contains information about the method (or pointers to the location 

of that information), it does not contain any actual IL code or information about the 

method body. The IL code for all the methods in the assembly is kept on another section of 

the assembly. In this section, IL methods are organized in three different parts: header, body, 

and extra data sections. Currently, these data sections are used to store information about 

the exception handling code in the method. A typical exception handling data section 
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contains several clauses, each clause identifies the start point of a try block and the block 

length in bytes, the start point of an handler and the handler code length in bytes, the type 

of the handler (type-based or catch, finally, filter or fault), the token for the identification of 

the exception type in a type-based handler, and the offset into the code for filter-based 

handlers. With this information and the parsing of the IL code instructions in each method 

body, we were able to isolate the exception handling code inside the assemblies studied. 

In Java the process is similar, but .class files are very simple, in terms of metadata and 

size, when compared to .NET assemblies. For example, a .class file only implements one 

class while an assembly contains several modules, each composed by one or more files 

which contain the metadata and code of all classes in the application. 

A fundamental difference between the information available about exception handlers in 

Java and .NET is that Java does not provides any data about the length (or the 

identification of the) final instruction of exception handlers [Gosling2005] like .NET does. 

3.2.2. Results 
In the following sections we will present the results of this study, drawing some 

observations about their significance. The topics under analysis were already presented at 

the beginning of this section, but for the sake of easiness we will enumerate them once 

again: (a) percentage of exception handling code; (b) the type of actions performed inside 

exception handlers; (c) the classes used as exception handler arguments; (d) the exception 

types most frequently caught; (e) the call stack levels that an exception travels before it is 

caught; (f) the size of handlers; (g) the types of handlers; (h) the usage of checked or 

unchecked exceptions; (i) the usage of a retry-like functionality. 

We should caution that although the number of applications that were used was relatively 

large (32), it is not possible to generalize the observations to the whole .NET/Java 

universe. For that, it would be necessary to have a very significant number of applications, 

possible consisting in hundreds programs. Even so, due to the care taken in selecting the 

target applications, we believe that the results allow a relevant glimpse into current 

common programming practices in exception handling. 
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Error Handling Code in Applications  
One important metric for understanding current error handling practices is the percentage 

of source code that is used in that task. For gathering this metric, we compared the number 

of lines of code inside all catch and finally1 handlers to the total number of lines of the 

program. The results are shown in Figure 3.1.  

It is quite visible that in Java there is more code dedicated to error handling than in .NET. 

This difference can be explained by the fact that in Java it is compulsory to handle or 

declare all exceptions a method may throw, thus increasing the total amount of code used 

for error handling. Curiously, there is an exception to this pattern. In the Server 

Application group, the difference is almost non-existent. To explain this result we 

examined the applications’ source code. For this class of applications, both in Java and 

.NET, programmers wrote quite similar code. Meaning that they expect the same kind of 

errors (e.g., database connections loss, communication problems, missing data, etc.) and 

                                                                  
1 Note that finally code blocks are not really exception handlers in the technical sense of the word. 

Even so, for simplicity, we will use the term “finally handler” when referring to code blocks 
related to clean-up actions. The same term is used in the ECMA specs of the CLR. 

 

Figure 3.1 – Amount of exception handling code 
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they use the same kind of treatment (the most common handler action in this type of 

applications is logging the error). 

One surprising result is that the total amount of code dedicated to exception handling is 

much less than what would be expected. This is even more surprising in Java where using 

exceptions is almost mandatory even in small programs. Our results show that the 

maximum amount of code used for error handling was 7% in the Servers group. Overall, 

the result is 5% for Java, with a 2% standard deviation, and 3% for .NET, with a standard 

deviation of 1%. It should be noted that, as we have already mentioned in the prior section, 

the applications used in this study are quite mature, being widely used.  

We reason that the effort dedicated to writing error protection mechanisms is not as high 

as expected, even for highly critical applications like servers. The forceful of declaring and 

catching checked exceptions in Java effectively increases (almost doubles) the amount of 

error handling code written, even though it is still represents a small fraction of all the 

code of an application. The critical issue is that normally error handling code is being used 

more to alert the user, to abort the applications or to force them to continue their execution, 

than to actually recover from existing errors. 

The amount of exception handling code in the Stand-Alone group is smaller than the 

amount of error handling code in infrastructure software. This is unexpected if we 

consider exception handling to be an application-specific error recovery technique. A 

simple explanation can be that infrastructure software needs to run 24x7 with a minimum 

of human supervision. This fact may influence developers to produce “better” (albeit more 

complex) recovery code, whereas stand-alone applications developers can limit their error 

handling code to warnings, hoping that the user is able to correct the cause of the 

erroneous behavior. In the next sections we will provide an in depth analysis of the error 

handling actions present in the four application groups. 

Code in Exception Handlers  
Apart from measuring the amount of the code that deals with errors, to find out how 

programmers use exception handling mechanisms, it is important to know what kind of 

actions are performed when an error occurs.  

To be able to report on this subject we had to inspect sets of ten thousand lines of 

application source code. As a matter of fact, we covered all the handlers (catch and 

finally) in all the applications except for JBoss and Eclipse. For these two, due to their 
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dimension, only 10% of the 96 405 lines of code existing inside of exception handlers were 

examined. Even so, we believe that they are representative of the rest. 

To simplify the classification of these error handling actions, we propose a small set of 

categories that enable the grouping of related actions. These categories are summarized in 

Table 3.3. 

Table 3.3 – Description of the Handler’s actions categories. 

Category Description 

Empty  
The handler is empty. It has no code and does 
nothing more than cleaning the stack. 

Log  
Some kind of error logging or user 
notification is carried out. 

Alternative  
Configuration  

In the event of an error or in the execution of 
a finally block some kind of pre-determined 
(alternative) object state configuration is used. 

Throw  
A new object is created and thrown or the 
existing exception is re-thrown. 

Continue  
The protected block is inside a loop and the 
handler forces it to abandon the current 
iteration and start a new one. 

Return  

The handler forces the method in execution to 
return or the application to exit. If the handler 
is inside a loop, a break action is also assumed 
to belong to this category. 

Rollback  

The handler performs a rollback of the 
modifications performed inside the protected 
block or resets the state of all/some objects 
(e.g., recreating a database connection). 

Close  

The code ensures that an open connection or 
data stream is closed. Another action that 
belongs to this category is the release of a lock 
over some resource. 

Assert  

The handler performs some kind of assert 
operation. This category is separated because 
it happens quite a lot. Note that in many 
cases, when the assertion is not successful, 
this results in a new exception being thrown 
possibly terminating the application. 

Delegates  
(only for .NET)  

A new delegate is added. The delegate object 
contains information about what to do when 
a specific event occurs. 

Others  
Any kind of action that does not correspond 
to the previous ones. 
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Note that an exception handler may contain actions that belong to more than one category. 

In fact, this is the common case. For instance, a handler can log an error, close a connection 

and exit the application. These actions are represented by three distinct categories: Log, 

Close and Return. Thus, in the results, this handler would be classified in all these three 

categories. 

Since catch and finally handlers have different purposes, we opted for doing separate 

counts for each type of handler. Finally, the distribution of handler actions for each 

application was calculated as a weighted average accordingly to the number of actions 

found in each application. This is so that small applications do not bias the results towards 

their specific error handling strategy.  

The results obtained for each application group are shown in next four graphs. 

The graph of Figure 3.2 shows the average of results by application group for .NET catch 

handlers. In the four application groups 60% to 75% of the total distribution of handler 

actions is composed of three categories: Empty, Log and Alternative Configuration.  

 

Figure 3.2 – Catch handler actions for .NET programs. 
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Empty handlers are the most common type of handler in Servers and the second largest in 

Libraries and Stand-alone applications. This result was completely unexpected in .NET 

programs since there are no checked exceptions in the CLR and, therefore, programmers 

are not obliged to handle any type of exception. Checked exceptions can sometimes lead 

lazy programmers to “silence exceptions” with empty handlers only to be able to compile 

their applications. From the analysis of the source code we concluded that its usage in 

.NET is not related with compilation but with avoiding premature program termination on 

non-fatal exceptions. A typical example is the presence of several linear protected blocks 

containing different ways of performing an operation. This technique assures that if one 

block fails to achieve its goal, the execution can continue to the next block without any 

error being generated. 

Logging errors is also one of the most common actions in the handlers of all the 

applications. In fact, it is the most common action in Server-Apps and Stand-alone groups. 

Considering web applications and desktop applications, this typically corresponds to the 

generation of an error log, the notification of the user about the occurrence of a problem 

and the abortion of the task. This idea is re-enforced by the value of the Return action 

category in these two application groups which is the identical and the highest of all four 

groups. 

The number of Alternative Configuration actions reports on the usage of alternative 

computation or object’s state reconstruction when the code inside a protected block fails in 

achieving its objective. These actions are by far the most individualized and specialized of 

all. In some cases they are used to completely replace the code inside the protected block. 

In the Libraries applications group, Assert operations are the second most common error 

handling action. Asserts ensure that if an error occurs, the cause of the error is well known 

and reported to the user/programmer. In Servers there is also a high distribution value for 

the Others category. These actions are mainly related with thread stopping. 

Another category of actions with some weight in the global distribution is the Throw 

action. This is mainly due to the layered and component based development of software. 

Layers and components usually have a well defined interface between them. It is a fairly 

popular technique to encapsulate all types of exceptions into only one type when passing 

an exception object between layers or software components. This is typically done with a 

new throw. 
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Empty, Log, Alternative Configuration, Throw and Return are the actions most frequently 

found in the catch handlers of .NET applications. By opposition, Continue, Rollback, Close, 

Assert, Delegate and Others actions are rarely used in .NET. 

Figure 3.3 shows the results for catch handlers in Java programs. Only in the Stand-alone 

and Server-Apps groups we found some similarity with .NET. Despite this fact, it is 

possible to see the same type of clustering found in .NET. The cluster of categories that 

concentrate the highest distribution of values is composed by Empty, Log, Alternative 

Configuration, Throw and Continue actions.  

The distribution values on the Empty category surprised us once again. This value is lower 

than the ones found in .NET. This suggests that the checked exception mechanism has little 

or no weight on the decision of the programmer to leave an exception handler empty: 

another reason must exist to justify the existence of empty handlers besides silencing 

exceptions. In .NET this happen quite frequently for building alternative execution blocks. 

We risk saying that in Java exception mechanisms are no longer being used only to handle 

 

Figure 3.3 – Catch handler actions for Java programs. 
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“exceptional situations” but also as control/execution flow construct of the language. 

(Note that even the Java API sometimes forces this. For instance, the detection of an end-

of-file can only be done by catching an exception.) 

The Log actions category takes the first place for Server-apps, Server and Stand-alone 

application groups and the second place in Libraries group. In this last group, Log is only 

surpassed by Throw, another common action in the Server-Apps and Server groups. In 

Java, the Log and Throw actions are highly correlated. We observed that in the majority of 

cases, when an object is thrown the reason why it happens is also logged. 

Return is also a common action in all the application groups. Between 7% and 15% of all 

handlers terminate the method being executed, returning or not a value. 

Figure 3.4 illustrates the results for finally handlers in .NET. The distribution of the 

several actions is different from the one found in catch handlers. Nevertheless, it is visible 

that the most common handler action category in .NET, for all application groups, is Close. 

 

Figure 3.4 – Count of actions for Finally handlers in .NET programs. 



94 CHAPTER 3 — A FIELD STUDY IN EXCEPTION HANDLING 

 

I.e., finally handlers, in our test suite, are mainly used to close connections and release 

resources. 

Alternative Configuration is the second mostly used handler action in all application 

groups with the exception of Libraries. A typical block of code usually found in finally 

handlers is composed by some type of conditional test that enables the execution of some 

predetermined configuration. In some cases, that alternative configuration is done while 

resetting some state. In those cases, they were classified as Rollback and not Alternative. 

Another common category present in finally handlers of .NET applications is Others. 

These actions include file deletion, event firing, stream flushing, and thread termination, 

among other less frequent actions. In Server applications it is also common to reset the 

state of an object or rollback previous actions. 

Finally, on Stand-alone applications there are some empty finally blocks that we can not 

justify since they perform no easily understandable function. 

 

Figure 3.5 – Count of actions for Finally handlers in Java programs. 
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In Java applications (Figure 3.5) the scenario is very similar to the one found in .NET. Close 

is the most significant category in all application groups. There are also some actions 

classified as Others, which are similar to the ones of .NET. In Java they have more weight 

in the distribution, indicating a higher programming heterogeneity in exception handling. 

Rollback and Alternative Configuration actions are also used as handler actions in Java 

finally handlers. 

It is possible to observe that there is some common ground between application groups in 

Java and .NET in what concerns exception handling. For the most part, Empty and Log are 

the most common actions in all catch handlers and Close is the most used action in 

finally handlers. 

Classes Used as Exception Handler Arguments 
After identifying the list of actions performed by handlers, we concentrated on finding out 

if there is some relation between catch handlers for the same type of exception classes. For 

this, we developed two programs: one to process .NET’s IL code and another to process 

Java bytecode. These IL code/bytecode analyzers were used to discover what exceptions 

classes were most frequently used as catch arguments. We opted by performing this 

analysis at bytecode/IL level and not at source code level because it is simpler to obtain 

this information from assemblies or class metadata than from C# or Java code.  

Figure 3.6 shows the most common classes used as argument of catch instructions in .NET 

applications. The results are grouped by application type and the values represent the 

weighted average of the distribution among applications of the same group. Thus, 

programs with the largest number of handlers have more weight in the final result. 
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It is possible to observe that programmers prefer to use the most generic exception classes 

like System.Exception and System.Object for catching exceptions. Note that .NET, not 

C#, allows any type of object to be used as an exception argument.  When the argument 

clause of a catch statement is left empty, the compiler assumes that any object can be 

thrown as an exception. This explains the large presence of System.Object as argument. 

The use of generic classes in catch statements can be related to the two of the most 

common actions in handlers: Logging and Return. This means that for the largest set of 

possible exceptions that can be thrown, programmers do not have particular exception 

handling requirements: they just register the exception or alert the user of its occurrence. 

Nevertheless, there are a lot of handlers that use more specific exception classes. These 

different handlers do not have any weight by themselves in the distribution but all the 

code that actually tries to perform some error recovery operations is concentrated around 

these specialized handlers. 

I/O related exception handlers are fairly used in Libraries and Servers. Also invalid 

arguments types, number and format errors are treated as exceptions by all the 

 

Figure 3.6 – .NET classes being used as catch arguments. 



 SECTION 3.2 — PROGRAMMING WITH EXCEPTIONS 97 

 

applications as shown by the presence of System.ArgumentException handlers and 

System.FormatException handlers. 

There are not many differences between Java and .NET in terms of catch arguments. 

Figure 3.7 shows the results for Java. It is possible to conclude that the most generic 

exception classes are the preferred ones: Exception, IOException, and 

ClassNotFoundException. We tried to found out why ClassNotFoundException is so 

commonly used by analyzing the source code. For the most part, most of the handlers 

associated to the use of this class are empty, just log the error or throw a new kind of 

exception. Others try to load a parent class of the class not found or another completely 

different class. In general, these handlers are associated with “plug-in” mechanisms or 

modular software components using dynamic class loading. An example is the way JDBC 

database drivers are loaded by using Class.forName(). [Gosling2005] 

 

Figure 3.7 – Java classes being used as catch arguments. 
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Finally, we did an analysis of all the applications source code to find out what was the 

distribution of handler actions by catch handler argument class for the most commonly 

used classes. The results can be found in Figure 3.8 and quite different from one type of 

exception class to another. Even so, it is still possible to say that the dominant handler 

actions are the ones belonging to the categories: Empty, Log, Alternative Configuration, 

Throw and Return. 

 

Figure 3.8 – Handler actions distribution for the most used catch handler classes. 
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It is interesting to notice that in .NET catch instructions with no arguments are directly 

associated with the largest number of Empty handlers. 

In Java, in particular for ClassNotFoundException, Alternative Configuration actions are 

common. This behavior is understandable if we consider that, if a class is not found then a 

new one should be suggested as alternative. (This is quite common in database 

applications, while loading JDBC drivers.) 

Handled Exceptions 
On the previous section, we reported the exceptions used in catch statements. 

Nevertheless, a catch statement can catch the specific exception that was listed or more 

specific ones (i.e., derived classes). We will now discuss exception handling code from the 

point of view of possible handled exceptions. As previously discussed, we used IL 

code/bytecode analyzers to collect all the exceptions that the applications could throw 

because this information is not completely available at source code level. For instance, the 

set of exceptions that an application can throw at run-time is not completely defined by the 

applications source code throw and throws statements. Therefore, a profound analysis of 

the compiled applications was required for gathering this information. 

Exception Universe 

In Java, thanks to the checked exception mechanism, we are able to discover and locate all 

the exceptions that an application can throw by analyzing its bytecode and metadata. To 

know what exceptions may be thrown by a method it is necessary to know: 

 All the exceptions that the bytecode instructions of a method may raise 

accordingly to the Java specs [Gosling2005]; 

 All the exception classes declared in the throws statement of the methods being 

called; 

 All the exceptions that are produced inside a protected block and are caught by 

one of its handlers; 

 All the exception classes in the method own throws statement. 
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In .NET, finding the exceptions that might be thrown is a more difficult task. Indeed, 

because there are no checked exceptions, to discover what exceptions a method may raise 

it is necessary to know: 

 All the exceptions that can be raised by each one of the IL instructions accordingly 

to the ECMA specs of the CLR [ISO23271:2006]; 

 All the exceptions that the method being called may raise; 

 All the exception classes present in explicit throw statements; 

 All the exceptions that are produced inside a protected block and are not caught 

by one of its handlers. 

When we started to work on which exceptions could occur in .NET and Java, the results of 

the analysis were quite biased. This happened because: 

 Almost all instructions can raise one or more exceptions, accordingly to CLR 

ECMA specs and Java specs, making the total number of exceptions reported 

grow very fast and the occurrence of other types of exceptions not directly 

associated with instructions almost irrelevant; 

 In most cases, the exceptions that each low-level instruction could actually throw 

would not indeed occur since some code in the same method would prevent it 

(e.g., an explicit program termination if a database driver was not found, thus 

making all ClassNotFoundException exceptions for that class irrelevant). Since it 

is not possible to detect this code automatically, although the results could be 

correct, the analysis would not reflect the reality of the running application or the 

programming patterns of the developer. 

To obtain meaningfully results we decided to perform a second analysis not using all the 

data from the static analysis of bytecode and IL code instructions. In particular, we filtered 

out a group of exceptions that are not normally related to the program logic, and that the 

programmer should not normally handle, considering the rest. The list of exceptions that 

were filtered out is shown in Table 3.4. 
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Table 3.4 – Java and .NET exception classes for bytecode and IL code instructions. 

NET Java 

System.OverflowException 
System.Security.SecurityException 
System.ArithmeticException 
System.NullReferenceException 
System.DivideByZeroException 
System.Security.VerificationException 
System.StackOverflowException 
System.OutOfMemoryException 
System.TypeLoadException 
System.MissingMethodException 
System.InvalidCastException 
System.IndexOutOfRangeException 
System.ArrayTypeMismatchException 
System.MissingFieldException 
System.InvalidOperationException 

java.lang.NullPointerException 
java.lang.IllegalMonitorStateException 
java.lang.ArrayIndexOutOfBoundsException 
java.lang.ArrayStoreException 
java.lang.NegativeArraySizeException 
java.lang.ClassCastException 
java.lang.ArithmeticException 

 

Results for handled exceptions 

Being aware of the complete list of exceptions that an application can raise and of the 

complete list of handlers and protected blocks, it is possible to find out which ones are the 

most commonly handled exception types. The results for .NET applications are shown in 

Figure 3.9. The values represent the average of results by application group where every 

application had a different weight in the overall result according to the total number of 

results that they provided. It is possible to observe that the results are very different 

between application groups. For instance, in the Libraries group, the most commonly 

handled exceptions are ArgumentNullException and ArgumentException, resulting from 

bad parameter use in method invocations. In the remaining three groups the number one 

exception type is Exception, this can be a symptom of the existence of a larger and more 

differentiated set of exceptions that can occur. If many different exceptions can occur it is 

viable to assume that the most generalized type (i.e., Exception, IOException, etc.) 

becomes the most common one. 

Seeing exception types like HttpException, MailException, SmtpException and 

SocketException in this top ten list and observing a distribution with such variations 

from application group to application group, we are confident to say that the type of 

exceptions that an application can raise and, in consequence, handle is strictly related with 

the application nature. 
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There is a mismatch between the type of classes used as arguments to catch instructions 

and the classes of the exceptions that are handled, i.e., throw statements use the exception 

classes that best fit the situation (exception) but the handlers that will eventually “catch” 

these exceptions use general exception classes like .NET’s and Java’s Exception as their 

arguments. 

In both Java and .NET, there is a large spectrum of exception types being handled. The 

results for Java are illustrated in Figure 3.10. IOException is the most “caught” exception 

type in all application groups. It is also possible to observe that the exception types are 

tightly related to the applications. For instance in Stand-alone applications, three of the 

exception classes are from Eclipse. Due to its huge size Eclipse carries a large weight in its 

application group results and, as we are able to observe, its “private” exceptions are 

present in this top ten. 

 

Figure 3.9 – Most commonly handled exception types in .NET. 
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Call Stack Levels Analysis 
The analysis of the applications bytecode and IL code allows us to discover the number of 

levels in the call stack that an exception travels before it is caught by some handler. Note 

that an exception is caught if the catch argument class is the same of the exception or a 

super-class of it. 

One result that we can directly associate with the checked exceptions mechanism is the 

difference in the number of levels that an exception travels before it is caught by some 

handler in Java and .NET. 

In Figure 3.11  it is possible to observe that in Java almost 80% of the exceptions are caught 

one level up from where they are generated, 15% two levels up, 5% three levels up and all 

the remaining are caught as high as five levels. On the other hand, in .NET, exceptions can 

cover up to seventeen levels and the distribution of the exceptions per levels covered is 

much sparser than in Java. The .NET programmer is not forced to catch exceptions and, as 

 

Figure 3.10 – Most commonly handled exception types in Java. 
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a result, exceptions can be caught much later in the call stack and most times by exception 

handlers with general catch arguments. 

In .NET, 5% of the exceptions are caught before they cover any level in the call stack. This 

result is unexpected and could only be explained by a detailed analysis of the IL code in 

the assemblies and of the source code of the programs. At first we thought that this could 

be the result of some code tangling at compile time but the analysis showed that the 

exceptions were originated in throw instructions inside the protected blocks of methods. 

Programmers raised these exceptions to pass the execution flow from the current point in 

the method to code inside a handler – i.e., they use exceptions as a flow control construct. 

Handler size 
Another interesting measure that we withdraw from the analysis of assemblies IL code and 

metadata was related with handler’s code size or, more precisely, the count of opcodes 

inside a handler. This analysis could only be conducted in .NET because the metadata in 

the assemblies clearly identifies the begin and end instructions for each handler while in 

Java only the information about the beginning of a handler is available. To discover where 

a handler finishes we would have to do a static flow control analysis and find the join 

point in the code after the first instruction in the handler, which is outside of the scope of 

this study. 

 

Figure 3.11 – Call stack levels for caught exceptions. 
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The graph in Figure 3.12 shows that the largest set of handlers in Server-Apps, Servers and 

Stand-alone applications groups have 8 IL Code instructions. In the Libraries group more 

than 40% of the handlers have 3 instructions. The second largest set of handlers in all 

groups has 5 instructions. Obviously, there are larger handlers but they are so scarce that 

we excluded them from the graph to improve its readability. 

To understand the dominance and content of the small handlers, we analyzed the full IL 

code in all handlers. We found the following interesting facts: 

 In the 526 handlers with size 8, 500 (95%) invoked a Dispose() method in some 

object; from this 500 there were two major sets of handlers with the exact same 

opcodes, one with 329 elements and the other with 166; the remaining 5 handlers 

were different between them; these handlers were all finally handlers;  

 In the set of handlers with 5 instructions there were 194 elements; 74 disposed of 

some object; 24 created and throwed a new exception; 36 stored some value; 

 484 of the 498 handlers of size 3 were finally handlers; 426 handlers had exactly 

the same opcodes and were responsible for closing a database connection; other 

34 handlers also had the same code and invoked a Finalize() method in some 

object; 

 

Figure 3.12 – Handlers size in number of IL code instructions for .NET. 
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 The largest set of handlers with size 2 was empty handlers in the source code and 

its actions consisted in cleaning the stack and returning; others re-throwed the 

exception, and the rest called some Assert() method. 

These lead us to the conclusion that many of the handlers with few instructions are very 

similar between them and that the majority are finally handlers that do some kind of 

method dispose or connection closing. 

Types of handlers 
Knowing that the majority of the handlers with few instructions were finally blocks, we 

tried to discover which was the relation between the total number of protected blocks, the 

total number of catch handlers and the total number of finally handlers. 

The data in Table 3.5 shows that for the 1565 protected blocks found in the .NET 

applications there are 1630 handlers; 1144 protected bocks (73%) have finally handlers; 

but only 29% have catch handlers. On Java there are 18389 handlers distributed by 17024 

protected blocks; 8109 protected blocks (48%) have finally handlers; 9402 (55%) have 

catch handlers. 

Table 3.5 – Number of protected blocks, catch handlers and finally handlers. 

 Protected 
Blocks 

Handlers Protected Blocks with 
Finally Handlers 

Protected Blocks with Catch 
Handlers 

.NET 1565 1630 1144 (73%) 450 (29%) 
Java 17024 18389 8109 (48%) 9402 (55%) 

 

In our test set of applications, .NET programmers use much more finally handlers, 

relatively to the total number of handlers, than Java programmers. 

In the graph of Figure 3.13 it is possible to see that Java applications have higher maximum 

values of catch handlers per protected block, while the average number of catch blocks 

per try block is almost identical in all the application groups for the two platforms and has 

the approximate value of one. The standard deviation values are also very low meaning 

that the largest number of protected blocks has only one catch handler. 
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Checked vs. Unchecked Exceptions 
As mentioned before, the checked exceptions mechanism influences the way Java 

programmers use the exception detection and handling language constructs. But 

programmers can, alternatively, use unchecked exceptions in Java. For instance, there are 

some libraries that use only unchecked exceptions (e.g., Java NIO). 

We compared the number of catch instructions that have an unchecked exception class as 

argument with the total number of catch instructions. The results are shown in Table 3.6. 

It is possible to observe that except for the Stand-Alone application group, where the usage 

reaches 36.7%, for the remaining groups, values are very low, never exceeding 9%. 

Nevertheless, unchecked exceptions are indeed being used and, besides their extensive 

usage by some dedicated libraries, they are largely used to report on underlying system 

errors. 

Table 3.6 – Usage of Unchecked exceptions in Java catch handlers. 

 Unchecked 

Libraries 8,90% 
Servers 8,50% 
Stand-Alone 36,70% 
Server-Apps 6,50% 

 

 

Figure 3.13 – Number of catch handlers per protected block. 
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Retry functionality 
Neither Java or .NET have nothing like a “retry” block functionality that would enable the 

programmer to execute a try block in a loop until it succeeds or reaches a certain 

condition. Other languages like Smalltalk [Goldberg1989] or Eiffel [Meyer1988] have this 

kind of construct. 

In Java and .NET, if a programmer wants to mimic this functionality he or she has to insert 

a protected block inside a loop. For instance, insert a try block inside a while or do-while 

loop. 

Using source code parsers for accounting the number of protected blocks found inside 

cycles or loops, we were able to obtain the total number of these occurrences. In Java we 

found 1082 cases and in .NET 16. 

This can be considered a sort of blind analysis, since we do not know if the programmer 

really intended to do a “retry”. Nevertheless, 6% of all catch handlers in both Java and 

.NET were inside loops and if the programmer really intended to do a “retry”, which 

appears to be the most reasonably reason, that would be a fairly interesting result to justify 

the addition of this functionality to both languages. 

3.2.3. Related work 
Since the pioneering work of John B. Goodenough in the definition of a notation for 

exception handling [Goodenough1975] and Flaviu Cristian in defining its usage 

[Cristian1980], several studies1 have been conducted over the years for validating the 

options taken in each different implementation.  

For instance, Alessandro Garcia, et al. did a comparative study on exception handling 

mechanisms available developing dependable software [Garcia2001]. Garcia’s et al. work 

consisted in a survey of exception handling approaches in twelve object-oriented 

languages. Each programming language was analyzed in respect to ten technical aspects 

associated with exception handling constructs: (1) exception representation; (2) external 

exceptions in signatures; (3) separation between internal and external exceptions; (4) 

attachment of handlers to program constructs (e.g., to statements, objects, methods, etc.); 
                                                                  
1 Some of these studies have already been discussed in greater detail in Chapter 2 (when we assessed 

the state of the art in exception handling). Nonetheless, for providing a suitable related work for 
this section it is important to refer them here once again. We will only include brief descriptions 
and literature references for the subjects that have already been addressed. 
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(5) dynamism of handler binding; (6) propagation of exceptions; (7) continuation of the 

flow control (resumption or termination); (8) clean-up actions; (9) reliability checks; (10) 

and concurrent exception handling. After the evaluation of all the programming languages 

in terms of exception mechanisms, the major conclusion of the study was that “none of the 

existing exception mechanisms has so far followed appropriate design criteria” and 

programming language designers are not paying enough attention to properly supporting 

error handling in programming languages. 

Saurabh Sinha and Mary Jean Harrold performed an extensive analysis of programs with 

exception handling constructs and discussed their effects on analysis techniques such as 

control flow, data flow, and control dependence [Sinha2000]. In the analysis, the authors 

also presented techniques to create intraprocedural and interprocedural representations of 

Java programs that contain exception handling constructs and an algorithm for computing 

control dependences in their presence. Using that work, the authors performed several 

studies and showed that 8.1% of the methods analyzed used some kind of exception 

mechanism and that these constructs had an important influence in control-dependence 

analysis. 

R. Miller and A. Tripathi identified several problems in exception handling mechanisms 

for Object-Oriented software development [Miller1997]. In their work, it is shown that the 

requirements of exception handling often conflict with some of the goals of object-oriented 

designs, such as supporting design evolution, functional specialization, and abstraction for 

implementation transparency. Being specific: object-oriented programming does not 

support a complete exception specification (extra information may be needed for the 

exception context not supported by an object interface); state transitions are not always 

atomic in exception handling; exception information needs to be specific, but functions can 

be overloaded to have a different meaning in different situations; the exception handling 

control flow path is different from the normal execution path and is up to the programmer 

to differentiate both of them. Thus, modifying an object-oriented framework to incorporate 

an exception handling mechanism can have a negative impact. In the worst case we can 

expect the introduction of partial states into the abstraction, the loss of object encapsulation 

due to internal exception information leaking, a decrease in modularity, and inheritance 

anomalies.  

Martin P. Robillard and Gail C. Murphy in their article on how to design “robust Java 

programs with exceptions”, classified exceptions as a global design problem and discussed 

the complexity of exception structures [Robillard2000]. In their work, the authors pointed 
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out that the lack of information about how to design and implement with exceptions lead 

to complex and spaghetti-like exception handling code. The main factors that contribute to 

the difficulty of designing exception structures are the global flow of exceptions and the 

emergence of unanticipated exceptions. To help control these factors, the authors refined 

an existent software compartmenting technique for exception design and report about its 

usage in the rewriting of three Java programs and the consequent improvements they 

observed. 

More recently, due to a new Aspect Oriented Programming (AOP) approach to exception 

handling, two interesting studies were published emphasizing the separation of concerns 

in error handling code writing [Lippert2000;Filho2005]. Martin Lippert and Cristina Lopes 

rewrote a Java application using AspectJ. Their objective was to provide a clear separation 

between the development of business code and exception handling code. This was 

achieved by applying error handling code as an advice (in AOP terminology) [Elrad2001]. 

With this approach they also obtained a large reduction in the amount of exception 

handling code present in the application. Their results show that without aspects, the 

amount of code for exceptions is almost 11% of all the code; with aspects it represents only 

2.9%. Lippert’s paper also accounts the total number of catch blocks in the code and the 

most common exception classes used as parameters for these catch statements. One of the 

measures they present to support their AOP approach is the reduction of the number of 

different handlers effectively written for each one of the most commonly used exception 

classes. For the top 5 classes it was observed a reduction in the number of implemented 

handlers between 90.0% and 96.5%. F. Filho and C. Rubira conducted a similar study but 

they were not so enthusiastic in their results. The authors presented four metrics to 

evaluate the AOP approach to exception handling: separation of concerns; coupling 

between components and depth of inheritance tree; cohesion in the access to fields by pairs 

of method and advice; and dimension (size and number) of code. The work reports that 

the improvements of using AOP do not represent a substantial gain in any of the presented 

metrics showing that reusing handlers is much more difficult than is usually advertised. 

Handler reuse depends of the type of exceptions being handled, on what the handler does, 

the amount of contextual information needed, and what the method raising the exception 

returns and what the throws clause actually specifies.  

The objective of our study is different from its predecessors. It does not directly target the 

quality of the mechanisms available in programming languages but the usage that 

programmers make of them. The emphasis is on understanding how programmers write 
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exception handling code, how much of the code of an application is dedicated to error 

recovery and identifying possible flaws in their usage. 

Recently, Hina Shah et al. have made the question “Why Do Developers Neglect Exception 

Handling?” [Shah2008a]. In their paper, the authors explore the problems associated with 

exception handling from a new dimension: the human. The article describes a study where 

the focus was on evaluating different perspectives of software developers to understand 

how they perceive exception handling and what methods they adopt to deal with 

exception handling constructs. The authors also mention that, based on previous studies, 

they have developed a tool for visualizing the exception handling constructs inside 

programs. In this study, the usefulness of such tool, as a software development aid, was 

assessed. 

Based on the results from a previous survey1, Shah et al. have created the ENHANCE 

[Shah2008b] software (ExceptioN HANdling Centric visualization). ENHANCE offers 

three views of the exception handling constructs inside Java programs: 

 The Quantitative View presents high-level information about throw-catch pairs at 

the level of packages, classes, or methods; 

 The Flow View provides details about multiple exceptions flows at abstracted 

level; the view presents type definitions, throw clauses, and catch clauses as 

abstract icons on separate layers; exception flow is represented as links between 

them; 

 The Contextual View uses an abstract code view of the system where exception-

handling constructs and their flows are put into perspective. 

The preliminary evaluation of the ENHANCE tool involved three graduate students from 

the software-engineering group at the Georgia Institute of Technology. The results were 

surprising - “the participants often ignored exception-handling constructs. (e.g., the ignore-

for-now approach in which developers ignore exception handling until there is an error or 

until they are forced to address it).” [Shah2008a] 

In order to better understand the significance of the previous results, the authors extended 

their study to include insights from industry software developers1. The study focused on 
                                                                  
1 Survey conducted with 34 software developers to understand their needs in terms of exception-

handling constructs in Java programs. 
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understanding the approach software developers adopt to deal with exception handling-

related tasks, such as designing, coding, reviewing, refactoring, testing, and debugging. 

These results were consistent with the ones of the initial study. To avoid giving a 

misguided interpretation of the study participant answers, we will be quoting Shah et al. 

on their own explanation of the interviewees’ answers: 

 “All the participants we interviewed stated that they use exception handling 

primarily for debugging purposes”…”they use the names of the exceptions to 

understand the context of the surrounding program code. However, most of the 

participants agreed that in cases where Java’s defined exceptions (e.g., 

ClassNotFoundException) are used, they tend to ignore understanding the 

exception handling implemented around these exceptions.” 

 “The only exception to the ignore-for-now behavior occurs in scenarios where the 

code on which the participants were working already had some useful 

implementation of exception handling. In such scenarios, the participants agreed 

that they try to mimic the existing code. Thus, in general, participants try to avoid 

handling exceptions unless some support structure is already available.” 

 “They [the participants] explained this by stating that they will not use exception 

handling if the compiler does not prompt them with compile-time errors when 

the appropriate exception-related code was missing (e.g., declaration of throws 

clause, or implementation of respective try-catch block). Therefore, the two 

similar attitudes of “avoiding exception handling” that developers carry on both 

the occasions—when no support for exception handling is available and when 

support is available—indicate that developers are less willing to deal with 

exception handling.” 

 “Another common attitude held by the participants is that they do not think that 

exception handling is a high-priority task. Participants think that it is time 

consuming and hence, a waste of time, to design exception-handling code in 

advance.” 

From this analysis we can conclude that there has been an evolution on the way exception 

handling is used. Originally, exception handling mechanisms were designed to do error 

                                                                                                                                                                     
1 Eight developers with three to ten years of experience plus one with more than ten years. 
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handling and recovery (proactively) but, nowadays, developers use them as a debugging 

tool (reactively) and a way to understand programs. Additionally, it is safe by now to say 

that developers “tend not to invest time in implementing code for proper handling of error 

conditions unless its implementation helps with debugging”. 

As a consequence of such approach to exception handling, error handling code exhibits 

poor quality. And, forcing developers to implement exception handling code is not a 

solution - when such policy is in use, developers tend not to implement code as 

thoughtfully as it would be necessary.  

Our study and Shah’s study agree on two fundamental aspects - developers are not 

satisfied with the existing exception handling mechanisms; and the complexity of some 

mechanisms is, in many cases, completely overwhelming and un-productive. 

3.3. Documenting exceptions 
Documentation plays a very important role in software development. This role is even 

more important when developing for platforms, like the .NET platform, that do not 

support the checked exceptions model in programming languages such as C#.  

In this section, we present a study on the efficiency of existent exceptions documentation 

(for .NET applications) in alerting developers to the dangers involved in a method 

invocation. We want to know how well documentation performs such task when 

compared with the usage of checked exceptions. In broader terms, we determine which 

exceptions a selected set of programs might raise and verify which of these are 

documented and which are not. 

3.3.1. Motivation 
When all exceptions are unchecked, programmers are not forced to declare a method as 

thrower of an exception, and so, the relation between a method and the exceptions it can 

throw is weaker. Thus, in the absence of such declarations, a programmer will never be 

warned by the compiler if he or she forgets to handle an exception. Furthermore, a 

programmer using Reflection to access a method is not able to discover which exceptions 

that method throws just by looking at its declaration. Thus, .NET reflection does not give 

programmers access to the complete exception information of a method. Yet, it is possible 
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to utilize reflection to analyze the throw instructions in the code, used by programmers to 

throw exceptions in their code. 

Of course, C# designers did not neglect the fact that programmers need to be aware of a 

method’s behavior in certain exceptional circumstances. Their answer resides in special 

documentation tags that programmers can use to document their code with respect to 

exceptions. 

Specially designed tools can then parse the code looking for those tags and automatically 

generate suitable documentation files (e.g., NDoc - http://ndoc.sourceforge.net/). In 

.NET, custom-formatted XML files are generated by Visual Studio .NET (VS.NET) 

[Microsoft2008]. A number of other tools can then convert from this XML to Compiled 

HTML (CHM) format and from this to HTML. For instance, writing the following tag 

“<exception cref="System.DivideByZeroException"> This exception thrown when 

<c>parm2 = 0</c> </exception>” before a method declaration in a C# program will 

result on the documentation info shown in Figure 3.14 after the execution of a automatic 

documentation generation tool. In Java, the same kind of tags is available and HTML files 

can be generated by Javadoc [Sun2004]. 

The exception handling code existent in C# and Java applications is available after source 

code compilation. At Java’s Bytecode and .NET’s IL code level, the information required by 

the exception handling mechanisms is kept in tables, being part of the class file or 

assembly metadata. These table entries identify: the start and end instructions of the 

protected blocks of code inside each method; the presence of handlers for the previously 

mentioned blocks; the type of exception being handled by each handler; the start 

instruction of each handler in Java; and the start and end instruction of each handler in 

.NET. Furthermore, in Java, it is possible to know which exceptions a method throws just 

by looking at the method’s metadata. In .NET, for doing so, it is necessary to perform a 

detailed static analysis of all methods invoked, starting from the target method.  

There are more differences between the two languages approaches at low level. The .NET 

exception model has more functionality available than the one made available at the C# 

 

Figure 3.14 –Automatic documentation of an exception using specialized tags. 
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language level. As an example, .NET’s metadata structures allow compilers to generate 

code for Filter handlers. These handlers allow the execution of code if an associated 

conditional expression evaluates to true. 

The question that arises from the previous considerations in the scope of this section is that 

of the possibility to determine, by looking at exception documentation quality, the 

effectiveness of the unchecked exceptions approach - is existent documentation (for .NET 

applications) as efficient as checked exceptions in alerting developers to the dangers involved on a 

method invocation? 

On the following sections we will focus on studying the existent documentation available 

for .NET applications and we will leave the Java platform aside for now. The reason why 

we are doing this is because on the .NET platform, and contrary to what happens in Java, 

only the unchecked exceptions model is available, making the importance and need for 

good exception documentation higher on .NET. 

3.3.2. Methodology and Tools 
The strategy followed in this work was to take a set of software components and examine 

both the binary file containing their code looking for unhandled exceptions, and the 

corresponding documentation to evaluate the extent to which one corresponds to the 

other.  

For performing the current analysis, it was required going through every instruction in 

each software component. Since no access to high-level source code could be assumed 

(important for the analysis of commercial-off-the-shelf components), this needed to 

happen at a lower level. All .NET programs, regardless of the original language they are 

written in are transformed into the low-level common form known as Microsoft 

Intermediate Language (MSIL or IL), an assembly-like language which is our real object of 

analysis. The Runtime Assembly Instrumentation Library (RAIL) [Cabral2005] provides us 

with this kind of access, effectively establishing a bridge between .NET reflection, which 

goes as far as the method level, and IL code. 

Once the tool was ready and hence a mechanism to compare code and documentation was 

available, a set of software components to analyze was chosen. Some of these components 

are core parts of certain applications while others extend the functionality of bigger 

infrastructures. Some were not built with re-use in mind while others were built especially 
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for re-use. Finally, the tool was run for each component and its documentation, and results 

were gathered.  

The Analyzer tool was especially developed for conducting the tests in this work. It consists 

in a command-line program written entirely in C#, one of .NET’s high-level languages. As 

input, the Analyzer receives a .NET Assembly (a DLL or EXE file) location and optionally a 

documentation file location (Visual Studio .NET generated XML format). A number of 

switches can be used to specify different options. As output, an XML report is generated. 

The format of this report depends on the command-line options but, in general, consists of 

a list of the methods found in the assembly given as input. For each of those methods, a 

number of exception detections are depicted. Each of those exception detections represents 

one of two things: 

 That an exception not handled by any try-catch blocks can be generated by a 

given instruction (i.e., line) in the method’s code (referred to as code exceptions); 

 That an exception was identified as possibly thrown by a method in that method’s 

documentation (referred to as documentation exceptions). 

Exception detections result respectively from code analysis and documentation analysis. 

At the end of the report, a large number of statistics are displayed, along with some 

information about exception classification into groups. Also, if the Analyzer is instructed 

to do so, it can automatically check the differences between what it detected in the code 

and in the documentation. In this case, the report will also contain a section dedicated to 

suspects. Further discussion of suspects will take place later on. For now, it is important to 

know that suspects roughly represent exception detections corresponding to situations 

where the programmer could have done a better job of documenting his code. 

Suspects are important for two reasons. First, the Analyzer is very thorough in its analysis 

and although it detects huge amounts of uncaught exceptions, only a relatively small 

number can be realistically expected to be documented by a programmer. Second, there 

are situations where there is a total absence of documentation. So, suspects are a way of 

filtering the relevant detections. 

The documentation analysis process is straightforward. It consists of parsing the given 

documentation looking for the specific XML tags that identify the documentation of an 

exception. 
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The code analysis process is much more complicated. It consists of going through an 

Assembly’s members, IL instruction by IL instruction, keeping track of entries/exits 

into/out of try-catch blocks through the use of data structures such as stacks and queues. 

For each instruction in the code, four different types of detection are performed, searching 

for possible exceptions thrown by that instruction. The first type of detection consists of a 

simple search in a manually generated dictionary which associates IL instructions with the 

exceptions they can throw, as defined in the .NET platform specification [ISO23271:2006]. 

Figure 3.15 shows an extract of that dictionary. We will call this type of detection, IL 

instruction detection (ILI). 

The second type of detection is called method call detection (MC) and is only applied to five 

IL instructions that correspond to the execution of another method – call, calli, 

callvirt, newobj and jmp. For these instructions, we perform documentation parsing 

looking for exception documentation for the called method, i.e., documentation on the 

callee’s side. 

The third and fourth types of detection are explicit throw detection (T) and explicit re-throw 

detection (RT). They apply, respectively, to the throw IL instruction and the rethrow IL 

instruction. Explicit throw detection is straightforward, but explicit re-throw detection 

involves keeping track of the type of the exception being re-thrown, which is declared at 

the corresponding catch block (rethrow instructions only make sense inside catch 

blocks). 

When these four types of detection are concluded, we have a set of exceptions that a given 

IL instruction can throw. But obviously, that doesn’t mean that they are not being caught. 

So, we have to check if the analysis is currently being performed inside one or more nested 

try blocks, to determine which of the previously gathered exceptions are being caught and 

which are not. This process requires the complete knowledge of the exception class 

hierarchies. 

 

Figure 3.15 – Dictionary: IL instruction/opcode/list of exceptions. 
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The code analysis process is sketched in Figure 3.16. Both caught and uncaught exceptions 

are represented in the final report, because it is of interest to check which types of 

exception programmers catch and which they do not. 

Code and documentation analyses produce two sets of exception detections. If so 

instructed, the Analyzer then checks for the differences between these two sets, producing 

a final set of documented and undocumented exception detections for the target programs 

(assemblies). 

Selecting the study’s target assemblies was the most tedious and difficult part of this work. 

For two main reasons: the lack of available and especially popular .NET applications; and 

the lack of proper documentation for the existing applications. 

The first reason is due to of the lack of penetration of the .NET platform at the time. In fact, 

the .NET platform was still an alternative, rather than a first choice, for developers and 

decision-makers. For this work, this meant having to search in forums aimed at the sharing 

of .NET applications (e.g., [CodeProj2008]), opposed to the more usual, like 

[SourceFrg2008]. 

 

Figure 3.16 – Scheme of the code analysis process. 
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The second reason is even more serious and penalizing, because there were many cases 

where promising candidate applications were excluded solely because of lacking proper 

documentation. Proper documentation means the inexistence of VS.NET XML-format files 

accompanying the Assemblies. This can have two causes: simple skipping of this step by 

programmers using VS.NET (or not using of VS.NET at all); or lack of proper 

documentation tags throughout the source code.  

Although the first cause is perfectly possible, especially in cases where VS.NET is not used 

at all (e.g., the Mono [Mono2008] development is completely independent of VS.NET), 

browsing through the source code of the discarded applications clearly indicates that the 

lack of proper documentation is quite common.  

Actually, both the lack of proper XML documentation files and lack of XML 

documentation tags in source code make interesting points towards one of the major 

findings of this study: programmers cannot be trusted to document exceptions. 

Six Assemblies were chosen as the targets for this study. They span a range of different 

purposes and sizes. To help in the characterization of the Assemblies, a division into 

groups of similar purpose was created. This division is shown in Table 3.7.  

Table 3.8 presents a summary of the eight assemblies chosen for this study, identifying 

their source application, and emphasizing their division into the groups in Table 3.7. 

Table 3.7 – Group Characterization. 

Group Characterization 

Applications Application Assemblies. Low re-use expected.  
Few public documentation needs. 

Libraries Libraries. High re-use expected and  
high public documentation needs. 

Infrastructure Infrastructure Assemblies. Highest re-use expected  
and high documentation needs. 

Table 3.8 – Assemblies used in the study. 

Group Assembly Application 

Applications NAnt.Core.dll 
NDoc.Core.dll 

NAnt 
NDoc 

Libraries SharpZipLib.dll 
CpSphere.Mail.dll 

SharpZipLib 
CpSphere 

Infrastructure System.Runtime.Remoting.dll 
System.XML.dll 

.NET platform 
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NAnt [NAnt2008] is the .NET port of the Ant build tool; NDoc [NDoc2008] is an extensible 

code documentation generation tool for .NET. Due to the size of the applications, only the 

main assembly of each one was analyzed. Even so, exactly due to their size, they are 

representative of the rest of the code. 

SharpZipLib [SharpZipL2008] is a .NET data archiving/compression library supporting all 

popular standards like Zip, Tar, GZip, BZip, etc; and CpSphere [CpSphere2008] is an 

implementation of the SMTP protocol which can be used to add mail sending capabilities 

to .NET applications. The first library is single-Assembly, and that Assembly is the target. 

For CpSphere, the main Assembly was selected as a target. 

Finally, two of the .NET core platform Assemblies were chosen, mainly based on relevance 

(they are highly used) and documentation availability. Both Mono and SSCLI (codename 

Rotor) [SSCLI2008] were also considered as sources for the Infrastructure Assemblies. But, 

while in the first case the documentation style is different from that of VS.NET1, in the 

second case, the examined source files (XML documentation is not included) contained no 

exception documentation. 

These applications were chosen considering their popularity, number of users, complexity, 

bug reports, application support given by the developers and availability of source code. 

The application designers and programmers expertise for developing fault tolerant 

software could not be assessed. But, such attribute is not relevant in the spirit of this study. 

Otherwise, the study would be targeting the experiences of a small group of expert 

programmers and not the broader and more common programmer that has no special 

training in writing fault tolerant software but still uses the same tools (available in modern 

programming languages) as the experts. 

3.3.3. Results 
Table 3.9 summarizes the results obtained by running the Analyzer for the six targets, 

showing the percentage of documented and undocumented exceptions. 

 

 

                                                                  
1 Some of Mono’s Assemblies include excellent exception documentation despite not using Microsoft 

style documentation tags. This just emphasizes the lack of agreement between different players and 
the fragility of this method. 
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Table 3.9 – Documented vs. Undocumented exceptions. 

Group Assembly 
%  

Documented 

%  
Not 

Documented 

NAnt.Core.dll 3.4 96.6 Applications 
NDoc.Core.dll 0.5 99.5 
SharpZipLib.dll 21.2 78.9 

Libraries 
CpSphere.Mail.dll 8.4 91.6 
System.Runtime.Remoting.dll 16.2 83.8 

Infrastructure System.XML.dll 23.5 76.6 
Average 12.2 87.9 
Average for Applications 1.9 98.1 
Average for Libraries 14.8 85.2 

 Average for Infrastructure 19.8 80.2 
 

ILI detections were not considered in this analysis although they represent a huge amount 

of exceptions. This is because we think it is not reasonable to expect programmers to 

document them. They are thrown by the low-level IL instructions at the virtual machine 

level, which do not correspond to problems that the programmer should usually deal with. 

Unfortunately, this means that they can still cause problems, but it also means that they are 

usually poorly documented or documented “by coincidence” (read ahead for an 

explanation). Normally, programmers will only marginally be aware of them. 

The results show that for the set of 6 different Assemblies over 87% of the relevant 

exceptions that the code can throw are not documented. For code directed mainly towards 

the end-user, this value goes up to 98%. For code aimed towards re-use by other 

programmers (libraries), it stands at about 85%. For infrastructure code, providing basic 

services for the .NET platform, this value is still as high as 80%. 

Table 3.10 discriminates the types of exceptions that in the previous table are mentioned as 

documented. Thus, it offers insight into the types of exceptions that programmers are most 

likely to document. 
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Table 3.10 – Types of exceptions most likely to be documented. 

Group Assembly % ILIs % MCs % Ts % RTs 

NAnt.Core.dll 0.0 24.5 73.5 2.0 Applications 
NDoc.Core.dll 0.0 0.0 100.0 0.0 
SharpZipLib.dll 4.6 11.4 84.1 0.0 

Libraries 
CpSphere.Mail.dll 0.0 17.2 82.8 0.0 
System.Runtime.Remoting.dll 0.0 100.0 0.0 0.0 

Infrastructure 
System.XML.dll 24.4 41.9 33.7 0.0 
Average 4.8 32.5 62.3 0.3 
Average for Group A 0.0 12.2 86.7 1.0 
Average for Group L 2.3 14.3 83.4 0.0 

 

Average for Group IS 12.2 71.0 16.9 0.0 
 

The four most interesting graphs are also shown in the next figure (Figure 3.17). 

More than 60% of the documented exceptions represent explicit throws. This value is about 

85% for application and library code and about 17% for infrastructure code. This huge 

discrepancy may be attributed to the presence of outliers in the target Assemblies but is 

more likely to be caused by very specific documenting styles/procedures of Microsoft for 

the .NET platform.  

Most of the other documented exceptions represent exceptions that result from method 

calls. This value is about 32.5% for all Assemblies, but only about 13% for application and 

library code, and as high as 71% for infrastructure code. 

This data seems to indicate that Microsoft has an automatic way of documenting its code, 

particularly with respect to method calls, because unlike most code, where documentation 

about exceptions resulting from method calls is rare, Microsoft code is much more 

complete in this regard. 

For all assemblies, explicit re-throws represent very low values. 
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It is very interesting to note that despite not having included ILIs in our analysis, they still 

appear as documented for two of the target Assemblies. These represent simple 

coincidences that occur when a programmer involuntarily documents an ILI exception by 

documenting one of the other types of exception (e.g., imagine that a programmer 

explicitly throws a NullReferenceException and documents that fact using 

documentation tags before the method header. If the IL instructions in that method throw 

a NullReferenceException, he or she will have documented more than expected, 

 

Figure 3.17 – Documentation of exceptions in four different assemblies. 
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possibly misleading anyone using his code as to the circumstances in which an exception 

occurred). 

Although the preceding results may be very useful, they still represent a simple analysis, 

only taking into account what can be determined by looking directly at IL code and 

respective documentation. They tell us about problems we can expect to encounter when 

using these Assemblies. But they do not tell us which of these problems are of the direct 

responsibility of programmers, mainly because they consider cases where there is no 

documentation available and cases where exceptions were not documented in the existing 

documentation. 

To solve this problem, the concept of suspects, mentioned in the previous section, was 

created. Suspects represent cases where we can state for sure that programmers could have 

done a better job on documenting their code. There are two types of suspects: code 

suspects and documentation suspects. Code suspects represent uncaught exceptions, 

detected in the code analysis and not in the documentation analysis, not originating from 

ILIs and that were found in methods for which there is documentation. Documentation 

suspects were a completely unexpected finding. They represent exceptions that the 

programmer marked as possible to occur in his code but were not detected in the code 

analysis and are, therefore, impossible to occur. Prior to running the Analyzer, we did not 

expect to find any documentation suspects, but Table 3.11, summarizing the results, shows 

that we still did find some of these cases. 

Table 3.11 – Suspects for all eight Assemblies. 

Assembly Code Doc Total 

NAnt.Core.dll 854 0 854 
NDoc.Core.dll 387 0 387 
SharpZipLib.dll 276 5 281 
CpSphere.Mail.dll 221 2 223 
System.Runtime.Remoting.dll 155 0 155 
System.XML.dll 421 16 437 

 

The documentation suspects we found are all, without exception, due to a specific feature 

of .NET – properties. Properties are internally implemented in .NET as one or two methods 

(depending on whether the property is read-only or not), a get_<Property> method and, 

possibly, a set_<Property> method. But the documentation tags only allow documenting 

a property as a whole (the internal methods are completely transparent to the 
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programmer). This carries more than one consequence. First, it means that if the 

documentation is not specific enough (it can explicitly say that the exception occurs only in 

setting the property), the programmer cannot know if the exception occurs in the getting 

or the setting of the property. Second, it renders attempts to do automatic exception 

handling or exception analysis like ours even more difficult, because it is almost 

impossible to have the computer read and interpret what someone wrote. We chose to 

have the Analyzer signal all these cases as suspects. 

For the cases where we can state for sure that existing documentation is lacking in quality, 

around 90% of missing documentation is related to insufficient accounting of the 

exceptions that can occur by calling other methods, the rest being explicit throws, which 

are fairly well documented (as one would expect). 

Finally, it is possible to compare the numbers presented in Figure 3.17 and Table 3.12 to get 

an estimate of the proportion of undocumented cases that are due to the plain absence of 

documentation. For this, we can take the number of undocumented detections from 

Figure 3.17 (joining in the values for the other 4 assemblies) and the number of code 

suspects from Table 3.12. The results of this comparison are shown in Table 3.13. 

Table 3.12 – Type of detections responsible for code suspects. 

Assembly Code 
Suspects 

#MCs (%) #Ts (%) #RTs (%) 

NAnt.Core.dll 854 793 (93%) 60 (7%) 1 (0.1%) 
NDoc.Core.dll 387 374 (97%) 13 (3%) 0   (0%) 
SharpZipLib.dll 276 236 (86%) 40 (14%) 0   (0%) 
CpSphere.Mail.dll 221 217 (98%) 4   (2%) 0   (0%) 
System.Runtime.Rtg.dll 155 139 (90%) 16   (10%) 0   (0%) 
System.XML.dll 421 373 (89%) 48 (11%) 0   (0%) 

 

Table 3.13 – Proportion of detections due to lack of documentation. 

Assembly 
Undocumented 

Detections 
Code Suspects 

Lacking  
Proportion 

NAnt.Core.dll 1410 854 39.4%      
NDoc.Core.dll 430 387 10.0%      
SharpZipLib.dll 328 276 15.9%      
CpSphere.Mail.dll 315 221 29.8%      
System.Runtime.Rtg.dll 466 155 66.7%      
System.XML.dll 911 421 53.8%      
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Given the way that the Analyzer statistics were calculated, these numbers can be 

extrapolated to represent the percentage of methods for which there is no documentation 

despite the inclusion of documentation for the assembly. There is a large variability in the 

results, but there are still cases for which more than 50% of the methods did not have 

documentation, including both the Microsoft .NET core platform ones. 

3.4. Summary 
This chapter aimed to show how programmers use the exception handling mechanisms 

available in two modern programming languages: C# and Java. To our knowledge, this is 

the most extensive study done on exception handling by programmers in both platforms. 

And, although we have detailed the results individually for both platforms and found 

some differences, in the essential results are quite similar.  

We discovered that the amount of code used in error handling is much less than what 

would be expected, even in Java where programmers are forced to declare or handle 

checked exceptions. 

More importantly, it confirmed that most of the exception classes used as catch arguments 

are quite general and do not represent specific treatment of errors, as one would expect. 

We have also seen that these handlers are empty in most cases or are exclusively dedicated 

to log, re-throw of exceptions or return, exit the method, or program. On the other hand, 

the exception objects “caught” by these handlers are from very specific types and closely 

tied to application logic. This demonstrates that, although programmers are very 

concerned in throwing the exception objects that best fit a particular exceptional situation, 

they are not so keen in implementing handling code with the same degree of 

specialization.  

Exception handlers are not specific enough to deal with the detail of the occurring errors. 

The most preferable behavior is logging the problem or alerting the user about the error 

occurrence and abort the on-going action. Empty handlers, used to “silence” exceptions, 

will frequently hide serious problems or encourage bad utilization of programming 

language error handling constructs. Other detected problems, like the duplication of code 

between handlers, and the mingling of business code with exceptions handling code, 

among other problems are still to be tackled and represent an important research target. 
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This chapter also shows the magnitude of the problems of documentation absence and 

documentation quality in several .NET applications. More emphasis was put on the 

problem of documentation quality but Table 3.13, together with the great difficulties found 

when collecting Assemblies for this work, are a testimony of the problem of 

documentation absence. 

Regarding documentation quality we found out that, on average, 87% of relevant 

exceptions thrown are not documented. These values range from around 80% to almost 

98% growing as the amount of expected re-use declines. For the cases where it is possible 

to state for sure that the existing documentation is lacking in quality, most of the missing 

data is related to insufficient accounting of the exceptions that can occur by calling other 

methods, the rest being explicit throws, which are fairly well documented. This fact 

indicates that there may be benefits in developing ways of somehow automatically 

documenting methods by following call chains looking for the exceptions that may be 

propagated.  

Ultimately, this study brings us to the checked vs. unchecked exceptions discussion. Why? 

Because checked exceptions are a means of getting exception information directly from a 

method, not having to manually go through all the chain of calls looking for exceptions, 

which is one of the downsides of unchecked exceptions. If the exception information 

associated to the method is accurate (which is very likely, because it is a compile-time 

check), programmers have one less excuse for not documenting their code. Furthermore, 

checked exceptions give us the possibility of providing techniques like automatic 

exception handling and even automatic code documentation. 

Thus, our opinion is that checked exceptions, or a variation on them, may prove more 

beneficial to dependability. Our thought is that checked exceptions will not make 

programmers be more inclined to document. But they will at least make automation 

techniques, which seem to deserve a lot of support, much easier. Even so, probably the 

major conclusion that can be drawn from the use of exceptions and of the checked vs. non-

checked exceptions discussion is that currently the error handling mechanisms available in 

programming languages are not good enough and that more research in this important 

area is needed. 

The use of the unchecked model in .NET, and the lack of proper documentation about 

exceptions in these applications, can be seen as two of the causes for the fact that most of 

the exception classes used as catch arguments are quite generic and do not represent 
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specific treatment of errors, as one would expect. The lack of information about the 

exceptions that a method may throw can lead the programmer to perform a “catch-

everything and do nothing” approach when facing problematic method calls.  

The results discussed in this chapter lead us to the conclusion that, in general, exceptions 

are not being correctly used as an error handling tool. This also means that if the 

programming community at large does not use them correctly, probably this is a symptom 

of a serious design flaw in the mechanism: exception constructs, as they are, are not fully 

appropriate for handling application errors.  

One may argue that the results would have been different if the programmers had been 

educated in the development of reliable software. But, this would not represent the 

broader community of developers. It is not even viable to assume that the large majority of 

developers worldwide will ever be educated in such way. 

We believe that more work is needed on error handling mechanisms for programming 

languages. Modern exception handling constructs are the result of more than 30 years of 

research in the area. Also, any programmer that tries to develop code in a programming 

language, such as C# or Java, is forced to use exceptions.  Programmers do know how 

exceptions are supposed to work and should be used. It is not the lack of this knowledge 

that leads them to write catch blocks that simply silence exceptions or log the problems. 

There are other reasons for justifying this practice and some of them can be related with 

the EH mechanism itself. The current exception handling mechanisms may indeed have 

the necessary semantics for being able to deal with problems, but if they are too 

cumbersome for the huge majority of developers to use them correctly, then these 

mechanisms must be revised. Future exception handling mechanisms should encourage 

the programmers to adopt best practices and use sound exception handling patterns. 

In our work we approach the problem by trying to create automatic exception handling for 

the cases where “benign exception handling actions” can be defined (e.g., compressing a 

file on a disk full exception). In general, we try to free the programmer from the task of 

writing all the exception handling code by hand, forcing the runtime itself to automatically 

deal with the problems whenever possible. A complete description of the technique is 

discussed in the next chapter.  



 

Automatic Exception 
Handling: A Proposal 

  

In this chapter we present our automatic exception handling model. We will briefly 

introduce the motivations for our work, present the model’s architecture, features, and 

programming model.  

We will discuss how this model makes object-oriented software development simpler, 

quicker, cheaper, and, at the same time, how it is able to elevate the overall reliability of 

programs. 

We conclude by showing in what aspects our model relates with its predecessors and in 

which it represents an innovation. 

Chapter 

4 
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4.1. Introduction 
In Chapter 2 we discussed the current state of the art in exception handling. We have 

assessed existing exception handling mechanisms strengths and weaknesses, discussed 

what could be done to improve current approaches, and set the guidelines for the 

development of an improved model. In Chapter 3 we discussed how the limitations 

inherent of existing exception handling models are affecting the way programmers use 

them when writing programs. Our conclusions on are quite alarming – programmers are not 

correctly using exception handling mechanism for performing error recovery. 

Other authors have also questioned the programmers willeness and qualifications to write 

good exception handling code (e.g., [Shah2008a]). Based on our experience and the 

referenced work, it is safe to assume that many software developers consider writing code 

to deal with abnormal situations a dispensable task that only diverts them from their main 

objective: writing the application’s business logic code. Furthermore, we have witnessed a 

shift in how exception handling is perceived – “developers have shifted their perspective 

on exception handling from the intended proactive approach (i.e., how to handle possible 

exceptions) to a reactive approach (i.e., using exception handling as debugging aids).” 

[Shah2008a] 

In some sense, we agree that exception handling in today’s applications has become a 

cumbersome task. There are thousands of possible exceptions types for developers to deal 

with when writing software. Each application (or software library) introduces its own 

types of exceptions and, many times, it is not clear what the problem behind an exception 

occurrence is. Also, error handling code is scattered along the entire program’s code and 

mingled with business logic, making control flow difficult to track in the presence of 

errors. Another problem is that the rules enforced by compilers and run-time platforms for 

checking the code safety are (sometimes) considered intrusive by developers because they 

force them to alter their code writing style. Last but not least, testing of exception handling 

code is not a simple task. 

The unwillingness of software designers to deal with exceptions correctly and follow some 

well known best-practices for exception handling [Wirfs-Brock2006], undoubtedly, 

contributes to the lowering of the quality of programs and their resilience to errors. It is 

obvious that something is not right with current exception handling models: they are not 

adequate enough for developers. 
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We claim that, in many situations, a platform level automatic system capable of providing 

benign recovery actions for exceptions would achieve better results in terms of reliability 

than the programmers’ exception handling code. An exception handling mechanism 

should provide effective exception handling and not lower the productivity of 

programmers. This may seem a tall claim but, considering that for a large number of 

exception types it is possible to have the runtime providing a set of benign recovery 

actions that automatically recover the system when an exception is raised, the problem 

becomes treatable. The case for Automatic Exception Handling (AEH) 

[Cabral2006,Cabral2008] is that, for the majority of cases, the programmer should not have 

to write exception handling code. Benign recovery actions should be part of the runtime 

platform and should be automatically executed when an exception is raised. By doing so, 

the programmer is freed from the “burden” of writing exception handling code for a large 

number of situations. In a sense, automatic exception handling should work as a Garbage 

Collector for exceptions. Without, or with minimal, programmer intervention, the 

mechanism should automatically execute benign recovery actions for the exceptions being 

raised in the running code. 

We propose an exception handling model where the most common exceptions are dealt 

automatically by the runtime environment without forcing the programmer to write any 

code. To be viable, our model must effectively lead to less code being written by the 

programmer, while at the same time allowing the development of more robust 

applications.  

The proposed system is based on a Software Transactional Memory (STM) [Shavit1995] 

approach for maintaining state consistency while benign recovery blocks [Horning1974] are 

tried for recovering the application (backward error recovery). 

4.2. The Model 
In this section we discuss the core model of an automatic exception handling system using 

a transactional approach. For a question of easiness and readability, the discussion uses the 

Java exception model and language notation. Nevertheless, automatic exception handling 

is applicable and readily adaptable to any modern managed programming language 

environment (e.g., C#/.NET, Python, etc.). 
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To understand the programming model for automatic exception handling, consider the 

following grammar fragment, adapted from the Java Language Specification 

[Gosling2005]: 

Statement ::= 

     try Block ( Catches | [Catches] finally Block ) 

     try Block  

     … 

We introduce a simple modification, shown in bold:  try blocks do not need to have a 

catch handler, which becomes optional.  

When the application is deployed it contains a number of benign recovery blocks, 

configured by exception type, which may be executed when an exception occurs. These 

recovery blocks can be shipped directly with the virtual machine, or correspond to custom 

code shipped with the application. The system can execute multiple recovery blocks for 

each exception occurrence inside a try block. After the execution of each recovery block, 

the code inside the try block is re-attempted. A transactional system ensures that the 

effects of a failed try block are discarded prior to the execution of the recovery blocks and 

the try block own re-execution. 

Going back to the example of Listing 1.2 (page 12), the programmer would only have to 

write the application logic code, that is, saving the data into the file, enclosing it in a try 

block. This is shown in Listing 4.1. If an exception is raised, the runtime system provides 

the necessary benign recovery actions for trying to solve the problem. Each recovery action 

is executed once, after which a new re-execution of the faulty try block is attempted.  

 
FileWriter file = null; 
  
try 
{ 
    // Open file 
    file = new FileWriter("data.txt"); 
 
    // Write some data into it 
    for (int i=0; i<1024; i++) 
        file.write("Here’s the data: " + i); 
    // Close file 
    file.close(); 
} 
 

Listing 4.1 – Writing to a file in a transactional try block 
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4.2.1. Benign Recovery Actions 
The central argument of this model is that for a large number of abnormal situations, the 

runtime system should be able to deal with the problem without having to force the 

programmer to write code. In fact, in many situations the runtime should be able to 

provide better solutions than what the programmer would, since most programmers do 

not focus on error handling but on writing application logic.  

Consider an example like writing a file to disk. During that operation, a 

DiskFullException can occur. Instead of directly throwing an exception, for which the 

programmer has to explicitly provide an exception handling block, the runtime system 

could benignly try different recovery operations. For instance: 

1. Remove temporary files on disk; 

2. Compress not frequently used folders; 

3. Reduce the size of the swap file; 

4. Move selected files to a remote server; 

5. Mount an extra disk; 

6. Notify the user asking for help on the problem. 

A key point of these actions is that they are benign. They do not affect the environment on 

which the program is executing in a harmful or potentially destructive way. A 

counterexample of a non-benign action would be to automatically erase some user files to 

make space available.  

Similarly to the six recovery actions for DiskFullException defined above, it is also 

possible to define them for a large number of platform-level exceptions. For instance, if a 

network connection is broken: the system can try to reconnect to the server automatically; 

try to connect to a different server (or servers); try to use a different network interface; and 

so on. If an update on a transactional database fails, it is possible to try to re-execute the 

transaction. If an authentication process fails, a different authentication module can be 

tried, etc.  

For sure, application-specific exceptions can only be dealt explicitly by the programmer. 

But for a number of common application exceptions, benign recovery actions can be 
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provided1. These actions can be made available off-the-shelf with the runtime environment 

and configured when the application is either developed or deployed. Notice that the 

objective is not to provide automatic exception for all types of exceptions. Instead, the goal 

is to provide automatic handling for the most common types of exceptions associated with 

a particular development platform, substantially easing the life of the programmer. 

In our model, recovery actions are defined at platform level and shipped with the platform 

itself. These default recovery actions will be associated to the exception types defined on 

the platform and on the system’s libraries. As an example, let us consider which recovery 

actions could be provided by default by the Java virtual machine for the 

NoRouteToHostException or the PortUnreachableException: 

1. Rollback the failing try block and re-execute the instructions inside the protected 

block; 

2. Rollback the failing try block and re-execute after pausing for predefined time 

period; 

3. Rollback the failing try block and connect to a different host and re-execute. A 

location for the alternative connections can be provided by the programmer once 

or every time; 

4. Notify the user of the problem and provide details on the exception cause, 

allowing him to manually correct the problem. Afterwards, rollback and re-

execute the try block; 

5. Re-throw the exception and propagate upper the call stack. 

But, independently of the form how recovery actions are built into the platform, the 

fundamental rules that a system has to follow to implement the automatic exception model 

are: 

1. The code of recovery actions must be available for execution from any location on 

the run-time environment; 

                                                                  
1 In the next chapter we will assess to which degree benign exception handling actions can be defined 

for a large set of platform specific exception types. 
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2. Recovery code must be able to control the rollback of the code raising the 

exception. In some situations, it may be desirable not to rollback the failing code. 

Thus, the transactional mechanism controls must be accessible from inside the 

recovery blocks; 

3. It must be possible to pass values and object references (memory references) from 

the location where an exception is raised to the recovery action code. By doing so, 

system designers will be able to provide more powerful benign recovery actions; 

4. Recovery functions do not need to change the code inside the protected region 

where their activation took place but they must be able to change the execution 

environment state where that code will re-execute; 

5. Exceptions occurring inside a recovery action must be handled locally or 

propagated to the upper transaction or element in the call stack; 

6. The transaction where the exception that activated the recovery action was raised 

is aborted before the execution of the recovery actions and the new transaction 

begin at the start of the recovery code; 

7. The runtime environment must be able to control the serial execution of the 

different recovery actions for an exception occurrence. It must ensure that an 

action is not repeated (executed more than once) for the same occurrence, that all 

actions predefined for that abnormal event are executed until the exception 

manifestation is eliminated, and that the adequate actions are bound to the correct 

exceptional events. 

Furthermore, to improve performance and avoid the execution of inapplicable recovery 

actions, recovery actions can be bound to exception occurrences in several forms: 

1. Globally, by exception type (default); 

2. By exception type and application (program, software component, package, 

assembly, etc); 

3. By exception type and class (i.e., the class where a certain exception type can be 

raised); 
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4. By exception type and method (i.e., the method and class where a certain 

exception type can be raised); 

5. Specifically to a try block. 

Customizing the binding of recovery blocks to particular exceptional occurrences is 

achieved through the use of configuration files. 

4.2.2. Programming Model 
In terms of the programming model, the system works as follows: 

1. While writing code where exceptions can be raised, the programmer demarks 

them with a normal try statement (or block). The catch part is optional; 

2. If a catch block is present, this means that the programmer wants to explicitly 

handle the exception. The provided code is executed when a corresponding 

exception is raised. This corresponds to the normal exception handling model; 

3. If a catch block is not present, then the corresponding try block is a candidate 

for being handled automatically by the runtime system; 

At run-time: 

1. Every time a try block is reached, a new transactional context is created. All 

object and variable accesses are recorded inside the block and, later on, can either 

be committed or aborted. Nested try blocks correspond to nested transactions. 

2. On exiting a try block normally (i.e., no exception occurred), the transaction 

commits. 

3. If an exception occurs during the try block and if a suitable catch block exists, 

either in the current method or above, the flow of execution passes to that block. 

This corresponds to the normal exception handling model. Note that before 

passing the flow of execution to the catch handler, the execution commits 

making visible the modifications that occurred on the try visible. It may also be 

necessary to perform stack unwind if the exception is being propagated.  
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4. If an exception occurs within a try block with no catch statement or without a 

suitable catch statement1, that block is a candidate for automatic exception 

handling. If a suitable benign recover block exists (i.e., of the correct type), 

automatic recovery is tried. If not, the transaction commits and the exception is 

propagated as in the normal exception handling mechanism.  

5. For performing automatic exception recovery, the system rolls-back the current 

transaction. That ensures that the application is in a clean state. The runtime then 

tries to execute each of the configured recovery blocks, one-at-a-time. After each 

recovery block is executed, the try block is re-executed from the beginning. This 

happens until either the execution succeeds or all options are exhausted. At that 

point, according to a deployment configuration file, either a “Log&Abort” 

operation is executed, which terminates the program, or the original exception is 

re-thrown at the offending statement. 

Since a try block can be executed multiple times, a critical aspect of this framework is that 

they (try blocks) must be transactional. This means that after a recovery block is executed, 

the application state must be automatically restored to its condition as of when the block 

was first entered. This aspect will be discussed in the next section in greater detail. 

Going back to the example on Listing 4.1, if a DiskFullException is thrown on the 

file.write() operation, the first recovery block is executed and the try block re-executed 

from the beginning. If on the second execution an exception is still thrown, the second 

recovery block is tried. This happens until either the execution succeeds or all options are 

exhausted leading the program to be terminated or the original DiskFullException being 

re-thrown. Figure 4.1 illustrates this mechanism. 

The information that associates exception occurrences with concrete handling actions is 

kept on a runtime system configuration file which is shipped with the runtime platform. 

Nevertheless, the system leaves room for customizing its behavior. Other configuration 

files can be released with the application itself, specifying what happens for each exception 

type across the program. It is also possible to specify what happens for each class, method, 

or specific try block. Possible actions include: i) execute a number of recovery actions 

before throwing an exception; ii) directly throwing the exception assuming that it will be 

caught at a higher level in the stack, or eventually abort the program. 

                                                                  
1 This happens if the existing catch statements do not correspond to the exception type being thrown. 
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4.2.3. Transactional System 
As it was previously mentioned, a key point of the whole approach is that try blocks are 

executed transitionally. When repeating the execution of a try block it is essential to 

guarantee: 

1. The application state (variables, data structures, etc.) is as it was on the first 

execution of the block; 

2. The execution of the try block is isolated. This means that if external I/O 

operations are executed, it must be possible to undo them, or they must be 

idempotent (i.e., can be repeated).  

These important aspects are discussed next. 

Restoring Application State 
Restoring application state is vital in order to guarantee that the intent of the programmer 

is preserved. For instance, if a programmer is incrementing a variable total inside a try 

block, if the block is re-executed due to an exception, after exiting the block the variable 

must only have been incremented once. That is to say that the program semantic should 

remain the same independently of the recovery system in place.  

 

Figure 4.1 – The runtime system provides recovery. 
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For restoring the application state several approaches are possible. Typically methods 

include: 

1. When entering a protected block, create a copy of all touched objects. These 

copies are used whenever updates are made. If the block exits normally, the 

original objects are replaced by the updated ones. If a re-execution takes place, the 

copies are discarded, being the original objects preserved.  

2. No copies are made. Instead updates are done in place. All changes to objects are 

logged. If a block exists normally, the logs can be discarded. If a re-execution 

takes place the logs are used to restore the objects to their initial state. 

The details regarding each method are actually somewhat tricky to implement and incur in 

different overheads. For instance, in object-oriented platforms, the first approach feels 

more natural, though it may require more memory than the second one and rely heavily 

on the execution of the garbage collector. 

Suffice to say that this transactional type of system actually corresponds to having a 

Software Transactional Memory (STM) framework [Shavit1995] in place where the atomic 

keyword corresponds to a try block. Though the STM model is essential to our system, its 

definition is not the core of this proposal. There is currently very active research on how to 

optimize such systems and make them available on the mainstream. In our case we not 

only benefit from those systems becoming available (e.g., AtomJava [Hindman2006], Atomos 

[Carlstrom2006]), but also the associated overheads for exception handling can be much 

lower. In general, we expect try blocks to succeed, thus the system can be heavily 

optimized in that direction.  

As a general guideline, an STM system for usage with our model must support, at least, 

closed nested transactions [Moss2006]. 

Isolation in try blocks 
As it was mentioned, preserving only application state is not enough. For instance, on the 

example of Listing 4.1, if the FileWriter class (or the runtime system) is not aware that a 

transaction is taking place, data can end up being written twice into the file. What this 

means is that the transaction is not isolated from the exterior. It leaks information.  
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For dealing with this problem, as a general rule, if an unprepared class (i.e., non-

transactional aware) is detected inside of a try block, the compiler forces the programmer 

to write a catch handler. This means that for legacy code, the programmer is in the same 

situation as today – the runtime system cannot help him. Also, some I/O actions cannot 

ever be undone (e.g., consider the case of “firing a missile”). Again, classes that 

encapsulate that kind of operations are not candidates for automatic exception handling 

recovery. If exception handling is involved, the programmer must explicitly deal with it. 

Nevertheless, transactional and non-transactional code can coexist in the same program 

but, the transactional code cannot reference non-transactional classes and methods. 

Classes that can be made transaction-aware must somehow be recognized by the runtime 

system. A simple approach for this problem is making them implement a Transactional 

interface. Transactional-aware classes must explicitly provide at least three callback 

methods on this interface: one for the runtime system to signal that a transactional context 

is being entered; one for the runtime system to signal that the changes are to be committed; 

and one for the runtime system to signal that the operations have to be undone. Since try 

blocks can be nested, an identifier for each transactional context must also be passed.  

Although using this approach may apparently seem complicated or cumbersome it is not 

so in practice. For once, only classes that perform external I/O operations must be marked 

in this way. Ordinary objects are already automatically made transactional by the normal 

STM system. The complexity of implementing the callback methods varies, but their 

semantic is clear. 

In terms of the classes that can be made transactional, several alternatives exist: 

1. If I/O is involved, it may be possible to temporarily buffer it, until a commit is 

possible; 

2. In some cases, it is possible to create idempotent operations for the class allowing 

operations to be repeatable. 

Considering once again the FileWriter class, an example of the first approach would be 

to write the data into a temporary file. If the try block commits, the temporary file could 

be renamed to the correct name. An example of the second is actually the FileWriter as 

implemented on Sun’s JDK, and as it is used on this example. When the FileWriter 

constructor is executed it creates a new file on disk, truncating any existing one, the try 

block can be executed without any side-effects (i.e., in an idempotent way). However, this 
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would not be case if the FileWriter constructor, which supports appending to the file, 

would be used.  

On a final note, it should be mentioned that the same problems that occur in database 

systems and STM systems can also take place. For instance, in the context of a transaction, 

reading data previously written can lead to problems. Consider the case where inside a 

try block a FileReader tries to read data that has just been written. Since the writer has 

not yet committed, the reader may not be able to read it on a naïve implementation. There 

is currently no general solution for those problems. The developer of these classes must 

take care in preventing them. In most cases it is simple to provide hooks for undoing the 

operations or detect conflicts with other operations. Also, in a general development 

platform, the number of classes that are directly involved with external I/O is limited. In 

any case, if supporting a certain class proves to be too hard, the platform provider can 

always opt for making it non-transactional. In that case, the application developer has to 

explicitly write exception handlers for try blocks that use it. 

Nested try blocks 
Our model allows the nesting of try blocks. This is the same as saying that the model 

implements closed nested transactions. Changes made by the nested transaction are not 

visible to the parent transaction until the nested transaction is committed. This follows 

from the isolation property of transactions. But, the most important aspect related with 

nested transactions in our model is the definition of what happens when an exception is 

raised inside one. 

Exceptions raised inside a protected block will be handled by the system preset recovery 

actions or by an explicitly designed catch handler. If the handling code is not successful 

on eradicating the exceptional occurrence, the exception is re-thrown and passed to the 

upper transaction (upper try block on the call stack). At this point the process repeats 

itself: the exception will be handled by the system preset recovery actions or by an 

explicitly designed catch handler, the current try block can be re-executed (an undefined 

number of times) and as a consequence the inner transaction is also re-executed. If the 

exception does not manifest itself again the inner transaction can attempt to commit and its 

results become visible for the parent transaction. If the exception does not disappears, the 

parent transaction will ultimately fail and the exception re-thrown to any upper 

transaction or to the runtime system causing the program execution to terminate. 
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4.2.4. Exception Parameters 
To provide automatic recovery actions that can, in fact, help recover systems in the 

presence of a large number of distinct errors, it is necessary to implement a system capable 

of efficiently communicating values and object references from the location where 

exceptions are raised to recovery blocks. In the example of Figure 4.2, in the event of an 

exception being raised inside the try block, one or more recovery blocks might attempt to 

recover and request the re-execution of the failed try block. In the example, the recovery 

block needs three input parameters. But, since the recovery code is shipped with the 

platform it is difficult for the programmer to define which references should be passed. 

In simpler cases, the selection of references and values to use as parameters for the 

recovery blocks can be made automatically, and the necessary references held by the 

exception object itself. In more complex computations, a more demanding list of 

parameters will be necessary. In these cases, it would be very difficult for the system to 

automatically define which references to use. Thus, in such cases, the system will require 

human intervention. 

 

Figure 4.2 – Passing parameters to recovery blocks. 
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For selecting the variables in the code which will be used as parameters for the recovery 

actions, and considering that one of our main objectives is to minimize the work of 

programmers in the development of exception handling code, we opted on using 

configuration files instead of creating new language constructs. Using language support 

for defining the parameters for recovery actions would only be viable if the code using 

such constructs is located near to the exception raising point. With our approach we avoid 

scattering the exception handling code through out the entire program code. 

On the other hand, defining configuration files (e.g., such as the XML formatted files we 

will present and discuss in the next chapter) can be a hard and cumbersome task. It can 

even raise code visibility and readability concerns when a developer needs to know the 

control flow of its program in the presence of an exception. We expected such problems to 

occur and we believe that the solution is in the automatic or semi-automatic generation of 

the configuration files and in resorting to visual programming aid tools. 

As an example, we propose the incorporation of an exception alert and configuration 

system into source code editing program in such a way that: 

1. When a programmer is writing the application logic code, whenever he or she 

writes the code to invoke a method, the development environment automatically 

verifies the exception list for the called method and alerts the programmer (using 

a visual callout for instance) if that method can raise an exception. The system 

emits the alert when the problematic method call is not inside a try block and 

the exception type is not on the list of exceptions being raised on the calling 

method. The alert will also be issued if the call is inside a protected block, the 

exception is not on the exception list, the system does not possesses benign 

recovery actions for that particular exception type and the programmer does not 

defines a catch block for the exception. 

2. If the called method is inside a try block and the system has automatic recovery 

code for the exceptions being raised inside, the system verifies the need for 

selecting parameters for the recovery methods. If the parameters cannot be 

automatically set by the system, the programmer is informed by a visual callout 

that he or she must select the adequate list of variables to be used as parameters 

for the exception handing process. If the programmer opts for defining those 

parameters immediately, the system can provide him with a window interface 

for doing so. In this visual interface, he or she is able to know which exception 
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type is to be automatically handled by the system and which class implements 

the recovery actions and which actions are to be tried. At this point, the 

developer can select the variables in the code that will be passed to each recovery 

method. The configuration files for the application are based on the introduced 

data and automatically generated. 

The way systems actually make the selected variables and references available to the 

handling code can vary for each implementation. In our test platform, we used a hybrid 

approach: in some cases the code for the handling actions was inlined with the code 

causing the exception; and, in other situations, the variables (their values or references) 

where made available on the stack of the recovery method. Short recovery procedures 

where inlined to avoid heavier performance penalties by cutting the extra-costs involved in 

method invocations. 

4.2.5. Exception Handling Model Features 
Garcia et al. [Garcia2001] defined ten different aspects through which an exception 

handling model can be characterized. We will use the same notation to describe the 

automatic exception handling model: 

Exception representation 
As we have already discussed in Chapter 2, exception handling mechanisms can have 

different structures for representing exceptions: symbols, data objects, and full objects. Objects 

guarantee the uniformity of the programming paradigm; objects do not require the usage 

of extra global variables for passing information to the exception handler, thus benefiting 

modularity. 

In our model, in resemblance with what happens in languages such as C++, Java, C# and 

Delphi, we use data objects to represent exceptions. Being data objects, exceptions do not 

implement their own functionality and thus require special support from the runtime. We 

provide a special keyword (throw) to allow the programmer to raise exceptions. 

External exceptions in signatures 
Exception lists are mechanisms that allow a method to declare to the outside world which 

exceptions its actions can produce that are not being handled inside, thus being 

propagated to the outside. Systems implementing checked exceptions make exception lists 
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mandatory while unchecked systems make its usage optional. Exception lists are, in our 

perspective, an essential feature for developing highly dependable software since, as we 

have observed in prior work [Cabral2007b,Sacramento2006], programmers cannot be 

trusted to document their exceptions. 

In our model exception lists are mandatory. Nevertheless, we expect that in most cases the 

handling of the potential exceptions will be done by the platform and not by the 

programmer’s code, thus, making our checked exceptions model much less demanding for 

the programmer than its predecessors. Most times the declaration of a try block will 

suffice. 

Our model guarantees that the programmer is aware of the potential problems that his 

code will face, but, at the same time, tries to prevent the programmer from being tempted 

to fall into some less recommended programming practices such as silencing exception, or 

log and terminate on non-fatal exceptional occurrences, because he or she is not forced to 

provide handing code for all exceptions. 

Separation between internal and external exception 
In some situations, it can be useful to differentiate which exceptions are to be handled 

inside a method and which are to be dealt with outside the method. Such feature requires a 

special support by the programming language that must provide different ways to raise 

both kinds of exceptions.  

In our model, we do not provide any special means to implement such feature. We believe 

that object-oriented exceptions can mimic this functionality. It is possible to use object-

oriented inheritance to create new types of exceptions so that these new types can be 

handled differently: the descendents of one type can be treated as internal exceptions, 

while the descendents of the other type can be treated as external exceptions. 

Attachment of handlers 
We have also mentioned in Chapter 2 that the definition of the protected region to which 

an exception handler is associated can differ in many aspects. For example, a handler can 

be associated with (i) a statement, (ii) a block of statements, (iii) a method, (iv) an object, (v) 

a class, or (vi) an exception class. 
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Garcia et al. argued against the usage of block handlers. From all association kinds the 

authors consider this the weakest type. The authors defend that “the use of block handlers 

violates explicit separation of concerns, since exceptional code is intermingled with normal 

code albeit moved to the end of the block”. Most times, blocks of statements are defined 

with the sole purpose of attaching a handler. This practice can lead to the development of 

software which is difficult to read, maintain and test.  

Our model supports all kinds of attachments, including block handlers. But, we take things 

a step further, in the sense that we allow the attachment of multiple recovery blocks to the 

same entity (or even code block). In the case of an exception occurrence, one or all the 

recovery blocks can be executed. 

Handler binding 
There are three approaches1 for discovering (identifying) the handler that should be 

executed when an abnormal situation is detected: the static approach; the dynamic approach; 

and the semi-dynamic approach (hybrid). The hybrid approach mingles the two previous 

techniques: a handler can be statically associated with an exception occurrence but, in the 

event that no suitable handler is found on the immediate lexical context, the runtime 

system is responsible of dynamically selecting the appropriate handler.   

Our approach is hybrid. In our model it is possible to provide lexical association of 

handlers, perform dynamic search of handlers up the call stack at runt-time, and associate 

recovery actions with exception types (at program-, class-, method-, or block-level) based 

on configuration data available (and changeable) at run-time. 

Propagation of exceptions 
Garcia et al. identified two design solutions for exception propagation: explicit 

propagation; and automatic (implicit) propagation. The first kind only allows the 

propagation of the exception to the immediate caller of the failing operation. The second 

kind of propagation, allows exceptions to be transmitted through multiple levels on the 

call stack until a suitable handler is found or the program is terminated. 

We opted for the automatic approach since it requires less intervention (and less code) 

from the programmer. Nonetheless, this approach has its shortcomings. Automatic 

                                                                  
1 Please consult Chapter 2 for more detailed information. 
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propagation allows exceptions to be transmitted through multiple levels on the call stack 

until a suitable handler is found or the program is terminated. The problem is that there 

are no guarantees that an exception occurrence will be bound to the most appropriate 

handler and, at the same time, the propagation of an exception through different levels of 

abstraction can cause the unexpected exposition of implementation details and the 

corresponding degradation of encapsulation and modularity.  

On the other hand, using checked exceptions helps minimizing some negative aspects: all 

methods in the call stack are aware of the exceptions being propagated; implementation 

details can remain hidden by transforming internal exception type into different types for 

the communicating to the exterior; and different exception types can be associated with 

different components thus maintaining some degree of modularity and re-usability. In our 

case, exceptions are not only propagated in the call stack vertically but also in a transversal 

way to the recovery blocks code. 

Continuation of the control flow 
There are two different propagation models that delineate where the normal flow of 

execution is resumed after the execution of an exception handler: the termination (simple 

and retry) and resumption models. The termination model has simpler linguistics and does 

not require multiple kinds of signals for raising different types of exceptions. The 

resumption model introduces a new level of indirection, not only the caller of a function is 

dependent of the invoked function, but also the callee becomes dependent of the caller 

when an exception is raised. 

The termination is the best option for our model, both in terms of software reliability and 

simplicity. Besides the traditional control flow, where execution is transferred to a handler 

and continues in the normal path after the handler completion, the principal kind of 

control flow in our model involves transferring execution to a set of recovery blocks made 

available by the platform itself, restoring the application state using transactions, and the 

re-execution of the protected region of code until the exception stops or there are no more 

recovery blocks to try.  

Clean-up actions 
An operation will either terminate correctly or with errors. In both cases, it is important 

that the program state remains coherent. Clean-up actions allow the program to recover to 

a valid state, or undo the effects of some actions.  
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Our model allows the usage of specific construct (similar to Java’s finally) to perform 

clean-up actions and, at the same time, provides an automatic mechanism (software 

transactional memory) that allows the effects of the code inside a protected region to be 

rollbacked in the occurrence of an exception. 

Reliability checks 
Our model uses both static and dynamic checks. The first kind of reliability checks (the 

larger set) are performed by the compiler while the second kind is performed by the 

runtime system. These checks must verify the correct utilization of the checked exception 

model. At run-time, checks are reduced to the operation of finding the most adequate 

handling code for the raised exceptions and raising an error if none is found. 

Concurrent exception handling 
Concurrent systems offer a completely new set of challenges in terms of exception 

handling. It is difficult to design, analyze, modify and, sometimes, understand concurrent 

object-oriented systems. Thus, in many situations it is not possible to guarantee that 

erroneous information is always contained inside an object. In such systems, and in the 

presence of an abnormal situation, we will most probably have to deal with several 

interconnected objects simultaneously. 

At the present time we do not include any special way of automating the communication 

of exceptional information between concurrent handlers. It is extremely difficult to 

preview what the requirements, the architecture, the number of participants that a 

concurrent application will have at run-time. And, it is even harder to forecast what will 

happen in the presence of an abnormal situation. The complexity of the problem represents 

a real barrier for the design and implementation of a cooperating automatic exception 

handling mechanism. In terms of reliability it may be preferable to leave the coding of 

concurrent exception handling facilities on the programmers’ hands. Nonetheless, the 

existence of a transactional mechanism in our model can help on cleaning-up the post-

exception application state and in creating “virtual” checkpoints for recovery to 

commence. Furthermore, the simpler serial exception handling, that does not require 

communication with concurrent handlers, can still be dealt by the platform automatically. 
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4.3. Related Work 
The initial proposal for our automatic exception handling model using transactions was 

first published in 2006 at the USENIX HotDep’06 workshop [Cabral2006]. Since then, our 

ideas evolved into a mature model. During this time, other authors, with similar 

motivation, have also advanced the sate of the art in exception handling in directions 

analogous to ours. In this section we will discuss these new approaches and, whenever 

relevant, we will point out the similarities with our work or show how these proposals can 

be supportive of our model. 

Recently, we encountered an article by Christof Fetzer and Pascal Felber [Fetzer2007] that 

explores the concept of using atomic blocks for improving program correctness. The 

authors suggest not using exception handling mechanisms to deal with errors and 

abnormal situations. Instead, they recommend using atomic blocks to delimit parts of the 

code where problems might arise. Inside these blocks, programmers can explicitly detect 

errors and perform the necessary corrective operations in order to abandon the failed 

atomic block or rollback and retry its execution. 

Listing 4.2 illustrates the approach proposed by Fetzer and Felber. If the exchange 

operation fails in the do block, it is automatically retried by executing the or else clause 

that uses another strategy. If both fail, the stack objects are rejuvenated and the complete 

atomic block is retried (starting with the default execution path). 

 
void swap(Stack a, Stack b) { 
  atomic { 
    do { 
      Object item1 = a.pop(); // Might throw exception 
      Object item2 = b.pop(); // Might throw exception 
      a.push(item2);          // Might throw exception 
      b.push(item1);          // Might throw exception 
    } or else { 
      Object value = a.top().getValue(); 
      a.top().setValue(b.top.getValue()); 
      b.top().setValue(value); 
    } 
  } on failure { 
    a.rejuvenate(); 
    b.rejuvenate(); 
    retry; 
  } 
} 
 

Listing 4.2 – swap method using an atomic block and alternative execution paths. 



150 CHAPTER 4 — AUTOMATIC EXCEPTION HANDLING: A PROPOSAL 

 

Though, this work presents perceptible similarities with ours, the bulk of the concepts on 

our model, such as automatic exception handling, the usage of recovery blocks, and the 

complete separation between exceptional and normal code, are not mentioned on the cited 

article. Furthermore, the authors do not provide any implementation or validation of their 

ideas. Their work is limited to the proposal. 

Daniel Lanvin et al. [Lanvin2009] introduced the concept of reconstructor. A reconstructor 

is an extension of the semantics of common object-oriented languages to restore the 

previous consistent state of a system in the presence of error, avoiding some of the tasks 

that exception handling mechanisms delegate to developers. In the past, there have been 

several attempts to integrate some form of automatic object-state recovery into object-

oriented systems [Cristian1979,Campbell1983,Oki1983, Plank1996,Tikhomirova1997, 

Silva1997,Garthwaite1998,Shinnar2004,Fetzer2004]. But, a solution is yet to be adopted by 

any mainstream programming language or platform. Lavin et al. explain that the costs 

involved on incorporating this kind of mechanism into a program, in a general way, are 

just too high. Memory consumption is usually the most serious problem because this kind 

of mechanism commonly relies on some sort of checkpointing. To lower memory 

consumption, Lanvin et al. proposed a way to restrict the number of objects that should be 

recovered and use specialized reconstructor methods to control the object’s state recovery 

process. 

There are two kinds of reconstructors, implicit and explicit. Implicit reconstructors are 

automatically generated for each attribute in an object. For each change made to the value 

of an attribute, and consequently to the state of the object owning that attribute, there will 

be a reconstructor method capable of undoing the modification. Lanvin et al. limited the 

creation of implicit reconstructors to accesses made through setter methods. Explicit 

reconstructors, are different from implicit reconstructors since they have a more ambitious 

goal than just recovering the state of an object. Explicit reconstructors are designed for 

recovering the consistency of a system. These reconstructors must be designed by the 

developer in the form of a compensable method. This method is responsible for performing 

the actions that will return consistency to the system. Compensable methods are invoked 

by a specialized object which is also responsible for managing the parameters that are 

passed to the method.  
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The code in Listing 4.3 is an adaptation of the examples provided by Landin et al. in 

[Lanvin2009] and illustrates the way a programmer declares implicit and explicit 

reconstructors. The authors use @Reconstructable to indicate a code pre-processor that an 

implicit reconstructor must be implemented. The pre-processor will introduce new code to 

implement the implicit reconstructor. There is also a @Unreconstructable tag for marking 

attributes that should not be reconstructed thus avoiding unnecessary overload. The 

@Reconstructor tag is used to define a method as being the compensable method for 

another method. The relation between a method and its reconstructor is defined by the 

application of a pre-defined naming convention. The reconstructor is able to receive the 

same arguments as the method that it is reconstructing, but it is possible to pass additional 

parameters by marking variable inside the first method as @ToReconstructor. 

Lanvin et al. have to delimit the reconstruction scope. Each time something goes wrong, 

the reconstructors in the execution path are activated in the reverse order of their creation. 

If there was only one context, each time reconstruction was activated the program would 

return to its initial state. Thus, the authors associated the functionality of reconstructors 

with the scope of try/catch blocks as shown in Listing 4.4. As happens with transactions 

in our model, a context initiates at the start of a try block and is closed at the end. If 

something goes wrong, the state of the objects accessed inside the protected region is 

returned to what it was at the start of the context. Our model goes a step further: we not 

only allow the automatic rollback of the state of objects, without the need for specialized 

tags, but we also provide automatic recovery for whatever went wrong in the execution of 

 
// Declararion of an implicit reconstructor 
class ExampleClass { 
   
  @Reconstructable private int counter; 
  public void setCounter(int value) { 
    counter = value; 
  } 
 
} 
… 
 
// Declaration of an explicit reconstructor for the 
// prepareDelivary method 
public void prepareDelivery(Type1 param1, …, TypeN paramN) { 
  … 
} 
 
@Reconstructor public void __prepareDelivery( 
                            Type1 param1, …, TypeN paramN) { 
  … 
} 
 

Listing 4.3 – Implicit and Explicit reconstructors declaration. 
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the try block. In terms of recovering the consistency of a system or undoing external 

nonidempotent operations our approaches are comparable. Both require the intervention 

of the developer to write the necessary code. Lavin et al. use compensable methods for this 

while we allow the developer to write handling for each particular abnormal occurrence.  

In [Chang2009] the authors propose a methodology and self-healing technology that can 

reduce the occurrence of failures caused by common integration problems that are 

identified and documented by COTS developers. With this methodology, application 

developers inject healing connectors into their systems to automatically repair problems 

caused by misuses of COTS products. If something goes wrong in the execution of a 

method m(), when component A invokes m() on component B, an exception is raised and 

passed from B to A. Healing connectors stand between the two components and intercept 

the exception. Next, the connectors try to remove the problem using any available healing 

strategies and re-invoke the failed method. If the method executes without throwing any 

exception, the result is passed to A, if not the exception is propagated to A. Healing 

strategies are defined by COTS developers. 

The authors use Aspect Oriented Programming (AOP) to add healing connectors into 

programs. A healing connector is composed of three parts: the connector that intercepts 

exceptions propagated between components and represents the aspect; the healing strategies 

that are defined in classes and implement the healing actions or, in AOP terminology, the 

advices; and the identification of the locations where to inject the code, also known as pointcuts 

and joinpoints. Much of the information used for defining code injection points and linking 

exceptions with healing actions is defined by developers in XML configuration files. As in 

our model, this system allows attempting several healing actions in a serial way if the first 

attempts are not successful in removing the problem. But, this system does not provide a 

 
ContextHandler ctx = ContextFactory.createContext(); 
try { 
   
  … 
 
} 
catch (…) { 
  ctx.reconstruct(); 
} 
finally (…) { 
  ctx.discard(); 
} 
 

Listing 4.4 – Context management integration in try/catch blocks. 
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way to automatically restore the system state after the occurrence of an exception. 

Furthermore, healing actions can be very specialized and, as in traditional exception 

handling, require the developers’ expertise and implementation skills. 

4.4. Summary 
The exception handling model that we proposed in this chapter has a highly demanding 

set of objectives: 

1. Our main objective is to influence developers to use exception handling 

mechanisms as a error recovery tool, and not only as a debugging aid; 

2. At the same time, we want our model to be more tolerant to common exception 

handling programming bad practices – e.g., silencing exception, log-and-abort, 

code duplication, among others; 

3. We want a model that is less intrusive to the programmer. A model that lets the 

programmer write business logic code without having to include large chunks of 

exception handling code just to deal with a potential exception; 

4. The exception handling model must also contribute to increase code readability 

and comprehension. It must assure that the developer is aware of when 

exceptions can be raised and how they are handled, even if he or she did not 

write the exception handling code by himself; 

5. Finally, the model has to provide for faster development and greater software 

reliability. 

We believe that to achieve such objectives, our model as to take the greater part of the 

exception handling responsibilities away from the hands of the programmer. It must be 

able to prevent the programmer from writing as much of the exception handling code on 

an application as possible. In a sentence – “exception handling must become a platform 

issue, rather than the programmer responsibility”. 

In our model, exception handling is automatically performed by the runtime, as currently 

happens with memory allocation and garbage collectors.  

Our proposal is supported by recent studies indicating that programmers neglect 

exception handling, that the quality and quantity of the code written for dealing with 
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errors is diminishing, and that the overall resilience to errors is condemned to suffer the 

effects of programming bad practices. Exception handling mechanisms are not being 

correctly used as an error recovery tool and the overall quality of exception handling code 

is very low. The source of the problem can be linked with design issues on the models 

themselves, with development strategies and weak requirements, and with the 

programmers lack of commitment with reliability issues. We believe that by freeing the 

programmer from writing error handling code, whenever viable, applications will be more 

robust and contain less latent bugs. Also, programmer productivity will be increased since 

much less code will have to be written, being that code non-trivial. 

To provide developers with an automatic exception handling model, we have combined 

concepts from traditional exception handling mechanisms, backward error recovery 

systems (recovery blocks), and software transactional memory. Although, other techniques 

could be used to implement this model (e.g., AOP), our options provide automatic 

exception handling in a way that is completely transparent for the programmer. 

The existence of a runtime level repository of recovery actions allows extensive 

reutilization of exception handling code. Being this code potentially heavily shared and 

used across applications means that more hidden bugs will be found and corrected, thus 

increasing the overall robustness of error handling and of the applications that rely on it. 

This approach also diminishes the mingling of business logic code and error handling 

code. The programmer, in general, does not have to think about error handling while 

thinking and concentrating on writing business code. 

  



 

Implementation and 
Validation 

  

This chapter presents a description of the implementation of the framework that supports 

the proposed exception model along with its evaluation.  

We discuss the evaluation process and its results in order to assess the viability of 

automatically handling exceptions. 

Chapter 

5 
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5.1. Introduction 
It is impossible to advocate the qualities of a theoretical model without creating a real-

world-usable implementation and running it through a set of well designed tests. 

Furthermore, when that model is about performing exception handling, thorough testing 

becomes even more important. Nonetheless, we are not recklessly assuming that only 

testing is, by any means, sufficient or complete. Our implementation of the Automatic 

Exception Handling (AEH) model, the tools that we have developed, and the tests that we 

performed can only take us so far as defending the model’s viability and showing its main 

strengths/weaknesses. We are aware that the true value of the model will only be fully 

assessed when it is used “on the field”, by thousands of developers, on projects with high 

reliability requirements. Our experiences, here discussed, are intended to show to the 

programming community at large that this model can represent a step forward for the 

development of more reliable software. 

Our main objectives in the chapter are to: 

1. Discuss a design for implementing the automatic exception handling model; 

2. Assess the effectiveness of the model. 

5.2. Framework implementation 
The model described in the previous chapter was implemented for the Java 6 platform. It 

consists in three major components: 

1. A modified Java compiler which makes catch blocks non-compulsory. The 

compiler is responsible for enforcing the semantics of the new exception handling 

mechanism are followed (e.g., non-transactional classes are not present in try 

blocks with no catch; exceptions are correctly re-raised; etc.). We used the open-

source Jikes compiler [IBM2008], which was modified accordingly. 

2. A custom-made Software Transactional Memory System implemented as a 

library. Although it would be possible to use other available STM libraries for 

Java, when we started the project there was a definite lack of such 

implementations. That led us to rollout our own system. It is a simple STM 

implementation based on object shadowing and supporting closed nested 
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transactions. It is aimed at supporting our proposed exception handling 

mechanism and not concurrency. Admittedly, in the future, we may replace it by 

a more mainstream STM library. 

3. A Java system class loader which performs bytecode instrumentation at load 

time. That instrumentation supports the mechanism for proper invocation of the 

correct recovery blocks for each transactional try block, according to the 

application deployment configuration file, and the insertion of the appropriate 

code so that the transactional system is correctly invoked. It is also responsible for 

making sure that the correct application state is available for the recovery blocks 

so that they can, if needed, internally reconfigure the application. 

Additionally, we have also implemented a small application that helps the programmer, or 

the person who deploys the application, to write the exception handling configuration file. 

It allows specifying for each exception type what recovery blocks should be executed and 

in what order. It also supports configuring specific recovery blocks to be executed by 

specific try locations. This application also allows specifying which state should be passed 

to each recovery block so that, if necessary, recovery blocks can internally reconfigure the 

application. Using this tool is not mandatory for our model since its main purpose is to 

free the programmer, as much as possible, from exception handling configuration-related 

tasks. Nevertheless, in practice, it is quite useful for deploying applications. This 

application will be described with greater detail later on this chapter but, for now, it is 

important to mention that it was implemented as an Eclipse plug-in. It identifies the blocks 

of instructions that are prone to raise exceptions and allows the developer to associate 

automatic recovery actions with the offending code, while ensuring that the corresponding 

deployment configuration file is updated on-the-fly. 

The architecture of our system is illustrated in Figure 5.1. We have modified the Sun Java 6 

JVM in order to implement our AEH model. In the figure, it is possible to observe the 

building blocks of the system organized accordingly to their run-time relationships. 

The Java 6 JVM provides an ideal virtual run-time environment for applications using the 

AEH model. The JVM “sits” over the existent operating systems and uses a just-in-time 

compilation technique to allow the execution of the bytecode on the .class files of a 

program. In order to implement the AEH model, it was necessary to modify some of the 

system’s classes and libraries, providing new transactional implementations (Transactional 
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Java Libraries.)  These libraries still work with the remaining default system libraries (left 

unmodified.) 

Additionally, two new software packages were incorporated into the JVM: the STM library; 

and the Recovery library. The first package implements the types, interfaces and 

functionality necessary for creating the transaction environment for program execution, 

while the second implements the system recovery actions, and the methods for handler 

lookup and execution. 

Figure 5.2 illustrates the process of loading and preparing a class for execution using the 

AEH model. Note that the applications do not know anything about transactions or 

recovery actions. The only modification introduced into the language and enforced by the 

modified compiler is possibility to use try blocks without catch or finally handlers. 

Thus, it is necessary to modify or introduce new code into the programs before execution 

in order to allow them to benefit from the AEH implementation. The Class Loader 

mechanism of the JVM allows us to perform such modifications on programs by 

intercepting the loading of new classes into the JVM, and allowing the modification of 

their code before they get executed for the first time. The AEH Class Loader has the tasks of: 

parsing the loading classes bytecode looking for pre-defined protected blocks of code; 

inserting the code that allows transactional execution of the classes’ methods; inserting the 

code that allows the adequate binding of recovery actions to each exception occurrence; 

and inserting the code to execute the bound recovery actions when necessary. Basically, 

the AEH Class Loader is responsible for interconnecting the functionality provided by the 

STM library, the Recovery library, and the Transactional Java Library, with the code of the 

running programs. This functionality is provided by two adapters: the 

TransactionClassAdapter and the RBClassAdapter. The TransactionClassAdapter 

modifies the classes being loaded in order to incorporate the STM-related code and the 

RBClassAdapter modifies classes to append the recovery functionality. Both adapters use 

bytecode instrumentation to alter programs at load-time.  Since we cannot intercept the 

 

Figure 5.1 – AEH system architecture. 
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loading of system classes, we needed to add some system specific classes by hand 

(Transactional Java Libraries package.) 

The principles guiding the integration of our model into object-oriented software, using 

the AEH Class Loader, are similar to the basic concepts found on Aspect Oriented 

Programming methodologies. I.e., the functionality provided by our system is integrated 

into the targeted software in a crosscutting manner. On the other hand, our approach does 

not require that software developers must be aware of AOP concepts and language 

extensions since it is completely transparent and well integrated with object-oriented 

models. 

 

Figure 5.2 – Loading and running applications using the AEH. 
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public class Transaction { 
  // transaction status: committed, aborted, running  
  public int status; 
 
  // thread id 
  public long thread_id; 
 
  // sequential transaction id 
  public long trans_id; 
 
  // reference to parent transaction in nested transactions 
  public Transaction parent_trans = null; 
 
  // local time at start 
  public long start_time; 
 
  // local time at end 
  public long end_time; 
 
  // list of objects touched by write operations in the 
  // transaction 
  public Set<ITransObject> wObjects; 
 
  // list  of objects touched by read operations in the 
  // transaction 
  public Set<ITransObject> rObjects; 
 
  // Object to use for synchronization operations between 
  // concurrent transactions when acessing the transactional 
  // environment state 
  public static Object trans_operations_lock = new Object(); 
 
  // List of transactions 
  public static LinkedList<Transaction> transactionList =  
    new LinkedList<Transaction>(); 
 
 
 
  // Contructor for a new tansaction 
  private Transaction() ... 
 
  // Singleton method for creating and starting a new 
  // transaction 
  public static Transaction startTransaction() ... 
 
  // The commit operation 
  public boolean commit() throws Exception ... 
 
  // The abort/rollback operation 
  public void abort() ... 
 
  // Remove a transaction from the list 
  public void removeTransaction(Transaction t) ... 
   
  // Get a sequential number representing time evolution 
  public static long get_time() ... 
 
} 
 

Listing 5.1 – The Transaction class. 
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5.2.1. The STM Library 
At the core of the STM library there is the Transaction class (Listing 5.1). This class 

implements the methods for creating, committing, and aborting a transaction. The 

transactional system contains a list of the transactions.  

Transaction has a number of key operations and data structures. In particular, it holds a 

read-set (rObjects) and write-set (wObjects) of objects that have either been read or 

touched during the transaction. When a new transaction is initiated, the system registers 

its parent thread identification, provides a new transaction identifier (sequential number), 

records the transaction start_time (sequential number representing time evolution), sets 

the transaction status to “running”, and adds the new Transaction object to the list of 

transactions. This list contains the transactions which are in execution, and which have 

been commit or aborted. Each time a transaction commits or aborts, the system performs a 

clean-up of the list eliminating terminated transactions. Note that not all objects can be 

removed from the list upon termination. In some situations, information about terminated 

transactions might still be needed to decide whether a running transaction will be able to 

commit or not. 

Each transactional class in our system has to implement the interface shown on Listing 5.3. 

The methods in the interface are created on each class automatically using bytecode 

instrumentation techniques (see the AEH Class Loader section). These methods are 

essential for controlling object versions for each transaction. Since changes made inside the 

transactions are not visible to other concurrent transactions, it is necessary to maintain a 

list of object versions for each time a nested transaction is started. Objects on the system 

are organized on a double linked list. At the head of the list, we have the original object 

(the first instance to be created) and the following objects are copies made inside 

successive nested transactions. The first time a transaction touches an object with the 

intention of modifying it, the system makes a copy (the clone) and adds it to the instances 

list for that object. The copy can be based on the original object or on the active version on 

the parent transaction. When commit is performed, the system locates the original instance 

of the clone object being committed on the ending transaction and moves the changes of 

the clone onto the original. 
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A commit() method (Listing 5.2) performs several verifications before allowing the 

changes made on ending transaction to be persisted. This method starts by setting the 

current end_time for the transaction (sequential number representing time evolution). 

Afterwards, the execution enters a mutual exclusive section of the code where it checks if 

there are any conflicting exceptions that can prevent the transaction from committing. 

Basically, if the read-set of a transaction intercepts with the write-set of another in the time 

intervals defined by the transaction start_time and end_time values. 

public boolean commit() throws Exception 
{ 
  boolean toCommit = true; 
  // if the transaction is not running return 
  if (this.status != RUNNING) 
    return this.status == 0 ? true : false; 
  this.end_time = Transaction.get_time(); 
  // access transaction environment constructs in mutual 
  // exclusion 
  synchronized (Transaction.trans_operations_lock) { 
    // If there are no conflits the transaction can commit 
    if ((toCommit==canCommit())) { 
   doFinalCommitTasks(); 
    }  
    // else abort the transaction 
    else { 
   abort(); 
    } 
  } 
  return toCommit; 
} 

Listing 5.2 – The commit() method. 

public interface ITransObject { 
  public ITransObject getNextTransObject(); 
  public ITransObject getPreviousTransObject(); 
  public Transaction getOwnerTrans(); 
  public void copy(Object destiny); 
  public void updatePrevious(); 
  public void updateNext(); 
} 

Listing 5.3 – The ITransObject interface. 
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The method canCommit(), shown on Listing 5.4, is responsible for checking for possible 

conflicts while performing commit(). If this method returns false, the transaction is 

aborted, otherwise the changes on each object that was modified during the transaction are 

persisted (by execution of doFinalCommitTasks()). Each time this method executes, it 

verifies if there was any other transaction being committed after the current transaction 

was initiated and, if that was the case, ensures that there are no conflicts. This happens 

private boolean canCommit() { 
  boolean toCommit = true; 
  // verify if a conflicting transaction exists 
  for (Transaction t : Transaction.transactionList) { 
    // if another transaction committed, after this one had 
    // already started, on a different thread 
    // check for conflicts 
    if (t.trans_id != this.trans_id 
 && t.status == COMMITTED 
 && t.end_time > this.start_time 
 && t.thread_id != this.thread_id) { 
      for (ITransObject o1 : t.wObjects) { 
        for (ITransObject o2 : this.rObjects) 
          if (o1.id == o2.id) { 
            // if this transaction reads from an object that  
            // was modified on the previously committed  
            // transaction it should not be allowed to commit 
            // because commit occurred after the transaction  
            //started and the new value was not considered 
            toCommit = false; 
            break; 
          } 
        for (ITransObject o3 : this.wObjects) 
          if (o1.id == o3.id) { 
            // the same as above but for write operations 
            toCommit = false; 
            break; 
          } 
        if (!toCommit) 
          break; 
      } 
      for (ITransObject o1 : t.rObjects) { 
        for (ITransObject o2 : this.wObjects) 
          if (o1.id == o2.id) { 
            // if this transaction modified an object 
            // that was read on the committed transaction 
            // it should not commit because the new value 
            // was not accessible for the previously committed 
            // transaction 
            toCommit = false; 
            break; 
          } 
        if (!toCommit) 
          break; 
      } 
    } 
  } 
  return toCommit;  
} 

Listing 5.4 – The canCommit() method. 
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because changes made inside the transactions are only visible to other transactions after 

commit. The canCommit() method will only return true if objects modified on a 

transaction that was committed after the current one had already been initiated were not 

accessed (read or write) on the current transaction. 

The doFinalCommitTasks() method (Listing 5.5) uses the information (and methods) on 

each transactional object to locate the original instance of the clone object being committed 

on the ending transaction and to make persistent the changes of the clone onto the original. 

5.2.2. The AEH Class Loader 
A custom class loader is used to intercept the loading of classes into the runtime system 

(JVM). By doing so, we are able to instrument the original code of the classes and provide 

the JVM with new transaction-enabled implementations of those classes.  

private void doFinalCommitTasks() { 
  ITransObject original = null; 
  ITransObject clone = null; 
  // For each object modified inside the transaction 
  // Make the changes persistent on the original instance 
  for (ITransObject o : this.wObjects) { 
    if (this.parent_trans != null) { 
      original = o; 
      while (true) { 
        original = original.getNextTransObject(); 
        if (original == null) 
          break; 
        if (original.getOwnerTrans().trans_id == 
                            this.parent_trans.trans_id) 
          break; 
      } 
    } 
    if (original == null)  
      original = o; 
    clone = o; 
    while (true) 
    { 
      clone = clone.getNextTransObject(); 
      if (clone == null) 
        throw new Exception("Clone not found"); 
      if (clone.getOwnerTrans()trans_id == this.trans_id) 
        break; 
    } 
    clone.copy(original); 
    clone.updatePrevious(); 
    if (clone.getNextTransObject() != null) 
      clone.updateNext(); 
    clone = null; 
    original = null; 
  } 
  this.status = COMMITTED; 
} 

Listing 5.5 – The doFinalCommitTasks() method. 
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To perform the instrumentation of metadata and the bytecode on the .class files, we used 

the ASM library [Bruneton2002]. Although, there are other options in terms of Java 

bytecode instrumentation libraries (e.g., [Dahm1999,Chiba2000]), ASM, due to its design 

and operating model, provides excellent performance and a low memory footprint, being 

these qualities essential to our system. 

We used the ASM library to create two class adapters, which are called by the 

AEHClassLoader to perform the actual instrumentations: 

1. TransactionClassAdapter – makes the loading classes transaction-aware; 

2. RBClassAdapter – inserts the code to invoke the recovery actions when 

exceptions are raised inside try blocks. 

The Transactions Class Adapter 
The TransactionClassAdapter is responsible, among other things, to assure that the 

loaded classes implement the ITransObject interface correctly. The 

TransactionsClassAdpater class extends the org.objectweb.asm.ClassAdapter class 

and implements the org.objectweb.asm.Opcodes interface. The first reference is the base 

class for all adapters implemented for the ASM, and the second an interface used for 

allowing the access to the bytecode instrumentation functionality inside ASM. The 

complete list of the methods available on this class is shown on Listing 5.6. 

The ASM library implements the Visitor design pattern [Gamma1995]. This allows our 

modifications to propagate through an application’s code in a systematic way. The visitor 

pattern provides the means to instrument (visit) each component of a program (classes, 

fields, methods, and constructors) in a different way. 

When a class is first loaded by the class loader, ASM adds a new interface to it 

(ITransObject). This interface allows the runtime system to duplicate objects as needed by 

the transactional system. It also allows the transactional system to navigate through the list 

of shadow copies created when a new transaction is started, committed or aborted, adding, 

removing or updating the corresponding copies as needed. Finally, this interface allows 

the runtime system to gather context information about parent transactions when nested 

transactions are taking place. 
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A TransactionMethodAdapter is used for modifying the bytecode of each method on the 

loaded classes. Just adding mechanisms for creating and updating objects by using code 

public class TransactionClassAdapter extends ClassAdapter 
implements Opcodes { 
 
  // The constructor 
  public TransactionClassAdapter(ClassVisitor cv, ClassNode 
cn); 
 
  /* Methods used by the ASM ClassAdapter to implement the  
   * Visitor design pattern and apply transformations to 
   * the applications' code 
   */ 
 
  // The class visitor 
  public void visit(int version, int access, String name,  
    String signature, String superName, String[] interfaces); 
 
  // The method visitor 
  public MethodVisitor visitMethod(int access, String name,  
    String desc, String signature, String[] exceptions); 
 
  // The fields visitor 
  public FieldVisitor visitField(int access, String name,  
    String desc, String signature, Object value); 
 
  // The instrumentation finisher 
  public void visitEnd(); 
 
 
 
  /* Private methods used to implement the new components 
   * into the existing classes 
   */ 
  // If the class has static fields, we build a class wraper  
  // for dealing with them 
   private void buildStaticClass(); 
 
  // Add the fields and the fields’ acessor methods required  
  // by the transactional functionality and the  
  // getOwnerTrans() method 
  private void addFields(); 
 
  // Add the getNextTransObject() and getPreviousTransObject() 
  private void addGettersAndSetters(); 
 
  // Add the copy() method, used by the transactional system    
  // to make the values of the clone objects permanent on  
  // commit 
  private void addCopyMethod(); 
 
  // Add the updateNext() and updatePrevious() methods  
  private void addTransObjectUpdaters(); 
   
  // Add cloning method 
  private void  addCloneMethod(); 
 
} 

Listing 5.6 – The TransactionClassAdapter() methods. 
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instrumentation is not enough. It is essential to ensure that the code of the modified classes 

uses the fields and variables of the correct objects within a transaction.  This means that the 

bytecode of the classes has to be modified or it would access the original object references. 

Thus, the following modifications are made: 

1. Replace the PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC instructions by calls to 

new field access methods; 

2. Replace the ILOAD, FLOAD, ALOAD, LLOAD, DLOAD, ISTORE, FSTORE, ASTORE, LSTORE, 

DSTORE, and RET instructions by call to the local variables access methods; 

3. Locate the retry instructions (actually, for simplicity we opted for using a 

method call instead of special instruction) on the code and replace them by jumps 

to beginning of the try code block to be retried [Cabral2009]; 

4. Insert the calls to startTransaction(), commit(), and abort() methods at start 

of try blocks, at the start of finally blocks (in some cases it is necessary to 

append a new finally block where one does not exists), and exception handlers 

respectively. 

The Recovery Actions Adapter 
The RBClassAdapter is instantiated (for each class being loaded) only after the 

TransactionClassAdapter finishes its execution. This adapter is responsible for including 

the automatic recovery code into the program. Basically, the adapter uses the 

RBMethodAdpater to modify the target bytecode for each method in a class. 

AEHClassLoader, and RBMethodAdapter in particular, use the information on 

configuration files to control the process of inserting the recovery code into applications at 

load-time. The adapter uses that knowledge base to know which recovery actions are to be 

associated with a particular exception type, class, method or protected block. The adapter 

detects any transactional try blocks present in the code and, with this information and the 

configuration data, either inserts the functionality of the handler directly on the target code 

if the code is small or inserts a selection mechanism controlling the invocation of the 

adequate recovery methods.  These calls will require establishing a relation between the 

failing component’s local variables and the recovery methods’ parameters.  
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In our system, we defined recovery actions as methods, belonging to special classes. These 

classes are part of the runtime platform. Listing 5.7 shows an example of one of these 

classes. This particular class was used for testing the platform, as we will describe on the 

next section. In the virtual machine, default recovery actions can be defined inside sister 

import javax.jms.*; 
 
public class JMSExceptionRecovery { 
 
  public static void recovery_01() { 
    retry;   
  } 
   
  public static void recovery_02() { 
    Thread.sleep(1000); 
    retry; 
  } 
   
  public static void recovery_03( 
    ConnectionFactory connectionFactory,  
    Connection connection, Session session, Queue queue,  
    String queueName) throw JMSException  
  { 
    connectionFactory =  
      SampleUtilities.getConnectionFactory(); 
    connection = connectionFactory.createConnection(); 
    session = connection.createSession(false,  
      Session.AUTO_ACKNOWLEDGE); 
    queue = SampleUtilities.getQueue(queueName, session); 
    retry; 
  } 
   
  public static void recovery_04(ConnectionFactory  
    connectionFactory,  
    Connection connection, Session session, Queue queue)  
    throws JMSExcpetion  
  { 
    Properties properties = new Properties(); 
    properties.load(new  
      FileInputStream("execution.properties")); 
    connectionFactory =  
      SampleUtilities.getConnectionFactory(); 
    connection = connectionFactory.createConnection(); 
    session = connection.createSession(false,  
      Session.AUTO_ACKNOWLEDGE); 
    queue = SampleUtilities.getQueue( 
      properties.getProperty("queueNameAlternative"),  
      session); 
    retry; 
  } 
   
  public static void recovery_05() { 
    System.out.println("The system was not able to recover  
      from the exception automatically." + 
      "\nDo you wish to (T)ry again, (R)ethrow the exception,  
      (A)bort the program execution?"); 
    ...   
  } 
} 

Listing 5.7 – Recovery actions for the JMSException class. 
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classes of the existent exception classes. Meaning that, for each exception type, a set of 

recovery actions can be defined inside a new class. To differentiate these sister classes from 

normal classes, they must be marked. And, although we can find many different forms of 

inserting a distinguishing factor in classes, such as Java Annotations, .NET Custom 

Attributes, or simple object-oriented inheritance, we believe that the most traditional 

approach of making these classes implement a basic interface is the most benefic. Not only 

interfaces are useful to define the core functionality that these classes must offer, they are 

also an excellent way for creating compile-time checks and verifications on the safety and 

correctness of code. 

As the class name suggests, this recovery class is generally associated (at platform level) 

with the JMSException type. Nevertheless, other bindings can be set. The system 

configuration file, formatted as an XML file, can be freely modified and adapted to the 

requirements of each application. It is also possible to provide new configuration files for 

different programs. 

Listing 5.8 shows an extract of a configuration file used for testing purposes. In this 

example, we are binding the JMSExceptionRecovery class to the occurrences of the 

JMSException on the main() method of SenderToQueue class.  

Another important aspect that can emerge from the example is the overall complexity of 

configuration files, and how that complexity can become overwhelming for larger 

<?xml version=”1.0” encoding=”UTF-8”?> 
<recovery_bindings> 
  … 
  <entry exception=”JMSException”  
         recovery_class=”JMSExceptionRecovery”> 
    <packages /> 
    <classes /> 
    <methods> 
      <method> 
        <className>SenderToQueue</className> 
        <methodName>main</methodName> 
        <desc>([Ljava/lang/String;)V</desc> 
        <recovery_method name=”recovery_03”> 
          <parameter_var name=”connection”> 
            connection 
          </parameter_var> 
          … 
        </recovery_method> 
        … 
      </method> 
    </methods> 
  </entry> 
</recovery_bindings > 

Listing 5.8 – Configuration file example. 
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programs. For instance, setting up the binding between the method’s local variables/fields 

and the recovery methods’ parameters is relatively cumbersome. Fortunately, many of the 

elements on the file can be left blank most times, because the system is able to 

automatically generate most of that information. On more complex situations, the 

programmer can be aided by visual tools that make the generation of configuration file 

semi-automatic. 

Consider, for example, that when using an IDE, such as Eclipse, the editor alerts the 

programmer of any unhandled exceptions, and gives him different options on how to deal 

with those exceptions (Figure 5.3). In the figure, our Eclipse plug-in is alerting the 

programmer for an unhandled JMSException on the code and proposes four different 

ways of dealing with the exception. The first two options are inherited from the traditional 

Java exception handling model, the last two are new: 

1. Setup recovery action – This option will automatically surround the code line with 

a transactional try block and open a configuration window that will help the 

programmer setup the recovery action, methods and parameters for dealing with 

the exception. We have developed the application on Figure 5.4 to help us build 

configuration files. 

 

Figure 5.3 – Eclipse plug-in. 



 SECTION 5.3 — VALIDATION AND TESTING 171 

 

2. Surround with transactional try block - This option will automatically surround the 

code line with a transactional try block and let all configuration to be performed 

automatically by the run-time system. If the system is unable to setup the 

handling actions alone, it will alert the developer for that fact during compilation 

or later execution. 

5.3. Validation and Testing 
To evaluate the effectiveness of the approach, we used 11 different programs. These 

consisted in the applications that come with the Sun’s Community Version of its Java 

System Message Queue (MQ) framework on the GlassFish framework [Sun2008], 

implementing the JMS standard. We have chosen this system because it is a widely used 

platform and, at the same time, the test applications are not so complex, allowing focused 

experiments to be made.  

Since the main goal of the proposed approach is to increase application resilience and, at 

the same time, decrease the amount of exception handling code written by the 

programmer (whenever possible). Four vectors of evaluation were used: 

1. Amount of source code written by the programmer; 

 

Figure 5.4 – Configuration interface. 
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2. Effect on the application’s resilience; 

3. Performance penalty imposed by the exception runtime; 

4. Viability of providing general recovery actions. 

5.3.1. Source Code 
Using a parser (the same we used for parsing Java code on Chapter 3), we analyzed all the 

exception handling code both from the JMS server and the 11 applications. Exception 

handling code corresponds to 10% of the overall code, which consists in 21.666 lines of 

code. We also verified that in many cases the exception handling code inside the JMS 

server transforms raised exceptions into a generic exception type: JMSException. This 

exception is then re-thrown. 

Overall to the test applications and server, 2.170 lines correspond to code that handle 

JMSException, accounting for 1% of all code, being the most common exception used. 

Being the JMSException so central, it was a prime candidate for being handled 

automatically.  

We analyzed the documentation associated to the JMSException, its semantics, and how it 

is actually being used in the code base. Twenty five causes were identified as a reason for 

such exception to occur. These are shown on Table 5.1. 

Many of these problems can actually be solved (or be tried to solve) using a small set of 

benign recovery actions: 

1. Immediately re-execute the operation; 

2. Pause for a predetermined time and re-execute again; 

3. Reinitialize the connection to the JMS broker and re-execute; 

4. Modify the connection properties to use a different broker, if configured, and re-

execute; 

5. Notify the user of the problem (detail on the exception cause), allowing him to 

manually correct the problem before re-executing. 

If all actions fail, the exception is simply re-thrown.  
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Table 5.1 – Causes for JMSException to be raised. 

JMSException’s causes 

Error validating the host:port string format 
Error reading properties 
Invalid object class when wrapping a standard JMS 
  ConnectionFactory administered object 
Invalid JMSSelector 
Null client id in connection object 
Invalid client id 
Invalid client id in Connection 
Invalid connection on the current session 
Invalid URL string in connection object 
Connection is closed 
Connection object is null 
Connection not started 
There is an active consumer on destination when 
doing delete 
There is an active consumer on destination when 
doing unsubscribe 
Unsupported operations 
Invalid Queue object 
Invalid Topic object 
Invalid Queue or topic name 
Invalid message status (properties) 
Invalid delivery mode 
Invalid priority 
Invalid time to live 
Decompression error 
Invalid acknowledge mode 

 

The 11 test applications were re-written using the proposed exception model. This 

consisted mostly in removing the catch blocks that deal with JMSException, becoming 

that handling automatic. It allowed us to remove 143 exception handling blocks, 

representing more than 30% of all exception handling source code. This is significant since 

it shows that, when it is possible to use automatic exception handling, the programmer 

will be able to write much more concise code1. 

                                                                  
1 Note that if the programmer wants to manually treat an exception, that is always possible since 
catch blocks take precedence over automatic handling. 
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5.3.2. Resilience 
In the following subsections we will describe the usage of the Automatic Exception 

Handling model on two distinct scenarios and discuss its influence on the overall systems 

resilience to errors. 

Use case: Java Messaging System 
For testing the robustness of the code written using the automatic exception handling 

model relatively to the original code, we built a fault injector that systematically raises 

exceptions inside of try blocks, monitoring the subsequent behavior of the applications. 

The rationale is simple: if there is a try block for handing an exception, if the application is 

robust, then when such exception occurs the application should behave in a sensible way. 

It should not produce an incorrect result nor crash. 

Figure 5.5 illustrates the overall functionality of the exception injection software and the 

testing framework. The injector software creates a list of all possible locations in the target 

programs where an exception can be raised. For each exception and location identified on 

 

Figure 5.5 – Testing framework. 
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this list, the injector creates a new version of the target software where the exception is 

raised at the desired location. This faulting version is then executed on a normal JVM and 

on a JVM implementing the AEH mechanism. The output of each execution is then 

registered for posterior analysis. 

In our system, after raising an exception, its effect on the program is observed from the 

injector software, which records the outcome in a database. The effects are classified in one 

of three different categories:  

1. Abort: the application aborts its execution; 

2. Successful: the application does not abort and its output is the same as an 

execution with no errors; 

3. Incorrect: the application does not abort but its output is different from an 

execution with no errors. 

Table 5.2 shows the overall results of injecting 216 JMSException across the applications. 

Table 5.2 – Exception Injection Results (all apps.) 

 # Exceptions Successful Abort Incorrect 

Unmodified 
Applications 

100% 
(216) 

20% 
(44) 

79% 
(171) 

1% 
(1) 

Automatic 
Exception 
Handling 

100% 
(216) 

100% 
(216) 

0% 
(0) 

0% 
(0) 

 

As it can be seen, on the unmodified applications, 20% of the raised exceptions did not 

produce any different observable result compared with a normal execution (“golden run”). 

Note that this does not mean that the applications did what they should. It only means that 

their output was identical. 79% of the injected exceptions led to the applications crashing. 

In 1% of the cases, the output of the applications was different from the one that would be 

obtained on a non-erroneous execution. When we performed the same experiments using 

automatic exception handling, in all cases, the simple five recovery mechanisms that were 

implemented lead to “Successful” executions. Again, this does not mean that the internal 

state of the applications was not corrupted; it only means that no external effects were 

seen. Even so, the results are somewhat impressive: by using simple recovery strategies 

there are less 79% application crashes. And, at the same time, 699 lines of code are 
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eliminated, corresponding to 143 handlers. This is code that the programmer will not have 

to write. With less code we are achieving higher resilience. Of course, the original 

programmers could have embedded the five recovery blocks that we designed in the 

original catch handlers. But, the facts are: a) they did not; b) the overall code would have 

been much more complicated and long. These finding are in line with the results presented 

in [Cabral2007], where 32 highly used applications were examined, and with [Shah2008a].  

As we mentioned before, the fact that applications did not produce different results does 

not mean that they were doing what they should. This is especially true on our set of 

applications since they mostly send and receive JMS messages. For investigating this issue, 

three applications were selected where it was easy to monitor if sent messages actually 

reached the destination and their contents were uncorrupted. Again, exceptions were 

raised, and both the execution of the source application and the contents of messages at the 

receiving application were examined. The effects of the exceptions were classified in the 

following categories: 

1. Abort – Correct Delivery: the application aborts but the message it tried to send 

reached its destination correctly;  

2. Abort – Incorrect Delivery:  the application aborts and the message it tried to 

send either did not reach its destination or its contents were corrupted; 

3. Successful: the application does not abort and the message reached the 

destination correctly. 

Notice that the “Incorrect” category does not exist in this case since the sending 

applications do not produce output. The next table (Table 5.3) summarizes the results. 

Table 5.3 – Results with content checking (3 apps.) 

 # Exceptions Successful Abort – 
Correct 

Delivery 

Abort – 
Incorrect 
Delivery 

Unmodified 
Applications 

100% 
(25) 

12% 
(3) 

24% 
(6) 

64% 
(16) 

Automatic 
Exception 
Handling 

100% 
(25) 

100% 
(25) 

0% 
(0) 

0% 
(0) 
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The most interesting result from Table 5.3 is that in 24% of the cases, although the 

applications aborted, they were able to send their messages correctly, which was their 

primary goal. This suggests that with little effort these applications could be much more 

resilient, which is actually verified by looking at the results of the automatic exception 

handling. 

Overall, although our experiments were limited in scope, the results appear to indicate that 

the automatically exception handling approach can have a dramatic impact on the 

robustness of applications.  

Performance Analysis 

Our approach to exception handling has some performance overhead. Since each block is 

transactional, in our implementation, it implies to create a shadow copy of each object that 

is updated inside a try block. Even so, the impact is not as high as one might expect. The 

reasons are: 1) try blocks are normally relatively short and are not deeply nested. This 

means that the number of objects that are touched inside of a block is typically small. 2) 

try blocks are not normally re-executed. This means that when a block commits, most of 

the work consists in a small number of checks and on substituting the original object 

references by the updated copies. Comparing with “normal” STM systems, our case is 

similar to the situation where the code executes without contention from other threads and 

commits almost every time. This means it can be heavily optimized. 

For assessing performance we used the test applications which could be run in a loop (6 of 

the applications), sending/receiving or processing messages. Each application was run for 

100 loops. As it can be seen on the graph (Figure 5.6), the overall performance impact is 

negligible. 

Use case: Hipergate server 
Despite the promising results, we decided to evaluate the reliability of our model in more 

realistic scenario. For doing so, we selected an application that uses a database server for 

persisting data - the Hipergate CRM Groupware tool [Knowgate2006] and prepared a test 

where the connection to the database was lost, during execution, in order to observe the 

system behavior while using automatic recovery. 
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Hipergate is a CRM dynamic web application that runs on top of the Tomcat 

[Apache2009a] server and uses a MySQL [Sun2009] database to persist data. After 

installing, configuring, and inserting the initial data into the application, we used Jakarta 

JMeter [Apache2009d] to simulate a workload of 10 accesses per second to Hipergate 

during a 10 minutes run with a 30 second timeout for each request. What this means is that 

a user would never wait more than 30 seconds for a web page, independently of the cause 

of the delay. Furthermore, to evaluate the system recovery ability using automatic 

exception handling, we planned to shutdown the database for 30 seconds after the first 5 

minutes of the test. On this scenario, the Mean-Time-Between-Failures (MTBF) is 9,5 

minutes and the Mean-Time-To-Repair (MTTR) is 0,5 minutes. Thus the system availability 

is 95%. This is shown in Figure 5.7. In broader terms, if we do not use automatic exception 

handling, the system will not be able to respond to the caller with a valid page (code 200 in 

the HTML protocol) 5% of time, i.e., in 30 seconds. 

We prepared our application to automatically handle the SQLException type. For testing 

purposes we consider that the only cause for the occurrence of this exception is the use of a 

lost or previously closed database connection. The system recovery code reacts to the 

exception by executing 3 retry attempts separated by 5 seconds each. Each time the 

application retries it also attempts to open a valid database connection. This means that if 

the connection is re-established during this 15 seconds interval, the application will be able 

to respond with a valid result. If not, the exception is propagated in a normal way. Going 

back to the scenario previously described, and looking at the 30 seconds interval when the 

 

Figure 5.6 – Analysis of the executions times. 
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database is down, we can expect that the requests made during the first 15 seconds will not 

be fulfilled but the ones done on the second half will be able to obtain a valid response. 

This would represent 2,5% less errors and an error rate of 2,5%. The system availability 

should increase to 97,5%. To validate our predictions we used two separate machines, a 

server, where Hipergate, Tomcat 6 and a MySQL were running, and a client machine 

where we executed the JMeter workload and saved the results. Figure 5.7 illustrates the 

experience. We performed 2 types of runs always using the workload configuration but 

changed the server settings: (a) in the first run we did not shutdown the database and 

obtained a 0% error rate; (b) on the second run we shut down the database and obtained an 

error rate of 2,62% (Figure 5.8).  The value of the standard deviation shown on Figure 5.8 is 

very high because: a) when the database is running, response times are usually very quick 

(less than 1 second); but when the database is down, b) responses will timeout after 30 

seconds; or c) require up to 15 seconds to be fulfilled. 

These tests have shown that the system availability increased up to 97,38% when using 

automatic exception handling. Nonetheless, as it can be observed in Table 5.4, the error 

rate is slightly superior to the predicted value. There are mainly two reasons that can 

contribute this outcome: (i) the throughput is not exactly 10 requests/second but 9,9 

 

Figure 5.7 – Description of the experience. 
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requests/second; and, (ii) we cannot control in detail the down time of the database, we 

can only guarantee that between the issuing of the stop and start commands there is a 30 

seconds interval, we do not know how much time the database takes to start and stop its 

service (our experiments show that this interval varies between 1 and 3 seconds.)  

Table 5.4 – System availability, MTTR, MTBF and error rate. 

Description System Availability MTTR MTBF Error Rate 

System run without 
interruption of the DB 
service 

100% 0.00 min N/A 0.00% 

System run 
experiencing the 
interruption of the DB 
service 

95% 0.50 min 9.50 min 5.00% 

System run using 
automatic exception 
handling while 
experiencing the 
interruption of the DB 
service 

97.38% 0.26 min 9.74 min 2.62% 

 

It is perceptible that our model promotes an effective increase on the overall reliability of 

the targeted system with a very simple recovery strategy. If we consider that this increase 

is obtained with the same amount of source code or even less, the drop of nearly 50% on 

the error rate is a remarkable result. 

5.3.3. Recovery Actions 
Recovery actions are a core component of our model. Thus, it is essential to measure to 

what extent will system designers be able to ship sets of automatic and benign recovery 

 

Figure 5.8 – JMeter workload run summary. 
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actions with their products. Though, only real world experience will give us an 

undoubtedly perspective on the subject, the model evaluation would not be complete 

without tackling this issue. 

Our experiments, while simple are also very promising. We decided to select a large 

number of the Java’s platform system exceptions and provide automatic handlers for them. 

By doing so, we intended to show that it is possible to define automatic recovery actions 

for a large number of exception types. Secondly, we tried to assess the impact that those 

automatic handling policies would have on the reduction of length of programs’ source 

code. 

We decided to tackle all the exceptions types that directly or indirectly descend from the 

java.io.IOException class on the Java 6 API. Our choices are summarized on Table 5.5. 

Table 5.5 – Recovery actions for Java’s IOException class tree. 

Exception Class Recovery Actions 
ChangedCharSetException Obtain the charset from the exception object and 

replace the charset on the 
reader/streamreader object 

MalformedInputException getInputLength() can be called to determine the 
length of the bad input and throw it out or fix it 

UnmappableCharacterException getInputLength() can be called to determine 
the length of the bad input and throw it out or fix it 

ClosedChannelException Re-open the channel; 
Re-open the channel with privileges for the desired 
operation 

AsynchronousCloseException Re-open the channel 
FileLockInterruptionException Retry 
HttpRetryException Disable streaming mode and retry 
InterruptedIOException Resume the transfer from the interruption point in 

the data (bytesTransferred) 
SocketTimeoutException Retry; 

Re-open socket and retry 
InvalidClassException Try to load the class from a different location; 

Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

SocketSecurityException *Obsolete 
UnknownHostException Connect to a different host and retry; 

Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 
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Exception Class Recovery Actions 
ConnectException 
ConnectIOException 
ConnectException 
NoRouteToHostException 
PortUnreachableException 

Retry ; 
Retry after pausing for predefined time period; 
Connect to a different host and retry; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

BindException Retry; 
Retry after pausing for predefined time period; 
Bind another alternative port; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

SSLHandshakeException Retry; 
Modify connection settings, reconnect and retry; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

SyncFailedException Retry; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

UnknownHostException Modify or replace the host name; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

UnsupportedDataTypeException Use alternative data type and retry; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

UnsupportedEncodingException Use alternative character encoding; 
Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 

UTFDataFormatException 
ZipException 
JarException 
UnknownServiceException 
FileNotFoundException 
FilerException 
IIOException 
InvalidPropertiesFormatException 
JMXProviderException 
JMXServerErrorException 
MalformedURLException 
InvalidObjectException 
OptionalDataException 
ProtocolException 
AccessException 
AuthenticationException 
SSLKeyException 
SSLPeerUnverifiedException 

Notify the user of the problem (detail on the 
exception cause), allowing him to manually correct 
the problem before retrying or aborting 
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Exception Class Recovery Actions 
SSLProtocolException 
SSLException 
SocketException 
ActivityCompletedException 
ServerError 
ServerException 
ServerRuntimeException 
StubNotFoundException 
TransactionRequiredException 
CharConversionException 
EOFException 
IIOInvalidTreeException 
ObjectStreamException 
RemoteException 
UnexpectedException 

Not possible to handle automatically 

NotActiveException 
NotSerializableException 
StreamCorruptedException 
WriteAbortedException 
ActivateFailedException 
ActivityRequiredException 
ExportException 
InvalidActivityException 
InvalidTransactionException 
MarshalException 
NoSuchObjectException 
TransactionRolledbackException 
UnmarshalException 
SaslException 

Not possible to handle automatically due to 
insufficient information about internal details 

 

From the 70 exception classes under analysis, we were able to define benign automatic 

recovery actions for 41 (60%). We decided not to handle 15 (21%) exception types 

automatically. And, we were not able to decide which would be the preferable course of 

action on 14 (19%) situations. This was mostly due to the lack of information on the 

documentation about the internal details associated with raising and handling these 

exception types. 

Considering that we were able to automatically handle more than half the IO-related 

exceptions on a system, these results look quite promising. Consequently, we believe that 

the robustness, development time, and simplicity of source code would be positively 

influenced by these actions. Of course, our recovery actions do not guarantee that 

exception occurrences will always be successfully handled. The outcome of the execution 

of each recovery block and, subsequently, the re-execution of the protected regions will 

always depend of the runtime state and environment when the exception occurs. 

Nevertheless, if we recall what we have already learned about nowadays exception 

handling code and practices, our automatic system provides higher guarantees of success. 



184 CHAPTER 5 — IMPLEMENTATION AND VALIDATION 

 
 
As we have already seen, providing recovery code for occurring exceptions allows the 

programmer not to write exception handling code for every exception on his programs. 

Thus, the overall size of programs’ source code will decrease. To assess the impact of the 

recovery actions that we propose on the size of the source code of existing applications, we 

selected a set of applications with high IO demands and accounted for the amount of code 

that would be unnecessary if the referred exceptions were automatically handled. The 

results are listed on Table 5.6.  

Table 5.6 – Applications source code decrease analysis. 
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j-ftp 15359 690 148 10 244 48 4 21%-2% 
Lucene 56362 1087 447 27 434 175 15 41%-3% 
Tapestry 65984 1259 72 22 490 34 9 6%-2% 
Columba 89325 2291 597 193 787 184 57 26%-8% 
Limewire 342393 6853 2596 471 3327 1216 258 38%-7% 
Legend: (a) Applications, name of the programs under analysis; (b) #LOC, total number of lines of code on each program; (c) #EH 
LOC, number of lines of code dedicated to exception handling on each program; (d) #EH LOC (IOException family), number of 
lines of code dedicated to detecting and handling exceptions on the IOException class hierarchy; (e) #EH LOC (automatically 
handled types), number of lines of code dedicated to detecting and handling the exception types chosen for automatic recovery and 
identified on Table 5.5; (f) #Catch Blocks, total number of catch blocks on each program; (g) #Catch Blocks (IOException 
family), number of catch blocks dedicated to handling exceptions on the IOException class hierarchy; (h) #Catch Blocks 
(automatically handled types), number of catch blocks dedicated to handling exceptions of the types chosen for automatic 
recovery and identified on Table 5.5; (i) Maximum-Minimum decrease on EH code size,  the minimum decrease corresponds to the 
elimination of all handling code for the exception types chosen for automatic recovery and identified on Table 5.5, the maximum 
decrease corresponds to the elimination of all code dedicated to handling all the exceptions on the IOException family. 

 

When analyzing the results on the table, we have to consider several aspects associated 

with design options taken on these programs. First, these applications were not written 

with our exception model in mind. Moreover, most of these applications rarely use 

exception handling code for recovery. Thus, the amount of code dedicated to promoting 

reliability on these programs is very small. This fact is visible when comparing the values 

of the overall number of lines of code in each program with the total number of lines of 

code dedicated to exception handling. In average, only 2,6% of the code in these 

applications, with a standard deviation of 1%, is dedicated to exception handling. 

Furthermore, most of code in exception handlers is used to silence exceptions, log exceptions 
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or log and abort the program. Since the AEH model promotes recovery, it is no surprise that 

it shows a higher influence on the resilience of existing applications, designed for using the 

traditional exception models, than on the size of their source code. On the other hand, if 

we were to incorporate the code of all recovery blocks into the exception handlers on these 

applications to make them more robust, the amount of code dedicated to exception 

handling would grow exponentially and become less readable.  

Other authors have also shown that it is possible to use sets of pre-defined recovery 

patterns to heal a system. For instance, the authors of [Chang2009] defined several healing 

patterns in order to evaluate the effectiveness of their healing connectors1 mechanism. These 

healing patterns were implemented on the healing connectors used for testing purposes 

with applications such as Apache ActiveMQ [Apache2009b], Apache Service Mix 

[Apache2009c], JBoss [JBoss2009], among others. The problems that these healing patterns 

try to eliminate were carefully selected from the lists of bugs available on-line for each one 

of these projects. In a way, these patterns can be considered very similar to our recovery 

actions. Furthermore, the manner they were produced, by collecting bug-reports and 

repair information available on-line, can also be used for the development of system level 

recovery actions. Table 5.7 was adapted from [Chang2009] and shows 5 healing strategies 

of a total of 31 that were proven valid on the cited work. 

Table 5.7 – Healing strategies. 

Application COTS 
component 

where 
failure 

originates 

Failure description Healing strategy 

Apache 
Geronimo 

Sun JRE 1.6 
(ClassLoader 
component) 

At startup, a faulty 
implementation of 
classloader.loadClass raises an 
exception when used to load an 
array with name specified with 
array syntax 

Substitute the invocation of 
classLoader.loadClass() with 
Class.forName() 

JBoss Sun JRE 1.6 
(ClassLoader 
component) 

At startup, a faulty 
implementation of 
classloader.loadClass raises an 
exception when used to load an 
array with name specified with 
array syntax 

Substitute the invocation of 
classLoader.loadClass() with 
Class.forName() 

                                                                  
1 Healing connectors were already discussed on Section 4.3. 



186 CHAPTER 5 — IMPLEMENTATION AND VALIDATION 

 
 

Application COTS 
component 

where 
failure 

originates 

Failure description Healing strategy 

Developer 
application 
reproduced 
from bug 
report 
GERONIMO- 
1669 

Apache 
Geronimo 
(JavaMail 
component) 

Disconnected smtp transport 
raises an exception when 
sending a mail Message 

Call the transport connect() 
operation before re-invoking 
the send the message 

Apache 
ActiveMQ 

Sun JRE 
(JavaNet 
component) 

Starting ActiveMQ raises 
exceptions when hostname 
contains underscore characters 

Replace the hostname string 
parameter by its IP address, 
and re-invoke the original 
operation 

Apache 
ServiceMix 

Sun JRE 
(JavaNet 
component) 

Starting ServiceMix raises 
exceptions when hostname 
contains underscore characters 

Replace the hostname string 
parameter by its IP address, 
and re-invoke the original 
operation 

Magnolia 
CMS 

Xalan XSLT Magnolia cannot run and raises 
exceptions when initializing its 
content repositories 

Dynamically load the jar files, 
delete the corrupted 
repository directories, and re-
invoke the original operation 

 

5.4. The Perfect Exception Handling Model 
Garcia et al. [Garcia2001] have given us the criteria to evaluate the quality of an exception 

handling model in terms of reliability. At the same time, they were also able to provide us 

with a set of quality metrics to help guiding the development of future exception handling 

models. In  

Table 5.8 we confront the attributes of our model with the desirable attributes of Garcias’s 

“perfect” model for exception handling.  

Our AEH model is: 

 Modular – In our system, recovery code is included as a plug-in component. 

Recovery blocks can be added, removed or modified on the deployed system 

without requiring changes to the remaining facilities; 

 Reusable – The recovery code is intended to be portable across applications and 

platforms; 
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Table 5.8 – Exception model features list. 

 AEH 
Model 

Exceptions represented as objects Yes 
Exception list Yes 
Internal exceptions should be differentiated from external exceptions No1 
Avoid the definition of code blocks for the sole purpose of attaching an 
handler 

Yes 

Allow an hybrid binding (dynamic + static) of exception handlers Yes 
Allow for both explicit (one-level) and automatic propagation of exceptions Yes 
Perform automatic clean-up actions Yes 

(transactions) 
Implement the termination model Yes 
Allow for static and dynamic reliability checks Yes 
Fully support concurrent and distributed models No 

 

 Maintainable – Modifications on recovery policies can be done in a centralized 

manner; 

 Reliable – As shown on this chapter, system reliability is prone to increase when 

compared with existent software using the traditional approach; 

 Simple – The programmer can concentrate on writing the business logic code. The 

binding between business code and error recovery code can be completely 

transparent or customized with the aid of specialized visual tools; 

 Uniform – Recovery actions can be made global to a program, platform, or system. 

The programming model is the same independently of the abstraction level. Also, 

the expected behavior on the presence of an error is common to all components; 

 Easily testable – Recovery code can be tested separately from business code. Tests 

can concentrate on business code and its integration with the general recovery 

policies; 

                                                                  
1 On object-oriented systems we consider that this characteristic can be mimicked by the use of 

inheritance. 
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 Traceable – The execution of the recovery actions is the responsibility of the 

execution platform and it is controllable by the usage of configuration files. 

Monitoring is also privileged under this conditions; 

 Increases code readability – Business logic code is separated from error handling 

code. There is less code to read and less control flow paths to understand; 

 Simplifies code writing – In most cases, the programmer can concentrate on writing 

business code alone. 

5.5. Summary 
In this chapter we described and tested an implementation of the Automatic Exception 

Handling Model. Our framework allows the programmer to use the programming model 

proposed on Chapter 4 and provides the entire model’s functionality. 

We discussed the architecture of the development/execution framework and detailed the 

implementation of two core components: the STM library and the AEH Class Loader. 

The STM library contains the basic functions and types associated with transactional 

model. The AEH Class Loader modifies the classes being loaded into the runtime 

environment by inserting the new transactional and recovery code. 

We discussed the binding of exceptional occurrences with their respective system recovery 

actions. We have shown that configuration files can be quite large and complex to the 

human reader. Thus, we proposed and exemplified two mechanisms (tools) that simplify 

and aid on the creation of configuration files while coding. 

On the second half of the chapter we validated the exception handling model and 

evaluated its implementation on four distinct vectors: a) amount of source code written by 

the programmer; b) effect on the application’s resilience; c) performance penalty imposed 

by the exception runtime; d) viability of providing general recovery actions. Our results 

are very promising. We obtained a substantial decrease on the amount of exception 

handling that has to be written (less 30%), program’s reliability improved, the performance 

penalty is negligible, and we were able to propose recovery actions for more than 60% of 

the exception types we analyzed. 
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We are convinced that an exception handling model evaluation can only be done on “the 

field”. The synthetic tests that we performed on this chapter are not sufficient for justifying 

the adoption of the model per se. The major problem is the lack of critical mass, this kind 

of proposal has to be used and evaluated by thousand of developers before definitive 

conclusions can be taken. Only when many companies, software designers, and 

programmers start using the new model on their development process, its true qualities 

and shortcomings will surface. Nonetheless, our validation efforts show that the model is 

feasible, can be implemented and incorporated into production-state development 

frameworks, can contribute to increase the quality of programs’ code, increase software 

reliability, and, at the same time, lower development times. 

 

 





 

Conclusion 

  

This is the final chapter of the dissertation and it provides an overview of the work done, 

the problems that have been addressed and the contributions to the current state of the 

technology. A perspective on possible future work is also given.  

 

Chapter 

6 
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6.1. Overview 
Exception handling mechanisms are the de facto mechanism for error handling on modern 

object-oriented programming languages. Exceptions provide an elegant and civilized way 

of dealing with abnormal events. Nevertheless, the mechanism has flaws and some pose as 

threats for the reliability of programs and systems.  

In this thesis we identified the major design shortcomings associated with existent 

exception handling models. We have shown how those weaknesses affect the way 

programmers are writing exception handling code today, and how, ultimately, they affect 

the quality of error recovery code and the resilience of programs to errors. 

The main objective of this work was to propose a new exception handling model and 

demonstrate how it successfully mitigates some of the problems with current exception 

handling models. Our model deals with exceptions automatically. Thus, exceptions 

become much more a platform issue rather than the programmer’s responsibility. This 

ultimately contributes to increase applications resilience to errors because, as we have 

shown, programmers are neglecting exception handling code and an automated approach 

currently offers better guarantees of recovery than the code that programmers typically 

write. Writing error recovery code is not a major concern for nowadays developers and 

consequently exception handling code quality is very low. 

Our ambition for the automatic exception handling model is that it will some day 

represent to programs reliability what garbage collectors symbolize to memory 

management. Our model automates not only recovery code and its execution, but also the 

clean-up of the effects of unsuccessful executions. To achieve such a goal, we resort to a 

transactional mechanism that controls the execution of the protected regions on the code 

(try blocks) and of recovery actions. The proposed model mingles the concepts of 

traditional exception handling, software transactional memory and recovery blocks in 

order to achieve its objectives. 

We described the architecture of the automatic exception handling model on Chapter 4 

and discussed a possible implementation on Chapter 5. We also conducted several tests in 

order to evaluate both the proposed model and its implementation. Our experiences 

involved the modification of several applications in order to make them use the new 

exception handling approach. Results are very promising. There was a substantial decrease 

on the amount of exception handling that had to be written on the selected test programs; 
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the programs reliability was improved on the new versions; and the performance penalty 

was negligible. Furthermore, we showed that it is possible to define automatic recovery 

actions for a large number of exception types on the Java platform. 

In general, we are confident that the proposed model represents a step forward in terms of 

software reliability for object-oriented programming languages. We feel that the automatic 

exception handling model fulfilled its objectives, showing that it is possible to improve 

software resilience while effectively decreasing the amount of exception handling code 

that programmers have to write. 

6.2. Contributions 
The major contributions of this dissertation can be summed up as: 

 Providing a clear assessment of how programmers are using the existent 

exception handling mechanisms on their programs, exposing the problems 

behind the lack of quality of exception handling code, and identifying common 

bad practices, thus providing a clear base to guide the development of future 

exception handling models; 

 Providing an exception handling model that is able to comply with the 

developers natural tendency to write business logic code without the 

“distraction” of considering exceptional situations. A model that it is able to 

increase the resilience of programs to abnormal situations even when developers 

pay no attention to error recovery, and which has the potential to eliminate many 

known exception programming bad practices. Thus, overall a model that 

simplifies the task of producing reliable code, with automatic recovery and clean-

up, in a transparent way without resorting to complex language artifacts; 

 To demonstrate that it is possible to integrate the new model into a production 

platform, such as the Java platform, in a simple way, with minimal lexical 

changes to an object-oriented programming language and a negligible 

performance overhead. 

Recently, we witnessed, from the programming languages and models community, a 

growing effort to understand why programmers neglect exception handling [Shah2008a] 

and why changes are occurring on the way exception handling constructs are used. We 
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know that exception handling practice has shifted from an error recovery approach to a 

debugging approach (exception detection->log->program termination). Exceptions are no 

longer being used to provide proper error recovery. Many platform designers, such as 

.NET designers, support this move. They believe that latent errors should be eliminated 

through exhaustive testing. We, on the other hand, consider that programming techniques 

are constantly evolving, and, from our point of view, the correct path is creating 

frameworks that can offer a high degree of resilience to errors even when developers give 

no special attention to the subject. And if the programmer prefers to focus on writing 

program business logic code without immediately having to consider the abnormal cases 

that might occur, he or she should not be forced to do the opposite. Nonetheless, such 

power must come without jeopardizing the resilience of programs to errors. 

6.3. Future Work 
Future work, from our point of view, poses as three distinct challenges: 

 Develop a production ready framework with all the necessary tools to write, 

compile, test, deploy, execute and maintain software using the automatic 

exception handling model. This includes creating a complete set of recovery 

actions for system (and system libraries) exception types to deploy with the 

platform; 

 Conduct experiments that can help understand how developers relate to the new 

model in respect to the traditional approaches; 

 Explore the model’s applicability to the area of concurrent programming 

upgrading the model to allow the execution of cooperative and concurrent 

automatic error recovery actions. 

Exception handling plays a vital role in the overall reliability of software. It is an often 

neglected design area of programming languages that has a crucial impact on the overall 

quality and robustness of applications. Due to the increasing demand for easier ways of 

dealing with abnormal events, the ubiquity of concurrent programming and the need to 

provide end-users with more reliable software, the research activity in this area has been 

steadily increasing. Furthermore, it is also interesting to see modern programming 

languages and platforms incorporating more advanced and sophisticated ways of dealing 
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with errors. In the future, we hope to continue to contribute to the state-of-the-art on 

exception handling and help support the growth of this important research area.  
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