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“In an age when man has forgotten his origins and is blind even to his most essential needs for 

survival, water along with other resources has become the victim of his indifference” 

Rachel Carson 
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RESUMO 
 

 

Os recursos hídricos nunca estiveram tão em foco como nos anos mais recentes. Sendo vastas as 

aplicações da água, desde o seu uso na agricultura, e indústria até às actividades domésticas e 

recreativas, a educação e a responsabilidade da sua gestão têm vindo a ser introduzidas 

progressivamente como factores importantes sob o ponto de vista da valorização dos recursos 

aquíferos. As entidades regulamentares, seriamente preocupadas com a escalada da poluição ambiental 

e degradação dos recursos naturais, têm legislado, por seu turno, de forma cada vez mais rigorosa sobre 

a sustentabilidade da água. Em particular, a eliminação de águas residuais produzidas nos processos 

industriais, contendo poluentes nocivos com elevado poder tóxico, tem emergido com especial ênfase 

como objecto de estudo na comunidade universitária e industrial.  

Na extensa classe de poluentes líquidos, os fenóis assumem um papel de relevo devido à descarga em 

larga escala no ambiente e à sua toxicidade para a fauna e flora aquáticas. Com o objectivo de cumprir 

os requisitos estabelecidos pelas rigorosas directivas ambientais, a oxidação húmida é um método de 

tratamento que se tem revelado atractivo para efluentes que são demasiadamente diluídos para a 

incineração e ainda predominantemente tóxicos para o tratamento biológico. A produção de azeite é 

uma das actividades agro-industriais mais remotas na bacia Mediterrânea que produz volumes 

consideráveis de águas residuais, sendo actualmente o seu tratamento um grande desafio para esta 

indústria. O principal problema associado a esta classe de efluentes reside na composição de cor escura 

com elevado conteúdo de matéria orgânica de carácter tóxico devido maioritariamente à presença de 

ácidos fenólicos. Deste modo, com o intuito de progredir no âmbito do desenvolvimento de reactores 

catalíticos multifásicos para operar em condições de temperatura e pressão elevada, o tratamento de 

águas residuais provenientes da extracção de azeite por oxidação catalítica húmida foi um factor chave 

de motivação para o estudo aprofundado ao longo da presente tese. 

Neste âmbito, os efluentes agro-industriais produzidos na extracção de azeite foram seleccionados 

devido ao seu carácter sazonal, não-biodegradável e fitotóxico. Os compostos polifenólicos de base 

ácida, especificamente, os ácidos siríngico (4-hidróxi-3,5-dimetóxibenzoico), vanílico (4-hidróxi-3-

metóxibenzoico), 3,4,5-trimetóxibenzoico, verátrico (3,4-dimetóxibenzoico), protocateutico (3,4-

dihidróxibenzoico) e trans-cinâmico, mereceram especial atenção no que diz respeito ao desempenho 

do processo de oxidação catalítica húmida a diferentes níveis: remoção do carbono orgânico total, 

formação de compostos intermediários, estabilidade do catalisador e modelização cinética, tendo sido 

testados vários catalisadores laboratoriais e comerciais. Os metais activos dos catalisadores estudados 

foram o manganésio, cobre, zinco, ferro e prata suportados em cério e alumina. Os catalisadores de 
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óxidos de manganésio e cério revelaram as melhores propriedades de remoção do carbono orgânico 

total exibindo bons parâmetros de estabilidade quantificados em adsorção de carbono e lixiviação dos 

metais activos. Um dos principais objectivos do presente trabalho englobou o desenvolvimento e 

estudo de modelos computacionais baseados nos códigos de Dinâmica de Fluidos Computacional com 

aplicações nos tratamentos ambientais de descontaminação de águas residuais por oxidação catalítica 

húmida em reactores trifásicos do tipo trickle-bed. Deste modo, após a selecção de catalisadores, foram 

realizados estudos com recurso ao modelo cinético generalizado, de forma a obter as expressões 

cinéticas necessárias ao projecto de reactores trickle-bed, através de técnicas de simulação avançadas. 

Ao nível da simulação computacional, foram estudados dois modelos com uma malha tridimensional 

com o objectivo de previsão de parâmetros hidrodinâmicos como a fracção volumétrica de líquido e a 

queda de pressão no regime trickling. Os modelos Euler-Euler e Volume-of-Fluid foram optimizados 

com diferentes densidades de malha, passos temporais, critérios de convergência, métodos de 

discretização e modelos de turbulência do tipo Reynolds Averaged Navier-Stokes. O efeito dos caudais 

de líquido e gás assim como a influência da temperatura e pressão foram quantificados através dos 

parâmetros de fracção volumétrica de líquido e queda de pressão. O modelo Euler-Euler foi utilizado 

nos estudos de distribuição espacial do escoamento multifásico com diferentes distribuidores gás-

líquido, enquanto o fenómeno de histerese na operação hidrodinâmica e a eficiência de molhagem 

foram estudados com o modelo Volume-of-Fluid.  

Os parâmetros cinéticos foram posteriormente integrados nos modelos multifásicos Euler-Euler e 

Volume-Fluid nos quais foram contabilizados os fenómenos de transporte térmico e mássico no reactor 

trickle-bed a operar a pressões elevadas. Os perfis axiais e radiais dos parâmetros hidrodinâmicos e 

reaccionais foram avaliados em diferentes condições de operação e validados experimentalmente. A 

influência dos caudais de gás e líquido assim como o efeito da temperatura e pressão foram 

quantificados através da conversão de carbono orgânico total. A eficiência de descontaminação 

depende consideravelmente da temperatura em detrimento do efeito da pressão de operação. A 

influência do caudal de líquido foi atribuída maioritariamente ao tempo de reacção dos poluentes 

orgânicos ao passo que foi determinado um valor óptimo para o caudal de gás. O aumento da 

concentração do carbono orgânico total na corrente a tratar conduziu a eficiências de remoção mais 

rápidas. De um ponto de vista geral, as simulações computacionais do modelo Euler-Euler conferiram 

melhores previsões para diferentes parâmetros hidrodinâmicos e reaccionais em comparação com o 

modelo Volume-of-Fluid. Em suma, o modelo multifásico Euler-Euler permitirá ciclos de 

desenvolvimento de produto e/ou processo mais eficientes auxiliando na optimização e integração da 

relação mútua energia/ambiente em reactores multifásicos trickle-bed.   
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ABSTRACT 
 

 

 
Water resources have never been so indulged as in recent years. Uses of water include agricultural, 

industrial, household and recreational activities. Therefore, education and awareness in the area of 

water management is increasingly important from a global perspective of resource valorization. 

Regulatory entities concerned about the unprecedented scale and speed of environmental pollution 

and degradation, and the depletion of natural resources have been legislating for the water 

sustainability. In particular, the disposal of wastewater streams containing highly toxic and 

hazardous organic pollutants generated by industrial processes has emerged as a topic of mounting 

concern in academia and industry.  

Among the numerous classes of liquid pollutants, phenols are of particular importance due to their 

widespread discharge in the environment and toxicity to many water living organisms. In order to 

meet the requirements established by stringent environmental regulations, wet air oxidation is an 

attractive method for the treatment of waste streams which are too dilute to incinerate and yet too 

toxic to treat biologically. Indeed, olive oil production is one of the oldest agricultural industries in 

the Mediterranean basin that generates a considerable amount of olive oil wastewater heavily 

contaminated. The depuration of liquid wastes produced from olive oil production is still a major 

challenge facing this industry. The main problems are attributed to their dark color, high organic 

content and toxicity levels which are due to the presence of phenolic compounds. Therefore, 

aiming to advance the development of catalytic multiphase reactors to operate at high values of 

temperature and pressure, olive oil wastewaters remediation by catalytic wet oxidation was the key 

motivation factor to be fulfilled among this thesis.  

In this regard, agro-food olive oil processing wastewaters were selected as an example of non-

biodegradable and phytotoxic effluents. Specifically, major polyphenolic compounds: syringic (4-

hydroxy-3,5-dimethoxybenzoic), vanillic (4-hydroxy-3-methoxybenzoic),3,4,5 trimethoxybenzoic, 

veratric (3,4-dimethoxybenzoic), protocatechuic (3,4-dihydroxybenzoic) and trans-cinnamic acids 

typically found in olive oil mill wastewaters deserved particular attention. The process 

performance was evaluated at different levels including total organic carbon reduction, 

intermediate compounds formation, catalyst stability and kinetic modelling. Several commercial 

and laboratory-made catalysts were investigated addressing both the catalytic activity and stability. 

Regarding the selected catalysts, some were prepared in laboratory and others were commercially 
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obtained. The tested active materials were manganese, copper, zinc, iron and silver, while the 

catalysts supports were ceria and alumina. A major importance was given to cerium based 

catalysts and manganese catalysts. With the present contribution, our purpose was to integrate and 

couple state of the art CFD codes with environmental reaction applications in the wastewater 

remediation by catalytic wet oxidation in trickle-bed reactors. Therefore, after the catalyst 

screening, kinetic studies were performed taking into account the generalized kinetic model to 

bring up lumped kinetic parameters necessary for the design and scale-up of pilot and industrial 

trickle-bed reactors making use of advanced simulation techniques.  

Two Computational Fluid Dynamics (CFD) frameworks were developed for the hydrodynamic 

analysis aiming to predict the liquid holdup and pressure drop in the trickling flow regime with a 

three-dimensional computational grid. Euler-Euler and Volume-of-Fluid multiphase models were 

optimized in terms of mesh density, time step, convergence criteria, discretization schemes and 

Reynolds Averaged Navier-Stokes turbulence models. Several computational runs were performed 

querying the effect of gas and liquid flow rates, operating pressure and temperature on liquid 

holdup and two-phase frictional pressure drop. Multiphase flow distribution was investigated with 

different gas-liquid distributors using the Eulerian framework, whereas hysteresis phenomena and 

wetting efficiency in trickle beds were evaluated with the Volume-of-Fluid model.  

The kinetic parameters were further integrated within the Euler-Euler and Volume-of-Fluid models 

where the reaction aspects as well as the transport mechanisms were accounted for in a high-

pressure trickle-bed reactor so that both multiphase CFD frameworks were evaluated for either 

cold flow or reacting flow conditions. Axial and radial profiles of hydrodynamic and reaction 

parameters were evaluated at different operating conditions for the sake of experimental 

validation. The influence of gas and liquid flow rates as well as the effect of temperature and 

pressure were investigated in terms of total organic carbon (TOC) conversions. TOC removal 

efficiency depends heavily on the bed temperature while the operating pressure has minor 

influence in final conversion. Whereas the effect of liquid flow rate was mainly related with the 

reaction time, the influence of gas flow rate led to a maximum on TOC conversion. Moreover, 

higher values of inlet pollutant concentration led also to higher conversions. The multiphase 

Eulerian predictions handled agreeably better the effect of different numerical solution parameters 

either supported at non- and reacting flow conditions with respect to Volume-of-Fluid model. In a 

nutshell, CFD can be useful to obtain shorter product/process development cycles and optimize 

energy/environment requirements in multiphase trickle-bed reactors. 
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PART A. THESIS SCOPE AND OUTLINE 

 

 
 
 
 
 

PART A. THESIS SCOPE AND OUTLINE  

 
 

 

 

 

 

 

The first part of this thesis identifies the major environmental issues of hydric 

resources. Special emphasis is given to the water consumption and wastewater 

generation in agro-food processing industries. Advanced environmental technologies 

for wastewater remediation are described in the context of advanced oxidation 

processes. Aiming to accelerate the industrial implementation of modern water 

depuration techniques, new tools for designing process equipment are probed 

including Computational Fluid Dynamics frameworks. A synopsis of computational 

flow models is structured for single- and multiphase flows. Finally, the motivation, 

scope and the outline of the thesis is presented at the end of the first chapter.  

The second chapter schematizes the background work collected along the 

development of this thesis. Firstly, non- and catalyzed wet oxidation literature is 

reviewed for the representative pollutants encountered in agro-industrial wastewaters. 

Secondly, industrial non-catalytic and homogeneous/heterogeneous catalytic wet 

oxidations processes are briefly described. Afterwards, the multiphase trickle-bed 

reactor literature is addressed by presenting the fluid dynamics characterization as 

well as the transport properties. Finally, the theoretical methodologies adopted for the 

hydrodynamic prediction of trickle beds are presented with special focus on modern 

computational fluid dynamic codes.  
 

 1



CHAPTER I. INTRODUCTION 
 

I. Introduction  

The current chapter provides a general overview of the core objectives of the present work. This 

chapter encompasses an introduction on advanced environmental technologies for wastewater 

remediation. Catalytic wet oxidation is briefly described in the context of gas-liquid-solid 

multiphase technology in which hazardous compounds are oxidized by molecular oxygen at 

elevated temperatures and pressures. Afterwards, modern tools in computational flow modelling 

are depicted with particular attention being given to Computational Fluid Dynamics. Current 

limitations and expectations in single- and multiphase flows are focused in terms of chemical and 

environmental industry applications. The motivation, scope and structure of the thesis are finally 

addressed.  

I.1. Advanced Environmental Technologies for Wastewater Remediation  

Water is becoming an increasingly commodity due to the massive amount reduction of potable 

water affected by long periods of drought and growing water demands in our Blue Planet. Several 

regional and planetary policies have been implemented for the safeguard and the economical 

exploitation of hydric resources. Recycling processes of industrial process waters and wastewaters 

were always a routing solution for the management of toxic and hazardous wastewaters streams. 

The compulsory regulations in manufacturing industries have been fruitful in the minimization of 

organic and inorganic compounds motivated by the development of highly efficient technologies 

capable of destroying hazardous pollutants.  

Recently, agro-industrial processing waters received an increasing awareness due to its impact on 

aquatic and soil environment. Despite the nutrient levels, non-biodegradable and phytotoxic 

chemicals also characterize agro-food wastewaters. These compounds exhibit biocide behaviour 

and reduce significantly the efficiency of biodegradation treatments. Mediterranean countries are 

an example of the negative impact on water and soil quality endorsed by the presence of 

polyphenolic compounds in olive oil mills wastewater (OOMW) or in other water emissions from 

the agro-food sector, such as those deriving from the production of citrus juices and wineries. 

Olive oil industries generate around 30 million m3 of wastewater characterized by a very high 

Biochemical Oxygen Demand (BOD) 12-60 kg O2/m3, Chemical Oxygen Demand (COD) in the 

40-200 kg O2/m3 range and a high concentration of phenolic compounds (Niaounakis and 

Halvadakis et al., 2004). The huge organic content load and the seasonal character of olive oil 

production impose the development of pre-treatments to increase biodegradability needed to 
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enhance the methanation rate and make the process economically feasible or ultimately to remove 

completely the organic compounds.  

These environmental concerns had been responsible by the notorious research on advanced 

processes for wastewaters remediation. Among several separation and reaction based technologies, 

advanced oxidation processes such as wet air oxidation (WAO), supercritical water oxidation, 

ozonation, Fenton oxidation, photocatalytic oxidation, sonochemical degradation and microwave 

irradiation were the ones that received careful respectfulness (Collin et al., 2009; Rivas et al., 

2008; Zhou et al., 2007; Cañizares et al., 2007; Mandal et al., 2004; Pera-Titus et al., 2004). Given 

the mineralization ability of organics to harmless final products using appropriate catalysts, 

catalytic wet air oxidation (CWAO) has been used in the treatment of wastewaters containing 

either moderately concentrated non-toxic or bio-toxic organic pollutants. Toxic and recalcitrant 

molecules are degraded leading to remarkable Total Organic Carbon (TOC) decontamination rates. 

Lumped parameters have been preferred to express the conversion level such as TOC, COD, BOD 

and TPh (total polyphenolic content assessed by Folin-Ciocalteau reagent) instead of specific 

conversions for a single compound. Carbon dioxide and water are final end products if complete 

oxidation is achieved. The biological refractory pollutants are oxidised by dissolved molecular 

oxygen at elevated temperatures (180-315ºC) and pressures (20-150 bar) (Luck, 1999). The wet 

oxidation can be further accelerated with a homogeneous or heterogeneous catalysts leading to 

more amenable operating temperatures and pressures (130-250ºC; 10-50_bar) by increasing the 

oxidation rate. High solubility of oxygen is promoted at those operating conditions increasing the 

oxidizing power and high temperatures are able to increase the reaction rates and the production of 

free radicals (Kolaczkowski et al., 1999). According to the literature and our previous work, low 

molecular weight carboxylic acids have been found as refractory intermediates species during wet 

oxidation (Bhargava et al., 2006; Silva, 2005, Luck, 1999). In fact, non- and catalytic wet 

oxidation have been a participate subject of extensive literature studies over the last three decades 

as researchers continue to investigate the aptitude of these processes to remove different types of 

organic compounds from a wide variety of simple and complex industrial and simulated 

wastewaters.  

Taking into account the huge multiplicity of liquid pollutants that can be treated by wet oxidation, 

one should expect the industrial massification and dissemination of CWAO. However, the 

industrial application has been controlled by the scarce development of catalysts that are stable at 

high operating values of temperature and pressure. Additionally, high operating temperatures and 

pressures are often pointed out as noteworthy drawbacks of wet oxidation technology. Therefore, 

aiming to give some contribution to the technical know-how needed to clean up the environment 

 3



CHAPTER I. INTRODUCTION 
 

specifically the condition of the hydric resources, olive oil wastewaters remediation by catalytic 

wet oxidation will be a motivation factor to be fulfilled among this work/thesis.  

Catalytic wet oxidation has been investigated in four different levels: reaction chemistry; reactors 

suitable for kinetic, mass and heat transport studies; catalyst screening, characterization and 

stability; and scale-up procedures for industrial implementation. Key features of CWO catalysts, 

catalyst preparation, catalyst stability and deactivation, and catalyst reuse and regeneration are 

well-known criteria on the CWO technology assessment (Bhargava et al., 2006). The economic 

and environmental viability of a CWO system motivated a great interest in Academia and industry 

personnel who have been conducted several endeavours on the selection of optimum catalysts. 

While the first three aspects are purely experimental, the last one is deeply concerned with the 

engineering issues that arise in the design of industrial reactors. Numerous literature works 

attempted to demonstrate how CWO technology can be applied on an industrial scale and how 

reactor design is critical to the successful application of either non- or catalytic wet oxidation. In 

this ambit, exhaustive theoretical studies appeared on phenomena such as kinetics and mass 

transfer help in the design and selection of industrial reactors. Advantages and disadvantages were 

also systematized from the comparison of different reactor types. 

 
I.2. Sensing New Tools for Designing Process Equipment:  

      Computational Fluid Dynamics  

Catalysis and chemical kinetic science are two major areas that can bring important advances for 

the chemical industries. The industrial profit has to encompass the proper design of chemical 

process equipment that ensure the delivery of materials and energy at the right places and at the 

right times in industrial units. The manipulation and optimization of underlying fluid dynamics is a 

top priority on the minimization of the capital and costs leading to competitive solutions. The main 

purposes dictate that tomorrow’s processes should consume less energy and raw materials, cost 

less to build and operate, have no or minimum waste, be safer, and provide lower risk to the 

environment. In order to fulfil those objectives, existing plants need reengineering activities and 

careful analysis to improve their overall effectiveness and to become environmentally friendly. In 

this regard, Computational Fluid Dynamics (CFD) is one of the essential technologies that enable 

process engineers to predict, manipulate, and realize the desired fluid dynamics in wastewater 

process equipment. CFD is nothing more than an alternative body of knowledge and techniques to 

solve mathematical models of fluid dynamics on digital computers in comparison to traditional 

techniques, which are based overly in empirical correlations. Notable reviews identified CFD as 

one of the potential technologies to move forward the chemical, environmental, aerospace and 
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automotive industries (Norton and Sun, 2006; Ghidossi et al., 2006; Oberkampf and Trucano, 

2002; Dudukovic et al., 2002). CFD allows shortening the efficient design of new products and 

processes, the optimization of existing processes to improve energy efficiency and the 

intensification of product-process development cycles. The contemporary status of computational 

flow modelling encourage strongly the application of modern CFD codes on the design and 

investigation of process equipment and aims to accomplish novel and stringent environmental 

regulations on the decontamination of high strength wastewaters.  

The specification of operating protocols and hardware configuration in the design of process 

equipment provide suitable background to complete the desired process without compromising 

safety, environment, and most of all economics. The application of CFD is envisaged as a 

prevailing tool to gain more control in the delivery of reactants or energy and in the removal of 

products since any chemical or physical transformation process requires the addition or removal of 

different materials and energy. Therefore, the distribution of materials as well as the energy within 

the process vessel is improved noticeably if one has the capability to predict and control fluid 

dynamics by means of CFD. The overall methodology can be divided in four main stages:  

identification of process requirements to categorize the desired fluid dynamic characteristics; 

evaluation of possible hardware configurations and operating protocols to achieve the desired fluid 

dynamic characteristics; development of quantitative relationships between the hardware 

configuration and performance; and optimization and fine-tuning of the final design. 

Although the importance of fluid dynamics in the whole process is understandable in CFD 

methodology, until the development of modern CFD codes attended by sophisticated computer 

architectures, process engineers had to manipulate fluid dynamics either by harnessing pressure, 

gravity, or surface forces or by employing rotating/moving elements in pilot plants. Laboratory, 

pilot and meso-scale equipment for heat and mass transfer allowed the development of several 

empirical correlations, which account for different characteristics of films/boundary layers and 

transport rates over different shapes. Instead of extensive and costly experimentation, CFD models 

allow the optimization of process equipment to maximize industrial benefit following rigorous 

environmental regulations. CFD enable the establishment of quantitative relationships between the 

throughput and operating flow regime avoiding a massive number of empirical parameters. 

Transport parameters such as heat- mass-transfer coefficients and several hydrodynamic 

parameters including film structures and thicknesses, boundary layer geometries, pressure drop, 

wetted area or even the residence time distribution are investigated and optimized for multiple 

process configurations. Consequently, CFD aids in the identification of most appropriate process 

configurations from the large selection of alternatives. 

 5



CHAPTER I. INTRODUCTION 
 

Multiphase systems characterize extensively the chemical industry, e.g. slurry reactors, packed and 

fluidized beds, bubble, spray and extraction columns so that a wide assortment of operating 

regimes could exist depending on the desired flow regime (Dudukovic et al., 1999). To mention a 

few parameters, operating flow rates, phasic physical properties, hardware configuration, 

distributors design, size distribution of dispersed-phase particles, and flow regime are typical and 

relevant factors that play a major role in the scale-up approach. As a rule of thumb, the 

performance and process operability may be improved by means of CFD codes that intend to 

advance the technical expertise of environmental processes. 

 
I.3. Synopsis of Computational Flow Models  

CFD models can be divided in two main classes: design models that attempt to provide a 

quantitative relationship between the hardware and performance, and learning models, which 

provide a basic understanding of different underlying processes. Equipment design can thereby 

steered to different process arrangements and project concepts, which overcome usually the lack of 

experimental, time and funding resources. From a concise literature survey, the current status of 

CFD on flow simulation are summarized into two distinct categories: single-phase and multiphase 

flows. 

 

I.3.1. Single-Phase Flows 

Laminar flow and mixing of Newtonian fluids have been simulated in complex industrial process 

equipment accounting for temperature and composition dependent physical properties. Local hot 

or cold spots, complex geometries and scale-up were addressed satisfactorily for single-phase 

flows. The quantification of viscous drag, form drag, and losses due to directional changes in the 

overall pressure drop provide the efficient design of industrial process equipment according to 

several literature works (Dudukovic et al., 2002). Recent developments on free surface flow allow 

a deep mathematical understanding of surface characteristics and surface phenomena (surface 

tension, contact angle, wall adhesion) involving contact of a gas, liquid and solid. During the last 

decade, the boost and enlargement of computational resources allowed the flow simulation of 

rheologically complex fluids with viscoelastic characteristics and the quantitative prediction of the 

flow regime transition (Ge and Fan, 2006).  

The predictive capabilities of CFD codes have been always a discussion centre on the turbulence 

modelling. Turbulence models may be classified in three categories: direct numerical simulations 

(DNS), large eddy simulations (LES), and Reynolds-averaged Navier-Stokes equations (RANS) 

(Ranade, 2002). If one moves from DNS to RANS, more and more of the turbulent motions are 
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estimated and, therefore, less computational resources are required. DNS models simulate all of 

the dynamically important scales of turbulent flows directly being the specification of the initial 

and boundary conditions one of the imperative step. DNS provides valuable information about the 

interaction of small-scale and large-scale motions requiring huge computational resources. 

Therefore, applications of DNS for equipment design are not likely to be cost-effective for the near 

future unless one has a straightforward flow configuration with very low Reynolds numbers. In 

LES, the large-scale motions are resolved while the small-scale motions are modelled using the 

subgrid scale (SGS) models. Until recently, few theoretical studies have been accomplished with 

SGS models that exhibited low satisfactory levels. LES models are expected to be reformulated in 

the forthcoming decades with practical applications. Alternatively, RANS-based turbulence 

models are a ubiquitous approach that enables a good compromise between the width of 

application and computational economy. The quality of RANS simulations are strongly affected 

by the numerical issues, e.g. grid quality and/or density, discretization schemes, wall functions and 

unsteady flow features. It should be pointed out that RANS-base models contain more adjustable 

constants that need to be determined by fitting the experimental data in comparison with DNS and 

LES models. Hence, careful verification and validation should be performed through a meticulous 

error analysis to avoid dangerous extrapolations. Reacting flow simulations are one of the most 

intricate case-study since it requires the resolution of much finer scales and computational 

demands may increase significantly even with simple turbulent flow models. Adequate closure 

models for the estimation of turbulence characteristics that embody the interactions of chemical 

reactions with turbulence are needed either in single-phase or multiphase flows. 

 

I.3.2. Multiphase Flows 

Despite the advancement of CFD models in single-phase flow modelling, quantitative predictions 

of multiphase flows in industrial process equipment without adjustable parameters are still beyond 

the scope of CFD codes. However, CFD methodology provides valuable insights on multiphase 

flows, yet partially, in the improvement of process equipment design. DNS models for multiphase 

flows are foreseen as a breakthrough point to contribute with useful proficiency on several key 

issues from a singular investigation of phase distributors and characteristics of generated 

dispersed-phase particles to the extrapolation of cold flow data to higher temperature and pressures 

or even the entrainment of the continuous phase due to bubble or drop collapse at the free surface. 

There is also a lack of appropriate closure models for Eulerian-Eulerian frameworks and whenever 

DNS fails to simulate most likely denser multiphase flows, Eulerian-Lagrangian approach is a 

common practice. According to the literature, multiphase flow modelling began routinely applied 

for the design of cyclones, coal-fired burners, mist eliminators and electrostatic precipitators 

(Ranade, 2002). Notwithstanding, widespread modelling efforts have to be accomplished on the 
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development of reliable closure models in Eulerian-Eulerian mathematical approaches for dense 

and dispersed-phase flows. Mainly due to the scarce availability of high-quality experimental data 

to obtain different model parameters, the simulation of complex multiphase flows have been 

retained from further progress and, therefore, state-of-art multiphase CFD models are not feasible 

to generate quantitative predictions of interphase transport rates. 

An outstanding effort has been made to understand single-phase or multiphase flow through a 

packed bed. It is well recognized that complexity of multiphase flows is further increased by odd 

geometry of packed beds. The simulation of packed bed flows encompass two major alternatives 

on the generation of bed geometry: the mapping of void space on a computational grid through 

visualization techniques (particle image velocimetry, laser dopler anemometry and magnetic 

resonance imaging); and statistical methods that rely on the porosity distribution. A large number 

of particles might be prohibitive since it becomes computationally intractable. CFD models can 

identify successfully how the presence of different particles arrangements affects reactor 

hydrodynamics. In fact, macroscopic CFD models based on closure models have done a 

reasonable job of simulating single-phase flows with adjustable parameters (Ranade, 2002). 

However, none simulation of gas-liquid flow through packed beds or trickle beds is reported in the 

literature. It is expected that CFD models will allow to understand the spreading of liquid over 

catalyst pellets, wetting phenomena and capillary forces in trickle-bed reactors. Furthermore, gas-

liquid distribution or residence time distribution in trickle-bed reactors, wetting and mass transfer 

in a packed gas-liquid contactor are existing gaps to be satisfied in the near future. A lot of work 

remains also to be done in multiphase reaction engineering. 

 
I.4. Motivation and Scope of the Thesis  

Taking into account that computational flow models can assist the design and optimization of new 

and existing processes and products, reduce energy costs, increasing productivity and profit 

margins and, namely, improving environmental performance, the present work is driven by the 

great advantage that single-phase CFD models already demonstrated in the automotive, aerospace 

and chemical and power industries. The simulation of reacting and multiphase turbulent flows are 

rarely documented in the specialized literature and a broad segment of the chemical industry are 

anxiously waiting for its appliance. Numerous requirements have been identified on CFD tools so 

that they should be: 

 

 Experimentally verified – simulations must be validated with experimental results. 

 Computationally efficient – adaptable to multiprocessor workstations and clusters of 

processors, which provide expediently valuable results. 
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 Fundamentally based – containing more and better physics coupled with chemical 

reactions, rather than non-mechanistic correlations that are not scalable. 

 Versatile – portable to various machines, usable by generalist rather than specialists, 

scalable, reliable, and compatible with current chemical industry databases. 

 

The realization of maximum benefit from CFD modelling for design depends on how well CFD 

simulations can predict adequately an industrial unit either because of numerical inaccuracies or 

because of limitations in the physical models. Sophisticated numerical methods enable better 

control on discretization errors but grid-independent solutions are not straightforward even with 

the actual advancement in computing resources. Underlying physical models should be calibrated 

with high-quality experimental data aided by new tools based on modern visualization techniques 

(Oberkampf and Trucano, 2002). Electrical, radiation, optical and acoustic methods have already 

been developed to provide noninvasive, spatially, and temporally resolved measurements of 

single-phase and multiphase systems. The major drawback rely on the technical knowledge needed 

to examine experimental data on fluid-structure interactions, turbulence characterization, abrupt 

regime transitions/pulsing, and other important dynamic characteristics of multiphase flows. High-

performance computing such as parallel machines/cluster computing allow fine-grid computations 

that will bring insightful interpretations on the mechanism of turbulent momentum transfer and 

provide insights into energy transfer and dissipation phenomena. 

From the abovementioned forewords, catalytic wet oxidation is still a very fertile area of research 

in which there is room for significant improvement. The development of active, cost effective, 

robust catalysts for use in many different agro and food industries could lead to significant cleanup 

of hdyric resources by catalytic wet oxidation. With the present contribution, our main purpose is 

to integrate and couple state of the art CFD codes with environmental reaction applications in the 

wastewater remediation by catalytic wet oxidation in trickle-bed reactors. Commercial and 

laboratory-made catalyst will be investigated thoroughly in terms of oxidation efficiency and 

stability. After the catalyst screening, kinetic studies will be performed to bring up lumped kinetic 

parameters necessary for the design and scale-up of pilot and industrial trickle-bed reactors. 

Available CFD turbulence models will be integrated with different multiphase flow frameworks at 

non- and reacting flow conditions. Experimental verification and validation will be accomplished 

for either integral hydrodynamic parameters (two-phase frictional pressure drop and liquid holdup) 

or TOC removal efficiencies. With such methodology, one should expect a significant contribution 

to the performance enhancement of trickle-bed reactors in environmental applications. 
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I.5. Thesis Structure 

Aiming to endorse and contextualize the reader with the present thesis, the current chapter has an 

introductory role on the CWO technology with environmental concerns and a relevant 

background, which probes the pertinent methodology on the investigation of single- and 

multiphase reactors. State of the art is outlined in Chapter II and is structured according to a 

concise survey of the scientific literature in non- and catalytic wet oxidation. Phenol and other 

aromatic alcohols were selected as they characterize agro-industrial wastewaters. Major 

polyphenolic pollutants typically found in olive oil mill wastewaters are then summarized and 

organized by research works with real and simulated effluents. An inventory of commercial non- 

and catalytic wet oxidation processes is presented including homogeneous and heterogeneous 

technologies. Multiphase reactors are reviewed in terms of fluid dynamics, catalyst wetting and 

gas-liquid-solid mass and heat transfer parameters. Macroscopic hydrodynamic models for trickle-

bed reactors are presented as well as CFD simulation approaches that have been investigated for 

multiphase reactors.  These two first chapters are joined together in Part A of this document. 

The kernel of the thesis is divided into four main sections, the so-called Part B, C and D. It is 

worthwhile to mention that each chapter of these sections is mainly based upon the publication of 

peer-reviewed articles. Part B includes Chapters III and IV devoted to the investigation of active, 

stable and economical catalysts for the treatment of OMW, as well as the characterization of the 

reaction system through kinetic analysis, using various catalysts prepared in the laboratory or 

obtained commercially. Six major pollutants in OMW (syringic, vanillic, 3,4,5-trimethoxybenzoic, 

veratric, protocatechuic and trans-cinnamic acids) are applied to mimic the polyphenolic content of 

agro effluents and kinetic expressions in terms of TOC are established aiming the successful 

design and operation of continuous CWO multiphasic chemical reactors in wastewaters treatment 

plants. Apart from the catalytic activity, active metal leaching and carbon adsorption on the 

catalyst surface are assessed from a catalytic stability point of view. 

Part C is allocated to the hydrodynamic simulations of trickle-bed reactors by means of CFD 

codes: Euler-Euler and Volume-of-Fluid (VOF) multiphase models. The Eulerian framework is 

developed with momentum interphase exchange coefficients and the trickle-bed reactor under 

high-pressure operation is modelled through a three-dimensional mesh to bring up hydrodynamic 

studies in Chapter V. Aiming to examine laminar and different Reynolds Averaged Navier-Stokes 

(RANS) turbulence k-ε models (Standard, Realizable and Renormalization Group Theory (RNG) 

and Reynolds Stress Model (RSM)) for multiphase flow in trickle-bed reactors, in Chapter VI a 

multifluid Eulerian model is applied for the simulation of  interstitial flow to describe the fluid 

phase scale interactions at the catalyst level in a regular packing. As long as the details of the flow 
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environment around the catalyst particles are essential, different mesh densities in the optimization 

of numerical solution parameters are performed under unsteady laminar and turbulent flow 

simulations in order to provide a more fundamental understanding of trickle-bed hydrodynamics. 

Phasic velocity maps and turbulent kinetic energy profiles are examined to provide insightful and 

realistic fluid flow conclusions. Several computational runs are performed for the purpose of 

hydrodynamic model validation either in terms of liquid holdup or two-phase pressure drop. 

Afterwards, in Chapter VII the quantitative understanding of flow maldistribution at the catalyst 

scale in the trickle bed is accomplished through the evaluation of time averaged axial and radial 

profiles for both hydrodynamic parameters. The influences of liquid distributor geometry as well 

as the effect of gas and liquid flow rates are investigated in the trickling flow regime.  

Chapter VIII is dedicated to multiphase Volume-of-Fluid (VOF) model to simulate the wetting 

phenomena in high-pressure trickle-bed reactors providing a better understanding of its liquid 

distribution and hysteresis. The hydrodynamic validation is attained in terms of pressure drop and 

liquid holdup experimental data taken from the open literature and afterwards, computational 

predictions for the wetting efficiency are investigated at different liquid flow rates. Additionally, 

simulation activities on the gas-liquid-solid interface at different flow regimes are performed for 

the meaningful knowledge of interaction between TBR hydrodynamics and reaction parameters. 

High-pressure TBR simulation assisted with VOF model comprises the numerical validation in 

terms of well-known hydrodynamic parameters. Liquid holdup and two-phase pressure drop are 

selected for the parametric optimization of several models parameters including mesh aperture, 

time step and convergence criteria. The multiphase flow regime is presented with several RANS 

turbulent flow models as well as the laminar one in Chapter IX. The effect of gas and liquid flow 

rate on either frictional pressure drop or liquid holdup are also examined under trickling flow 

conditions with three-dimensional packed bed geometry. 

Part D introduces the catalytic wet oxidation on Eulerian CFD simulations to investigate the 

behaviour of a pilot TBR unit considering the reaction aspects as well as the transport mechanisms 

involved in the treatment process of wastewaters from olive oil mills industries. The computational 

domains and modelling approach are firstly described and the hydrodynamics simulations are 

validated with single and two phase flow data reported in literature for experiments in TBR 

without chemical reaction. Regarding the simulation of the oxidation process in TBR, 

experimental studies involving the determination of reaction rates are accomplished for the TOC 

degradation of a single phenolic acid in Chapter X. Afterwards, in Chapter XI the catalytic wet 

oxidation of a phenolic acids mixture is simulated in a trickle-bed reactor by means of CFD at 

different temperatures and pressures as well as different gas and liquid flow rates. From the 

perspective of multiphase reactor engineering to gas-liquid-solid catalytic wet oxidation, scale-up 
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of chemical reactors as well as process optimization require detailed knowledge and information of 

concentration and thermal profiles. In Chapters XII and XIII, Euler-Euler and VOF model are used 

to gain insight and quantitative information about the axial and radial concentration and 

temperature profiles when a phenolic model solution is employed to simulate the CWAO in the 

multiphase reactor. Finally, in Chapter XIV, Eulerian framework is also compared against the 

VOF model in terms of hydrodynamic parameters and at reacting flow conditions to improve the 

current knowledge of interaction between hydrodynamics and chemical reaction in trickle beds. 

The whole work presented along this thesis is resumed at last in Part E (Chapter XV) where the 

most relevant conclusions and further recommendations on future work are exposed. Finally, 

Appendix A describes the FLUENT CFD solver methodologies. Numerical details of algorithms 

are provided for the pressure-velocity coupling and discretization schemes for spatial and temporal 

derivatives are described along the evaluation methods of gradients and derivatives. 
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II. State of the Art 

This chapter describes contemporary literature in non- and catalyzed wet oxidation. Literature is 

reviewed for phenol and other aromatic alcohols. Liquid pollutants in agro-food processing 

effluents are schematized in individual phenolic acids and raw olive oil mill wastewaters. 

Commercial processes are depicted for homogeneous and heterogeneous applications of wet 

oxidation. Afterwards, multiphase reactors are identified with special emphasis in trickle-bed 

reactors by presenting the major hydrodynamic parameters used in the characterization of fluid 

dynamics and transport phenomena. Finally, CFD simulation approaches are classified according 

to Eulerian, Lagrangian and Volume-of-Fluid frameworks. 

 

II.1. Synopsis of the Literature in WO and CWO 
 

The majority of wastewater streams originated in petrochemical and pharmaceutical plants are 

contaminated with toxic and hazardous organic compounds. Typical application and contributing 

areas include the manufacture of petroleum-based products and fuels, the production of 

commodity and specialty chemicals, pharmaceuticals, herbicides and pesticides, refining of ores, 

production of polymers and other materials. In order to gather the environmental regulations, these 

industrial wastewaters must be treated before they meet the specifications for discharge into a 

natural water body. Among the chemical oxidation technologies, wet oxidation (WO) process has 

proven its aptitude for the treatment of effluents containing a high content of organic matter, 

specifically, total organic carbon (TOC) concentration (20-85 g L−1), chemical oxygen demand 

(COD) (40-200 g L−1), biochemical oxygen demand (BOD) (12-60 g L−1) in which direct 

biological purification is either aerobic or anaerobically unfeasible (Niaounakis and Halvadakis et 

al., 2004).  

WO is characterized by supporting the flameless pollutant oxidation in the aqueous phase with 

quite severe reaction conditions typically in the range of 473-573 K and 70-130 bar. A known 

disadvantage that adversely affects the cost-benefit of this process is related with such extreme 

conditions where most materials for construction are susceptible to stress corrosion cracking when 

chloride ions are present in the waste stream. Therefore, amenable technologies, such as catalytic 

wet oxidation (CWO), offer lower energy requirements and much higher oxidation efficiencies 

compared to conventional WO (Luck, 1996; Mishra et al., 1995; Wang et al., 1995; Wakakura et 

al., 1995). During CWO, organic pollutants are oxidized to innocuous inorganic compounds such 
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as CO2, H2O and hetero-atom dissolved ions at much lower temperatures and pressures than in 

unanalyzed thermal processes.  

The vast variety of organic compounds and industrial processes and wastewaters that have been 

studied using the WO and CWO processes indicates the potential seen in these processes by 

numerous researchers. The WO oxidation process (or wet air oxidation, WAO), which was first 

patented by Zimmerman (1950) over 50 years ago, removes organic compounds in the liquid 

phase by oxidizing them completely to carbon dioxide and water using an oxidant such as oxygen 

or air. The process is extremely clean, because it does not involve the use of any harmful chemical 

reagents and the final products are carbon dioxide and water when the oxidation is complete. 

When sufficient temperatures and/or residence times are not used, partial oxidation occurs. In most 

cases, low molecular weight carboxylic acids, which are very difficult to oxidize, form from the 

partial oxidation of higher molecular weight compounds. This has led to a significant number of 

studies being conducted on the WO of low molecular weight carboxylic acids and the development 

of catalysts to reduce the reaction temperatures required to completely oxidize many organic 

compounds in a reasonable amount of time.  

Mixtures of metal oxides of Cu, Zn, Co, Mn and Bi already exhibited good activity, but leaching 

of these catalysts was detected (Matatov-Meytal and Sheintuch, 1998; Collivignarelli et al., 1997; 

Zarzycki et al., 1997). On the contrary, heterogeneous catalysts based on precious metals 

deposited on stable supports are less prone to active ingredient leaching (Chen and Li, 1999; Luck, 

1999; Tan et al., 1999; Sune and de Sores, 1999; Harada, 1999; Kolaczkowski et al., 1999; 

Imamura, 1999). Depending on the type and amount of organic compounds dissolved in the 

wastewater, the process can be designed either to reduce their concentration or ultimately destroy 

them. In the former case, the intermediate products formed during the oxidation must be 

biodegradable. For reactions necessitating a solid catalyst and involving both relatively volatile 

(oxygen) and nonvolatile reactants (pollutant in wastewater stream), three-phase reactors are 

required.  

In the last three decades, several reviews on WO and CWO have been published with all of the 

reviews published prior to 1995 being summarized by Mishra et al. (1995). The reviews published 

after 1995 are listed in Table II.1. This list is based on the most recent review of WO/CWO 

(Bhargava et al., 2006) and other literature published up to and including 2009. Table II.1 focus 

predominantly on WO/CWO processes that use oxygen or air as an oxidant.  

 16



PART A. THESIS SCOPE AND OUTLINE 

 

Table II.1. Reviews on Wet Oxidation (WO) and Catalytic Wet Oxidation (CWO) Published from 1995 to 2007. 
 

Reference  Title Main topics covered/comments 
Levec and Pintar, 
2007 

Catalytic wet-air oxidation processes: A 
review 

Heterogeneous CWAO, mechanisms, kinetics; CWAO 
commercialised processes of real industrial wastewaters in 
batch and continuous-flow oxidation reactors; presentation of 
novel titania-supported Ru catalysts to detoxify industrial 
effluents 

Bhargava et al., 
2006 

Wet Oxidation and Catalytic Wet 
Oxidation 
 

Fundamental chemistry of WO/CWO;  important aspects of 
catalysts with regard to the CWO process; engineering aspects 
of the WO/CWO process; and industrial applications of CWO 
technology 

Patria et al., 2004 Wet Air Oxidation Processes Applications and commercial processes discussed in detail. 
Very brief discussion of uncatalyzed and catalyzed reaction 
mechanisms. 

Cai et al., 2004 Progress of Wet Catalytic Air Oxidation 
Technology 

CWAO advances in oxygen-containing organic compounds 
(phenol, carboxylic acids) 

Oliviero et al., 
2003 

Wet Air Oxidation of Nitrogen-
Containing Organic Compounds and 
Ammonia in Aqueous Media 

CWAO of nitrogenous compounds produced in chemical and 
pharmaceutical industries towards several inorganic forms of 
nitrogen (NH4

+, N2, NO2
-, NO3

-)  as well as phenolic 
compounds and carboxylic acids 

Imamura, 2003 Catalytic Technology for Water 
Purification: I & II 

Homogeneous and heterogeneous catalysts for water 
purification 

Maugans et al., 
2002 

Wet Air Oxidation: A Review of 
Commercial Sub-critical 
Hydrothermal Treatment 

Detailed discussion of commercial WAO 
processes 

Yang et al., 2002 Catalytic Wet Air Oxidation Air-based oxidant technology in catalytic wet oxidation 
Zarzycki, 2001 Mechanism and Mathematical Modeling 

of Wet Oxidation Processes 
Detailed discussion of reaction mechanisms and mathematical 
modelling of WO processes. Brief discussion of industrial 
applications of WO. 

Debellefontaine 
and Foussard, 
2000 

Wet Air Oxidation for the Treatment of 
Industrial Wastes. Chemical Aspects, 
Reactor Design and Industrial 
Applications in Europe 

Brief discussion of chemical aspects (mechanism and kinetics) 
of WAO and CWO. Detailed discussion of 
industrial aspects of WAO 

Tan et al., 1999 Factors Affecting Wet Air Oxidation 
Treatment of Wastewater 

Operating parameters, reactor design considerations and 
catalyst selection 

Imamura, 1999 Catalytic and Noncatalytic Wet 
Oxidation 

Discussed WO of compounds containing C, H, and O, amides, 
dyes, polymers. Discussed homogeneous copper salt catalysts 
and heterogeneous Co/Bi, Mn/Ce and Ru/Ce catalysts. Majority 
of studies reviewed were conducted by 
review author. 

Kolaczkowski et 
al., 1999 

Wet Air Oxidation: A Review of Process 
Technologies and Aspects in Reactor 
Design 

Detailed discussion of kinetics and mass transfer and WO and 
CWO processes. 

Sune and de 
Soares, 1999 

Some Aspects of Total Catalytic Wet 
Oxidation of Organic Substances in an 
Aqueous Phase 

Chemical reaction engineering issues in CWO of oxygen-
containing organic compounds  

Luck, 1999 Wet Air Oxidation: Past, Present and 
Future 

WAO and CWAO processes discussed in detail. Limited 
discussion on chemistry of WAO and CWO. 

Matatov-Meytal  
and Sheintuch, 
1998 

Catalytic Abatement of Water Pollutants Detailed discussion of catalysts and catalytic processes 
(including hybrid processes) used to remove a range of organic 
and inorganic compounds. 

Collivignarelli et 
al., 1997 

Technical and Economic Feasibility of 
Wet Oxidation: Treatment in a Full-scale 
Plant. Part 1. 

Economic evaluation of industrial wastewater treatment  

Luck, 1996 A Review of Industrial Catalytic Wet Air 
Oxidation Processes 

Description of commercialized reactor configurations and 
catalysts used in CWAO 

Wang, 1995 Advances in Catalytic Wet Air 
Oxidation of Wastewater 

Selection of suitable catalysts and chemical reaction 
engineering issues 

Mishra et al., 1995 Wet Air Oxidation Comprehensive review comparing aspects of WO and CWO. 
No detailed discussion about effect of pH. 

 

Levec and Pintar (2007) have reviewed several catalysts and presented mechanistic speculations 

and kinetics that have been proposed for the catalytic wet air oxidation (CWAO) process. The 

process is discussed more in detail only in those cases where it is already commercialised or at 

least foreseen to be in the near future. Particular attention was given to the heterogeneously 
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catalyzed WAO of real industrial wastewaters such as Kraft bleach plant effluents in batch and 

continuous-flow oxidation reactors. Finally, they came up with some considerations about the 

biodegradability/toxicity of CWAO treated effluents whenever the detoxification is incomplete, 

reporting that WAO was found capable of improving the biodegradability of pesticide and 

acrylonitrile wastewaters (Mishra et al., 1995), olive mill wastewaters (Chakchouk et al., 1994), 

phenolic wastewaters (Lin et al., 1994), water-soluble polymer-containing wastewaters (Otal et al., 

1997). 

Bhargava et al. (2006) have discussed four main aspects of WO and CWO: the chemistry of WO 

and CWO, reactors suitable for WO and CWO, important aspects of CWO catalysts, and 

WO/CWO of industrial solutions. In that review, the chemistry of WO and CWO is discussed over 

a range of chemical reactions that may occur during WO/CWO in general and during the 

WO/CWO of specific compounds. The authors have presented some theoretical considerations 

into designing an industrial CWO reactor. Cost drivers in an industrial situation and the potential 

problems that must be considered for wet oxidative reactors are discussed. It is also shown how 

theoretical study on phenomena such as kinetics and mass transfer help in the design and selection 

of industrial reactors. The other reviews listed in Table II.1 are shortened referred through the 

main topics addressed in each work jointly with some brief comments. Noteworthy, the surprising 

number of reviews coming to the general literature, 20 in 13 years (from 1995 to 2008) attests the 

high level of interest for this remediation technology. 

II.2. Wet Oxidation of Phenol and Other Aromatic Alcohols 

Phenol and other aromatic alcohols is the investigation subject of election in the last three decades 

given the numerous studies that have been conducted on non-catalyzed wet oxidation. The major 

reason is related to the phenolic characteristics of several aqueous effluents produced by the 

petrochemical, coke, shale oil, pulp and paper and plastics industries. 

The non-catalyzed phenol wet oxidation in terms of TOC/COD conversion is significantly 

influenced by reaction temperature, oxygen partial pressure, and solution pH. At 130 °C and 

PO2=0.5 MPa, ≈5% TOC conversion occurs after 2 h (Hamoudi et al., 1998), whereas at 220 °C 

and PO2=3 MPa 88% TOC conversion occurs after 2 h (Imamura, 1999). According to Table II.2, 

phenol has received particular attention during the last decades. The maximum temperature tested 

was 320 ºC (Wilhelmi and Knopp, 1979) and the maximum pressure was 150 bar (Pruden and Le, 

1976). At those severe operating conditions, the phenol conversion was almost complete: 99.77 

and 99 % after 15 min, respectively. The removal efficiencies of phenol have been expressed in 

terms of TOC, COD and individual phenol conversion and, in general, the higher operating 
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temperature and/or pressure, the higher phenol conversion is attained. As it can be seen from Table 

II.2, the minimum temperature and oxygen pressure that enables satisfactory decontamination 

efficiencies after 1 h were 250 ºC and 50 bar. Table II.2 summarizes the relevant works on the wet 

oxidation of phenol and other aromatic alcohols where it can be seen that reasonably high 

TOC/COD conversions can be achieved for most of the compounds at lower reaction 

temperatures, compared to carboxylic acids/salts, which are not referred here once they are not 

within the scope of the work. It should be noted that the formation of acetic acid/sodium acetate as 

an intermediate significantly reduces the low-temperature complete WO of some aromatic 

alcohols. Despite the high number of investigations on non-catalyzed wet oxidation of phenol, few 

studies have been reported on benzene-substituted alcohols and other aromatic alcohols such as 

benzyl alcohol, benzenediol, butylphenol, cyclohexanol, dimethylphenol, nitrophenol, 

pentachlorophenol, chlorophenol, cresol and biological-based phenols (cellulose, glucose, 

cellobiose), compared to the number of studies conducted on the WO of carboxylic acids/salts 

reviewed by Imamura (2003) and Luck (1999). Therefore, no confident and universal conclusions 

can be made due to the lack of sufficient information on this class of compounds.  

II.3. Catalytic Wet Oxidation Studies on Phenol  

Table II.3 summarizes most relevant and cited studies on catalytic wet oxidation of phenol and 

other aromatic alcohols. It can be seen that one of the most active catalysts that have been 

developed for CWO of phenol, in terms of TOC removal, is a PtxAg1-x-MnO2/CeO2 catalyst that 

was developed by Hamoudi et al. (2000). This catalyst achieved 80% TOC removal in 1 h at 80 

°C, using an oxygen partial pressure of 0.5 MPa. In what concerns the catalyst stability, it has been 

observed the deposition of polymeric products on the catalyst surface and pores. Pintar and Levec 

(1992) also reported the deposition of polymeric products in their study on CWO of phenol using a 

catalyst comprised of ZnO, CuO and Al2O3. Chen et al. (2001) have developed a Mn-Ce-O 

catalyst for the efficient removal of phenol TOC. This catalyst was capable of removing 80%-90% 

of phenol TOC in 10 min at 110 °C, using an oxygen partial pressure of 0.5 MPa. The percentage 

TOC removal achieved using this catalyst was reported to be highly dependent on the Mn/Ce ratio. 

At a Ce/(Mn + Ce) ratio of 1 (i.e., no manganese), there is no TOC conversion, compared to the 

80%-90% that is achieved using a Ce/(Mn + Ce) ratio of 4/6. According to Chen et al. (2001) the 

high activity of this Mn-Ce-O catalyst is presumably due to the following: (i) improved oxygen 

storage capacity, (ii) improved oxygen mobility on the surface of the catalyst, and (iii) an electron-

rich surface, which may be very important in the activation of adsorbed oxygen. Chen et al. (2001) 

reported that the main oxidation products formed using the Mn-Ce-O catalyst are carbon dioxide, 

small amounts of water-dissolved oxidation intermediates and some carbonaceous deposits. 
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Table II.2. Wet Oxidation of phenol and other aromatic alcohols 
 

Initial pH PO
2
 (bar) T (ºC) Results (% of removal) Reference 

Phenol 
25 mol NaOH/kg H2O 50 250 yield CO2, 29.9% (2 h) Furuya et al., 1985 

n.s. [O2] = 2.4-3.8 150-225 compound, 80% (1 h, 200 °C) Devlin and Harris, 1984 
4.4-6.6 103 50-300 COD, 100% (1 h, 300 °C) Lin and Chuang, 1994 

n.s.  275 phenol, 99.8% (1 h) Dietrich et al., 1985 
n.s. 51-102 170-220 phenol, 100% (10 min, 220 °C, 10MPa) Vicente et al., 2002 
n.s.  150-200 TOC, 85% (80 min, 200 °C) Wu et al., 2001 

2.8 and 3.3 10 180-248 TOC, 93.4% (20 min, pH 2.8, 248 °C) Imamura et al.,1982 
n.s. 50-150 200-250 phenol, 99% (15 min, 250 °C, 15 MPa) Pruden and Le, 1976 

6.5 and >12 6.9 230 COD, 90% (pH 6.5 and >12, 30 min) Vaidya and Mahajani, 2002 
n.s. 34, overpressure 204-260 TOC, ≈ 85% (1 h, 204 °C) Baillod et al., 1982 
5-7 9.3 155 COD, <2% Birchmeier et al., 2000 
n.s. 5 130 TOC, ≈ 5% (2 h) Hamoudi et al., 1998 
n.s. 34, overpressure 204-260 TOC, ≈ 85% (1 h, 204 °C) Baillod et al., 1982 
n.s. 138 (air) 142-166 phenol, 100% (2.5 ks, 166 °C) Willms et al., 1987 
n.s. 30 220 TOC, 88% (2 h); COD, 93% (2 h) Imamura, 1999 
n.s.  275, 320 phenol, 99.77 (275 °C) Wilhelmi and Knopp, 1979 
n.s. 32-39 170-230 phenol, 99% (1 h, 230 °C, 3.55 MPa) Chang et al., 1995 
n.s. 7 150 phenol, ≈ 95% (5 h); TOC, ≈ 58% (5 h) Arena et al., 2003 

Benzyl Alcohol 
n.s. 30 220 TOC, 93% (2 h); COD, 92% (2 h) Imamura, 1999 

1,2-Benzenediol 
25 mol NaOH/kg H2O 50 250 yield CO2, 26.5% (2 h) Furuya et al., 1985 

1,3-Benzenediaol 
“ “ “ yield CO2, 31.5% (2 h) “ 

1,4-Benzenediaol 
“ “ “ yield CO2, 33.9% (2 h) “ 

4-sec-Butylphenol 
“ “ “ yield CO2, 42.6% (2 h) “ 

Cyclohexanol 
“ “ “ yield CO2, 29.1% (2 h) “ 

2,4-Dimethylphenol 
n.s. n.s. 275 2,4-dimethylphenol, 99.99% (60 min) Dietrich et al., 1985 

4-Nitrophenol 
n.s. n.s. “ nitrophenol, 99.6% (60 min) “ 

Pentachlorophenol 
n.s. n.s. “ pentachlorophenol, 97.3% (60 min) “ 

p-Chlorophenol 
2.40 26 180 TOC, 42.9% (1 h) Qin et al., 2001 

2-Chlorophenol 
n.s. 35.5 210 2-chlorophenol, 99% (1 h) Chang et al., 1995 
n.s. 34, overpressure 204-260 TOC, ≈ 80% (1 h, 260 °C) Baillod et al., 1982 
n.s. n.s. 275, 320 2-chlorophenol, 94.96% (275 °C) Wilhelmi and Knopp, 1979 

Cellulose 
3.1 n.s. 260-320 TOC, 85% (30 min) Robert et al., 2002 

o-Cresol 
n.s. 30 220 TOC, 78% (2 h); COD, 86% (2 h) Imamura, 1999 

p-Cresol 
2.47 6.9-13.4 150-225 COD, 54.95% (2 h, 225 °C) Mishra et al., 1993 

Veratryl Alcohol 
3 7 150-200 COD, <5% (2 h at 150 °C followed by 1 

h at 200 °C) 
Sonnen et al., 1997 

Glucose 
3 7 150-200 COD, ≈ 60% (2 h at 150 °C followed by 

1 h at 200 °C) 
“ 

Cellobiose 
5-7 9.3 155 COD, ≈ 5% (1 h) Birchmeier et al., 2000 

4-Nitrophenol 
n.s. n.s. 275, 320 4-nitrophenol, 99.6% (275 °C) Wilhelmi and Knopp, 1979 

Pentachlorophenol 
n.s. n.s. 275, 320 pentachlorophenol, 81.96% (275 °C) Wilhelmi and Knopp 1979 

 

According to Table II.3, whereas Pintar and Levec (1992) have claimed complete conversion of 

TOC with CuO-ZnO-Al2O3 at 130 ºC and 5.6 bar after 1h, Chen et al. (2001) achieved 90 % of 

TOC conversion catalyzed by Mn-Ce-O at 110 ºC and 5 bar after 10 min. With a noble catalyst, 
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Hamoudi et al. (2000) reported 80% of TOC conversion with PtxAg1-xMnO2/CeO2 at 130 ºC and 5 

bar of oxygen pressure.  

Table II.3. Catalytic Wet Oxidation of phenol and other aromatic alcohols 
 

Catalyst pH0 PO
2
 

(bar) 
T (ºC) Results (% of removal) Reference 

Phenol 
Na5[PV2Mo10O40] 3-4.5 9.3 155 COD, 76% Birchmeier et al., 2000 
CeO2 NA 5-15 160-180 TOC, 80% (3 h, 1.0 MPa) Lin et al., 2003 
Co/Bi 3.5-5.2 10 180-248 TOC, 95.8% (20 min, 248 ºC, pH 3.5) Imamura et al., 1982 
CuO/C (Sofnocarb 
A21) 

6.35 36 180 phenol, 95% (1 h) Alvarez et al., 2002 

Cu/MCM-41 NA 34 150-200 TOC, 90% (80 min) Wu et al., 2001 
Ru-Ce/C ~6 20 160 phenol, 100% (3 h) Oliviero et al., 2000 
Ru-CeO2/C ~6 20 160 phenol, 92% (3 h) “ 
Ru/C ~6 20 160 phenol, 82% (3 h) “ 
CuSO4 NA 32 170 phenol, 98.8% (1 h) Chang et al., 1995 
Co2O3 NA 32 170 phenol, 98.7% (1 h) “ 
MnO2 NA 32 170 phenol, 89% (1 h) “ 
CuO-ZnO-Al2O3 NA 5.6 130 phenol, 100% (1 h) Pintar and Levec, 1992 
Cu(NO3)2 5-6 10 200 TOC, 93.5% (1 h) Imamura et al., 1988 
Mn-Ce-O NA 5 110 TOC, 80%-90% (10 min) Chen et al., 2001 
Ru/Ce 5-6 10 200 TOC, 94.8% (1 h) Imamura et al., 1988 
FeSO4 6.5 6.9 175 COD, 78% (1 h) Vaidya and Mahajani, 

2002 
CuSO4 6.5 6.9 175 COD, 95% (1 h) “ 
CuO-ZnO-Al2O3 NA 3 130 phenol, 100% (2 h) Levec, 1990 
Pt-graphite 2-8 0.1-8 120-180 phenol, 99% (150 ºC, 1.8 MPa) Masende et al., 2003 
ZnO-CuO-Al2O3 5.5, 7.3 1.5-10 105-130 TOC, 95% (2 h, 130 ºC, 5.6 bar) Pintar and Levec, 1992 
ZnO-CuO-C-Al2O3 NA 5 130 phenol, 100% (40 min) Akyurtlu et al., 1998 
PtxAg1-xMnO2/CeO2 NA 5 80-130 TOC, 80% (1 h, 80 ºC) Hamoudi et al., 2000 
CuO 2-7 1-17 96-120 no conversion data (reaction rates) Sadana and Katzer, 1974 
CuO-CeO2 NA 7.3 150 TOC, 91% (5 h) Hocevar et al., 2000 
CeO2/γ-Al2O3 NA 15 180 phenol, >95% (2 h); COD, ~80% (2 h) Chen et al., 2004 
Al-Fe PC 3.9-5.1 8-25 90-150 phenol, >95% (1 h, 150 ºC, pH 3.9) Guo and Al-Dahhan, 

2003 
Cu(NO3)2  12-23 40-60 phenol, >95% (1 h, 60 ºC) Wu et al., 2003 

p-Chlorophenol 
CuSO4 NA 35.5 160-210 p-chlorophenol, >99% (1 h, 210 ºC) Chang et al., 1995 
CuO-ZnO-Al2O3 NA 5.6 120 p-chlorophenol,100% (80 min) Pintar and Levec, 1992 
Pt/A.C. 
Pt/Al2O3

Pt/CeO2
Pd/A.C. 
Pd/Al2O3

Pd/CeO2
Ru/A.C. 
Ru/Al2O3

Ru/CeO2
Pt/Pd/Al2O3
Pt/Pd/Ce/Al2O3

Mn/Al2O3

5.01 
2.37 
2.7 
3.48 
2.25 
2.95 
1.71 
1.88 
2.48 
2.17 
3.06 
5.46 

26 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 

180 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 

TOC, 97.9% (1 h) 
TOC, 91.2% (1 h) 
TOC, 50.4% (1 h) 
TOC, 97.5% (1 h) 
TOC, 81.8% (1 h) 
TOC, 45.4% (1 h) 
TOC, 91.8% (1 h) 
TOC, 72.4% (1 h) 
TOC, 65.7% (1 h) 
TOC, 84.7% (1 h) 
TOC, 68.6% (1 h) 
TOC, 82.5% (1 h) 

Qin et al., 2001 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 

Chlorophenol 
CuO-ZnO-Al2O3 NA 3 130 chlorophenol, 100% (100 min) Levec, 1990 

 
Nitrophenol 

CuO-ZnO-Al2O3 NA 3 130 nitrophenol, 80% (2.5 h) “ 
CuO-ZnO-Al2O3 NA 5.6 140 p-nitrophenol, 95% (2.5 h) Pintar and Levec, 1992 
Pt/TiO2 NA  150, 200 TOC, 70% (0.5 h, 150 ºC) Higashi et al., 1992 
Mn-Ce-Zr-Cu 
[CuSO4] 

NA 10 190 TOC, 71% (20 min); COD, 79% (20 
min) 

Yoon et al., 2001 

p-Cresol 
CuO 9, 13.5 20-30 190 COD, 69% (30 min, pH 9); 6.2% (30 

min, pH 13.5) 
Mishra et al., 1993 

CuSO4 acidic 20-30 190 COD, 89% (2 h) “ 
Cellobiose 

Na5[PV2Mo10O40] 3.0-4.5 9.3 155 COD, 47% (1 h) Birchmeier et al., 2000 
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The CWO of other aromatic alcohols, such as chlorophenol and nitrophenol, has not been studied 

as extensively as phenol. However, some promising catalysts based on noble metals Pt and Ru 

(Qin et al., 2001) and Cu, Zn and Mn (Qin et al., 2001; Pintar and Levec, 1992) have been 

developed for the removal of these compounds. Reaction pathways for the CWO of phenol have 

been studied by several researchers over the last two or three decades. Evidentially, many different 

intermediates form from the CWO of phenol on various catalysts. These intermediates can have a 

significant effect on phenol TOC conversion. Acetic acid is formed as an intermediate during 

CWO of phenol using several different catalysts.  

 
II.4. Research involving the pollutants studied in this work 
 

The research conducted in this work was performed on the decontamination of agro-industrial 

wastewaters arising from the production of olive oil. Olive oil manufacturing is an important 

economic activity of many countries particularly throughout the Mediterranean Sea (the annual 

world olive oil production, estimated at about 1.5-1.7 Mt/year in the eighties, reached around 

2.5 Mt/year in the recent seasons) (International Olive Oil Council, 2008). However, olive oil 

extraction is one of the most pollution intensive food-processing industries. It involves a high 

consumption of water and large volumes of strongly polluted wastewaters known as olive mill 

wastewater (OMW) are generated. The amount of olive oil mill wastewater depends on the milling 

process, ranging from about 0.6 m3/t of olives processed for classical mills to about 1.7 m3/t olives 

in centrifugal mills (Hamdi, 1993). Furthermore, OMW is characterized by a very high Chemical 

Oxygen Demand (COD up to 200 g l-1), a high content in phenol-like substances (in the range 1–

5 g l-1 measured as phenol) and acidity.  

Mainly because of its highly phytotoxicity and strong antimicrobial properties (Perez et al., 1992; 

Capasso et al., 1995), the classical biological treatment cannot be applied. Alternative appropriate 

treatments have to be considered for the management of these wastewaters. Most physical and 

physicochemical methods, such as precipitation, flocculation/clarification, coagulation, filtration, 

evaporation in open ponds (Rozzi and Malpei, 1996) give only partial solution to the problem. 

Reverse osmosis or ultra-filtration is usually costly. Anaerobic biological digestion with 

production of biogas is increasingly being used, but is not yet completely satisfactory (Dalis et al., 

1996; Beccari et al., 1996). 

A possible solution would be the chemical oxidative degradation of OMW used as a pre-treatment 

process to decrease its toxicity prior to biological treatment. Ozone alone or combined with 

hydrogen peroxide or UV radiation (Beltran et al., 1999; Andreozzi et al., 1998; Benitez et al., 

1997), photo-Fenton treatment (Gernjak et al., 2004; Rivas et al., 2001; Pulgarin et al., 1999), 

 22



PART A. THESIS SCOPE AND OUTLINE 

 

Fenton's reagent (Rivas et al., 2001), oxidation with polymer supported FeCl3 (Fiorentino et al., 

2004), wet air oxidation (WAO) with the addition of H2O2 (Chakchouk et al., 1994) have been 

tested. CWAO is increasingly studied for the elimination of organic pollutants in a variety of 

wastewaters from different chemical plants since as mentioned before, CWAO operates at lower 

temperatures and pressures than WAO due to the presence of, e.g., noble or transition metal based 

catalysts (Bhargava et al., 2006; Luck, 1999; Kolaczkowski, 1999; Béziat et al., 1999; Matatov-

Meytal and Sheintuch, 1998). 

Typical OMW contains high concentrations of tyrosol, cinnamic and/or benzoic acid derivatives. 

The scope of this work was to investigate the use of CWAO to treat model molecules 

representative of OMW. In this regard, p-coumaric, 4-hydroxybenzoic, ferulic, caffeic, gallic, 

hydroxytyrosol, tyrosol, p-hydroxyphenylacetic, syringic, vanillic, 3,4,5-trimethoxybenzoic, 

veratric, protocatechuic  and trans-cinnamic acids have been identified in the literature as a 

representative of the phenolic fraction. These are the main reasons that supported the selection of 

these pollutants for the research developed under the present work, namely, syringic (4-hydroxy-

3,5-dimethoxybenzoic), vanillic (4-hydroxy-3-methoxybenzoic), 3,4,5-trimethoxybenzoic, veratric 

(3,4-dimethoxybenzoic), protocatechuic (3,4-dihydroxybenzoic) and trans-cinnamic acids that are 

typically found in Olea europaea L.-based olive oil wastewaters (Mulinacci et al., 2001). 

Section II.4.1 presents the relevant works dedicated to the non- and catalyzed wet oxidation of 

individual phenolic acids and section II.4.2 brings up the wet oxidation studies of real olive oil 

wastewaters. 

 

II.4.1. Individual Phenolic Acids 

The reactivity of p-coumaric acid has been studied using ozone (Andreozzi et al., 1995), UV 

radiation and combination of ozone and UV radiation (Miranda et al., 2001), photo-assisted 

Fenton reaction (Herrera et al., 1998) or photocatalysis (Poulios and Kyriacou, 2002). Fe-ZSM5 

catalysts and Fe-containing pillared clays in combination with hydrogen peroxide were found 

more active than the homogeneous Fe3+-salt (Perhatoner and Centi, 2005). The wet air oxidation of 

p-coumaric acid has been investigated without catalyst (Mantzavinos et al., 1996a) and using 

various homogeneous (Fe2+, Cu2+, Zn2+, Co2+) and heterogeneous (CuO-ZnO-Al2O3) catalysts 

(Mantzavinos et al., 1996b). Some leaching of the heterogeneous catalyst was measured whose 

extention was strongly dependent on the operating conditions. Fe- and Zn-promoted ceria catalysts 

prepared by co-precipitation were also investigated in the wet air oxidation (Neri et al., 2002).  

Table II.4 summarizes the works where the compounds studied in this thesis were used as 

simulated pollutants of OMW. From this table, it can be seen that mostly investigations with p-
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coumaric, 4-hydroxybenzoic, ferulic, caffeic, hydroxytyrosol, tyrosol, p-hydroxyphenylacetic, 

syringic and vanillic acids were performed with air using transition and noble metals supported on 

alumina and pillared clays. The operating reaction conditions, catalyst composition and the extent 

of degradation are reported. As it can be seen from Table II.4, p-coumaric acid was extensively 

studied during the last decade.  

Table II.4. Catalytic Wet Oxidation of phenolic acids 
 

Catalyst pH0 PO
2
 (bar) / H2O2 T (ºC) Results (% of removal) Reference 

p-Coumaric Acid 
Cu-PILC 
Cu-Al2O3 
Cu-bentonite 

n.s. 0.15-0.5 ml h−1 H2O2  
“ 
“ 

60-90 
“ 
“ 

TOC, 87% (4h) 
“ 
“ 

Caudo et al., 2008 
“

Cu-Al2O3 
Cu-bentonite 
Cu-ZrO2 

Cu-ZSM-5 
Cu-PILC 
Fe-PILC 

~5 0.15 ml h−1 H2O2 (4 h) 
“ 
“ 
“ 
“ 
“ 

60-90  
“ 
“ 
“ 
“ 
“ 

TOC, 91% (4 h) 
TOC, 70% (4 h) 
TOC, 73% (4 h) 
TOC, 78% (4 h) 
TOC, 82% (4 h) 
TOC, 75% (4 h) 

Caudo et al., 2007a 
“ 
“ 
“ 
“ 
“ 

Cu-PILC 
Fe-PILC 

n.s. 0.5 ml h−1 H2O2 70 TOC, 85% (4 h) 
TOC, 80% (4 h) 

Caudo et a , 2007b l.
“ 

Cu-PILC 4.5-5.5 0.5 ml h−1 H2O2 (3 h) 80 TOC, 75% (3 h) Najjar et al., 2007 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 28% (24 h) Azabou et al., 2007 
TiO2 DT51 
TiO2 P25 
ZrO2 MeL 
ZrO2 EP 
Pt-TiO2  P25 
Pt-ZrO2  MeL 
Ru-TiO2 P25 
Ru-TiO2 DT51 
Ru-TiO2 Eng 
Ru-ZrO2 MeL 
Ru-ZrO3 EP 

n.s. 50 ( ir) a
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 

140 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 

TOC, (35)% (5 h) 
TOC, (30)% (5 h) 
TOC, (40)% (5 h) 
TOC, (20)% (5 h) 
TOC, (75)% (5 h) 
TOC, (35)% (5 h) 
TOC, (65)% (5 h) 
TOC, (70)% (5 h) 
TOC, (75)% (5 h) 
TOC, (80)% (5 h) 
TOC, (60)% (5 h) 

Minh et a ., 2006 l
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 
“ 

CeO2

Au-CeO2 
Pt-CeO2

n.s. 20 
“ 
“ 

80 
“ 
“ 

TOC, (80)% (5 h) 
TOC, (85)% (5 h) 
TOC, (90)% (5 h) 

Milone et al., 2006 
“ 
“ 

Pt-(TiO2,ZrO2) 
Ru-(TiO2,ZrO2)

n.s. 50 (air) 140 TOC, (95, 80)% (5 h) 
TOC, (75, 80)% (5 h) 

Perkas et al., 2005 
“ 

Fe-CeO2 
Zn-CeO2 

CeO2

n.s. 20 (air) 
“ 
“ 

80-130 
“ 
“ 

TOC, 100% (30 min) 
Compound, 33% (1.5 h) 

TOC, 80% (30 min) 

Neri et al., 2002 
“ 
“ 

Cu-Zn(Al2O3) n.s. 27.3 130 TOC, 76% (1 h); 
Compound 100% (15 

min) 

Mantzavinos t al., 1997 e
“ 

n.s. n.s. 28 150 TOC, 36%; Compund 
100% (2 h) 

Mantzavinos et al., 1996a 

4-Hydroxybenzoic Acid 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 52% (24 h) Azabou et al., 2007 
Cu-PILC 
Cu-Al2O3 
Cu-bentonite 

n.s. 0.15-0.5 ml h−1 H2O2 60-90 TOC, 75% (4h) Caudo et al., 2008 

Pt-(TiO2,ZrO2) 

Ru-(TiO2,ZrO2)

n.s. 50 (air) 140 TOC, 62% (6 h) 
TOC, 70% (6 h) 

Perkas et al., 2005 

Ferulic Acid 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 58% (24 h) Azabou et al., 2007 

Caffeic Acid 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 86% (24 h) Azabou et al., 2007 

Hydroxytyrosol 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 70% (24 h) Azabou et al., 2007 

Tyrosol 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 31% (24 h) Azabou et al., 2007 

p-Hydroxyphenylacetic Acid 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 32% (24 h) Azabou et al., 2007 

Syringic Acid 
Na5[PV2Mo10O40] 3.2 9.3 155 COD, 40% (3 h) Birchmeier et al., 2000 

Vanillic Acid 
(Al-Fe)PILC n.s. 0.02M H2O2 / UV 25 PolyPhOH, 50% (24 h) Azabou et al., 2007 
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Transition metals such as Cu, Fe, Ti and Zr have been compared with noble metals e.g. Pt, Au and 

Ru as systematized by Minh et al. (2006). The TOC conversion of p-coumaric acid aqueous 

solutions was found to be strongly dependent on the oxidation temperature for reaction times up to 

5h. Moreover, hydrogen peroxide was found to promote the TOC decontamination rates even at 

lower temperatures. Milone et al. (2006) and Neri et al. (2002) claimed that p-coumaric acid 

degradation can be further improved by ceria based catalysts with shorter residence times and 

lower temperatures and oxygen pressures. Apart from p-coumaric acid, the other phenolic acids 

were predominantly studied with aluminium and iron pillared clays and promoted by hydrogen 

peroxide irradiated by UV (Azabou et al., 2007). To the best of our knowledge, apart syringic and 

vannilic acids (Table II.4) there is no evidence in the literature up to date on the catalytic wet 

oxidation of the other phenolic compounds used in our work, namely, 3,4,5-trimethoxybenzoic, 

veratric, protocatechuic, and trans-cinnamic acids. 

 
II.4.2. Olive Mill Wastewater 
 
Table II.5 summarizes the works on the catalytic wet oxidation of olive mill wastewaters. It can be 

seen that only in the last couple of years the OMW decontamination was studied by means of 

CWO.  

 
Table II.5. Oxidation of Olive Mill Wastewaters 
 

Catalyst pH0 PO
2
 (bar) / H2O2 T (ºC) Results (% of removal) Reference 

Olive Mill Wastewater 
Al-PILC 
CuN1.7 
CuN2.8 

CuN5.6

n.s. 0.8-4% H2O2 (V/V) 25 TOC, 45% (2h) Achma et al., 2008 

Cu-PILC 
Cu-Al2O3 

Cu-bentonite 

4.6-
5.1 

30 ml h−1 H2O2 60-90 TOC, 29.8%; PolyPhOH, 38.8% (5h); 
COD, 20.8% 

Caudo et al., 2008 

Pt/C (1 wt.% Pt) 
Ir/C (5 wt.% Ir) 

4.3 6.9 100, 
200 

TOC, (41%, 100 ºC), (100%, 200 ºC) 
8h 

TOC, (52%, 100 ºC), (85%, 200 ºC) 8h 

Gomes et al., 2007 

Cu-PILC 
Fe-PILC 

4.8 0.5 ml h−1 H2O2 60-90  TOC, 16% (4 h); PolyPhOH, 46% 
TOC, 22% (4 h); PolyPhOH, 48% 

Caudo et al., 2007  

Cu-PILC 
Cu-Silicalite 

4.5-
5.5 

0.5 ml h−1 H2O2 50-80 TOC, 13% (6h); PolyPhOH, 45% 
COD, 78% (3 h); PolyPhOH, 97% 

Najjar et al., 2007 

(Al-Fe)PILC  0.02M H2O2 / UV 25 TOC, 43%; PolyPhOH, 62% (24 h) Azabou et al., 2007 
Cu-BTC 3.6-

4.2 
113 mg L−1 H2O2 25 COD, 18%; PolyPhOH, 96% (3.5h) de Rosa et al., 2005 

Pt-Al2O3 (5% Pt) 
CuO-A.C. (5% CuO) 

5.3 10 (air) 180 TOC, 30%; COD, 45% (6h) 
TOC, 45%; COD, 55% (6h) 

Rivas et al., 2001 

NA (SCWO) 4.9 250 (total)/ 0.2M 
H2O2

380-
500 

TOC, 83%, COD, 86%; PolyPhOH, 
99% (17s) 

Rivas et al., 2001 

 

Achma et al. (2008) developed a novel method of preparing copper-exchanged aluminum-pillared 

montmorillonite. The catalysts containing different ratios of Cu/clay were prepared by solid-state 

reaction of the Al-pillared clay already synthesized with copper nitrate in controlled atmosphere. 
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The properties of copper-based catalysts were studied in the wet hydrogen peroxide photocatalytic 

previous oxidation (WHPPCO) (H2O2 with UV light) of real OMW.  

Caudo et al. (2008) carried out a strict comparison of copper-based pillared clays (Cu-PILC) and 

the analogous iron-based clays (Fe-PILC) in the previous wet hydrogen peroxide catalytic 

oxidation (WHPCO) of model phenolic compounds (p-coumaric and p-hydroxybenzoic acids) and 

real OMW. Both catalysts show no leaching of the transition metal differently from other copper-

based catalysts prepared by wetness impregnation on oxides (alumina, zirconia) or ion-exchange 

of clays (bentonite) or zeolite ZSM-5. Cu-PILC shows a comparable activity to dissolved Cu2+ 

ions, although the turnover number is lower assuming that all copper ions in Cu-PILC are active. 

Cu-PILC shows a high resistance to leaching and a good catalytic performance, which was 

attributed to the presence of copper essentially in the pillars of the clay.  

Gomes et al. (2007) investigated the suitability of CWAO for the treatment of OMW in a high 

pressure reactor at 100 and 200 °C under an oxygen partial pressure of 6.9 bar, using carbon 

supported platinum (1 wt.% Pt) and iridium (5 wt.% Ir) catalysts prepared by incipient wetness 

impregnation. At 100 °C, refractory organic compounds persisted even after prolonged reaction 

time (8 h). At 200 °C, complete total organic carbon and colour removal was obtained with the 

Pt/C catalyst after 8 h of reaction. A kinetic model was developed taking into account catalytic and 

non-catalytic reactions, formation of refractory compounds and catalyst deactivation. The authors 

claimed a very good agreement between the proposed model and CWAO experimental data at 200 

°C. 

Caudo et al. (2007) performed several experiments on the WHPCO of model and real OMW with 

copper-pillared clays (Cu-PILC). The conversion results of model molecules (p-coumaric acid, p-

hydroxybenzoic acid) were compared with the ones from real agro-industrial plants and showed 

that Cu-PILC layered materials might be used to treat real wastewater from agro-food production, 

and not only simple model chemicals as typically made in the literature. The authors have claimed 

that using a semi-batch slurry-type reactor with a continuous feed of H2O2, the behaviour both in 

TOC and in polyphenols abatement may be described by using pseudo-first-order reaction rates. 

Using real wastewater the rate constants are one or two orders of magnitude lower than using 

model molecules and a decrease in the ratio between rate constant of phenols conversion and rate 

constant of TOC abatement is observed. Scaling-up to a larger volume semi-continuous slurry-

type reactor causes a further lowering of one order of magnitude in the rate constants of TOC and 

polyphenols depletion. The catalyst fouling has been identified as the preferential coupling of the 

organic radicals and deposition over the catalyst with respect to their further degradation by 

hydroxyl radicals generated from H2O2 activation on the copper ions of the catalyst.  
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Najjar et al. (2007) presented the OMW oxidation results obtained with WHPCO using Fenton-

like type catalysts (Cu-Silicalite-1 and Cu-pillared clay). Both catalysts showed a high conversion 

in the oxidation of poly-phenols and were able to drastically reduce the chemical oxygen demand, 

the biochemical oxygen demand and the non-biodegradability of the OMW. 

Azabou et al. (2007) studied WHPPCO catalyzed by aluminium–iron pillared montmorillonite 

(Al-Fe)PILC, of a mixture of eight model phenolic compounds present in OMW. 86% and 70% of 

phenol abatement have been achieved after 24 h of the o-diphenolic compounds caffeic acid and 

hydroxytyrosol, respectively. Monophenolic compounds tyrosol, p-hydroxyphenylacetic acid and 

p-coumaric acid were identified as the most resistant towards the WHPCO. The apparent rate 

constant of the phenolic molecule decreased with increasing initial pollutant concentration of 

organic molecule when the other parameters remained unchanged. Since the treatment was not 

complete, the toxicity of model and real OMW was also investigated for further process 

integration against the bioluminescent bacteria Vibrio fisheri being significantly decreased by 74% 

and 68%, respectively after the WHPCO. The subsequent biological treatment using a 

methanogenic consortium removed the remaining phenolic compounds by more than 70% even 

with the most recalcitrant compounds. 

Rivas et al. (2001) have carried out the oxidation of OMW after diluting it with synthetic urban 

wastewater (1:10). Experiments conducted using air as the oxygen source showed a positive effect 

of the previous neutralization of the wastewater if compared to the oxidation conducted at the 

original pH of the effluent (pH=5.3). The COD depletion and final biodegradability characteristics 

of the effluent as well as the use of free radical promoters (H2O2) resulted in a significant 

enhancement of the process in the presence of two commercially available catalysts that were 

platinum supported on alumina and copper oxide supported on active carbon. 

 

II.5. Commercial WO processes 
 

II.5.1. Non-catalytic Techology 

Only a few industrial processes are being practiced widely. Kolaczkowski et al. (1999) and Luck 

(1996) have published excellent reviews of various catalytic and non-catalytic reactor types, and 

the following section gives a short overview/summary of the processes. The major industrial 

noncatalytic wet oxidation processes are summarized in Table II.6.  
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Table II.6. Major Industrial Noncatalytic Wet Oxidation Processes 
 

Process Setup Mixing Application T (ºC) P (MPa) Retention 
time (min) 

Zimpro co-current bubble 
column 

axial and 
longitudinal 

preliminary detoxification/COD 
reduction 

~150-325 2-12 20-240 

Wetox compartmentalized 
horizontal reactor 

stirrer and 
oxygen addition 

preliminary to biological 
treatment 
or for complete conversion 

~200-250 4 30-60 

Vertech subsurface vertical 
reactor 

turbulent flow in 
downcomer 

general industrial wastewater ~180-280 8.5-11 60 

Kenox two concentric 
shells 
 

static mixer and 
ultrasonic 
probe 

preliminary to biological 
treatment 

200-240 4.1-4.7 40 

Oxyjet jet mixer feeding 
to tubular reactor 

jet mixer pharmaceutical, chemical, and 
wood waste 

140-300  <5 
 

 
 

II.5.2. Catalytic Technology 

Homogeneous Catalysis 

Homogeneous catalysts in WO systems have been reported to significantly enhance the destruction 

of organics, with copper salts showing high reaction rates (Kolaczkowski et al., 1999; Mishra et 

al., 1995). Reactors chosen for a homogeneous catalytic system (two-phase regime) are similar to 

non-catalyzed WO. The major issue of the homogeneous catalytic system, however, is the need to 

recover/remove the catalyst from the effluent after treatment. This necessitates an additional 

processing step and increased capital cost of the system. 

Homogeneous catalysis has been used with co-oxidation (where an easily oxidized material 

promotes the rate of oxidation of a more refractory material), as well as with radical promoters 

working in combination with transition metals. Examples are hydrogen peroxide with Fe2+ as a 

catalyst. Hydrogen peroxide has been associated with the generation of free radicals that are able 

to catalyze the reaction, especially when used with iron or copper salts. Often two or more metal 

salts act in a synergistic mode (Kolaczkowski et al., 1999; Luck, 1996). Table II.7 summarizes the 

homogeneous CWO processes. 

 
Table II.7. Homogeneous Catalytic Wet Oxidation Processes 
 

Process Reactor type Application T (°C) P (MPa) Catalyst/Oxidant 
LOPROX multistage bubble 

column 
low reactive waste <200 0.5-2 Fe2+-acid/oxygen 

Ciba-Geigy  chemical/pharma waste ~300  Cu2+/air 
ATHOS completely stirred 

recirculation 
reactor 

residual sludges 235-250 4.4-5.5 Cu2+/oxygen 
 

WPO  aquifer decontamination 90-130 0.1-0.5 Fe-Cu-Mn/H2O2

ORCAN  refractory waste pretreatment 120 0.3 Fe2+/air + H2O2
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Heterogeneous Catalysis 

The major advantage of a heterogeneous over a homogeneous catalytic system is the ease of 

catalyst retrieval from the reaction media. However, the stability and durability of the catalyst 

under CWO operating conditions is severely tested. Catalyst deactivation occurs by sintering, 

poisoning of the active sites, or fouling of the catalyst surface by intermediate reaction products. 

Also, in hot acidic environments, the active component may be dissolved into the liquid phase. In 

fixed-bed catalytic reactors, the pressure drops across the reactor, because the catalyst is 

deactivated easily by fouling and plugging, interparticle and intraparticle mass transport 

limitations must be minimized (Kolaczkowski et al., 1999). The pressure drop across the fixed-bed 

reactor is mainly determined by catalyst particle size. Increasing the diameter of catalyst particles 

reduces the pressure drop; however, in larger pellets, reaction rates become diffusion-limited. 

Sadana and Katzer (1974) have reported that reaction rates were lower with large catalyst particles 

(dp>0.4 mm) than with catalysts of smaller (dp<0.06 mm) pellet sizes, and they attributed this 

phenomenon to oxygen intraparticle diffusion limitations in the larger pellets. 

In addition, as interfacial contact area between catalyst and solution is reduced with larger pellet 

size, a considerable proportion of the catalyst may not be utilized effectively (Kolaczkowski et al., 

1999). Suspended solid materials in the waste stream cause clogging of the reactor bed, eventually 

resulting in a large pressure drop. This can be prevented by the use of a two-stage reactor (Harada, 

1999; Harada et al., 1987), where, in the first stage (noncatalytic), the solid matter is dissolved and 

then the waste is transferred to the second (catalytic) stage for oxidation. A monolith catalyst 

structure may be used as an alternative to a fixed bed. The monolith is comprised of several 

parallel channels, oriented in the direction of fluid flow. The catalyst is fixed onto the walls of 

these channels, so that intimate contact is established as the waste flows through the channels. The 

channel size, cell density, and wall thickness are fabricated to a designed cross-sectional area 

(Kolaczkowski et al., 1999). Provided that this area is larger than the particulate size in the waste, 

there is little impediment to the flow of solution through the channel, minimizing pressure losses 

and plugging of the catalyst (Kolaczkowski et al., 1999; Ishii et al., 1997). The shape of the 

channel cross-section can also be varied, with circular, rectangular, hexagonal, and sinusoidal 

forms being available. In addition, when operated in the slug flow regime (with gas and liquid 

plugs sandwiching each other), a recirculation pattern within each liquid plug is created, further 

improving mass transfer. This regime ensures formation of a thick liquid film between the channel 

wall and the gas, which promotes high mass-transfer rates and keeps the catalyst continuously 

wetted (Luck, 1999). 
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Heterogeneous catalytic processes include the Nippon Shokubai process and the Osaka Gas 

process. In the Nippon Shokubai process, heterogeneous catalysts are available in the form of 

pellets and honeycombs. Commonly, a gas-liquid vertical monolith reactor with a Pt-Pd/TiO2/ZrO2 

supported catalyst is used (Kolaczkowski et al., 1999; Luck, 1996). Nippon Shokubai also 

developed a two-part catalyst: a component is comprised of iron oxide, combined with an oxide 

from at least one element from the group of titanium, silicon, and zirconium, whereas the other 

component is comprised of one or more elements from the group of cobalt, nickel, cerium, silver, 

gold, platinum, rhodium, ruthenium, and iridium. Compared to non-catalyzed wet oxidation 

processes, this process is able to oxidize the refractory materials, acetic acid, and ammonia and, 

thus, allows the treated wastewater to be discharged or reused as industrial water without further 

treatment. The company’s patents cover a heterogeneous catalyst that is used for the conversion of 

organics and inorganics in wastewater to nitrogen, carbon dioxide, and water (Kolaczkowski et al., 

1999). Titania or zirconia catalyst supports provide increased catalyst strength, when compared to 

alumina supports, but limit catalyst activity and durability. Catalysts from the lanthanide series 

have good catalytic activity but are not easily fabricated and, with time, decline unacceptably in 

strength. In the patented catalyst, a combination of titanium dioxide with oxides of the lanthanide 

series are used, resulting in a moldable, physically stable catalyst that shows only a slight loss in 

strength and catalytic activity with time (Kolaczkowski et al., 1999). The segmented gas-liquid 

flow in this process is highly beneficial. Each liquid plug is sandwiched between two gas plugs, 

which results in a recirculation pattern within each liquid plug that improves mass transfer 

dramatically and prevents the deposition of solids. In addition, mass-transfer rates are significantly 

enhanced by the thin liquid film that forms between the gas and the channel wall, which also acts 

to keep the catalyst continuously wetted (Luck, 1996). An operating temperature range of 160-270 

°C, a pressure of 0.9-8 MPa, and a residence time of 1 h are typically used for the Nippon 

Shokubai process. Under these conditions, >99% conversion of pollutants such as phenol, 

formaldehyde, acetic acid, and glucose is achieved. Without a catalyst, the removal efficiencies 

would be 5%-50%. The catalyst is capable of treating organic wastes, including compounds that 

contain nitrogen, sulfur, or halogens, with lasting catalytic activity. Also, any nitrogen in the 

compound is decomposed to nitrogen gas. The use of this catalyst for the treatment of sulfur and 

halogen-containing organics is best performed under basic conditions, because acidic conditions 

shorten the life of the equipment that is used (Kolaczkowski et al., 1999).  

The Osaka Gas process is similar to the non-catalytic Zimpro process, except for the use of an Fe-

Co-Ni-Ru-Pd-Pt-Cu-Au-W catalyst supported on TiO2 and ZrO2 either as spherical particles or as 

honeycomb structures (Kolaczkowski et al., 1999; Luck, 1996). The process is used for the 

treatment of coal gasifier effluents, wastewater from coke ovens, concentrated cyanide wastewater 
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from the nitridation of steel, and sewage sludge and residential wastes. The operating conditions 

are tailored according to the type of waste and the required destruction efficiency. The catalyst 

exhibits optimal activity for long periods of time; e.g., in the treatment in the coke oven, 

wastewater at 250 °C and 6.9 MPa for more than 11 000 h showed no change in catalytic activity. 

A residence time of just 24 min allowed the waste COD to be reduced from 5870 mg/L to 10 

mg/L. In the destruction of various nitrogen-containing compounds such as ammonia, ammonium 

salts, and nitrates, virtually complete conversion of the nitrogen content to nitrogen gas has been 

obtained (Kolaczkowski et al., 1999; Ishii et al., 1997, Harada et al., 1992ab).  

 

II.6. Multiphase Reactors for CWO  

The effectiveness and economical viability of the CWO processes to be applied to industrial 

problems is highly influenced by the choice of the reactor concept and its detailed design. This 

poses significant challenges to the chemical reactor engineering area. Iliuta and Larachi (2001) and 

Eftaxias et al. (2003) have identified the following inventory: (i) the multiphase nature of CWO 

reactions (two-phase for homogeneous reactions and three-phase for heterogeneous reactions), (ii) 

the temperatures and pressures of the reaction, and (iii) the radical reaction mechanism. In 

multiphase reactors, complex relationships between parameters such as chemical kinetics, 

thermodynamics, interphase, intraphase, intraparticle mass transport, flow patterns and 

hydrodynamics influence reactants mass transfer. Complex models have been developed to assess 

the influence of catalyst wetting, the interface mass transfer coefficients, the intraparticle effective 

diffusion coefficient, and the axial dispersion coefficient on CWO. Thus, multiphase reactions are 

greatly influenced by diffusion kinetics as the various interfaces in multiphase systems act as 

resistances, generally lowering the reaction rates.  

Generally, three mechanistic steps are considered for a three-phase reaction: (i) mass transfer of 

the gaseous species to the gas/liquid interface, followed by (ii) mass transfer of the gaseous species 

from the gas/liquid interface to the bulk liquid, (iii) mass transfer of gaseous and liquid species to 

the catalyst surface, (iv) intraparticle diffusion of the reactant species to catalyst-active sites, (v) 

adsorption of species on active sites and surface reaction, and (vi) desorption and diffusion into the 

liquid phase. The homogeneous-heterogeneous radical reaction scheme, with its interplay of 

initiation, propagation, and termination reactions, can add further complexity. Common two-phase 

reactor types used in WO and homogeneous CWO include bubble columns, jet-agitated reactors, 

and mechanically stirred reactor vessels, and three-phase reactors used for heterogeneous CWO 

include trickle bed, bubble slurry column, and bubble fixed bed (monolith) or three-phase 
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fluidized bed reactors. The advantages and limitations of three-phase reactors as potential 

applications used in CWO are listed in Table II.8. 

 
Table II.8. Multiphase Reactors Used in CWO 
 

Reactor type Advantages Limitations 
trickle bed reactor high conversion as both gas and liquid flow regimes 

approach plug flow 
low liquid hold-up 
high catalyst loading 
low-pressure drop 

poor liquid-phase distribution 
often only partial wetting of the catalyst 
high intraparticle resistance 
poor radial mixing 
low mass transfer coefficient 
temperature control can be difficult 

slurry phase and three-
phase  
fluidized bed reactor 

high external mass transfer (G-L, L-S) 
low intraparticle resistance 
ease of catalyst addition and regeneration 
ease of thermal management 

catalyst separation 
high axial mixing 
low catalyst load 
high liquid-to-solid ratio 

bubble fixed-bed reactor high G-L mass transfer (better G-L interaction) 
high liquid holdup 
well-wetted catalyst 
channeling eliminated 
good temperature control 

high axial backmixing 
lower conversion compared to trickle-
bed reactors 
high-pressure drop 
flooding problems 

 
 
II.7. Synopsis of the Literature in Trickle-bed Reactors 
 

Trickle-bed reactors (TBR) and bubble columns reactors (BCR) are the multiphase reactors most 

often used in the chemical industry. In contrast with BCR reactors, TBRs are generally fixed bed 

catalytic reactors in which gas and liquid flow in cocurrent downward mode. The traditional 

application of TBRs lies in the petroleum refining industry, more specifically in hydroprocessing. 

Recently, TBRs were envisaged as a new application technology for the pollutant removal in 

moderate contaminated wastewaters. The effective removal of reaction heat, as well as the 

intensive mass transfer, from gas to liquid and liquid to solid, is carried out by recycling gas 

compressed through the catalyst bed in a quantity that significantly exceeds its demand for the 

reaction purpose. Fixed-bed reactors have disadvantages coming from the comparatively big 

catalyst particles in comparison with slurry reactors. To enumerate a few number, the higher 

reaction pressure dictated by the low grade of catalyst utilisation because of intraparticle diffusion 

and low efficiency of gas-liquid-solid mass transfer; the complexity of temperature control in 

exothermic reactions and problems with so-called hot-spots that can lead to the uncontrolled 

reactor heating up, sometimes to the reactor destruction; and the necessity of liquid and gas 

distributors inside the reactor and complex equipment in the case of gas recycling are well reported 

in the literature. 

In recent years, many works devoted to the numerous aspects of behaviour in fixed-bed reactors, 

such as hydrodynamics, chemical kinetics, mass and heat transfer have been published. Table II.9 

lists by chronological order the papers on trickle-bed reactors which review various aspects of 

TBRs and summarizes the progress in a specific application area related to TBR performance. 
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However, only in the last decades particular attention has been given to the behaviour of 

pressurized TBRs (Saroha and Nigam, 1996; Martinez et al., 1994; Larachi et al., 1993; Gianetto 

and Specchia, 1992) whereas all the others dealt with TBR research at atmospheric conditions. 

Recently, Boyer et al. (2007) established a large experimental database at “Institut Francais du 

Petrole” to measure simultaneously pressure drop and liquid holdup in packed bed reactor 

operated in trickle flow regime for a large range of operating conditions. The varying parameters 

are liquid viscosity and density, gas density, bed particle shape and size. This database has been 

first used to compare the prediction accuracy of the different models from the literature and the 

mechanistic model proposed by Attou et al. (1999) has been upgraded. This model has been 

validated over the whole data range and the accuracy has been checked with data external to the 

database. Experimental observations and modelling of high-pressure trickle-bed reactors was 

reviewed by Al-Dahhan et al. (1997) and Saroha and Nigam (1996) covering the following topics: 

flow regime transitions, pressure drop, liquid holdup, gas-liquid interfacial area and mass-transfer 

coefficient, catalyst wetting efficiency, catalyst dilution with inert fines, and evaluation of trickle-

bed models for liquid-limited and gas-limited reactions. Saroha and Khera (2006) presented a 

hydrodynamic study of fixed beds with cocurrent upflow and downflow considering the effects of 

high-pressure operation, which is of industrial relevance, on the physicochemical and fluid 

dynamic parameters. Lange et al. (2004) described the experimental and mathematical formulation 

of TBRs under unsteady-operation, whereas Khadilkar et al. (1999) reviewed empirical and 

theoretical models developed to account for the effect of high pressure on the various parameters 

and transport phenomena for TBRs.  
 
The current status in trickle-bed reactors with respect to hydrodynamics and its effect on process 

intensification has been also reviewed by Nigam and Larachi (2005). An integrated approach 

including catalyst selection, reactor design and process configuration have been recently presented 

from a process intensification point-of-view. It encompasses the investigation of different 

hydrodynamic, mass transfer and heat transfer parameters on the TBR performance. Catalyst 

wettability has been explained based on contact angle of the liquid on the surface of porous 

particle as alternating patches of saturated pore and solid surface (Baussaron et al., 2007). The 

hysteresis behavior of hydrodynamics using this concept has also been explained. Recent studies 

have demonstrated reactor performance improvement over the optimal steady state under forced 

time-varying liquid flow rates. In this mode of operation, the bed is periodically flushed with 

liquid, while the gas phase is fed continuously. 
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Table II.9. Articles on TBRs that contain reviews of some aspects of trickle-bed operation 

Authors Year Title 
Aydin et al. 2008 Influence of temperature on fast-mode cyclic operation hydrodynamics in trickle-bed 

reactors
Baussaron et al. 2007 Effect of partial wetting on liquid/solid mass transfer in trickle bed reactors
Boyer et al. 2007 Hydrodynamics of trickle bed reactors at high pressure: Two-phase flow model for 

pressure drop and liquid holdup, formulation and experimental validation
Saroha and Khera 2006 Hydrodynamic study of fixed beds with cocurrent upflow and downflow
Nigam and Larachi 2005 Process intensification in trickle-bed reactors
Herk et al. 2005 Scaling down trickle bed reactors
Lange et al. 2004 Unsteady-state operation of trickle-bed reactors
Silveston and Hudgins 2004 Periodic temperature forcing of catalytic reactions
Dudukovic et al. 1999 Multiphase reactors – revisited
Khadilkar et al. 1999 Trickle-bed reactor models for systems with a volatile liquid phase
Al-Dahhan et al. 1997 High-Pressure Trickle-Bed Reactors: A Review 
Saroha and Nigam 1996 Trickle-Bed Reactors 
Martinez et al.  1994 Three-Phase Fixed Bed Catalytic Reactors: Application to Hydrotreatment Processes 
Gianetto and Specchia  1992 Trickle-Bed Reactors: State of Art and Perspectives 
Wild et al.  1992 Heat and Mass Transfer in Gas-Liquid-Solid Fixed Bed Reactors 
Levec and Lakota  1992 Liquid-Solid Mass Transfer in Packed Beds with Cocurrent Downward Two-Phase Flow 
Zhukova et al.  1990 Modeling and Design of Industrial Reactors with a Stationary Bed of Catalyst and 

Two-Phase Gas-Liquid Flows A Review 
Lemcoff et al. 1988 Effectiveness Factor of Partially Wetted Catalyst Particles: Evaluation and Application 

to the Modeling of Trickle Bed Reactors 
Ng and Chu 1987 Trickle-Bed Reactors 
Ramachandran et al. 1987 Recent Advances in the Analysis and Design of Trickle-Bed Reactors 
Gianetto and Berruti  1986 Modelling of Trickle-Bed Reactors 
Charpentier  1986 Mass Transfer in Fixed Bed Reactors 
Dudukovic and Mills  1986 Contacting and Hydrodynamics in Trickle-Bed Reactors 
Hanika and Stanek 1986 Operation and Design of Trickle-Bed Reactors 
Rao and Drinkenburg  1985 Solid-Liquid Mass Transfer in Packed Beds with Cocurrent Gas-Liquid Downflow 
Gupta  1985 Handbook of Fluids in Motion 
Mills and Dudukovic  1984 A Comparison of Current Models for Isothermal Trickle-Bed Reactors. Application of a 

Model Reaction System 
Tarhan 1983 Catalytic Reactor Design 
Hofmann  1983 Fluid Dynamics, Mass Transfer and Chemical Reaction in Multiphase Catalytic Fixed 

Bed Reactors 
Germain  1983 Industrial Applications of Three-Phase Catalytic Fixed Bed Reactors 
Crine and L’Homme  1983 Recent Trends in the Modelling of Catalytic Trickle-Bed Reactors 
Ramachandran and 
Chaudhari 

1983 Three-Phase Catalytic Reactors 

Herskowitz and Smith  1983 Trickle-Bed Reactors: A Review 
Tan and Smith 1982 A Dynamic Method for Liquid-Particle Mass Transfer in Trickle Beds 
Morsi et al.  1982 Hydrodynamics and Interfacial Areas in Downward Cocurrent Gas-Liquid Flow 

through Fixed Beds. Influence of the Nature of the Liquid 
Charpentier 1982 What’s New in Absorption with Chemical Reaction 
Morsi et al. 1981 Hydrodynamics and Gas-Liquid-Solid Interfacial Parameters of Cocurrent Downward 

Two-Phase Flow in Trickle-Bed Reactors 
Turek and Lange 1981 Mass Transfer in Trickle-Bed Reactors at Low Reynolds Number 
Koros 1981 Scale-up Considerations for Mixed Phase Catalytic Reactors 
Baldi 1981a Design and Scale-up of Trickle-Bed Reactors. Solid-Liquid Contacting Effectiveness 
Baldi 1981b Heat Transfer in Gas-Liquid-Solid Reactors 
Baldi  1981c Hydrodynamics of Multiphase Reactors 
Van Landeghem 1980 Multiphase Reactors: Mass Transfer and Modeling 
Shah  1979 Gas-Liquid-Solid Reactor Design 
Charpentier 1979 Hydrodynamics of Two-Phase Flow Through Porous Media 
Dirkx 1979a,b De Trickle-Bed Reactor 
Dudukovic and Mills 1978 Catalyst Effectiveness Factors in Trickle-Bed Reactors 
Charpentier  1978 Gas-Liquid Reactors 
Specchia et al. 1978 Solid-Liquid Mass Transfer in Cocurrent Two-Phase Flow through Packed Beds 
Satterfield et al. 1978 Liquid-Solid Mass Transfer in Packed Bed with Downward Cocurrent Gas-Liquid Flow 
Gianetto et al.  1978 Hydrodynamics and Solid-Liquid Contacting Effectiveness in Trickle-Bed Reactors 
Dudukovic 1977 Catalyst Effectiveness Factor and Contacting Efficiency in Trickle-Bed Reactors 
Goto et al.  1977 Trickle-Bed Oxidation Reactors 
Charpentier 1976 Recent Progress in Two-Phase Gas-Liquid Mass Transfer in Packed Beds 
Satterfield 1975 Trickle-Bed Reactors 
Østergaard 1968 Gas-Liquid-Particle Operations in Chemical Reaction Engineering 
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Section II.7.1 discusses the relevant findings on the fluid dynamics of TBRs systematized by two 

major hydrodynamic parameters (pressure drop, liquid holdup as well as interphase parameters and 

catalyst wetting) and section II.7.2 presents a comparison of theoretical models for the prediction 

of hydrodynamics in TBRs. 

 

II.7.1. Fluid Dynamics of TBRs 

Trickle beds are operated in a multiplicity of cocurrent downflow regimes ranging from spray flow  

(liquid drops and continuous gas flow), trickle flow (continuous gas phase and one directional 

liquid rivulets and some discontinuous liquid films), pulse flow (intermittent passage of gas rich 

and liquid rich zones through the reactor), and downward bubble flow (continuous liquid and 

dispersed gas flow). Similarly, cocurrent upflow packed bubble columns can experience the so-

called homogeneous and heterogeneous bubble flow, while the onset of flooding is of great 

importance in countercurrent flow operation.  

The evaluation of available models and empirical correlations for prediction of the trickle to pulse 

flow transition boundary, which is of importance to numerous refining operations, was performed 

by Wild et al. (1991), Larachi et al. (1993) for high pressure operations, and by Burghardt and 

Bartelmus (1996) for organic systems. All of these studies reach the same conclusion that the use 

of available phenomenological and semi-theoretical models for prediction of flow transition leads 

to unacceptable errors at the time of proper scale-up.  

Al-Dahhan et al. (1997) proposed general conclusions regarding the TBR flow regimes. The 

trickle-to-pulsing transition boundary, two-phase flow pressure drop and the liquid holdup can be 

experimentally replicated by different gases that differ in molecular weight when the pressures are 

set so as to achieve the same gas densities at the same gas and liquid superficial velocities. The 

trickle-to-pulse flow transition at a given liquid (or gas) superficial velocity shifts towards higher 

gas or liquid superficial velocities at higher-gas density, making the velocity range for trickle flow 

operation broader at elevated pressure. Moreover, at any pressure level, the transition from 

trickling to pulsing regime occurs at smaller fluid throughputs for viscous liquids than for less 

viscous liquids. The gas superficial velocity corresponding to the transition between foaming and 

foaming–pulsing decreases as pressure increases, whereas, regardless of pressure, the inception of 

the foaming-pulsing flow is delayed as the liquid throughput increases. In order to widen trickle 

flow region by delaying the inception of pulse flow to higher liquid flow rates for a given gas flow 

rate, a hydrophobic packing is preferred (Horowitz et al., 1997). Conversely, the trickle-to-pulse 

flow changeover occurs earlier with non-Newtonian liquids compared with Newtonian liquids 

(Iliuta and Thyrion, 1997). 
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Pressure drop and Liquid holdup 

Recent correlations and semi-theoretical models for prediction of two-phase pressure drop and 

liquid holdup at high-pressure operation have been summarized by Al-Dahhan et al. (1997). No 

correlation emerges as clearly superior to others, but those based on semi-theoretical and 

phenomenological models seem more reliable than strictly empirical correlations. In trickle flow 

regime, the slit (Holub et al., 1993; Holub et al., 1992), extended slit (Iliuta et al., 1998) and 

double slit (Iliuta and Larachi, 1999) models, and the 1-D CFD model of Attou et al. (1999) are 

recommended for use to predict liquid holdup.  

Generally, the following assertions can be inferred regarding the two major and integral 

hydrodynamic parameters. The two-phase pressure drop increases with gas and liquid mass fluxes, 

superficial velocities and liquid viscosity at a given density whereas liquid holdup increases with 

liquid mass flux and superficial velocity and liquid viscosity, but decreases with increasingly gas 

mass flux or superficial velocity. Nigam and Larachi (2005) and Saroha and Indraneel (2008) have 

reported that hydrodynamic hysteresis may occur at high pressure when the liquid is contaminated 

with impurities. Liquid holdup and two-phase pressure drop increase in beds where fines are 

mixed with the larger size catalyst particles. The impact of fines on the change in holdup and 

pressure drop strongly depends on the packing procedure that is used. At a given superficial 

velocity and as gas density is increased, the pressure drop increases while the liquid holdup 

decreases (Al-Dahhan et al., 1997). 

The interstitial nature of liquid flow in trickle beds has become available due to the increased use 

of non-invasive sophisticated measurement techniques such as capacitance tomography imaging to 

capture the transient pattern of liquid flow in a trickle bed (Schubert et al., 2008; Sederman and 

Gladden, 2005; Sederman and Gladden, 2001; Reinecke and Mewes, 1996; Reinecke and Mewes, 

1997) and X-ray transmission tomography to capture two-phase flow distribution in trickle beds 

(Toye et al., 1994). Non-invasive measurement techniques that can be utilized in multiphase flows 

have recently been summarized both in an extensive review article (Boyer et al., 2002; Dyakowski 

et al., 2000; Chaouki et al., 1997). 

 

Gas-Liquid Interfacial Areas and Interphase Mass Transfer Coefficients 

Several correlations and models for predicting gas-liquid interfacial areas and volumetric gas-

liquid and liquid-solid mass transfer coefficients in TBRs are summarized by Al-Dahhan et al. 

(1997) and Larachi et al. (1993). Among all these correlations, while there are plenty of 

correlations for the estimation of cold-flow low-pressure liquid-solid mass transfer coefficients, 

none are available for high pressure operation. Since elevated pressure operation has a profound 
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effect on both wetting efficiency and liquid holdup (Al-Dahhan and Dudukovic, 1995), it would be 

highly advisable to determine liquid-solid mass transfer coefficients at higher pressures. Mass 

transfer studies on catalytic structured packings are also scarce in the literature (van Baten and 

Krishna, 2002). The vast majority of gas-liquid mass transfer parameters in TBRs are derived 

using the so-called chemical methods. Two rules of thumb can be inferred about liquid-side 

volumetric mass transfer coefficients at elevated pressure: gas-liquid interfacial areas and 

volumetric liquid side mass transfer coefficients increase as liquid and gas mass fluxes or 

superficial velocities increase at a given gas density, and both mass transfer parameters improve in 

TBRs as the gas density increases for given gas and liquid superficial velocities. 

 

Catalyst Wetting 

Trickle flow regime has been found as a particular hydrodynamic state to promote partial wetting 

efficiencies, hence causing incomplete catalyst utilization, but enabling higher reaction residence 

times. One of the reasons advanced in the literature for poor catalyst wetting is due to reactor-scale 

liquid maldistribution that may leave certain portions of the bed poorly irrigated. Proper design of 

liquid distributors, operation with packing that gives the needed minimal pressure drop, and 

redistribution of the liquid in quench boxes and other devices can address this problem. Another 

cause of incomplete catalyst utilization is the particle-scale incomplete external wetting occurring 

at sufficiently low liquid mass velocity when the available liquid flow is insufficient to cover all 

the catalyst particles with a continuous liquid film. Several correlations and models developed for 

liquid-solid contacting efficiency, which is defined as the fraction of the external catalyst area 

covered by the flowing liquid film, have been reviewed by Al-Dahhan et al. (1997). The 

contacting efficiency has been found to improve noticeably with an increase in total pressure at a 

fixed liquid mass flux and at high gas velocities. Higher pressure drop and liquid mass velocity 

also lead to an increased contacting efficiency. Hence, both liquid and gas velocity increase the 

contacting efficiency at high pressures, which is the region where most reactors operate.  

In order to address this fact, large-scale computational fluid dynamics (CFD) simulations can be 

helpful in establishing both the effect of the bed voidage variation and the presence of internals on 

gross liquid distribution. This approach is based on fundamental physical conservation laws and 

due to improved computational power, it is possible nowadays to solve the resulting complex flow 

models. In this field, there is also a parallel approach pursued by a limited number of authors to 

utilize the advances in computers and neural networks to train a neural net model based on a huge 

set of available data. In fact, over 28,000 data for the fluid dynamic parameters discussed above 

have been retrieved from the literature and used to make predictions based on such a model. Tarca 

et al. (2004), Larachi et al. (1998) and Bensetiti et al. (1997) illustrate the possibilities of this 
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approach. The weakness of neural network approach is that it is not mechanistically based to allow 

trustful extrapolations. Physical models, however, require in general more efforts to improve their 

capabilities. Another promising approach lies in the use of a hybrid methodology where neural 

networks can be combined to physical models. Such hybrid models combine the robustness 

advantage of physical models with the neural networks higher accuracy (Iliuta et al., 1998). 

 

II.7.2. Hydrodynamic Models for TBRs 

Numerous theoretical attempts are being made to model the hydrodynamics of trickle-bed reactors. 

It ranges from merely empirical correlations (Ellman et al., 1990; Larachi et al., 1991; Iliuta and 

Larachi, 1999) to physically sound models (Nemec et al., 2005; Iliuta et al., 2000; Carbonell, 

2000; Attou et al., 1999; Al-Dahhan et al., 1998; Holub et al., 1993; Sàez and Carbonell, 1985). 

No consensus has emerged as to whether general approaches yielding pressure drop and liquid 

holdup with acceptable accuracy can be recommended and this fact has been attributed to the 

complexity of the gas-liquid flow patterns prevailing in trickle beds, the lack of accurate 

descriptions of two phase flow interactions, the complex relationship between trickle bed 

hydrodynamic characteristics, fluids and bed properties and interfacial interactions, the restricted 

range of the experimental data, and the models/correlations derived thereof, usually reported for 

individual studies or system specific configurations.  

Among the theoretical approaches that have been used for the prediction of hydrodynamics in 

TBRs, one can enumerate them as follows: the relative permeability model (Sàez and Carbonell, 

1985), (ii) slit model (Holub et al., 1992, 1993; Al-Dahhan and Dudukovic, 1994; Al-Dahhan et 

al., 1998; Iliuta et al., 1999b), (iii) model based on fundamental force balance (Tung and Dhir, 

1988; Narashiman et al., 2002), (iv) 1D-CFD model (Attou et al., 1999; Souadnia and Latifi, 

2001) (v) F-function concept (Fourar et al., 2001), and (vi) CFD model (Jiang et al., 2002; Gunjal 

et al., 2003). Table II.10 summarizes the essential features of these theoretical models for the 

predictions of hydrodynamic parameters in trickle beds that have been developed along the years.  

The relative permeability model is based on Ergun’s equation and the relative permeability of each 

phase has been correlated as a function of liquid saturation of each phase depending on the 

experimental results. In this approach the gas-liquid interaction term has been neglected, hence, 

Holub et al. (1992) developed the slit model in which the complex geometry of the actual void 

space in the catalyst bed at the pore level has been represented by the multiphase flow inside a 

rectangular slit. It is also a modified form of Ergun’s equation and, initially it was considered zero 

shear stress at the gas-liquid interface. Later Al-Dahhan et al. (1998) expressed the gas and liquid 

phase slip parameters as a function of gas and liquid phase Reynolds numbers. Guo and Al-

 38



PART A. THESIS SCOPE AND OUTLINE 

 

Dahhan (2005) presented a computational framework that accounts for the observed catalyst 

activities, combined with local transport and catalyst wetting effects. The authors claimed that a 

good agreement on the comparisons of simulated model predictions and lab scale experimental 

data demonstrated the importance of including the phase change effect in the reactor scale flow 

distribution. Recently, Atta et al. (2007) developed a CFD model based on porous media concept 

to model the hydrodynamics of two-phase flow in TBRs under cold-flow conditions. The two-

phase Eulerian model describes the flow domain as a porous region to simulate the macroscale 

multiphase flow in trickle beds operating under trickle flow regime. The closure terms for phase 

interactions have been addressed by adopting the relative permeability concept (Saez and 

Carbonell, 1985). The discrete cell model has been used to simulate the steady-state behavior of 

packed-bed reactors for the catalytic wet oxidation of phenol with one-dimensional (1D) axial 

dispersion model for the liquid phase coupled with a cell stack model for the gas phase, providing 

considerable phase change under the selected operating conditions. Other CFD mathematical 

approaches will be reviewed in section II.8. 

II.8. CFD simulation approaches for multiphase reactors 
 

The precise knowledge of fluid dynamic and transport parameters is necessary for the development 

of appropriate models and scale-up rules given that is far from being complete due to the inherent 

complexity of multiphase flow processes. Therefore, a deep understanding and the development of 

predictive tools to simulate multiphase flow processes for better and economically viable reactor 

technologies is of paramount importance. In the past, knowledge of hydrodynamics and transport 

characteristics of multiphase reactors has been interpreted in the form of empirical correlations, 

which have numerous restrictions in terms of their validity for different operating conditions. CFD 

simulations, on the other hand, deal with the solution of fluid dynamic equations on digital 

computers, requiring conservation laws or fundamental principles and thus giving a complete 

description of the hydrodynamics of these reactors. This detailed predicted flow field gives an 

accurate insight to the fluid behaviour and can sometimes give information, which cannot be 

obtained from experiments.  
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 Table II.10. Comparison of theoretical models for the prediction of hydrodynamics in TBR 

Reference Model Characteristics of the model 
Atta et al., 2007 Euler – relative 

permeability 
model 

1. CFD model based on porous media concept is presented to model the 
hydrodynamics of two-phase flow in trickle-bed reactors under cold-flow 
conditions. 
2. The closure terms for phase interactions have been addressed by adopting the 
relative permeability concept. 

Guo and Al-Dahhan, 
2005 

Discrete Cell 
model 

1. Modeling of trickle-bed reactors under steady-state with exothermic reactions 
2. Development of Cell network approach with multiphase mass transfer-reaction 
model and novel solution method. 

Souadnia et al., 2005 Statistical 
method for 
multimaterial 
non-equilibrium 
flow 

1. The general multimaterial formulation of Kashiwa and Rauenzahn, (1994) is 
used to derive an hydrodynamic model for a trickle-bed reactor operating under 
trickling flow conditions with two equations: liquid volume fraction and pressure. 
2. The equations exhibit elliptic (pressure) and hyperbolic (volume fraction) 
behaviours, which require the use of different numerical methods in order to 
correctly handle these different numerical behaviours. 

Ortiz-Arroyo and 
Larachi, 2005 

Lagrange-
Euler-Euler 

1. A Lagrange–Euler–Euler computational fluid dynamic approach was developed 
to represent the evolution of two-phase pressure gradients in trickle-bed reactors 
undergoing deposition of colloidal/non-colloidal fines under deep-bed filtration 
conditions.  
2. The deep-bed filtration process was simulated in unsteady-state 
multidimensional code and the increase of pressure drop during plugging was 
explained by increasing local specific surface area and decreasing local porosity 
due to fines deposition. 

Gunjal et al., 2005 VOF 1. Computational study of liquid drop over flat and spherical surfaces based on the 
volume of fluid (VOF) method with inclusion of surface tension and wall adhesion 
phenomenon. 
2. Drop spread and recoiling velocities were reconstructed from the experimental 
data in which micro-scale motion of liquid droplet was captured with a high-speed 
CCD camera. 

van Baten and Krishna, 
2002 

2D-CFD model 1. Comparison of the radial and axial, liquid-phase dispersion dispersion 
characteristics of KATAPAK-S with a conventional packed bed. 
2. The values of axial dispersion coefficient from CFD simulations are 
considerably lower than those measured experimentally whereas radial dispersion 
coefficient is in good agreement 

Jiang et al., 2002; 
Gunjal et al., 2003 

k-fluid model 1. The Eulerian CFD model, the flow equations are solved for the kth fluid. 
2. The drag exchange coefficients are obtained from the Holub model. 

Fourar et al., 2001 F-function 
concept 

1. This model is based on Forchheimer’s equation originally employed to explain 
the inertia deviations in Darcy’s law for single phase flow. 
2. Phasic F-function is multiplied with superficial velocity of each fluid. 

Souadnia and Latifi, 
2001; 
Propp et al., 2000 

1D-CFD model 1. Based on Eulerian approach consisting of volume averaged flow equations. 
2. Drag force is evaluated using concept of relative permeability of each phase as 
proposed by Sàez and Carbonell (1985). 

Attou et al., 1999 1D-CFD model 1. These models are based on macroscopic mass and momentum conservation laws. 
2. The liquid–solid and gas-solid interaction forces are formulated on the basis of 
Kozeny–Carman equation. 
3. Model does not predict well at low D/dp ratio (<12–14) due to column wall 
effect. 
4. The gas–liquid interfacial drag has been considered. 

Mewes et al., 1999 Packing is 
subdivided into 
elementary cells 
 

1. Work review on models for two-phase flow in trickle-bed and monolithic 
reactors.  
2. Flow regimes were solved based on entire porous media and the flow is 
evaluated concerning mass transfer performance as well as the velocity fields and 
phase distributions of vapor and liquid in packings and monoliths. 

Tung and Dhir, 1988; 
Narasimhan et al., 2002; 
Kundu et al., 2003c 

Model based on 
fundamental 
force 

1. It involves force balance equations in liquid and gas phase in elemental reactor 
volume 
2. The gas–liquid interfacial drag has been taken into account balance. 
3. The tortuosity effect corrects the gravity term in the liquid phase and gas phase 
force balance equations. 

Holub et al., 1992, 
1993; 
Al-Dahhan and 
Dudukovic, 1994; 
Al-Dahhan et al., 1998; 
Iliuta et al., 1999b 

The slit model 1. The complex geometry of the actual void space in the catalyst bed at the pore 
level has been represented by the much simpler flow inside a rectangular slit. 
2. It is modified form of Ergun equation. 
3. Initially it is considered zero shear stress at the gas-liquid interface. Later Al-
Dahhan et al. (1998) expressed the gas and liquid phase slip parameters as a 
function of gas and liquid phase Reynolds numbers. 

Sàez and Carbonell, 
1985 

The relative 
permeability 
model 

1. The model is based on Ergun’s equation. 
2. The relative permeability of each phase has been correlated as a function of 
liquid saturation of each phase depending on the experimental results. 
3. The gas–liquid interaction term has been neglected. 
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Nowadays due to cheaper computational resources, CFD simulations are becoming economically 

reliable for modelling of multiphase processes. CFD simulation deals with the numerical solution 

of these equations in a flow geometry of interest using digital computers and is becoming a well-

accepted and useful tool for hydrodynamic modeling of multiphase reactors. In recent years, CFD 

simulation for multiphase reactors has received much attention due to improved understanding of 

the flow phenomenon, rapid advances in available softwares (e.g., FLUENT, CFDLIB, CFX, 

PHOENICS, FLOW3D, and FIDAP) and availability of cheaper computational resources which is 

making it economically reliable for hydrodynamics studies of multiphase reactors. While it is now 

a standard tool for simulating single-phase flows, it is still at the development stage for multiphase 

systems, such as fixed and fluidized beds and three-phase bubble column slurry reactors, which 

has applications in “gas-to-liquid” processes, such as Fischer-Tropsch process for the production 

of synthesis gas. To make CFD suitable for modelling and scale-up of these complex multiphase 

reactors, experimental verification of multiphase flows, at least via cold flow models, is still 

needed (Dudukovic et al., 1999). Table II.11 summarizes the literature works on the CFD 

simulation of trickle-bed reactors. 

Gunjal et al. (2005) developed a CFD model to predict two-phase pressure drop and liquid holdup 

and was evaluated by comparing numerical predictions with the experimental data. The CFD 

model was then extended to predict the fraction of liquid holdup suspended in the form of drops in 

the bed. Periodic operation was also investigated at atmospheric conditions. Jiang et al. (2002) 

presented an Eulerian k-fluid CFD model to simulate the macroscale multiphase flow in packed 

beds. The geometric complexity of the bed structure was resolved statistically by describing the 

porosity distribution. The multiphase interactions were computed using the Ergun type of formula 

developed based on bench-scale hydrodynamic experiments. The drag exchange coefficients were 

obtained from the model of Holub et al. (1992) for the particle-fluid interfaces and from the model 

of Attou et al. (1999) for the gas-liquid interface. The effect of particle external wetting on flow 

distribution was incorporated into the model through the capillary pressure evaluated by Attou and 

Ferschneider (1999). Both steady-state and unsteady-state (e.g., periodic operation) feed 

conditions were studied numerically and predictions of the k-fluid CFD model were compared 

with the experimental data in the literature for liquid upflow in a cylindrical packed bed. Attou and 

Ferschneider (1999) developed a physical model to predict the hydrodynamic parameters of 

steady-state cocurrent gas-liquid flow through trickle-bed reactors operating in the trickle flow 

regime. The trickle flow is described by an annular pattern in which the gas and liquid phases are 

completely separated by a smooth and stable interface. The formulation of the model involves 

balance equations deduced from the macroscopic mass and momentum conservation laws. The 

particle-liquid drag and the gas-liquid interactions, i.e. the gas-liquid drag due to the relative 

motion between the fluids and the force by which the gas pushes the liquid against the solid 
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particles were evaluated from theoretical considerations. Authors have claimed a reasonable 

agreement with existing experimental data obtained in a wide range of operating pressure (0.1-

10 MPa) for various gas–liquid and packing systems for both liquid saturation and pressure 

gradient. 

 
Table II.11. Summary of CFD models 
 

Authors Key features of model Remarks 
Gunjal et al., 2005 Extension of their own previous model (Gunjal et 

al., 2003) for simulating the spray flow regime and 
hysteresis on pressure drop 

Though the simulation of periodic flow can 
be used to understand some key features, 
still development is essential in this field for 
better prediction 

 Attempted to simulate the periodic flow  
Gunjal et al., 2003 Two fluid approach using the closure of Attou et al. 

(1999) have been used in 2D as well as 3D geometry 
The first effort to simulate the reactor in 3D 

 Liquid flow distribution and RTD were studied 
incorporating the effect of capillary pressure and 
porosity variation 

Though the qualitative prediction of 
hysteresis was carried out but the 
development in quantitative comparison is 
required. 

Jiang et al., 2002 Two fluid approach using CFDLIB (Los Alamos 
National Laboratory) 

Able to capture some of the key features of 
the hydrodynamics 

 Drag-exchange coefficients are calculated by the 
model of Attou et al. (1999)

Bed structure implementation is involved 

 Capillary pressure is incorporated via J-function  
 Bed structure implementation is resolved through 

statistical implementation of sectional porosities 
 

Souadnia and Latifi, 2001 One-dimensional computational model is used with 
the finite volume technique combined with 
Godunov's method. 

Development in 2D model required for 
better prediction of parameters 

 Drag forces are accounted for through the equations 
developed by Sàez and Carbonell, 1985 

 

 Porosity is assumed uniform and constant  
Propp et al., 2000 Flow is assumed to be governed by equations of flow 

in porous media 
The code was tested with several test 
problems, no explicit validation with 
experimental results for different 
hydrodynamic parameters were presented 

 Use of high-resolution finite-difference methods to 
discretize governing equations. 

 

 Examined the effects of Ergun equation, capillary 
pressure and variable porosity 

 

Attou and Ferschneider, 
1999 

Model developed on the basis of area-averaged mass 
and momentum balance equations of each fluid 

As the model is one-dimensional, it cannot 
accommodate the variation of radial bed 
porosity distribution 

 Capillary pressure gradient was deduced from a 
momentum balance analysis at the gas–liquid 
interface 

 

 The liquid–solid and gas–liquid interaction forces 
are formulated on the basis of the Kozeny–Carman 
equation 

 

 
The following sections encompass a review of different multiphase flow simulation approaches 

that has been published in the literature. The recent progress made in hydrodynamic modelling of 

multiphase reactors, their capabilities and limitations are briefly described for different simulation 

approaches including the Eulerian-Eulerian, Eulerian-Lagrangian and Volume-of-Fluid (VOF) 

models.  
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II.8.1. Eulerian-Eulerian Model 

In Eulerian-Eulerian approach also called as two-fluid modelling, the different phases are treated 

mathematically as interpenetrating continua. Since the volume of a phase cannot be occupied by 

the other phases, the concept of phasic volume fraction is introduced. These volume fractions are 

assumed to be continuous functions of space and time and their sum is equal to one. Conservation 

equations for each phase are derived to obtain a set of equations, which have similar structure for 

all phases. Coupling is achieved through the pressure and interphase exchange co-effects. The 

manner in which this coupling is handled depends upon the type or phase involved. The individual 

interaction between the interpenetrating phases is accounted for using closure laws (Van Wachem 

and Almstedt, 2003). 

The general governing equations are often presented in the form of volume-average for each 

individual phase and it can be found in Ranade (2002). The momentum equations can be expressed 

by the Navier-Stokes equations accounting for the gravity acceleration, hydrodynamic pressure, 

external body force, lift force and virtual mass force if any. The viscous stress tensor is formulated 

on the basis of Bousinessq hypothesis and it has the contribution of shear and bulk viscosity. A 

separate enthalpy equation is written for the description of energy conservation. 

Eulerian-Eulerian approach is more suitable for modelling dispersed multiphase systems with a 

significant volume fraction of dispersed phase (>10%) and thus allows the computation of three-

phase flow fields even with high solid and gas hold-ups. The accuracy of the Eulerian-Eulerian 

approach heavily relies on the empirical constitutive equations used. Although it requires 

significantly fewer computational resourses (which make it more effective for simulating the large 

individual reactions), it does not provide information about the hydrodynamics of individual 

bubbles and particles and thus has limitations in predicting certain discrete flow characteristics 

such as particle size effect, particle agglomeration or bubble coalescence and brake up (Ranade, 

2002).  

Lia and Salcudean (1987) simulated the bubble rise behaviour using Eulerian-Eulerian approach 

and obtained good agreement between experimental and predicted velocity field. Ranade (1992) 

used Eulerian approach to investigate the flow field in a bubble column reactor. This author 

(Ranade, 1997) reported later a new model based on Eulerian approach to include a radially 

varying slip velocity. Becker et al. (1994) simulated the dynamic behaviour of a relatively large 

laboratory column with a 2-D mesh. The Eulerian-Eulerian approach was applied for dynamic 

study of different characteristics of gas-liquid flow. The same case was the subject of study by 

Sokolichin and Eigenberger (1994). They used laminar flow conditions and concluded that 

unsteady-state simulations of gas liquid flow are essential in order to resolve the prevailing 
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oscillating structures. These authors in a later communication (Sokolichin and Eigenberger 1999), 

reported Eulerian simulation results with turbulent flow conditions in both 2D and 3D geometries. 

Mudde and Simonin (1999) reported two and three-dimensional simulations of a meandering 

bubble plume using the Eulerian-Eulerian method that included the k-ε turbulence model. They 

used the k-ε model to simulate the turbulent phenomena in the continuous phase. The dispersed 

phase was modelled using laminar flow conditions. A comparative study of different turbulence 

models for 2-D bubble column has also demonstrated the significance of k-ω model for 

quantitative prediction of the meandering behaviour of plume.  

Gas-solid/gas-solid-liquid simulations with Eulerian-Eulerian approach is an emerging important 

research area in last decades. Gidaspow (1994) provides a comprehensive summary of the 

numerical models of gas-solid fluidized bed systems. Most of the effort was primarily focused on 

2-D simulations. Becker et al. (1994) investigated gas-liquid flow in a flat bubble column with 

rectangular cross-section and two-dimensional flow structure. The bubble column was compared 

with an airlift loop reactor in terms of experimental techniques comprising visual observation of 

the flow structure and photographic documentation of the bubble distribution as well as detailed 

measurements of the two-phase flow characteristics at distinct levels over the column width. The 

experimental results were compared with numerical simulations based upon the dynamic laminar 

two-dimensional two-phase Euler-Euler model. The authors claimed that the steady state as well as 

the transient behaviour was well reproduced in the simulations and a good quantitative agreement 

could be obtained if the value of the laminar viscosity used was increased by a factor 100 to 

account for the influence of turbulent viscosity. Deen et al. (2001) presented large eddy 

simulations in numerical simulations of the gas-liquid flow in bubble columns. The Euler-Euler 

approach was used to describe the equations of motion of the two-phase flow. The authors have 

found that, when the drag, lift and virtual mass forces are used, the transient behaviour that was 

observed in experiments can be captured and a good quantitative agreement with experimental 

data is obtained both for the mean velocities and the fluctuating velocities. The large eddy 

simulations showed better agreement with the experimental data than simulations using the k-ε 

model. Taghipour et al. (2005) have recently applied multi-fluid Eulerian model to simulate gas-

solid fluidized beds. Comparison of their model predictions and experimental measurements on 

the time averaged bed pressure drop, bed expansion, and qualitative gas-solid flow pattern has 

indicated reasonable agreement for different operating conditions. Recently, Dhotre et al. (2008) 

accomplished Euler-Euler simulations of the gas-liquid flow in a square cross-sectioned bubble 

column with large eddy simulation model (two sub-grid scale models) and the k-ε model. The sub-

grid scale modeling was based on the Smagorinsky kernel in both its original form and the 

dynamic procedure of Germano. The attempt has been made to assess the performance of these 
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two sub-grid scale models. The sub-grid scale models were modified to account for bubble 

induced turbulence (Sato model) and it was observed that it did not change the results much. 

Predictions were also compared with the available experimental data. All the non-drag forces 

(turbulent dispersion force (only for Reynolds Averaged Navier-Stokes models), virtual mass 

force, lift force) and drag force were incorporated in the model. An extended k-ε turbulence model 

has been used with extra source terms introduced to account for the interaction between the 

bubbles and the liquid. As one can conclude, while there is an extensive literature on the two-

phase flow model for bubble-column reactors, studies of three-phase flow hydrodynamics in 

trickle-beds are rather limited on the interstitial fluid flow simulation. 

 

II.8.2. Eulerian-Lagrangian Model 

The Lagrangian models have become a very useful and versatile tool to study the hydrodynamic 

behaviour of multiphase reactors with particulate flows. In this approach, the fluid phase is treated 

as a continuum by solving the time averaged Navier-Stokes equations in the same manner as for a 

single-phase system, while the dispersed phase is solved by tracking a large number of particles, 

bubbles or droplets through the calculated flow field using Newtonian equation of motion. Usually 

bubbles and particles are considered as having a fixed size and shape. The dispersed phase can 

exchange momentum, mass, and energy with the fluid phase (Lain et al., 2002). 

In multiphase hydrodynamic modeling using Eulerian-Lagrangian approach, the particle models 

are combined with an Eulerian model for the continuous phase to simulate the disperse phase. The 

motion of fluid phase is calculated from the averaged fluid-phase governing equations, which are 

similar to Eulerian-Eulerian. The motion of the discrete phase particle (or droplet or bubble) is 

given by integrating the force balance on the particle, which is written in Lagrangian reference 

frame. This force balance equates the particle inertia with forces acting on the particle using 

Newton's second law. These forces acting on each particle, next to collisions, are gravity and the 

traction force of the fluid phase on the particle. Thus the momentum balance equation describing 

the acceleration of the particle is written as a function of mass, acceleration, velocity, volume 

fraction of solid particle, pressure and interphase momentum transfer coefficient (Van Wachem 

and Almstedt, 2003). 

The advantage of Eulerian-Lagrangian approach is that the dynamics of the individual bubbles or 

particles can be assessed, however, in the case of turbulent flows, it is necessary to simulate a very 

large number of particle trajectories to obtain meaningful averages. With high concentrations of 

particles and for large size reactors, the tracking process becomes highly memory-intensive so that 
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this approach is, comprehensively, suitable for simulating multiphase flows containing a low 

(<10%) volume fraction of the dispersed phases (Ranade, 2002). 

Regarding the Eulerian-Lagrangian simulations found in the literature, Grevet et al. (1982) were 

among the first researchers to theoretically investigate the bubble rise phenomenon. They used 

Eulerian-Lagrangian approach to simulate a bubble plume. Van Sint Annaland et al. (2005) used 

the same approach to simulate bubble trajectories in a bubble column reactor. Using 2D 

simulation, they obtained good agreement with the experimental observations of Becker et al. 

(1994). Delnoij et al. (1997) reported a CFD simulation of bubble rise in rectangular bubble 

column reactors. They studied the effect of aspect ratio of the bubble column reactor. As expected, 

they observed significantly complex flow patterns with numerical simulations. The Euler-

Lagrange model was used to solve time dependent, two-dimensional motion of small, spherical 

gas bubbles in a liquid using the equation of motion. The model incorporated all relevant forces 

acting on a bubble as it rises through the liquid, and additionally accounts for direct bubble-bubble 

interactions. The liquid-phase hydrodynamics were described using the volume-averaged Navier-

Stokes equations. The model was used to study the hydrodynamic behaviour of bubble columns 

with aspect ratios ranging from 1.0 to 11.4. The authors claimed that the computational results 

clearly showed the presence of vortical structures in the liquid phase at aspect ratios exceeding 2.0. 

These vortical structures in the liquid phase were studied experimentally using neutrally buoyant 

tracer particles and streak photography. The experimentally observed vortical structures were 

shown to resemble the computed structures. Later, Delnoij et al. (1999) discussed the development 

of a three-dimensional Euler-Lagrange CFD model for a gas-liquid bubble column. The model 

solved the time-dependent, three-dimensional motion of small, spherical gas bubbles in a liquid. 

The Euler-Lagrange incorporated all forces acting on a bubble rising in a liquid, and accounted for 

two-way momentum coupling between the gas and liquid phases. The liquid phase hydrodynamics 

were described using the volume-averaged Navier-Stokes equations for laminar flow. More 

recently, Darmana et al. (2005) developed a 3D discrete bubble model to investigate complex 

behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble 

column reactor. A continuum description was adopted for the liquid phase and additionally each 

individual bubble was tracked in a Lagrangian framework, while accounting for bubble-bubble and 

bubble-wall interactions via an encounter model. The mass transfer rate was calculated for each 

individual bubble using a surface renewal model accounting for the instantaneous and local 

properties of the liquid phase in its vicinity. The distributions in space of chemical species residing 

in the liquid phase were computed from the coupled species balances considering the mass transfer 

from bubbles and reactions between the species. The model has been applied to simulate 

chemisorption of CO2 bubbles in NaOH solutions. The authors claimed that Euler-Lagrange model 
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was able to predict the bubble size distribution as well as temporal and spatial variations of each 

chemical species involved. Zhang and Ahmadi (2005) have used similar approach to study the 

transient characteristics of three-phase flows. In addition to considering the interactions between 

particle-particle, bubble-bubble, and particle-bubble, bubble coalescence is also included and the 

effects of bubble size variation on flow pattern are very well demonstrated. From the above 

survey, it can be seen that this methodology has been found widespread application on bubble 

column reactors.  

 

II.8.3. Volume-of-Fluid Model 

The VOF model is a well-known method of interface tracking for multiphase flows. In this 

approach, the motion of all phases is modelled by solving a single set of transport equations using 

appropriate jump boundary conditions at the interface. The fluid location is recorded by employing 

a volume of fluid function which is defined as unity within the field regions and zero elsewhere. In 

practical numerical simulations employing a VOF algorithm, this function is unity in 

computational cells occupied completely by fluid of phase 1, zero in region occupied completely 

by phase 2, and a value between these limits in cells which contain a free surface (Van Wachem 

and Almstedt, 2003).  

The tracking of the interface between the phases is accomplished by the solution of a continuity 

equation for the volume fraction of one (or more) of the phases. A single momentum equation is 

solved throughout the domain and shared by all the phases. The VOF model treats energy, E, and 

temperature, T, as mass-averaged variables. The major drawback of VOF method is the so-called 

artificial coalescence of gas bubbles which occurs when their mutual distances is less than the size 

of the computational cell, which also make this approach memory intensive for simulation of 

dispersed multiphase flows in large equipment (Ranade 2002). The first VOF type approach was 

suggested by Hirt and Nichols (1981). Although this scheme is still considered one of the simplest 

and well-known methods of interface tracking, it performs badly with low-order discretization 

schemes due to large amount of smearing of the interface violating the conservation of each one of 

the phases. The application of the so-called surface sharpening or reconstruction models, as 

present in some commercial CFD codes, can somewhat prevent the smearing of the interface. 

Table II.12 presents an overview of techniques for multiphase systems that have been used with 

VOF model. 
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Table II.12. Overview of techniques for multi-fluid flows with sharp interfaces 
 

Method Advantages Disadvantages 
Front tracking Extremely accurate Mapping of interface mesh onto Eulerian mesh 
 Robust  
 Account for substantial topology changes in 

interface 
Dynamic remeshing required 

 Merging and breakage of interfaces does not occur 
automatically 

Merging and breakage of interfaces require sub-grid 
model 

Level set Conceptually simple Limited accuracy 
 Easy to implement Loss of mass (volume) 
Shock capturing Straightforward implementation Numerical diffusion 
 Abundance of advection schemes are available Fine grids required 
  Limited to small discontinuities 
Marker particle Extremely accurate Computationally expensive 
 Robust Re-distribution of marker particles required 
 Accounts for substantial topology changes in 

interface 
 

SLIC VOF Conceptually simple Numerical diffusion 
 Straightforward extension to three dimensions Limited accuracy 
  Merging and breakage of interfaces occurs 

automatically 
PLIC VOF Relatively simple Difficult to implement in three dimensions 
 Accurate  
 Accounts for substantial topology changes in 

interface 
Merging and breakage of interfaces occur 
automatically 

Lattice Boltzmann Accurate Difficult to implement 
 Accounts for substantial topology changes in 

interface 
Merging and breakage of interfaces occur 
automatically 

 
 
Hydrodynamic modelling of fixed-bed reactors with VOF model is rarely documented in the open 

literature (Gunjal et al., 2005b). Bubble columns have received the foremost attention on the VOF 

simulation case studies. The motion of single bubbles is relatively well understood and extensive 

experimental data on shape and terminal velocity are available in the literature. Using available 

experimental data, simulation work for single bubble rising in stagnant fluid has been carried out 

by many researchers mostly in two-dimension (Krishna and van Baten, 1999; Essemiani et al., 

2001; Liu et al., 2005) and few in three-dimension (Olmos et al., 2001; Van Sint Annaland et al., 

2005). The rise trajectories of bubbles, their size, shape and rise velocity as well as the effect of 

fluid properties on bubble dynamics and gas hold-up were largely discussed. Chen and Fan (2004) 

have applied a level set formulation of VOF to simulate bubble motion for two and three-phase 

system. Bertola et al. (2004) predict the influence of bubble diameter and gas hold-up on the 

hydrodynamics of bubble column reactor using VOF approach.  

Despite all of these significant efforts in predicting the characteristics of bubbly flows, there is still 

need to develop VOF model for three-phase reactors including trickle beds. Therefore, in the 

present work Euler-Euler and VOF models will be investigated for the hydrodynamic simulation 

of high-pressure trickle-bed reactors since the Euler-Lagrange is limited to those cases that are 

characterized by a highly diluted phase with a volumetric concentration lower than 10%.  
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II.9. Conclusions 

As the abovementioned survey indicated, major improvements on active and stable heterogeneous 

catalyst are intended to be realized in the near future. This fact will allow substantial 

enhancements of catalytic wet oxidation technology to become economically and environmentally 

feasible in comparison to most of the conventional treatments. Catalytic wet oxidation should 

overcome common drawbacks associated with separation based as well as biological technologies 

as long as they cause non-depreciable secondary sources of environmental pollution. Foremost 

reviews on wet oxidation have identified refractory compounds to non-catalytic wet oxidation, 

which have a regular property of being low to moderate molecular weight oxygenated compounds. 

In this ambit, agro-food processing wastewaters will be undertaken as an example of non-

biodegradable and phytotoxic effluents. Specifically, major polyphenolic compounds: syringic (4-

hydroxy-3,5-dimethoxybenzoic), vanillic (4-hydroxy-3-methoxybenzoic), 3,4,5-

trimethoxybenzoic, veratric (3,4-dimethoxybenzoic), protocatechuic (3,4-dihydroxybenzoic) and 

trans-cinnamic acids typically found in olive oil mill wastewaters deserve particular attention in 

what concerns the process performance at different levels as follows: total organic carbon 

reduction, intermediate compounds formation, catalyst stability and kinetic modelling. Several 

commercial and laboratory-made catalysts will be investigated addressing both the catalytic 

activity and stability. Regarding the selected catalysts some were prepared in laboratory and others 

were commercially obtained. The tested active materials were manganese, copper, zinc, iron and 

silver, while the catalysts supports were ceria and alumina. A major importance was given to 

cerium based catalysts and manganese catalysts. The kinetic parameters will be obtained taking 

into account the generalized kinetic model and this information will be further integrated into a 

hydrodynamic model developed by means of CFD where the reaction aspects as well as the 

transport mechanisms were accounted for a high-pressure trickle-bed reactor. Two multiphase 

CFD frameworks – Euler-Euler and Volume-of-Fluid – will be evaluated for either cold flow or 

reacting flow conditions. Axial and radial profiles of hydrodynamic and reaction parameters will 

be thoroughly evaluated at different operating conditions. The influence of gas and liquid flow 

rates as well as the effect of temperature and pressure will be investigated in terms of total organic 

carbon conversions. 
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The second part of the thesis belongs to the kernel of this work and starts with the 

experimental studies on catalyst screening for the CWO remediation of simulated 

phenolic wastewaters. Six model phenolic acids are undertaken to accomplish several 

oxidation experiments with commercial and laboratory-made catalysts prepared either 

by wetness impregnation or co-precipitation. Manganese, copper, zinc, iron, silver and 

ceria based catalysts are studied addressing both the catalytic activity in terms of Total 

Organic Carbon conversion and catalytic stability in terms of active metal leaching to 

the bulk liquid as well as in the deposition of carbonaceous material on the catalyst 

surface. Whereas Chapter III is concerned with the comparison of pollutant removal 

efficiencies between different commercial and laboratorial manganese/ceria catalyst 

formulations, Chapter IV is devoted to manganese and copper based catalysts. 

Different oxidation temperatures and air pressures are investigated and reaction 

intermediates are followed during experimental runs by HPLC. Special emphasis is 

given to the synergism behaviour of the multiphase reaction system for the CWO of a 

global phenolic mixture and for the individual parent compounds depletion. Kinetic 

parameters are determined with the Generalized Kinetic Model.  
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CHAPTER III. COMMERCIAL AND LABORATORIAL CERIA BASED CATALYSTS 

 

III. Commercial and Laboratorial Ceria Based Catalysts 

for CWO of Simulated Olive Mill Wastewaters1

Catalytic Wet Air Oxidation (CWO) of six model phenolic acids: syringic, vanillic, 3,4,5-

trimethoxybenzoic, veratric, protocatechuic and trans-cinnamic acid present in wastewaters from 

olive oil mills was studied at different temperatures. Experiments completed in the presence of 

four commercially available catalysts, CuO-MnOx/Al2O3, CuO-ZnO/Al2O3, Fe2O3-MnOx and 

CuO-MnOx were compared with the ones related to various catalysts prepared in our laboratory, 

Ag-Ce-O, Mn-Ce-O, Mn-O and Ce-O. These catalysts showed a higher effective reduction of the 

total organic carbon (TOC) especially when the experiments were carried out with manganese 

oxide supported on ceria, an alternative and powerful catalyst to treat highly contaminated 

wastewaters containing phenolic compounds. Along the oxidation, acetic acid and phenol were 

detected and quantified by HPLC as the main intermediate species. Leaching, carbon adsorption as 

well as texture and morphology by SEM were analyzed and formation of whiskers at the catalyst 

surface was observed. Moreover, the kinetic parameters were obtained and co-oxidation of the 

phenolic compounds in the mixture was identified in our studies.  

 

III.1. Introduction 

Olive oil mill wastewaters (OMW) are characterized by high Chemical Oxygen Demand (COD) 

imposing serious problems at the time of proper management and disposal. COD of this type of 

effluents ranges between 25 to 300 g O2 L-1 in the worst of the cases. The olive oil extraction 

industries in the Mediterranean countries generate each year an increasing volume of wastewaters 

with a great pollutant influence. It is mainly due to the high organic fraction including sugars, 

tannins, acids, pectins, lipids, and especially phenols and polyphenols which are not amenable to 

conventional biological oxidation (Balice et al., 1990; Hamdi, 1993). It is estimated that the 

production passes beyond 30 million m3/year (Fiestas and Borja, 1992). 

Among the different methods traditionally used to dispose OMW, the following have been mainly 

applied: a) Evaporation ponds: they are meant to remove water with the aid of solar energy 

avoiding anaerobic fermentation (low deep ponds); however, evaporation ponds are useful only for 

small factories and alternative solutions should be investigated; b) disposal in soil: wastewater 

from olive mills has been used as a fertilizer and in the irrigation of some kind of crops; c) 

incineration: given the high organic load of OMW, incineration may constitute an appealing 

                                                 
1 This Chapter is based upon the publication Lopes et al. (2007) 
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method to treat these residues though inherent disadvantages of incinerators (fuel costs, gas 

emissions, etc.) have to be balanced; d) other uses: effluents of olive mills have been utilized as a 

source of fermentation products, such as fat and oils preservatives.  

In recent times, most of the studies about OMW treatments are focused on aerobic (Hamdi, 1993; 

Velioglu et al., 1992) or anaerobic digestion (Gharsallah, 1994; Martin et al., 1994). However, 

many problems concerning the high toxicity and the biodegradability of the effluents have been 

encountered during these anaerobic treatments (Hamdi, 1993; González et al., 1990), and the 

experimental results are not satisfactory: they must be conducted on a highly dilute substrate once 

the aromatic and phenolic compounds are toxic for methanogenic bacteria (Boari et al., 1984; 

Hamdi, 1991). 

Wet oxidation (WO) is a promising alternative that has been investigated in order to decrease the 

amount of phenolic compounds contained in the OMW (Mantzavinos et al., 1996). Although the 

uncatalyzed oxidation study provides us with a useful insight into the partial oxidation of each 

acid, a more promising process for industrial application is the use of a catalyst to promote the 

oxidation at shorter reaction times and milder operating conditions (Mantzavinos et al., 1997; 

Minh et al., 2006). In fact, different excellent reviews regarding WO and CWO processes have 

been published (Minh et al., 2006; Mishra  et al., 1995; Matatov-Meytal and Sheintuch, 1998; 

Imamura, 1999; Luck, 1999; Kolaczkowski et al., 1999; Bhargava et al., 2006). 

Homogeneous catalysts, particularly copper salts, are in general more effective than heterogeneous 

oxidation catalysts (Bhargava et al., 2006; Taghasira et al., 1975; Goto et al., 1977; Imamura et 

al., 1982) but their use needs a separation step such as precipitation or membrane separation to 

remove the toxic catalyst ions from the final effluent. In this context, heterogeneous catalysts have 

been mostly investigated. For instance, the catalytic oxidation of phenol and substituted phenols 

over mixed copper, zinc and cobalt oxide catalysts was studied (Pintar and Levec, 1992) and these 

catalysts were effective for the destruction of phenol and substituted phenols. Recently Bhargava 

et al. (2006) systematized the catalytic effect of noble metals on wet oxidation of phenols and 

other model pollutant compounds and found that Ru, Pt and Rh were also more active than a 

homogeneous copper catalyst. In particular, high performance has been attributed to activated 

carbon when used as catalyst support and impregnated with different noble metals (Pd, Pt, Ru, Rh, 

Ir, Au) or even with more economical species, such as metal oxides (Cu, Fe, Mo, Ce), during 

decontamination of synthetic and actual wastewaters (Santos et al., 2005; Stüber et al., 2005; 

Garcia et al., 2006). In fact, noble metals have shown to be effective for degradation of phenolics 

compounds contained in OMW such as p-coumaric acid (Minh et al., 2006). Nevertheless, the 

high cost of this kind of materials makes important to investigate more economical catalyst. 
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Cu, Zn and Mn have shown good catalytic properties when applied in the CWO technology 

(Matatov-Meytal and Sheintuch, 1998) and in particular, Mn-Ce-O has been active for degradation 

of different species appertaining to different chemical groups: phenols, aldehydes, carboxylic acids 

and alcohols (Imamura, 1999; Larachi, 2005; Silva et al., 2003a; Silva et al., 2004a; Silva et al., 

2004b). 

Therefore, the main objective of this work addresses the search for an active, stable and 

economical catalyst for the treatment of OMW, as well as the characterization of the reaction 

system through kinetic analysis, using various catalysts prepared in the laboratory or obtained 

commercially. The efficiency of the non-catalytic and catalytic wet air oxidation of OMW was 

studied for the selected acids, major pollutants in OMW (Balice and Cera, 1984), namely: syringic 

(4-hydroxy-3,5-dimethoxybenzoic), vanillic (4-hydroxy-3-methoxybenzoic), 3,4,5-

trimethoxybenzoic, veratric (3,4-dimethoxybenzoic), protocatechuic (3,4-dihydroxybenzoic) and 

trans-cinnamic. The kinetic expressions in terms of TOC (total organic carbon) were established 

aiming the successful design and operation of continuous CWO multiphasic chemical reactors in 

wastewaters treatment plants. 

 

III.2. Experimental 

III.2.1. Material and catalysts 

Syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, protocatechuic and trans-cinnamic acids were 

obtained from Sigma-Aldrich. Commercial catalysts were supplied by the Süd-Chemie Group, 

Munich: CuO–ZnO/Al2O3 (G66A: CuO-41%; ZnO-47%), Fe2O3–MnOx (N-150: Fe2O3-60%; 

MnOx-30%), CuO–MnOx/Al2O3 (SG2216: CuO>25%; MnOx >25%) and CuO–MnOx (N-140: 

CuO-22%; MnOx - 50%). Mn–Ce–O and Ag–Ce–O were prepared by co-precipitation, by mixing 

aqueous solutions of the respective metal salts using the corresponding metal nitrates as precursors 

(Riedel-de-Häen and Labsolve). For Ag–Ce–O, NaOH 3 M was added until pH was equal to 10; 

the precipitate formed was then filtrated, washed three times with ultra pure water and dried over 

night at 100 ºC, followed by calcination at 300 ºC. For Mn–Ce–O the mixture of aqueous solutions 

was poured into 200 mL of a 3 M NaOH solution, the precipitate was filtrated and washed five 

times with 500 mL of ultra pure water, dried over night at 100 ºC and finally calcinated at 300 ºC. 

Two different molar composition ratios were studied, 70 and 22% for the active metal (Mn) and, 

30 and 78% for the support (Ce), respectively. Catalytic properties of individual oxides, Mn-O and 

Ce-O were also investigated. Before the experiments all the catalysts used in this work were 

crushed in a fine powder (125-250 μm particle size) with the aim to provide maximum specific 

surface area for reaction and to ensure the elimination of internal diffusion resistances. 
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III.2.2. Oxidation reactor and procedure 

The experiments were performed in a high-pressure 1 L autoclave of 316-SS (4531M Parr model) 

described elsewhere (Silva et al., 2003b), equipped essentially with a two six-bladed 

mechanically-driven turbine agitator and a PID temperature controller (4842 Parr model). For the 

catalytic screening studies, the solution of phenolic acids (1200 mg/L, 200 mg/L for each phenolic 

acid: syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, protocatechuic and trans-cinnamic) was 

introduced in the system with the powder catalyst (6 g.L-1) and preheated up to the operating 

temperature (160–220 ºC). For kinetic studies six solutions of each phenolic acid with a 

concentration about 200 mg/L were prepared.  Pure air (99.999%) was introduced into the system 

up to the operating pressure (30 bar total pressure) and this instant was taken as the “zero” time for 

reaction. Samples were withdrawn periodically from the reactor and special attention was given to 

the liquid sampling procedure to avoid contamination of the samples and losses of the liquid phase 

and/or catalyst. Liquid samples were immediately filtered and then analyzed for total organic 

carbon (TOC). 

 

III.2.3. Analytical techniques 

TOC was measured with a Shimadzu 5000 TOC Analyser, which operates based on the 

combustion/ nondispersive infrared gas analysis method. Total carbon (TC) was first measured 

followed by the measurement of the inorganic carbon (IC). The TOC was then determined by 

subtracting IC from TC. pH was monitored along the reactions with a HANNA instrument-

HI8711E. 

Reaction intermediates were analyzed in a Knauer HPLC system equipped with a WellChrom K-

1001 pump. The oven from Jones Chromatography (model 7971) was set at 75 ºC and a SS-

Column 300×8 mm inside diameter was used (10 μm particle size of a sulfonated cross-linked 

styrene-divinylbenzene copolymer). 100% of 0.01 N H2SO4 at a flow rate of 1 mL/min was used 

as the mobile phase. The injection volume was 20 μl while detection was typically at 280 nm. 

Running external standards at various concentrations the linearity between absorbance and 

concentration (as described by the Beer-Lambert law) was observed over the whole range of 

concentrations under consideration, leading to the calibration curve. Blank samples were run 

between two consecutive HPLC runs to ensure that no residuals from the previous run were 

carried over to the next one. Both the standards and the samples were periodically run in duplicate 

to test the reproducibility of the measurements. 

 67



CHAPTER III. COMMERCIAL AND LABORATORIAL CERIA BASED CATALYSTS 

 

Elemental analysis was used to detect carbon adsorption in catalysts with a Fisons Instruments EA 

1108 CHNS-O equipped with a pre-packed ox/red quartz reactor, operating with a flash 

combustion and using a thermal conductivity detector (TCD); standard solutions of phenanthrene, 

sulfanilamide, and BBOT (2,5-bis(5-tert-butylbenzoxazol-2-yl)thiophen) were obtained from 

Fisons Instruments. Atomic absorption in a spectrometer Perkin-Elmer 3300, with hollow cathode 

lamps (Cathodeon) and standard solutions from BSB-Spectrol, was used to measure the leaching 

of manganese to the liquid phase. 

The catalyst Brunauer-Emmett-Teller (BET) surface area analysis (SBET) and respective isotherm 

were determined with an accelerated surface area and porosimetry analyzer (ASAP 2000) from 

Micrometrics using nitrogen at a constant temperature (-196ºC). Scanning electron microscopy 

(SEM) analysis at different scales/magnifications was performed in a JEOL JSM-5310 scanning 

microscope. 

 

III.3. Results and discussion 

III.3.1. Catalyst screening 

A preliminary experiment was performed at 200 ºC in the absence of oxygen and no degradation 

was detected, highlighting the important role of oxygen in the oxidation process. Figure I.1a)-c) 

represent the TOC reduction for the non-catalytic WO and the catalytic process when using 

different commercial catalyst as well as laboratorial cerium-based catalysts with molar ratios of 

70/30 and 22/78 for Mn-Ce-O and 70/30 for Ag-Ce-O. At 200 ºC and 15 bar of air partial pressure 

it is not possible to reduce efficiently the carbon content of the solution with the non-catalytic WO, 

leading only to 49.1% reduction after 2h (Fig. III.1a). When a catalyst is added to the system, 

significant increase in reaction rate is obtained and for the commercial catalysts supported on 

alumina, CuO-MnOx/Al2O3 (98.9%) is more active than CuO-ZnO/Al2O3 (88.2%), with a high 

initial decrease followed by a slower degradation. The results of Fig. III.1b) point out that CuO-

MnOx is more active without the Al2O3 support. Moreover, Fe2O3-MnOx and CuO-MnOx showed 

different behaviours; these catalysts have as active metal manganese oxide in both cases but the 

latter has more significant activity along 60 min with respect to the TOC abatement. The cerium 

support (Ce-O) with two different active metals, manganese and silver, revealed strong catalytic 

properties leading practically to complete TOC reduction at 60 min. Nevertheless, Mn-Ce-O 70/30 

was even more active than Ag-Ce-O 70/30 for shorter times, as for instance at 30 min, TOC 

reductions of 95.9 and 92.7% were respectively obtained Therefore, while phenolic solutions are 

not totally oxidized in terms of TOC without the use of catalyst, reaching an asymptotic value, 
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cerium-based catalysts showed significant activities with complete TOC removal and higher 

conversions than those detected for the commercial catalysts. 
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Figure III.1. Normalized TOC concentration reduction (%) as a function of time at 200ºC, 15 bar  air and 3 g/L catalyst 

concentration for (a) non-catalytic wet oxidation and alumina supported catalysts, (b) different commercial and 

laboratorial catalysts, (c) cerium based laboratorial catalysts and respective oxides: Mn-O and Ce-O. 

 

The activity of the Ce-O support is shown in Fig. III.1c) as well as for Mn-O. In previous CWO 

works Ce-O showed catalytic properties during the degradation of formaldehyde (Silva et al., 

2003a) and acrylic acid (Silva et al., 2004a), while degradation was practically not observed when 

ethylene glycol was treated (Silva et al., 2004b). Regarding the aromatic mixture used in this 

study, Ce-O alone present catalytic activity and probably play an important role in the catalytic 

activity of the Mn-Ce-O catalyst, due to the high ability of Ce-O as promoter of stored oxygen. In 

fact, the activity of Mn-O is increased when combined with Ce-O. Moreover, the molar ratio of 

Mn and Ce in the catalyst was also evaluated for 70/30 and 22/78 contents, and TOC reduction 

from 96.6% to 93.1% in 30 min was observed when the amount of Mn was decreased The 

efficiency of Mn-Ce-O 70/30 when compared to Ce-O and Mn-O has been explained in the 

literature as a consequence of different factors. When the cerium is mixed the manganese the 

concentration of Ce4+ increases in detriment of Ce3+ and the electrons of cerium seems to be 
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transferred to Mn, enhancing then efficient mobility of electrons and explaining the higher activity 

for bimetallic Mn-Ce-O catalysts. This efficiency is also related with the presence of more non-

lattice oxygen (OII) species in mixed oxides, which are more active than the lattice oxygen (OI) 

(Silva, 2005; Chen et al., 2001). 

Therefore, Mn showed to be the best metal to be combined with Ce in terms of catalytic activity 

and, in particular, Mn-Ce-O 70/30 showed higher efficiency and higher TOC reductions in the first 

30 min. When scaling-up a chemical reactor, time is a cost variable in continuous treatment, which 

emphasizes the great interest on the Mn-Ce-O catalyst for the CWO technology. 

 

III.3.2. Intermediate compounds and pH 

During the course of phenolic acids oxidation over Mn-Ce-O 70/30 various species were detected: 

(i) aromatic compounds, namely phenol and p-hydroxybenzoic acid; (ii) ring cleavage products, 

namely acetic acid. Fig. III.2 shows the molecular formula of the compounds used in this study 

and the two representative intermediates, phenol and acetic acid. 

 

OH

O

O
OH

O

 

OH

O

O
OH

 

O

O
O

OH

O

 

O
O

OH

O

 

syringic acid vanillic acid 3,4,5– trimethoxybenzoic acid veratric acid 

OHO

OH
OH

 

OH

O

 

OH

 OH

O

 

protocatechuic acid trans–cinnamic acid phenol acetic acid 

 
Figure III.2. The structure of phenolic acids and intermediate compounds  

 

Fig. III.3a-b shows the concentration-time profiles for phenol and acetic acid at 200 ºC, 

respectively, whereas in Fig. III.3c-d it is presented the intermediates distribution as a function of 

TOC degradation where we can infer that during the first 10 min of oxidation the initial phenolic 

acids suffer a rapid conversion into intermediate compounds which are degraded slowly 

afterwards. Mn-Ce-O 70/30 proved once again to be the catalyst which gave faster oxidation. 
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Observation of intermediate compounds such as phenol and acetic acid allowed to conclude that 

the mechanism was followed through two routes: the decarboxylation reaction of aromatic end 

groups leading to phenol formation (Fig. III.3a) and an oxygen attack to the aromatic double bond 

to form open ring intermediate compounds such as acetic acid (Fig. III.3b). 
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Figure III.3. Intermediate profiles of the reaction solution at 200 ºC, 15 bar air and 6 g/L catalyst catalyst as a function 

of time (a and b) and TOC degradation (c and d) for phenol and acetic acid. 

 

Fig. III.4 shows a pH behaviour usually involving an initial slight decrease, probably due to 

formation of low weight carboxylic acids, followed by the pH growth tending to neutrality which 

may correspond to the high mineralization of TOC discussed early. This expected behaviour was 

observed for all catalysts showing, however, different rates to achieve a neutral pH. 
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Figure III.4. pH profiles of the reaction solution at 200 ºC, 15 bar air and 3 g/L catalyst concentration for (a) non-

catalytic WO and alumina supported catalysts, (b) different commercial catalysts and cerium-based catalysts. 

 

III.3.3. Catalyst characterization in terms of leaching & carbon adsorption 

In order to evaluate the leaching of active species to the liquid phase that may become a second 

pollution source and an important catalytic deactivation factor that has to be avoided, the 

manganese metal was measured in terms of leaching for the experiments at 200ºC and 6 g/L of 

Mn-Ce-O initial concentration. After 2 hours, it was detected in the liquid phase more Mn for Mn–

Ce–O 70/30 (2.67 mg/L) than for Mn–Ce–O 22/78 (1.51 mg/L). The value related to Mn–Ce–O 

70/30 corresponds to 0.05% of the initial Mn concentration (2.87 g/L). Leaching of Mn with the 

phenolic mixture was higher than those observed in other works at the same conditions for 

ethylene glycol (Silva et al., 2004b), acrylic acid (Silva et al., 2004a) and formaldehyde (Silva et 

al., 2003a), respectively 0.318, 1.697 and 0.009 mg/L. 

Moreover, the carbon adsorption for the Mn-Ce-O laboratorial catalyst was evaluated since 

deactivation has been also attributed to the formation of carbonaceous deposits on the catalyst 

surface irreversibly adsorbed on active sites (Santos et al., 2005). However, in our study low 

values of carbon were detected in the recovered Mn-Ce-O catalyst: 3.15% and 2.67% C (w/w) for 

Mn–Ce–O 70/30 and Mn–Ce–O 22/78, respectively, which corresponds to 94.5 and 80.1 mg/L of 

carbon in the 6.0 g/L of catalyst initially charged in the reactor and approximately 6.7% and 5.6% 

C (w/w) of adsorbed TOC. Therefore, practically 94% of the TOC was removed by oxidation and 

not by adsorption in the solid catalyst. 
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III.3.4. Catalyst characterization in terms of morphology  

Morphology of Mn–Ce–O 70/30 was observed at different magnifications of SEM photographs for 

the fresh and used catalyst. For the ×200 magnification practically no differences were detected 

between both cases; however, with a ×3500 magnification one can observe the formation of 

whiskers in the used catalyst as seen in comparing fresh and used catalyst at Fig. III.5 (a) and (b), 

respectively. This magnification clearly shows that such filaments have different lengths up to 

approximately 10 μm and they can be better observed at a higher magnification (×15000). These 

whiskers have been identified as MnOOH and/or MnO2 during the CWO of acrylic acid (Silva et 

al., 2004a) and ethylene glycol (Silva et al., 2004b). 

a)     

    

b)  

Figure III.5. SEM photographs showing different scales/magnifications for fresh (a) and used (b) Mn–Ce–O 70/30 

catalyst. 
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The nitrogen adsorption isotherm, presented in Fig. III.6 for used Mn-Ce-O 70/30, shows a type 

IV isotherm with a hystersesis loop in the high range of relative pressure and suggests an 

intermediate behaviour between hysteresis type H1 and H3 (according to IUPAC classification). 

Therefore, for relative pressures higher than 0.8, condensation takes place giving a sharp 

adsorption volume increase, corresponding to mesoporous (20-500 Å pore diameter). The initial 

part of the type IV isotherm is attributed to monolayer-multilayer adsorption. The determined 

Brunauer-Emmett-Teller (BET) surface area (SBET), 109.3 m2/g, is similar to the one obtained for 

the fresh catalyst (102.5 m2/g). Moreover, the average pore diameter was 151.4 Å which is in 

agreement with the range of mesoporous associated to the isotherm. 
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Figure III.6. Brunauer-Emmett-Teller (BET) isotherm plot for the used Mn-Ce-O 70/30 catalyst in the CWO of 

phenolic acids. 

 

III.3.5. Kinetic studies of Phenolic Acids with the Mn-Ce-O 70/30 catalyst 

In what concerns the kinetic studies of WO reactions, lumped kinetic models have been widely 

used in order to represent the experimental TOC results. The modified generalized kinetic model 

(MGKM, Fig. III.7a)) (Silva et al., 2003b) is a global model that considers four types of 

compounds: easier degraded reactants (A); intermediates with difficult degradation (B); desired 

end products, namely carbon dioxide and water (C); and nonoxidizable matter (D). In the 

oxidation process of the phenolic solutions with Mn-Ce-O 70/30, phenol and acetic acid were 

formed as intermediate compounds, being totally degraded during the treatment and the overall 

TOC practically reduced to zero. In this context non-oxidizable matter (D) was not detected and 

the MGKM can be simplified to the generalized kinetic model (GKM) (Silva et al., 2003). This 

model takes into account the degradation of A to C through a direct step (1st step), and a parallel 
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step (2nd step) for the degradation of A to B, which is consequently degraded (by the 3rd step) in C. 

In this model presented in Fig. III.7b, the reactions are considered as first order with respect to the 

TOC concentration of the reactant involved in each step j (mj = 1; j = 1-3) and, in this context, the 

reaction rates of A and B are given by Equation (III.1), resulting its integration and arrangement in 

Equation (III.2). 
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where kj’ is related to the apparent reaction rate constant. The apparent pre-exponential factor of 

each step j (Aj) and the activation energy (Eaj) are given by the linearization of the Arrhenius 

equation. 
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Figure III.7. Lumped reaction pathways diagram for a) MGKM and b) GKM 

 

This model presupposes negligible mass-transfer resistance in the gas-liquid film, which was 

confirmed by the similar results of TOC reduction that were obtained under different agitation 

velocities from 50 to 350 RPM. Moreover, the solid was used in the original form obtained from 

the preparation procedure (particle size approximately up to 800 μm) and when using diameter 

equivalent particles in the range of 250-350 μm, similar TOC results were also obtained 

demonstrating the chemical regime. The good reproducibility of the experiments verified by 

performing different runs at the same conditions guaranteed the elimination of the experimental 

uncertainty transmission through kinetic calculations. 

In Fig. III.8 one can observe the different oxidation rates in terms of TOC reduction for each one 

of the compounds present in the simulated solution when submitted separately to the CWO 

process. As can be inferred, these results show a crescent difficult on the degradation of those 

compounds by means of CWO over Mn-Ce-O by the following order: syringic acid < vanillic acid 

< 3,4,5-trimethoxybenzoic acid < veratric acid < protocatechuic acid < trans-cinnamic acid. 

However, our results concerning the CWO of the global solution containing all the phenolic acids 
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simultaneously over the manganese oxide catalyst showed a complete reduction according to Fig. 

III.1c).  
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Figure III.8. Normalized TOC concentration (%) as a function of time at different temperatures, (3 g/L of Mn-Ce-O 

70/30) and adjustment of the GKM, (a) syringic acid, (b) vanillic acid , (c) 3,4,5-trimethoxybenzoic acid, (d) veratric 

acid, (e) protocatechuic acid, (f) trans-cinnamic acid. 
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Therefore, a different oxidation behaviour is observed when an isolated pollutant is treated and 

when is mixed with others. In fact, this behaviour has been also reported in some studies on CWO 

(Bhargava et al., 2006) and can be explained by a co-oxidation process. This phenomenon 

involves the enhancement of the degradation of a given organic compound through the free-radical 

intermediates produced from the oxidation of other organic compounds. As a consequence the 

observed rate of oxidation for a mixture of phenolic acids is much higher than the isolated 

compounds theoretical rate, which suggests that the oxidation reaction is free radical in nature with 

the active free-radical species produced from the mixture accelerating the reaction. This seems to 

point out that some of the results obtained in laboratorial studies with individual species can be 

improved in real situations due to the potential interactions with other compounds, which can 

favour the final treatment. 

The adjustment of the kinetic model by fitting Equation (III.2) to the experimental points showed 

in Fig. III.8 at different temperatures gives the parameters, derived by means of GKM model, 

presented in Table III.1 for the six phenolic acids where the pre-exponential factor and the 

activation energy are also referred. The adjustments to the experimental points are quite good with 

high correlation coefficients (R2 from 0.9954 up to 0.9998). Oxidation of phenolic acids can occur 

whether directly to C (1st step) or indirectly to intermediate products B and then to C. In general k’ 

values increase with temperature, and usually k1’ > k2’ > k3’, what means that direct oxidation to 

carbon dioxide and water is more predominant than the parallel reaction to originate intermediate 

products, which are subsequently degraded to end products at lower reaction rate. Nevertheless, 

two deviations were observed: i) for syringic and vanillic acids k1’ > k3’ > k2’, indicating that when 

the intermediates are produced by 2nd step, they are quickly degraded to carbon dioxide and water 

by the 3rd step; ii) for trans-cinnamic acid k2’ > k1’ > k3’, pointing out that reaction proceeds 

preferentially by formation of intermediates which are difficult to be degraded (B) than by the 1st 

step. Therefore, intermediates generated by oxidation of trans-cinnamic acid will be present in 

higher amounts and further degradation will be more difficult than the one related to intermediates 

produced from other acids. The calculated activation energies confirm the order presented above 

concerning the difficulty to oxidize the TOC content related to each phenolic acid: values from 

16.57 kJ/mol (for syringic acid) up to 157.74 kJ/mol (for trans-cinnamic acid) were obtained. 

Regarding the experiments with Mn-Ce-O 70/30 at 200ºC, Table III.2 resumes the k’ values 

obtained with the GKM for the reaction of single phenolic components (Fig. III.8) as well as this 

table shows the k’ values related to the phenolic mixture (obtained by fitting the model represented 

by dotted line to the experimental data in Fig. III.1c). By comparison, higher values from the 

kinetic determination are obtained with the phenolic mixture; this fact allows reinforcing that co-

oxidation process occurs, leading to a faster oxidation due to the synergism between species. 
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Table III.1. Kinetic model parameters of the GKM for individual phenolic acids with Mn-Ce-O 

 Syringic acid Vanillic acid 
 k1

’(min-1) k2
’(min-1) k3

’(min-1) R2 k1
’(min-1) k2

’(min-1) k3
’(min-1) R2

160 ºC 0.0451 0.0448 0.0151 0.9997 0.0451 0.0012 0.0148 0.9995 
170 ºC 0.0650 0.0012 0.0150 0.9998 0.0647 0.0011 0.0150 0.9984 
190 ºC 0.1009 0.0048 0.0152 0.9985 0.0802 0.0013 0.0151 0.9987 
200 ºC 0.2003 0.0004 0.0149 0.9988 0.1003 0.0012 0.0152 0.9994 
220 ºC 0.2002 0.0005 0.0149 0.9998 0.1504 0.0005 0.0147 0.9996 
Ea (kJ/mol) 16.57 19.85 53.71  18.33 24.18 67.94  
A (min-1) 0.61×102 2.46×101 7.93×105  0.68×102 3.17×101 5.85×106  
R2 0.9563 0.9855 0.9628  0.9673 0.9678 0.9548  

 3,4,5-trimethoxybenzoic acid Veratric acid 
 k1

’(min-1) k2
’(min-1) k3

’(min-1) R2 k1
’(min-1) k2

’(min-1) k3
’(min-1) R2

160 ºC 0.0182 0.0009 0.0001 0.9998 0.0999 0.0506 0.0108 0.9985 
170 ºC 0.0231 0.0010 0.0001 0.9994 0.1012 0.1901 0.0157 0.9994 
190 ºC 0.0305 0.0013 0.0002 0.9996 0.1016 0.1503 0.0171 0.9983 
200 ºC 0.0404 0.0010 0.0003 0.9957 0.1021 0.1016 0.0173 0.9997 
220 ºC 0.0501 0.0017 0.0003 0.9978 0.1020 0.0506 0.0151 0.9997 
Ea (kJ/mol) 53.65 30.91 83.64  47.03 58.43 96.31  
A (min-1) 1.07×102 6.37×101 7.13×106  3.58×102 2.87×102 4.15×106  
R2 0.9563 0.9575 0.9461  0.9468 0.9857 0.9863  

 Protocatechuic acid trans-Cinnamic acid 
 k1

’(min-1) k2
’(min-1) k3

’(min-1) R2 k1
’(min-1) k2

’(min-1) k3
’(min-1) R2

160 ºC 0.0302 0.0211 0.0056 0.9992 0.0291 0.0504 0.0015 0.9974 
170 ºC 0.0397 0.0216 0.0056 0.9968 0.0362 0.0505 0.0020 0.9998 
190 ºC 0.0463 0.0202 0.0057 0.9997 0.0427 0.0505 0.0023 0.9996 
200 ºC 0.0534 0.0208 0.0058 0.9965 0.0491 0.0506 0.0029 0.9954 
220 ºC 0.0649 0.0207 0.0058 0.9985 0.0587 0.0505 0.0030 0.9991 
Ea (kJ/mol) 63.76 67.72 106.04  67.62 81.56 157.74  
A (min-1) 1.38×103 6.17×101 4.52×108  1.46×105 0.48×102 6.15×108  
R2 0.9869 0.9773 0.9578  0.9861 0.9728 0.9611  
 

 

Table III.2. Kinetic model parameters of the GKM at 200 ºC for phenolic mixture with Mn-Ce-O  
 

 k1
’(min-1) k2

’(min-1) k3
’(min-1) 

Syringic Acid 0.2003 0.0004 0.0149 
Vanillic Acid 0.1003 0.0012 0.0152 

3,4,5-Trimethoxybenzoic Acid 0.0404 0.0010 0.0003 
Veratric Acid 0.1021 0.1016 0.0173 

Protocatechuic Acid 0.0534 0.0208 0.0058 
trans-Cinnamic Acid 0.0491 0.0506 0.0029 

Phenolic Mixture 0.5797 0.1843 0.0588 
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III.4. Conclusions 

Using non-catalytic WO at 200ºC and 15 bar of air it is not possible to oxidize phenolic acid more 

than 50% of the initial TOC. Among all the several commercial catalysts tested (G66A, SG2216, 

N140 and N150) as well as the ones prepared in our laboratory the Mn-Ce-O and Ag-Ce-O 

catalyst showed the higher activity in TOC reduction for total oxidation of polyphenols and 

complete abatement of the intermediate compounds formed in the reaction. The crescent order for 

the difficulty of degradation of the phenolic acids is syringic, vanillic, 3,4,5-trimethoxybenzoic, 

veratric, protocatechuic and trans-cinnamic acid. 

Manganese oxide supported in ceria showed to be a viable alternative of an heterogeneous catalyst 

to homogeneous catalysis in the total abatement of toxic organic load due to phenols, which are 

present in a significant amount in olive oil wastewaters. The carbon content in the solution was 

successfully removed by catalytic wet air oxidation at 200 ºC and 30 bar total pressure and two 

main intermediate compounds, phenol and acetic acid, were detected. Slight leaching of Mn was 

identified and the carbon content in the solution was removed by oxidation and not by adsorption 

on the solid catalyst. 

The morphology of Mn–Ce–O 70/30 observed at different magnifications of SEM photographs 

revealed the formation of whiskers in the used catalyst. Therefore, in order to scale-up this 

technology more studies have to be done specifically related to catalytic stability of Mn-Ce-O to 

measure its life time in a continuous treatment. Finally, the kinetic parameters were obtained and 

this study highlighted a quite interesting phenomenon coming from the simultaneous treatment of 

various pollutants, clearly showing that the co-oxidation process is able to enhance the individual 

degradation of some compounds, which reinforces our strong belief on the success of this 

technology for real wastewaters. 
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IV. Manganese and Copper Based Catalysts for the 

Phenolic Wastewaters Remediation by CWO1

The catalytic wet air oxidation (CWAO) of a simulated phenolic wastewater was investigated at 

temperatures up to 200ºC and 15 bar of air partial pressure. Laboratorial  (Mn-Ce-O 70/30 IMP, 

Mn-Ce-O 70/30 CP, MnCu 70/30, MnCu 50/50) and commercial catalysts (N140: CuO-MnOx 

22/50) were used to evaluate the catalytic activity in terms of Total Organic Carbon (TOC). 

Among the manganese/cerium and manganese/copper catalysts tested with different molar ratios, 

Mn-Ce-O was the most active leading to the complete mineralization after 120 min of an aqueous 

solution containing six representative phenolic acids. The co-oxidation effect was identified when 

comparing the oxidation of global phenolic mixture and the individual parent compounds 

depletion. The catalyst preparation method had no significant differences in terms of catalytic 

activity. During the CWAO experiments, acetic acid and phenol were detected and measured by 

HPLC as the main reaction intermediate compounds. Concerning catalytic stability, manganese 

and copper catalyst revealed good properties in terms of active metal leaching to the bulk liquid as 

well as in the deposition of only 3 % (W/W) of carbonaceous material on the catalyst surface for 

the co-precipitated Mn-Ce-O 70/30 catalyst.  

 

IV.1. Introduction 

During the olive oil extraction and table olive production in the Mediterranean area, 30 million 

cubic meters per year of olive oil mill wastewaters (OOMW) are generated. The main producer 

countries are Spain, Italy, Greece, Tunisia, Turkey, Portugal and Syria. Alcohol distillation from 

different wine fractions also contributes to the huge volumetric rate of agro-industry wastewaters 

which became a serious environmental problem contaminating both land and aquatic ecosystems 

at the time of their disposal. OOMW are characterized by high levels of total organic carbon 

(TOC) concentration (20-85 g L−1), chemical oxygen demand (COD) (40-200 g L−1), biochemical 

oxygen demand (BOD) (12-60 g L−1) and total solids content (40-150 g L−1) with an acidic pH 

(<6) (Niaounakis and Halvadakis et al., 2004) and are rich in dissolved and suspended organic 

substances such as sugars, phenols, nitrogenated compounds, organic acids, polyalcohols, and 

residual oil emulsion  (DellaGreca et al., 2004). These highly contaminant wastewaters exhibit a 

high organic and polyphenolic content which is responsible for the dark colour, phytotoxicity and 

antibacterial properties. Moreover, given that its main production arises in a short annual period of 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2008) 
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time from October to February, feasible and efficient treatment processes are needed for the 

OOMW remediation. 

Treatment of OOMW, including physicochemical technologies (such as flocculation, ultrafiltration 

and reverse osmosis), biological processes (aerobic, anaerobic and combined systems) and 

chemical oxidation technologies have been employed for their proper disposal (Paraskeva and 

Diamadopoulos, 2006). In the past, OOMW have been regarded as a liquid amendment for the 

soil. The presence of a wide variety of organic matter and plant nutrients qualified these effluents 

as soil irrigation agents. OOMW is also collected in open-air lagoons and applied to soil without 

any further treatment. Nevertheless, these practices may cause several adverse effects on 

ecosystems due to the presence of unstable organic and insufficient mature matter consumable by 

fauna and flora. In fact, the transformation of fresh organic matter contained in OOMW into 

stabilized organic compounds exhibiting an humic-like behaviour that are biochemically similar to 

native soil humic substances, is also recommended in the literature (Sierra et al., 2001).  

Alternative technologies have been developed to reduce these effluents based on chemical 

oxidations, namely, advanced oxidation processes in which the hydroxyl radicals are generated, 

and wet air oxidation (WAO) which uses oxygen as the oxidant at elevated temperature and 

pressure (Mantzavinos and Psillakis, 2004; Cañizares et al., 2007). In order to reduce the 

refractory contaminants, chemical oxidations based on UV radiation are increasingly tested for the 

reduction of organic contaminants present in a variety of wastewaters from different industrial 

plants but this methodology is time consuming so that it has been necessary to develop more 

effective processes for the destruction of the contaminants. Taking into account the toxicity and 

non-biodegradability of OOMW, in the last decade wet air oxidation appears as one promising 

technology that has conquered an increasing interest as a suitable option for pollution abatement 

(Bhargava et al., 2006). Indeed, with the application of a solid catalyst, the process can be 

conducted at milder operating conditions and it may be greatly improved towards the complete 

mineralization. Several heterogeneous catalysts have been investigated for the oxidation of various 

organic compounds being the majority characterized by mixed oxides mainly based on CuO, FeO, 

ZrO, RuO, ZnO, AgO, PdO, PtO or other noble metals on different supports) (Matatov-Meytal and 

Sheintuch, 1998; Bhargava et al., 2006; Garcia et al., 2006; Levec and Pintar, 2007; Cybulski, 

2007). In spite of the high efficiency exhibited in the oxidation of various pollutants and industrial 

wastewaters, the ruthenium catalysts supported on titanium or zirconium oxides are expensive, so 

that this work is devoted for the evaluation of laboratorial and commercial catalysts based on less 

expensive manganese and copper oxides. 
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The main objective of this work addresses the catalytic activity (in terms of TOC) as well as 

catalytic stability (expressed as active metal leaching and carbon adsorption on the catalyst 

surface) for the treatment of simulated OOMW, after the optimization of the reaction system. 

Major pollutants in OOMW (Mulinacci et al., 2001): syringic (4-hydroxy-3,5-dimethoxybenzoic), 

vanillic (4-hydroxy-3-methoxybenzoic), 3,4,5-trimethoxybenzoic, veratric (3,4-

dimethoxybenzoic), protocatechuic (3,4-dihydroxybenzoic) and trans-cinnamic are used to 

simulate the phenolic content of industrial wastewaters. 

 

IV.2. Experimental 

IV.2.1. Material and catalysts 

Syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, protocatechuic and trans-cinnamic acids were 

obtained from Sigma-Aldrich. Mn-Ce-O and MnCu catalysts were prepared by co-precipitation 

(CP), by mixing aqueous solutions of the respective metal salts using the corresponding metal 

nitrates as precursors (Riedel-de-Häen and Labsolve). The solution was poured into 200 ml of a 3 

M NaOH solution. The precipitate was filtrated and washed five times with 500 ml of ultra pure 

water and dried over night at 105ºC and finally calcinated at 300ºC. Mn-Ce-O was also prepared 

by wetness impregnation (IMP). This method consisted in putting in contact 40 g of the support 

with 200 mL of an aqueous solution of Mn metal precursor. The solution was mixed during 30 min 

and further dried at 105ºC. The dried catalyst was crushed in a fine powder (125-250 μm particle 

size) in order to provide with high specific surface area for reaction and calcination was carried out 

at 300ºC. Different molar composition ratios were studied, 70 and 30% for the manganese/cerium 

oxide, and 70, 50 and 30% for the manganese/copper oxides. Commercial catalyst was supplied by 

the Süd-Chemie Group, Munich: CuO–MnOx (N-140: CuO-22%; MnOx - 50%). Several catalyst 

loads were investigated in the range 1.5-6.0 g/L with the original and sieved catalyst diameter, dp. 

Sieve analysis was carried out for measuring particle size distribution. The original size obtained 

from the preparation procedure was approximately 900 μm and after mechanical sieving, dp was in 

the range of 250-350 μm. 

Several Mn/Ce 70/30 samples were prepared by using different drying/calcinations temperatures 

aiming to analyse the influence on the BET areas of the drying and calcination temperatures. The 

BET results obtained through gaseous adsorption analysis for the drying/calcination pairs as 

follows: 100ºC/300ºC, 80ºC/500ºC, 100ºC/500ºC, indicate that the increase on the drying 

temperature, from 80ºC to 100ºC had no effect on the surface area (94 m2/g). Conversely, when 

different calcination temperatures were used, namely 300ºC and 500ºC, a significant variation in 

the BET surface area was observed, from 102 to 94 m2/g. Therefore, the catalyst samples will have 
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lower surface areas when higher temperatures are used. Regarding laboratory-made copper 

catalysts, the catalysts BET surface areas were: MnCu 50/50 – 145.98 m2/g) and MnCu 70/30 – 

138 m2/g, whereas the commercial catalyst N140 had 161 m2/g. 

 

IV.2.2. Oxidation reactor and procedure 

The oxidation experiments were carried out in a 316-SS high-pressure 1 L autoclave (Parr 

Instrument Company, model 4531M) equipped with two six-bladed mechanically driven turbine 

agitator and a PID temperature controller (4842 Parr model) described elsewhere (Silva et al., 

2003a). The thermocouple and liquid sample line are immersed in the solution and the system 

allows operating conditions up to 130 bar and 350ºC being air flow controlled by an electronic 

mass flow controller (Hastings). The solution of phenolic acids (1200 mg/L, 200 mg/L for each 

phenolic acid: syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, protocatechuic and trans-

cinnamic) was introduced in the system with the powder catalyst (1.5-6 g.L-1) and preheated up to 

the operating temperature (160-220 ºC) under different agitation velocities from 100 to 400 RPM. 

For the catalytic activity studies in terms of individual phenolic compounds depletion, six 

solutions of each phenolic acid with a concentration about 200 mg/L were prepared. Pure air 

(99.999%) was introduced into the system up to the operating pressure and preserving it at 15 or 

30 bar total pressure during the catalytic runs. The “zero” time for reaction was taken at the first 

injection of oxidant. Samples were withdrawn periodically from the reactor and special attention 

was given to the liquid sampling procedure to avoid contamination of the samples and losses of the 

liquid phase and/or catalyst. Liquid samples were immediately filtered with a 316-SS filter with 

0,5 μm pore sizes (Swagelok) to avoid catalyst particles in the samples withdrawn from the reactor 

and then analyzed for total organic carbon (TOC). The complete experimental setup on how air 

was sparged into the autoclave and how the total operating pressure was kept constant can be 

found in the work of Silva et al. (2003a). 

 

IV.2.3. Analytical techniques 

TOC was measured with a Shimadzu 5000 TOC Analyser, which operates based on the 

combustion/ nondispersive infrared gas analysis method. The parameter uncertainty in TOC 

measurement, quoted as the deviation of three separate measurements, was never larger than 2% 

for the range of the TOC concentrations. pH was monitored along the reactions with a HANNA 

instrument-HI8711E.  

Intermediate compounds formed during the oxidation runs were analyzed in a Knauer HPLC 

system equipped with a WellChrom K-1001 pump. The oven from Jones Chromatography (model 

7971) was set at 75 ºC and a SS-Column 300×8 mm inside diameter was used (10 μm particle size 
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of a sulfonated cross-linked styrene-divinylbenzene copolymer). 100% of 0.01 N H2SO4 at a flow 

rate of 1 mL/min was used as the mobile phase. The injection volume was 20 μl while detection 

was typically at 280 nm. Blank samples were run between two consecutive HPLC runs to ensure 

that no residuals from the previous run were carried over to the next one. Both the standards and 

the samples were periodically run in duplicate to test the reproducibility of the measurements. 

Elemental analysis was used to detect carbon adsorption in catalysts with a Fisons Instruments EA 

1108 CHNS-O equipped with a pre-packed ox/red quartz reactor, operating with a flash 

combustion and using a thermal conductivity detector (TCD); standard solutions of phenanthrene, 

sulfanilamide, and BBOT (2,5-bis(5-tert-butylbenzoxazol-2-yl)thiophen) were obtained from 

Fisons Instruments. Atomic absorption in a spectrometer Perkin-Elmer 3300, with hollow cathode 

lamps (Cathodeon) and standard solutions from BSB-Spectrol, was used to measure the leaching 

of manganese to the liquid phase. 

 

IV.3. Results and discussion 

IV.3.1. Catalytic Activity in terms of TOC depletion 

The catalytic activity of laboratorial and commercial manganese catalysts was investigated in 

terms of Total Organic Carbon depletion of the phenolic acids mixture. According to Fig. IV.1, 

catalytic wet air oxidation using Mn-Ce-O 70/30 was compared with non-catalytic (WO) and 

thermolysis treatments, the last one carried out in the absence of oxygen and catalyst.  
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Figure IV.1. TOC reduction as a function of time for different non-catalytic (thermolysis, WO) and catalytic treatments 

(6 g/L Mn-Ce-O CP 70/30, 200ºC, 15 bar Air). 
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After 2 h, only 4.8% TOC reduction was achieved with thermolysis and 49.1 % for non-catalytic 

wet oxidation. Therefore, at 200 ºC and 15 bar of air, the non-catalytic treatments are not able to 

reduce efficiently the TOC content of the phenolic solution. However, when Mn-Ce-O catalyst (6 

g/L) was added to the system, it was possible to obtain 95.9% TOC conversion after 1h being the 

complete TOC removal reached after 2h. Therefore, thermolysis or wet oxidation are not suitable 

for the phenolic solutions treatment without the use of an active catalyst.  

The TOC profiles of the phenolic acids mixture achieved with laboratorial (Mn-Ce-O 70/30 IMP, 

Mn-Ce-O 70/30 CP, MnCu 70/30 and MnCu 50/50) and commercial (N140: CuO-MnOx 22/50) 

catalysts were plotted in Fig. IV.2. According to these results, all the catalysts led to TOC 

reductions higher than those obtained in the experiments without catalyst (Fig. IV.1), which points 

out that the presence of a catalyst is of paramount significance for the oxidation of phenolic 

wastewaters. Moreover, after 120 min of reaction, almost complete mineralization was achieved 

for all catalysts either laboratorial or commercial so that the discussion is centred on intermediate 

times that are of particular interest in further pilot plant or industrial implementation of catalytic 

wet air oxidation. Specifically, after 15 min, the following decreasing order of catalytic activity 

can be established: Mn-Ce-O 70/30 IMP (91.6%) > Mn-Ce-O 70/30 CP (88.4%) > MnCu 70/30 

(78.7%) > N140 (73.4%) > MnCu 50/50 (69.7%), where IMP and CP correspond to the Mn-Ce-O 

prepared via wetness impregnation and co-precipitation, respectively. Bearing in mind that 

catalytic activity can depend on the catalyst preparation method, the CWAO of phenolic solutions 

were carried out over manganese/cerium oxides either prepared by wetness impregnation or co-

precipitation. 
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Figure IV.2. TOC reduction as a function of time for different laboratorial (Mn-Ce-O 70/30 IMP, Mn-Ce-O 70/30 CP, 

MnCu 70/30, MnCu 50/50) and a commercial one (N140: CuO-MnOx 22/50) at 200ºC, 15 bar Air and 6 g/L of Mn-Ce-

O CP 70/30. 
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According to Fig. IV.2, a minor dependence on the preparation method was observed leading 

roughly to the same TOC removal results. The higher difference in terms of TOC profiles for the 

two catalyst preparation methods, co-precipitation and wetness impregnation, was 3.2% TOC 

reduction observed at 15 min. Indeed, the manganese-based catalyst prepared by wetness 

impregnation shows better results with higher than 90% conversions for 15 min and 95% after 30 

min, while the MnCu 70/30 exhibits a TOC conversion of 88%. For the same operating time, the 

commercial catalyst (N140) revealed a TOC conversion of 84.5%, a value between the MnCu 

laboratory-made catalysts with different molar compositions.  The higher manganese content in 

the catalyst leads to the higher TOC conversion for the same residence time. The manganese metal 

revealed a major effect in the carbon content depletion in comparison with the copper metal. The 

effect of temperature and pressure on the CWAO using the Mn-Ce-O CP 70/30 catalyst is plotted 

in Fig. IV.3. The TOC degradation of the phenolic acids mixture obtained with different 

temperatures (160 and 200ºC) and different pressures (15 and 30 bar) demonstrated that 

temperature has more influence than the pressure. Fig. IV.1 illustrated the effect of the oxidant on 

the TOC removal so that when an experiment is accomplished in the absence of oxygen 

(thermolysis) the degradation of organic matter does not occur with relevant extension, which 

means that oxygen has an important role in the process. When carrying out an experiment at 160ºC 

and 30 bar, the TOC conversion was 64.2% whereas at 200ºC and 30 bar it was 88.4%, after 15 

min. Therefore, a temperature increment of 40ºC resulted in a considerable acceleration of the 

reaction rate in the initial reaction times. However, maintaining the temperature at 200ºC and with 

an increase of 15 bar, the TOC removal changed from 83.8 to 88.4% showing that TOC depletion 

was scarcely affected by increasing air partial pressure. Nevertheless, the influence of temperature 

and pressure on the carbon content removal was reduced along the reaction time until both 

operating variables did not affect TOC conversion for residence times larger than 60 min. 
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Figure IV.3. TOC reduction as a function of time for different temperatures (160-200ºC) and different air partial 

pressures (15–30 bar) and 6 g/L of Mn-Ce-O CP 70/30. 
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In order to evaluate the mass and heat transfer resistance in the gas–liquid film, several catalytic 

experiments were performed with the phenolic acids mixture varying the catalyst mass (1.5 – 6 

g/L) and the agitation velocity in the range 100-400 RPM. The gas-side mass-transfer resistance 

was estimated to be negligible because of the very high diffusivity of oxygen in the gas phase and 

its low solubility in water. To check the liquid-phase mass-transfer resistance, the effect of 

impeller speed on TOC reduction of phenolic acids mixture was studied with Mn-Ce-O CP 70/30 

at 200 ºC and 15 bar Air. However, the rate of oxidation was found to be independent of the 

impeller speed in a range of 350-400 RPM, indicating that there were no resistances associated 

with the oxygen transfer. The oxidation experiments were therefore carried out at 350 RPM. Fig. 

IV.4a) shows the effect of the mass of catalyst and differences were not detected. Moreover, 

practically the same TOC results were observed when the solid was used in the original form 

obtained from the preparation procedure (particle size approximately up to 900 μm) and when 

using particles in the range of 250-350 μm. According to Fig. IV.4b), the agitation velocity seems 

to have more effect on the TOC degradation with impeller speeds below 300 RPM so that the 

optimum velocity was fixed in 350 RPM to eliminate its effect on the external resistances of the 

reaction system.  
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a)       b) 

Figure IV.4. Evolution of the TOC concentration: a) different mass of Mn-Ce-O CP 70/30 (200 ºC; 15 bar Air) and 

different catalyst particle sizes: original size (approximately up to 900 μm) and in the range of 250-350 μm; b) different 

agitation velocities 

 

IV.3.2. Catalytic activity in terms of individual phenolic compounds depletion 

The individual concentration of syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, 

protocatechuic and trans-cinnamic acids were monitored by HPLC analysis along the catalytic 

oxidation of each individual phenolic acid. For this purpose, six solutions of each phenolic acid 

with a concentration about 200 mg/L were prepared and for each catalytic run a single phenolic 

acids solution was loaded into the batch reactor. In Fig. IV.5, the corresponding concentration 
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profiles are plotted for each one of the individual phenolic acids in various catalytic systems: a) 

Mn-Ce-O 70/30 IMP, b) Mn-Ce-O 70/30 CP, c) MnCu 70/30, d) N140 and e) MnCu 50/50.  
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    e) 
Figure IV.5. Individual phenolic acids oxidation for different catalytic systems(6 g/L, 200 ºC, 15 bar Air): a) Mn-Ce-O 

70/30 IMP, b) Mn-Ce-O 70/30 CP, c) MnCu 70/30, d) N140 and e) MnCu 50/50  

 

Among all catalysts, manganese/cerium oxides were the ones with higher degradation rates (Fig. 

IV.5a) and b)). Once more, their catalytic activity did not depend on the catalyst preparation 

method. After 30 min of oxidation performed with Mn-Ce-O 70/30 IMP catalyst, the conversions 

were 99.5%, 97.1%, 78.1%, 75.9%, 72% and 61% for syringic, vanillic, 3,4,5-trimethoxybenzoic, 
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veratric, protocatechuic and trans-cinnamic acids, respectively, whereas with Mn-Ce-O 70/30 CP 

catalyst, 99.2%, 90.7%, 77.8%, 77.7%, 71% and 59.4% were detected. These minor differences 

were of the same order of those observed in Fig. IV.2. Moreover, the established decreasing order 

of catalytic activity in terms of TOC degradation is the same that are now evidenced in terms of 

individual phenolic acid depletion. In spite of this concordance, Fig. IV.5 a)-e) showed an 

interesting effect that is related with the overall conversion attained after 120 min. Concerning the 

CWAO of the six phenolic acids solution, whatever catalyst is used Fig. IV.2 showed that the 

mineralization is complete. Nevertheless, the individual catalytic oxidation of each phenolic acid 

revealed that the mineralization is incomplete for the same run time. 

 
This fact has been reported in literature as a co-oxidation phenomenon and it has been also 

observed recently for manganese/cerium catalysts (Lopes et al., 2007). Co-oxidation of the 

phenolic mixture involves the oxidation of a phenolic compound by free-radical intermediates 

produced from another phenolic compound. The interaction between organic compounds during 

WO of mixtures of organic compounds has a strong influence on the rates of removal comparing 

Figs. 1 and 5. It is clear from now on that this improvement does not depend on the catalyst used; 

indeed the catalytic activity seems to be more conditioned by the phenolic compound. 

Consequently, a mixture of aromatic or even other organic compounds may speed up the oxidation 

rate due to the synergism between pollutants as already shown by Shende and Levec (2000) on the 

subcritical aqueous-phase oxidation kinetics of unsaturated carboxylic acids: acrylic, maleic, 

fumaric, and muconic acids. These carboxylic acids have been observed as intermediate products 

in wet oxidation of phenols and a homogeneous radical mechanism is generally proposed as the 

reaction pathway. Additionally, there have been several studies that have provided indirect 

experimental evidence of co-oxidation (Mantzavinos et al., 1996; Birchmeier et al., 2000). 

Imamura (1999) reported that the observed rate of oxidation for a mixture of high- and low-

molecular-weight poly(ethylene glycol)s is much higher than the theoretical rate of oxidation and 

claimed that the oxidation reaction is free radical in nature and the active free-radical species 

produced from the more-fragile polymers attack low-molecular-weight and accelerate the reaction. 

Moreover, this phenomenon has been used as one method to indirectly determine if free-radical 

reactions are occurring during wet oxidation (Tardio et al., 2004). 

Syringic acid was the most reactive phenolic pollutant being practically oxidized in the first 30 

min with manganese/cerium catalysts and around 60 min for manganese/copper ones. In fact, it 

was in the initial reaction times that the higher oxidation rates were confirmed, and afterwards the 

conversion profile changed slowly corresponding to the formation and degradation of intermediate 

compounds with reasonable refractory power. Conversely, trans-cinnamic acid appeared as the 

one with the lower degradation rates for all catalysts. After 2h, the conversions were 79%, 78.5%, 
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76.4%, 69.8% and 67.9% for Mn-Ce-O 70/30 IMP, Mn-Ce-O 70/30 CP, MnCu 70/30, N140 and 

MnCu 50/50, respectively. 

 

IV.3.3. pH and Intermediate Compounds 

The pH of phenolic solutions was monitored along the oxidation treatment for all laboratorial and 

commercial catalysts. According to Fig. IV.6, all catalytic experiments exhibited the same trend 

with an initial pH decrease followed by a significant increase, namely for the manganese-copper 

catalysts. The minimum value of pH (4.9) was also observed for the MnCu catalysts whereas the 

maximum value (6.9) was detected for the manganese cerium oxides. For copper catalysts, either 

laboratorial or commercial, the considerable initial decrease of pH can be related with the slower 

TOC degradation rate observed in Fig. IV.2 for the same reaction time. For Mn-Ce-O catalyst the 

initial increase in TOC conversion was followed by a regular increase in pH that can be explained 

by the formation of end products: carbon dioxide and water, and after 1h, when the TOC 

conversion being almost complete reached a plateau, the corresponding pH increased slowly. 

Given that phenolic solution is initially acid, after 20 min it can be seen that Mn-Ce-O IMP 

catalyst is the one that revealed the higher value of pH. This fact seems to be related with the 

fastest TOC degradation rate observed for that catalyst (Fig. IV.2) that led to higher values of pH 

towards the solution mineralization, in terms of carbon content, and neutralization, in terms of pH. 

Slight pH differences were detected for both cerium catalysts either prepared by wetness 

impregnation or co-precipitation corresponding to the minor differences TOC conversions between 

both.  
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Figure IV.6. pH profiles of the reaction solution at 200 ºC, 15 bar Air and 6 g/L catalyst concentration for: Mn-Ce-O 

70/30 IMP, Mn-Ce-O 70/30 CP, MnCu 70/30, N140 and MnCu 50/50  

 

As the pH evolution is directly related with the reaction pathway, the intermediate compounds 

were also quantified by HPLC. During the oxidation course, phenol and acetic acid were detected 
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and its concentration profiles are shown in Fig. IV.7. The ring cleavage and low weight carboxylic 

acid products were found as major intermediaries in the CWAO treatment being possible to 

advance that the mechanism followed the decarboxylation reaction route of aromatic end groups 

leading to phenol formation, and an oxygen attack to the aromatic double bond resulting in the 

formation of intermediate compounds such as acetic acid. 

For all the manganese catalysts tested (Fig. IV.6), the initial pH decrease can be related with the 

formation of low weight carboxylic acids such as acetic acid that may be potential intermediates 

products of the reaction. In fact, in the first 10 min of reaction the concentration profiles for acetic 

acid and phenol shown in Fig. IV.7 indicated the major production rates of these intermediate 

compounds. Following the initial pH decrease, a further increase more pronounced for 

manganese/copper catalysts should be due to the formation of carbon dioxide and water. After 1 h, 

pH did not change significantly most likely due to its slower TOC degradation rate in both copper 

and cerium catalysts. In what regards the Mn-Ce-O catalysts prepared by wetness impregnation 

and co-precipitation, minor variations were again observed for acetic acid and phenol 

concentration profiles being practically oxidized in the first hour of reaction time. Therefore, 

manganese/cerium catalyst revealed the highest catalytic activity towards the complete 

mineralization in shorter operating times.  
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Figure IV.7. a) Acetic acid and b) Phenol concentrations as a function of time for: Mn-Ce-O 70/30 IMP, Mn-Ce-O 

70/30 CP, MnCu 70/30, N140 and MnCu 50/50  
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IV.3.4. Catalysts stability in terms of leaching and carbon adsorption 

Concerning further industrial application of CWAO, the catalyst has not only to be active but it 

should be also stable in terms of premature deactivation. The most significant deactivation factors 

investigated in the literature are the active metal leaching from the catalytic structure to the liquid 

phase and the deposition of carbonaceous materials resulting in the irreversible loss of active sites 

through the poisoning of catalyst pores. It is well known that metal leaching to the bulk liquid can 

be relieved with the subsequent metal recovery step in order to purge this new pollution source, 

but its application implies a new industrial unit with relevant economical costs. In this study, the 

manganese leaching was quantified by atomic absorption and the adsorption of carbonyl species 

on the catalyst surface was measured by elemental analysis after the oxidation runs. 

Table IV.1 reports the manganese concentration of the final aqueous solution after 120 min of 

oxidation catalyzed by Mn-Ce-O 70/30 IMP, Mn-Ce-O 70/30 CP, MnCu 70/30, N140 and MnCu 

50/50. No differences were detected for both manganese/cerium oxides so that the preparation 

method had only a minor influence on the catalytic stability as previously concluded. In spite of 

their higher activity, Mn-Ce-O catalysts were the ones that exhibited the higher manganese 

solution concentrations in the treated effluent (2.67 mg Mn/L). Regarding the manganese/copper 

catalysts, the highest value of manganese leaching was obtained with laboratorial MnCu 70/30 

catalyst, whereas the lowest values was attained with the commercial one N140 (CuO-MnOx 

22/50). Therefore, it seems that the higher catalytic activity verified for manganese/cerium oxides 

in comparison with the copper oxides is related with the higher manganese molar composition 

present in the first ones. In fact, among the manganese/copper catalysts, MnCu 70/30 was also 

responsible for the higher leaching levels due to its higher molar percentage in Mn metal.  

 
Table IV.1. Mn leaching results to the liquid phase after 120 min for each Mn based catalyst (200ºC and 15 bar of Air, 6 

g/L) 

Catalyst mg Mn/L 

Mn-Ce-O 70/30 IMP 2.64 

Mn-Ce-O 70/30 CP 2.67 

MnCu 70/30 1.48 

N140 (CuO-MnOx 22/50) 0.11 

MnCu 50/50 0.67 

 

As the carbon deposition on the catalyst surface blocks the access of the reactants to active sites, 

elemental analysis was carried out after the recovery of the catalyst at the end of the experiments. 

The percentages of carbon weight found in the catalysts (%C w/w), hydrogen (%H w/w) and 

nitrogen (%N w/w) are shown in Table IV.2 as well as the TOC adsorbed relatively to the initial 
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TOC fed to the reactor and the TOC effectively oxidized after 120 min for each Mn based catalyst. 

According to these results, one may conclude that adsorbed carbon obtained is relatively low for 

both laboratorial and commercial catalysts. For instance, the maximum weight percentage of 3.152 

% was obtained with the co-precipitated Mn-Ce-O 70/30 catalyst which corresponds to 6.65 % of 

adsorbed carbon being possible to conclude that the overall TOC conversion was not totally 

complete as Fig. IV.2 depicted. Effectively, 93.3 % of the initial TOC was converted to carbon 

dioxide and water. In terms of carbon adsorption, the preparation method was found to be 

responsible for the observed differences in the percentage of TOC obtained for both 

manganese/cerium oxides. Regarding the other analyzed elements (H and N), only hydrogen was 

detected both in the copper and cerium supported catalysts being the higher content obtained in the 

latter ones. In fact, according to the experimental results from literature (Silva et al., 2003b; Lopes 

et al., 2007), the hydrogen content on the catalyst particle may be regarded as the development of 

whiskers enriched in MnOOH. 

 
Table IV.2. Carbon concentration adsorbed in the catalyst, initial TOC percentage adsorbed and effectively oxidized 

after 120 min for each Mn based catalyst (200ºC and 15 bar of Air, 6 g/L) 

 

Catalyst %C (w/w) %H (w/w) %N (w/w) %TOCadsorbed %TOCoxidized

Mn-Ce-O 70/30 IMP 1.543 4.187 < 0.01 3.26 96.7 

Mn-Ce-O 70/30 CP 3.152 2.456 < 0.01 6.65 93.3 

MnCu 70/30 2.973 0.191 < 0.01 6.27 93.4 

N140 (CuO-MnOx 22/50) 2.849 0.046 < 0.01 6.01 93.5 

MnCu 50/50 2.911 0.104 < 0.01 6.14 93.3 

 
 

IV.4. Conclusions 

At 200ºC, with non-catalytic oxidation (15 bar Air) and thermolysis treatments it is only possible 

to achieve 49.1% and 4.8% of TOC degradation, respectively. Several manganese, ceria and 

copper based catalysts were tested for the catalytic wet air oxidation of a simulated wastewater 

involving phenolic acids with the following decreasing order of catalytic activity: Mn-Ce-O 70/30 

IMP > Mn-Ce-O 70/30 CP > MnCu 70/30 > N140 (CuO-MnOx 22/50) > MnCu 50/50. The 

catalytic results point out Mn-Ce-O 70/30 is an active catalyst for the complete TOC reduction in 

the phenolic wastewaters treatment after 120 min. The higher molar quantity of manganese in both 

co-precipitated and wetness impregnated catalyst led to the best TOC degradation results. The co-

oxidation process was identified in the simultaneous treatment of a phenolic acids mixture clearly 
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showing the enhancement of carbon content depletion in comparison with the individual 

degradation of the same compounds. 

The catalytic stability was addressed in terms of metal leaching and catalyst poisoning due to 

deposition of carbonaceous materials. Both manganese and copper catalysts exhibited low levels 

of carbon and hydrogen adsorption. Therefore, given the most active and stable behaviour, 

manganese/cerium catalyst was identified as an interesting formulation with further industrial 

implementation in CWAO of olive oil mill wastewaters. 
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Trickle-bed reactors are envisaged for the oxidation of organic and hazardous 

chemical species from agro-industrial effluents. Traditionally, integral hydrodynamic 

parameters have been evaluated using empirical correlations for assessing whether its 

role is neutral or detrimental to the catalytic performance of trickle-bed reactors. This 

methodology often fails due to the high number of estimation parameters and also 

neglects the extent of catalyst wetting for different flow regimes since it depends on a 

multitude of effects including the physic-chemical properties of both gas, liquid and 

solid phases, the ratio of column diameter to particle diameter and most importantly 

the gas and liquid superficial velocities. 

In this part of the work, two CFD frameworks are developed for the hydrodynamic 

studies aiming to predict the liquid holdup and pressure drop in the trickling flow 

regime with a 3D computational grid. Euler-Euler and Volume-of-Fluid multiphase 

models are optimized in terms of mesh density, time step, convergence criteria, 

discretization schemes and RANS turbulence models. Several computational runs are 

performed querying the effect of gas and liquid flow rates, operating pressure and 

temperature on liquid holdup and two-phase frictional pressure drop. Multiphase flow 

distribution studies are investigated with different gas-liquid distributors using the 

Eulerian framework, whereas hysteresis phenomena and wetting efficiency in trickle 

beds are evaluated with the Volume-of-Fluid model. 
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V. 3D Numerical Simulation of Pressure Drop and 

Liquid Holdup for High-Pressure TBR1                                

This study aims to investigate the hydrodynamic behaviour of a trickle-bed reactor (TBR) at high-

pressure (30 bar) in terms of pressure drop and liquid holdup after the development of a 

multiphase model by means of computational fluid dynamics (CFD) codes. Taking into account 

transport phenomena expressed as interphase coupling terms in the momentum transfer between 

the gas, liquid and solid phases, an Euler-Euler model was developed resulting from the volume 

averaging of the continuity and momentum equations and solved for a 3D representation of the 

catalytic bed. 

The CFD calculations were validated with experimental data from the literature and different mesh 

sizes were evaluated for a grid-independent CFD solution of multiphase flow in the packed bed. 

During grid optimization, coarse and fine physical mesh domains were applied in the 

hydrodynamic prediction of trickle-bed reactor. After the grid adjustment in terms of number of 

cells, several spherical particle diameters were tested to study its effect on hydrodynamics and it 

was found that pressure drop is strongly influenced by the packing size. The Eulerian mutiphase 

model was then used in the computation of pressure drop and liquid holdup and over a wide range 

for the calculated flow regime as a function of gas and liquid flow rates, the CFD theoretical 

predictions were in good agreement for both hydrodynamic parameters  

 

V.1. Introduction 

Major advances for the chemical industries will, no doubt, continue to emerge from catalysis, 

chemistry and systems engineering. However, maximizing the industrial benefit from these 

advances requires comparable advances in the design of chemical process equipment. Efficient and 

effective design of the industrial unities ensures the delivery of materials and energy at the right 

places and at the right times by manipulating underlying fluid dynamics. The existing plants also 

need careful analysis and reengineering for improving their effectiveness and the application of 

computational fluid dynamics (CFD) was expected to lead to shortened product-process 

development cycles, optimization of existing processes to improve energy efficiency, and the 

efficient design of new products and processes (Dudukovic et al., 2002). An emerging area in 

lifecycle environmental applications involves multiphase flows in advanced processes for 

wastewater treatment, which represents a great challenge for aquatic flora and fauna preservation. 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2008) 
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In fact, bioremediation technologies have known limitations and alternative destruction methods 

such as catalytic wet air oxidation have been conducted successfully on a variety of organic 

compounds using numerous catalysts (Bhargava et al., 2006). 

Trickle-bed reactors (TBR) are widely used for heterogeneous catalyzed reactions between gas and 

liquid reactants, such as hydrotreatments, oxidation or partial oxidation and detoxification of liquid 

effluents. In these reactors, gas and liquid phase flow co-currently downward through a fixed bed 

of catalyst particles. The majority of the research studies on hydrodynamics have been performed 

at atmospheric pressure before 1990 (Sáez and Carbonell, 1985; Goto and Smith, 1975) while a 

few number of investigations was undertaken in pressurised trickle-bed reactors afterwards (Holub 

et al., 1993; Al-Dahhan et al., 1997; Carbonell, 2000; Gianetto and Specchia, 1992). Furthermore, 

some studies reported in the literature on the various hydrodynamic aspects of TBR was performed 

developing sophisticated empirical correlations (Lakota et al., 2002) and using a neural network 

approach recently (Tarca et al., 2004). Models for TBR simulation are extensively discriminated in 

the literature considering isothermal operation and using a pseudo-homogeneous approach or 

heterogeneous model with plug-flow for gas and liquid phase with some models accounting for 

liquid flow non-uniformity and maldistribution by using axial dispersion models (Sie and Krishna, 

1998).  

The difficulties in modelling flow in TBR are mainly due to the complex nature of the flow 

domain that is formed by channels around randomly packed particles. The structure of this 

interstitial space inside the packed bed is mainly determined by particle size, particle shape, ratio 

of column diameter and particle diameter and the packing method. Although the detailed 3D 

porosity information can be achieved through computer simulation of random packing, for flow 

simulation purposes the present case study employed the generation of a 3D uniform porosity 

distribution. Due to the inherent complexity of multiphase flows, from a physical as well as a 

numerical point of view, general applicable CFD codes are non-existent and the reasons for the 

lack of fundamental knowledge on multiphase flows are that multiphase flow is a very complex 

physical phenomenon where many flow types can occur (gas–solid, gas–liquid, liquid–liquid, etc.) 

and within each type several possible flow regimes can exist, especially in different hydrodynamic 

regimes that characterize the trickle-bed reactor operation (trickle flow, spray flow, pulse and 

bubbly flow). Also, the complex physical laws and mathematical treatment of phenomena 

occurring in the presence of the two phases are still largely undeveloped and the numerical 

algorithms for solving the governing equations and closure laws of multiphase flows are extremely 

complex due to its inherent oscillatory behaviour. Despite several notable works involving 2D 

computational studies on trickle-bed reactors (Jiang et al., 2002; Farmer et al., 2005), we still do 
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not have enough indication on predictive performance of Euler-Euler model at the catalyst level by 

means of 3D computations.  

Recently, CFD activities have been introduced systematically in order to investigate multiphase 

reactors (Jiang et al., 2002; Farmer et al., 2005; Gunjal et al., 2005). Most of Eulerian simulations 

have been carried out using a three-phase Eulerian model in where the drag-exchange coefficients 

are treated using the relative permeability concept or calculated by a mathematical formulation 

based on Ergun equation for a bidimensional computational domain. Advanced experimental 

studies have been also carried out based on MRI imaging studies wherein the flow features 

predicted at the particle and liquid-rivulet scale in the TBR can be anticipated with fidelity 

(Sederman and Gladden, 2005). Being aware that the design of TBR fluid dynamics controls the 

distribution of materials as well as the energy within the reactor vessel, a TBR was modelled at 3D 

to bring up hydrodynamic studies and concomitantly the assessment of mesh quality by means of 

CFD codes for a three-dimensional representation of packed bed flow under high-pressure 

operation (30 bar). 

 

V.2. Computational Flow Domain 

V.2.1. Mesh considerations  

For successful computations of fluid flow in trickle-bed reactor operation some grid considerations 

during the mesh generation must be done since its intrinsic flow through the spatially varying 

effective viscosity plays a dominant role in the transport of mean momentum and other 

parameters, if high accuracy is required. In fact, the hydrodynamic well-known parameters, such 

as pressure drop and liquid holdup, and the strong interaction of the mean flow in catalytic bed 

simulations affect the numerical results for complex flows that tend to be more susceptible to grid 

dependency. All meshes representing catalytic bed grid generation for the trickle-bed reactor were 

created using the integrated solid modelling and meshing commercial program GAMBIT 

(GAMBIT 2, 2005). Unstructured tetrahedral meshes were used to represent the catalyst surface 

and void spaces whereas at the reactor wall hexahedral meshes were considered to be more 

appropriate for lower curvature domains. In this study, errors arising from the mesh style and 

quality were of interest and in order to isolate mesh related discretization errors, a common 

solution procedure based on the increase of mesh density has been selected and consistently 

applied to the different mesh considered.  

The dimension of the pilot plant reactor is 1 m in length and 5 cm of internal diameter. In order to 

study the effect of different packing size on the hydrodynamic behaviour, several catalyst 
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diameters were used (1, 2, 3, 4 mm diameter) and in all cases the spheres had no points of contact 

in order to improve the mesh quality. For all the catalyst diameters tested, the imposed gap (3% of 

diameter for 3 and 4 mm; 2% of diameter for 1 and 2 mm) was confirmed that had no effect in the 

overall solution for both hydrodynamic parameters remaining less that 1 % for the liquid holdup 

and 2 % for the pressure drop. To obtain grid-independent pressure drops under different operation 

conditions, the number of cells was increased from 2×105 to 106 per catalyst layer. The 

representative three-dimensional geometry for the tetrahedral mesh of trickle-bed reactor is shown 

in Fig. V.1a)-d) illustrating four cases for the number of cells from 2×105 to 106, respectively.  

a) b) 

c) d) 
Figure V.1. Representative three-dimensional geometry and mesh for trickle-bed: a) 106, b) 5×105, c) 4×105, d) 2×105 

cells. 

 

The computational domain is located in the axial and radial TBR centre so that it can be assumed 

that inlet flow effects can be neglected throughout the simulation activities. The spatial resolution 

or cell size in a fine mesh is less than d/20. These cell sizes are in line with the expected results 
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obtained for hydrodynamic data available in open literature so that the average of a cell is in the 

range 0.01–0.2 mm depending on the simulation and geometric conditions, for particles of 1-4 mm 

diameter. In the trickle-bed reactor, the cells sizes are also constrained by the need to fit in 

between the gaps and/or narrow spaces between particles, so they cannot be too large. This can 

result in the erroneous values taken for proper application of wall functions available in the 

commercial CFD solver FLUENT so that for turbulent flow standard wall functions were 

employed. 

At 30 bar total operating pressure, the inflow gas (G = 0.1 – 0.7 kg/m2s) and liquid (L = 1 – 15 

kg/m2s) are distributed uniformly with given superficial velocity simulating a uniform distributor 

at the top of trickle-bed reactor. The computational mesh of the catalytic bed was reduced in length 

given the high memory requirements so that the reactor was filled with 13 layers in which around 

200 spherical particles of 2 mm diameter were necessary for each axial layer. To circumvent 

numerical difficulties associated with the mesh generation also reported in the literature 

(Nijemeisland and Dixon, 2001), the catalyst particles do not touch each other and the distance gap 

was fixed by 2-3 % percent of the sphere diameter. To assess the improved total efficiency in CFD 

solutions offered by grid density and types, comparison and validation studies are necessary. This 

is especially true for multifluid systems where the flow is not predominantly oriented in one single 

direction arising from geometric curvature of the catalytic bed in TBR. 

 

V.2.2. Multiphase flow governing equations 

In the present work, the flow in the trickle-bed reactor was modelled using a CFD multiphasic 

approach incorporated in the FLUENT (FLUENT 6.1, 2005) software that is the Euler-Euler 

multiphase model. In the Eulerian two-fluid approach, the different phases are treated 

mathematically as interpenetrating continua. The derivation of the conservation equations for 

mass, momentum and energy for each of the individual phases is done by ensemble averaging the 

local instantaneous balances for each of the phases. The current model formulation specifies that 

the probability of occurrence of any one phase in multiple realizations of the flow is given by the 

instantaneous volume fraction of that phase at that point where the total sum of all volume 

fractions at a point is identically unity. Fluids, gas and liquid, are treated as incompressible, and a 

single pressure field is shared by all phases. Turbulent flow conditions cause the fluid to behave as 

it has a very high momentum and thermal diffusivity, except near solid surfaces, where these 

transport mechanisms are reduced to laminar levels in relative short distances. 

The description of multiphase flow as interpenetrating continua incorporates the concept of phasic 

volume fractions, denoted here by αq. Volume fractions represent the space occupied by each 

 104 



PART C. TRICKLE-BED REACTOR HYDRODYNAMICS: CFD STUDIES 

 

phase, and the laws of conservation of mass and momentum are satisfied by each phase 

individually. 

The volume of phase q, Vq is defined by:  where∑ . The effective density of 

phase q is: 

∫= V
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qqq ραρ =ˆ where ρq is the physical density of phase q. The CFD model equations were 

solved in commercial software FLUENT (FLUENT 6.1, 2005). The general conservation 

equations are presented in this section, followed by the solving strategies. The continuity equation 

for phase q is: 
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where qur  is the velocity of phase q and characterizes the mass transfer from the ppqm& th to qth 

phase, and characterizes the mass transfer from phase q to phase p, and it is possible to 

specify these mechanisms separately. By default, the source term S

qpm&

q on the right-hand side of 

Equation (V.1) is zero, but it can specify a constant or user-defined mass source for each phase. A 

similar term appears in the momentum and enthalpy equations. The momentum balance for phase 
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where qτ is the qth phase viscous stress tensor: 
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Here μq (μq =μl,q +μt,q) and λq are the shear and bulk viscosity of phase q, pqR
r

is an interaction force 

between phases, p is the pressure shared by all phases and pqur , qpur are the interphase velocities. 

The last three terms on right-hand side of Equation (V.2) where qF
r

is an external body force, 

is a lift force and  is a virtual mass force, have been neglected during trickling flow 

simulations. Equation (V.2) must account for suitable expressions for the interphase force 

qliftF ,

r
qvmF ,

r

pqR
r

, 

which depends on the friction, pressure, cohesion, and other effects; it conforms to the conditions 

that  and  being possible to express a simple interaction term by:  qppq RR
rr

−= 0=qqR
r
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where Kpq = Kqp is the interphase momentum exchange coefficient. Interphase coupling 

terms, pqR
r

, in the right side of Equation (V.2) were formulated based on similar equations to those 

that are typically used to express the pressure drop for packed beds by means of Ergun equation. 

Consequently, the model of Attou and Ferschneider (1999) was employed in the CFD model, 

which includes gas-liquid interaction forces and it was developed for the regime in which liquid 

flows in the form of film. The interphase coupling terms are expressed in terms of interstitial 

velocities and phase volume fractions for gas-liquid, gas-solid and liquid-solid momentum 

exchange forms: 
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The turbulent viscosity μt,q is given in Equation (V.8). 
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The turbulent viscosity is obtained from the prediction of the transport equations for the kq, kinetic 

energy, and εq, dissipation energy, written for the continuous phase in Equations (V.9) and (V.10), 

respectively.  
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In these equations, Gk,q is the generation of turbulent kinetic energy, kq, due to the mean velocity 

gradients (turbulent stress) as expressed in Equation (V.11). 
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C1ε and C2ε are the constants of k-ε dispersed model whereas σk and σε are the turbulent Prandtl 

numbers for k and ε, respectively.  

 

V.2.3. Numerical simulation, boundary conditions and wall functions 

The solution method was control-volume-based for multiple tetrahedral mesh apertures. The 

numerical methodologies including the integration, discretization, linearization and algorithm 

followed by the CFD solver are described in Appendix A. A pressure-based segregated implicit 

solver (Appendix A, section A.2) was employed to evaluate the resulting linear system of 

equations using the Gauss-Seidel method in conjunction with an algebraic multigrid approach to 

solve the linearized equations. The governing equations were solved using the pressure-velocity 

SIMPLE coupling algorithm and the momentum equations were decoupled using the full 

elimination algorithm in which the variables for each phase are eliminated from the momentum 

equations for all other phases. The pressure correction equation was obtained by summing the 

continuity equations for each of the phases. The equations were then solved in a segregated, 

iterative fashion and were advanced in time (Appendix A, section A.3). Model equations were 

solved in a transient fashion with a time step of 0.001s for the Eulerian simulations. At each time 

step, with an initial guess for the pressure field, the primary- and secondary-phase velocities were 

computed. These were used in the pressure correction equation and based on the discrepancy 

between the guessed pressure field and the computed field, the velocities, L/G holdups and fluxes 

were suitably modified to obtain convergence in an iterative manner. The outer iteration procedure 

was stopped when the global mass residual had been reduced from its original value by five orders 

of magnitude and when the residual-reduction rates for both mass and momentum were 

sufficiently small and less than 10-6. All calculations were performed in double precision to 

improve accuracy.  

In the Eulerian multiphase calculations, phase coupled SIMPLE (PC-SIMPLE: Vasquez and 

Ivanov, 2000) algorithm was employed for the pressure-velocity coupling, which is an extension 
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of the SIMPLE algorithm (Patankar, 1980) to multiphase flows. The velocities are solved coupled 

by phases, but in a segregated fashion. The block algebraic multigrid scheme used by the density-

based solver described is used to solve a vector equation formed by the velocity components of all 

phases simultaneously. Pressure and velocities are then corrected so as to satisfy the continuity 

constraint. For incompressible multiphase flow, the pressure-correction equation takes the form of 

Equations (V.12). (Appendix A, section A.3). 
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where ρrq is the phase reference density for the qth phase (defined as the total volume average 

density of phase q), '
qur  is the velocity correction for the qth phase, and *

qur  is the value of qur at the 

current iteration. The velocity corrections are themselves expressed as functions of the pressure 

corrections. The volume fractions are obtained from the phase continuity equations. In discretized 

form, the qth volume fraction is given by Equation (V.13). 
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where the subscript nb refers to neighbor cells, and aP,q and anb are the linearized coefficients for αq 

αnb (Appendix A, section A.3). Experimentally, it is observed that trickle-bed reactors presents 

random directional flow fields imposing serious limitations in the convergence of tetrahedral 

meshes that could lead to an inefficient distribution of grid points in the final mesh. Therefore, the 

under-relaxation parameter for pressure was checked in the range between 0.2 and 0.6 whereas for 

velocity it was checked in the range 0.4-0.8. The common parameters used in the simulation are 

summarized in Table V.1. Inlet boundary conditions are assigned at the top distributor and outlet 

conditions at the free surface. The cell thickness (y+) computed by the CFD solver was always 

below 200. At this point, it was possible to check the near-wall mesh in the post-processing 

treatment. The solution independency was then established after several assays with the definition 

of turbulence boundary conditions available in k-ε model. The boundary conditions at the walls are 

internally computed by FLUENT. The reactor wall and catalyst surfaces are treated as no slip 

boundaries with standard wall functions. It should be also pointed that inlet turbulence can 

significantly affect the downstream flow as observed in high pressure trickle-bed reactors. In the 

trickle-bed simulations performed, the fidelity of the results for turbulent flows was addressed by 

the turbulence model being used and in order to enhance the quality of turbulent flow simulations, 

the mesh generation accounts for wall-bounded flow on catalyst particles, since the wall is 

expected to significantly affect the flow. 
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Table V.1 – Parameters used in the CFD simulation 

Grid 1000 mm (axial) × 50 mm (radial) 
Cell size 0.01 - 0.20 mm (tetrahedral and hexahedral) 

Particle diameter 1, 2, 3, 4 mm (spheres) 
Time step 0.001s (Euler-Euler) 
Iterations ≈ 50,000 

Under-relaxation parameters Euler-Euler: 0.2-0.6 (pressure), 0.4-0.8 (velocity) 
Drag formulation Attou and Ferschneider (1999) 

Turbulence model Laminar; standard k-ε model  
(Elghobashi & Abou-Arab, 1983) 

Gas density (298 K, 30 bar) 35.670 kg/m3

Gas viscosity (298 K, 30 bar) 1.845×10-5 Pa.s 
Liquid density (298 K, 30 bar) 998.39 kg/m3

Liquid viscosity (298 K, 30 bar) 8.925×10-4 Pa.s 
Liquid surface tension (298 K, 30 bar) 7.284×10-2 N/m 

 

In order to establish grid independence of the velocity field solutions, successive refinements of 

computational mesh have been considered. For each refinement, grid convergence was evaluated 

by using a relative error measure of velocity magnitude between the coarse and fine solutions. The 

conditions required for grid convergent results are based on a 1% relative error criterion and the 

simulations accuracy has been assessed by comparisons to experimental data available in the 

literature for the simulated velocity field (Nemec and Levec, 2005). The boundary conditions were 

specified based on FLUENT documentation. Inlet turbulent kinetic energy (kq) was estimated from 

turbulence intensity as expressed in Equation (V.14). 
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where Iq is the turbulence intensity being given by Equation (V.15). 
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Inlet turbulent energy dissipation (εq) was estimated from the turbulent viscosity ratio as expressed 

by Equation (V.16). 
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where Cμ  is an empirical constant specified in the turbulence model (0.09). Table V.2 systematizes 

the initial and boundary conditions used during the CFD simulations convoyed with the reactor 

scheme. At 30 bar and 25ºC,   the inlet turbulent kinetic energy and inlet turbulent energy 

dissipation for the gas and liquid phases are given in Table V.3. Computations are time dependent 

and were carried out until steady state conditions were reached. Standard wall functions available 

in the commercial CFD solver were employed during the simulations of turbulent multiphase flow. 

The calculations have been carried out on a Linux cluster based on AMD64 Dual-Core 2.2 GHz 

processor workstation.  
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Table V.2 – Initial and boundary conditions for the gas and liquid phases 

 
 t = 0 z = 0 
αG 0.25 0.25 
αL 0.15 0.15 

G / (kg/m2s) 0.1-0.7 0.1-0.7 
L / (kg/m2s) 1-15 1-15 

P / bar 10-40 10-40 
k / (m2/s2) 
ε / (m2/s3) see Table V.3 

 
 

z = 1 

z = 0  
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Table V.3 – Inlet boundary conditions for the gas and liquid phases: turbulent kinetic energy (kq) and turbulent energy 

dissipation (εq) at T=25ºC and P=30 bar 

 
G (kg/m2s) L (kg/m2s) kG  (mm2/s2) kL  (mm2/s2) εG  (mm2/s3) εL  (mm2/s3) 

0.1 1 0.2059 3.952×10-2 3.690×10-3 7.637×10-5

0.4 1 2.330 3.952×10-2 0.4723 7.637×10-5

0.7 1 6.204 3.952×10-2 3.349 7.637×10-5

0.1 8 0.2059 1.504 3.690×10-3 0.1106 
0.4 8 2.330 1.504 0.4723 0.1106 
0.7 8 6.204 1.504 3.349 0.1106 
0.1 15 0.2059 4.518 3.690×10-3 0.9982 
0.4 15 2.330 4.518 0.4723 0.9982 
0.7 15 6.204 4.518 3.349 0.9982 

 

 

V.3. Results and Discussion 

V.3.1. Mesh optimization and validation 

Validation of CFD flow field calculations has generally taken one of two forms. In the first, non-

invasive velocity measurements inside the packed bed have been made and compared to velocities 

computed from a model of either the entire experimental bed or a representative part of it. In the 

second form, computed pressure drops have been compared to either measured values or 

established correlations for pressure drop in fixed beds, such as the Ergun equation. The present 

case study makes use of the last method to assess the Eulerian model so that the numerical 

methodology is validated against experimental data available from literature related to the 

hydrodynamic information for TBR operation (Nemec and Levec, 2005). Different hydrodynamic 

regimes were simulated for the trickle-bed reactor either in laminar or turbulent flow. In both 

cases, the local refinement and coarsening of unstructured tetrahedral meshes in the case study 

required local grid modifications to efficiently resolve solution features for computing unsteady 

three-dimensional problems that arise in TBR simulation activities. In laminar flow, the mesh 

aperture was optimized near the catalyst and reactor walls. The higher level of numerical diffusion 

usually associated with tetrahedral meshes could not always be defeated increasing the number of 

cells since significant numerical diffusion errors and inaccuracies in near-wall particle 

interpolations may persist. The resulting liquid holdup and pressure drop along the catalytic bed 

were evaluated as a function of cells number as well as operating conditions. 

The mesh strongly affects the accuracy of the simulation as shown by Fig. V.2. It has to be chosen 

with enough detail to describe the multiphase flow accurately and with a degree of coarseness that 

enables solution within an acceptable amount of time. We determined an appropriate mesh density 
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for CFD simulations by comparing computational results from several different meshes and then 

an optimal mesh density was established for hydrodynamic validation in trickle-bed operation. An 

edge length of the tetrahedral cell of 0.15 mm on a 3 mm diameter sphere corresponds to a number 

of about 3000 triangles in the surface mesh of the sphere, whereas an edge length of 0.2 mm 

corresponds to about 1000 triangles.  
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Figure V.2. Effect of numerical parameters on pressure drop versus liquid flow rate for different cells number: 106, 

5×105, 4×105, 2×105 (P = 30 bar, G = 0.7 kg/m2s, d = 2 mm, experimental data from Nemec and Levec, 2005). 
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Figure V.3. Effect of numerical parameters on liquid holdup versus liquid flow rate for different cells number: 106, 

5×105, 4×105, 2×105 (P = 30 bar, G = 0.7 kg/m2s, d = 2 mm, experimental data from Nemec and Levec, 2005).  

 

In accordance with Figs. V.2 and V.3 with G = 0.7 kg/m2s, a total of about one million grid cells 

were needed when using a tetrahedral mesh edge length 0.15 mm. In terms of number of cells, the 

mesh dependency addressed in pressure drop (Fig. V.2) and liquid holdup (Fig. V.3) computations 
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are proportionally direct, as expected. In fact, if we increase the number of cells, the result is to 

enhance the grid detail accounting the void space in an appropriate manner. Numerically, this 

brings more iterations towards the convergence. In the current multiphase flow simulation, the grid 

independence of the solution was checked by varying the grid density. In Fig. V.2 the resulting 

pressure drops across the packed bed were plotted as a function of the cells number. This figure 

indicates that 106 cells are adequate to successfully predict pressure drop as well as the liquid 

holdup within 10% relative error, this one demonstrated in Fig. V.3. Comparing these two plots 

(Fig. V.2 and V.3), the TBR operation seems to be more sensible to pressure drop than to liquid 

holdup results when performing the same deviation scale in the cells number.  

 

V.3.2. Influence of packing size on hydrodynamics 

The catalytic bed was simulated with different packing made of spherical particles with diameters 

up to 4 mm. Indeed, the validation method was to compare simulation results in terms of pressure 

drop (Fig. V.4) and liquid holdup (Fig. V.5) evaluating the mesh sensitivity and discriminating the 

numerical results against the experimental data performed with equipment analogous to the system 

that is being replicated (Nemec and Levec, 2005). Geometrically, the trustworthiness of this 

modus operandi led to the final corroboration of CFD codes.  
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Figure V.4. Effect of packing size on pressure drop versus liquid flow rate for different packing particles: 1-4 mm (P = 

30 bar, G = 0.7 kg/m2s) 

 

When the trickle-bed reactor is simulated with different spherical particle diameters, the overall 

effect of particles size is related to the specific surface area of the packing material for that 

particular bed. For instance, if the TBR is operated with spheres of d = 1 mm, the specific surface 

is higher than it is for spheres of d = 4 mm leading to the greater flow resistance. 
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Figure V.5. Effect of packing size on liquid holdup versus liquid flow rate for different packing particles: 1-4 mm (P = 

30 bar, G = 0.7 kg/m2s) 

 

Therefore, as the particle size decreases, the specific surface area of the bed increases and 

therefore the liquid holdup (Fig. V.5) also increases due to the fact that liquid phase finds it harder 

to flow downwards through the bed at a certain gas and liquid flow rate. According with Fig. V.4, 

one can observe that pressure drop also increases due to the increased bed specific surface area 

which gave lower bed porosities. The effect is more pronounced when the simulation is addressed 

in two-phase flow due to an additional increase in pressure drop than if one compares it to single-

phase flow operation. This fact is associated with the enlargement of liquid holdup, which 

decreases the available void space for the flow of gas through the trickle-bed reactor. 

 

V.3.3. Evaluation of Pressure drop and Liquid holdup predictions 

After evaluating the mesh quality and its numerical independency for the TBR modelling, Eulerian 

model was used to predict pressure gradient and liquid holdup in scale-up activities to evaluate the 

effect of liquid and gas flow rates in the hydrodynamic parameters. The well established design of 

the TBR performance depends heavily in the accurate quantification of pressure drop because it 

affects the mechanical energy supply at the catalyst particle and it has been used to correlate the 

gas-liquid and solid-liquid mass transfer (van der Merwe and Nicol, 2005; Wammes and 

Westerterp, 1990). On the other side, the validation in terms of liquid fraction contained in the 

TBR column was referred with laboratory scale experiments. Therefore, whereas pressure drop is 

obviously connected with the dissipation power in the multiphase reactor that cannot be neglected 

when optimization is a subject matter, liquid holdup is particularly important when assessing the 

trickle flow encountered at low gas and liquid superficial velocities.   

 114 



PART C. TRICKLE-BED REACTOR HYDRODYNAMICS: CFD STUDIES 

 

Two-phase pressure gradient results are plotted as a function of gas flow rate varying the liquid 

flow rate and vice versa in Figs. V.6 and V.7. The variation of the internal pressure per unit-reactor 

length is directly proportional to any phase flow rate. In fact, at the lowest liquid flow rate (1 

kg/m2s) if we decrease the operating gas flow rate from 0.7 to 0.1 kg/m2s, the total pressure drop 

shifts from 8210 to 520 Pa/m, whereas the same relative change at the lowest gas flow rate (0.1 

kg/m2s) in liquid flow rate only produces a modification in terms of pressure drop from 4065 to 

520 Pa/m. Therefore, 86% of reduction in the gas flow rate has a major effect for pressure drop 

(94%) rather than with the same reduction order for the liquid flow rate (87%). Moreover, the 

effect of gas flow rate on the pressure drop is enlarged at higher flow rates (G = 0.7 kg/m2s) so that 

a shift from 15 to 1 kg/m2s in liquid flow rate makes the pressure drop move from 50250 to 8210 

Pa/m. Having the knowledge that pressure gradient is related to the mechanical energy dissipation 

due to the two-phase flow through the fixed bed of solid catalyst particles, comparing Figs. V.6 

and V.7 illustrate that the effect at low gas flow rates is more meaningful for the pressure drop.  
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Figure V.6. Effect of liquid flow rate on pressure drop versus gas flow rate (P = 30 bar, d = 2 mm) (experimental data 

from Nemec and Levec, 2005).  
 

Figure V.8a) shows an isocontour for the pressure field on the catalyst surface. As one can 

observe, the values of lower pressure were encountered in zones where the catalyst particles are 

closer to each other. As the flow is processed downwards, the higher pressure values were 

monitored at the top zone of the catalyst particle so that the fluid is compelled to navigate around 

the sphere and changing its flow direction. 
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Figure V.7. Effect of gas flow rate on pressure drop versus liquid flow rate (P = 30 bar, d = 2 mm) (experimental data 

from Nemec and Levec, 2005). 

 

In order to illustrate the flow direction adjustment around catalyst packing, Fig. V.8b) also sustains 

this fact so that the mean gas velocity is in accordance with the hydrodynamic regime simulated. 

Indeed, the maximum velocity attained for the gas phase is about 0.5 cm/s which enables the 

trickling flow operating conditions.  

 

 
a) 
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b) 

Figure V.8. a) Isocontour of Pressure (Pa) field on the catalyst surface; b) flow pattern on the catalyst surface area 

showing instantaneous gas velocity vector (cm/s) (P = 30 bar, L = 5 kg/m2s, G = 0.7 kg/m2s, d = 2 mm) 

 

According with Fig. V.8b), the computed vector field shows that phase velocity is not always fully 

developed around the catalyst particle and the higher values are observed in the sphere equatorial 

zone. The asymmetric gas velocities depicted in Fig. V.8b) between two or more catalyst particles 

as well as the pressure contours plotted in Fig. V.8a) demonstrate the existence of poor gas-liquid 

flow distribution in the packed bed as a consequence of rough stagnant zones.  

In what concerns liquid holdup predictions, conversely to the effect advanced for the influence of 

the liquid flow rate in the computed global pressure drop, after the examination of Figs. V.9 and 

V.10, liquid holdup does not generate the same assertions.  In fact, while the increasing of gas 

flow rate tends to reduce the volume of liquid contained in the bed per unit reactor volume, the 

opposite behaviour is observed when the liquid flow rate is charged. The influence of liquid 

holdup is also related to other important parameters, namely, pressure gradient, gas-liquid 

interfacial area, the mean residence time of the liquid phase, catalyst loading per unit volume, 

mass-transfer and heat-transfer coefficients. Notwithstanding, the Euler multiphase model takes 

into account the total liquid holdup resulting from the sum of static and dynamic liquid holdup and 

according to Fig. V.9, we could state that the semi-log plot reports this hydrodynamic parameter as 

a decreasing function of gas flow rate, as expected.  
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Figure V.9. Effect of liquid flow rate on liquid holdup drop versus gas flow rate (P = 30 bar, d = 2 mm) (experimental 

data from Nemec and Levec, 2005). 
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Figure V.10. Effect of gas flow rate on liquid holdup versus liquid flow rate (P = 30 bar, d = 2 mm) (experimental data 

from Nemec and Levec, 2005). 

 

Taking into account that hydrodynamics is affected differently in each flow regime and the 

operating conditions that are of particular interest in the industry are the extensively used trickle 

flows encountered at low gas and liquid flow rates, the Eulerian model was employed in the 

following range for the Reynolds number: Re < 400. In Fig. V.11a), it is represented a snapshot of 

Reynolds number in a colour map for four vertical planes corresponding to the bulk space between 

the catalyst particles. The deviations of the local velocity near the solid surfaces observed in Fig. 

V.11a) indicate the existence of more or less stagnant zones near the points of approximation 

between spheres. In fact, for packed beds, large deviations of this nature might result in a variation 

of the boundary layer thickness values over the sphere surface. Indeed, according to Fig. V.11b) in 
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where it was also mapped the streamlines for the same planes coloured by the Reynolds number 

for the gas phase, the condition that the flow should be well developed in order for the standard 

wall model to be valid, might be fully met in the case of a trickle flow operation. Therefore, the 

good agreement achieved for the calculations performed with 106 of tetrahedral cells validated 

both the computed pressure drop and the liquid holdup. 

 
a) 

 
b 

Figure V.11. a) Vertical colour maps of Reynolds number in laminar flow; b) Streamlines coloured by Reynolds 

number (P = 30 bar, L = 5 kg/m2s, G = 0.7 kg/m2s, d = 2 mm) 
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V.4. Conclusions 

A unique physic-based three-dimensional model has been proposed to model trickle-bed reactors 

at elevated pressures for predicting the hydrodynamic parameters pressure drop and liquid holdup. 

The CFD unified approach allowed the complete fluid transport equations to be solved locally, to 

better understand the phenomena including the momentum balance and takes into account the 

interphase coupling terms in the momentum transfer between the gas, liquid and solid phases. The 

CFD calculations with different mesh sizes were checked against experiments and a good 

agreement was achieved.  

The mesh generation technique and grid convergence were evaluated to establish grid 

independence using a relative error measure of hydrodynamic parameters magnitude between the 

coarse and fine solutions. Successive refinements of each mesh style have been considered to 

better resolve regions of significant velocity gradients encountered in the multiphase system. The 

coarse mesh affected considerably the accuracy of simulations so that an optimum number of cells 

was achieved with a fine mesh and used throughout the simulation activities. 

The effect of packing size on the pressure drop and liquid holdup is ascribed by different specific 

surface area of the packing material for the trickle-bed reactor. It has been found that the packing 

characteristics affect the gas and liquid velocity with the effect of gas velocity being prominent at 

high superficial gas mass velocities. The theoretical predictions from the model correctly account 

for the strong influence of the gas flow on the hydrodynamic behaviour of the trickle-bed reactors, 

as shown by the several results examined in this work. The important influence of the gas flow is 

attributed to the interactions phenomena exerted by the gas phase on the liquid phase. These 

interactions clearly appear to be significant at high superficial gas mass velocities. 

Finally, through the Reynolds numbers evaluation in flow colour maps, deviations of the local 

velocity near the solid surfaces were observed which indicated the existence of more or less 

stagnant zones near the points of approximation retained from the packing spheres which enables 

the unsteady state behaviour exhibited by TBR in tricking flow conditions. 
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V.5. Nomenclature 

C1ε, C2ε    k-ε model parameters: 1.44, 1.92 

d    Particle nominal diameter, m 

dH    Hydraulic diameter, m 

E1, E2    Ergun’s constants: 150, 1.75 

qliftF ,

r
    Lift force of qth phase 

qvmF ,

r
     Virtual mass force of qth phase 

qF
r

    External body force of qth phase 

gr     Gravitational acceleration, 9.81m/s2

G    Gas mass flux, kg/m2s 

k     k-ε model kinetic energy 

Kqp     Interphase momentum exchange coefficient 

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

p    Pressure, bar 

pqR
r

    Interaction force between phases p and q 

Req    Reynolds number of qth phase, dimensionless 

T    Temperature, K 

ur     Superficial vector velocity, m/s 

 

Greek symbols 

αq    volume fraction of qth phase 

ε     k-ε model dissipation energy 

µq     viscosity of qth phase, Pa.s 

ρq    density of qth phase, kg/m3

Δp    total pressure drop, bar 

kqΠ ,    Influence of the dispersed phases k and ε on the continuous phase qεΠ

σk , σε    k-ε model parameters: 1.2, 1.0 

qτ     Shear stress tensor of qth phase, bar 

 

Subscripts 

G    gas phase 

L    liquid phase 

q    qth phase 
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S    solid phase 
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VI. Turbulence Modelling of Multiphase Flow in High-

Pressure Trickle-Bed Reactor1

Computational fluid dynamics (CFD) has been used as a successful tool for single-phase reactors. 

However, fixed-bed reactors design depends overly in empirical correlations for the prediction of 

heat and mass transfer phenomena. Therefore, the aim of this work is to present the application of 

CFD to the simulation of three-dimensional interstitial flow in a multiphase reactor. A case study 

comprising a high-pressure trickle-bed reactor (30 bar) was modelled by means of an Euler-Euler 

CFD model. The numerical simulations were evaluated quantitatively by experimental data from 

the literature. During grid optimization and validation, the effects of mesh size, time step and 

convergence criteria were evaluated plotting the hydrodynamic predictions as a function of liquid 

flow rate. Among the discretization methods for the momentum equation, a monotonic upwind 

scheme for conservation laws was found to give better computed results for either liquid holdup or 

two-phase pressure drop since it reduces effectively the numerical dispersion in convective terms 

of transport equation. 

After the parametric optimization of numerical solution parameters, four Reynolds Averaged 

Navier-Stokes (RANS) multiphase turbulence models were investigated in the whole range of 

simulated gas and liquid flow rates. During RANS turbulence modelling, standard k-ε dispersed 

turbulence model gave the better compromise between computer expense and numerical accuracy 

in comparison with both realizable, renormalization group and Reynolds stress based models. 

Finally, several computational runs were performed at different temperatures for the evaluation of 

either axial averaged velocity and turbulent kinetic energy profiles for gas and liquid phases. Flow 

disequilibrium and strong heterogeneities detected along the packed bed demonstrated liquid 

distribution issues with slighter impact at high temperatures. 

 

VI.1. Introduction 

Trickle-bed reactors (TBR) are fixed-bed vertical columns that are mostly operated in concurrent 

gas-liquid downflow hosting a variety of catalytic reactions mainly in hydrotreating processes (e.g. 

hydrocracking, hydrodesulfurization, hydrodemetallization) and fine chemicals processing 

industries and, more recently, in waste gas and wastewater treatment plants (Al-Dahhan et al., 

1997). 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009) 
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The design of a TBR depends on the precise knowledge of hydrodynamic parameters as long as 

the conversion of reactants and selectivity depend not only on reaction kinetics, operating pressure 

and temperature but also on the hydrodynamics of the reactor. Atmospheric and pressurized TBR 

experimental studies on hydrodynamic parameters of TBR are reviewed extensively by Saroha and 

Nigam (1996) and Iliuta et al., (1999) proposing state-of-the-art correlations. However, the 

experimental investigations and their fitting parameters are only confined in a particular range of 

operation. For this reason the exact mathematical description of two-phase downflow in TBRs 

based upon the knowledge of complete velocity and holdup field distributions of individual phases 

is accomplished by means of modern computational fluid dynamics (CFD) codes (Atta et al., 

2007; Gunjal et al., 2005; Jiang et al., 2002).  

Initially, mathematical modelling was limited to a 2D geometry of a few particles for laminar 

single-phase flow. As soon as sufficient and increasing computing capabilities became available, 

3D simulations were reported in the literature using CFD codes to simulate heat and mass transfers 

in packed bed (Romkes et al., 2003; Magnico, 2003; Logtenberg et al., 1999). Several 

computational studies have recently developed mathematical models for simulating single-phase 

flow in packed beds (Calis et al., 2001; Freund et al., 2003; Tobis, 2000; Zeiser et al., 2002). 

Numerical simulations of multiphase flow in TBRs were also published ranging from the 

traditional homogeneous and heterogeneous models without solving the velocity field to the 

Eulerian and Lagrangian CFD codes. Stanek and Szekely (1974) formulated a diffusion model to 

solve the equations of flow and diffusion, but the effect of gas–liquid interactions is neglected. The 

relative permeability model was initially proposed by Saez and Carbonell (1985) where the drag 

force is calculated by using the concept of relative permeability of each phase. Holub et al. (1992) 

developed a single slit model for the local flow of liquid and gas around the catalyst particles by 

assuming flow in rectangular inclined slits of width related to void fraction of the medium. Later, 

Iliuta et al. (2000) extended the model to allow for a distribution of slits that are totally dry in 

addition to slits that have liquid flow along the wall. Attou and Ferschneider (1999) developed a 

fluid-fluid interfacial force model in which the drag force for each phase has contributions from 

the particle-fluid interaction as well as from the fluid-fluid interaction. Recently, drag exchange 

coefficients are obtained from the relative permeability concept developed by Saez and Carbonell 

(1985) to perform CFD simulations based on a porous media model (Anderson and Sapre, 1991; 

Souadnia and Latifi, 2001; Atta et al., 2007). Alternatively, in the k-fluid model the drag exchange 

coefficients can be obtained from the fluid-fluid interfacial force model as reported by Jiang et al. 

(2002) and Gunjal et al. (2005).  

 

 126 



PART C. TRICKLE-BED REACTOR HYDRODYNAMICS: CFD STUDIES 

 

VI.2. Previous work 

In order to simulate three-dimensional interstitial flow in packed tubes, two CFD approaches have 

been used to simulate fluid flow in fixed-bed reactors. Firstly, the entire packed bed limited to very 

low number of particles arranged in either a regular fashion or a random fashion was investigated 

by Logtenberg et al. (1999) and Calis et al. (2001). Secondly, the so-called unit-cell approach was 

used to overcome the size of the bed and the number of particles and can be further subdivided as 

follows. Each particle is assumed to have a hypothetical sphere of influence around it (Dhole et al., 

2004) or a unit periodic cell consisting of only a few particles is repeated successively in order to 

represent the 3D packed bed as reported by (Martin et al., 1951; Sørensen and Stewart, 1974) with 

different packing arrangements of particles. 

Depending on the thermophysical properties of fluids, flow rates, and catalyst loading, several 

types of flow patterns were observed experimentally by several authors. Mickley et al. (1965) 

found that eddy shedding did not occur in the packing voids and that high local heat transfer 

coefficients in spherical packings must be due to turbulence intensity in the voids quantified as 

high as 50%. In regular packings, Van der Merwe and Gauvin (1971) observed no eddy shedding 

over the range 2,500 < Re < 27,000 except on the first bank of spheres  and turbulence intensity 

values were about 25%.  The transition from steady to unsteady flow in a dumped bed of spheres 

in the range 110 < Re < 150 was found by Jolls and Hanratty (1966) who observed a vigorous 

eddying motion that they took to indicate turbulence at Re = 300. Wegner et al. (1971) observed 

completely steady flow with nine regions of reverse flow on the surface of the sphere for Re = 82 

in regular beds of spheres monitoring similar flow elements but with different sizes in an unsteady 

flow at Re = 200. Dybbs and Edwards (1984) used laser anemometry and flow visualization to 

study flow regimes of liquids in hexagonal packings of spheres and rods and concluded that there 

are four flow regimes for different ranges of Reynolds number, based on interstitial or pore 

velocity Rei = Re/ε: for Rei < 1, the creeping flow is dominated by viscous forces and pressure drop 

is linearly proportional to interstitial velocity; for 1 ≤ Rei ≤ 150, the steady laminar inertial flow in 

which pressure drop depends nonlinearly on interstitial velocity; for 150 ≤ Rei ≤ 300, the laminar 

inertial flow is unsteady; and for Rei > 300, the flow is highly unsteady, chaotic and qualitatively 

resembling turbulent flow. Latifi et al. (1989) used microelectrodes as electrochemical sensors to 

get more precise regime transitions and later Rode et al., 1994 included the transfer function of the 

electrochemical probe and gave the transition to time-dependent chaotic flow as 110 < Re < 150. 

Seguin et al. (1998a) found extremely non-homogeneous at different spatial locations in a packed 

tube occurring at Re = 113 inside the bed and at Re = 135 at the wall. Seguin et al. (1998b) found 

that the transition to the turbulent regime is gradual and not at the same Re at all locations after 
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performing the stabilization of the fluctuation rate which corresponds to local turbulence at 90% of 

the electrodes for Re > 600. 

Several computational studies have been also performed on the turbulence modeling of fluid flow 

in packed-beds. Hill et al. (2001ab) investigated the effects of inertia on flows in both ordered and 

random arrays of spheres for small and moderate Re by means of lattice-Boltzmann simulations. 

Stevenson (2003) indicated that the transition from laminar flow to turbulence may occur at much 

lower Re in a packed tube than an empty one, due to the reduced viscous damping of radial 

velocity components caused by flow instabilities. Logtenberg et al. (1999) used a finite element 

code to simulate two layers of four spheres in laminar and turbulent flow based on k-ε turbulence 

model (9 < Re < 1450). With a mesh composed of 30,747 tetrahedral cells, they found reasonable 

agreement for Nusselt number and effective thermal conductivity compared with experimental 

values. Romkes et al. (2003) used CFD simulations to predict mass and heat transfer in a packed 

bed of 32 spheres, both in laminar and turbulent flow. The transfer rates were obtained with an 

average error of 15% compared with experimental data for Reynolds number either based on 

interstitial velocity or hydraulic diameter from 10-1 to 105. Magnico (2003) presented a numerical 

sensitivity study of meshing and solving parameters in laminar fluid flow and mass transfer in a 

packed bed of several hundred of spheres. Guardo et al. (2005) compared the numerical prediction 

obtained with 5 turbulence models (Spalart-Almaras, standard k-ε, RNG k-ε, realizable k-ε, 

standard k-w) for a packed bed of 44 spheres. The best agreement with commonly used 

correlations was obtained with the Spalart-Almaras model which is less sensitive to the near-wall 

treatment. Gunjal et al. (2005) used a laminar model up to Rei = 204 and turbulent models for Rei = 

1,000-2,000. Merrikh and Lage (2005) used the CFD approach in the case of natural convection 

within up to 64 solid particles. They studied fluid flow and heat transfer in a differentially heated 

square enclosure with disconnected solids blocks. 

 

VI.3. Present work 

From the above survey, the detail of the fluid flow mechanical studies on particle arrays is not in 

accordance on which range for Reynolds number split the laminar flow from the turbulent flow. In 

the present work, we perform an evaluation of either laminar or different Reynolds Averaged 

Navier-Stokes (RANS) turbulence models (Standard (SKE), Realizable (RKE) and 

Renormalization Group Theory (RNG) k-ε, Reynolds Stress Model (RSM) for multiphase flow in 

trickle-bed reactors. A multifluid Eulerian model is presented with interphase coupling parameters 

in the momentum balance equation from the work developed by Attou and Ferschneider (1999). A 

trickle-bed reactor with regular packing is considered as the base geometry for the simulation of 
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the three-dimensional interstitial flow to describe the fluid phase scale interactions at the catalyst 

level. As long as the details of the flow environment around the catalyst particles are essential, 

different mesh densities in the optimization of numerical solution parameters (time step, 

convergence criteria and differencing scheme of governing equations) have to be performed under 

unsteady laminar and turbulent flow simulations in order to provide a more fundamental 

understanding of trickle-bed hydrodynamics. To the best of our knowledge, this investigation on 

multiphase flow turbulence is sought here in order to incorporate more realistic fluid flow and 

evaluate in detail three-dimensional velocity and turbulent kinetic energy profiles as well.   

 

VI.4. CFD Modelling 

VI.4.1. Euler-Euler framework and drag force formulation 

Multiphase flow in the trickle-bed reactor was modelled using a CFD multiphasic approach 

incorporated in the FLUENT 6.1 software that is the Euler-Euler multiphase model. The Eulerian 

framework encompassing the continuity and momentum equations was presented in Equations 

(V.1) and (V.2) in Chapter V. The drag force formulation was expressed by the individual 

momentum exchange forms in terms of interstitial velocities and phase volume fraction as 

described in Equations (V.4)-(V.7) in Chapter V.  

 

VI.4.2. RANS turbulence modelling 

Aiming to describe the effects of turbulent fluctuations of velocities and scalar quantities for the 

multiphase flow in the present case study, three methods were investigated for modelling 

turbulence in the trickle-bed within the context of the k-ε models. SKE, RKE and RNG models 

have similar forms being the major difference between them the calculation of turbulent viscosity 

and turbulent Prandtl numbers. For this reason only the additional options for the standard k-ε 

turbulence model are described in Table VI.1, VI.2 and VI.3 that are mixture turbulence model, 

dispersed turbulence model (which is the default model used through the Eulerian simulations) and 

finally a turbulence model for each phase, respectively. In what concerns the RSM model (Table 

VI.4), two options were examined that are the mixture turbulence model and the dispersed 

turbulence model. For the RSM model, the tilde denotes phase-averaged variables while an 

overbar reflects time-averaged values. 
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Table VI.1. k-ε Mixture Turbulence Model  
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Table VI.2. k-ε Dispersed Turbulence Model  
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Table VI.3. k-ε Turbulence Model for Each Phase 
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Table VI.4. RSM Turbulence Models
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VI.5. Numerical simulation 

The present case-study encompasses a trickle-bed reactor that was designed using regular shape 

catalyst particles for multifluid Eulerian simulations. Gas-liquid flows through a catalytic bed 

comprised of monosized, spherical, solid particles arranged in a cylindrical container of a pilot 

TBR unit (50 mm internal diameter ×1.0 m length). The computational mesh of the catalytic bed 

was shortened in length given the high memory requirements so that the reactor was filled with 13 

layers where approximately 200 non-overlapping spherical particles of 2 mm diameter were 

necessary for each axial layer as shown in Fig. VI.1.  

 
Figure VI.1. Schematic of the catalytic packing geometry for the trickle-bed reactor 

 

In order to prevent numerical difficulties associated with the mesh generation also reported in the 

literature (Logtenberg et al., 1999), the catalyst particles do not touch each other and the distance 

gap was fixed by 2-3 % percent of the sphere diameter. The grid of the catalytic bed was created 

using the integrated solid modelling and meshing commercial program GAMBIT. Geometrical 

errors arising from the mesh style and quality were evaluated according to different mesh densities 

and discretization parameters. Consecutively, the number of cells necessary to produce grid 

independent results for the hydrodynamic parameters was increased from 2×105 to 106, with other 

numerical solution parameters including operating conditions given by Table VI.5, where upwind 

differencing schemes are presented for discretization of convective terms for: first-order upwind 

(FOU), second-order upwind, (SOU), Power-Law (PL), quadratic upwind interpolation for 

convective kinematics (QUICK) and monotonic upwind scheme for conservation laws (MUSCL) 

(Appendix A, section A.4). Gas and liquid thermophysical properties used in the simulation are 
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summarized in Table VI.6. High-pressure operation was simulated at 30 bar total operating 

pressure with inflow gas (G = 0.1 – 0.7 kg/m2s) and liquid (L = 1 – 15 kg/m2s) being distributed 

uniformly with given superficial velocity replicating a uniform distributor at the top of trickle-bed 

reactor. 

Table VI.5 – Numerical solution parameters used in the CFD simulation  
 

Grid 1000 mm (axial) × 50 mm (radial) 
Cell size 0.01 - 0.20 mm (tetrahedral and hexahedral) 
Particle diameter 2 mm (spheres) 
Time step 10-5 – 10-2 s  
Convergence criteria 10-5 – 10-2

Discretization  
Momentum  FOU, SOU, Power-Law, QUICK, MUSCL 
Volume fraction  FOU, QUICK 
Turbulent kinetic energy FOU, SOU, Power-Law, QUICK, MUSCL 
Turbulent energy dissipation  FOU, SOU, Power-Law, QUICK, MUSCL 

Iterations ≈ 50,000 
Under-relaxation parameters Pressure: 0.2-0.6 

Velocity: 0.4-0.8 
Turbulent kinetic energy: 0.8 

Turbulent energy dissipation: 0.8 
Drag formulation Attou and Ferschneider (1999) 
Turbulence model SKE, RKE, RNG, RSM  

 
 
 
Table VI.6 – Relevant thermophysical properties of gas and liquid phases 
 

Value (P = 30bar) Properties T = 25ºC T = 200ºC Units 

Liquid phase    
Viscosity 8.925×10-4 1.340×10-4 Pa.s 
Density 998.4 866.9 kg/m3

Surface tension 7.284×10-2 3.770×10-2 N.m 
Thermal conductivity 6.063×10-1 6.657×10-1 W/mK 

Gas phase    
Viscosity 1.845×10-5 2.584×10-5 Pa.s 
Density 35.67 21.97 kg/m3

Thermal conductivity 2.708×10-2 3.839×10-2 W/mK 
 
 

To the inlet and boundary conditions requested for the solution of the Eulerian model given in 

Chapter V (Table V.2), turbulent kinetic energy, k, and turbulent energy dissipation, ε, at the 

reactor entrance at 200ºC must now be additionally supplied (Table VI.7), once computational 

runs at high temperatures were also carried out beyond the ambient temperature (25ºC) previously 

analysed.  
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Table VI.7 – Inlet boundary conditions for the gas and liquid phases: turbulent kinetic energy (kq) and turbulent energy 

dissipation (εq) at T=200ºC and P=30 bar 

 
G (kg/m2s) L (kg/m2s) kG  (mm2/s2) kL  (mm2/s2) εG  (mm2/s3) εL  (mm2/s3) 

0.1 1 0.5907 3.219×10-2 1.335×10-2 3.015×10-4

0.4 1 6.683 3.219×10-2 1.709 3.015×10-4

0.7 1 17.79 3.219×10-2 12.119 3.015×10-4

0.1 8 0.5907 1.225 1.335×10-2 0.4367 
0.4 8 6.683 1.225 1.709 0.4367 
0.7 8 17.79 1.225 12.119 0.4367 
0.1 15 0.5907 3.680 1.335×10-2 3.941 
0.4 15 6.683 3.680 1.709 3.941 
0.7 15 17.79 3.680 12.11 3.941 

 

Aiming to assess the hydrodynamic scales of trickling flow, the Kolmogorov’s theory was used to 

evaluate the turbulent microscales. The Kolmogorov’s hypothesis of local isotropy for 

homogenous turbulence states that the turbulent kinetic energy is the same everywhere. The local 

isotropy means isotropy at small scales and large scale turbulence may still be anisotropic. 

Kolmogorov argued that the directional biases of the large scales are lost in the chaotic scale-

reduction process as energy is transferred to successively smaller eddies. Hence Kolmogorov’s 

hypothesis of local isotropy states that at sufficiently high Reynolds numbers, the small-scale 

turbulent motions are statistically isotropic. Given the two parameters ε (energy dissipation rate 

per unit mass with dimensions length2/time3) and ν (kinematic viscosity, length2/time) we can form 

the following unique length and time scales ηK = (ν3 / ε)1/4 and τK = (ν / ε)1/2, respectively. These 

scales are indicative of the smallest eddies present in the flow that is the scale at which the kinetic 

energy is dissipated.    

In this work, the hydrodynamic scales of length and time were computed to verify the adequacy of 

the computational grid and temporal discretization schemes. The Kolmogorov length (ηK) and time 

scales (τK) are calculated at different gas and liquid flow rates as well as at different pressures and 

temperatures as shown in Table VI.8. As it can be seen from the tabulated data, both Kolmogorov 

length and time scales attain continuously lower values as the gas and liquid flow rates are 

increased. Regarding the temperature influence, The range of microscale length and time scales 

varies between 1.028-7.574×10-3 m and 0.018-20.51×10-3 s for the gas phase, whereas for the 

liquid phase 0.175-10.59×10-3 m and 0.198-113.7×10-3 s, respectively. According to the 

Kolmogorov theory, acceptable accuracy in DNS is obtained if the grid spacing is four to six times 

lower than the Kolmogorov length scale. In our studies the time step range (10-2-10-5s) used in the 

temporal discretization, as well as the grid resolution (0.01-0.2mm) incorporates only partially the 

Kolmogorov criteria for DNS. Therefore, numerical results with various grid dimensions and time 

steps will be presented in order to guarantee appropriate CFD independent results in what concerns 

these numerical parameters.  
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Table VI.8 – Kolmogorov length (ηK) and time scales (τK) of gas and liquid phases  
 

G / kg/m2s L / kg/m2s T / ºC P / bar ηK,G ×103/ m ηK,L ×103/ m τK,G ×103 / s τK,L ×103/ s 
0.1 1 25 30 5.6406 10.588 20.506 113.65 
0.4 1 25 30 1.6770 10.588 1.8125 113.65 
0.7 1 25 30 1.0277 10.588 0.6807 113.65 
0.1 8 25 30 5.6406 1.7163 20.506 2.9865 
0.4 8 25 30 1.6770 1.7163 1.8125 2.9865 
0.7 8 25 30 1.0277 1.7163 0.6807 2.9865 
0.1 15 25 30 5.6406 0.9902 20.506 0.9940 
0.4 15 25 30 1.6770 0.9902 1.8125 0.9940 
0.7 15 25 30 1.0277 0.9902 0.6807 0.9940 
0.1 1 25 1 5.6406 10.070 0.6724 109.91 
0.4 1 25 1 1.6770 10.070 0.0594 109.91 
0.7 1 25 1 1.0277 10.070 0.0223 109.91 
0.1 8 25 1 5.6406 1.6323 0.6724 2.8882 
0.4 8 25 1 1.6770 1.6323 0.0594 2.8882 
0.7 8 25 1 1.0277 1.6323 0.0223 2.8882 
0.1 15 25 1 5.6406 0.9417 0.6724 0.9613 
0.4 15 25 1 1.6770 0.9417 0.0594 0.9613 
0.7 15 25 1 1.0277 0.9417 0.0223 0.9613 
0.1 1 200 30 7.5738 1.9417 16.258 23.210 
0.4 1 200 30 2.2517 1.9417 1.4370 23.210 
0.7 1 200 30 1.3799 1.9417 0.5397 23.210 
0.1 8 200 30 7.5738 0.3148 16.258 0.6099 
0.4 8 200 30 2.2517 0.3148 1.4370 0.6099 
0.7 8 200 30 1.3799 0.3148 0.5397 0.6099 
0.1 15 200 30 7.5738 0.1816 16.258 0.2030 
0.4 15 200 30 2.2517 0.1816 1.4370 0.2030 
0.7 15 200 30 1.3799 0.1816 0.5397 0.2030 
0.1 1 200 1 7.5738 1.8734 0.5447 22.663 
0.4 1 200 1 2.2517 1.8734 0.0481 22.663 
0.7 1 200 1 1.3799 1.8734 0.0181 22.663 
0.1 8 200 1 7.5738 0.3037 0.5447 0.5955 
0.4 8 200 1 2.2517 0.3037 0.0481 0.5955 
0.7 8 200 1 1.3799 0.3037 0.0181 0.5955 
0.1 15 200 1 7.5738 0.1752 0.5447 0.1982 
0.4 15 200 1 2.2517 0.1752 0.0481 0.1982 
0.7 15 200 1 1.3799 0.1752 0.0181 0.1982 

 

VI.6. Results and discussion 

VI.6.1. Parametric optimization of mesh size, time step and convergence criteria 

The liquid holdup and pressure drop predicted by the CFD simulations are quantitatively 

compared with the literature experimental results (Nemec and Levec, 2005). We begin with a base 

case examining the influence of model solution parameters including different mesh apertures, 

time steps as well as convergence criteria. Concerning the mesh sensitivity analysis, several 

computational runs were performed changing the mesh density in order to properly capture the 

void space and catalyst particle surface.  

In Fig. VI.2 it is plotted four simulation sets of liquid holdup as a function of liquid flow rate at 

P=30 bar and G=0.1 kg/m2s with the coarsest mesh which corresponds to about 2×105 tetrahedral 

cells and the finest mesh with one million tetrahedral cells. The spatial resolution is about d/20 
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which gives an average cell size of 0.01-0.2 mm for the finer meshes depending on the packing 

geometry of the catalytic bed. As it can be seen from Fig. VI.2, low mesh density (2×105 of 

tetrahedral cells) at particle surface led to erroneous solutions due to an incorrect definition of 

interstitial space. As long as the mesh density increases, the theoretical predictions of liquid 

holdup improve considerably. The experimental data used for the parametric optimization were 

available from the work developed by Nemec and Levec (2005) in where it was decribed in detail 

the experimental setup. In that work, liquid holdup was measured by a gravimetric method that 

consists in weighting the column in two different ways to have good reproducibility. 
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Figure VI.2. Comparison of liquid holdup predictions as a function of liquid flow rate for different mesh resolutions 

(G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec and Levec, 2005) 

 

After the bed was extensively prewetted, the reactor with dimensions similar to the ones described 

previously was operated first in a high interaction regime and then reduced to the desired level at 

which the pressure drop and liquid holdup were measured. According to Fig. VI.2 with G=0.1 

kg/m2s in where it was plotted the experimental data represented by dots from the work of Nemec 

and Levec (2005), the liquid holdup numerical simulations performed at L=1 kg/m2s with the 

coarser meshes (2×105, 4×105) gave a relative error of 23.8 and 14.9%, while the finer meshes 

(8×105, 106) gave 7.1 and 1.5% of relative error, respectively. At L=15 kg/m2s, the relative errors 

for the computed liquid holdup results were 4.1, 2.1, 1.7 and 1.0%. As a result, 106 tetrahedral cells 

correspond to the optimum number which gave mesh-independent results with respect to liquid 

holdup. Frictional pressure drop predictions as a function of liquid flow rate at high-pressure 

operation are plotted in Fig. VI.3 as well as the experimental data represented by dots from the 

work developed by Nemec and Levec (2005).  
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Figure VI.3. Comparison of two-phase pressure drop predictions as a function of liquid flow rate for different mesh 

resolutions (G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec and Levec, 2005) 

 

At P=30 bar and L=1 kg/m2s, the relative errors obtained for the two-phase pressure drop were 

32.7, 16.3, 5.2 and 1.6% from the coarse to the fine meshes, respectively. If the operation is 

simulated at the highest liquid flow rate (L=15 kg/m2s), the relative errors became lesser 41.3, 6.6, 

1.4 and 1.0% for 2×105, 4×105, 8×105 and 106 tetrahedral cells, respectively. Therefore, both 

hydrodynamic parameters are underpredicted if one uses a coarse mesh. The same value for the 

number of tetrahedral cells were achieved for mesh-independent results with respect to both liquid 

holdup and pressure drop with the finest mesh so that it was used as the base case setting for 

subsequent parametric investigation of other model solution parameters. These conclusions are in 

agreement with those achieved in the previous Chapter (Figs. V.2 and V.3), where a similar 

analysis was presented for a higher gas flow rate (G = 0.7 kg/m2s). 

Using as the base case the finest tetrahedral mesh with about one million cells, several 

computational runs were carried out with different time steps, whereas the precedent studies 

included in Chapter V were accomplished with a time step equal to 10-3 s (Lopes and Quinta-

Ferreira, 2008). Taking into account that a nominal time step in the range 10-2-10-3 s has often been 

used in the Eulerian simulations for gas-liquid flows (Gunjal et al., 2003; Jiang et al., 2002), this 

model parameter was selected in the parametric study with values of 10-5, 10-4, 10-3 and 10-2 s. In 

Fig. VI.4 it is plotted the computed liquid holdup as a function of liquid flow rate at P=30 bar and 

G=0.1 kg/m2s with these time step values. As one can conclude, the decrease of time step from 10-

2 to 10-3 and further to 10-4 s gave better agreement between the Eulerian model predictions and 

experimental data. However, a subsequent decrease to 10-5 s did not show any significant gain in 

numerical accuracy indicating that it reached an asymptotic solution. In fact, the numerical 
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predictions of liquid holdup at P=30 bar and G=0.1 kg/m2s with the highest liquid flow rate 

exhibited a relative error of 17.4, 5.4, 1.9 and 1.0% for time steps of 10-2, 10-3, 10-4 and 10-5 s, 

respectively. In what concerns the predicted pressure field, in Fig. VI.5 it was plotted two-phase 

pressure drop as a function of liquid flow rate. The relative errors obtained at P=30 bar and L=15 

kg/m2s of 20.0, 7.9, 2.3 and 1.0% demonstrated that a time step of 10-4s gave already a good 

compromise between computational power and the respective numerical accuracy achieved with 

both liquid holdup and pressure drop, whilst from now on 10-5 s was used for the numerical 

simulations. 
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Figure VI.4. Effect of time step on liquid holdup predictions as a function of liquid flow rate with the finest mesh (106 

of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec and 

Levec, 2005) 
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Figure VI.5. Effect of time step on two-phase pressure drop predictions as a function of liquid flow rate with the finest 

mesh (106 of tetrahedral cells, G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec 

and Levec, 2005) 
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Aiming to examine the influence of different convergence criteria on the hydrodynamics 

predictions, different scaled residual components of volume fraction, x, y, z-velocity and turbulent 

kinetic energy and turbulent energy dissipation were investigated in the range 10-5, 10-4, 10-3 and 

10-2. Liquid holdup predictions as a function of liquid flow rate with different convergence criteria 

at P=30 bar and G=0.1 kg/m2s are plotted in Fig. VI.6.  
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Figure VI.6. Effect of convergence criteria on liquid holdup predictions as a function of liquid flow rate (time step = 10-

5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec 

and Levec, 2005) 

 

According to this plot, it was found that changing the convergence criteria method produced 

almost the same effect as observed with different time steps. In fact, the relative errors between the 

computed results and experimental data were 17.6, 5.3, 1.2 and 1.0 at the highest liquid flow rate 

(L=15 kg/m2s) with residual components of 10-2, 10-3, 10-4 and 10-5, respectively. This 

computational behaviour was expected since a value decrease in the scaled residual component 

imply that the CFD calculation is performed with better accuracy. This fact was also observed in 

the pressure field computations as shown in Fig. VI.7, which established the following increasing 

order of relative error attained at L=15 kg/m2s: 1.0, 3.1, 10.7 and 27.1% for 10-2, 10-3, 10-4 and 10-

5, respectively. Further studies were performed with this lower value, 10-5.   
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Figure VI.7. Effect of convergence criteria on two-phase pressure drop predictions as a function of liquid flow rate 

(time step = 10-5 s, 106 of tetrahedral cells, G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots 

from Nemec and Levec, 2005) 

 

VI.6.2. Investigation of differencing scheme 

After the base case definition and the achievement of grid size, time step and convergence criteria 

independent results with respect to both liquid holdup and two-phase pressure drop, five numerical 

upwind differencing schemes were evaluated for the discretization of momentum equation 

convective terms including FOU, SOU, PL, QUICK and MUSCL. Regarding the discretization of 

the convective terms of the volume fraction (for which only FOU and QUICK could be assessed in 

the FLUENT code), turbulent kinetic energy and energy dissipation equations, no differences were 

detected for different criteria, being thus used the scheme with lower order (FOU). 

In Fig. VI.8 it is shown the liquid holdup predictions as a function of liquid flow rate with different 

discretization schemes at P=30 bar and G=0.1 kg/m2s. Generally, as it can be seen from Fig. VI.8 

second-order computations (SOU) agreed reasonably with liquid holdup experimental data 

(Nemec and Levec, 2005) for the whole range of simulated liquid flow rate. In fact, the simulation 

performed at the highest liquid flow rate (L=15 kg/m2s) gave the following decreasing order of 

relative error: 25.6, 4.9, 4.9, 2.6, 1.0% for FOU, PL, SOU, QUICK and MUSCL, respectively. As 

one can conclude from these values, as long as the high-order of differencing scheme so do a 

better concordance was achieved for the liquid holdup simulations. The relative error obtained 

with PL and SOU was almost the same and their value decreased when the simulation is carried 

out with QUICK and further MUSCL schemes.  
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Figure VI.8. Effect of discretization scheme of volume fraction equation (MUSCL, QUICK, Power-Law, SOU and 

FOU) on liquid holdup predictions as a function of liquid flow rate (time step = 10-5 s, 106 of tetrahedral cells, G=0.1 

kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec and Levec, 2005) 

 

The relative position of differencing schemes in respect to the obtained relative errors is more or 

less as expected since the third-order quadratic upwind scheme (QUICK) and SOU are generally 

better for complex flows than FOU providing a more realistic behaviour in terms of 

hydrodynamics predictions. Notwithstanding, MUSCL exhibited the minor relative error with less 

numerical iterations required for convergence probably due to the high-order spatial accuracy and 

its foundation in total variation diminishing (TVD) scheme (Harten, 1983). TVD schemes are 

well-known in providing high accuracy numerical solutions to partial differential equations which 

involve most likely the existence of shocks or discontinuities or even large gradients as 

characterized by the multiphase flow nature in trickle-bed reactors. It is worth noting that current 

MUSCL scheme implemented in the CFD solver is a third-order convection scheme conceived 

from the original MUSCL (Van Leer, 1979) by blending a central-differencing scheme and 

second-order upwind scheme. Therefore, compared to the second-order upwind scheme, the third-

order MUSCL revealed a fair potential to improve spatial accuracy of multiphase flow with the 

finest mesh (106 of tetrahedral cells) by reducing numerical diffusion, most significantly for 

complex three-dimensional flows in trickle-beds. In Fig. VI.9, frictional pressure drop predictions 

are plotted as a function of liquid flow rate with the same investigated differencing schemes for the 

liquid holdup. Once more, FOU simulations gave the worst agreement with pressure drop 

experimental data, and both SOU and Power-Law schemes gave approximately the same relative 

error. As a matter of fact, MUSCL predictions showed again the highest numerical accuracy 

followed by QUICK simulations. The relative errors obtained at L=15 kg/m2s were 34.7, 18.5, 

15.5, 8.5 and 1.0 % for FOU, SOU, PL, QUICK and MUSCL schemes, respectively. 
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Figure VI.9. Effect of discretization scheme of volume fraction equation (MUSCL, QUICK, Power-Law, SOU and 

FOU) on two-phase pressure drop predictions as a function of liquid flow rate (time step = 10-5 s, 106 of tetrahedral cells, 

G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data represented by dots from Nemec and Levec, 2005) 

 

VI.6.3. Evaluation of RANS turbulence models 

The parametric investigation of mesh size, time step, convergence criteria and momentum 

equation differencing scheme ascertained CFD independent results with one million tetrahedral 

cells, 10-5 s for the time step, scaled residuals of 10-5 with the MUSCL scheme. With this case 

setting, several Reynolds averaged Navier-Stokes turbulence models were tested in order to 

investigate the effect of turbulence model on hydrodynamic parameters. In the context of the k-ε 

models (standard (SKE), realizable (RKE) and renormalization group theory (RNG) based 

models), three multiphase different options were further examined: the mixture turbulence model, 

the dispersed turbulence model and a per-phase turbulence model. In what concerns the Reynolds 

stress model (RSM), two options were evaluated including the mixture turbulence and dispersed 

turbulence models. 

In Fig. VI.10 it is shown the liquid holdup predictions as a function of liquid flow rate at P=30 bar 

and G=0.1 kg/m2s for the SKE, RKE, RNG and RSM dispersed turbulence models. As it can be 

seen, the better concordance was obtained with SKE and RSM models. At the highest simulated 

liquid flow rate (L=15 kg/m2s), the following increasing order for the relative error was RSM < 

SKE < RNG < RKE. In spite of the lower relative error attained with RSM simulations, RSM 

required the highest computing time with around 50,000 of numerical iterations. This fact is 

probably due to its inherent hypothesis of anisotropic eddy-viscosity as the RSM closes the RANS 

equations by solving transport equations for the Reynolds stresses, together with an equation for 

the dissipation. 
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Figure VI.10. Influence of RANS turbulence model on liquid holdup predictions as a function of liquid flow rate 

(MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data 

represented by dots from Nemec and Levec, 2005) 

 

Moreover, the better numerical accuracy can be also attributed since the RSM accounts for the 

effects of streamline curvature, swirl, rotation, and rapid changes in strain rate in a more rigorous 

manner than two-equation turbulence models (as standard k-ε models). Bearing in mind that 

multiphase flow in a packed bed poses a great problem to account properly for the boundary layer, 

it should be pointed out that the reliability of RSM predictions with the finest mesh (106 of 

tetrahedral cells) is still limited by the closure assumptions employed in the exact transport 

equations for the Reynolds stresses in trickle-beds. Although published works have already 

indicated that the mesh have to be dense enough in order to capture boundary layer phenomena 

over the walls (catalyst surface), the Reynolds number dependence of the mesh was found to have 

no significant effect during all RANS computations, but it should become significant with the 

increase of Reynolds number (Spalart, 2000). 

During the RSM simulations, it was found that pressure-strain and dissipation-rate modelling were 

responsible for the expensive computations without giving a much different relative error for the 

liquid holdup (Fig. VI.10) in comparison with k-ε dispersed turbulence model. Alternatively, the 

CFD calculations with RKE and RNG did not show any improvement comparing with SKE. The 

major differences in the k-ε models are related with the method of calculating the turbulent 

viscosity, the turbulent Prandtl numbers of k and ε and the mathematical formulation of generation 

and destruction terms in the turbulent energy dissipation. Although RKE accounts for the transport 

of the mean-square vorticity fluctuation in the turbulent energy dissipation (ε) equation and RNG 
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theory provides an analytical formula for turbulent Prandtl numbers, after all SKE dispersed 

turbulence model demonstrated the better compromise between numerical accuracy and 

computational cost for both liquid holdup and pressure drop predictions. Two-phase pressure drop 

calculations were plotted in Fig. VI.11 as a function of liquid flow rate. Once more, RSM agreed 

better with experimental data followed by SKE, RKE and RNG dispersed turbulence models. The 

relative errors for the frictional pressure drop were 0.8, 1.0, 6.3 and 9.5% for RSM, SKE, RKE and 

RNG, respectively. 
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Figure VI.11. Influence of RANS turbulence model on two-phase pressure drop predictions as a function of liquid flow 

rate (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data 

presented by dots from Nemec and Levec, 2005) 

of time averaged liquid velocity magnitude at T=25ºC, P=30bar, G=0.7 kg/m2s 

and L=1 kg/m2s.  

re

 

VI.6.4. Liquid and gas velocity profiles 

As trickle-bed reactors are often operated at high temperatures either in petrochemical 

hydrotreatments or in the catalytic wet oxidations of high strength wastewaters (Bhargava et al., 

2006), the effect of temperature on TBR hydrodynamics was evaluated plotting the liquid and gas 

axial velocities at ambient temperature and at 200ºC. This higher temperature was selected since it 

is a common value in the organic content decontamination of phenolic wastewaters by means of 

catalytic wet air oxidation. In Fig. VI.12a it is shown the axial profile along the dimensionless 

coordinate, z*=z/L 
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b) 

Figure VI.12. Axial profile of time-averaged velocity along the packed bed for the a) liquid and b) gas phase at L=1 

kg/m2s and T=25ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 bar, d=2 mm) 

 

This time averaging procedure consists in the selection of nominal operating times such as 10, 30, 

60 and 360 s so that the axial liquid velocity is time-averaged for a single radial coordinate. Four 

dimensionless radial coordinates (r*=r/R, being R the radius of the trickle-bed reactor) were 

selected: r*=0, ¼, ½ and ¾. At the lowest liquid flow rate (L=1 kg/m2s), according to Fig. VI.12 it 

was found an oscillatory behaviour for the axial liquid velocity around the mean value of uL=0.1 

cm/s. The intensity of these oscillations produced by the catalytic bed configuration was quantified 

with maxima of 15.2% and minima of -12.3% at the trickle-bed reactor centre (r*=0) and it may be 

attributed to the existence of different mixing levels at the catalyst scale being almost identical for 

all radial positions. The axial profile of gas velocity at the same operating conditions is shown in 

Fig. VI.12b. With a mean axial velocity value of about uG=1.96 cm/s, the maxima and minima 

values were 2.8 and -2.3%, respectively. These values were substantially lower than those attained 

for the axial liquid velocity which indicated an improved homogeneity for the gas velocity spatial 

distribution. The spatial distribution of axial liquid and gas velocity can be seen in the snapshots of 

the velocity vector profiles inside the catalytic bed at two orthogonal axial planes as shown in Fig. 

VI.13a and b, respectively.  
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a) 

 
b) 

Figure VI.13. Velocity vector distribution (m/s) along the packed bed at two orthogonal axial planes for the a) liquid 

and b) gas phase at L=1 kg/m2s and T=25ºC (MUSCL,  time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 

bar, d=2 mm) 

 

According to Fig. VI.13a, at T=25ºC, P=30bar, G=0.7 kg/m2s and L=1 kg/m2s the maxima values 

were about the same magnitude as observed in Fig. VI.12a. However, the minima values 

accomplished in Fig. VI.13a were lesser than 0.08 cm/s for any radial coordinate. The maxima and 

minima values for the time-averaged axial gas velocity observed in Fig. VI.12b can also be 

identified in Fig. VI.13b. Moreover, the liquid velocity profile attained with the lowest liquid flow 
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rate (L=1 kg/m2s) in Fig. VI.13a illustrated the existence of flow channelling effects near the 

catalyst particles. This fact is often regarded as the result of improper liquid distribution at the top 

of the trickle-bed reactor. For this reason, during all CFD simulations it was mimicked an ideal 

gas-liquid distributor which prevents or at least limits the extension of liquid maldistribution in 

trickle-beds, thus channelling phenomena are here due to geometric and hydrodynamic bed 

characteristics.  

Fig. VI.14a shows the axial liquid velocity profile increasing the operating temperature up to 

200ºC maintaining the other operating variables constant (P=30 bar, G=0.7 kg/m2s and L=1 

kg/m2s). As one can observe, the intensity of the maxima and minima values decreased 

considerably for both phases whatever the radial coordinated. The maxima and minima values for 

the time-averaged axial liquid velocity were 4.3 and -3.7% whereas for the axial gas velocity those 

values decreased down to 1.5 and -1.1%. Therefore, the increase of temperature has a flattening 

effect on the axial velocity profiles. 
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b) 

Figure VI.14. Axial profile of time-averaged velocity along the packed bed for the a) liquid and b) gas phase at L=1 

kg/m2s and T=200ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 bar, d=2 mm) 
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As the aforementioned simulations were carried out with the lowest liquid flow rate (L=1 kg/m2s), 

four additional sets were performed at L=15 kg/m2s, G=0.7 kg/m2s, P=30bar. Fig. VI.15a and b 

display the axial liquid and gas velocity profiles at different dimensionless radial coordinates at 

T=25ºC. At r*=0, the maxima and minima for the liquid velocity were 3.3 and -6.5% whereas for 

the gas velocity those values were 3.5 and -5.9%, respectively. Comparing these values with those 

obtained in Fig. VI.12a and b, the phase velocity profiles were smoothed as long as the liquid flow 

rate increases from L=1 to 15 kg/m2s. This fact can be explained due to the better and improved 

liquid distribution on the catalyst packing with higher liquid flow rates.  
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Figure VI.15. Axial profile of time-averaged velocity along the packed bed for the a) liquid and b) gas phase at L=15 

kg/m2s and T=25ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 bar, d=2 mm) 

 

In general and in concordance with the hydrodynamic predictions of liquid holdup already 

discussed, the higher liquid flow rate goes the higher liquid holdup is achieved for the TBR which 

had a positive effect on the liquid spreading over the particle surface. Furthermore, according to 

Figs. VI.15a and b it can now be observed that different time-averaged axial liquid profiles are 

obtained for different radial coordinates. Accordingly, the axial liquid velocity profiles begin to 

diverge as soon as the liquid phase is compelled to flow through the catalytic bed. The higher 
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liquid velocities were attained at the reactor centre and decreased as one moves towards the reactor 

wall. In order to evaluate also the influence of temperature at the highest simulated liquid flow rate 

(L=15 kg/m2s), Fig. VI.16a and b plot the axial liquid and gas velocity profiles along the catalytic 

bed at T=200ºC, G=0.7 kg/m2s, P=30bar, respectively. As expected, the maxima and minima 

became slightly lesser to 1.2, -3.3 and 3.3, -5.9 for the liquid and gas velocities, respectively. Once 

again, the divergence behaviour identified early at T=25ºC was now smoothened by the 

temperature increase to 200ºC. 
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Figure VI.16. Axial profile of time-averaged velocity along the packed bed for the a) liquid and b) gas phase at L=15 

kg/m2s and T=200ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 bar, d=2 mm) 

 

VI.6.5. Liquid and gas turbulent kinetic energy profiles 

At T=25ºC, P=30bar, G=0.7 kg/m2s and L=15 kg/m2s, the time-averaged axial profile for the 

liquid turbulent kinetic energy is shown in Fig. VI.17a for different dimensionless radial 

coordinates whereas the gas turbulent kinetic energy profile is depicted in Fig. VI.17b. At the 

highest simulated liquid flow rate, it was also identified a considerable degree of heterogeneity in 

the axial turbulent transport properties. As it can be seen, the maxima and minima values were 1.1, 

-2.0% and 4.1, -7.1% for the liquid and gas phases, respectively.  
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Figure VI.17. Time-averaged axial profile of turbulent kinetic energy (mm2/s2) along the packed bed for the a) liquid 

and b) gas phase at L=15 kg/m2s and T=25ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 

bar, d=2 mm) 

 

Increasing the temperature up T=200ºC, Fig. VI.18a and b show the axial profile of the liquid and 

gas turbulent kinetic energy profiles. Accordingly, the new maxima and minima values were 0.7, -

2.1% and 0.5, -1.0%, respectively. Once again, whatever the operating temperature the time-

averaged turbulent kinetic energy property was deviating from the mean value established at the 

reactor inlet for either liquid or gas phases. This fact is a direct consequence of the divergence 

identified early in the time-averaged axial velocity profiles for both phases since the turbulent 

kinetic energy depends primarily on the phase velocity.  
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Figure VI.18. Time-averaged axial profile of turbulent kinetic energy (mm2/s2) along the packed bed for the a) liquid 

and b) gas phase at L=15 kg/m2s and T=200ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 kg/m2s, P=30 

bar, d=2 mm) 

 

At the lower temperature (T=25ºC), it was taken an instantaneous snapshot of a liquid holdup 

isosurface (αL≈0.215) coloured by the turbulent kinetic energy for the liquid phase as depicted in 

Fig. VI.19a whereas in Fig. VI.19b it is shown the gas holdup isosurface (αG≈0.185) coloured by 

the gas turbulent kinetic energy. As one can observe, the liquid and gas distribution is not uniform 

at the catalyst scale which identified computationally the so-called flow maldistribution of trickle-

beds. These strong axial and radial heterogeneities were observed experimentally by Suekane et al. 

(2003) by means of a magnetic resonance imaging technique to directly measure the flow in a pore 

space of a packed bed. Comparing Fig. VI.17 and VI.18, in both plots it was detected that the 

turbulent kinetic energy profiles had a major magnitude variation for the liquid phase in opposition 

with the velocity profiles computed at the same operating conditions. Moreover, the increase of the 

temperature led to a slight decrease in the mean value of the liquid turbulent kinetic energy and an 

increase of gas turbulent kinetic energy.  
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a) 

 
b) 

Figure VI.19. CFD snapshot of liquid holdup isosurface (αL = 0.215) coloured by turbulent kinetic energy (mm2/s2) for 

the a) liquid and b) gas phase at L=15 kg/m2s and T=25ºC (MUSCL, time step = 10-5 s, 106 of tetrahedral cells, G=0.7 

kg/m2s, P=30 bar, d=2 mm) 
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VI.7. Conclusions 

Aiming to understand the effect of turbulence models in multiphase flow, a Euler-Euler model was 

developed and coupled with different RANS turbulence based modes including standard, 

realizable and RNG k-ε models as well as RSM for the hydrodynamics simulation of high-pressure 

trickle-bed reactor. 

First, several computational runs were performed for the parametric investigation of numerical 

solution parameters. As the accuracy of the simulation is mostly dependent on mesh density, 

different mesh sizes, time steps, convergence criteria and discretization schemes were compared 

for the hydrodynamic validation of the multiphase flow model. It was found that CFD predictions 

with the MUSCL scheme agreed better with the experimental data due to the fact that it is based 

on TVD algorithm which overcomes the numerical dispersion that arose in the multiphase flow 

simulations.  

Second, the optimum values were used for the evaluation purpose of different RANS turbulence 

models. The standard k-ε dispersed turbulence was then used to evaluate the influence of flow 

temperature on axial velocity and turbulent kinetic energy profiles. The increase of temperature 

was found to be responsible in the smoothness of liquid maldistribution along the packed bed.  

 

VI.8. Nomenclature  

Cμ, C1ε, C2ε   k-ε model parameters: 0.09, 1.44, 1.92 

CV    Added-mass coefficient: 0.5 

d    Catalyst particle nominal diameter, m 

Dq    Diffusivity of qth phase, m2/s 

E1, E2    Ergun’s constants: 150, 1.75 

gr     Gravitational acceleration, 9.81m/s2

G    Gas mass flux, kg/m2s 

Gk     Generation rate of turbulent kinetic energy 

k     k-ε model kinetic energy 

dck~      Covariance of continuous-dispersed phase velocity  

Kdc     Drag coefficient 

keff     Effective thermal conductivity 

klp     Covariance of the velocities of the continuous phase q and the  

    dispersed phase l 
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L    Liquid mass flux, kg/m2s 

qtL ,     Length scale of the turbulent eddies 

L    Reactor length, m 

p    Pressure, bar 

r    Reactor radius coordinate, m 

R    Reactor radius, m 

Rei    Reynolds number based on interstitial velocity [Re/ε] 

Rij    Reynolds stresses 

Sq    Source mass for phase q 

t    Time, s 

T    Temperature, K 

ur     Superficial vector velocity, m/s 

qU
r

    Phase-weighted velocity, m/s 

pqur      Relative velocity 

drur      Drift velocity 

z    Reactor axial coordinate, m  

 

Greek letters 

αq    Volume fraction of qth phase 

ε     k-ε model dissipation energy 

ηK    Kolmogorov length scale, m 

ρq    Density of qth phase, kg/m3

ρm    Density of mixture, kg/m3

Δp    Total pressure drop, bar 

kqΠ ,    Influence of the dispersed phases k and ε on the continuous phase qεΠ

σ    Surface tension, N.m 

σk , σε    k-ε model parameters: 1.2, 1.0 

τ    Residence time, s 

τK    Kolmogorov time scale, s 

qτ     Shear stress tensor of qth phase, bar 

pqF ,τ     Characteristic phase relation time connected with inertial effect 

pqt ,τ     Lagrangian integral time scale calculated along particle   

    trajectories 
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qt ,τ     Characteristic time of the energetic turbulent eddies 

µq     Viscosity of qth phase, Pa.s 

 

Subscripts 

c    Continuous phase 

G    Gas phase 

l    Dispersed phase 

L    Liquid phase 

m    k-ε mixture turbulence model properties 

q    qth phase 

S    Solid phase 
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VII. CFD Modelling of Multiphase Flow Distribution In 

Trickle-Bed Reactors1

Multiphase flow in trickle-bed reactors (TBR) is known to be extremely complex and depends on 

a multitude of effects including the physico-chemical properties of both gas, liquid and solid 

phases, the ratio of column diameter to particle diameter and most importantly the gas and liquid 

superficial velocities. Despite several works devoted to the experimental investigation of liquid 

distribution, there is yet no universal agreement on the influence of interstitial phenomena on 

overall TBR hydrodynamics. Consequently, a Eulerian multiphase model was developed to predict 

the liquid holdup and pressure drop in the trickling flow regime with a 3D computational grid. The 

multiphase model was optimized in terms of mesh density and time step for the successful 

hydrodynamic validation activities. The model predictions correctly handled the effect of different 

numerical solution parameters.  

Afterwards, particular attention is paid to the consequences on flow development and 

hydrodynamic parameters of imposing liquid maldistribution at the bed top with three types of 

liquid distributors. Several computational runs were carried out querying the effect of gas and 

liquid flow rate on overall hydrodynamics. CFD predictions demonstrated that liquid flow rate had 

a prominent effect on radial pressure drop profiles at the higher values whereas the gas flow rates 

had their major outcome at lower regimes. Regarding the liquid holdup predictions, several time 

averaged for radial and axial profiles illustrated that a 5 times increase on liquid flow rate can not 

be matched by an equivalent change on gas flow rate. The increase in both flow rates was found to 

smooth the oscillatory behaviour of local phenomena, but the gas flow rate had an outstanding 

consequence on both hydrodynamic parameters. Finally, CFD simulations at atmospheric 

conditions were compared with the pressurized ones. Liquid holdup fluctuations of about 25% 

between the liquid-rich and the gas-rich zone can be smoothened as long as the operating pressure 

is increased until 30 bar.  

 

VII.1. Introduction 

A trickle-bed reactor is a packed bed in which gas and liquid flow co-currently downwards. 

Several aspects of hydrodynamics including flow patterns, pressure drop, gas and liquid holdup, 

wetting efficiency, heat and mass transfer, etc. were extensively studied and reviewed by several 

authors (Satterfield, 1975; Gianetto et al., 1978; Herskowitz and Smith, 1983; Al-Dahhan et al., 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009) 
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1997; Dudukovic et al., 2002; Larachi et al., 2003). TBRs have been commonly used in the 

petroleum industry for many years and are now gaining widespread use in several other fields 

from bio and electrochemical industries to the remediation of surface and underground water 

resources, being also recognized for their applications in advanced wastewaters treatments 

(Bhargava et al., 2006). 

For a concurrent downflow trickle-bed reactor, four different flow patterns exist: the gas-

continuous or trickle flow at low liquid and gas rates, pulse flow at intermediate liquid and gas 

rates, liquid continuous or dispersed bubble flow at higher liquid rates. The main characteristic in 

trickling flow is that at a sufficiently low liquid flow, the catalyst particles will only be partially 

wetted (partial wetting regime). If the liquid flow rate is increased, the partial wetting regime will 

gradually change to a complete wetting regime (Ng and Chu, 1987). According to this flow map 

regime, the TBR selection choice is mainly motivated by hydrodynamic considerations in where 

one or more liquid-solid catalytic reactions occur. Liquid phase maldistribution is then an 

important factor in the design and scale-up of trickle bed reactors so that one of the major 

challenges in its operation is the prevention of liquid flow maldistribution which causes portions of 

the bed to be incompletely wetted by the flowing liquid. Hence, the catalyst bed is underutilized 

and reactor performance and productivity is reduced, particularly for liquid limited reactions at 

low liquid mass velocities. 

The research on liquid flow maldistribution is often dedicated in the experimental liquid 

distribution studies carried out in laboratory scale units using a collector at the outlet of the bed. 

Recently, several groups had emphasized the use of tomographic and video imaging techniques, 

which provides the flow distribution information more quantitatively (Reinecke and Mewes, 1996; 

Sederman and Gladden, 2001; Harter et al., 2001; Boyer and Fanget, 2002). The flow pattern and 

liquid maldistribution have been found to be dependent not only on the physicochemical properties 

of the liquid (density, viscosity, surface tension), liquid and gas flow rates (Onda et al., 1973; 

Saroha et al., 1998) but also on the ratio of reactor diameter to catalyst particle diameter 

(Herskowitz and Smith, 1983; Saroha et al., 1998; Al-Dahhan and Dudukovic, 1994), wettability 

(Schwartz  et al., 1976), and shape and orientation of catalyst particles (Ng and Chu, 1987; Kundu  

et al., 2001). And ineffective liquid inlet distributor may also lead to poor liquid distribution due to 

large non-wetted regions of the packed bed. 

Consequently, the assumption of uniform wetting efficiency throughout the reactor made in 

conventional reactor models are found to overpredict the reaction rate (Funk et al., 1990). The 

solution to this problem requires a deep understanding of interstitial flow in trickle beds. A number 

of models of the liquid distribution have been developed in the past two decades based on different 
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concepts or governing principles (Herskowitz and Smith, 1979; Crine et al., 1979; Stanek et al., 

1981; Zimmerman and Ng, 1986; Fox, 1987; Melli and Scriven, 1991). Sáez and Carbonell (1985) 

developed a model based on concept of relative permeability whereas slit models proposed by 

Holub et al. (1992) and Iliuta et al. (2000) are based on phenomenological principles (Holub et al., 

1992;  Iliuta et al., 2000). In these models the local flow of liquid and gas around the particles is 

modelled by assuming flow in rectangular inclined slits of width related to void fraction of the 

medium. The interfacial force model presented by Attou and Ferschneider (1999) takes into 

account the drag force on each phase with the contribution from the particle–fluid interaction as 

well as from the fluid-fluid interaction. Recently, and with the increasing computational power and 

development of efficient Computational Fluid Dynamics (CFD) algorithms multiphase flow in 

TBR has been modelled in a fashionable manner accounting for a new methodology for liquid 

flow distribution studies by means of numerical simulations. In this category, Souadnia and Latifi 

(2001) and Atta et al. (2007) have used the porous media model and Jiang et al. (2002) and Gunjal 

et al. (2003) investigated the TBR hydrodynamics through the k-fluid model.  

In the present work, the Eulerian framework is applied here to describe the multiphase flow in a 

three-dimensional geometry which allows the capture of interstitial flow in the packed bed. The 

Euler model is based on a set of continuity and momentum equations of each fluid phase with 

appropriate closures for the interaction forces. The individual drag forces are related with the flow 

velocities and volume fractions of each phase and to the physical properties of the gas, liquid and 

solid phases obtained from the fluid-fluid interfacial force model (Attou and Ferschneider, 1999). 

First, several computational runs were performed for the purpose of hydrodynamic model 

validation either in terms of liquid holdup or two-phase pressure drop. Afterwards, the quantitative 

understanding of flow maldistribution at the catalyst scale in the trickle bed is accomplished 

through the evaluation of time averaged axial and radial profiles for both hydrodynamic 

parameters. The influences of liquid distributor geometry as well as the effect of gas and liquid 

flow rates are investigated in the trickling flow regime. 

 

VII.2. CFD Modelling 

Multiphase flow in the trickle-bed reactor was modelled using a multifluid CFD Euler-Euler two-

fluid model implemented in commercial software FLUENT (FLUENT 6.1, 2005). The Eulerian 

framework, including the description of the continuity and momentum equations, and the closure 

equations of the drag force formulation was developed using the model of Attou and Ferschneider 

(1999) as shown in Equations (V.1), (V.2) and (V.4)-(V.7) in Chapter V, respectively. 
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Accordingly, the k-ε dispersed turbulence model (Equations (V.9) and (V.10)) was used for the 

multiphase flow distribution studies.  

VII.3. Numerical simulation 

VII.3.1. Computational grid 

The grid of the catalytic bed was created using the integrated solid modelling and meshing 

commercial program GAMBIT (GAMBIT 2, 2005) as described in Chapter V. The first and the 

last catalyst layers as well as two representative axial planes are shown in Fig. VII.1.  

 

Figure VII.1. Representative axial planes and catalytic packing geometry for the trickle-bed reactor 

 

Different mesh densities and discretization parameters were applied in the evaluation of probable 

geometrical errors arising from the mesh aperture. Consecutively, the number of cells necessary to 

produce grid independent results for the hydrodynamic parameters was increased from 2×105 to 

3×106, with other numerical solution parameters including operating conditions given by Table 

VII.1, where discretization methods are referred: MUSCL for the momentum balance, according to 

the previous analysis, and QUICK for the other conservation equations, since lower iteration 

numbers to achieve final solution were needed contrarily to the FOU used in the studies along 

Chapter VI. Table VII.2 summarizes the gas and liquid thermophysical properties used in the 

Eulerian CFD simulations. 
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Table VII.1 – Numerical solution parameters used in the CFD simulation  
 

Grid 1000 mm (axial) × 50 mm (radial) 
Cell size 0.01 - 0.20 mm (tetrahedral and hexahedral) 
Particle diameter 2 mm (spheres) 
Time step 10-5 – 10-2 s  
Convergence criteria 10-5 – 10-2

Discretization  
Momentum  MUSCL 
Volume fraction   QUICK 
Turbulent kinetic energy  QUICK 
Turbulent energy dissipation  QUICK 

Iterations ≈ 50,000 
Under-relaxation parameters Pressure: 0.2-0.6 

Velocity: 0.4-0.8 
Turbulent kinetic energy: 0.8 

Turbulent energy dissipation: 0.8 
Drag formulation Attou and Ferschneider (1999) 
Turbulence model Dispersed phase standard k-ε  

 
 
Table VII.2 –  Relevant thermophysical properties of gas and liquid phases 
 

Properties Value (T=25ºC) Units 

Gas phase   
Density 1.170 (1 bar) 35.67 (30 bar) kg/m3

Viscosity 1.845×10-5 Pa.s 
Liquid phase   

Viscosity 8.925×10-4 Pa.s 
Density 998.4 kg/m3

Surface tension 7.284×10-2 N.m 
 
 

VII.3.2. Operating and boundary conditions 

High-pressure operation was simulated at 30 bar total operating pressure with inflow gas (G = 0.1–

0.7 kg/m2s) and liquid (L = 1–15 kg/m2s) being distributed through one of three designed 

distributors: D1 corresponds to a single-point entry distributor with an 0.2 mm inlet diameter, D2 

corresponds to a 60-hole distributor and D3 replicates a uniform distributor at the top of trickle-

bed reactor. The boundary conditions were specified based on FLUENT documentation (FLUENT 

6.1., 2005). Turbulent kinetic energy (k) was estimated from turbulence intensity and turbulent 

energy dissipation (ε) was estimated from the turbulent viscosity ratio as expressed in Equations 

(VI.1)-(VI.3) in Chapter VI. At 25º C and two different operating pressures 1 and 30 bar, the inlet 

turbulent kinetic energy and inlet turbulent energy dissipation for the gas and liquid phases are 

given in Table VII.3. Computations are time dependent and were carried out until steady state 

conditions were reached. During the simulations of turbulent multiphase flow, it was employed 

standard wall functions available in the commercial CFD solver. The calculations have been 

carried out on a Linux cluster based on AMD64 Dual-Core 2.2 GHz processor workstation. 
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Table VII.3 – Inlet boundary conditions for the gas and liquid phases: turbulent kinetic energy (kq) and turbulent energy 

dissipation (εq) at T=25ºC 
 

G (kg/m2s) L (kg/m2s) P  (bar) kG  (mm2/s2) kL  (mm2/s2) εG  (mm2/s3) εL  (mm2/s3) 
0.3 2 1 1.310×103 1.329×10-1 4.895×103 8.640×10-4

0.3 10 1 1.310×103 2.222 4.895×103 0.2415 
0.1 5 1 1.915×102 0.6607 1.047×102 2.135×10-2

0.7 5 1 5.770×103 0.6607 9.498×104 2.135×10-2

0.3 2 30 1.408 0.1329 0.1726 8.640×10-4

0.3 10 30 1.408 2.222 0.1726 0.2415 
0.1 5 30 0.2059 0.6607 3.690×10-3 2.135×10-2

0.7 5 30 6.204 0.6607 3.349 2.135×10-2

 

VII.4. Results and discussion 

VII.4.1. Hydrodynamic validation: mesh sensitivity and time step 

In this section, the numerical methodology is validated in terms of well-known hydrodynamic 

parameters by checking the mesh sensitivity and time step and by comparing the numerical results 

against the experimental data available in the open literature (Nemec and Levec, 2005). The 

previous studies involving a mesh size range of 2×105 – 106 are now extended to 3 million cells in 

order to reinforce the mesh independence so that the refinement is performed in seven levels: three 

levels for the coarser meshes with 2,4,6 ×105 of tetrahedral cells and four levels for the finer 

meshes with 8×105 and 1,2,3×106 of tetrahedral cells. Fig. VII.2 displays the influence of number 

of tetrahedral cells on the liquid holdup predictions with four simulation sets at constant liquid 

flow rate: L=1, 5, 10 and 15 kg/m2s at G=0.1 kg/m2s and P=30 bar. 
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Figure VII.2. Comparison of liquid holdup predictions at different liquid flow rates for different mesh resolutions 

(G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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As it can be seen, the increase of mesh density led to an asymptotic solution as one increases the 

number of cells of one million onwards. The horizontal lines in the semi-log plot of Fig. VII.2 

correspond to the experimental liquid holdup value (Nemec and Levec, 2005). According to Fig. 

VII.2, the relative error obtained with 2×105 of cells between the CFD liquid holdup predictions 

and experimental data was 23.8, 12.4, 6.2 and 4.1% for L=1, 5, 10 and 15 kg/m2s, respectively. Let 

the true liquid holdup be the experimental value, αL,EXP, and the computed liquid holdup value, 

αL,CFD, then the relative error was defined by: Relative Error (%) = (αL,EXP – αL,CFD)/ αL,EXP. At the 

same gas flow rate and operating pressure, the relative error shifted to 1.5, 1.3, 1.2 and 1.0% for 

the equivalent liquid flow rates with one million of cells. The CFD calculations performed with a 

further increase of mesh density with either 2 or 3×106 of tetrahedral cells did not show any 

improvement as the relative error became invariable with a value of 1.0% for the liquid holdup. In 

what concerns two-phase pressure drop, Fig. VII.3 shows a semi-log plot for the frictional pressure 

drop along the packed bed at G=0.1 kg/m2s and P=30 bar with the same set of liquid flow rates. 

The horizontal lines in the semi-log plot of Fig. VII.3 correspond to the experimental value of two-

phase pressure drop (Nemec and Levec, 2005). The CFD calculations performed with the coarsest 

mesh (2×105 of tetrahedral cells) exhibited a relative error of 32.7, 24.8, 18.3 and 14.3 while the 

computed results corresponding to 106 of cells gave a relative error of 1.6, 1.5, 1.2 and 1.0 for L=1, 

5, 10 and 15 kg/m2s, respectively. Hence, the Eulerian model with a TBR mesh comprising 106 of 

tetrahedral cells for both hydrodynamic parameters was likely to perform better at the highest 

liquid flow rates since at L=15 kg/m2s it were found the lower relative error percentages between 

predictions and experimental data (Nemec and Levec, 2005). 
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Figure VII.3. Comparison of two-phase pressure drop predictions at different liquid flow rates for different mesh 

resolutions (G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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The optimization of time step with respect to liquid holdup predictions, referred in the previous 

chapter, is shown here in Fig. VII.4 at G=0.1 kg/m2s and P=30 bar in a log-log representation, 

allowing a clearer analysis of the effect of this numerical parameter in the Euler model validation. 

As expected, a time step too large led to the worst concordance between the numerical predictions 

and experimental results. The relative error obtained with time step of 10-2 s was 34.3, 26.1, 21.8 

and 17.4 for L=1, 5, 10 and 15 kg/m2s, respectively.  
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Figure VII.4. Effect of time step on liquid holdup predictions at different liquid flow rates (106 of tetrahedral cells, 

G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

 

A significant decrease down to 10-5 s led to the better agreement with 106 of tetrahedral cells. In 

this case, the relative error became 1.5, 1.3, 1.2 and 1.0% when increasing the liquid flow rate 

from 1 to 15 kg/m2s. In terms of frictional pressure drop as depicted in Fig. VII.5, the CFD 

predictions gave a relative error of 37.1, 29.3, 23.4, 20.0% and 1.6, 1.3, 1.1 and 1.0% for time 

steps of 10-2 and 10-5 s, respectively. It is worth noting that a further decrease in the time step may 

be responsible for some degree of numerical instability or likely disturbed behaviour without 

giving relevant and feasible calculations for either liquid holdup or pressure drop. Therefore, after 

the comparison between the influence of time step on the liquid holdup and pressure drop 

calculations, a value of 10-5 s gave time step independent results when using a finer mesh (106 of 

tetrahedral cells). 
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Figure VII.5. Effect of time step on two-phase pressure drop predictions at different liquid flow rates (106 of tetrahedral 

cells, G=0.5 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

 

VII.4.2. Influence of distributor geometry 

In most CFD simulations of trickle-beds reported in the open literature, the fluid distribution at the 

inlet was treated as perfectly uniform in the radial direction so that all fluid enters at a given 

superficial velocity either in the wall or at the column centre. However, real distributors have 

discrete orifices where liquid and gas enter the trickle-bed reactor, interspersed with closed areas 

where no fluid enters. Three liquid distributors are employed in the computational runs. First, a 

single-point entry is simulated (distributor D1) and it is located at the column axis in the top of the 

bed with 0.2 mm diameter. Second, a distributor was designed with 60 capillary tubes (0.12 mm 

internal diameter: distributor D2) which is used to replicate the distributor in our pilot plant. A 

similar configuration with 42 capillary tubes was previously used by Pintar et al. (1997) who 

found this configuration to be appropriate for maintaining the flux of both phases approximately 

uniform over the cross-sectional area. Finally, a perfectly uniform distributor (D3) was used to 

simulate the ideal case in where the fluids were allowed to enter the column at constant velocity 

using the total available entrance area. 

In Fig. VII.6, the time averaged CFD liquid holdup predictions were plotted at different relative 

axial positions (z*=z/L) for the single-point, 60-hole and uniform distributor at G=0.3 kg/m2s and 

P=30 bar. The CFD simulations performed with the lowest liquid flow rate (L=2 kg/m2s) showed 

the prominent effect of the distributor geometry in multiphase flow distribution as depicted at 

z*=1/4 with D1 distributor. It can be seen that the liquid phase tended to agglomerate 

predominantly at one side of the wall and then decreased significantly to the opposite side. With 

respect to the mean value of liquid holdup the maxima and minima values were (4.1, -2.6), (2.6, -
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4.5), (3.7, -3.0), (5.5, -8.4)% for z*= ¼,  ½, ¾ and 1 with the single-point distributor (D1), 

respectively. 
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Figure VII.6. Time averaged liquid holdup profiles with different liquid distributors at different bed coordinates (time 

step = 10-5 s, 106 of tetrahedral cells, G=0.3 kg/m2s, P=30 bar, d=2 mm) 

 
The absolute values (maxima, minima) for the liquid holdup predictions at L=2 kg/m2s with {D1, 

D2, D3} distributors were {(0.126, 0.118), (0.126, 0.123), (0.127, 0.123)} at z*= ¼. At  z*=½: 

{(0.128, 0.119), (0.128, 0.123), (0.127, 0.124)}; at z*=¾: {(0.129, 0.121), (0.127, 0.120), (0.126, 

0.122)}; and at z*=1: {(0.128, 0.111), (0.129,  0.117), (0.128, 0.119)}. As one can conclude, the 
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liquid flow distribution degrades as one moves along the packed bed being this fact supported by 

the increasing difference between maxima and minima liquid holdup values. The oscillatory 

behaviour may be attributed to the local effects near the catalyst particle surface which produces 

likely the wall effect phenomena or channelling as observed experimentally using high-resolution 

gamma ray tomography (Schubert et al., 2008). Gamma ray computed tomography is known to be 

better suited when high radiation energy is needed in comparison with magnetic resonance 

imaging, e.g. in the case of large reactor diameters, dense packing and in the case of steel walls 

and steel facilities for pressurized operation. Schubert et al. (2008) identified the above fact and 

claimed that the dynamic liquid saturation distribution indicates the development of liquid 

channels and regions which are completely separated from the flowing liquid with a glass packing. 

Moreover, the number and the dimension of the liquid channels increase with increasing liquid 

flow rate. The influence of distributor geometry on the maldistribution of the dynamic liquid 

holdup was analyzed for a spray nozzle producing a uniform initial distribution and a point source 

distributor producing a central liquid stream in both glass bead bed and porous catalyst bed. The 

experimental observations were similar to those advanced theoretically with the Eulerian 

predictions shown in Fig. VII.6.  

Fig. VII.7 shows an instantaneous snapshot of liquid holdup taken at the two axial planes depicted 

in Fig. VII.1.  

 

Figure VII.7. Instantaneous snapshot of liquid holdup taken at two axial planes (Fig. VII.1) and two catalyst layers(time 

step = 10-5 s, 106 of tetrahedral cells, L=2 kg/m2s, G=0.3 kg/m2s, P=30 bar, d=2 mm, D2 distributor) 
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According to Fig. VII.7 it was possible to identify qualitatively the 3D distribution of liquid phase 

in the packed bed. At L=2 kg/m2s and P=30 bar, one can observe that the higher liquid holdup 

values were monitored on the catalyst surface, as expected. Indeed, it was also confirmed the 

difference between the maxima and minima values attained at the lowest liquid flow rate in the 

range 0.18-0.22. Concerning the 60-hole distributor (D2), these values were (1.0, -1.6), (2.6, -4.5), 

(3.7, -3.0), (5.5, -8.2)% while with D3 distributor were (1.1, -1.1), (1.7, -2.2), (2.5, -3.2), (4.5, -

5.8)% for z*= ¼,  ½, ¾ and 1, respectively. From these time averaged values, it can be pointed out 

that an ideal distributor (D3) did not differ too much from the 60-hole distributor (D2) whereas the 

CFD simulations performed with the single-point distributor (D1) showed strongly radial profiles 

in terms of liquid holdup.  

Increasing the liquid flow rate up to L=10 kg/m2s, Fig. VII.6 also displays the radial profiles of 

liquid holdup obtained with different distributors at G=0.3 kg/m2s and P=30 bar. According to this 

time averaged liquid holdup values, it is clear a preferential and persistent behaviour of liquid flow 

through the trickle-bed reactor. The higher values were observed at the reactor centre which 

demonstrates likely the Poiseuille flow. It seems that an increase of liquid flow rate up to 10 

kg/m2s plays a dominant role over the distributor geometry even for D1 distributor. Moreover, this 

behaviour remains at different axial positions. It should be also stressed that we are on the 

boundary of trickling flow regime so that a further increase on either gas or liquid flow rates may 

shift the hydrodynamic regime towards the pulsing flow. As we are concerned about the effect of 

gas-liquid flow rates on the trickling flow, the remaining of the discussion is only applicable in 

those operating conditions. The maxima and minima values for the radial liquid holdup values 

were (6.5, -7.0), (7.6, -12.3), (10.5, -14.1), (13.9, -14.0) for z*= ¼,  ½, ¾ and 1 with the single-

point distributor (D1). These values were very similar to those obtained with the ideal distributor 

(D3): (7.0, -8.9), (5.2, -13.2), (13.1, -14.8), (14.2, -13.2). Therefore, it seems that the distributor 

geometry plays a major effect on hydrodynamics at lower interaction regimes (L=2 kg/m2s) while 

the liquid flow rate control the multiphase flow radial distribution at higher interaction regimes 

(L=10 kg/m2s). The absolute values (maxima, minima) for the liquid holdup predictions at L=10 

kg/m2s with {D1, D2, D3} distributors were {(0.215, 0.188), (0.218, 0.183), (0.216, 0.184)} at z*= 

¼. At  z*=½: {(0.220, 0.179), (0.222, 0.182), (0.220, 0.177)}; at z*=¾: {(0.230, 0.179), (0.231, 

0.180), (0.229, 0.172)}; and at z*=1: {(0.241, 0.182), (0.243,  0.180), (0.237, 0.180)}. 

At L=2 kg/m2s, the time averaged liquid holdup predictions were plotted in Fig. VII.8 while the 

CFD calculations performed at L=10 kg/m2s are shown in Fig. VII.9 both at G=0.3 kg/m2s and 

P=30 bar.  
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Figure VII.8. Time averaged liquid holdup profiles at L=2 kg/m2s with different liquid distributors (time step = 10-5 s, 

106 of tetrahedral cells, G=0.3 kg/m2s, P=30 bar, d=2 mm) 

 

 

α 
L 

z / m

0.0 0.2 0.4 0.6 0.8 1.0
0.14

0.16

0.18

0.20

0.22

D1
D2
D3

 

Figure VII.9. Time averaged liquid holdup profiles at L=10 kg/m2s with different liquid distributors (time step = 10-5 s, 

106 of tetrahedral cells, G=0.3 kg/m2s, P=30 bar, d=2 mm) 

 

As it can be seen, there is no significant qualitative difference between these two axial liquid 

holdup profiles with different distributors at different liquid flow rates. The main difference 

detected was in the magnitude of maxima and minima values attained with the quantitative 

comparison of liquid holdup. In fact, the maxima and minima values obtained at L=2 kg/m2s were 

±15% while at L=10 kg/m2s were ±7%. Once more, the distributor geometry seems to have no 

effect on the axial liquid flow distribution but only the liquid flow rate can affect considerably the 

intensity of liquid holdup spots at P=30 bar.  

 

VII.4.3. Effect of liquid flow rate 

At a constant gas flow rate (G=0.3 kg/m2s), Fig. VII.10 shows the time averaged radial profiles for 

the liquid holdup predictions at different axial positions and at different liquid flow rates with the 
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60-hole distributor. At the lowest liquid flow rate (L=2 kg/m2s), it can be seen that the radial liquid 

distribution began with approximately a flat profile and suffered some degree of perturbation as 

one moves along the packed bed. One should also compare the level of the higher and lower liquid 

holdup traces.  
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Figure VII.10. Time averaged liquid holdup profiles as a function of liquid flow rate at different bed coordinates and 

operating pressures (time step = 10-5 s, 106 of tetrahedral cells, G=0.3 kg/m2s, d=2 mm, D2 distributor) 

 

For a uniform distribution, the liquid holdup from the left-hand side and the right-hand side of 

radial coordinate should be at the same level. However, the maxima and minima liquid holdup 
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values attained with the lowest liquid flow rate were (1.0, -1.6), (1.7, -2.9), (2.5, -5.0), (5.7, -6.4)% 

for z*= ¼,  ½, ¾ and 1 at P=30 bar. These values were even higher with the highest liquid flow 

rate: (7.5, -9.4), (10.1, -10.0), (14.3, -10.8), (17.1, -13.3)% for the equivalent axial positions. The 

absolute values (maxima, minima) for the liquid holdup predictions at L=2 kg/m2s and P={1, 

30}bar were {(0.184, 0.176), (0.126, 0.123)} at z*= ¼. At z*=½: {(0.190, 0.175), (0.128, 0.122)}; 

at z*=¾: {(0.191, 0.172), (0.127, 0.118)}; and at z*=1: {(0.197, 0.167), (0.131,  0.116)}. Again, it 

was confirmed that the higher liquid holdup values were found in the column centre. Therefore, 

the liquid flow rate has a propensity effect on the hydrodynamics at higher values but it can also be 

stated that is not sufficient to improve the liquid distribution by itself. Regarding the time averaged 

profiles, Fig. VII.11 displays the axial liquid holdup profiles with different liquid flow rates with 

D2 distributor at G=0.3 kg/m2s and P=30 bar.  
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Figure VII.11. Time averaged liquid holdup profiles at different liquid flow rates (time step = 10-5 s, 106 of tetrahedral 

cells, G=0.3 kg/m2s, P=30 bar, d=2 mm, D2 distributor) 

 

As already advanced for the explanation of the influence of liquid distributor, the axial liquid 

distribution did not show a tendentious behaviour across the packed bed. Indeed, the only 

distinction detected was related to the smooth liquid holdup profile exhibited at the highest liquid 

flow rate (Kundu et al., 2001). The absolute values (maxima, minima) for the liquid holdup 

predictions at L=2 kg/m2s and P={1, 30}bar were {(0.282, 0.234), (0.218, 0.183)} at z*= ¼. At 

z*=½: {(0.289, 0.224), (0.222, 0.182)}; at z*=¾: {(0.300, 0.223), (0.231, 0.180)}; and at z*=1: 

{(0.327, 0.225), (0.243,  0.180)}. The increase of liquid flow rate decreased the maxima/minima 

liquid holdup values from (14.7, -11.2)% with L=2 kg/m2s to (5.2, -4.7)% with L=10 kg/m2s. 

Time averaged profiles for two-phase pressure predictions are shown in Fig. VII.12 at G=0.3 

kg/m2s and P=30 bar. According to these radial profiles, it was found that pressure drop was 

higher at the TBR centre mainly with the highest simulated liquid flow rate (L=10 kg/m2s). While 

the frictional pressure drop maxima/minima were about 2-3% at L=2 kg/m2s, these values were 

shifted up to 11% at L=10 kg/m2s. In fact, the computed results were (9.0, -3.6), (10.3, -4.8), (11.1, 
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-5.5)% for z*= ¼,  ½, ¾, respectively. Therefore, the effect of liquid flow rate on radial pressure 

drop profiles was more pronounced if the reactor is operated under higher interaction liquid flow 

regimes. In what concerns the axial pressure field, Fig. VII.13 shows a contour map of relative 

pressure values in two axial planes. As one can observe, with 13 catalyst layers the pressure 

decreased from 19000 to 11000 Pa at L=10 kg/m2s, G=0.3 kg/m2s and P=30 bar, as validated 

accordingly in Fig. VII.3. 
   L=2 kg/m2s     L=10 kg/m2s 
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Figure VII.12. Time averaged two-phase pressure profiles as a function of liquid flow rate at different bed coordinates 

and operating pressures (time step = 10-5 s, 106 of tetrahedral cells, G=0.3 kg/m2s, d=2 mm, D2 distributor) 
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Figure VII.13. Instantaneous snapshot of pressure field taken at two axial planes (Fig. VII.1) and two catalyst 

layers(time step = 10-5 s, 106 of tetrahedral cells, L=10 kg/m2s, G=0.3 kg/m2s, P=30 bar, d=2 mm, D2 distributor) 

 

VII.4.4. Effect of gas flow rate 

In Fig. VII.14 it was plotted the time averaged liquid holdup predictions at a constant liquid flow 

rate (L=5 kg/m2s) with D2 distributor at different axial positions. At the lowest gas flow rate 

(G=0.1 kg/m2s) and P=30 bar, the maxima/minima liquid holdup values were (3.3, -3.4), (5.0, -

3.4), (8.5, -9.5), (12.2, -11.1)% for z*= ¼,  ½, ¾ and 1, respectively. The absolute values (maxima, 

minima) for the liquid holdup predictions at G=0.1 kg/m2s and P={1, 30}bar were {(0.248, 0.228), 

(0.171, 0.160)} at z*= ¼. At  z*=½: {(0.255, 0.228), (0.174, 0.160)}; at z*=¾: {(0.262, 0.215), 

(0.180, 0.150)}; and at z*=1: {(0.272, 0.206), (0.186,  0.147)}. As one can conclude, these values 

are increasing along the packed which degrade considerably the liquid distribution. Moreover, the 

computed profile attained for z*=3/4 and 1 illustrated a remarkable degree of inhomogeneity of 

radial liquid distribution. Increasing the gas flow rate up to 0.7 kg/m2s, the CFD simulations of 

radial liquid holdup profiles are shown equally in Fig. VII.14. The increase of gas flow rate was 

found to be responsible for the enlargement of maxima/minima liquid holdup values with respect 

to the mean value. In fact, at G=0.7 kg/m2s and P=30 bar, these values were (9.2, -13.5), (10.4, -

13.6), (13.7, -13.6), (13.8, -13.7) for z*= ¼,  ½, ¾ and 1, respectively. The absolute values 

(maxima, minima) for the liquid holdup predictions at G=0.7 kg/m2s and P={1, 30}bar were 

{(0.162, 0.135), (0.120, 0.095)} at z*= ¼. At z*=½: {(0.163, 0.135), (0.121, 0.095)}; at z*=¾: 

{(0.162, 0.132), (0.125, 0.096)}; and at z*=1: {(0.165, 0.132), (0.125,  0.096)}. 
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Figure VII.14. Time averaged liquid holdup profiles as a function of gas flow rate at different bed coordinates and 

operating pressures (time step = 10-5 s, 106 of tetrahedral cells, L=5 kg/m2s, d=2 mm, D2 distributor) 

 

Time averaged liquid holdup profiles are shown in Fig. VII.15 at L=15 kg/m2s and P=30 bar with 

D2 distributor. As one can observe, the increase of gas flow rate was also found to smooth the 

axial liquid distribution as the liquid flow rate did. However, the increase of 5 times of liquid flow 

rate from L=2 to 10 kg/m2s did not have the extensive and sizeable effect as the increase of 7 times 

on the gas flow rate from G=0.1 to 0.7 kg/m2s.  
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Figure VII.15. Time averaged liquid holdup profiles at different gas flow rates (time step = 10-5 s, 106 of tetrahedral 

cells, L=5 kg/m2s, P=30 bar, d=2 mm, D2 distributor) 

 

As the liquid and gas phase tend to flow an uneven route across the packed bed, the intensification 

of gas flow into the liquid-solid system smoothens the liquid distribution. An increase in gas flow 

rate is well-known to decrease the wall flow so that an increase in liquid flow and/or gas 

throughputs leading also to the increase of two-phase pressure drop may improve substantially to 

better liquid distribution. In fact, the maxima/minima values for the axial liquid holdup values 

were (5.7, -5.9) and (0.9, -0.8)% for G=0.1 and 0.7 kg/m2s, respectively. Notwithstanding a better 

radial liquid distribution can be achieved with higher gas flow rates, the instantaneous snapshot of 

velocity field for the gas phase is still exhibiting a heterogeneous behaviour. This local effect is the 

result of interstitial phenomena as depicted in the velocity vector plot in Fig. VII.16 at G=0.7 

kg/m2s and P=30 bar.  

Concomitantly, Fig. VII.17 also supported this fact with the illustration of gas streamlines 

coloured by the respective Reynolds number at the same operating conditions. As it can be seen, 

the velocity spots are observed predominantly near the catalyst particles and at the wall. The map 

of Reynolds number shown in Fig. VII.17 demonstrated that one can feature values up to 2500 so 

that the k-ε dispersed turbulence model can be regarded as a rational choice to capture the 

turbulence at the higher interaction regimes. 
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Figure VII.16. Gas velocity vector plot taken at two axial planes shown in Fig. VII.1 (time step = 10-5 s, 106 of 

tetrahedral cells, L=5 kg/m2s, G=0.7 kg/m2s, P=30 bar, d=2 mm, D2 distributor) 

 

 

Figure VII.17. Instantaneous gas streamlines coloured by Reynolds number taken at two axial planes shown in Fig. 

VII.1 (time step = 10-5 s, 106 of tetrahedral cells, L=5 kg/m2s, G=0.7 kg/m2s, P=30 bar, d=2 mm, D2 distributor) 

 

Time averaged frictional pressure profiles attained with different gas flow rates are shown in Fig. 

VII.18 at L=5 kg/m2s and P=30 bar. As it can be seen, the gas flow rate was found to have a 

greater impact on the liquid distribution with the lowest gas flow rate (G=0.1 kg/m2s). The 

maxima/minima values computed for the two-phase pressure drop at the lowest gas flow rate were 
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(8.1, -6.5), (10.5, -8.2), (13.8, -7.3) for z*= ¼,  ½ and ¾ , respectively. For the highest simulated 

gas flow rate (G=0.7 kg/m2s), these values were significantly lower: (1.2, -0.8), (1.6, -1.2), (2.0, -

1.1)% as one moves across the packed bed. Therefore, whereas the liquid flow rate seems to have 

a predominant effect on radial pressure drop profiles at the higher values, the gas flow rates have it 

major outcome at lower regimes. 
 

   G=0.1 kg/m2s     G=0.7 kg/m2s 

-2 -1 0 1 2

z*
 =

 1
/4

P 
/ P

a

1200

1400

1600

1800

2000

2200

-2 -1 0 1 2
10000

10500

11000

11500

12000

12500

13000

13500

14000

 

-2 -1 0 1 2

z*
 =

 1
/2

P 
/ P

a

800

900

1000

1100

1200

1300

1400

1500

-2 -1 0 1 2
6500

7000

7500

8000

8500

9000

9500

 

-2 -1 0 1 2

z*
 =

 3
/4

P 
/ P

a

300

400

500

600

700

800

-2 -1 0 1 2
3400

3600

3800

4000

4200

4400

4600

4800

 

r / cm

-2 -1 0 1 2

z*
 =

 1

P 
/ P

a

-15

-10

-5

0

5

10

15

20

r / cm

-2 -1 0 1 2
-15

-10

-5

0

5

10

15

20

P = 1 bar
P = 30 bar

 
Figure VII.18. Time averaged two-phase pressure profiles as a function of gas flow rate at different bed coordinates and 

operating pressures (time step = 10-5 s, 106 of tetrahedral cells, L=5 kg/m2s, d=2 mm, D2 distributor) 

 

 179



CHAPTER VII. CFD MODELLING OF MULTIPHASE FLOW DISTRIBUTION  IN TRICKLE BEDS 
 

VII.4.5. Effect of operating pressure 

As the packed bed flow not only depends on liquid and gas superficial velocities as well as on the 

physico-chemical properties and on the ratio of column diameter to particle diameter, one should 

also pay attention whether the TBR is pressurized or not. Hence, Fig. VII.10 and VII.12 plot also 

the effect of operating pressure on both radial liquid holdup and two-pressure profiles at G=0.3 

kg/m2s for two different liquid flow rates and operating pressures. When the operation is simulated 

at atmospheric conditions (P=1 bar), the liquid holdup values were found to be substantially higher 

than those obtained with a pressurized trickle-bed reactor (P=30 bar). At the lowest liquid flow 

rate (L=2 kg/m2s), the maxima/minima values for liquid holdup predictions increased from (1.0, -

1.6), (1.7, -2.9), (2.5, -5.0), (5.7, -6.4)% at P=30 bar to (1.9, -2.3), (4.2, -4.2), (4.8, -5.7), (7.9, -

8.4)% at P=1 bar for z*= ¼,  ½, ¾ and 1, respectively. At L=10 kg/m2s, the shift was from (7.5, -

9.4), (10.1, -10.0), (14.3, -10.8), (17.1, -13.3)% at P=30 bar to (8.3, -9.9), (12.6, -12.7), (15.5, -

14.2), (25.5, -13.5)% at P=1 bar. Generally, the higher operating pressure the smoother radial 

liquid holdup profile. Moreover, at a constant gas and liquid flow rate the increase of operating 

pressure seems to give a better performance with respect to the radial liquid distribution. For this 

reason, the irregularities verified at lower interaction regimes can be further eliminated or at least 

dissipated with the respective increase of operating pressure.  

Time averaged liquid holdup and two-phase pressure profiles plotted in Fig. VII.14 and VII.18 

also demonstrated the effect of operating pressure for both hydrodynamic parameters. At the 

lowest gas flow rate (G=0.1 kg/m2s), the maxima/minima liquid holdup values shifted from (3.3, -

3.4), (5.0, -3.4), (8.5, -9.5), (12.2, -11.1)% at P=30 bar to (3.3, -5.2), (6.3, -5.2), (8.9, -10.7), (13.3, 

-14.3)% for z*= ¼,  ½, ¾ and 1, respectively. Therefore, the radial liquid distribution is 

smoothened as long as the operating pressure is increased. This fact can be also supported at either 

higher gas flow rates (G=0.7 kg/m2s) or even in terms of radial two-phase pressure drop profiles 

computed across the trickle-bed reactor. 

 

VII.5. Conclusions 

The improper liquid distribution has been found as one of the major reasons for non-optimal use of 

the catalyst, rapid deactivation and thermal instability in trickle-bed reactors. Despite the work 

carried out so far, many questions still remain unresolved, particularly concerning the evaluation 

of local phenomena at the catalyst scale that may be responsible for the integral behaviour of an 

entire industrial TBR unit. Bearing in mind that the reliable design of TBR is still concerned with 

trustworthy experimental data on the factors promoting uniform liquid distribution, a TBR was 

modelled by means of an Eulerian multiphase model at high-pressure. 
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First, the CFD model was validated under trickling flow regime and its predictions were compared 

against the experimental liquid holdup and two-phase pressure drop data. The model was 

optimized in terms of mesh size and time step giving reasonable predictions for both 

hydrodynamic parameters. Afterwards, the influence of liquid distributor at the top of the bed was 

evaluated through the comparison between a single-point entry, 60-hole and perfectly uniform 

distributors. The 60-hole distributor was found to be a good compromise if one is concerned on 

reactor performance since it allowed a better liquid distribution.  

Second, several computational runs were performed to investigate time averaged axial and radial 

profiles of liquid holdup and two-phase pressure drop. The liquid flow rate had more prominent 

effect on radial pressure drop at higher values. Alternatively, the gas flow rate had a pronounced 

influence at lower interaction regimes. The increase of operating pressure on multiphase flow 

distribution was found to smooth the radial profiles for both hydrodynamic parameters. 

 

VII.6. Nomenclature  

d    Particle nominal diameter, m 

G    Gas mass flux, kg/m2s 

k     k-ε model kinetic energy 

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

p    Pressure, bar 

r    Reactor radius, m 

R    Reactor radius, m 

ur     Superficial vector velocity, m/s 

z    Reactor axial coordinate, m  

 

Greek symbols 

αq    volume fraction of qth phase 

ε     k-ε model dissipation energy 

µq     viscosity of qth phase, Pa.s 

ρq    density of qth phase, kg/m3

Δp    total pressure drop, bar 

σk , σε    k-ε model parameters: 1.2, 1.0 

qτ     Shear stress tensor of qth phase, bar 

Subscripts 
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G    gas phase 

L    liquid phase 

q    qth phase 

S    solid phase 
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VIII. VOF Based Model for Multiphase Flow in High-

Pressure TBR: Optimization of Numerical Parameters1

Aiming to understand the effect of various parameters such as liquid velocity, surface tension, and 

wetting phenomena, a Volume-of-Fluid (VOF) model was developed to simulate the multiphase 

flow in a high-pressure trickle-bed reactor (TBR). As the accuracy of the simulation is largely 

dependent on mesh density, different mesh sizes were compared for the hydrodynamic validation 

of this multiphase flow model. Several model solution parameters comprising different time steps, 

convergence criteria and discretization schemes were examined to establish model parametric 

independency results similarly to the previous analysis carried out within the Eulerian approach. 

High-order differencing schemes were found to agree better with the experimental data from the 

literature given that their formulation includes inherently the minimization of artificial numerical 

dissipation. The optimum values for the numerical solution parameters were then used to evaluate 

the hydrodynamic predictions at high-pressure demonstrating the significant influence of the gas 

flow rate mainly on liquid holdup rather than on two-phase pressure drop and exhibiting hysteresis 

in both hydrodynamic parameters. Afterwards, the VOF model was applied to evaluate successive 

radial planes of liquid volume fraction at different packed bed cross-sections.  

 

VIII.1. Introduction 

Trickle-bed reactors are catalytic fixed-bed tubular devices in which a gas-liquid stream flows 

vertically downwards. Industrial applications arise traditionally in petrochemical and chemical 

industries, in biochemical and electrochemical processing and more recently in waste gas and 

wastewater treatment. Well-known hydrodynamic issues are often related with partial particle-

scale external wetting also referred as wetting efficiency that can cause inefficient catalyst 

utilization and poor heat and mass transfer rates.  This hydrodynamic parameter is calculated from 

the percentage of external wetted surface area divided by the total solid particles surface area, and 

it is critical in setting the proper reactor operating specifications in order to maximize and promote 

higher conversion rates (Al-Dahhan et al., 1997; Dudukovic et al., 2002). In case of exothermic 

reactions, partial wetting can indeed lead to poor catalyst wetting effectiveness factors and poor 

heat withdrawal. In order to ensure full coverage with a continuous liquid film of all pellets in the 

bed, it is necessary to guarantee a sufficient gas and liquid feeding. 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009) 

 185



CHAPTER VIII. VOF BASED MODEL FOR MULTIPHASE FLOW IN HIGH-PRESSURE TBR: 
OPTIMIZATION OF NUMERICAL PARAMETERS 

 

The scaleup/down and design of laboratorial and commercial trickle-bed reactors depends heavily 

on the precise knowledge of two-phase pressure drop, liquid holdup and the catalyst wetting 

efficiency as a function of operating conditions and the mathematical formulation derived is 

frequently system specific and it is feasible only in a particular range of operation in which the 

correlation was obtained. Recently, computational fluid dynamics (CFD) appeared as a promising 

tool to understand the complex hydrodynamics in more detail requiring closure laws for the 

interphase coupling forces in the momentum balance equation based on the Eulerian–Eulerian 

approach (Jiang et al., 2002; Gunjal et al., 2005). However, this mathematical treatment is 

incapable to capture the wetting features as well as the so-called hysteresis in the operation of 

trickle beds reviewed by Nigam and Larachi (2005) and Saroha and Indraneel (2008). 

The simulation of gas-liquid-solid interfaces of a multiphase flow is still under investigation 

presenting a computational challenge in CFD despite the advancements already achieved. Known 

issues are related with the exact location of the interface, calculation of surface tension and the 

high dissimilarity of fluid properties. For a water/air system the variation can be three orders of 

magnitude and the numerical method should be capable of maintaining a sharp interface without 

stretched it over a couple of cells due to numerical diffusion.  

Therefore, it is of paramount importance to formulate detailed CFD model that can capture the 

microscale interaction processes between both surfaces. Our attempt is to supply a deep 

understanding of fluid hydrodynamics parameters through the development of a Volume of Fluid 

based computational fluid model for simulating the gas-liquid surface. There are two different 

classes of methods to deal with the surface modelling techniques: tracking and capturing methods. 

Front tracking, boundary integral, moving mesh and particle schemes are tracking methods 

because they are of Lagrangian type, in where the interface position is identified by a particle or a 

polygon called a Lagrangian marker. Alternatively, level set, continuum advection, volume 

tracking and phase field method schemes are capturing type methods (Kothe, 1998).   

Several literature studies on wetting dynamics considered high velocities in the range 1-6 m/s 

(Crooks et al., 2001; Scheller and Bousfield, 1995; Ted et al., 1997), however in trickle bed 

reactors, the liquid phase interacts with catalyst solid surface with substantially lower velocities. In 

the theoretical field, recent works were published on the numerical simulation of gas-liquid flows 

by means of VOF model. Yuan et al. (2008) applied a VOF method based on piecewise linear 

interface construction (PLIC) to track liquid-vapor interface in the simulation of natural 

convection film boiling and forced convection film boiling on a sphere at saturated conditions. 

Glatzel et al. (2008) evaluated the performance of commercial CFD codes based on VOF method 

when applied as engineering tool for microfluidic applications. It was studied surface tension 
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effects and flow patterning of two fluids in terms of computational speed and comparison with 

experimental data. Gopala and van Wachem (2008) analyzed a number of numerical methods to 

track interfaces in multiphase flows including the level-set method, the marker particle method and 

the front tracking method. The authors concluded that VOF method has an advantage of being 

conceptually simple, reasonably accurate and phenomena such as interface breakup and 

coalescence are inherently included. Morel (2007) presented alternative modelling approaches for 

strongly non-homogeneous two-phase flows in where the flow domain is divided into a bubbly 

region and a droplet region separated by a free surface. The closure problem is discussed for each 

model and the three models are compared according to several criteria. Heggemann et al. (2007) 

modelled the fluid flow in liquid distributors and the validation was accomplished in the uniform 

distribution of liquid above structured packings for its performance prediction. 

None of the VOF models published in the literature were used to simulate the trickling flow or 

even the spraying and pulsing hydrodynamic regimes in TBRs. Taking into account the large 

number of studies that were carried out for measurement of pressure drop and liquid holdup in 

trickle beds (Al-Dahhan et al., 1997; Sáez and Carbonell, 1985; Herskowitz and Smith, 1983) a 

limited number can only be found which addressed the effect of prewetted and non-prewetted bed 

conditions on two-phase pressure drop and liquid holdup including the respective hysteresis. Kan 

and Greenfield explained the hysteresis phenomenon based on the formation of liquid bridges and 

surface tension (Kan and Greenfield, 1978;  Kan and Greenfield, 1979). Christensen et al. (1986), 

Levec et al. (1986) and Levec et al. (1988) observed that the radial distribution of the liquid in the 

bed changes depending on whether the liquid flow rate increases or decreases and stated it as a 

cause for hysteresis. Rode et al. (1994) have also reported multiple hydrodynamics states in 

various flow regimes of trickle-bed reactors. Ravindra et al. (1997) presented experimental data on 

hysteresis while Melli and Scriven (1991) studied hysteresis theoretically in a two-dimensional 

bed. Recently, Gunjal et al. (2005) modelled the hysteresis in pressure drop and liquid holdup by 

means of an Eulerian framework.  

The present VOF model was undertaken to simulate the wetting phenomena in high-pressure (30 

bar) trickle-bed reactors providing a better understanding of their liquid distribution and 

hysteresis. The hydrodynamic validation is accomplished in terms of pressure drop and liquid 

holdup experimental data taken from the open literature and afterwards, computational predictions 

for the wetting efficiency will be investigated at different liquid flow rates.  
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VIII.2. CFD Modelling 

VIII.2.1. Volume Fraction Equation  

The VOF method was used to compute phase volume fractions as well as velocity field maps. The 

multiphase flow is assumed to be vertical downward and incompressible, with the mathematical 

description for the flow of a viscous fluid through a three dimensional catalytic bed based on a 

single set of momentum equations and tracking the volume fraction of each of the fluids 

throughout the domain. Taking into account that packed bed flow is often described in transient 

mode, so did the present VOF formulation was used to compute a time-dependent solution. The 

volume fraction of the phase q in the computational cell is specified for each one of the phases as 

αq. In each control volume, the volume fractions of all phases sum to unity and the fields for all 

variables and properties are shared by the phases and represent volume-averaged values, as long as 

the volume fraction of each of the phases is known at each location. Thus the variables and 

properties in any given cell are either purely representative of one of the phases, or representative 

of a mixture of the phases, depending upon the volume fraction values: if the qth fluid's volume 

fraction in the cell is denoted as αq, then the following three conditions are possible: αq = 0: the cell 

is empty of the qth fluid; αq = 1: the cell is full of the qth fluid; 0 < αq < 1: the cell contains the 

interface between the both fluid phases. Based on the local value of αq, the appropriate properties 

and variables will be assigned to each control volume within the domain (see Appendix A, section 

A.1).  

The tracking of the interface between the phases is accomplished by the solution of a continuity 

equation for the volume fraction of one (or more) of the phases. For the qth phase, this equation has 

the following form of Equation (VIII.1).  
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where is the mass transfer from phase q to phase p and is the mass transfer from phase p 

to phase q. The source term on the right-hand side of Equation (VIII.1), S

pqm& qpm&

q, is used to compute the 

mass source for each phase. The primary-phase volume fraction was computed based on the 

following constraint:  
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VIII.2.2. Momentum Equation  

A single momentum equation is solved throughout the computational domain, and the resulting 

velocity field is shared among the phases. The momentum equation, shown below in Equation 

(VIII.3), is dependent on the volume fractions of all phases through the mixture properties ρm and 

μm.  
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One limitation of the shared-fields approximation is that in cases where large velocity differences 

exist between the phases, the accuracy of the velocities computed near the interface can be 

adversely affected. A viscosity ratio more than 103 may also lead to convergence difficulties so 

that the compressive interface capturing scheme for arbitrary meshes was evaluated throughout the 

TBR modelling.  

 

VIII.2.3. Surface Tension 

The VOF model includes the effects of surface tension along the interface between each pair of 

phases and the additional specification of the contact angles between the phases and the walls 

(Gunjal et al., 2005). Surface tension arises because of attractive forces between molecules in a 

fluid. At the surface between air and water, the net force is radially inward, and the combined 

effect of the radial components of force across the entire surface is to make the surface contract, 

thereby increasing the pressure on the concave side of the surface. The surface tension is a force, 

acting only at the surface that is required to maintain equilibrium in such instances. It acts to 

balance the radially inward inter-molecular attractive force with the radially outward pressure 

gradient force across the surface. In regions where two fluids are separated, the surface tension 

acts to minimize free energy by decreasing the area of the interface. The surface tension is 

modelled by means of the continuum surface force (CSF) model proposed by Brackbill et al. 

(1992). With this model, the addition of surface tension to the VOF calculation results in a source 

term in the momentum equation, volF
r

. In case of surface tension is constant along the surface and 

considering only the forces normal to the interface, the pressure drop across the surface depends 

upon the surface tension coefficient, σ, and the surface curvature as measured by two radii in 

orthogonal directions, R1 and R2, as expressed in Equation (VIII.4). 
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where p1 and p2 are the pressures in the two fluids on either side of the interface. In the formulation 

of the CSF model, the surface curvature is computed from local gradients in the surface normal at 
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the interface. Let n be the surface normal, defined in Equation (VIII.5) as the gradient of αq, the 

volume fraction of the qth phase.  

qn α∇=           (VIII.5) 

The curvature, κ , is defined in Equation (VIII.6) in terms of the divergence of the unit normal 

(Brackbill et al., 1992), :  n̂

n̂⋅∇=κ           (VIII.6) 

where 

n
nn =ˆ            (VIII.7) 

The surface tension is expressed in terms of the pressure jump across the surface. The force at the 

surface can be expressed as a volume force using the divergence theorem. It is this volume force 

that is the source term, which is added to the momentum equation and has the following form:  
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Equation (VIII.8) allows for a smooth superposition of forces near cells where more than two 

phases are present. If only two phases are present in a cell, then κq = -κp and pq αα −∇=∇ , this 

equation simplifies to Equation (VIII.9). 
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where ρ is the volume-averaged density computed using equation: ∑= qqραρ . The importance 

of surface tension effects is determined based on the value of two dimensionless quantities: the 

Reynolds number, Re, and the capillary number, Ca; or the Reynolds number, Re, and the Weber 

number, We. Surface tension effects can be neglected if Ca >> 1 or We >> 1. For Re << 1, the 

quantity of interest is the capillary number given by Equation (VIII.10).  

σ
μuCa =           (VIII.10) 

and for Re >> 1, the quantity of interest is the Weber number as shown in Equation (VIII.11).  

σ
ρ 2LuWe =           (VIII.11) 
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VIII.2.4. Wall adhesion 

In order to specify the wall adhesion angle in conjunction with the surface tension model, VOF 

model taken from work done by Brackbill et al. (1992) was also investigated.  Rather than impose 

this boundary condition at the wall itself, the contact angle that the fluid is assumed to make with 

the wall is used to adjust the surface normal in cells near the wall. If θw is the contact angle at the 

wall, then the surface normal at the cell next to the wall is given by Equation (VIII.12). 

wwww tnn θθ sinˆcosˆˆ +=         (VIII.12) 

where and  are the unit vectors normal and tangential to the wall, respectively. The 

combination of this contact angle with the usually calculated surface normal one cell away from 

the wall determines the local curvature of the surface, and this curvature is used to adjust the body 

force term in the surface tension calculation.  

wn̂ wt̂

 

VIII.2.5. Turbulence modelling 

Trickle-beds are mostly operated at low interaction regimes so that the flow is often assumed 

laminar either at the reactor level or at the catalyst particle scale. However, several studies have 

looked at the transition to turbulence, the level of turbulence intensity in the void space, and the 

description of flow regimes in fixed bed flow being unfeasible to establish which Reynolds 

number values detach the laminar and turbulent flows as already described in Chapter VI, section 

VI.2. Therefore, since the Reynolds numbers range for the gas phase is wide (min: 10, max: 2500), 

k-ε model was applied for turbulence modelling (Elghobashi et al., 1984; FLUENT 6.1, 2005). 

The turbulence kinetic energy, k, and the turbulent energy dissipation, ε, are computed from 

Equations (VIII.13)-(VIII.14) in terms of mixture properties, ρm and μm, e.g., 
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and the production of turbulence kinetic energy, Gk,m, is computed from Equation (VIII.15). 

( )( ) m
T

mmmtmk uuuG rrr
∇∇+∇= :,, μ        (VIII.15) 

C1ε and C2ε are the constants of standard k-ε model whereas σk and σε are the turbulent Prandtl 

numbers for k and ε, respectively.  
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VIII.3. Numerical simulation 

Trickle-bed geometry, fluid properties, operating and boundary conditions 

The numerical methodologies including the integration, discretization,  linearization and algorithm 

followed by the CFD solver are described in Appendix A. The present case study encompasses a 

trickle-bed reactor that was designed using regular shape catalyst particles for multifluid Eulerian 

simulations as shown by the computational mesh of the catalytic bed in Fig. VI.1 (Chapter VI). 

The numerical solution parameters including operating conditions are given by Table VIII.1 as 

well as the discretization methods offered by FLUENT for VOF methodology, i. e., QUICK 

(Quadratic Upwind Interpolation for Convective Kinematics), GR (Geometric Reconstruction), 

CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes) and HRIC (High 

Resolution Interface Capturing) described in Appendix A, section A.4. 

Table VIII.1 – Numerical solution parameters used in the CFD simulation  

Grid 1000 mm (axial) × 50 mm (radial) 
Cell size 0.01 - 0.20 mm (tetrahedral and hexahedral) 

Particle diameter 2 mm (spheres) 
Time step 10-7 – 10-2 s  

Convergence criteria 10-6 – 10-3

Discretization method  QUICK, Geo-Reconstruct, CICSAM and HRIC 
Iterations ≈ 50,000 

Under-relaxation parameters VOF: 0.4 (pressure), 0.6 (velocity) 
Drag formulation Brackbill et al. (1992) 
Turbulence model k-ε model (Elghobashi  et al., 1983) 

 

Gas and liquid thermophysical properties used in the simulation are summarized in Table VIII.2. 

High-pressure operation was simulated at 30 bar total operating pressure with inflow gas (G = 0.1 

– 0.7 kg/m2s) and liquid (L = 1 – 15 kg/m2s) being distributed uniformly with given superficial 

velocity replicating a uniform distributor at the top of trickle-bed reactor. The boundary conditions 

were specified based on FLUENT documentation (FLUENT 6.1, 2005). Inlet turbulent kinetic 

energy (k) was estimated from turbulence intensity as expressed in Equation (VIII.16). 

2)(
2
3 uIk =           (VIII.16) 

where I is the turbulence intensity being given by Equation (VIII.17). 
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Inlet turbulent energy dissipation (ε) was estimated from the turbulent viscosity ratio as expressed 

by Equation (VIII.18). 
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where Cμ  is an empirical constant specified in the turbulence model (0.09).  
 

Table VIII.2 – Relevant thermophysical properties of gas and liquid phases 

 

Value (P = 30bar) Properties T1 = 25ºC T1 = 200ºC Units 

Liquid phase    
Viscosity 8.925×10-4 1.340×10-4 Pa.s 
Density 998.4 866.9 kg/m3

Surface tension 7.284×10-2 3.770×10-2 N.m 
Gas phase    

Viscosity 1.845×10-5 2.584×10-5 Pa.s 
Density 35.67 21.97 kg/m3

 

At 30 bar and 25 ºC, the inlet turbulent kinetic energy and inlet turbulent energy dissipation for the 

gas and liquid phases are given in Table VIII.3 and VIII.4.  

 
Table VIII.3 – Inlet boundary conditions for the gas phase: turbulent kinetic energy (kq) and turbulent energy dissipation 

(εq) at P=30 bar 

 

G (kg/m2s) kG  (mm2/s2) εG  (mm2/s3) 
0.1 0.2059 3.690×10-3

0.4 2.330 0.4723 
0.7 6.204 3.349 

 
Table VIII.4 – Inlet boundary conditions for the liquid phase: turbulent kinetic energy (kq) and turbulent energy 

dissipation (εq) at P=30 bar 

 

L (kg/m2s) kL  (mm2/s2) εL  (mm2/s3) 
1 3.952×10-2 7.637×10-5

8 1.504 0.1106 
15 4.518 0.9982 

Table VIII.5 systematizes the initial and boundary conditions used during the VOF simulations. 
Table VIII.5 – Initial and boundary conditions for the gas and liquid phases 

 

 t = 0 z = 0 
αG 0.25 0.25 
αL 0.15 0.15 

G / (kg/m2s) 0.1-0.7 0.1-0.7 
L / (kg/m2s) 1-15 1-15 

P / bar 10-40 10-40 
k / (m2/s2) 
ε / (m2/s3) see Tables VIII.3-4 

Computations are time dependent and were carried out until steady state conditions were reached. 

The time discretization methods are also described in section A.4 of Appendix A. Standard wall 

functions available in the commercial CFD solver were employed in the numerical simulations and 
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the reactor wall and catalyst surfaces are treated as no slip boundaries. Although FLUENT 

documentation recommends a range of 30-50 for the cell thickness (y+), in packed-bed flow it is 

almost impossible to meet the y+ criterion everywhere on the sphere surface so that this value 

computed by the CFD solver was always below 200. The calculations have been carried out on a 

Linux cluster based on AMD64 Dual-Core 2.2 GHz processor workstation.  

 

VIII.4. Results and Discussion 

VIII.4.1. Mesh size optimization 

The liquid holdup and pressure drop predicted by the CFD simulations are quantitatively 

compared with the literature experimental results (Nemec and Levec, 2005) for different mesh 

densities. In Fig. VIII.1 it is plotted the liquid holdup predictions as a function of liquid flow rate 

at P=30 bar and G=0.1 kg/m2s with different mesh resolutions. This criterion was based on the 

number of tetrahedral cells needed to achieve a grid independent solution. The routine procedure 

was as follows: at a given liquid flow rate, the flow domain was initialized for a fixed number of 

cells and after reaching the steady-state solution, the liquid holdup value was used to build the 

hydrodynamic profiles shown in Fig. VIII.1.  
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Figure VIII.1. Comparison of liquid holdup predictions as a function of liquid flow rate for different number of cells 

(G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

This procedure was replicated increasing the number of tetrahedral cells until the asymptotic value 

for liquid holdup was found. This iterative method is accomplished for different liquid flow rates 

in the range 0.5-15 kg/m2s. The coarsest mesh corresponds to about 2×105 of tetrahedral cells and 

the finest mesh had about one million of tetrahedral cells. The average cell size is in the range 
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0.01-0.2 mm that gives a spatial resolution less than d/20, for the finer meshes. It is worth noting 

that this cell size was determined after the gap imposition between the catalyst particles of 2 mm 

that is needed to prevent the loss of numerical accuracy but simultaneously it must not produce 

unexpected numerical diffusion errors arising in the grid generation. Furthermore, the wall 

functions available in the CFD solver were evaluated during grid optimization being selected 

standard wall functions throughout the TBR simulation at high-pressure. 

Several authors have simulated heat transfer phenomena in gas-solid packed beds. Nijemeisland 

and Dixon (2001) modelled the contact points between catalyst particles with common nodes on 

the surfaces so that the computational cells around these contact points used two nodes on either 

wall to define their volume. In our TBR mesh, this procedure created noteworthy skewed cells, 

which means that surfaces were much larger than others within the one tetrahedron. While in 

laminar flow simulations this fact did not distress convergence, for turbulent flow simulation the 

Reynolds stresses calculations were affected because the flow velocities in the contact points are 

significant higher. Therefore, the small gap corresponding to 2-3% of catalyst diameter had to be 

imposed in order to prevent numerical convergence issues with skewed tetrahedral cells. 

According to Fig. VIII.1, the numerical simulations performed at L=15 kg/m2s with the coarser 

meshes (2×105, 4×105) gave a relative error of 48.9 and 24.6%, while the finer meshes (8×105, 106) 

gave 7.4 and 2.7% of relative error, respectively. At L=1 kg/m2s, the relative errors for the 

computed liquid holdup results were 59.4, 34.4, 13.4 and 6.9%. Therefore, an optimum number of 

about 106 cells gave mesh-independent results with respect to liquid holdup. In Fig. VIII.2 it is 

shown the frictional pressure drop predictions as a function of liquid flow rate at high-pressure 

operation.  
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Figure VIII.2. Comparison of two-phase pressure drop predictions as a function of liquid flow rate for different number 

of cells (G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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At P=30 bar and L=15 kg/m2s, the relative errors obtained for the two-phase pressure drop were 

45.9, 27.1, 13.1 and 7.7% from the coarse to the fine meshes, respectively. If the operation is 

simulated at the lowest liquid flow rate (L=1 kg/m2s), the relative errors became 57.5, 34.6, 16.4 

and 8.4% for 2×105, 4×105, 8×105 and 106 of tetrahedral cells, respectively. As one can conclude, 

both hydrodynamic parameters are underpredicted if one uses coarse meshes and the same value 

for the number of tetrahedral cells were achieved for mesh-independent results with respect to both 

liquid holdup and pressure drop so that the finest mesh was used as the base case setting for 

subsequent parametric investigation of other VOF modelling parameters, as for the Euler-Euler 

model. 

VIII.4.2. Time step and convergence criterion 

Since the finest grid with about one million of tetrahedral cells gave mesh-independent results, this 

mesh was used for time step studies. A nominal time step in the range 0.01-0.001 s has often been 

used for gas-liquid flow in the Eulerian simulations for packed-bed flows (Jiang et al., 2002; 

Gunjal et al., 2005; Lopes and Quinta-Ferreira, 2007). However, with the VOF model during the 

grid optimization several fixed time step sizes were investigated. For the coarse grid, whatever 

time step was being used, the numerical accuracy was not always satisfactory. Alternatively, with 

the fine grid, times steps of 0.001 and 0.005 s gave very similar steady state results but neither 

0.005 s nor 0.001 s time steps produce the best accurate computed results close to the experimental 

values. Additionally, a time step of 0.001 s led to a slightly different transient behaviour being the 

multiphase flow profiles for either pressure drop or liquid holdup more stable in time with shorter 

time steps rather than with higher time steps. Following the earlier time step screening activities, 

its value was decreased from 10-3 s to 10-4 s and further to 10-5 s. In Fig. VIII.3 it was plotted the 

liquid holdup from the numerical simulations as a function of liquid flow rate for several time 

steps investigated with VOF multiphase model whereas the pressure drop simulations at P=30 bar 

are given in Fig. VIII.4 for the same tested time steps. Indeed, as long as the time step is decreased 

to 10-5 s, the hydrodynamic predictions were found to be in good agreement with experimental 

data. At G=0.1 kg/m2s and for the highest liquid flow rate simulated (L=15 kg/m2s), the relative 

errors obtained with time steps of 10-2, 10-3, 10-4 and 10-5 s were 60.9, 36.5, 10.0 and 2.7% for the 

liquid holdup computations (Fig. VIII.3), respectively. For the case of pressure drop calculations 

(Fig. VIII.4), the relative errors obtained between the computed and experimental results were 

larger than those attained with liquid holdup remaining at 61.4, 40.7, 15.1 and 7.7% for the 

corresponding time steps. The time step was also decreased to 10-6 and 10-7 s, but seemingly, this 

operation led to different dynamic behaviour being unbearable the achievement of numerical 

convergence and stable solution. In fact, a time step of about 10-7 s can be only useful in the first 

iterations to promote the numerical stabilization and depending regularly on the viscosity and 
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density ratios between the two fluid phases. Therefore, a time step of 10-5 s led to affordable 

hydrodynamic predictions for both liquid holdup and two-phase pressure drop at high-pressure 

being selected to generate time-step independent CFD results as already concluded within the 

Euler model analysis. 
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Figure VIII.3. Effect of time step (dt) on liquid holdup predictions as a function of liquid flow rate with the finest mesh 

(106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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Figure VIII.4. Effect of time step (dt) on two-phase pressure drop predictions as a function of liquid flow rate with the 

finest mesh (106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 

2005) 

One should bear in mind that the mesh size, time step and convergence criteria are deeply inter-

related. The present case that is concerned with the multiphase flow simulation in a packed bed is 

heavily characterized by the unsteady-state behaviour expressed directly in the computation of 

hydrodynamic parameters. Therefore, as the current VOF formulation was performed in transient 
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mode, the CFD model predicted cell properties one step at a time and converges them by an 

iterative procedure until a specified convergence criterion is satisfied. As long as the time step 

becomes smaller, the predicted change of liquid holdup (or pressure drop) in a specific cell 

between two consecutive temporal iterations may become smaller. The selection of time step too 

small as 10-7 s or even less had a negative impact on the simulation accuracy and the relative error 

became higher. However, if the time step is too large as 10-2 s, it gave at all less accurate 

hydrodynamic results. The calculation of a cell property between two temporal iterations also 

depends on the tetrahedral cell sizes as observed in Figs. VIII.1 and VIII.2. For the TBR time-

dependent VOF calculations, the time step used for the volume fraction calculation may not be the 

same as the time step used for the rest of the transport equations so that a maximum Courant 

number (Nc) of 0.25 was used in the VOF simulations. The dimensionless Courant number 

compares the time step in a calculation to the characteristic time of transit of a fluid element across 

a control volume as expressed in Equation (VIII.19). In this case, based on the Courant-Friedrichs-

Lewy condition (CFL) the time step was chosen to be at most one-fourth the minimum transit time 

for any cell near the interface. 

fluidcell
c ux

tN
/Δ
Δ

=          (VIII.19) 

In Fig. VIII.5 is was plotted the liquid holdup predictions as a function of liquid flow rate with 

different convergence criteria for the scaled residual component of mass, velocity, etc. variables at 

P=30 bar.  
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Figure VIII.5. Effect of convergence criteria on liquid holdup predictions as a function of liquid flow rate (time step = 

10-5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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Figure VIII.6. Effect of convergence criteria on two-phase pressure drop predictions as a function of liquid flow rate 

(time step = 10-5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and 

Levec, 2005) 

 

This numerical solution parameter was not found to have the same influence than the effect of time 

step or mesh size. At L=15 kg/m2s, the convergence criteria of 10-3 which corresponds to the 

default value in the CFD solver gave a relative error of 15.8% for the liquid holdup computation 

whereas with convergence criteria of 10-6, 10-5 and 10-4 the relative errors were 2.7, 5.7 and 9.6%, 

respectively. As expected, a stricter convergence criterion that implied a more accurate calculation 

gave a better concordance with the experimental data (Nemec and Levec, 2005). This fact was also 

identified for the two-phase pressure drop simulations (Fig. VIII.6) with the following decreasing 

order of relative error achieved at L=15 kg/m2s: 7.7, 10.7, 18.9 and 28.3 for the  10-6, 10-5, 10-4 and 

10-3 convergence criteria. 
 

VIII.4.3. VOF differencing scheme 

After the establishment of base case settings to produce either mesh-independent or time step-

independent CFD results with respect to liquid holdup and two-phase pressure drop, the finest 

mesh of about one million of cells and a time step of 10-5 s were used to perform additional studies 

on the discretization scheme of volume fraction equation. As long as high order discretization 

schemes are generally able to capture more realistic physical behaviour, several discretization 

methods were investigated including the QUICK, GR, CICSAM and HRIC schemes described in 

Appendix A, section A.4. In Fig. VIII.7 the predicted liquid holdup was plotted as a function of 

liquid flow rate with the above differencing schemes at G=0.1 kg/m2s and P=30 bar. According to 

Fig. VIII.7, the calculated relative errors between the computed and experimental liquid holdup 

results at L=15 kg/m2s were 38.4, 13.2, 10.9 and 2.7% for the QUICK, GR, CICSAM and HRIC 
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schemes, respectively. Therefore, QUICK discretization scheme was found to gave the worst 

concordance between CFD predictions and experimental data whilst the high-order differencing 

schemes (CICSAM, HRIC) were found to produce reasonably accurate results and thus solving the 

problem of poor convergence verified with QUICK scheme.  
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Figure VIII.7. Effect of discretization scheme of volume fraction equation (QUICK, GR, CICSAM and HRIC) on liquid 

holdup predictions as a function of liquid flow rate (time step = 10-5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, 

d=2 mm and experimental data from Nemec and Levec, 2005) 

 

These schemes were used to discretize the convective term in the scalar equation for the transport 

of the volume fraction through the computational domain and the main reason advanced for the 

better quantitative agreement is definitely related to their high resolution algorithms in order to 

minimize the influence of artificial numerical dissipation and to keep the shape of the step 

interface profile. As long as upwind and central differencing schemes are known to introduce 

artificial diffusion or dispersion respectively to their order of accuracy, high-order schemes 

(mainly CICSAM and HRIC) were found to avoid these artificial numerical effects and 

concurrently assuring a compressive character or sharpening of the step interface profile (Ubbink 

and Issa, 1999; Muzaferija  et al., 1998). 

Two-phase frictional pressure drop predictions were plotted in Fig. VIII.8 as a function of liquid 

flow rate with the same discretization schemes at G=0.1 kg/m2s and P=30 bar. According to Fig. 

VIII.8, it was found that GR scheme almost gave the same pressure drop results that CICSAM and 

HRIC. Once more, the high-order differencing schemes gave a better concordance with 

experimental pressure drop data and minimal relative errors. In fact, at the highest simulated liquid 

flow rate the relative errors were 29.8, 9.2, 8.5 and 7.7% for the QUICK, GR, CICSAM and HRIC 
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schemes, respectively. Hence, as the normalized variable diagram provides the mathematical 

foundation for both CICSAM and HRIC schemes (Muzaferija  et al., 1998) and while CICSAM is 

based on the convective boundedness criterion, the HRIC explicit independence on the CFL 

condition showed to give the best VOF multiphase predictions either for liquid holdup or pressure 

drop as observed in both Figs. VIII.8 and VIII.9. 

 ΔP
/L

 (P
a/

m
) 

L / (kg/m2s)

0 2 4 6 8 10 12 14 16
1e+3

1e+4

1e+5

HRIC 
CICSAM 
Geo-Reconstruct 
QUICK 

 
Figure VIII.8. Effect of discretization scheme of volume fraction equation (QUICK, GR, CICSAM and HRIC) on two-

phase pressure drop predictions as a function of liquid flow rate (time step = 10-5 s, 106 of tetrahedral cells, G=0.1 

kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

 

VIII.4.4. Hydrodynamics predictions 

For the purpose of additional and sustainable VOF corroboration studies, several CFD simulations 

were carried out to evaluate the effect of gas flow rate on the TBR hydrodynamics. In Fig. VIII.9 it 

was plotted the computed liquid holdup results as a function of liquid flow rate at P=30 bar and 

charging the gas flow rate in the range 0.1-0.7 kg/m2s. As it can be seen, two branches were 

obtained for a single gas flow rate. Increasing the liquid flow rate from 2 to 15 kg/m2s, the 

computed liquid holdup corresponds to the lower profile of a non-prewetted bed while the upper 

profile was obtained decreasing the liquid flow rate in a prewetted catalytic bed. It is worth noting 

that at G=0.7 kg/m2s and L=15 kg/m2s, the prevailing hydrodynamic regime is still trickling flow 

according to several published flow map regimes (Al-Dahhan et al., 1997).  

Fig. VIII.10 shows two-phase pressure drop predictions following the same procedure as 

mentioned above at different gas flow rates. The capillary pressure acting on the solid-liquid 

interface is dominant for a dry catalytic bed which restricts the spreading within the bed and the 

liquid flows through the confined region of the bed. As expected, a larger gas-liquid interfacial 
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interaction can be attained and the frictional pressure drop profile showed hysteresis when the 

liquid flow rate was decreased from 15 to 2 kg/m2s. 
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Figure VIII.9. Effect of gas flow rate on liquid holdup predictions as a function of liquid flow rate (HRIC, time step = 

10-5 s, 106 of tetrahedral cells, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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Figure VIII.10. Effect of gas flow rate on two-phase pressure drop predictions as a function of liquid flow rate (HRIC,  

time step = 10-5 s, 106 of tetrahedral cells, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

 

The hysteresis behaviour may also depend on initial flow distribution in the catalytic bed so that it 

was mimicked an ideal gas-liquid distributor at the top of TBR. The VOF computations for liquid 

holdup showed similar trends of hysteresis as those found for pressure drop which may be 

explained based on the formation of liquid bridges and surface tension effect. According to Fig. 

VIII.9, it was found that VOF underpredicted the liquid holdup in the whole range of gas and 

liquid simulated flow rates. In fact, at the lowest liquid flow rate (L=1 kg/m2s) and varying the gas 

flow rate from 0.1 to 0.7 kg/m2s the relative error for the computed upper liquid holdup profile 
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were increased from 6.9 to 19.4% demonstrating that the current VOF formulation did not account 

the influence of gas flow rate accurately. It seems that as long as the reactor is operated under 

higher interaction regimes (G=0.7 kg/m2s), so did the relative errors became larger. The pressure 

drop predictions were plotted in Fig. VIII.10 as a function of liquid flow rate and modifying also 

the gas flow rate from 0.1 to 0.7 kg/m2s at P=30 bar. The calculated relative error between the 

computed and experimental two-phase pressure drop (Nemec and Levec, 2005) was found to be 

smaller than those obtained with the liquid holdup simulations at G=0.7 kg/m2s. At the lowest 

liquid flow rate, the pressure drop relative error moved from 8.4 to 16.2% as the gas flow rate 

increased from 0.1 to 0.7 kg/m2s. Moreover, in the opposite extreme (high liquid flow rate L=15 

kg/m2s) the pressure drop relative error became 7.7% at G=0.1 kg/m2s. Therefore, while the 

increase of liquid flow rate shortened the relative errors for either liquid holdup (Fig. VIII.9) or 

two-phase pressure drop (Fig. VIII.10), the relative errors were found to be directly proportional to 

the increase of gas flow rate.  

Fig. VIII.11 shows the liquid holdup predictions as a function of liquid flow rate at different 

operating pressures. As one can observe, the higher the liquid flow rate was, the larger deviation 

between the liquid holdup experimental data and computed results was found. The liquid holdup 

profiles at different pressures were qualitatively similar as those obtained in the evaluation of gas 

flow rate in Fig. VIII.10. The effect of operating pressure on two-phase pressure drop as a function 

of liquid flow rate is shown in Fig. VIII.12. A higher pressure drop was obtained when increasing 

the operating pressure up to 40 bar. Indeed, the VOF model exhibited consistent behaviour for the 

whole range of simulated liquid flow rate demonstrating that the lower relative errors were 

obtained at lower interaction regimes. 
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Figure VIII.11. Effect of operating pressure on liquid holdup predictions as a function of liquid flow rate (HRIC, time 

step = 10-5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 

2005) 
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Figure VIII.12. Effect of operating pressure on two-phase pressure drop predictions as a function of liquid flow rate 

(HRIC,  time step = 10-5 s, 106 of tetrahedral cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec 

and Levec, 2005) 

 

VIII.4.5. Catalyst wetting 

As pilot and bench-scale trickle-bed reactors are generally operated at the same liquid hourly space 

velocities as the commercial-scale reactors, inefficient catalyst wetting has been reported at 

relatively low liquid superficial velocities. The VOF model was then used to evaluate this 

hydrodynamic performance parameter that is often related with the low utilization degree of the 

catalyst packing preventing optimum reactant conversions and product selectivities. Since the 

HRIC scheme gave discretization scheme-independent CFD results for both liquid holdup and 

two-phase pressure, it was used to compute the average and local catalyst wetting efficiency in the 

trickle-bed reactor with the finest mesh and with a time step of 10-5 s.  

Fig. VIII.13a shows a semi-cylindrical slice made inside the catalytic bed at L=1 kg/m2s, G=0.1 

kg/m2s, P=30 bar. The orientation is given by the orthogonal axes shown adjacent to the 3D slice. 

This 3D visualization of trickle flow shows two distinct regions of liquid holdup: liquid rivulets 

characterized by their relatively large cross-sectional area and surface liquid seen as thin layers on 

the solid surfaces. The rivulet formation has been identified experimentally by means of magnetic 

resonance imaging. In order to gain insight how the individual rivulets develop, Fig. VIII.13b 

shows the same semi-cylindrical slice increasing the liquid flow rate up to 15 kg/m2s at G=0.1 

kg/m2s, P=30 bar. As one can observe, the catalytic bed became more flooded with liquid and the 

overall wetting efficiency was enhanced due to the better axial and radial liquid distribution. This 

procedure was then used to determine the catalyst surface area that was filled with liquid as a 

function of liquid flow rate and how the wetting efficiency of individual catalyst particles was 

influenced by the local structure of the TBR packing. 
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In Fig. VIII.14a-f), successive radial planes were presented at L=1 kg/m2s, G=0.1 kg/m2s, P=30 

bar for the liquid phase along the catalytic bed at the second, forth, sixth, eighth, ninth and tenth 

axial catalytic layers.  

 

 
a) 

 
b) 

Figure VIII.13. Semi-cylindrical slice made inside the catalytic bed at a) L=1 kg/m2s and b) L=15 kg/m2s, G=0.1 

kg/m2s, P=30 bar. 
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Figure VIII.14a-f). Radial planes of the liquid volume fraction at different cross-sections for the 2nd, 4th, 6th, 8th, 9th and 

10th axial catalytic layers (HRIC,  time step = 10-5 s, 106 of tetrahedral cells, L=1 kg/m2s, G=0.1 kg/m2s, P=30 bar, d=2 

mm) 

 

This axial evolution of wetting efficiency at different cross-sections demonstrates that as long the 

liquid flows throughout the catalytic bed the liquid phase is spreading out of films on the catalyst 

particle by surface tension effect. It should be stressed out that the calculation of surface tension 

effects on triangular and tetrahedral meshes is not as accurate as on quadrilateral and hexahedral 

meshes according to FLUENT documentation (FLUENT 6.1, 2005). However, the hydrodynamic 
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validation accomplished in Figs. VIII.1 and VIII.2 did not revealed any significant impact of the 

tetrahedral mesh choice for mesh-independent results. According to Fig. VIII.14a), it is clear that 

at the second layer the catalyst particle does not adsorb the liquid phase as Fig. VIII.14b) shows at 

forth layer. As one moves along the catalytic bed, the liquid phase is better adsorbed by the 

catalyst particle and further enhancing the wetting efficiency. At the tenth catalytic layer, Fig. 

VIII.14f) shows that the liquid phase filled the void space between the catalyst particles with a 

higher extension when comparing with earlier radial planes for the liquid volume fraction (i.e. Fig. 

VIII.14a) and consequently the gas phase flows around the existent gap left after the adsorption of 

liquid phase on the spherical particle. The average wetting efficiency computed with the VOF 

model at the final cross-section (tenth catalytic layer) was about 82%. It should be pointed out that 

in the CFD simulations, the boundary conditions at the TBR inlet specified a homogeneous 

distribution of the liquid flow which guarantees at least a better liquid distribution in the reactor 

and reduces possible radial heterogeneities of wetting efficiency even at lower superficial liquid 

velocities (L=1 kg/m2s).  

At L=1 kg/m2s, G=0.1 kg/m2s, P=30 bar, in Fig. VIII.15a) it was taken an instantaneous snapshot 

of a liquid holdup isosurface (αL = 0.06) colored by velocity magnitude values whereas in Fig. 

VIII.15b) the same instantaneous liquid holdup snapshot was colored by the value of Courant 

number defined in Equation (VIII.19). The Courant number distribution map (Nc
 ≈ 0.05) in Fig. 

VIII.15b) showed that the CFL condition was always met during the VOF calculations. This 

computational domain is located in the TBR centre so that it can be assumed that inlet flow effects 

can be neglected throughout the entire VOF hydrodynamic simulation. According to Fig. 

VIII.15a), with an average value of about 0.003 cm/s, the axial evolution of wetting efficiency 

addressed in Fig. VIII.14-f) was found to confirm the qualitative radial profiles for the liquid 

distribution around the catalyst particle and its relationship with the superficial liquid velocities. At 

high-pressure operation, the liquid holdup isosurface revealed spatially the existence of relevant 

dry zones formed in the packed bed and confirmed the channeling phenomena typically 

encountered in lower interaction regimes that is often identified as the main cause of poor 

hydrodynamic and reaction performance of trickle-bed reactors.  
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a) 

 
b) 

Figure VIII.15. Instantaneous snapshot of liquid holdup isosurface (αL = 0.06) coloured by a) liquid velocity magnitude 

and b) coloured by the computed dimensionless Courant number (HRIC,  time step = 10-5 s, 106 of tetrahedral cells, L=1 

kg/m2s, G=0.1 kg/m2s, P=30 bar, d=2 mm) 
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VIII.5. Conclusions 

A high-pressure trickle-bed reactor was modelled by means of a Volume-of-Fluid CFD model. 

The numerical simulations were evaluated quantitatively by experimental data from the literature. 

During grid optimization and validation, the effects of mesh size, time step and convergence 

criteria were evaluated plotting the hydrodynamic predictions as a function of liquid flow rate. 

Several discretization methods for the volume fraction equation were investigated including 

Quadratic Upwind Interpolation for Convective Kinematics, Geometric Reconstruction, 

Compressive Interface Capturing Scheme for Arbitrary Meshes and High Resolution Interface 

Capturing schemes. It was found that high-order differencing schemes gave better computed 

results for either liquid holdup or two-phase pressure drop. 

After ascertain mesh size, time step and differencing scheme independent CFD results, the VOF 

model was used to evaluate the effect of gas flow rate on hydrodynamics demonstrating its 

considerable influence on the liquid holdup in the range G=0.1-0.7 kg/m2s. Finally, the multiphase 

model was used to compute radial planes of liquid volume fraction at different axial locations for 

the packed bed. It was found that wetting efficiency can be captured by VOF model and as long as 

the fluid phases move through the catalytic bed, so do the catalyst wetting is improved 

considerably. During the VOF simulations, it was also verified that the dimensionless Courant 

number was always below than 0.25 according to the Courant-Friedrichs-Lewy condition. 

 

VIII.6. Nomenclature 

Cμ, C1ε, C2ε   k-ε model parameters: 0.09, 1.44, 1.92 

d    Catalyst particle nominal diameter, m 

volF
r

    Source term in the momentum equation 

gr     Gravitational acceleration, 9.81m/s2

G    Gas mass flux, kg/m2s 

Gk     Generation rate of turbulent kinetic energy 

k     k-ε model kinetic energy 

keff     Effective thermal conductivity 

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

p    Pressure, bar 

Rei    Reynolds number based on intersticial velocity [Re/ε] 
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Sq    Source mass for phase q 

t    Time, s 

ur     Superficial vector velocity, m/s 

z    Reactor axial coordinate, m  

 

Greek letters 

αq    Volume fraction of qth phase 

ε     k-ε model dissipation energy 

κ     Gas-liquid interface curvature 

ρq    Density of qth phase, kg/m3

Δp    Total pressure drop, Pa 

σ    Surface tension, N.m 

σk , σε    k-ε model parameters: 1.2, 1.0 

τ    Residence time, s 

qτ     Shear stress tensor of qth phase, bar 

µq     Viscosity of qth phase, Pa.s 

 

Subscripts 

G    Gas phase 

L    Liquid phase 

q    qth phase 

S    Solid phase 
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IX. Numerical Simulation of TBR Hydrodynamics with 

RANS-Based Models Using a VOF Technique1  

A trickle-bed reactor (TBR) was modeled by means of the Volume of Fluid (VOF) model to 

provide a hydrodynamic behavior analysis in trickling flow conditions. Fluid dynamics of the TBR 

is characterized by poor liquid distribution and inefficient catalyst utilization and conventional 

modeling techniques are unable to address these key design issues. Therefore, the VOF code was 

used to investigate the major hydrodynamic parameters in a three-dimensional packed bed 

providing a more rigorous physical description of the underlying flow process. Several numerical 

solution parameters including different mesh densities, time steps and convergence criteria were 

optimized in order to provide computational independent results.  

During the parametric optimization it was found that VOF model is more sensible to mesh density 

and time step than with respect to convergence criteria. The computational fluid dynamic model 

was thoroughly validated by comparing the model predictions with the published experimental 

data for liquid holdup and two-phase pressure drop. After the VOF optimization, selected values 

for the numerical solutions parameters were used to perform the assessment of different turbulent 

flow models at two nominal gas flow rates. Afterwards, several computational runs were 

performed in the evaluation of the influence of either gas or liquid flow rate on TBR 

hydrodynamics. 

 

IX.1. Introduction 

Trickle-bed reactors are extensively employed in several industrial operations, ranging from 

chemical and biochemical plants to wastewater treatment and agricultural manufacturing 

processes. These gas-liquid-solid systems have some distinct advantages over other methods of 

three-phase reactors (slurry reactors, fluidized bed reactors and bubble fixed-bed reactors), such as 

low-pressure drop, low liquid hold-up, high catalyst loading and high conversion as both gas and 

liquid flow regimes approach plug flow. Known disadvantages are often related with partial 

catalyst wetting, poor liquid-phase distribution, high intraparticle resistance, low mass transfer 

coefficient, poor radial mixing and temperature control can be difficult (Al-Dahhan et al., 1997).  

Over the last decades, a noteworthy amount of literature has been published on the determination 

of the so-called hydrodynamic parameters – liquid holdup and pressure drop – in both laboratory 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009) 
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and pilot scale TBRs. The design of commercial-scale TBRs traditionally depends on expensive 

pilot-scale experiments and the mathematical formulation based on dimensional analysis (or even 

applying the neural networks concept) is mainly focused on improving the simulation of the 

steady-state operation by developing more suitable empirical correlations. Nevertheless, due to the 

fact that the majority of correlations for the estimation of liquid holdup, two-phase pressure drop, 

gas-liquid mass transfer and interfacial area, and catalyst wetting efficiency (Al-Dahhan et al., 

1997), have been developed under steady-state conditions and are intended to describe only 

steady-state reactor operation, most of the correlations are inappropriate for the description of the 

reactor performance under transient conditions. Recent advances in the improvement of 

multiphase reactor models indicated that computational fluid dynamics (CFD) is a valuable tool to 

address the complete multidimensional flow equations coupled with chemical species transport 

and reaction kinetics instead of traditional TBR models reported in the literature considering 

isothermal operation in either pseudo-homogeneous or heterogeneous models with plug-flow for 

gas and liquid phases (Al-Dahhan et al., 1997). Two approaches for CFD modeling of gas-liquid-

solid flows have been implemented for the hydrodynamics predictions: the Lagrangian-Eulerian 

model  in particulate flows simulation (Deen et al., 2004) and the Eulerian-Eulerian model in 

trickle-bed reactors (Dudukovic et al., 1999; Jiang et al., 2001; Gunjal et al., 2005a). Using the 

Lagrangian-Eulerian model, particle trajectories of the discrete phase are tracked by solving 

individual equations of motion, whereas the continuum phase is modeled using an Eulerian 

framework. Consequently, the Lagrangian-Eulerian model requires large computational resources 

for large systems of particles. With the Eulerian-Eulerian model, the base assumption is that gas 

and liquid phases are interpenetrating continua. Therefore, the Eulerian-Eulerian model for gas-

liquid-solid flows is the more commonly used CFD model to predict the dynamic behavior of 

trickle-bed reactors (Iliuta and Larachi, 2005). However, the Eulerian-Eulerian approach does not 

accomplish interface tracking by the solution of a continuity equation for the volume fraction of 

one (or more) phases, and for this reason is unable to capture the wetting characteristics at the gas-

liquid interface in the operation of trickle beds. The contacting efficiency is directly related to the 

spreading of a liquid on either wet or dry catalyst solid surfaces. It is of paramount importance to 

address the wetting phenomenon to understand its impact on other hydrodynamic and reaction 

parameters. The interface between both phases is important in evaluating the performance of the 

reactor and therefore free surface modeling is necessary. Volume of fluid (VOF) and level set 

approaches belong to the two best possible implicit free surface reconstruction methods. VOF 

model was extensively used for many applications (Chen and Li, 1998; Cerne et al., 2001; Karim 

et al., 2009).  The velocity field and bubble profile in a vertical gas–liquid slug flow inside the 

capillaries has been modeled with a VOF technique and it was found to be in good agreement with 

published experimental measurements (Taha and Cui, 2004). 
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In order to gain insight about the pertinent parameters that may affect the liquid-solid interface, 

several works have been published on the simulation of liquid drop impact with the solid surface 

(Gunjal et al., 2005b; Rioboo et al., 2002; Crooks et al., 2001). The experimental and simulation 

data for different contact angles (Mao et al., 1997) and velocities (Rioboo et al., 2002) indicated 

that few experimental and simulation studies were conducted at lower velocities that are 

characteristic of trickling flow regime. Therefore, additional simulation activities on the gas-

liquid-solid interface at different flow regimes are needed for the meaningful knowledge of 

interaction between TBR hydrodynamics and reaction parameters. This work is devoted to the 

Volume of Fluid model for TBR modeling comprising the numerical validation in terms of well-

known hydrodynamic parameters. Liquid holdup and two-phase pressure drop were selected for 

the parametric optimization of several models parameters including mesh aperture, time step and 

different convergence criteria. The multiphase flow regime will be presented with several RANS 

turbulent flow models as well as the laminar one. The effect of gas and liquid flow rate on either 

frictional pressure drop or liquid holdup will be also examined under trickling flow conditions 

with three-dimensional packed bed geometry. 

 

IX.2. Modelling Approach and Mathematical Models 

IX.2.1. Governing Equations for Multiphase Flow  

Understanding the behavior of the fluid flow through the packed particle bed is important to 

enhance the performance of trickle-bed reactors from design and operating considerations. The 

solution of the hydrodynamic problem for multiphase reactors using a phenomenological approach 

should take into account several phenomena including the porous media flow and the interfacial 

effects, as well as the process parameters such as the bed package, the particles shape and porosity 

(Maiti et al., 2005). 

In general, trickle-bed reactors use regular shape catalyst particles, moderate to high gas and liquid 

flow rates and pressures, and can operate from trickling to pulsing flow regime. These 

characteristics have a strong influence on hydrodynamic parameters so that a reliable scale-up 

analysis is often performed with specific data for these processes. In the present study, the detailed 

information of momentum transport is investigated in a fixed bed by means of CFD codes with 

different turbulent flow models. A trickle-bed reactor of non-overlapping spherical particles in 

cylindrical geometry was modeled with a specified void fraction and a set of fluid physical 

properties; the Navier-Stokes equations are solved for the velocity and pressure fields in the fluid 

phase of the void space. The computational geometry was designed so that the catalyst particles do 

not touch each other. The distance between two particles is within 3% of the sphere diameter to 
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facilitate the grid generation avoiding numerical difficulties that arise in the calculation of 

convective terms with the representative arrangement of catalyst particles shown in Fig. IX.1. 

 
Figure IX.1. Configuration of catalyst particle arrangement for the trickle-bed used in VOF simulations  

 

The purpose of this work is to develop a computational model to analyze the fluid flow through 

the cylindrical bed including the evaluation of liquid holdup and two-phase pressure drop 

predictions. In particular, the liquid-gas flow through a catalytic bed was considered comprised of 

monosized, spherical, solid particles arranged in a cylindrical container of a pilot TBR unit 

(50_mmID×1.0 mLength). The VOF method was used to compute velocity field as well as liquid 

volume fraction distributions. The multiphase flow is assumed vertical downward and 

incompressible, with the mathematical description for the flow of a viscous fluid through a three-

dimensional catalytic bed based on the Navier–Stokes equations for momentum and mass 

conservation.  

The VOF model enables the computation of multiphase flows in which gas-liquid-solid interfaces 

are clearly identified. It is thus well adapted for calculating the breakup of liquid jets or films 

sheared by a gas flow (Ryan, 2006) or bubble dynamics (Zheng et al., 2007; Liovic and Lakehal, 

2007). In the VOF model, the variable fields for all variables (pressure, velocity, etc) are shared by 

the both phases and correspond to volume-averaged values. It is thus necessary to know the 

volume fraction, αq, of each phase, q, in the entire computational domain. The VOF continuity and 

momentum equations, the free surface model including the surface tension and wall adhesion were 

described in Equations (VIII.1)-(VIII.9) in Chapter VIII. Different turbulent flow Reynolds 
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Averaged Navier-Stokes models were investigated during the VOF computations including the 

multiphase standard and realizable k-ε approach as well as the multiphase Renormalization Group 

Theory based model (Yakhot and Orszag, 1986) and multiphase Reynolds Stress Model. The 

mathematical equations for the multiphase standard and realizable k-ε model and the Reynolds 

Stress Model were presented in Tables VI.1- VI.4 in Chapter VI. 

 

IX.2.2. Numerical simulation 

Computational mesh representing the solid catalyst of the trickle-bed reactor was created using the 

integrated solid modeling and meshing program GAMBIT (GAMBIT 2, 2005). In order to obtain 

grid-independent results under different operation conditions, the cell number was varied in the 

range 2×105 – 3×106. For spherical particles of 2 mm diameter, the cell size in the bulk is less than 

d/20 and the average cell sizes are in the range 0.01–0.20 mm depending mainly in the geometric 

conditions tested (Lopes and Quinta-Ferreira, 2008). These dimensions were established after the 

mesh optimization and for the proper application of wall functions available in the CFD solver. 

The grid consists of a combination of structured and unstructured meshes, the region close to the 

wall being meshed with cells of about 0.01 mm in height containing approximately one million of 

computational cells.  

As the accuracy of the simulation is largely dependent on mesh aperture, several different mesh 

sizes were compared for the hydrodynamic validation issues in multiphase flow operation. The 

numerical methodology used for the numerical simulation of incompressible transient two-phase 

flows needs to solve the Navier-Stokes equations together with the interfacial interaction 

parameters. The fact that the material parameters of the fluid at time t and position (x, y, z) depend 

on which phase is present at (x, y, z, t) must be accounted for. The VOF method simulates free-

surface flow by means of a fluid fraction function, which has a value between unity and zero. The 

discretization of the governing equations is done by the finite-volume method. The grid 

independency was established after the evaluation of different mesh apertures in order to isolate 

mesh related discretization errors. All transport equations were discretized to be at least second 

order accurate in space.  

A segregated implicit solver available in commercial CFD package FLUENT (FLUENT 6.1, 

2005) was employed to evaluate the resulting linear system of equations. The conditions required 

for grid convergent results are based on a 1% relative error criterion and the simulations accuracy 

has been assessed by comparisons to experimental data available in the literature. At the interface, 

the additional interaction conditions depend on interfacial velocity and gradient of the surface 

tension. Three dimensional simulations have been carried out for the catalytic bed. The inlet 
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turbulence quantities such as turbulent kinetic energy and turbulent energy dissipation were 

specified based on FLUENT documentation (FLUENT 6.1, 2005). Turbulent kinetic energy (k) 

was estimated from turbulence intensity and turbulent energy dissipation (ε) was estimated from 

the turbulent viscosity ratio as expressed in Chapter VIII. At 30 bar and 25ºC, the inlet turbulent 

kinetic energy for the liquid (uL = 0.001 m/s) and gas phase (uG = 0.003 m/s) was 3.952×10-2 and 

0.2059 mm2/s2, respectively, whereas the turbulent energy dissipation was 7.637×10-5 and 

3.690×10-3 mm2/s3. For uG = 0.02 m/s and uL = 0.015 m/s, the turbulent kinetic energy are 6.204 

and 4.518 mm2/s2, and the turbulent energy dissipation are 3.349 and 0.9982 mm2/s3, respectively. 

Additional k and ε values for the gas and liquid phases are given in Table IX.1 at 30 bar and 25ºC. 

Table IX.1 – Inlet boundary conditions for the gas and liquid phases: turbulent kinetic energy (kq) and turbulent energy 

dissipation (εq) at T=25ºC and  P=30 bar 

 

G (kg/m2s) L (kg/m2s) kG  (mm2/s2) kL  (mm2/s2) εG  (mm2/s3) εL  (mm2/s3) 

0.1 1 0.2059 3.952×10-2 3.690×10-3 7.637×10-5

0.4 1 2.330 3.952×10-2 0.4723 7.637×10-5

0.7 1 6.204 3.952×10-2 3.349 7.637×10-5

0.1 15 0.2059 4.518 3.690×10-3 0.9982 

0.4 15 2.330 4.518 0.4723 0.9982 

0.7 15 6.204 4.518 3.349 0.9982 

 

 

IX.3. Results and Discussion 

IX.3.1. Hydrodynamic validation and model optimization 

The VOF multiphase model was validated in terms of major and well-known hydrodynamic 

parameters for trickle-bed reactors. For that purpose, several numerical solution parameters were 

optimized to obtain optimum results such as different tetrahedral mesh sizes and time steps 

reinforcing and following the route the previous analysis under these topics within the Eulerian 

studies. 

In Fig. IX.2 it was plotted the liquid holdup predictions as a function of tetrahedral mesh density at 

constant liquid flow rates and P=30 bar.  
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Figure IX.2. Comparison of liquid holdup predictions as a function of mesh density for different liquid flow rates 

(G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

 

As one can observe, the liquid holdup is increasing with mesh density until it reaches an 

asymptotic solution. This increase was higher and sharper with the highest simulated liquid flow 

rate (L=15 kg/m2s). In fact, at L=1 kg/m2s the relative errors between the numerical predictions 

and experimental data were 60.9, 36.6, 16.4, 7.6 % for 4×105, 6×105, 8×105, 106 of cells, 

respectively. The experimental data used for the parametric optimization were available from the 

work developed by Nemec and Levec (2005) in where it was described in detail the experimental 

setup. In that work, liquid holdup was measured by a gravimetric method that consists in 

weighting the column in two different ways to have good reproducibility. After the bed was 

extensively prewetted, the reactor with dimensions similar to the ones described previously was 

operated first in a high interaction regime and then reduced to the desired level at which the 

pressure drop and liquid holdup were measured. The horizontal lines in Fig. IX.2 correspond to the 

experimental value for the liquid holdup. For the highest simulated liquid flow rate (L=15 kg/m2s), 

the relative errors became 49.4, 25.3, 8.4 and 3.5. Therefore, the VOF model exhibited a 

considerable dependence with respect to mesh density for higher liquid flow rates. However, the 

optimum number of tetrahedral cells was almost the same in the whole range of liquid flow rate. It 

was also carried out CFD calculations with higher mesh densities corresponding to 2 and 3×105 

tetrahedral cells but this mesh apertures did not agreed reasonably with experimental data in 

comparison with the simulations performed with 106 tetrahedral cells. 

The dependence of two-phase pressure drop predictions as a function of mesh density is shown in 

Fig. IX.3 at constant liquid flow rate at P=30 bar. The overall behavior of frictional pressure drop 

is generally the same as observed for the liquid holdup predictions. The two-phase pressure drop 
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increases with the mesh density and then became approximately independent from one million of 

tetrahedral cells onwards. The relative errors between the VOF predictions and experimental data 

were 66.9, 39.7, 18.9, 8.8% for 4×105, 6×105, 8×105, 106 of cells at L=1 kg/m2s while it were 45.4, 

26.9, 14.3, 8.7%, respectively for the highest liquid flow rate (L=15 kg/m2s). 
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Figure IX.3. Comparison of two-phase pressure drop predictions as a function of mesh density for different liquid flow 

rates (G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 

 

The optimization of time step in the liquid holdup is shown in Fig. IX.4 at constant liquid flow rate 

and P=30 bar.  
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Figure IX.4. Effect of time step on liquid holdup predictions for different liquid flow rates (106 of tetrahedral cells, 

G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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The time step was decreased from 10-2 to 10-5 s in order to evaluate its effect on liquid holdup and 

according to Fig. IX.4, the higher the time step was, the higher deviation between the computed 

and experimental value of liquid holdup was for both the lower and higher values of liquid flow 

rate. Indeed, at the lowest liquid flow rate (L=1 kg/m2s) the relative errors between the VOF 

calculation and experimental values were 70.1, 46.7, 18.7, 7.6 % for 10-2, 10-3, 10-4, 10-5 s, 

respectively. These values became smaller once again at the highest liquid flow rate (L=15 

kg/m2s): 61.4, 37.2, 10.9, 3.5%. It should be pointed out that during the VOF simulations with the 

higher values for the time step, it was necessary to adjust systematically the under-relaxation 

parameters for the pressure-velocity coupling given that convergence issues arose in the 

momentum equation. 

In Fig. IX.5, it is shown the influence of time step on the VOF predictions of two-phase pressure 

drop at constant liquid flow rate and P=30 bar. Globally, the smaller the time step was the better 

concordance between the numerical predictions and experimental values of frictional pressure 

drop. The semi-log plot shown in Fig. IX.5 demonstrated again that a time step of 10-5 s is 

necessary to achieve CFD independent results with respect to time step with a mesh comprising 

one million of tetrahedral cells. At L=1 kg/m2s, the relative errors between the VOF calculations 

and experimental pressure drop data were 76.4, 51.0, 20.8, 8.8% for 10-2, 10-3, 10-4, 10-5 s, 

respectively. These values were smaller for the VOF simulations performed at L=15 kg/m2s: 60.1, 

40.5, 16.4 and 8.7%. Consequently, the optimum time step of 10-5 s was selected to perform 

additional validation and corroboration activities in order to develop and establish a flow solver 

that can be used in trickle-bed reactor scale-up.  
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Figure IX.5. Effect of time step on two-phase pressure drop predictions for different liquid flow rates (106 of tetrahedral 

cells, G=0.1 kg/m2s, P=30 bar, d=2 mm and experimental data from Nemec and Levec, 2005) 
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IX.3.2. Multiphase flow regime 

Commercial trickle-bed reactors are often operated under trickling flow conditions which 

correspond to the lowest interaction regime between gas and liquid phases. However, one should 

bear in mind that multiphase flow maps presented in the literature (Al-Dahhan et al., 1997; 

Dudukovic et al., 1999) indicated that the boundary between trickling, spray, pulsing and foaming 

hydrodynamic regimes is not well defined and spans considerably if one uses Newtonian or 

pseudoplastic fuids or even if the packing methodology is accomplished randomly or if it is 

applied the random close packing technique to name a few parameters that can affect the definition 

of hydrodynamic boundary regimes encountered in trickle-beds. For that purpose, two different 

gas flow rates (G=0.1 and 0.7 kg/m2s) were simulated with different multiphase turbulent models 

in order to investigate the numerical accuracy produced by assuming simple laminar flow (LAM) 

or employing standard (SKE) and realizable (RKE) multiphase k-ε models. The renormalization 

group based model (RNG) and the Reynolds Stress Model (RSM) were also examined for the two 

different gas flow regimes with the optimum values for the numerical solution parameters 

previously discussed. 

In Fig. IX.6 the liquid holdup predictions are shown as a function of liquid velocity with different 

multiphase turbulent models at G=0.1 kg/m2s and P=30 bar. The VOF simulations performed with 

the laminar flow model gave relatively the same liquid holdup predictions as the VOF calculations 

under the turbulent flow models: multiphase standard and realizable k-ε (SKE and RKE), RNG 

and RSM.  
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Figure IX.6. Influence of RANS turbulence model on liquid holdup predictions as a function of liquid flow rate at 

G=0.1 kg/m2s (time step = 10-5 s, 106 of tetrahedral cells, P=30 bar, d=2 mm and experimental data from Nemec and 

Levec, 2005) 
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The same conclusion can be made according to Fig. IX.7 in where it is shown the VOF predictions 

of two-phase pressure drop as a function of liquid flow rate at P=30 bar. According to both plots 

for liquid holdup and frictional pressure drop one can observe that there is no significant difference 

whatever the turbulent flow model was being used. Nevertheless, at G=0.1 kg/m2s the VOF 

laminar simulations were the ones that required less computational iterations until the convergence 

is reached. It should be also emphasized that the Reynolds stress model is often employed for 

highly swirling or anisotropic flows and involves the calculation of the individual Reynolds 

stresses using differential transport equations. The individual Reynolds stresses are then used to 

obtain closure of the Reynolds-averaged momentum equation and this fact brought a major 

computational expense expressed directly in the higher CPU calculation time.  

At the highest gas flow rate (G=0.7 kg/m2s), Fig. IX.8 shows the liquid holdup predictions as a 

function of liquid superficial velocity. As it can be seen, the VOF simulations with the laminar 

flow model thoroughly underpredicted the liquid holdup in the whole range of liquid superficial 

velocity. Conversely, the multiphase SKE, RKE, RNG and RSM turbulent models gave almost the 

same liquid holdup predictions.  
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Figure IX.7. Influence of RANS turbulence model on two-phase pressure drop predictions as a function of liquid flow 

rate at G=0.1 kg/m2s (time step = 10-5 s, 106 of tetrahedral cells, P=30 bar, d=2 mm and experimental data from Nemec 

and Levec, 2005) 
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Figure IX.8. Influence of RANS turbulence model on liquid holdup predictions as a function of liquid flow rate at 

G=0.7 kg/m2s (time step = 10-5 s, 106 of tetrahedral cells, P=30 bar, d=2 mm and experimental data from Nemec and 

Levec, 2005) 

 

In Fig. IX.9 it is shown the VOF predictions of two-phase pressure drop with the same turbulent 

flow models at the highest gas flow rate (G=0.7 kg/m2s). Once more, the VOF laminar flow model 

underpredicted the frictional pressure drop and the deviation is sharper for higher liquid flow rates. 

This fact illustrated that the multiphase regime attained with G=0.7 kg/m2s should encompass not 

only a higher interaction regime between the gas and liquid phases, but it should be also the 

meaning of the relative closeness towards the hydrodynamic boundary of trickling flow regime.  
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Figure IX.9. Influence of RANS turbulence model on two-phase pressure drop predictions as a function of liquid flow 

rate at G=0.7 kg/m2s (time step = 10-5 s, 106 of tetrahedral cells, P=30 bar, d=2 mm and experimental data from Nemec 

and Levec, 2005) 
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In the VOF simulations performed with the SKE model at G=0.7 kg/m2s, L=5 kg/m2s and P=30 

bar, Fig. IX.10 shows an instantaneous snapshot of liquid holdup isosurface (αL = 0.15) colored by 

liquid velocity magnitude while Fig. IX.11 shows an instantaneous snapshot of gas holdup 

isosurface (αG = 0.25) colored by gas velocity magnitude at the same operating conditions.  

 
Figure IX.10. Instantaneous snapshot of liquid holdup isosurface (αL = 0.15) colored by liquid velocity magnitude (m/s) 

(time step = 10-5 s, 106 of tetrahedral cells, L=5 kg/m2s, G=0.7 kg/m2s, P=30 bar, d=2 mm) 

 
Figure IX.11. Instantaneous snapshot of gas holdup isosurface (αG = 0.25) colored by gas velocity magnitude (m/s) 

(time step = 10-5 s, 106 of tetrahedral cells, L=5 kg/m2s, G=0.7 kg/m2s, P=30 bar, d=2 mm) 
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According to Figs IX.10 and IX.11, it is possible to identify the liquid flow consisting of rivulets 

and films, the former exhibiting poor liquid–solid contacting regions and the latter being good 

liquid–solid contacting. This computational behavior was experimentally observed by several 

authors who have systematized the rivulet/film classification in liquid distribution studies using 

computer-assisted tomography (Lutran et al., 1991; Ravindra et al., 1997; Wang et al., 1995). 

More recently, van der Merwe and Nicol (2005) measured the fraction of particle contact points 

that are exposed to flow for different flow conditions and pre-wetting procedures, which can be 

further compared against the VOF computations in the evaluation of bed utilization coefficient. 

IX.3.3. Evaluation of VOF predictions: liquid holdup and pressure drop 

The trickle-bed reactor performance is affected mainly by the liquid holdup and the two-phase 

pressure drop. Mass and heat transfer, conversion and selectivity, as well as power consumption 

are strongly influenced by those parameters, which thus represent a crucial starting point for 

reactor design, scale-up, scale-down and performance prediction. Our mathematical formulation is 

an alternative to empirical correlations that consists in the VOF continuum hydrodynamic model 

based on the equations of motion providing a more rigorous physical description of the underlying 

flow process. For the purpose of code validation as well as the investigation of gas and liquid flow 

rate on hydrodynamics in the present work, the computational results are compared with the liquid 

holdup and two-phase pressure drop experimental data available in the literature (Nemec and 

Levec, 2005). Fig. IX.12 shows the influence of gas velocity on the liquid holdup at different 

liquid velocities.  
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Figure IX.12. VOF predictions for the liquid holdup as a function of gas velocity for different liquid velocities (P=30 

bar) and experimental data from Nemec and Levec (2005) 
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In Table IX.2, it was calculated the relative error between the VOF predictions for liquid holdup 

and pressure drop. According to Fig. IX.12, for gas velocities lower than 1.0 cm/s, these 

computational predictions are in reasonable agreement with experimental values, which enables 

the validation of our CFD model for this range of operation.  

 

Table IX.2 – Relative error (%) of VOF predictions for liquid holdup (αL) and pressure drop (ΔP/L) at different 

operating conditions  

 

 G (kg/m2s) Relative Error % 
L (kg/m2s)  1 5 10 15 

0.1 6.85 2.84 4.10 2.65 
0.3 7.70 2.60 5.04 4.76 
0.5 15.01 6.00 5.23 6.07 αL

0.7 19.41 7.19 7.11 10.67 
0.1 8.35 8.04 7.98 7.66 
0.3 7.62 9.64 2.58 8.47 
0.5 13.77 7.42 8.12 7.98 ΔP/L (Pa/m) 

0.7 16.23 8.73 9.03 6.17 
 

However, for higher gas velocities the concordance level between the computed results and 

experimental data is not the same as observed for the lower interaction regime. Indeed, Table IX.2 

indicates that at a given constant liquid flow rate, i.e., at L = 1 kg/m2s, the relative error is 

increasing with the gas flow rate. At the lowest value of liquid flow rate, when the gas flow rate 

increased from 0.1 to 0.7 kg/m2s, the relative error became almost 20% for the liquid holdup 

prediction. However, the same did not happen keeping the gas flow rate constant. At G = 0.1 

kg/m2s, if we increase the liquid flow rate from 1 to 15 kg/m2s, the relative error decreases from 

19.4 to 10.7 % demonstrating the opposite behavior already identified. This fact cannot be 

explained by any geometric considerations; for example, the simulated fixed-bed had a tube to 

particle diameter ratio of 25 so that the hydrodynamic flow regime should not be distressed by the 

reactor cylindrical wall. The liquid holdup prediction seems to be affected when the reactor is 

operated under higher interaction regimes favored by higher gas flow rates; in fact, when the liquid 

velocities increases, the liquid holdup also increases and the model predictions do not account in 

an appropriate mode for the effect of the gas flow. The influence of the gas flow at different 

isobaric conditions also revealed the previous fact for higher gas velocities in the evaluation of 

gas-liquid interfacial mass transfer in trickle-bed reactors at elevated pressures (Larachi et al., 

1998). However, the influence of the gas flow determined by a different operating pressure on the 

liquid holdup is less pronounced than in the case of different liquid velocities plotted in Fig. IX.12. 

The increase of operating pressure promotes a high driving force becoming that led to the large 

differences for the liquid holdup so that the effect of the superficial gas velocity on the liquid 
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holdup is often related with the pressure gradient over the reactor affecting the drag force at the 

gas-liquid interface (Al-Dahhan et al., 1997).  

In Fig. IX.13 it is shown the computed pressure drop profiles at the same liquid flow rates 

simulated for the calculation of liquid holdup.  
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Figure IX.13. VOF predictions for the pressure drop as a function of gas velocity for different liquid velocities (P=30 

bar) and experimental data from Nemec and Levec (2005) 

 

Once more, VOF underpredicted the frictional pressure drop in the whole range of gas and liquid 

flow rates. The discrepancy between predicted results and experimental data became obvious for 

the highest gas flow rates. According to Table IX.2, at L = 1 kg/m2s, the relative error for the 

computed pressure drop was 8.4 and 16.2 % for G = 0.1 and 0.7 kg/m2s, respectively, revealing 

that gas velocity had a major effect on the TBR hydrodynamics. Therefore, for lower gas velocities 

the reasonable agreement of the numerical results are related with the strength of VOF model and 

its foundation based on the surface tension gradients in the interface for every computational cell 

but as soon as the gas velocity increases, the surface tension calculations are no more feasible in 

this regime. Nevertheless, TBRs are regularly operated under trickling flow that enables the lower 

interaction regime in which the VOF model can be successfully applied. The current VOF 

formulation can be an interesting option to capture the gas-liquid interaction in trickling flow 

regime and the effects of flow rates on three-phase packed-bed reactors. These computational 

results allow us to obtain a better understanding of the fundamental physics governing the 

efficiency of multiphase reactors for either TBR petrochemical applications or advanced 

wastewater treatment facilities so that CWAO technology deployment can be accelerated in the 

commercial-scale TBR. 
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IX.4. Conclusions 

A multiphase VOF model was developed to provide a deeper understanding of the hydrodynamic 

behavior of a pilot trickle-bed reactor. The gas-liquid flow through a catalytic bed of spherical 

particles was used to compute velocity field and liquid volume fraction distributions considering 

interfacial phenomena as well as surface tension effects. Firstly, the VOF numerical solutions 

parameters such as mesh density, time step and convergence criteria were optimized with the 

concomitant evaluation of liquid holdup and two-phase pressure drop. Secondly, the optimum 

values were then used to examine the multiphase flow regime and the effect of gas flow rate on the 

numerical accuracy produced by either laminar or several turbulent flow models. At lower gas 

flow rates, the VOF predictions performed with the laminar flow model were found to produce 

qualitative and quantitatively the same computed results as turbulent flow models for both liquid 

holdup and frictional pressure drop, while for higher flow rates the turbulent flow models 

performed better indicating the considerable degree of turbulence induced by the gas phase. 

Finally, the VOF model was then used to understand the influence of gas and liquid flow rate on 

TBR hydrodynamics pointing out that during validation activities, a better agreement with 

published experimental measurements was achieved for lower gas flow rates.  

IX.5. Nomenclature 

d    Catalyst particle nominal diameter, m 

G    Gas mass flux, kg/m2s 

k     Turbulent kinetic energy, m2/s2

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

wn̂     Unit vector normal to the wall 

p    Pressure, bar 

Rei    Reynolds number based on intersticial velocity [Re/ε] 

t    Time, s 

wt̂     Unit vector tangential to the wall 

ur     Superficial vector velocity, m/s 

 

Greek letters 

αq    Volume fraction of qth phase 

ε     Turbulent dissipation energy 
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κ     Gas-liquid interface curvature 

ρq    Density of qth phase, kg/m3

Δp    Total pressure drop, bar 

σ    Surface tension, N.m 

σk , σε    k-ε model parameters: 1.2, 1.0 

qτ     Shear stress tensor of qth phase, bar 

θw     Contact angle at the wall 

µq     Viscosity of qth phase, Pa.s 

 

Subscripts 

G    Gas phase 

L    Liquid phase 

q    qth phase 

S    Solid phase 
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In this part of the work, kinetics of the catalytic wet oxidation is integrated on Euler-

Euler and Volume-of-Fluid models to investigate the reaction behaviour of a pilot 

trickle-bed reactor unit considering the reaction aspects as well as the transport 

mechanisms involved in the treatment process of simulated phenolic wastewaters. The 

computational domains and modelling approach are firstly described and the 

hydrodynamics simulations are summoned up with single and two phase flow data 

reported in open literature. The trickle-bed reaction studies begin with the catalytic 

wet oxidation of an individual phenolic acid that is accomplished for the Total 

Organic Carbon degradation under transient mode. Subsequently, the catalytic wet 

oxidation of a phenolic acids mixture is simulated in the trickle-bed reactor with the 

Euler-Euler framework at different temperatures and pressures as well as different gas 

and liquid flow rates. Afterwards, both multiphase CFD models are used to gain 

insight and quantitative information on the evaluation of axial and radial profiles for 

the Total Organic Carbon depletion and temperature along the packed bed. The CFD 

theoretical calculations are compared against experimental data taken from the trickle-

bed reactor pilot plant. 
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X. Kinetic Modelling and TBR CFD Studies in the 

Catalytic Wet Oxidation of Vanillic Acid1  

Aiming to examine the catalytic wet air oxidation process in three phase reactors, a slurry reactor 

for kinetic studies and a pilot unit trickle-bed reactor were investigated considering reaction 

aspects as well as the transport mechanisms involved in the treatment of an aqueous vanillic acid 

solution, which is a compound typically found in olive mill wastewater. Kinetic studies were 

performed to bring up the lumped kinetic parameters in terms of total organic carbon (TOC) over a 

Mn-Ce-O laboratory-made catalyst. A hydrodynamic model for the prediction of pressure drop 

and liquid holdup for a trickle-bed reactor has been developed by means of CFD according to data 

taken from the open literature. Firstly, single-phase flow pressure drop was studied in a region of 

flow rates that is of particular interest to trickle bed reactors (10<ReG<400) and it was 

demonstrated that the Eulerian model is able to predict reasonably the pressure drop of single-

phase flow over spherical particles when Ergun equation adjusts pressure drop measurements 

within 10% on average. Two-phase flow operating regime is then investigated and CFD Eulerian 

model predicts very well liquid holdup in the range of gas flows studied (G = 0.1 – 0.7 kg/m2s). 

Finally, CFD runs were performed in unsteady state for the catalytic wet air oxidation of the 

aqueous vanillic acid solution. TOC profiles indicated that complete reduction of organic matter 

was achieved at 30 bar and 200 ºC. Moreover, CFD demonstrated the considerable effect of 

temperature, whereas the air partial pressure only has minor influence. 

 

X.1. Introduction 

Nowadays, the increasing environmental concerns and restrictive legislation strongly require the 

development of suitable technologies for treatment of polluted wastewaters. Particularly, during 

the production of olive oil significant amounts of liquid effluents are generated from the water and 

olive juice added to the process, containing unrecoverable oil. High volumes of olive oil mill 

wastewater (OOMW) are produced each year (10-30×106 m3/year) with chemical oxygen demand 

(COD) charges between 45000 and 170000 mg/l being the large charge of phenolic compounds 

contained in these wastewaters one of the major obstacles to achieve the detoxification 

(Niaounakis and Halvadakis, 2004). 

                                                 
1 This Chapter is based upon the publication Lopes et al. (2007a) 
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Technologies for OOMW treatment have been reviewed elsewhere including several 

physicochemical, biological and combined processes resulting in considerable organic load and 

toxicity abatement (Paraskeva and Diamadopoulos, 2006; Mantzavinos and Kalogerakis, 2005). 

Biological processes, aerobic and anaerobic, including anaerobic co-digestion with other effluents 

and composting, are predominant in the treatment of OOMW and it is ideally suited for low 

pollutant concentrations, with maximum concentrations up to 50 ppm (Paraskeva and 

Diamadopoulos, 2006; Mantzavinos and Kalogerakis, 2005; Imamura, 1999). Biodegradation and 

incineration are two typical examples of reactive destruction technologies. However, both these 

methodologies have their limitations and are not always the optimal solution. Incineration is ideal 

for highly concentrated liquid streams, typically around 350,000 ppm or higher COD content when 

the energy requirements become self sustaining (Mantzavinos and Kalogerakis, 2005). Neither 

process is optimal when the toxic organic compounds concentration falls between the extremes. 

Alternative destruction technologies have also been studied in the field, including non-catalytic 

and catalytic wet air oxidation (CWAO). The catalyst allows milder operating conditions than 

WAO while yielding similar if not superior kinetic performance. CWAO research has been 

conducted on a variety of organic compounds using numerous catalysts with different results and it 

is known to have a great potential in advanced wastewater treatment facilities (Bhargava et al., 

2006; Paraskeva and Diamadopoulos, 2006; Mantzavinos and Kalogerakis, 2005; Imamura, 1999).  

Trickle-bed reactors (TBR) are widely used for heterogeneous catalyzed reactions between gas and 

liquid reactants, such as hydrogenation, oxidation or partial oxidation and detoxification of liquid 

effluents; such systems are frequently used in petrochemical and chemical processes, wastewater 

treatment, biochemical and electrochemical processing (Saroha and Nigam, 1996). In these 

reactors, gas and liquid phase flow co-currently downward through a fixed bed of catalyst 

particles. Generally, three phase fixed bed reactors can operate in hydrodynamically different 

regimes whose boundaries depend on gas and liquid superficial velocities, catalyst bed and fluid 

properties. TBRs are characterized by high catalyst loading per unit volume of the liquid and the 

low energy dissipation make them preferable to slurry reactors due to the higher calorific capacity. 

Under continuous gas flow and low liquid flow rate conditions the trickle flow regime exists in 

which the liquid phase moves in drops or in small rivulets through the catalyst bed. With 

increasing gas and liquid loading through the bed so-called spray, pulsing and foaming 

hydrodynamic regimes are encountered (Dudukovic et al., 2002; Al-Dahhan et al., 1997; Saroha 

and Nigam, 1996). Trickle and pulse flow regimes are of particular industrial interest due to the 

higher catalyst surface utilization. The following studies in the paper are focused on the trickling 

regime under unsteady-state operation conditions in order to investigate the start-up behaviour of 

the TBR unit and to evaluate its influence in hydrodynamic parameters. 
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Heterogeneous catalysts used in TBR reveal important advantages for the wet oxidation 

technology, since in homogeneous operation a posterior metal recovery step is needed. Several 

important aspects with respect to the influence of external and intraparticle mass transfer 

limitations and partial wetting of catalyst particles have been studied in the literature and works 

about mass transfer effects have been reviewed (Al-Dahhan et al., 1997; Saroha and Nigam, 

1996). Meanwhile, relatively few investigations have been published concerning catalytic liquid-

phase oxidation of organic compounds in large-scale TBR for wastewater treatment where 

hydrodynamic parameters prevail. Therefore, experimental data, descriptions of mass-transfer 

processes and reaction courses, as well as reactor simulation activities, which are required for 

successful commercial exploitation have to be more explored at high pressure operation. In order 

to evaluate catalyst effectiveness in cocurrent downflow reactor, TBR was modelled to bring up 

hydrodynamic and reactions studies by means of Computational Fluid Dynamics (CFD) codes. 

The kinetic information was taken from a batch stirred tank reactor. With this methodology, it is 

possible to investigate the efficiency of different hydrodynamic regimes such as low and high 

interaction regimes involved in continuous operation of TBR. 

A large number of studies have been reported in the literature on the various hydrodynamic aspects 

of TBRs. Though most of the research studies before 1990 have been performed at atmospheric 

pressure (Ellman et al., 1990; Sai and Varma, 1987), a considerable number of investigations were 

carried out in pressurised trickle-bed reactors after that period (Nemec and Levec, 2005; 2005 et 

al., 2005; Lakota et al., 2002; Jiang et al., 2000; Al-Dahhan et al., 1998; Larachi et al., 1991; 

Wammes and Westerterp, 1990). Numerous attempts are being made to model the hydrodynamics 

of trickle-bed reactors. It ranges from merely empirical correlations (Sie and Krishna, 1998; Iliuta 

et al., 1998; Larachi et al., 1991; Ellman et al., 1990) to physically sound models (Nemec and 

Levec, 2005; Attou et al., 1999; Larachi et al., 1999; Al-Dahhan et al., 1998).  

The present paper aims to investigate the behaviour of a pilot TBR unit through CFD techniques 

considering the reaction aspects as well as the transport mechanisms involved in the treatment 

process of wastewaters from olive oil mills industries. The computational domains and modelling 

approach are firstly described and the hydrodynamics simulations are validated with single and 

two phase flow data reported in literature for experiments in TBR without chemical reaction. For 

the simulation of the oxidation process in TBR, a slurry reactor was previously used for 

experimental studies in order to achieve the reaction rate for the TOC degradation of vanillic acid, 

a phenolic compound typically found in OOMW, which is difficult to biodegrade at high-

concentration levels. 
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X.2. Computational Model and Boundary Conditions 

The performance of multiphase reactors can be predicted by solving the conservation equations for 

mass, momentum and thermal energy in combination with the constitutive equations for species 

transport, chemical reaction, and phase transition. However, because of the incomplete 

understanding of the physics plus the highly coupled and nonlinear nature of the equations, the 

complete solution is difficult to obtain unless one has reliable physical models, advanced 

numerical algorithms and sufficient computational power. Hence, in the past several decades, 

approaches based on residence-time distribution (RTD) (Gianetto and Specchia, 1992), together 

with the macromixing and micromixing models, have been the primary tool in reactor modelling 

used to characterize the non-ideal flow pattern and mixing in reactors without solving the complete 

velocity field. The disadvantage of such approaches is that they cannot be adopted well to serve as 

a diagnostic tool for operating units, which normally need to be operated under conditions not 

amenable to the preceding simplified analysis. To improve the capability of multiphase reactor 

models, one has to solve the complete multidimensional flow equations coupled with chemical 

species transport, reaction kinetics, and kinetics of phase change. Fortunately, CFD has made great 

progress during the last few years, and has been applied to several chemical processes (Gunjal et 

al., 2005; van der Merwe and Nicol, 2005; Joshi and Ranade, 2003; Burghardt et al., 1999). 

Several efforts are being made to develop CFD models for TBRs. Attou et al. (1999) have 

developed a 1D flow model for prediction of global hydrodynamic parameters. For example, in 

order to consider the interactions between the fluid and particles, a global flow model in packed 

beds, an Eulerian k-fluid model, resulting from the volume averaging of the continuity and 

momentum equations, has been developed and solved for a 1D representation of the bed at steady 

state, and at isothermal non-reaction conditions (Attou et al., 1999). This model provided 

reasonable predictions for global hydrodynamic quantities such as liquid holdup and pressure 

drop. A similar k-fluid model, based on the relative permeability concept, was used to compute the 

2D flow without considering porosity variation and without solving for the solid phase. It seems 

that the Eulerian k-fluid model is a rational choice for flow simulation in packed beds, if good 

closures for fluid/fluid and fluid/particle interactions can be found and used. Moreover, the 

geometrical complexity of packed beds can in a certain sense be avoided in a k-fluid model, since 

there is no need to deal with the exact boundaries of the particles and the solid phase is treated as a 

penetrated continuum. 

The Eulerian multiphase model allows for modelling of multiple separate, yet interacting phases. 

The phases can be liquids, gases, or solids in nearly any combination. An Eulerian treatment is 
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used for each phase, in contrast to the Eulerian-Lagrangian treatment that is used for the discrete 

phase model. With the Eulerian multiphase model, the number of secondary phases is limited only 

by computer memory requirements and convergence behaviour. In fact any number of secondary 

phases can be modelled, provided that sufficient memory is available. For complex multiphase 

flows, however, solution is limited by convergence behaviour. In this context, the Eulerian-

Eulerian approach with the 2D multifluid models appears to be most suitable for reactor 

engineering applications (Gunjal et al., 2005; Jiang et al., 2000) and was selected for the present 

work. The description of multiphase flow as interpenetrating continua incorporates the concept of 

phasic volume fractions, denoted here by αq. Volume fractions represent the space occupied by 

each phase, and the laws of conservation of mass and momentum are satisfied by each phase 

individually. The derivation of the conservation equations is done by ensemble averaging the local 

instantaneous balance for each of the phases. The continuity and momentum equations have been 

described in Equations (V.1) and (V.2) in Chapter V in where the turbulence modelling approach 

was also presented in Equations (V.9) and (V.10). The species continuity equation is expressed in 

Equation (X.1): 
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where, Cq,i is the concentration of specie i in the qth phase (gas or liquid), Dq,i is the diffusivity of 

specie i in the qth phase estimated using the Siddiqi–Lucas (1986) method, ρq and αq is the density 

and volume fraction of the qth phase. Sq,i is the source for species i in phase q.The conservation of 

energy in Eulerian multiphase applications is described by a separate enthalpy equation for each 

phase:  
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where hq is the specific enthalpy of the qth phase, qqr is the heat flux, Sh,q is a source term that 

includes sources of enthalpy due to chemical reaction of phenolic compounds: -3000 kJ/mol (Reid 

et al. (1987)). Water properties, dissolved oxygen, phenolic compound diffusion coefficients, 

water and gas heat capacities, water heat of evaporation, heats of reaction, water vapour pressure 

and water density have been obtained from data or methods included in Reid et al. (1987). Henry 

constants for oxygen solubility in water are taken from Himmelblau (1960). Phenolic compound 

and oxygen molecular diffusion coefficients have been also estimated by the method of Wilke and 

Chang (1955). Effective diffusion coefficient of pollutant in water and gaseous oxygen – solid 

mass transfer coefficient have been estimated from Piché et al. (2002) who used a turtuosity factor 

of 3. Phenolic compound liquid – solid mass transfer coefficient has been calculated from Goto 
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and Smith (1975) and gaseous oxygen – liquid volumetric mass transfer coefficient has been 

derived from Iliuta et al. (1999). 

 

X.3. Kinetic studies 

X.3.1. Experimental procedure  

The kinetic CWAO experiments were performed in a high-pressure 1 L autoclave of 316-SS 

(4531M Parr model) described in Chapter III (Lopes et al., 2007b). Vanillic acid was obtained 

from Sigma-Aldrich and Mn–Ce–O was prepared by co-precipitation, by mixing aqueous solutions 

of the respective metal salts using the corresponding metal nitrates as precursors (Riedel-de-Häen 

and Labsolve). The solution of vanillic acid (200 ppm) was introduced in the system with the 

powder catalyst (6 g.L-1), preheated up to the operating temperature (160–220 ºC) and pressurized 

with air (99.999%) up to the operating pressure (30 bar total pressure) and the starting TOC value 

was around 115 ppm. Liquid samples were immediately filtered and then analyzed for total 

organic carbon (TOC) with a Shimadzu 5000 TOC Analyser. 

 

X.3.2.Kinetic law  

After a catalyst screening to several commercial catalysts and laboratory-made manganese and 

silver cerium based catalysts (Lopes et al., 2007b),
 manganese cerium oxide (Mn-Ce-O) was 

selected for further studies in the trickle-bed reactor since it showed significantly more activity in 

respect to the abatement of TOC, revealing complete degradation of vanillic acid as observed in 

Fig. X.1 for different temperatures. With these results the kinetic parameters were calculated by 

using the Generalized Kinetic Model (GKM) (Zhang and Chuang, 1999; Matatov-Meytal and 

Sheintuch, 1998; Pintar and Levec, 1994; Li et al., 1991),
 which takes into account the degradation 

of vanillic acid (represented by A) either directly through a 1st step (k’
1)  to carbon dioxide and 

water (designed as C) or via a 2nd step (k’
2) with the formation of intermediate compounds (B), 

namely phenol and acetic acid (Lopes et al., 2007b) subsequently degraded through the 3rd step 

(k’
3) to the final end products (C). The reaction rates in terms of the TOC concentration of the 

lumped species A, B and C are then represented by Equation (X.3):  
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where first order reactions were assumed for each step j (mj = 1; j = 1-3). After integrating these 

equations a mathematical expression for TOC evolution is obtained in Equation (X.4): 
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whose adjustment to the experimental data of Fig. X.1 led to the kinetic constant values, k’
1, k’

2
 , k’

3 

for each temperature; in particular the ki’ values for 200 and 220 ºC are:  

T = 200 ºC: k’
1 = 1.003×10-1 min-1; k’

2 = 1.200×10-3 min-1; k’
3 = 1.520×10-2 min-1 (X.5) 

T = 220 ºC:  k’
1 = 1.504×10-1 min-1; k’

2 = 5×10-4 min-1; k’
3 = 1.470×10-2 min-1 (X.6) 

The activation energies Ea1, Ea2, Ea3 and the pre-exponential factors A1, A2, A3, were calculated by 

using the Arrhenius plot:  

Ea1 = 18.33 kJ/mol; Ea2 = 24.18 kJ/mol; Ea3 = 67.94 kJ/mol 

A1 = 0.68×102 min-1; A2 = 3.17×101 min-1; A3 = 5.85×106 min-1    (X.7) 
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Figure X.1. GKM for TOC reduction of vanillic acid solution with 6 g.L-1 Mn-Ce-O catalyst 

 

These values were used in the corresponding expressions of the reaction rate constants k’
1, k’

2
 , k’

3 

as a function of temperature, according to Arrhenius law as described in Equation  (X.8). 
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In order to investigate the reactor behaviour by means of CFD codes these kinetic expressions 

were then integrated in the TBR model in section X.5. 
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X.4. Analysis of the TBR hydrodynamics by CFD 

X.4.1. TBR geometry 

CFD studies were performed by taking into account the geometry of a TBR pilot plant unit 

installation at our laboratory. The cylindrical reactor was made of stainless steel (SS-316) with 

50_mm of internal diameter and 1.0 m length according to the reactor unit used by Levec and 

coworkers (Nemec and Levec, 2005; Lakota et al., 2002). Two main features characterize the 

reactor: a distributor on the top and a gas-liquid separator in the bottom. The boundary conditions 

of the mesh were designed in a CAD commercial program (GAMBIT 2, 2005) where the liquid 

pollutant and gas phase are introduced downwards into the reactor through the distributor. Air can 

be supplied up to a total maximum pressure of 70 bar. Operating conditions simulated are 10-30 

bar of reactor pressure and temperature range was from 200 to 220 ºC. Gas and liquid mass flow 

rate are in the range 0.10 – 0.70 and 0.05 – 15 kg/m2s, respectively. 

 

X.4.2. TBR modelling and hydrodynamic validation 

In this section, the numerical methodology is validated against experimental data available from 

literature related to the hydrodynamic information for TBR operation at trickle flow regime at low 

and high pressure. To validate CFD models, the actual strategy is to compare CFD results in terms 

of well known parameters such as liquid holdup and pressure drop that are the two most employed 

characteristics in TBR development study (Carbonell, 2000). The experimental conditions and the 

parameters commonly measured in high pressure TBRs are evaluated extensively in topics such 

as: pressure effect on physicochemical properties, phenomenological analysis of two-phase flow, 

flow regime transition, single-phase pressure drop, two-phase pressure drop, liquid holdup, gas-

liquid interfacial area and mass transfer, catalyst wetting efficiency as well as catalyst dilution with 

inert fines in laboratory scale TBRs. In this context, the mesh was validated by checking the mesh 

sensitivity and by comparing the numerical results against the single-phase and two-phase 

experimental data.  

The mesh adopted in the TBR reactor is tetrahedral around and over the catalyst particles and 

hexahedral elsewhere being the cell number around one million. The mesh entrance has the gas-

liquid distributor D2 which have 60 holes as described in Chapter VII. The momentum equations 

are solved with the coupling SIMPLE algorithm and the monotonic upwind discretization scheme. 

The pressure is computed by means of the PRESTO scheme. Runs were performed in unsteady 

state mode to investigate the unit start-up and to evaluate the TBR performance until steady state 

was reached. First, single-phase pressure drop simulations with only the gas phase flowing 
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downward the bed were performed and are presented in Figs X.2 and X.3. CFD results for single-

phase flow were validated with experimental data obtained after extensively prewetting the bed 

being the reactor operated initially at pulse regime at high liquid and gas mass velocities, which 

were then reduced to the desired level at which the pressure drop and liquid holdup were measured 

(Nemec and Levec, 2005). This procedure minimizes the liquid maldistribution and prevents 

hysteresis effect in these parameters (Carbonell, 2000). Reynolds numbers for gas phase up to 400 

were modelled by means of CFD codes as shown in Fig. X.2 where pressure drop measurements 

provided by Nemec and Levec (2005) and Ergun equation are plotted.  
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Figure X.2. Pressure drop for single-phase flow as function of Re*G

 

The effect of gas flow measured by Reynolds number on pressure drop for the packed bed made of 

spheres with diameter equal to 1 mm was observed by plotting dimensionless form in terms of 

modified Reynolds and Galileo numbers. The resulting pressure drop is given by the addition of 

laminar flow local losses with frictional losses. At very low velocities, exclusively laminar or 

viscous contributions to pressure drop are observed but at higher velocities the laminar term from 

Blake-Kozeny-Carman equation and the inertial term from Burke-Plummer equation are additive. 

This mutual contribution stands for Ψγ which represents the ratio between the static pressure and 

the hydrostatic pressure whose behaviour is shown in Fig. X.2. The operational region of flow 

rates (10<ReG<400) was that of particular interest to trickle-bed reactors (Nemec and Levec, 2005; 

Lakota et  al., 2002) where the viscous and inertial terms of the Ergun equation have more or 

less even or at least comparable contributions to the overall pressure drop. Ergun equation can 

describe the flow through packed beds made up of differently shaped particles with universal 

constants. However, if we brake up the problem down to smaller parts that involve groups of 
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particles of similar geometry some general principles regarding Ergun constants may be found. 

Particle shapes studied involve those most often encountered in packed bed reactors that are 

spheres. 

As it can be concluded from Fig. X.2, the original Ergun equation with values of viscous and 

inertial constants of 150 and 1.75, respectively, fits the pressure drop data for beds of spheres quite 

well. This is in agreement with CFD results obtained for single-phase flow and with a number of 

works found in the open literature (Burghardt et al., 1999; MacDonald et al., 1991), which claim 

that the original Ergun constants are able to predict the pressure drop in beds composed of 

spherical particles to within acceptable limits of 10%. However, it should be pointed out that 

porosity values charge between 0.35 to 0.40 where Ergun equation agrees with such conclusions 

(MacDonald et al., 1991), whereas for other bed assemblies with higher porosities the original 

Ergun constants would over predict the pressure drop. In the present case, the CFD results 

obtained for single-phase flow are compared against the results predicted by applying the model of 

Attou and Ferschneider (1999) for the pressure drop in a parity plot illustrated in Fig. X.3. As it 

can be seen, the data scatter slightly more 10 % than in the case when the Ergun equation was 

implemented by the permeability concept. It should be also emphasized that the fixed-bed 

modelled in this work had the tube to particle diameter ratio higher than 10 so the available 

geometry and Ergun constants taken from literature should not be affected by the reactor column 

wall.  
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Figure X.3. Parity plot for pressure drop (P=30 bar, d=1 mm) 

 

In Figs X.4 and X.5, liquid holdup and pressure drop are presented for different gas flow fluxes, 

respectively. In accordance with Fig. X.4, when ranging from low gas flows, G = 0.10 kg/m2s, to 
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higher values, G = 0.70 kg/m2s, liquid holdup decreases as observed by several researchers (Attou 

et al., 1999; Al-Dahhan et al., 1998; Gianetto and Specchia, 1992; Ellman et al., 1990).   

For two-phase flow CFD simulations, practically in the whole range of the liquid holdup the 

predictions fit relatively well being underestimated in some values and overestimated in other 

values for liquid flows, in the range of pressure drop these differences were not so higher as shown 

in Fig. X.5. In first instance, this fact can be justified by the wall effects but according to the ratio 

between tube and sphere diameter modelled it seems more likely that this could be a characteristic 

of the model. Furthermore, the main reason could be directly related to the fact that model 

recommends general Ergun type constants. 
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Figure X.4. Liquid holdup as a function of liquid mass flux at constant gas mass fluxes; P=30 bar, d=1 mm; 

experimental data from Nemec and Levec (2005) 
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Figure X.5. Pressure drop as a function of liquid mass flux at constant gas mass fluxes; P=30 bar, d=1 mm; 

experimental data from Nemec and Levec (2005) 
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It should be stressed at this point that about the same discrepancy would be obtained for the same 

constants if they were applied for other particle shapes. Spheres were used by virtue of their 

unique shape and are incapable of influencing the structure of the bed by their orientation. Some 

additional differences between the porosities of beds, despite the same packing procedures, were 

due to wall effect, which as mentioned before did not affect the overall pressure drop. One can 

then conclude that the hydrodynamic behaviour in terms of liquid holdup and pressure drop seems 

to be well described by the Eulerian model, reflected by the fact that all the data lay on an 

expected performance for the packed bed. This is in agreement with a number of works for the 

viscous regime reviewed by Endo et al. (2002). With regards to the porosity dependence within 

the inertial regime and in agreement with the results obtained by Hill et al. (2001), it should be 

reported in the basis of theoretical simulations of flow through random arrays of spheres, that the 

porosity function is also well taken into account as long as the porosity is around 0.4 as is indeed 

the case for packed bed reactors when made up of spheres. The values of porosity distribution 

function for the present CFD Eulerian model were applied in the range from 0.38 to 0.40. As one 

can see, the experimental results for single-phase pressure drop presented in Figs X2 and X.3 are 

well predicted for spherical particles by CFD model in two-phase flow interaction regime. 

 

X.5. Oxidation process in TBR by CFD simulations 

By using the kinetic laws previously obtained in Equation (X.8), the evolution of vanillic acid 

TOC conversion at the reactor outlet against time (represented as total operation time minus 

reactor residence time) is plotted in Fig. X.6 at two different wall temperatures (200, 220ºC) and 

pressures (20, 30 bar), when the feed stream entered the reactor at ambient temperature, 25ºC.  
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Figure X.6. CFD TOC profile as a function of time (L=0.25 kg/m2s, G=0.1 kg/m2s, d=1 mm) 
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These results show the transient values for TOC conversions at the TBR exit, along which 

temperature increases from the initial 25ºC until the wall temperature, being the steady-state 

operation achieved beyond 3h. In this case, with L=0.25 Kg/m2s , the liquid residence time is 65.3 

min, which enables to compare the final steady value of the TOC conversion, 88%, with the one 

experimentally observed in the batch reactor for the same reaction time and operating conditions, 

99% (Fig. X.1, 200ºC and 30 bar), pointing out a deviation around to 8-10%. This seems to reveal 

a good interaction between the studies carried out with both reactional systems: the batch reactor 

for the kinetic studies and the TBR continuous operation analysed through the CFD simulations 

based on those rate laws. As expected temperature has a strong influence in the oxidation process 

as shown in Fig. X.6 and Fig. X.7 in which it was represented a snapshot after 15 min of the last 

one-third axial plane of total reactor column height with a TOC conversion of about 30%. In 

accordance to Fig. X.7, the lower TOC characteristic zones correspond to the surface of catalyst 

particles. According to Fig. X.6, air pressure seems only to have a slight effect when different runs 

were performed at 20 bar and 30 bar. Therefore, TOC reduction was higher (99.6%) at the highest 

temperature (220 ºC) and air pressure (30 bar) after 1 h. In the CFD model it was assumed that 

chemical reaction occurs namely on the catalyst surface. This assumption is expected to be mostly 

reasonable because of the hydrodynamic interaction regime achieved at trickling flow conditions. 

It should be also referred that the high reactor diameter to particle diameter ratio, averaged 10, 

exceeds the recommended value to prevent flow distribution problems (van der Merwe and Nicol, 

2005). The CFD model has also taken into account external mass transfer limitations so that the 

kinetics is not only governed by the chemical reaction and their competition is the most suitable 

when operating at large scale pilot plant units as systematized by Al-Dahhan et al. (1997).  

 
Figure X.7. Colour map of total organic carbon conversion at t = 15 min  (L=0.25 kg/m2s, G=0.1 kg/m2s, P=30 bar, d=1 

mm) 
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According to Figs. X.8 and X.9, temperature colour maps were taken for the first one-third of the 

TBR at 3600 s and 7200 s, respectively, and after evaluating successive temporal temperature 

colour maps it is possible to conclude that steady state of TBR unit is achieved practically in one 

hour and half.  

 

 
Figure X.8. Temperature colour map at t = 1 h (L=0.25 kg/m2s, G=0.1 kg/m2s, P=30 bar, d=1 mm) 

 
Figure X.9. Temperature colour map at t = 2 h (L=0.25 kg/m2s, G=0.1 kg/m2s, P=30 bar, d=1 mm) 

 
In the first hour, temperature profiles indicated that the reactor is heating and it should be noted 

that was reached 380 K in some turbulence zones. Owing to a motionless catalyst bed, nearly plug 

flow is achieved in TBRs and they are superior to other three-phase reactors where the catalyst is 

either slurried or fluidized. This can be reached for a continuous wastewater treatment if catalyst 

life cycle analysis plays into the game. The TBRs are advantageous in comparison with fluidized 

reactors given that they are characterized by a higher catalyst loading per unit volume of the liquid 
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and therefore they have a lower energy dissipation. One should also bear in mind that catalyst 

wetting is a performance rating parameter in the degree of packed bed utilization and if the 

temperature increases, the locus of the maximum is found at lower residence time. Additionally, 

liquid holdup is a primordial parameter in TBR hydrodynamics described by the present CFD 

model either in single-phase or in two-phase flow where the interaction regime is also studied in 

terms of pressure drop. These results allocate an appropriate place for wastewater treatment where 

it is possible to find highly or slightly exothermic reactions and the knowledge of holdup is 

essential for avoiding hot spots and for preventing reactor runaway. Hence, liquid holdup is also 

related to the catalyst wetting efficiency affecting the reaction yield that depends on whether the 

reaction occurs on the wetted or dry catalyst areas. In accordance to Fig. X.10 where it is shown a 

snapshot of the catalyst surface temperature captured inside the trickle-bed reactor in the last one-

third zone, our results make possible to identify this fact in terms of catalyst surface temperature 

ranging from 460 K to 480 K which can be related to the driving force to provide the TOC 

reduction. Therefore, external catalyst wetting efficiency is an essential parameter for design and 

scale-up issues in what regards the knowledge of catalyst utilization level in trickle-bed reactors 

where the internal contacting is normally assumed to be equal to one due capillary effects. In this 

context, CFD models are quite useful requiring however higher computational power to report that 

parameter along the packed bed. It should be stated that kinetics and thermodynamics of reactions 

conducted in TBRs require high temperatures, specifically in wastewater treatment, which in 

return increase the solubility of gaseous reactant into the liquid. In fact, to improve the gas 

solubility as well as the transport phenomena coefficients, it is also necessary higher operating 

pressures. 

 
Figure X.10. Catalyst surface temperature gradient map at t = 2 h (L=0.25 kg/m2s, G=0.1 kg/m2s, P=30 bar, d=1 mm) 
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Due to complexities associated with transport/kinetics coupling in TBRs, general scale-up and 

scale-down rules have not been achieved for the quantitative description of transport phenomena in 

TBRs working under reaction conditions. This fact brings up in a phenomenological analysis 

which was developed to relate the wetting efficiency with operating conditions such as reactor 

pressure and gas and liquid flow rate which resulted in the five limiting cases reported in literature 

by Al-Dahhan et al. (1997). For a fixed liquid mass velocity, at high pressure and high gas flow 

rates, wetting efficiency improves noticeably whereas pressure drop increases significantly and 

liquid holdup decreases considerably. As liquid flow rate increases, contacting efficiency improves 

further due to an increase in both pressure drop and liquid holdup. The effect of gas flow rate on 

the wetting efficiency, pressure drop, and liquid holdup is more pronounced at elevated pressures 

as observed in Figs X.4 and X.5. The improvement in wetting efficiency with increased gas flow 

rate is due to the improved spreading of the liquid holdup over the external packing area. On the 

other hand, in TBR operation known controllability issues are directly related to liquid 

maldistribution that could be responsible by reactor underutilization. In order to achieve feasibility 

and to exploit TBR advantages in the presence of relatively slow catalyst deactivation, catalyst 

stability should be also investigated. This can dictate the success of continuous catalytic wet air 

oxidation technology in wastewater treatment. Moreover, any advance in TBR technology will 

represent substantial savings, which stimulates the continued research efforts aimed at improving 

TBR operation and performance. 

 

X.6. Conclusions 

The behaviour of a trickle-bed reactor for the catalytic wet air oxidation of an aqueous solution 

containing vanillic acid has been studied by using CFD techniques after performing slurry 

experiments with a Mn-Ce-O laboratory-made catalyst that revealed high activity for TOC 

degradation. The kinetic parameters were obtained taking into account the generalized kinetic 

model and this information was further integrated into a hydrodynamic model developed by means 

of CFD were the reaction aspects as well as the transport mechanisms were accounted for. CFD 

Eulerian model has been deployed for the prediction of pressure drop and liquid holdup in a 

trickle-bed reactor according to data taken from the open literature. Hydrodynamic parameters fit 

well for the high-pressure TBR modelled indicating that the effect of pressure on the design 

parameters, such as pressure drop and liquid holdup, is in accordance to experimental published 

data. Single-phase flow pressure drop studied in a region of flow rates related to a wide interaction 

regime where ReG charged between 10 and 400, demonstrated that the Eulerian model is able to 

reasonably predict the pressure drop of single-phase flow over spherical particles. The CFD model 
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also showed that in two-phase flow runs, liquid holdup is decreased if gas flow rate increases. 

Moreover, the Eulerian model is able to give good predictions of liquid holdup in the range of gas 

flows investigated. After all, runs performed in unsteady state for the catalytic wet air oxidation of 

vanillic acid solution indicated that complete reduction of organic matter was achieved. 

Furthermore, CFD exhibited a considerable effect of temperature whereas the air partial pressure 

only had minor influence.  

 

X.7. Nomenclature 

CTOC     Total organic carbon concentration, (mg/L) 

d    Particle nominal diameter (m)  

gr     Gravitational acceleration, 9.81m/s2

G    Gas mass flux, kg/m2s 

Ga*
q     Modified Galileo number, [(ρq/μq)2g(dε/(1 − ε))3], dimensionless 

GKM     Generalized Kinetic Model 

hq     specific enthalpy of the qth phase, J/kg 

k     Reaction rate constant, (L/mg)m-1×(L/mol)n×(1/min) 

k’     Apparent reaction rate constant, (L/mg)m-1×(1/min) 

keff     Effective thermal conductivity, W/(m·K) 

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

p    Pressure, bar 

-r     Oxidation rate (mg/L)×(1/min) 

Re*
q     Modified Reynolds number,[ (ρquqd/μq (1 − ε)], dimensionless 

Sq    Source mass for phase q 

t    Time, s 

T    Temperature, ºC 

ur     Superficial vector velocity, m/s 

z     Length of bed (m) 

 

Subscripts 

i     Lumped compound specie (i=A, B, C or D) 

G    Gas phase 

L    Liquid phase 

S    Solid phase 

q    qth continuous phase 

w    Wall 

0     Initial time reaction 
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Greek letters 

αq    Volume fraction of qth phase 

Δp    Total pressure drop, bar 

ρq    Density of qth phase, kg/m3

σ    Surface tension, N.m 

qτ     Shear stress tensor of qth phase, bar 

ψ     Dimensionless pressure drop [(ΔP/L)/ρg] 

µq     Viscosity of qth phase, Pa.s 
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XI. Trickle-bed CFD Studies in The Catalytic Wet 

Oxidation Of Phenolic Acids1

An Euler-Euler computational fluid model was developed successfully for the hydrodynamic 

prediction of a trickle-bed reactor designed for advanced wastewater treatment facilities. Catalytic 

wet air oxidation of phenolic acids was simulated in a trickle-bed reactor by means of CFD in the 

temperature range 170-200 ºC and pressures 10-30 bar. The hydrodynamic model validation was 

accomplished through the comparison of simulated pressure drop and liquid holdup with 

experimental data from the literature. In a broad range of gas and liquid flows studied (G = 0.10-

0.70 and L = 0.5-5 kg/m2s) at different operation conditions, CFD demonstrated the considerable 

effect of operating pressure in pressure drop, whereas a minor influence was detected for the liquid 

holdup. CFD runs were then performed for the catalytic wet air oxidation of aqueous phenolic 

acids solution. The reactor behaviour was analysed by means of total organic carbon profiles 

which reflected the influence of temperature, pressure, gas-liquid flows and initial pollutant 

concentration. 

 

XI.1. Introduction 

The growing public awareness and the increased demand for industrials to meet human 

requirements have created global problems involving overexploitation of available natural 

resources leading to pollution of the land, air and water environments. As a consequence, the 

stringent regulations established by the various governmental authorities are forcing industry to 

treat effluents to the required compliance level before discharge into the surroundings. Phenols and 

phenolic acids commonly appear in aqueous final streams arriving from different sources such as 

food and agroindustry as well as pharmaceutical, petrochemical and chemical companies. Unless 

the concentration is low enough, phenolic wastewaters are poorly biodegradable because of their 

bactericidal properties (Paraskeva and Diamadopoulos, 2006). Therefore, phenolic compounds 

must be specifically destroyed before discarding the effluent for subsequent treatment in 

conventional sewage plants. Among the advanced oxidation processes, catalytic wet air oxidation 

(CWAO) has been shown to be an effective technique for eliminating organic compounds, such as 

phenolic and other aromatic products (Bhargava et al., 2006). In this ambit, catalyst screening 

studies have been performed successfully in our group with a model solution of several phenolic 

acids including syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, protocatechuic and 4-

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2007a) 
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hidroxybenzoic acids in which total organic carbon (TOC) was oxidised in batchwise slurry 

reactor (Lopes et al., 2007b). In particular, the the Mn-Ce-O catalyst revealed good stability in 

terms of leaching and carbon adsorption leading to the complete TOC removal so that catalyst 

deactivation phenomena were not addressed in the present study. 

However, at industrial level, three-phase reactors are required for the continuous wastewater 

treatment operating in trickle flow regime at trickle-bed reactors (TBR). In order to achieve 

industrial feasibility, four main aspects of CWO in continuous mode have to be considered, 

namely chemistry of CWO, reactor geometry, catalyst stability and scale-up (Sie and Krishna, 

1998). If the first parameters have been reviewed in the literature, scheduling and scale-up studies 

leading to their applicability to industrial processes on CWO reaction engineering have not been 

fulfilled. Therefore, the present paper intends to examine the behaviour of a TBR by means of 

computational fluid dynamic (CFD) codes. 

The use of TBRs is common in industrial multiphase catalytic processes and spans a broad range 

of applications from the manufacture of value-added products to the conversion of undesired 

chemicals into harmless and bio-compatible species. Despite nearly 50 years of worldwide 

research efforts, a satisfactory approach to trickle-bed reactors is still out of grasp. Even though 

fluid dynamics continue to be among the most intensely studied areas, TBR state-of-the-art is far 

from being complete and yet no universal approach has emerged as a panacea to predict 

conclusively TBR key fluid dynamic parameters (Carbonell, 2000; Al-Dahhan et al., 1997; 

Gianetto and Specchia, 1992; Sáez and Carbonell, 1985; Goto and Smith, 1975). This is partly 

ascribable to the diverse entangling gas-liquid patterns met in a TBR which make such parameters 

depend in a complex manner on the fluid properties and throughputs, interfacial interactions and 

bed geometry. In these reactors, gas and liquid phase flow co-currently downward through a fixed 

bed of catalyst particles. Generally, three phase fixed bed reactors can operate in 

hydrodynamically different regimes whose boundaries depend on gas and liquid superficial 

velocities, catalyst bed and fluid properties (van der Merwe and Nicol, 2005; Attou and 

Ferschneider, 1999; Al-Dahhan et al., 1997; Holub et al., 1993). 

In practice, many of the chemical reactors used in industry are truly multiphase and must be 

described in the context of CFD by multiple momentum equations (Jiang et al., 2002). Direct 

numerical simulation of the transport equations for all phases with fully resolved interfaces 

between phases is only possible for multiphase systems characterized by lower Reynolds numbers. 

Such a detailed model could not be used to predict a large chemical reactor such as a trickle-bed 

reactor and other multiphase reacting flows (Gunjal et al., 2005). As a middle-term approach, we 

evaluated in a previous work the TBR behaviour for the catalytic wet oxidation of a vanillic acid 
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solution by using the available methods in commercial CFD codes where the fluid is modelled by 

the volume fractions for each phase (Lopes et al., 2007c) much in the same way used to describe 

micromixing in single-phase flows. 

 

XI.2. Numerical model and governing flow equations 

In this work, TBR is modelled by means of a multifluid CFD Euler-Euler two-fluid model 

implemented in commercial software FLUENT (FLUENT 6.1, 2005). In a first step, the 

hydrodynamic behaviour for the gas-liquid concurrent downflow is analysed in order to validate 

with results taken from the open literature. Afterwards, the influence of operation conditions on 

the catalytic wet oxidation in continuous mode is evaluated. At the subgrid scale, the two phases 

(G/L) are described by the corresponding volume fractions. The multifluid CFD model at its most 

basic level consists of mass and momentum balances for each phase. In the case of multiphase and 

incompressible flow, the pressure constrains the velocity field to ensure that the sum of the phase 

volume fractions equals unity. To reduce the computational requirements and numerical efforts, 

the mesh domain was previously optimized in terms of cell number. The mass and momentum 

conservation equations have been described in Equations (V.1) and (V.2) in Chapter V. 

Mainly due to the intrinsic nature of multiphase reactors, the incomplete understanding of the 

physics plus the highly coupled and nonlinear nature of the equations, the complete solution is 

largely dependent in the mechanistic principles and advanced numerical analysis as well as 

satisfactory computational resources. Therefore, closures equations for fluid/fluid and 

fluid/particle interactions integrated in the overall momentum balance equation is often an 

approximation based in theoretical assumptions. The force balance equation includes the rate of 

change of momentum for the qth phase,  pressure forces, gravitational acceleration, average shear 

stresses and interphase momentum exchange. The pressure drop in the packed bed is usually 

correlated using the Ergun equation or its variants (Al-Dahhan et al., 1997, Holub et al., 1993; 

Sáez and Carbonell, 1985). Interphase coupling terms may therefore be formulated based on 

similar equations. The presence of liquid flow, however, leads to additional interphase exchanges, 

which need to be formulated correctly. We have used the model of Attou and Ferschneider (1999), 

which includes gas-liquid interaction forces and it was developed for the regime in which liquid 

flows in the form of film. The interphase coupling terms are expressed in terms of interstitial 

velocities and phase volume fractions for gas-liquid, gas-solid and liquid-solid momentum 

exchange forms as shown in Equations (V.4)-(V.7) in Chapter V in where it was also described the 

turbulence modelling approach in Equations (V.9) and (V.10). The species continuity balance was 

expressed in Equation (X.1) in Chapter X where it was also presented the conservation of energy 
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in Eulerian multiphase applications that is expressed by a separate enthalpy equation for each 

phase as shown in Equation (X.2) along with the description of the calculation procedure for the 

physical properties and mass transfer parameters in section X.2. 

 

XI.3. Results and discussion 

XI.3.1 TBR specifications and numerical techniques 

The solution domain for the experimental system investigated in this work is shown in Fig. XI.1. It 

consists of a cylindrical vessel with 5 cm internal diameter and 1 m bed height packed with 

catalyst spherical particles 2 mm diameter.  

 
Figure XI.1. Computational mesh domain of TBR at the entrance 

 

Numerical simulations are compared to experimental data in order to validate the predicted 

hydrodynamic parameters pressure drop and liquid holdup. The simulated operating conditions 

were 10-30 bar pressure and temperatures from 290 to 500 K. Gas and liquid mass flow rates were 

in the range 0.10 – 0.70 and 0.05 – 15 kg/m2s, respectively. 

The FLUENT preprocessor GAMBIT 2 (GAMBIT 2, 2005) was used as a geometry and mesh 

generator. The mesh of the packing bed was designed excluding surface roughness. The multigrid 

computational domain adopted in the TBR is characterized by tetrahedral cells around and over the 

catalyst particles and hexahedral elsewhere because this strategy takes advantage of the 

hierarchical nature of the grids, incorporating an efficient technique to generate the coarser grids in 

the mesh preprocessor GAMBIT 2. Aiming to achieve higher numerical precision, the compromise 
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is between the application of coarse meshes that are best designed in regions where temporal and 

spatial gradients of key quantities are relatively small and the preliminary numerical results that 

were carried out to identify the number of computational cells appropriate to obtain qualitative and 

quantitatively grid independent results.  

Fig. XI.1 shows the essential features of one million tetrahedral cells per catalyst layer 

representing the catalytic bed. The system domain is discretized by an unstructured finite volume 

method, obtained using the solver FLUENT (FLUENT 6.1, 2005) in order to convert the 

governing equations like continuity and momentum equations to algebraic equations that can be 

solved numerically. The reactor wall and catalyst surfaces are treated as no slip boundaries with 

standard wall functions. The gas flow rate at the distributor is defined via inlet-velocity-type 

boundary condition with gas volume fraction charging according to the specifications made in the 

simulations. The computational domain mimics the D2 gas-liquid distributor with 60 holes 

uniformly arranged across the radial direction as described in Chapter VII. The use of under-

relaxation factors represents a good compromise between physical accuracy and reasonable 

computational effort. The flow model is based on solving Navier-Stokes equations for the 

Eulerian-Eulerian multiphase model along with multiphase k-ε turbulent model. The governing 

differential equations are solved using iterative solution to the discrete form of the mathematical 

model using a SIMPLE algorithm for pressure-velocity coupling with high-order integration 

schemes. The gas and liquid are described as interpenetrating continua and equations for 

conservation of mass and momentum are solved for each phase. To avoid numerical difficulties, 

the transient calculations were made for two-phase flow starting with different time steps. The 

converged solution is assumed when the scaled residuals of all variables were smaller than 10-5. 

Preliminary numerical simulations were carried out to identify the computational cells that are 

adequate to obtain grid independent results so that these numerical simulations showed that the 

predicted values of overall pressure drop and liquid holdup become insensitive to further grid 

refinement either when increasing the number of grid cells or using higher order discretization 

scheme that caused less than 5% change in pressure drop and less than 1% change in liquid 

volume fraction. 

 

XI.3.2 Hydrodynamic studies  

As the performance of the trickle bed reactor is affected by the fluid dynamic parameters, the 

hydrodynamic studies are discussed in terms of liquid holdup and pressure drop at different 

operating pressures in the range 10 to 30 bar. In order to validate the computational model, the 

runs were carried out for the vectorial field of liquid and gas velocity and for liquid hold up and 

pressure drop using spherical catalysts with 2 mm diameter. The CFD flow maps indicate that for 
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gas (Fig. XI.2) and liquid (Fig. XI.3), the velocity is higher at points where the flow is processed 

downward in axial direction.  In accordance to these results, the maximum gas velocity is about 

0.5 cm/s (Fig. XI.2) while the liquid velocity is about 0.005 cm/s (Fig. XI.3) which is in the range 

of well accepted trickle flow maps reviewed elsewhere (Al-Dahhan et al., 1997; Wammes and 

Westerterp, 1990).  

 
Figure XI.2. Gas velocity (cm/s) axial map 
 

 
Figure XI.3. Liquid velocity (cm/s) axial map 
 

Simulated CFD liquid holdup and pressure drop are represented in Figs 4 and 5 by lines as a 

function of liquid mass flux water when the reactor operates with air as the gas phase at different 

pressure values. The experimental data plotted in Figures 4 and 5 were available from the work 

developed by Nemec and Levec (2005) in where it was described in detail the experimental setup. 

In that work, liquid holdup was measured by a gravimetric method that consists in weighting the 

column in two different ways to have good reproducibility. After the bed was extensively 

prewetted, the reactor with dimensions similar to the ones described previously was operated first 
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in a high interaction regime and then reduced to the desired level at which the pressure drop and 

liquid holdup were measured.  
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Figure XI.4. Liquid holdup as a function of liquid mass flux at constant pressure values (G = 0.5 kg/m2s) 
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Figure XI.5. Pressure drop as a function of liquid mass flux at constant pressure values (G = 0.5 kg/m2s) 

 

These predictions are in good agreement with experimental values which enables the validation of 

our CFD model. In fact, the computational fluid dynamic model validation was carried out first in 

single-phase pressure drop simulations with only the gas phase flowing downward the bed; 

afterwards, two-phase flow is simulated to perform the final comparison between predicted 

hydrodynamic parameters and experimental data. In the whole range of Reynolds numbers for gas 

phase, pressure drop predictions are within 10% of error when comparing with the measurements 

provided by Nemec and Levec (2005). It should be pointed out that the operational region of flow 
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rates (10<ReG<400) is that of particular interest to TBR and in this ambit Eulerian model fits the 

pressure drop data as well as liquid holdup quite well within acceptable limits of 10%. Moreover, 

our validation results are successfully compared against the results of Attou and Ferschneider 

(1999) for the pressure drop in a parity plot illustrated in Chapter X (Lopes et al., 2007c). It should 

be also emphasized that the fixed-bed modelled in this work had the tube to particle diameter ratio 

higher than 10 so the available geometry and data taken from literature should not be affected by 

the reactor column wall. In accordance to Fig. XI.4, when the liquid mass flux increases, the liquid 

holdup also increases for L higher than 8 kg/m2s being the growth rate smaller for the same total 

pressure value whereas an increase of the total pressure results in a considerable decrease of liquid 

holdup. The influence of the gas flow determined by a different operating pressure on the liquid 

holdup is less pronounced at low values of liquid mass fluxes. For example, in case the reactor 

operates at 40 bar, the liquid holdup is substantially lower compared when it operates at 10 bar. 

For gas-liquid flows, the total driving force increases partially due to the pressure gradient; 

nevertheless, as the liquid mass flux increases up to 8 kg/m2s, the liquid holdup remains practically 

constant at 0.2 as observed by the threshold observed in Fig. XI.4 and only increases slightly. 

Comparing Fig. XI.4 and Fig. XI.5, where the pressure gradient per unit reactor length has been 

plotted as a function of liquid mass flux, we see that for very low values of pressure drop the liquid 

holdup are equally small. With the increase of pressure drop due to higher reactor pressures, the 

total driving force enlarges noticeably and, hence, the liquid holdup growth rate reduces when the 

liquid mass flux increases (Wammes and Westerterp, 1990). Moreover, the comparison between 

the hydrodynamic parameters determined at 10 and 40 bar shows that the effect of the reactor 

pressure has greater influence on the pressure drop than it has on the liquid holdup as expected.  

 

XI.3.3 Effect of operating conditions on TOC conversion 

Some TBR models reported in the literature considered isothermal operation and used either a 

pseudo-homogeneous or a heterogeneous model with plug-flow for gas and liquid phase while 

other models accounted for liquid flow non-uniformity by using an axial dispersion model or even 

a residence time distribution based model. In the present work, our CFD Euler-Euler two-fluid 

model incorporates the three fundamental balances, continuity, momentum and energy computed 

by means of phase-weighted averaging for turbulent multiphase flow. The TBR oxidation 

behaviour in terms of total organic carbon conversion is developed taking into account the kinetic 

expressions obtained in Chapter III (Lopes et al., 2007b) dealing with the catalytic wet air 

oxidation of several phenolic acids (1200 ppm) over the Mn-Ce-O 70/30 catalyst prepared in our 

laboratory. The kinetic parameters of catalytic wet air oxidation for the phenolic mixture were 

calculated by means of the Generalized Kinetic Model (GKM), a lumped kinetic model widely 

used to describe the total organic carbon profiles in CWO reactions. GKM considers three types of 
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compounds: easier degraded reactants (A); intermediates with difficult degradation (B) and desired 

end products, namely carbon dioxide and water (C). In the oxidation process of the phenolic 

solutions with Mn-Ce-O 70/30, phenol and acetic acid were formed as intermediate compounds, 

being totally degraded during the treatment and the overall TOC practically reduced to zero. The 

activation energy and the pre-exponential factor were calculated by using the Arrhenius plot and 

the reaction rate constants as a function of temperature were then integrated in the TBR model as 

well as the individual reactions enthalpy computed from the difference between the enthalpy of 

formation of end products (CO2 and H2O) and initial reagents, considering total organic carbon 

conversion of the six phenolic acids. In the computational model, the liquid reactants were 

assumed to be non-volatile and the gas phase is pure at constant partial pressure of the reacting 

oxygen. The results of our simulations have assumed a uniform flow at the reactor entrance and 

that the catalyst diameter (2 mm) has a minor influence in terms of wall flow. In fact, according to 

the literature recommendations the catalyst geometry has significant effect on the wall flow 

treatment in FLUENT at catalyst spherical diameters higher than 5 mm. The effectiveness of the 

trickle-bed reactor for phenolic content conversion was investigated in terms of different reactor 

heating temperatures, total pressures, gas and liquid mass fluxes and initial concentrations of the 

pollutant. 

The effect of temperature on TOC conversion at the reactor outlet is shown at steady-state in Fig. 

XI.6 for different liquid mass fluxes when the inlet is equal to the wall temperature. Negligible 

conversion was obtained for low temperatures and as the temperature increases, a considerable 

influence in total organic carbon abatement is observed leading to reduction values higher than 

95% for lower liquid flow rates, i.e. for higher residence times.  
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Figure XI.6. TOC conversion as a function of mean bed temperature for different liquid mass fluxes (G = 0.5 kg/m2s; P 

= 30 bar) 
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Fig. XI.7 shows that the effect of reactor pressure on conversion is significantly lower than the one 

observed for the temperature and it can be seen that increasing pressure from 10 to 30 bar leads to 

higher TOC conversions. Therefore, for higher pressures, the gas density and its solubility also 

increases in the liquid phase. Additionally, an increase in gas pressure provides a high interaction 

force for the reactants to cover as much surface area as possible.  
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Figure XI.7. TOC conversion as a function of operating pressure for different temperatures (L = 0.5 kg/m2s) 

 

The effect of liquid mass flux on conversion is shown in Fig. XI.8 at different pressures while the 

result of gas mass flux on TOC degradation is represented in Fig. XI.9.   
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Figure XI.8. TOC conversion as a function of liquid mass flux for different pressures (G = 0.5 kg/m2s) 
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Figure XI.9. TOC conversion as a function of gas mass flux for different temperatures (L = 0.5 kg/m2s; P = 30 bar) 
 

TOC conversion gradually decreased with increasing liquid mass flux since the corresponding 

lower residence times of the reactant reduce the reaction time of pollutant. It has also been 

observed that the gas flow rate has not the same effect in TOC conversion. Fig. XI.9 shows a plot 

for conversion against gas mass flux revealing that for higher temperatures the degradation may 

reach a maximum value, increasing initially with gas flow rate and decreasing afterwards. This 

fact could be interpreted by the improvement achieved for higher temperatures in the distribution 

of liquid film over catalyst and hence wetting increases as observed by several authors. 

The effect of inlet TOC concentration on CWO is shown in the Fig. XI.10 from 200 to 1200 mg/L 

improving TOC degradation. As the solution is highly diluted, the augment in initial total organic 

carbon content leads to higher oxidation rates and hence better conversions.  
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Figure XI.10. TOC conversion as a function of liquid mass flux for different initial TOC values (TOC0) (G = 0.5 

kg/m2s; P = 30 bar) 
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XI.4. Conclusions 

A trickle-bed reactor designed for the catalytic wet air oxidation of phenolic acids was modelled 

by means of computational fluid dynamics. The model consists in a Euler-Euler treatment for the 

fluid phases coupled with the energy equation. The numerical simulations are compared against 

experimental data to validate the predicted hydrodynamic parameters pressure drop and liquid 

holdup. Operating conditions were simulated with 10-30 bar of reactor pressure while gas and 

liquid mass flow rate were in the range 0.10 – 0.70 and 0.05 – 15 kg/m2s, respectively. 

The hydrodynamic studies pointed out that the liquid holdup increases as the liquid mass flux 

increases and decreases for higher operating pressure values. At low values of pressure drop the 

liquid holdup is small but with an increase value of pressure drop due to an increase of the reactor 

pressure, the liquid holdup growth rate reduces when the liquid mass flux increases. The influence 

of operating pressure on liquid holdup is less pronounced than it has on pressure drop.  

Afterwards, the effect of operation conditions on TOC conversion is discriminated in terms of 

temperature, pressure, gas-liquid flow rate and initial pollutant concentration. TOC conversion 

depends heavily on the temperature bed while the operating pressure has minor influence in final 

conversion. When the liquid flow rate is decreased, the residence time increases and the 

conversion is higher but increasing the gas flow rate it was achieved an optimum value where the 

TOC conversion is maximum. Moreover, higher values of inlet pollutant concentration led also to 

higher conversions. 

 

XI.5. Nomenclature 
G    Gas mass flux, kg/m2s 

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

p    Pressure, bar 

t     Time, s 

T     Temperature, ºC 

ur     Superficial vector velocity, m/s 

 

Greek letters 

αq    Volume fraction of qth phase 

Δp    Total pressure drop, bar 
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Subscripts 

G    Gas phase 

L    Liquid phase 

q    qth continuous phase 

S    Solid phase 

0     Initial time reaction 
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XII. Assessment of CFD Euler-Euler Method for CWO 

Modelling in Trickle-bed Reactor1

Trickle-bed reactors are envisaged as a breakthrough technology in industrial wastewater treatment 

plants. According to the literature, the generous research in environmental reaction engineering 

has indicated that scale-up of TBR is erroneous if one considers isothermal operation and uses 

either a pseudo-homogeneous or a heterogeneous model with plug flow for gas and liquid phases. 

Even though axial dispersion model may account for liquid distribution non-uniformity, the 

reaction parameters are strongly dependent on the reactor fluid dynamics.  

In our case-study, we developed an Eulerian CFD framework based on empirical interphase 

coupling parameters in the momentum balance equation. After the hydrodynamic validation, the 

catalytic wet oxidation of phenolic wastewaters was taken as an example to evaluate axial and 

radial profiles for the total organic carbon depletion and temperature along the packed bed. The 

theoretical calculations were compared against experimental data taken from a trickle-bed reactor 

pilot plant. The Eulerian computations have shown promising results on how fluid dynamics can 

be correlated with chemical reaction, namely on the prediction of total organic carbon conversions 

attained at different temperatures.  
 

XII.1. Introduction 

Bisphenols, alkylphenols, trihydroxybenzenes, hydroxybiphenyls, catechols and phenol ethers 

belong to a class of toxic organic compounds listed by the EPA (Environmental Protection 

Agency) as priority pollutants. These compounds often contaminate the natural water bodies and 

are produced in the petrochemical, pharmaceutical, pesticide, dye and agro-industries. Phenol 

derivatives are characterized by their toxicity, difficulty and persistency at the time of water 

decontamination. Consequently, highly efficient techniques such as photocatalytic and 

sonochemical degradation, Fenton oxidation, ozonation, microwave irradiation, supercritical water 

oxidation and wet air oxidation (WAO) are advanced oxidation techniques, which mineralize 

organics to harmless final products using appropriate catalysts (Collin et al., 2009; Rivas et al., 

2008; Zhou et al., 2007; Cañizares et al., 2007; Mandal et al., 2004; Pera-Titus et al., 2004; 

Esplugas et al., 2002). 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009a) 
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Among these alternative destruction technologies, catalytic wet air oxidation (CWAO) has been 

used in the treatment of wastewaters containing either moderately concentrated non-toxic or bio-

toxic organic pollutants. The biological refractory pollutants are oxidised by dissolved molecular 

oxygen which can be further accelerated with a homogeneous or heterogeneous catalysts. 

However, the industrial application of CWAO has been controlled by the scarce development of 

catalysts that are stable at high operating values of temperature and pressure (Bhargava et al., 

2006). The recent development of economical and stable catalysts is an encouraging factor 

concerning the catalyst deactivation and the formation of carbonaceous deposits that hampers the 

access to the catalyst sites. The selection of a suitable reactor in another key criterion that can 

affect the industrial implementation of advanced wastewater treatment facilities. While most 

laboratory studies have been carried out in slurry and/or fixed-bed reactors, recent comparisons 

between those operating configurations have shown that fixed-bed reactors are advantageous either 

in terms of process selectivity or stability. While agitated reactors (slurry or spinning basket) 

exhibiting high liquid-to-catalyst ratio can promote negatively parallel homogeneous 

polymerisation reactions, fixed-bed reactors in CWAO have emerged as the best choice for 

systems with high potential for polymerisation reactions (Pintar and Levec, 1994; Stüber et al., 

2001). According to several experimental studies on activated carbon, the increasing catalyst 

activity loss and lower selectivity towards complete mineralisation strongly affects the organic 

carbon decontamination rates when one operates with batch stirred vessels (Stüber et al., 2001). 

Nevertheless, Maugans and Akgerman (2003) among have shown that Total Organic Carbon 

(TOC) depletion rates on a co-current fixed-bed reactor can be successfully predicted with kinetic 

expressions obtained from batch reaction studies.  

Experimental studies on CWAO indicated that trickle-bed reactors have often been implemented 

in contrast with other operation modes for gas-liquid-solid reactions (Pintar et al., 2001; Tukac et 

al., 2001; Stüber et al., 2001; Fortuny et al., 1999; Goto and Smith, 1975). In this ambit, three 

important hydrodynamic parameters, two-phase pressure drop, total liquid holdup and axial 

dispersion have been selected as the major benchmarking parameters in the comparison of trickle-

bed reactor operation modes. Two-phase pressure drop and total liquid holdup are higher for the 

upflow mode of operation at lower gas and liquid velocities, but with increasing flow rates, the 

two parameters were comparable for upflow and downflow modes as stated by Chander et al. 

(2001). Saroha and Khera (2006) demonstrated that the values of Peclet number were higher in 

downflow mode of operation for the entire range of flow rates studied indicating the presence of 

lower backmixing in the downflow mode of operation and a comparison of the experimental 

observation with the correlations available in literature is presented.   
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One should also bear in mind that the design rules of multiphase reactors are still weak and, for 

this reason, sophisticated scale-up procedures based on modern Computational Fluid Dynamic 

(CFD) codes have received much more attention during the last decade (Dudukovic et al., 2002). 

Given that traditional scale-up procedures are prone to more uncertainty and it is not possible in 

general to relate via simple scale-up rules the performance of laboratory size units to large-scale 

reactors, further investigation of CWAO kinetics in another reactor types coupled with CFD 

models of the large units are usually becoming the preferred route in process development. CFD 

show promising results in understanding fluid dynamics and its interactions with chemical 

reactions. Gunjal and Ranade (2007) have developed a CFD model for simulating flow and 

reactions in the laboratory scale and commercial scale hydro-processing trickle-bed reactors. The 

CFD models were first evaluated by comparing the model predictions with the published 

experimental data. The models were then used to understand the influence of porosity distribution, 

particle characteristics and reactor scale on overall performance and validated model was used to 

predict the performance of the commercial scale reactor.  

Eulerian based CFD models are being constantly developed in order to gain a deep understanding 

how the hydrodynamic parameters affect the performance of trickle-bed reactors. Lopes and 

Quinta-Ferreira (2008) presented an Euler-Euler model and solved for a three-dimensional 

representation of the catalytic bed. The Eulerian mutiphase model was successfully used in the 

computation of pressure drop and liquid holdup and over a wide range for the calculated flow 

regime as a function of gas and liquid flow rates, the CFD theoretical predictions were in good 

agreement for both hydrodynamic parameters. Later, Lopes and Quinta-Ferreira (2009b) studied 

the interstitial phenomena and several computations on multiphase flow distribution have been 

accomplished querying the effect of gas and liquid flow rate on overall hydrodynamics. Lopes and 

Quinta-Ferreira (2009c) also investigated turbulence phenomena with four RANS multiphase 

turbulence models. The authors have found that standard k-ε dispersed turbulence models gave the 

better compromise between computer expense and numerical accuracy in comparison with both 

realizable, renormalization group and Reynolds stress based models. Several computational runs 

were performed at different temperatures for the evaluation of either axial velocity and turbulent 

kinetic energy profiles for gas and liquid phases. Flow disequilibrium and strong heterogeneities 

detected along the packed bed demonstrated liquid distribution issues with slighter impact at high 

temperatures. 

It is well known that various critical issues arise in TBR scale-up if one is only concerned with 

hydrodynamics. CFD models have also to be validated at reacting flow conditions, which can 

improve the global understanding of further industrial application of CWAO. From the above 

survey and to the best of our knowledge, none experimental study on CWAO have been correlated 
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with CFD at reaction conditions. The Eulerian simulations carried out so far have only been 

addressed the hydrodynamics and, with the present contribution, an Euler-Euler model results and 

experimental data are presented here for the sake and completeness of CFD validation. This task 

will be useful for understanding the complex hydrodynamics, its interaction with chemical 

reactions and influence of different reactor scales on performance of the TBRs. 

 

XII.2. CFD Model  

XII.2.1. Euler-Euler conservation equations 

The Eulerian framework, including the description of the continuity and momentum equations, and 

the closure equations of the drag force formulation was developed using the model of Attou and 

Ferschneider (1999) as shown in Equations (V.1), (V.2) and (V.4)-(V.7) in Chapter V, 

respectively. According to this Chapter, the k-ε dispersed turbulence model (Equations (V.9) and 

(V.10)) was used for the reaction studies. The species continuity balance was expressed in 

Equation (X.1) in Chapter X where it was also presented the conservation of energy in Eulerian 

multiphase applications that is described by a separate enthalpy equation for each phase as shown 

in Equation (X.2). Volume averaged properties of fluids were used for calculating the flux across 

the control cell. Two-film theory was used for accounting mass transfer. The resistance in gas-

liquid film was considered as the rate limiting resistance (Bhaskar et al., 2004). Mass transfer 

coefficient was computed according to Satterfield et al. (1978) correlation and heat transfer 

coefficient was calculated according to the correlation developed by Boelhouwer et al. (2001) as 

expressed by Equations (XII.1) and (XII.2), respectively. 

Sh = 0.815 Re0.822 Sc1/3         (XII.1) 

Nu = 0.111 Re0.8 Pr1/3         (XII.2) 

XII.2.2. Simulation setup  

The discretization of the governing equations is done by the finite-volume method as described in 

Chapter V and X. A segregated implicit solver available in commercial CFD package FLUENT 

(FLUENT 6.1, 2005) was employed to evaluate the resulting linear system of equations. The 

conditions required for grid convergent results are based on a 1% relative error criterion and the 

simulations accuracy has been assessed by comparisons to experimental data. The computational 

mesh representing the solid catalyst of the trickle-bed reactor was created using the integrated 

solid modelling and meshing program GAMBIT (GAMBIT 2, 2005). All the calculations were 

carried out on a workstation farm characterized by AMD64 Dual-Core technology. The description 

of the calculation procedure for the physical properties and mass transfer parameters are given in 

section X.2. 
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XII.3. Experimental 

XII.3.1. Materials 

Low- to moderate-molecular weight phenolic compounds are known to be the major contributors 

to the toxicity and the antibacterial activity of olive oil wastewater. Hence, six phenolic-like 

compounds were obtained from Sigma-Aldrich to mimic the bactericide behaviour of olive oil 

processing wastwaters, namely: syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, 

protocatechuic and trans-cinnamic acid. The simulated effluent was prepared through an aqueous 

solution with 200 ppm for each phenolic acid. Following the screening studies performed in batch 

mode, a commercial catalyst CuO-MnOx (N-140: CuO-22%; MnOx - 50%) available from the 

Süd-Chemie Group, Munich was employed throughout the trickle-bed reactor studies. N-140 

catalyst was provided as cylindrical pellets with regular dimensions 4.8×4.8 mm and density 0.9 

kg/L. The commercial catalyst has a specific surface area 161 m2/g. For CFD studies spherical 

particles were used with an equivalent diameter of 4.8 mm based on the equal ratio area/volume of 

both cylindrical and spherical geometries. The ratio [catalyst surface area]/[catalyst particle 

volume] is 1250 m2/m3; the bulk porosity is 0.44 and the bulk density is 0.504 kg/L. 

 

XII.3.2. Equipment 

The trickle-bed reactor studies have been carried out in a pilot plant comprising a cylindrical 

reactor in stainless steel (SS-316) with 50 mm of internal diameter and 1.0 m length as illustrated 

in Fig. XII.1. A gas-liquid distributor is attached at the top of the vertical column to promote a 

better multiphase flow distribution at the reactor inlet. In order to maintain the flux of both phases 

approximately uniform over the cross-sectional area, the liquid distributor was designed with 60 

capillary tubes (0.12 mm internal diameter). The capillaries are held between two plates 1 cm 

apart. The bottom plate has circular holes around the capillaries:  the holes are slightly larger in 

diameter than the outer diameter of the capillary tubes. The gas phase was introduced into the 

chamber formed between the plates, and it exited the distributor through these holes. The top of 

the packing was 0.5 cm below the distributor, while the packing itself was kept in place by a 

stainless steel mesh placed at the bottom of the column. A gas-liquid separator is connected to the 

bottom of the trickle-bed reactor. 

An upstream electronic mass flow controller and a downstream electronic backpressure controller 

(Brooks 5866 series with maximum pressure operation of 100 bar) were used to obtain and 

maintain the desired flow of gas and operating pressure. The pressure drop across the packed bed 

was monitored with a high-pressure differential transducer, which was connected to the top and the 
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bottom of the reactor bed. The liquid phase was delivered to the reactor by a high-pressure 

Dosapro Milton Roy (model XB140K5A100 – SS 316) and can work up to 100 bar and 114 L/h, 

while the gas phase was delivered to the reactor from high-pressure gas cylinders. The liquid feed 

was preheated by an external oven from Carbolite Peak Series PN120 1500 W equipped with a 

PID controller for temperature stability ± 0.5K and 7 electrical heating jackets (800W) were 

attached to the trickle-bed reactor wall. 

Total organic carbon was measured with a Shimadzu 5000 TOC Analyser, which operates based on 

the combustion/nondispersive infrared gas analysis method. The parameter uncertainty in TOC 

measurement, quoted as the deviation of three separate measurements, was never larger than 2% 

for the range of the TOC concentrations.  

 

1 – Effluent feed tank 

2 – High-pressure pump 

3 – Oven preheater 

4 – Air feed cylinder 

5 – Mass flow controller 

6 – Trickle-bed reactor 

7 – Gas-liquid separator 

8 – Gas-liquid condenser 

9 – Back-pressure controller 

10 – Liquid sewer 

Figure XII.1. Schematic diagram of trickle-bed reactor experimental set-up 
 

XII.3.3. Experimental procedure 

The liquid feed was preheated at the temperature set-point (160, 200ºC) and pure air (99.999 %) 

was used as the oxygen source and flowed from the rack of gas cylinders through the mass flow 

controller into the top of the reactor where it was mixed with the phenolic acids solution feed at the 

gas-liquid distributor before entering the reactor. The trickle-bed reactor configuration was such 

that the feed passed over a short bed (length: 5 cm) of inert glass beads before entering the catalyst 

zone. After exiting the reactor the effluent was cooled and depressurized. 
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The reactor was loaded with 990 g of N-140 catalyst and run continuously until the completion of 

the flow reactor studies. Liquid flow rate was maintained constant in the range 1-15 kg/m2s and the 

air inlet flow rate was maintained in the range 0.1-0.7 kg/m2s which allows one to operate in the 

trickling flow conditions (Al-Dahhan et al., 1997). The flow rates were kept constant throughout 

the trickle bed studies in order to maintain consistent hydrodynamics (liquid holdup and two-phase 

pressure drop) in the reactor to eliminate side effects such as natural pulsing flow that would exist 

at the upper values for the gas and liquid flow rates. Pressure was maintained at approximately 30 

bar while the temperature range studied was from 160ºC to 200ºC. The temperature along the 

different axial points of the reactor is monitored by means of six Omega thermocouples (K-type) 

inserted in one single rod in the radial centre of the reactor. The trickle-bed reactor has five 

equidistant sample points disposed axially. 

 

XII.4. Results and Discussion 

XII.4.1. Eulerian hydrodynamic validation 

The Eulerian framework has been proposed to model trickle-bed reactors at elevated pressures in 

the prediction of the hydrodynamic parameters pressure drop and liquid holdup. At non-reacting 

flow conditions, the accuracy of three-dimensional simulations was studied following the 

successive refinement of tetrahedral meshes. Lopes and Quinta-Ferreira (2008) ascribed the effect 

of packing size on the pressure drop and liquid holdup by different specific surface areas of the 

packing material for the trickle-bed reactor as presented in Chapter V. It was found that the 

packing characteristics affect the gas and liquid velocity with the effect of gas velocity being 

prominent at high superficial gas mass velocities. In this ambit, the theoretical calculations pointed 

out how the interphase phenomena affected the integral hydrodynamic parameters revealing again 

the major effect of the gas phase in trickling flow conditions.  

The application of different turbulence models including standard, realizable and RNG k-ε models 

as well as RSM for the hydrodynamics simulation of high-pressure trickle-bed reactor was 

evaluated thoroughly with the Eulerian multiphase model in Chapter VI. On the parametric 

optimization of several numerical solution parameters, the CFD calculations were examined in 

terms of tetrahedral mesh size, time step, convergence criteria and discretization schemes. Lopes 

and Quinta-Ferreira (2009c) found that coupling a monotonic upwind scheme for conservation 

laws (MUSCL) with a standard k-ε dispersed turbulence can reduce the numerical dispersion that 

arose in the multiphase flow simulations and, concomitantly, giving the better compromise 

between numerical accuracy and computational expenditure.  
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Aiming to investigate the multiphase flow distribution phenomena at high-pressure operation, 

Lopes and Quinta-Ferreira (2009b) performed several Eulerian computations with different gas-

liquid distributors (Chapter VII). The interstitial phenomena were investigated through time 

averaged axial and radial profiles of liquid holdup and two-phase pressure drop and it was found 

that liquid flow rate had more prominent effect on radial pressure drop at higher values. 

Additionally, the gas flow rate had a pronounced influence at lower interaction regimes and the 

increase of operating pressure on multiphase flow distribution was found to smooth the radial 

profiles for both hydrodynamic parameters. 

After performing the Eulerian hydrodynamic validation at non-reacting flow conditions, those 

optimum numerical solution parameters were integrated into the multiphase flow model aiming to 

evaluate the axial and radial mapping of reaction parameters (temperature and total organic carbon 

concentration) in the catalytic wet air oxidation of phenolic wastewaters. 

 

XII.4.2. Reaction studies 

Gas-liquid flow inside the TBR was simulated using the Eulerian CFD model and the predicted 

flow field (velocities and volume fractions of different phases) was further used for solving species 

transport equations for simulating the pollution abatement in the trickle-bed reactor. Aiming to 

evaluate the dynamic behaviour of the trickle-bed reactor under reacting flow conditions, several 

Eulerian CFD computations were performed on the catalytic wet air oxidation of phenolic 

wastewaters. Each simulation is characterized by the axial and radial total organic carbon 

concentration and temperature profiles obtained for the trickle-bed reactor startup until the steady-

state was reached. In this ambit, an initial perturbation on the inlet total organic carbon 

concentration was accomplished and the dynamic response of the trickle-bed reactor predicted by 

the CFD model is compared against the experimental data on bulk temperature and TOC 

conversions. In order to replicate computationally the TBR oxidation startup, the reactor was 

firstly heated at the wall temperature (Tw = 160 and 200 ºC) and at the time t* (t/τ) = 0, the feed 

stream previously heated up at the bed temperature entered the reactor representing a step change 

in the inlet total organic carbon concentration. High order discretization scheme (MUSCL) for the 

Eulerian momentum balance equation has been employed so as to avoid the numerical diffusion 

that arose during the CFD simulations.  

Axial Total Organic Carbon profiles 

Figures XII.2 and XII.3 show the transient axial profiles predicted by Eulerian CFD model of the 

mean radial values of the bulk-phase total organic carbon concentration for T0 = Tw = 160 and 200 

ºC, respectively. As expected, the increase of temperature led to higher TOC decontamination 
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rates since the catalytic wet air oxidation follows the Arrhenius law. At T0 = Tw = 160 ºC, the outlet 

TOC conversions were 75.5, 76.8, 77.8, 78.7, 79.3 and 82.0% for t* (t/τ) = 1, 2, 4, 6, 8, 10 as 

shown in Fig. XII.2. If one increases the wall/inlet temperature up to T0 = Tw = 200 ºC, the TOC 

conversions are increased to 82.3, 82.8, 83.2, 83.6, 83.8 and 84.8% for t* = 1, 2, 4, 6, 8, 10, 

respectively. Therefore, the steady-state was reached around t* = 10 for both operating 

temperatures, specifically 82.0% and 84.8% for T0 = Tw = 160 and 200 ºC, respectively. According 

to these axial concentration profiles, the Eulerian model agreed better with the experimental data 

for the highest simulated wall/inlet temperatures at steady-state.  

As it can be seen through the comparison of the axial total organic carbon concentration profiles 

shown in Figs. XII.2 and XII.3, there is no reasonable difference between the axial TOC profiles 

obtained at t* = 1 and t* = 10 (steady-state) for the highest simulated temperature (T0 = Tw = 200 

ºC).  In fact, the experimental data lie over the CFD profiles when the wall/inlet temperature was 

200ºC; notwithstanding a higher difference was detected when the catalytic wet air oxidation was 

simulated with a wall/inlet temperature 160ºC. Although the qualitative behaviour of TBR was 

almost the same with both simulated temperatures, it should be pointed that the backmixing degree 

was higher at T0 = Tw = 200ºC and the relative errors between computed TOC conversions and 

experimental data were higher for the lowest simulated temperature (T0 = Tw = 160ºC). 
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Figure XII.2. Mean radial bulk total organic carbon profiles for axial coordinate at transient conditions for different 

operating dimensionless times, , t*  (T0 = Tw = 160 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar)  
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Figure XII.3. Mean radial bulk total organic carbon profiles for axial coordinate at transient conditions for different 

operating dimensionless times, t*  (T0 = Tw = 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 

 

Axial Temperature profiles 

Figures XII.4 and XII.5 show the influence of the operating temperature on the computed thermal 

profiles and experimental data attained for the catalytic wet air oxidation of phenolic wastewater. 

If one compares the axial temperature and total organic carbon concentration profiles previously 

shown in Figures XII.2 and XII.3, it can be concluded that the operation time required for the 

thermal wave and for the TOC wave to achieve the steady-state is roughly the same, t* = 10. 

Conversely, the Eulerian CFD model underpredicted the temperature elevation in comparison with 

the experimental data obtained for both operating temperatures.  
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Figure XII.4. Mean radial bulk temperature profiles for axial coordinate at transient conditions for different operating 

dimensionless times, t*  (T0 = Tw = 160 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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At the lowest temperature (T0 = Tw = 160ºC), the axial temperature profiles computed by the 

Eulerian CFD model indicated that the hotspot is located nearly the axial centre of the trickle-bed 

reactor (z = 0.45 m) whereas the CFD simulation performed at the highest temperature revealed 

that the hotspot was achieved earlier (z = 0.36 m). None of the simulated operating temperatures in 

the catalytic wet air oxidation have shown a superior quantitative prediction on the TBR axial 

temperature being almost the same the relative errors between the computed and the experimental 

data.  

Additionally, the major difference between the Eulerian axial temperature profiles shown in Figs. 

XII.4 and XII.5 can be depicted from the intensity of the maximum mean radial bulk temperature. 

When the CFD simulation was carried out at T0 = Tw = 160 ºC the maximum temperature was 

161.9 ºC and it was increased up to 203.2 ºC when at T0 = Tw = 200 ºC. This fact is directly related 

with the positive effect of wall/inlet temperature on the catalytic wet air oxidation so that the TOC 

oxidation rate was promoted by the temperature increase from 160 to 200 ºC. One should also bear 

in mind that the saturated oxygen concentration raises significantly with both increased 

temperature and oxygen partial pressure in the operating range typical for wet air oxidation. 

Taking into account that the present CFD simulations were performed at isobaric conditions, a 

temperature increase from 160 to 200 ºC increased oxygen solubility in water at these conditions 

providing a strong driving force for mass transfer and caused a sharper elevation for the bulk 

temperature also supported by the experimental data in Fig. XII.5. 
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Figure XII.5. Mean radial bulk temperature profiles for axial coordinate at transient conditions for different operating 

dimensionless times, t*  (T0 = Tw = 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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Radial Total Organic Carbon profiles 

Figure 5 shows the transient radial profiles of total organic carbon concentration predicted by the 

Eulerian CFD model at T0 = Tw = 160 ºC and z = 0.45 m, while Fig. XII.7 shows the radial total 

organic carbon concentration profiles obtained at T0 = Tw = 200 ºC and z = 0.36 m. According to 

Fig. XII.6, the radial concentration profiles exhibited 5.0% of difference between the TBR centre 

and the wall at the steady-state and T0 = Tw = 160 ºC. In fact, if one increases the wall/inlet 

temperature up to 200ºC the difference of total organic carbon conversions between these radial 

coordinates became 7.6% which reinforce the poor radial mixing effects attained at the hotspot 

zone.  
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Figure XII.6. Radial total organic carbon profiles at the hot spot for different operating dimensionless times , t*  (T0 = 

Tw = 160 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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Figure XII.7. Radial total organic carbon profiles at the hot spot for different operating dimensionless times, t*  (T0 = Tw 

= 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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The behaviour shown by the radial TOC profiles obtained by the CFD model at different 

temperatures is a consequence of the higher temperature that endorses higher TOC removal 

efficiencies. The higher TOC conversions achieved at the trickle-bed reactor centre can be also 

sustained by the gas-liquid interaction forces that enable and improve a better multiphase flow 

distribution previously analysed in Chapter VII. 
 

Radial Temperature profiles 

Figures XII.8 and XII.9 represent the transient radial temperature profiles computed for the hot 

spot at z = 0.45 and 0.36 m for T0 = Tw = 160 and 200 ºC, respectively. As already advanced in the 

discussion of radial TOC profiles, the radial temperature distribution was identical for both 

simulated wall/inlet temperatures. According to Fig. XII.8, the maximum temperature obtained at 

T0 = Tw = 160 ºC was 162.2 ºC which is comparable to the value already obtained for the axial 

temperature profile at the same operating temperature. It should be stressed out that although the 

literature-recommended ratio between the trickle-bed reactor length and diameter obey to the ratio 

L/d ≤ 20, an equivalent temperature elevation was computed by the Eulerian CFD model for the 

axial and radial temperature profiles. The increase of wall/inlet temperature up to 200ºC generated 

a maximum temperature difference of 3.7 ºC between the TBR centre and wall at the hotspot 

which was also similar to the difference attained along the axial coordinate. After the comparison 

between the radial total organic carbon concentration and temperature profiles plotted in Figs. 

XII.6-XII.9, it can be observed that TOC concentration is decreasing from the wall to the centre 

whereas the bulk temperature is increasing from the reactor wall to the centre.  
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Figure XII.8. Radial temperature profiles at the hot spot for different operating dimensionless times, t*  (T0 = Tw = 160 

ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar).  
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This fact can be explained by the chemical reaction thermodynamics which promotes higher TOC 

decontamination rates at elevated temperatures. Notwithstanding, the Eulerian CFD simulations 

performed at T0 = Tw = 160 and 200 ºC indicated that steady-state was reached roughly at t* = 10. 
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Figure XII.9. Radial temperature profiles at the hot spot for different operating dimensionless times, t*  (T0 = Tw = 200 

ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar). 

 

XII.5. Conclusions 

Aiming to investigate the dynamic behaviour of a pilot trickle-bed reactor, an Eulerian CFD model 

was developed to simulate the gas-liquid flow through a catalytic bed of spherical particles. 

Following the hydrodynamic corroboration, the Eulerian CFD model was validated with 

experimental data taken from a trickle-bed reactor pilot plant specifically designed for the catalytic 

wet oxidation of low- to moderate strength wastewaters. Several computational runs were carried 

out under unsteady-state operation to evaluate the dynamic performance addressing the total 

organic carbon concentration and temperature profiles. The effect of operating temperature was 

examined in terms of axial/radial TOC and temperature profiles. During the CFD model validation 

at the higher operating temperature, it was found that the Eulerian model predicted better the TOC 

removal efficiency than for the lower operating temperature. However, the axial bulk temperature 

profiles have not shown the same confidence level of temperature prediction as demonstrated in 

the axial TOC conversion profiles. Nevertheless, the Eulerian CFD framework is envisaged as a 

valuable tool to accelerate the industrial implementation of trickle-bed reactors in advanced 

wastewater treatment plants. 

 

 282 



PART D. TBR REACTION OPERATION: CFD AND EXPERIMENTAL STUDIES  
 

XII.6. Nomenclature 
 

G    Gas mass flux, kg/m2s 

L    Liquid mass flux, kg/m2s 

Nu    Nusselt number 

p    Pressure, bar 

Pr    Prandtl number 

r    Reactor radius, m 

Sh    Sherwood number 

t    Time, s 

t*    Dimensionless time, (t/τ) 

T    Temperature, K  

TOC    Total organic carbon, ppm 

 

Greek letters 

αq    Volume fraction of qth phase 

Δp    Total pressure drop, Pa 

τ    Residence time, s 

 

Subscripts 

G    Gas phase 

L    Liquid phase 

w    Wall 

0     Initial time reaction 
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XIII. Assessment of CFD VOF Method for CWO 

Modelling in TBR1

A trickle-bed reactor (TBR) was modelled by means of the Volume of Fluid (VOF) model to 

provide a reaction behavior analysis in transient conditions. Since conventional modelling 

techniques are unable to address multiphase flow distribution and local temperature variation, the 

VOF model was used to investigate the dynamic performance under reaction conditions providing 

a more rigorous physical description of the underlying flow process. The catalytic wet air 

oxidation was taken as example to evaluate axial and radial profiles for the total organic carbon 

depletion and temperature along the packed bed. 

Computational runs are compared against experimental data from a pilot plant and the VOF model 

was then used to understand the influence of operating temperature in the total organic carbon 

distribution and to describe its interaction with chemical oxidation reaction. The computational 

runs exhibited backmixing effects more pronounced for lower operating temperatures. The mean 

radial temperature profiles revealed the existence of hot spots in the simulated flow regime. 

Furthermore, poor radial mixing was remarked mainly at the hot spot locations addressed in mass 

and thermal profiles.  

 

XIII.1. Introduction 

During the last decades, global reforms, regulations and planetary environmental policies imposed 

the intensification of the technological development to become self sustainable in respect to the 

severe exploitation of natural resources. In this ambit, water has been sheltered by the enforcement 

of efficient treatments of contaminated industrial and domestic water effluents. A vast majority of 

industries generate large quantities of aqueous wastes containing toxic and organic substances. 

The integrated treatment of polluted water streams typically includes a combination of physical, 

chemical, and biological methods.  While biological processes are important for the removal of 

organic pollutants, but often not suitable for waste streams originating from the chemical industry 

since they may contain toxic, non-biodegradable and hazardous pollutants, chemical oxidations on 

the liquid phase is widely recognized by an alternative and feasible solution. Examples of toxic 

compounds are phenol derivatives as well as a large variety of chlorine based organic compounds. 

In fact, the maximum concentration of phenol that can be treated biologically has been reported to 

lie in the range 50-200 mg/dm3, which is typically, exceeded in common industries (Bhargava et 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009a) 

 287



CHAPTER XIII. ASSESSMENT OF CFD VOLUME OF FLUID METHOD FOR CWO MODELLING IN TBR 

 

al., 2006). Moreover, biodegradation technologies are inherently slow and result in considerable 

large installations for the successful treatment of wastewaters. Sludge is then often produced in 

large quantities that must be disposed off either landfilling or by burning which increases the final 

economical cost.  

It is worthwhile to mention that wastewater streams having an organic pollutant load in the range 

of few hundred to few thousand ppms are too dilute to incinerate but yet too toxic and 

concentrated for a biological treatment (Paraskeva and Diamadopoulos, 2006). Within this range 

of concentrations and toxicity, sub-critical solid-catalyzed wet air oxidation (CWAO) technique is 

among the most suitable disposal routes. CWAO technology is based on the catalytic oxidative 

breakdown of oxidizable contaminants in water and carbon dioxide at elevated oxygen pressures 

and high temperatures. Solid catalysts offer a practical and technological alternative to the 

conventional non-catalytic or homogeneously catalyzed routes because the treatment can be 

carried out under much milder conditions, at notably shorter residence times within more compact 

installations, besides the catalyst may in principle be easily recovered, regenerated and reused 

(Pintar and Levec, 2007; Matatov-Meytal and Sheintuch, 1998). Excellent reviews on the use of 

carbon materials as catalytic support or direct catalyst in catalytic wet air oxidation of organic 

pollutants have been reviewed by Stüber et al. (2005) with detailed information on relevant 

engineering aspects including the characterization, activity and stability of carbon. 

The liquid-phase catalyzed oxidation processes fall into the category of gas-liquid-solid reactions 

and are still not at a mature stage of development and technological implementation (Mills and 

Chaudhari, 1999). At the time of proper and reliable industrial design, the chemical reactor 

engineer must overcome the complex nature on the inter-phase and intra-particle heat and mass 

transport, chemical kinetics, thermodynamics, flow patterns and hydrodynamics. Several 

laboratory studies that are being released in the academic and patent literature are merely intended 

to the development of stable and economical catalysts for the wastewaters remediation (Singh et 

al., 2004; Maugans and Akgerman, 2003). Only a few number of studies on computer-aided tools 

has been reported in the open literature for the design of catalytic wet oxidation in trickle-bed 

reactors (Lopes et al., 2007a; Lopes and Quinta-Ferreira, 2007b) and bubble column reactors 

(Debellefontaine et al., 1999; Schlüter et al., 1992).  

Nowadays, following the progress of computing technology and computational fluid dynamics 

(CFD), several numerical models based on numerical simulation of Navier-Stokes equations have 

been developed for multiphase flows. Numerous studies have been devoted to the transport of non-

reacting bubble and droplet sprays in order to fully understand their dynamic nature but it clearly 

appears that specific approaches must be carried out for the concomitant description of interface 
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behavior in gas-liquid-solid systems. Computing interface motion in multiphase flows is a wide 

field of research and several approaches can be used. Front tracking methods (Unverdi and 

Tryggvason, 1992), Volume of fluid methods (Gueyffier et al., 1999) and level set methods 

(Sussman et al., 1994) are the most common numerical strategies used to predict interface motion. 

Front tracking methods are based on the Lagrangian tracking of marker particles that are attached 

to the interface motion, but appear numerically limited for 3D geometries, especially for the 

distribution of the marker particles when irregularities occur on the interface. VOF methods are 

based on the description of the volumetric fraction of each phase in grid cells. The main difficulty 

of the method is that while 2D interface reconstruction is workable, 3D reconstruction is 

numerically expensive. A consequence can be some uncertainties on the interface curvature and 

thus on the surface tension forces. The basis of the Level Set methods has been referred elsewhere 

(Osher and Sethian, 1988) in which the interface is described with the zero level curve of a 

continuous function defined by the signed distance to the interface. To ensure that the function 

remains the signed distance to the interface, a predestining algorithm is applied, but it is well 

known that its numerical computation can generate mass loss in under-resolved regions, which is 

the main drawback of level set methods. To describe the interface discontinuities, two approaches 

can be used, namely the continuous force formulation (“delta” formulation), which assumes that 

the interface is 2 or 3 grid meshes thick, and the ghost fluid method, which has been derived to 

capture jump conditions on the interface (Fedkiw et al., 1999).  

As wetting characteristics play a dominant role in the hydrodynamic operation of trickle beds at 

reacting flow conditions, the VOF model was used to compute the axial/radial concentration and 

temperature profiles accounting at the same time for the liquid spreading on catalyst solid surfaces 

in high-pressure TBR. The hydrodynamic and reaction parameters are correlated on how they can 

be affected by the wetting phenomenon through the simulation of the catalytic wet oxidation on 

the TBR.As trustworthy designing and scale-up of reactors as well as process optimization 

requires detailed knowledge and information from the perspective of multiphase reactor 

engineering to gas-liquid-solid catalytic wet oxidation, this work is devoted to the VOF model for 

TBR modelling with applications in environmental pollution abatement. Liquid effluents arising in 

chemical and agro-alimentary plants are contaminated with a high content of toxic and hazardous 

organic compounds revealing chemical oxygen demands in the range 10-100 g.L−1. Among 

advanced oxidation technologies, catalytic wet air oxidation has demonstrated in the recent 

literature the necessary suitability for the treatment of liquid effluents, in which direct biological 

purification is unfeasible, by offering lower energy requirements and higher oxidation efficiencies 

rather than with the non-catalytic wet air oxidation. Specifically, olive oil mill wastewater is 

characterized by a high total organic carbon fraction (TOC) so that three-phase reactors are 
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required for the continuous wastewater treatment operating in trickle flow regime at trickle-bed 

reactors. VOF model is used to gain insight and quantitative information about the concentration 

and temperature profiles when a phenolic model solution is employed to simulate the CWAO in 

the multiphase reactor. 

XIII.2. Mathematical Model  

XIII.2.1. Governing Flow Equations 

A trickle-bed reactor of non-overlapping spherical particles in cylindrical geometry was modelled 

with a specified void fraction and a set of fluid physical properties. The computational geometry 

shown in Fig XIII.1 was designed so that a distance gap of about 3% of the sphere diameter 

facilitate the grid generation avoiding numerical difficulties that arise in the calculation of 

convective terms as described in Chapter V (Lopes and Quinta-Ferreira, 2008a; Nijemeisland and 

Dixon, 2001). 

  
Figure XIII.1. Configuration of catalyst particle arrangement for the trickle-bed used in VOF simulations 

The purpose of this work is to develop a computational model to analyze the fluid flow through 

the cylindrical bed including the evaluation of axial and radial profiles for TOC concentration and 

temperature variables. In particular, the liquid-gas flow through a catalytic bed was considered 

comprised of monosized, spherical, solid particles arranged in a cylindrical container of a pilot 

TBR unit (50 mmID×1.0 mLength). The VOF method was used to compute velocity field as well as 

liquid volume fraction distributions. The multiphase flow is assumed vertical downward and 
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incompressible, with the mathematical description for the flow of a viscous fluid through a three-

dimensional catalytic bed based on the Navier-Stokes equations for mass and momentum 

conservation. The VOF continuity and momentum equations, the free surface model including the 

surface tension and wall adhesion were described in Equations (VIII.1)-(VIII.9) in Chapter VIII. 

The turbulence kinetic energy, k, and the turbulent energy dissipation, ε, are computed from 

Equations (VIII.13)-(VIII.14) presented in Chapter VIII. 

XIII.2.2. Species Continuity and Energy Equations 

The predicted flow field including velocities and volume fractions of both phases was further used 

for solving species transport equations for simulating the catalytic wet air oxidation of a model 

phenolic solution in the TBR reactor. These equations are expressed in the mass balance equation 

for any species, i: 
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where, Cq,i is the concentration of species i in the qth phase (gas or liquid), Dq,i is the diffusivity of 

specie i in the qth phase estimated using the Siddiqi–Lucas (1986) method, ρq and αq is the density 

and volume fraction of the qth phase. Sq,i is the source for species i in phase q. Volume averaged 

properties of fluids were used for calculating the flux across the control cell. Two-film theory was 

used for accounting mass transfer. The resistance in gas-liquid film was considered as the rate 

limiting resistance (Bhaskar et al., 2004). Mass transfer coefficient was computed according to 

Satterfield et al. (1978) correlation and heat transfer coefficient was calculated according to the 

correlation developed by Boelhouwer et al. (2001) as expressed by Equations (XIII.2) and 

(XIII.3), respectively. 

Sh = 0.815 Re0.822 Sc1/3         (XIII.2) 

Nu = 0.111 Re0.8 Pr1/3         (XIII.3) 

The VOF model treats energy, E, and temperature, T, as mass-averaged variables. The energy 

equation, also shared among the phases, is shown in Equations (XIII.4) and (XIII.5): 
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where Eq for each phase is based on the specific heat of that phase and the shared temperature. The 

properties ρ and keff (effective thermal conductivity) are shared by the phases. The source term, Sh 

contains contributions from volumetric reaction heat sources.  
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XIII.2.3. Numerical simulation 

Tetrahedral mesh representing the interstitial space of the trickle-bed reactor was created using the 

integrated solid modelling and meshing program GAMBIT (GAMBIT 2, 2005). Numerical details 

of cell sizes and the boundary layer treatment have been described in Chapter IX (Lopes and 

Quinta-Ferreira, 2009b). The VOF method simulates free-surface flow by means of a fluid fraction 

function, which has a value between unity and zero. The discretization of the governing equations 

is done by the finite-volume method. The grid independency was established after the evaluation 

of different mesh natures and apertures in order to isolate mesh related discretization errors. A 

segregated implicit solver available in commercial CFD package FLUENT (FLUENT 6.1, 2005) 

was employed to evaluate the resulting linear system of equations. The conditions required for grid 

convergent results are based on a 1% relative error criterion and the simulations accuracy has been 

assessed by comparisons to experimental data available in the literature. At the interface, the 

additional interaction conditions depend on interfacial velocity and gradient of the surface tension.  

The CWAO kinetic parameters were derived from the work developed by Lopes et al. (2007c). 

Our case study is based in the kinetic studies performed with commercial and laboratory-made 

catalyst carried out in batch mode operation. Several authors including the recent work developed 

by Manole et al. (2007) who reported that data in continuous trickle-bed reactor in downflow or 

upflow flooded-bed reactor indicate oxidation behavior similar to that observed in batch mode, 

despite very different liquid-solid ratios for the catalytic wet air oxidation of 4-hydroxybenzoic 

acid.  

Turbulent kinetic energy (k) was estimated from turbulence intensity and turbulent energy 

dissipation (ε) was estimated from the turbulent viscosity ratio as expressed in Chapter VIII. 

Computations are time dependent and were carried out until steady state conditions were reached. 

Standard wall functions were employed for turbulent flow conditions. Until liquid reaches the 

outlet, the time step is very low (about 10-7 s). The time step is increased awhile from 10-7 s to a 

final value of 10-4 s or 10-3 s, the latter value depending mostly on the density ratio between the 

two fluids. The time-stepping strategy depends on the number of iterations by time step needed to 

ensure very low residuals values (all less than 10-5). The time step value is increased by a factor of 

four, if one obtains 10 consecutive time calculations with less than four iterations by time step. In 

the representative case of multiphase reactor, the time step was increased up to 5 × 10-4 s, and the 

calculation was stopped after 1000 iterations with this time step without any significant change in 

the outlet concentration, temperature and mass flux value. CFD calculations have been carried out 

on Linux cluster based on AMD64 Dual-Core 2.2 GHz processor. 
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XIII.3. Results and Discussion 

XIII.3.1. Non-reacting flow validation 

To gain insight on the effect of various parameters such as liquid velocity, surface tension, and 

wetting phenomena, the current VOF model was studied in non-reacting flow conditions to 

simulate the multiphase flow in the high-pressure trickle-bed reactor. The accuracy of simulations 

was evaluated in terms of tetrahedral mesh size and several model solution parameters were 

optimized including time step and convergence criteria. On the discretization of volume fraction 

equation, high-order differencing schemes (HRIC and CICSAM) were found to give the better 

computed results for both liquid holdup and two-phase frictional pressure drop as described in 

Chapter IX (Lopes and Quinta-Ferreira, 2009b). According to the numerical simulations carried 

out so far, the VOF model was used to evaluate the effect of gas flow rate in the range G=0.1-0.7 

kg/m2s on hydrodynamics demonstrating its considerable influence on the liquid holdup in 

comparison with the effect of liquid flow rate. The optimum values for the numerical solution 

parameters were further used in the VOF model to evaluate the hysteresis on both hydrodynamic 

parameters at high-pressure. During the VOF simulations, Lopes and Quinta-Ferreira (2009c) 

found that wetting efficiency can be captured through the evaluation of successive radial planes of 

liquid volume fraction at different packed bed cross-sections as discussed previously in Chapter 

VIII. Additionally, the effect of gas flow rate on the numerical accuracy produced by either 

laminar or several turbulent flow models was investigated for both hydrodynamic parameters. At 

lower gas flow rates, the VOF predictions performed with the laminar flow model were found to 

produce qualitative and quantitatively the same computed results as turbulent flow models for both 

liquid holdup and frictional pressure drop, while for higher flow rates the turbulent flow models 

performed better indicating the considerable degree of turbulence induced by the gas phase as 

shown in Chapter IX (Lopes and Quinta-Ferreira, 2009b). Following the VOF hydrodynamic 

validation, those optimum numerical solution parameters were integrated into the multiphase flow 

model aiming to evaluate the axial and radial mapping of reaction parameters (temperature and 

total organic carbon concentration) in the catalytic wet air oxidation of phenolic wastewaters. 

 

XIII.3.2. Reaction studies 

After the VOF model hydrodynamic validation, several test cases were performed with initial 

perturbation on the inflow total organic carbon concentration. The dynamic behavior of the trickle-

bed reactor was studied evaluating the concentration and temperature profiles for the startup of the 

process until the steady-state was reached. This unsteady-state operating strategy leads to a further 

increase in the complexity of the physical and chemical processes determining the overall TBR 

behavior and therefore necessitates a more refined modelling approach, with special attention 
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being given to the axial and radial profiles under the dynamic operating conditions. The VOF 

multiphase model was employed to model the surface flow including surface tension effects 

mainly due to the increased importance of reaction, convection and diffusion for mixing 

phenomena. The reactor was initially heated at the wall temperature (Tw = 160 and 200 ºC) and at 

the time t* = 0, the feed stream entered the reactor representing a step change in the inlet total 

organic carbon concentration. This fact led to the use of High Resolution Interface Capturing 

scheme in order to suppress the so-called “numerical diffusion” which is mainly related with the 

numerical errors being accumulated by the algorithm and introduced by step perturbation. The 

experimental procedure with a description of materials and equipment used for the oxidation 

experiments in the trickle-bed reactor installation was described in Chapter XII, section XII.3.  

 
Axial Total Organic Carbon profiles 

Figures XIII.2 and XIII.3 show the transient axial profiles predicted by VOF model of the mean 

radial values of the bulk-phase concentration for T0 = Tw = 160 and 200 ºC, respectively. 

According to these concentration profiles, the total organic carbon conversion is higher when the 

catalytic wet air oxidation is simulated at higher temperatures because the oxidation reaction is 

exothermic and follows Arrhenius dependence, therefore, the reaction rate increases with 

increasing temperature. For example, when T0 = Tw = 160 ºC and t* = 0.6, the TOC conversion is 

about 78% but it is 92% when T0 = Tw = 200 ºC, indicating the positive effect in the pollutant 

degradation. The steady-state was reached around t* = 10 for both operating temperatures, 

specifically 88% and 94% TOC reduction for T0 = Tw = 160 and 200 ºC, respectively.  
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Figure XIII.2. Mean radial bulk total organic carbon profiles for axial coordinate at transient conditions for different 

operating dimensionless times, , t*  (T0 = Tw = 160 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar)  
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As it can be seen, the VOF model overpredicted the experimental data on TOC removal and their 

differences are increasing with axial coordinate at the steady-state for both operating temperatures. 
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Figure XIII.3. Mean radial bulk total organic carbon profiles for axial coordinate at transient conditions for different 

operating dimensionless times, t*  (T0 = Tw = 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 

 

The axial dispersion observed for the total organic carbon concentration when t* < 1 indicates 

some degree of backmixing in the trickle-bed reactor operating in downflow mode. In fact, the 

backmixing effect when the system operates at T0 = Tw = 200 ºC is slightly lower than when it 

operates at T0 = Tw = 160 ºC. At this temperature and when t* = 0.25, the concentration profiles 

spans in the axial coordinate between 0.18 and 0.4 m,  while for T0 = Tw = 200 ºC and at the same 

operation time, the concentration spans between 0.18 and 0.26 m. It indicates that the backmixing 

decreases with an increase in the wall/inlet temperature for downflow operation mode.  

 

Axial Temperature profiles 

The influence of the operating temperature on the thermal profiles was plotted in Figs XIII.4 and 

XIII.5. After the comparison between these temperature axial profiles and the TOC profiles 

already plotted in Figs XIII.2 and XIII.3 for the same operating conditions, it can be seen that the 

operation time required for the thermal wave and for the TOC wave to achieve the steady-state is 

almost the same, t* = 10. Once again, the VOF overpredicted the temperature elevation in 

comparison with the experimental data measured at the two different operating conditions. As it 

can be seen from Fig. XIII.4, the qualitative behavior between the temperature predicted by the 

VOF model and experimental data was reasonably similar at T0 = Tw = 160 ºC. However, 

increasing the operating temperature up to T0 = Tw = 200 ºC, a considerable difference was found 
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between the VOF predictions and experimental data for the bulk temperature obtained at steady-

state. 
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Figure XIII.4. Mean radial bulk temperature profiles for axial coordinate at transient conditions for different operating 

dimensionless times, t*  (T0 = Tw = 160 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 

 

The main intrinsic difference between both VOF axial profiles is related with the intensity of the 

maximum mean radial bulk temperature when the catalytic wet air oxidation is modelled at T0 = Tw 

= 160 and 200 ºC. In fact, we can observe that the hot spot was achieved earlier when the 

operating temperature is higher (T0 = Tw = 200 ºC: z = 0.2 m) than when the reactor was operated 

at lower temperature (T0 = Tw = 160 ºC: z = 0.25 m). This fact can be supported by the chemical 

reaction thermodynamics, so that higher temperatures favor the oxidation rates and then the heat 

delivery from this exothermic reaction will be higher. 
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Figure XIII.5. Mean radial bulk temperature profiles for axial coordinate at transient conditions for different operating 

dimensionless times, t*  (T0 = Tw = 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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For T0 = Tw = 160 ºC, in the hot spot, a maximum temperature of about 164.5 ºC was achieved that 

corresponds to a difference of 4.5 ºC in respect to the wall/inlet temperature, but when the same 

chemical reaction is processed at T0 = Tw = 200 ºC, the maximum temperature for the hot spot was 

212 ºC which corresponds to 6 % more than the wall operating temperature. For both cases, the 

steady-state is accomplished at the same operating time, t* = 10. Therefore, one can conclude that 

for higher inlet and wall temperatures, the magnitudes of the hot spots and the final reactant 

conversion are also higher, demonstrated by the mean radial bulk temperature and concentration 

profiles along the catalytic bed. One should also bear in mind that an increase in temperature also 

increases the equilibrium water vapor pressure so that an increase in operating temperature 

requires an increase in total operating pressure in order to maintain the oxygen partial pressure. 

Since the catalytic wet air oxidation of phenolic acids is exothermic it releases energy which raises 

the temperature of the liquid and gas streams leading to further water evaporation. This fact can be 

advantageous because water will act as a heat sink, preventing the reaction from running away. 

 

Radial Total Organic Carbon profiles 

For T0 = Tw = 160 ºC and z = 0.25 m, which corresponds to the hot spot zone, Fig. XIII.6 represents 

the transient radial simulated profiles of total organic carbon variable for different times, while 

Fig. XIII.7 plots the same radial TOC profiles for the corresponding hot spot achieved when T0 = 

Tw = 200 ºC.  
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Figure XIII.6 Radial total organic carbon profiles at the hot spot for different operating dimensionless times , t*  (T0 = 

Tw = 160 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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Figure XIII.7 Radial total organic carbon profiles at the hot spot for different operating dimensionless times, t*  (T0 = 

Tw = 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 

 

These concentration profiles indicated that the radial gradients attained for T0 = Tw = 160 ºC are 

about 10% of difference between the centerline and the wall values which demonstrates a 

considerable degree of poor radial mixing namely at the hot spot as a result of the exothermicity of 

the reaction system leading to higher temperatures in the reactor centre. Furthermore, as the 

multiphase flow is driven by pressure, the hydrodynamic parameters are the result of frictional 

forces building up where the gas and liquid phases are in contact with solid surfaces which result 

in drops of velocity in the fluid phases at these interfaces. The TOC profile obtained for T0 = Tw = 

200 ºC plotted in Fig. XIII.7 indicated a maximum difference of 6 % for the total organic carbon 

degradation. For t* > 2, the maximum concentration difference is achieved at the steady-state (t* = 

10) which can be explained by the higher temperature observed in the centre that leads to higher 

TOC oxidation rates and therefore, large variations for the TOC radial values. 

 

Radial Temperature profiles 

Figures XIII.8 and XIII.9 represent the transient radial temperature profiles computed for the hot 

spot at z = 0.2 and 0.25 m for T0 = Tw = 160 and 200 ºC, respectively. In this case, the thermal 

distribution is not very different whether the TBR is operated at 160 or 200 ºC. For T0 = Tw = 160 

ºC, it can be observed in Fig. XIII.8 that the maximum temperature difference obtained radially is 

4 ºC which is similar to the value already obtained for the axial temperature profile at the same 

operating temperature. This confirmation points out that the trickle-bed reactor also underwent 

some degree of radial mixing effects.  
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Figure XIII.8 Radial temperature profiles at the hot spot for different operating dimensionless times, t*  (T0 = Tw = 160 

ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar).  
 

Fig. XIII.9 illustrates this fact prominently for T0 = Tw = 200 ºC, in which the maximum radial 

temperature difference was 12.8 ºC and, once more, a value slightly higher than the difference 

attained for the axial coordinate. Comparing Figs. XIII.6- XIII.9, in which TOC concentration and 

temperature radial profiles were plotted, one can observe opposite behaviours already advanced for 

the explanation of these radial distributions. 
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Figure XIII.9 Radial temperature profiles at the hot spot for different operating dimensionless times, t*  (T0 = Tw = 200 

ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar). 

In fact, while the concentration profiles are diminishing from the wall to the centre, the thermal 

ones are augmenting from the wall to the centre since oxidation reactions are exothermic reaching 

the maximum at r = 0. As the chemical reaction is favoured by the higher operating temperatures, 
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it is expected also the higher conversions in those cases so that the TOC degradation reaction rates 

are higher as well. In all cases, the steady-state is reached at t* = 10. These computational results 

show that the radial gradients are higher at the hot spot as observed in the temperature colour maps 

presented in Figs XIII.10a) and b) for different operating times, t* = 2 and 10, respectively, in 

where the difference between the centreline and wall temperatures corresponds about 6 % of the 

wall and inlet temperature.  

  
a)       b) 

Figure XIII.10 a) Radial temperature color map at the hot spot for t* = 2 and b) t* = 10 (steady-state) 

Therefore, hotspot formation phenomenon may be attributed to the predicted radial dispersion 

being its relationship with underlying fluid dynamics illustrated by Figs. XIII.11a) and b). 

However according to Fig. XIII.11, the gas and liquid holdup radial distribution at the hot spot for 

t* = 10 did not show the same behaviour as the thermal profile (Fig. XIII.10) already exhibited.  

 
a)       b) 

Figure XIII.11 a) VOF snapshots for the gas and b) liquid holdup at the hot spot for t* = 10 (T0 = Tw = 200 ºC, L = 5 

kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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Phase holdup seems not having direct cause-effect with temperature non-uniformity and hotspot 

formation, which is caused by the reaction exothermicity. Moreover, the VOF snapshots for the 

gas (Fig. XIII.12a) and liquid velocity (Fig. XIII.12b) at the hot spot (t* = 10, T0 = Tw = 200 ºC, L 

= 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) also demonstrated that the local variation of gas-liquid 

velocities are practically independent of the temperature profile.  

 
Figure XIII.12 a) VOF snapshots for the gas (cm/s) and b) liquid velocity (cm/s) at the hot spot for t* = 10 (T0 = Tw = 

200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 

 

ion at the hot spot (Fig. XIII.13) 

ofile TOC showed that the lower pollutant concentrations 

In fact, the VOF snapshot for the Total Organic Carbon concentrat

showed a similar behavior that was observed for the radial distribution of bulk phase temperature. 

According to Fig. XIII.13, the radial pr

were achieved in the TBR centre being the maximum values attained at the wall. 

 
Figure XIII.13 VOF snapshot for the Total Organic Carbon concentration (ppm) at the hot spot for t* = 10 (T0 = Tw = 

200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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It should be stressed out that these hot spots might initiate undesired side reactions (polymerization 

of phenolic compounds) and damage the catalyst, leading in extreme cases to reactor runaway. Our 

computational runs confirmed that non-isothermal effects in trickle-bed reactor operation have to 

be accounted in CFD modelling. VOF model allows for the computation of local mass and heat 

transfer and recent simulation activities indicated that one can evaluate external wetting of the 

catalyst pellets (Lopes and Quinta-Ferreira, 2009b; Gunjal et al., 2005) and minimize the poor 

liquid distribution. In fact, during the computational runs it was possible to computed in Chapter 

VIII the mean value of wetting efficiency being almost 82% at L = 5 kg/m2s, G = 0.5 kg/m2s, P = 

30 bar.  

XIII.4. Conclusions 

A multiphase VOF model was developed to provide a deeper understanding of the transient 

behavior of a pilot trickle-bed reactor. The gas-liquid flow through a catalytic bed of spherical 

particles was used to compute velocity field and liquid volume fraction distributions considering 

interfacial phenomena as well as surface tension effects. The computational model was used to 

simulate the catalytic wet air oxidation of a phenolic model solution in the multiphase reactor. 

Several runs were carried out under unsteady-state operation to evaluate the dynamic performance 

addressing the total organic carbon concentration and temperature profiles. Axial concentration 

mal profiles illustrated the existence of such hot spots 

cated in the first one forth of the axial coordinate with an intensity of about 6% higher than the 

The VOF methodology is then able to assist the multiphase reactor design and performance 

prediction for the early identification of hot spots that can lead to reactor runaway providing a 

useful guide for the successful scale-up of industrial trickle-bed reactor in wastewater treatment 

plants. 

  

profiles were then correlated with the radial ones for the simulated flow regime and the influence 

of the operating temperature in the ther

lo

inlet and wall temperatures. The transient radial temperature profiles corresponding to the hot spot 

showed the same intensity that was pointed out for the axial thermal profiles indicating the 

existence of considerable radial gradients that sustained the poor radial mixing in downflow 

operation mode. 
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XIII.5. Nomenclature 
 

C    Specie concentration, ppm 

E    Thermal energy, J 

   Gravitational acceleration, 9.81m/s2

G    Gas mass flux, kg/m2s 

keff     Effective thermal conductivity, W/(m·K) 

L    Liquid mass flux, kg/m2s 

   Unit vector normal to the wall 

bar 

r    Prandtl number 

Greek letters 

Volume fraction of qth phase 

ρq    Density of qth phase, kg/m3

gr  

wn̂  

Nu    Nusselt number 

p    Pressure, 

P

r    Reactor radius, m 

Sq    Source mass for phase q 

Sh    Sherwood number 

t    Time, s 

t*    Dimensionless time, (t/τ) 

T    Temperature, K  

TOC    Total organic carbon, ppm 

ur     Superficial vector velocity, m/s 

 

αq    

Δp    Total pressure drop, Pa 

τ    Residence time, s 

 

Subscripts 

G    Gas phase 

L    Liquid phase 

q    qth continuous phase 

S    Solid phase 

w    Wall 

0     Initial time reaction 
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XIV. Evaluation of Multiphase CFD Models in TBR for 

Pollution Abatement1

The present work encompasses an assessment of multiphase fluid modelling techniques to allow 

the prediction of reaction parameters in trickle-bed reactors (TBR). After the development of 

Volume-of-Fluid (VOF) and an Euler-Euler model, the catalytic wet air oxidation of phenolic 

acids was simulated under unsteady state evaluating axial and radial profiles for total organic 

carbon concentration (TOC) and temperature for the bulk phase.  

For the purpose of code validation, theoretical results were compared with experimental data 

obtained at pressures up to 40 bar in terms of major hydrodynamic parameters, pressure drop and 

liquid holdup. The Euler-Euler model gave better predictions in comparison with VOF model 

since it used empirically-based interphase coupling parameters in the momentum balance equation.  

After the hydrodynamic validation, both multiphase models were used to investigate the dynamic 

performance under reaction conditions for the pollutant decontamination of phenolic wastewaters. 

VOF exhibited the highest TOC conversion as well as the highest temperatures whereas the Euler-

Euler model predictions agreed better with experimental data for both simulated temperatures.  
 

XIV.1. Introduction 

Water quality is an actual and critical problem of human welfare in the twentieth-one century. The 

tremendous growth in the manufacture and use of synthetic chemicals in petrochemical, 

electrochemical and biochemical industry contributes heavily to the contamination of groundwater 

and surface waters. Therefore, an emerging area in lifecycle environmental applications that 

involves multiphase flows in advanced processes for wastewater treatment represents a great 

challenge for aquatic flora and fauna preservation. Bioremediation technologies have known 

limitations and alternative destruction methods such as catalytic wet air oxidation (CWAO) have 

been conducted on a variety of organic compounds using numerous catalysts with a great potential 

in advanced wastewater treatment facilities (Bhargava et al., 2006).   

TBR are catalytic randomly packed-bed tubular devices in which gas-liquid flow is processed 

vertical and concurrently downwards and form an essential part of multiphase reactors that are 

widely used for hydroprocessing industries and, more recently, for wastewater treatment 

                                                 
1 This Chapter is based upon the publication Lopes and Quinta-Ferreira (2009a) 
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(Dudukovic et al., 1999; Al-Dahhan et al., 1997; Holub et al., 1993, Gianetto and Specchia, 1992; 

Sáez and Carbonell, 1985; Goto and Smith, 1975). The downflow operating mode offers a wide 

operating window for high gas-liquid interaction, including gas-liquid mass and heat transfer rates, 

as well as low pressure drops. Non-uniform liquid distribution issues are often a consequence of 

external bed porosity variations, improper gas-liquid distributors, wall effects and partial catalyst 

wetting. In fact, partial particle-scale external wetting is a key parameter for the proper and desired 

reactor operating specifications in order to avoid scarce utilization of the catalyst. This fact has 

been regarded as the cause of poor catalyst utilization, early catalyst deactivation, decreasing 

conversion, selectivity and production rates and development of axial and radial temperature 

profiles and hazardous hotspots. 

 

XIV.2. Previous work 

Exhaustive TBR reviews reported experimental data on pressure drop and liquid holdup as the 

main hydrodynamic parameters to describe the fluid flow within two categories (Al-Dahhan et al., 

1997; Saroha and Nigam, 1996). An empirical approach is based on the development of system 

specific correlations that arise from the numerical fitting of dimensionless numbers (Sie and 

Krishna, 1998; Ellman et al., 1990; Larachi et al., 1991). An alternative and more sophisticated 

methodology is rooted in the phenomenological principles of conservation laws. Recently, 

simulation studies have been reported in the prediction of the main hydrodynamic parameters with 

modern Computational Fluid Dynamics (CFD) codes. In fact, the increasing computational power 

has allowed a new methodology to investigate the complex hydrodynamics of TBR (Atta et al., 

2007, Lopes and Quinta-Ferreira, 2007a; Gunjal et al., 2005a; Jiang et al., 2002; Carbonell, 2000) 

which provides a better understanding of liquid distribution and wetting phenomena in multiphase 

reaction engineering. Euler-Euler and Euler-Lagrange are the two main approaches that have been 

adopted to simulate gas-liquid flows. Whereas the Lagrangian mathematical treatment is 

computationally intensive providing a physical interpretation of the particle-fluid interaction in 

dispersed flows, the Eulerian model has been employed successfully in 2D and 3D exhibiting a 

good agreement between the theoretical predictions and experimental data.  

CFD studies dealing with packed bed flow using a three-phase Eulerian model often make use of 

closure laws so that the drag-exchange coefficients are treated using the relative permeability 

concept or computed by a mathematical formulation based on Ergun equation for a bi- and 

tridimensional computational domain (Gunjal et al., 2005a; Jiang et al., 2002) However, CFD 

models based on the Eulerian-Eulerian approach are unable to capture the gas-liquid interface and 

its effect on wetting efficiency without the expense of interface tracking methods as VOF does. 
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Several works have been published on the simulation of liquid drop impact with the solid surface 

(Gunjal et al., 2005b; Rioboo et al., 2002; Richard et al., 2002; Crooks et al., 2001; Bergeron et 

al., 2000) The experimental and simulation data for different contact angles (Mao et al., 1997) and 

velocities (Richard et al., 2002) indicated that few experimental and simulation studies were 

conducted at lower velocities that are characteristic of trickling flow regime. Therefore, additional 

simulation activities are needed for the meaningful knowledge of interaction between TBR 

hydrodynamics and reaction parameters. 

Despite of the large number of studies reported in the literature on the various hydrodynamic 

aspects of TBR, a lot of work remains to be done in environmental reaction engineering. In fact, 

relatively few investigations have been published concerning catalytic liquid-phase oxidation of 

organic compounds in large-scale TBR for wastewater treatment where hydrodynamic parameters 

prevail. This study aims to evaluate most recent multiphase models in order to investigate the 

reaction behaviour of a trickle-bed reactor designed for wastewater treatment in terms of total 

organic carbon (TOC) profiles by means of CFD codes. Given that CWAO has demonstrated over 

the last decade the compulsory suitability and feasibility for the liquid effluents treatment, a 

trickle-bed reactor is simulated firstly in non-reaction conditions for the hydrodynamic validation 

and, afterwards, the CFD models are used to investigate the axial and radial temperature and TOC 

conversion profiles. Taking into account transport phenomena such as mass and heat transfer, an 

Eulerian k-fluid model was compared with VOF model resulting from the volume averaging of the 

continuity and momentum equations and solved for a 3D representation of the packed bed at 

unsteady state. 

 

XIV.2. Computational Flow Domain 

XIV.2.1. Volume-of-Fluid Model 

VOF multiphase model was used to compute velocity field as well as liquid volume fraction 

distributions assuming that gas-liquid flow is processed vertically downwards through a three 

dimensional mesh representing the catalytic bed. Mass and momentum conservation equations are 

phase weighted averaged and the computation of gas-liquid-solid interfaces are carried through 

HRIC schemes (High Resolution Interface Capturing). VOF model assumed that the variable 

fields for all variables (pressure, velocity, etc) are shared by all phases and correspond to volume-

averaged values. The VOF continuity and momentum equations, the free surface model including 

the surface tension and wall adhesion were described in in Equations (VIII.1)-(VIII.9) in Chapter 

VIII. The conservation of energy in VOF model was described in Equations (XIII.4) and (XIII.5) 

in Chapter XIII.  
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XIV.2.2. Euler-Euler Model 

The continuity and momentum equations have been described in Equations (V.1) and (V.2) in 

Chapter V in where the turbulence modelling approach was also presented in Equations (V.9) and 

(V.10). The species continuity balance was expressed in Equation (X.1) in Chapter X where it was 

also described the conservation of energy in Eulerian multiphase applications that is described by a 

separate enthalpy equation for each phase as shown in Equation (X.2). 

 

XIV.2.3. Numerical simulation 

Finite-volume method has been used to discretize the governing equations as described in Chapter 

XII and XIII. A segregated implicit solver available in commercial CFD package FLUENT 

(FLUENT 6.1, 2005) was employed to evaluate the resulting linear system of equations. All the 

calculations were carried out on a workstation farm characterized by AMD64 Dual-Core 

technology. The description of the calculation procedure for the physical properties and mass 

transfer parameters were given in Chapter X, section X.2. 

 

XIV.3. Results and Discussion 

XIV.3.1. Hydrodynamic validation 

The hydrodynamic validation of Euler-Euler and VOF models are accomplished in terms of 

pressure drop and liquid holdup at two different isobaric operating conditions, 10 and 40 bar. The 

computed pressure drop along the packed bed for both CFD models is plotted in Fig. XIV.1 while 

the liquid holdup is shown in Fig. XIV.2 as well as the experimental data available from the 

literature (Nemec and Levec, 2005).  

According to Fig. XIV.1 the Eulerian model showed the better agreement with experimental data 

for 10 and 40 bar. At the highest operating pressure (40 bar), the VOF model underestimates 

pressure drop in the whole range of liquid flow rates simulated from 2 to 15 kg/m2s, whilst the 

simulated pressure drop for 10 bar is only underestimated from 6 kg/m2s onwards. Until this liquid 

flow rate, pressure drop is slightly underestimated for a lower interaction regime. For the purpose 

of CFD validation in terms of liquid holdup, the effect of operating pressure in the liquid holdup is 

plotted in Fig. XIV.2. Once more, the Eulerian model gave the better theoretical predictions for the 

liquid holdup at both isobaric operating conditions. This fact can be explained by the formulation 

of momentum balance equation given that it included the interphase momentum exchange terms 

that had an empirical basis so that the hydrodynamic validation is accomplished with improved 

agreement between the CFD predictions and experimental data. 
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Figure XIV.1 Effect of liquid velocity on pressure drop at isobaric operation (experimental data from Nemec and Levec, 

2005) 
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Figure XIV.2 Effect of liquid velocity on liquid holdup at isobaric operation (experimental data from Nemec and Levec, 

2005) 

 

The VOF model calculations of the liquid holdup also exhibited better concordance for lower 

liquid flow rates as well as for the calculation of pressure drop. The increase of liquid flow rate led 

to the higher liquid holdup values and then the higher absolute errors between the CFD results and 

experimental data were established at L = 15 kg/m2s. This fact was also observed by Lopes and 

Quinta-Ferreira (2009b) so that for higher gas velocities, the concordance between the simulation 

results and experimental data was no longer observed demonstrating that liquid holdup is poorly 

accounted when the reactor is operated under higher interaction regimes. In fact, in the whole 

simulated range of liquid flow rates, the VOF model underestimates the effect of operating 

pressure in the liquid holdup. Therefore, the mechanistic formulation of the momentum balance 
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for the Eulerian model seems to be more effective for the calculation of either pressure drop or 

liquid holdup. Indeed, the development and inclusion of gas-liquid, gas-solid and liquid-solid 

interaction forces, expressed in terms of interstitial velocities and phase volume fractions, resulted 

in better theoretical predictions towards the hydrodynamic validation of Euler-Euler multiphase 

model. Comparing Figs. XIV.1and XIV.2 the influence of the operating pressure on the liquid 

holdup is less pronounced than in the case of pressure drop. This fact can be explained by the 

increase of the reactor pressure that leads to the larger values of pressure drop up to 35 kPa/m, 

proportionally. These higher proportional differences at higher liquid flow rates result from the 

fact that a further increase of the reactor pressure at a constant gas velocity corresponds to a higher 

driving force. 

 

XIV.3.2.TOC and temperature profiles 

The oxidation behaviour of the trickle-bed reactor in terms of total organic carbon conversion is 

developed taking into account the kinetic studies performed in Chapter III (Lopes et al., 2007b) 

dealing with the catalytic wet air oxidation of several phenolic acids. The axial profile for total 

organic carbon removal and temperature as well as the radial ones are used to investigate the 

efficiency of the trickle-bed reactor for phenolic pollutant conversion. The methodology is based 

on the step perturbation of total organic carbon until a new steady-state is established. The 

dynamic behaviour of chemical reaction, convection and diffusion phenomena are coupled in both 

Euler-Euler and VOF models, so that high order discretisation schemes were used in order to 

suppress the so-called “numerical diffusion”. The experimental data for the TOC oxidation in the 

trickle bed reactor have been collected according to the pilot installation described in Chapter XII, 

section XII.3. 

Fig. XIV.3 shows transient axial profiles of the mean radial values of the bulk-phase TOC 

concentration for T0 = Tw = 160 and 200 ºC. At the highest temperature, for both multiphase 

models, the TOC removal efficiency was higher at steady-state (t* = 10) being 92.9 and 84.4 % of 

organic carbon oxidized with VOF and Euler-Euler models, respectively. At t* = 1, TOC 

conversions were slightly lower for VOF and Euler-Euler models 88.0 and 82.3 % at T0 = Tw = 200 

ºC, respectively. Comparing both multiphase models, VOF predictions for the total organic carbon 

removal was always higher than with the Eulerian model. According to these axial concentration 

profiles, the Eulerian model agreed better with the steady-state experimental data in comparison 

with the VOF model. As one can see from the axial TOC profiles at steady-state, the Eulerian 

model overpredicted slightly the experimental data on TOC removal. 

 312 



PART D. TBR REACTION OPERATION: CFD AND EXPERIMENTAL STUDIES  
 

a) z / m

0.0 0.2 0.4 0.6 0.8 1.0

C
TO

C
/C

TO
C

0 (
%

)

0

20

40

60

80

100

VOF t*=1 
VOF t*=10 
Euler t*=1 
Euler t*=10 
EXP 160ºC SS

 

b) z / m

0.0 0.2 0.4 0.6 0.8 1.0

C
TO

C
/C

TO
C

0 (
%

)

0

20

40

60

80

100

VOF   t*=1 
VOF   t*=10 
Euler  t*=1 
Euler  t*=10 
EXP 200ºC SS 

 
Figure XIV.3. Mean radial bulk total organic carbon profiles for axial coordinate at transient conditions for different 

operating dimensionless times, t* at a) T0 = Tw = 160 ºC and b) T0 = Tw = 200 ºC (L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 

bar) 
 

At the lowest temperature, T0 = Tw = 160 ºC, once again both CFD models overpredicted the TOC 

conversion at steady-state. The relative errors between computer results and experimental data on 

TOC removal along the axial coordinate are given in Table XIV.1. From the tabulated data, it can 

be seen that whereas the relative errors are decreasing gradually from the reactor inlet to the outlet 

for the Eulerian model at T0 = Tw = 160 ºC, those values decreased with some oscillations for the 

highest temperature (T0 = Tw = 200 ºC). Conversely, the VOF computations exhibited the larger 

relative errors for both simulated temperatures. Moreover, the magnitude of these errors was 

higher at the highest temperature 56.2% with the VOF model whereas for the Eulerian model it 

was only 6.7% at the reactor outlet. This fact can be explained by the formulation of enthalpy 

balance meaning that a separate enthalpy equation for each phase in the Eulerian model is more 

efficient on the prediction of temperature, which is used to compute the species concentration, 
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against the shared formulation for enthalpy and temperature variables accounted by the VOF 

model. 
 

Table XIV.1. Relative errors for TOC axial conversion at different temperatures for the Euler-Euler (EE) and VOF 

models  

  z* 
 T0=Tw  ºC 0.2 0.4 0.6 0.8 1 

160 36.6 36.7 32.0 20.3 13.5 EE 
200 15.4 9.6 10.3 2.7 6.7 
160 25.5 26.3 33.7 32.3 45.2 VOF 
200 36.3 35.3 42.6 41.9 56.2 

 

Fig. XIV.4 shows the axial thermal profile for the catalytic wet air oxidation simulated at T0 = Tw = 

200 ºC.  
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Figure XIV.4. Mean radial bulk temperature profiles for axial coordinate at transient conditions for different operating 

dimensionless times, t* at a) T0 = Tw = 160 ºC and b) T0 = Tw = 200 ºC  (L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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Comparing Figs XIV.3 and XIV.4, it can be pointed out that the thermal propagation is 

considerable different between the VOF and Eulerian models. In fact, the thermal profile 

computed by VOF model is much more steep in comparison with the Eulerian model for both 

simulated temperatures. The steady-state for both multiphase models was reached at the same 

operating time corresponding to about 10 times of residence time (t* = 10). The main inherent 

difference among VOF and Euler-Euler models is related with the intensity of the maximum mean 

radial bulk phase temperature when the hotspot zone is attained in the first half of trickle-bed 

reactor. Indeed, at T0 = Tw = 200 ºC  with VOF model the hotspot zone under steady-state is 

located at z = 0.20 m with a maximum temperature of about 212 ºC which corresponds to 6 % of 

temperature increase in reference with the reactor wall or inlet temperature of feed stream. If one 

compares the axial temperature profiles attained at steady-state, one can observe that whereas the 

Eulerian model underpredicted reasonably the experimental data, the VOF model overpredicted 

unrealistically the experimental thermal profile at 200 ºC. At this temperature for t* = 10, the 

magnitude of the hotspot achieved with Euler-Euler model was 1.6 % which gives the maximum 

temperature of 203 ºC. Moreover, the hotspot is now pushed towards z = 0.36 m. 

 In Table XIV.2, the relative errors between the computed temperatures for both CFD models are 

presented for different temperatures at the hotspot zone. At it can be seen from the tabulated data, 

the magnitude of the relative errors attained by the CFD models were sufficiently lower when 

compared to the relative errors for the TOC conversion in Table XIV.1.  The relative errors for the 

VOF model were higher than the Eulerian model ones. While these positive values for the Euler-

Euler model indicate the undeprediction of experimental data 0.4 and 0.7% for T0 = Tw = 160 and 

200ºC, respectively, the relative errors for the VOF model were negative values which reflect the 

overprediction of reactor temperature -1.2 and -3.6% for T0 = Tw = 160 and 200ºC, respectively. 

Additionally, the “relative errors” between both CFD models defined as (EE-VOF)/EE were 

calculated for both simulated temperatures revealing once again the lower magnitude of 

temperature errors. If one compares the amplitude of relative errors achieved for the axial TOC 

profile with the Euler-Euler model, ≈37-3%, and the VOF model, ≈26-56%, against the computed 

errors obtained for the axial temperature profile, Euler-Euler ≈0.4-0.7% and VOF ≈1.2-3.6%, the 

Eulerian model is envisaged as a rational choice for the prediction of reaction properties in the  

trickle-bed reactor. According to the hydrodynamics studies carried out in Chapters V-VII for the 

Euler-Euler model and Chapters VIII-IX for the VOF model, one has also concluded that the 

Eulerian CFD framework predicted with more confidence the liquid holdup and two-phase 

pressure drop. This fact was explained by the empirically based development of interphase 

coupling parameters in the momentum balance equation, which gave the better agreement against 

experimental data on hydrodynamics. Presently at reacting flow conditions, the lower amplitudes 
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of relative errors for the axial TOC and temperature variables were obtained with the Euler-Euler 

model that enables once more a more accurate formulation of both momentum and enthalpy 

balances by the Eulerian CFD model. Thus, within the Eulerian predictions it is possible to 

conclude that TOC deviations below 15% (7-14%) at the TBR exit, where conversions are more 

meaningful for the global treatment, and errors lower than 1% (0.4 and 0.7%) for the maximum 

temperatures, the ones that may induce more concern in reactor operation, may ensure a safe 

validation of this CFD tool to be used in the analysis of such complex multiphase systems. Finally, 

a positive judgment regarding the effectiveness of the wastewater treatment by the catalytic wet 

oxidation technology can be strongly emphasized. 
 

Table XIV.2. Relative errors for temperature at the hotspot zones for different temperatures for the Euler-Euler (EE) and 

VOF models  

      Relative errors (%) 
 T0=Tw / ºC z* Tmax ∆T %∆T (EE-VOF)/EE (EXP-CFD)/EXP 

160 0.45 161.9 1.9 1.2 -1.6 0.4 EE 
200 0.36 203.2 3.2 1.6 -4.3 0.7 
160 0.25 164.5 4.5 2.8  -1.2 VOF 
200 0.2 212 12 6  -3.6 
160 0.39 162.6 2.6 1.6   EXP 
200 0.32 204.6 4.6 2.3   

 

Fig. XIV.5 shows the transient radial profiles of total organic carbon variable at t* = 1 and 10 at T0 

= Tw = 200 ºC for the VOF and Eulerian models, at z = 0.20 and 0.36 m, which corresponds to the 

hotspot zones, respectively.  
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Figure XIV.5. Radial total organic carbon profiles at the hotspot for different operating dimensionless times, t*  (T0 = 

Tw = 200 ºC, L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar) 
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The concentration profile indicates a radial gradient with about 16.8 and 39.7 % of TOC 

conversion difference at t* = 1 and 10, respectively, between the reactor wall and centre with VOF 

model, whereas with the Euler-Euler model gave a TOC conversions of 17.3 and 21.4%. 

Therefore, the VOF model exhibited a considerable poor radial mixing at the hotspot mainly at the 

steady-state much more emphasized than with the Euler-Euler model for the same operating 

wall/inlet temperature. Figures XIV.6a) and b) show a snapshot of an axial plane for the liquid 

holdup simulated by VOF and Eulerian models, respectively, for the axial segment between z = 

0.15 and 0.40 comprehending the hotspot zone.  

 

   
a)      b) 

Figure XIV.6. Liquid holdup snapshot taken between z = 0.15 and 0.40 m for: a) VOF and b) Euler-Euler models  

 

The liquid holdup shown in that plane was the time-averaged result of the liquid volume fraction 

since we were using a Reynolds Averaged Navier-Stokes turbulence framework. As one can 

conclude, the liquid holdup was not the cause for poor radial mixing so that it remains in the range 

of 0.19-0.21 in the whole radial coordinate. In fact, the TOC and thermal radial distribution 

observed at the hotspot can be related with the reaction exothermicity coupled with inefficient 

wetting characteristics predicted by both multiphase CFD models. This fact is mainly due to the 
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radial thermal gradients so that with an exothermic reaction the temperature was higher at the 

reactor centre. The radial distribution for the reactant concentration has been regarded in the 

literature as the main disadvantage of multiphase reactors operating in downflow mode in which 

the coupling between hydrodynamic and reaction parameters are the result of frictional forces that 

may cause liquid-gas mixture maldistribution and incomplete external wetting of catalyst particles. 

The transient radial temperature profiles computed for the hotspot at z = 0.20 (VOF) and 0.36 m 

(Euler-Euler) for T0 = Tw = 200 ºC are plotted in Fig. XIV.7.  
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Figure XIV.7. Radial temperature profiles at the hotspot for different operating dimensionless times (T0 = Tw = 200 ºC, 

L = 5 kg/m2s, G = 0.5 kg/m2s, P = 30 bar). 

 

As the TOC conversion radial profile showed, VOF predictions give the larger temperatures 

attained for the hotspot. In fact, with VOF model the maximum temperatures were 206.3 and 212 

ºC at t* = 1 and 10, respectively, which corresponds to a temperature increase of 6 % in reference 

with wall/inlet temperature at steady-state. Conversely, the Eulerian model gave a maximum 

percentage of 1.6 % for the bulk phase temperature, which is lower than the maximum obtained 

with the VOF model. The thermal profile shown in Fig. XIV.7 confirmed the poor radial mixing 

for the multiphase system pointing out the possible occurrence of local maximum temperatures 

inside the catalytic bed. 

 

 318 



PART D. TBR REACTION OPERATION: CFD AND EXPERIMENTAL STUDIES  
 

XIV.5. Conclusions 

The catalytic wet air oxidation in a TBR was modelled by means of VOF and Eulerian CFD codes. 

Regarding the hydrodynamic validation, the Eulerian calculations showed a better concordance 

between computer results and experimental data since the formulation of momentum balance 

equation is accomplished with the interphase momentum exchange terms integrating both viscous 

and inertial forces. Afterwards, several runs were carried out under transient operation to evaluate 

the dynamic performance addressing the total organic carbon concentration and temperature 

profiles in the multiphase system involving the pollutant removal by CWAO. The Euler-Euler 

model agreed better with the experimental data on TOC removal performed at different 

temperatures. At the reactor outlet, whereas the relative error for the axial concentration profile 

obtained with the Eulerian model was 6.7%, the VOF model overpredicted 56.2% the TOC 

conversion at the highest temperature. This fact was attributed to the formulation of enthalpy 

conservation equation that has a shared structure in the VOF model. Regarding the axial 

temperature profiles, the Eulerian model underpredicted the reactor temperature with a slight 

deviation of 0.7% whilst the VOF model overpredicted up to 3.6%. Notwithstanding, the 

magnitude of relative errors obtained for the temperature profile was significantly lower than the 

TOC conversion for both simulated temperatures, 160 and 200ºC.  The radial TOC conversion 

profiles for both multiphase models indicated a considerable degree of poor radial mixing at the 

hotspot caused by the reaction exothermicity, being this phenomenon reached sooner with VOF 

than with Euler-Euler model. In conclusion, the lower amplitudes of relative errors for the axial 

TOC and temperature variables obtained by the Euler-Euler model enable a more accurate 

development of constitutive balances in the mineralization of phenolic wastewaters through 

catalytic wet oxidation. This way, the ultimate goal of our work endorsing the validation of a CFD 

methodology to analyze the complex behaviour of multiphase reactors under trickle flow regime 

for such remediation technology was successfully achieved. 

XIV.6. Nomenclature 

G    Gas mass flux, kg/m2s 

L    Liquid mass flux, kg/m2s 

L    Reactor length, m 

p    Pressure, bar 

t    Time, s 

t*    Dimensionless time, (t/τ) 

T    Temperature, K  
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TOC    Total organic carbon, ppm 

 

Greek letters 

αq    Volume fraction of qth phase 

Δp    Total pressure drop, Pa 

τ    Residence time, s 

 

Subscripts 

G    Gas phase 

L    Liquid phase 

S    Solid phase 

w    Wall 

0     Initial time reaction 
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In this part of the thesis, a general overview of the main results is presented, along 

with the most relevant conclusions. Finally, suggestions for future work are 

recommended.   
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XV.1. General Overview and Concluding Remarks  

Given that a countless number of wastewater streams originated in chemical, petrochemical, 

pharmaceutical and agro-alimentary plants are contaminated with toxic and hazardous organic 

compounds, the removal of pollutants from industrial process waters and wastewaters is a 

challenging and imperative research area. As long as the water availability in the world continue to 

decline due to either an increasing demand or lengthy drought stages, rigorous environmental 

regulations motivated by political and economical interests have been introduced worldwide to 

realize ecological stipulations on industrial processes. During the last decade, phenol derivatives in 

several petrochemical, chemical and pharmaceutical and agricultural industries have obtained an 

increasing awareness mainly due to their toxicity, health and environmental non-benign properties.  

Several technologies have been investigated for wastewater remediation including biological, 

thermal and chemical treatments. Conventional biological methods are environmentally friendly 

with reasonable costs but require long residence times for micro-organisms to degrade the liquid 

pollutants. The intrinsic drawback of thermal treatments relies on the significant emissions of other 

hazardous compounds. Among chemical treatments, advanced oxidation processes based on the 

high reactivity of hydroxyl radicals exhibited interesting mineralization properties. In this ambit, 

catalytic wet oxidation has been envisaged as a plausible technology to decontaminate chemical 

and agro-food wastewaters streams. Specifically, olive oil mill wastewater is characterized by high 

content of organic matter, which imposes serious issues at the time of proper management and 

secure disposal. The heterogeneous nature of catalytic wet oxidation technology intends to be 

assigned in multiphase reactors at different levels: research on catalyst screening, activity and 

stability, establishment of kinetic rate laws (Part B), computational flow modelling of catalytic 

reactors and validation at non- (Part C) and reacting flow conditions (Part D). Parts A and E are 

respectively devoted to the generic introduction and final conclusions of the overall work. 

In this context, Part B of this thesis was dedicated to six major pollutants typically found in olive 

oil mill wastewaters to mimic the polyphenolic content. Knowing that non-catalytic wet oxidation 

is not able to promote more than 50% of TOC conversion, several commercial (CuO-MnOx/Al2O3, 
CuO-ZnO/Al2O3, Fe2O3-MnOx and CuO-MnOx) and laboratory-made catalysts (Mn-Ce-O, Ag-Ce-

O, MnCu, Mn-O and Ag-O) were used to evaluate the catalytic activity in terms of TOC removal 

efficiencies. Laboratory-made catalysts Mn-Ce-O and Ag-Ce-O showed the higher activity in TOC 

reduction for total oxidation of polyphenols and complete abatement of the intermediate 

compounds formed in the reaction. The crescent order for the difficulty of degradation of the 

phenolic acids was syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, protocatechuic and trans-
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cinnamic acid. The TOC content in the solution was successfully removed by catalytic wet air 

oxidation at 200 ºC and 30 bar total pressure with Mn-Ce-O catalyst. The higher molar quantity of 

manganese in both co-precipitated and wetness impregnated catalyst led to the best TOC 

degradation results. Kinetic parameters were obtained by means of a lumped kinetic model 

highlighting a quite interesting phenomenon coming from the concurrent treatment of various 

pollutants. The co-oxidation process was identified in the simultaneous treatment of a phenolic 

acids mixture clearly showing the enhancement of carbon content depletion in comparison with 

the individual degradation of the same compounds. Slight leaching of manganese was identified 

and the carbon content in the solution was removed by oxidation and not by adsorption on the 

solid catalyst. The catalytic stability was also addressed in terms of catalyst poisoning due to 

deposition of carbonaceous materials. Both manganese and copper catalysts exhibited low levels 

of carbon and hydrogen adsorption. Therefore, given the most active and stable behaviour, 

manganese/cerium catalyst was identified as an interesting formulation for further industrial 

implementation in CWAO of olive oil mill wastewaters.  

A high-pressure trickle-bed reactor has been modelled along Part C of the present work by a three-

dimensional CFD framework aiming to evaluate the hydrodynamic predictions in terms of 

pressure drop and liquid holdup. The Euler-Euler model takes into account the interphase coupling 

terms in the momentum transfer between the gas, liquid and solid phases. CFD calculations with 

different mesh sizes were checked against experiments and a good agreement was achieved. 

Different mesh apertures were evaluated to establish grid independence using a relative error 

measure of hydrodynamic parameters magnitude between the coarse and fine solutions. The effect 

of packing size on the pressure drop and liquid holdup was ascribed by different surface area of the 

packing material for the trickle-bed reactor. The theoretical predictions from the model correctly 

account for the strong influence of the gas flow on the hydrodynamic behaviour of the trickle-bed 

reactors. These gas interactions on the liquid phase appear noticeably significant at high superficial 

gas mass velocities. Several Reynolds Averaged Navier-Stokes turbulence models were 

investigated within the Eulerian framework, namely, standard, realizable and Renormalization 

Group Theory k-ε models as well as Reynolds Stress Model for the hydrodynamics simulation of 

high-pressure trickle-bed reactor. In a first stage, the parametric optimization of different 

numerical solution parameters was accomplished at cold flow conditions for the validation of the 

multiphase flow model. High-order discretization schemes agreed better with the experimental 

data as long as they are based on Total Variation Diminishing algorithm that overcomes the 

numerical dispersion. Standard k-ε dispersed turbulence was then used to evaluate the influence of 

flow temperature on axial velocity and turbulent kinetic energy profiles and it was found to be 

responsible for the smoothness of liquid maldistribution along the packed bed. Multiphase flow 
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distribution has been examined at trickling flow conditions querying the effect of different liquid 

distributors at the top of the trickle-bed reactor. Additionally, time averaged axial and radial 

profiles of liquid holdup and two-phase pressure drop were computed to evaluate the effect of gas 

and liquid flow rates and pressure. The increase of pressure on multiphase flow distribution was 

found to smooth the radial profiles for both hydrodynamic parameters whereas the liquid flow rate 

had more prominent effect on radial pressure drop at higher values in relative comparison to an 

equivalent change in gas flow rate. 

The trickle-bed was also modelled by means of a VOF model. During grid optimization and 

validation, the effects of mesh size, time step and convergence criteria were evaluated plotting the 

hydrodynamic predictions as a function of liquid flow rate. High-order differencing schemes were 

investigated for the discretization of the volume fraction equation. VOF was also used to examine 

the multiphase flow regime and the effect of gas flow rate on the numerical accuracy produced by 

either laminar or several turbulent flow models. At lower gas flow rates, the VOF predictions 

performed with the laminar flow model were found to produce qualitative and quantitatively the 

same computed results as turbulent flow models for both liquid holdup and frictional pressure 

drop, while for higher flow rates the turbulent flow models performed better, indicating the 

considerable degree of turbulence induced by the gas phase. The effect of gas flow rate on 

hydrodynamics revealed a significant influence on the liquid holdup in the range G=0.1 – 0.7 

kg/m2s. Catalyst wetting efficiency can be captured by VOF model according to the radial 

mapping of liquid volume fractions of the packed bed. 

In Part D of the thesis, at reacting flow conditions the behaviour of a trickle-bed reactor for the 

catalytic wet air oxidation of an aqueous solution containing vanillic acid has been studied by the 

Eulerian CFD model. The Eulerian framework was deployed accounting for the transport 

mechanisms as well as the CWAO reaction kinetics. The CFD simulation has been accomplished 

in transient mode and exhibited a considerable effect of temperature whereas the air partial 

pressure only had minor influence. Afterwards, the catalytic wet oxidation of a six phenolic acids 

mixture was carried out at different operating conditions as follows: 10 – 30 bar of reactor pressure 

while gas and liquid mass flow rates were in the range 0.10 – 0.70 and 0.05 – 15 kg/m2s, 

respectively. TOC depletion rates were systematized in terms of temperature, pressure, gas-liquid 

flow rate and initial pollutant concentration. TOC conversion depends heavily on the temperature 

bed while the operating pressure has minor influence in final performance. When the liquid flow 

rate is decreased, the residence time increases and the conversion is higher, but increasing the gas 

flow rate it was achieved an optimum value where the TOC conversion is maximum. Moreover, 

higher values of inlet pollutant concentration led also to higher conversions.  
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Following the hydrodynamic corroboration, the Eulerian CFD model was validated with 

experimental data taken from a trickle-bed reactor pilot plant specifically designed for the catalytic 

wet oxidation of low- to moderate strength wastewaters. Various computational runs were carried 

out under unsteady-state operation to evaluate the dynamic performance addressing the total 

organic carbon concentration and temperature profiles. The effect of operating temperature was 

examined in terms of axial/radial TOC and temperature profiles. During the CFD model validation 

at the higher operating temperature, it was found that the Eulerian model overpredicted the TOC 

removal efficiency whereas the axial bulk temperature profiles were undepredicted for both 

simulated temperatures. Axial concentration profiles were then correlated with the radial ones 

revealing a poor radial mixing for the simulated flow regime namely at the hotspots caused by the 

reaction exothermicity. Concomitantly, several runs were carried out under unsteady-state 

operation to evaluate the dynamic performance addressing the total organic carbon concentration 

and temperature profiles by means of VOF multiphase model. The highest TOC conversion and 

temperature at the hotspot as well as the poorest radial mixing were obtained with the VOF model. 

The influence of the operating temperature in the thermal profiles illustrated the existence of local 

hotspots located in the first half of the reactor with an intensity of about 6% higher than the inlet 

and wall temperatures (160, 200ºC). From the comparison between both multiphase models, the 

better agreement of the Eulerian model with the experimental data on TOC removal at the reactor 

outlet has been attributed to the formulation of enthalpy conservation equation that has a shared 

structure in the VOF model. In what concerns the axial temperature profiles, the Eulerian model 

underpredicted the reactor temperature whereas the VOF model overpredicted up to 4%. 

Nevertheless, according to the multiphase CFD simulations the magnitude of relative errors 

obtained for the temperature profile was significantly lower than the TOC conversion for both 

simulated temperatures. In a nutshell, the lower amplitudes of relative errors for the axial TOC and 

temperature variables exhibited by the Euler-Euler model empowered a secure estimation of 

reaction properties in the catalytic abatement of phenolic wastewaters by wet oxidation in a 

trickle-bed reactor. The validation of CFD methodology was then accomplished at trickling flow 

conditions addressing both hydrodynamic and reaction parameters. 

Being aware that trickle-bed reactor operation may have controllability issues related to liquid 

maldistribution that could be responsible for reactor runaway, CFD results stated that local 

hotspots were observed and liquid distribution assumed a major role in order to achieve feasibility 

and to improve the catalyst wetting efficiency. The current CFD formulations are interesting 

options to capture the wetting phenomena and the effects of flow regimes on three-phase packed-

bed reactors. Specifically, Euler-Euler can be used to probe the hydrodynamic behaviour of a TBR 

in terms of pressure drop, liquid holdup and catalyst wetting efficiency in detail as never before. 
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These computational results allow us to obtain a better understanding of the fundamental physics 

governing the efficiency of multiphase reactors for advanced wastewater treatment facilities and 

the CWAO technology deployment in the commercial-scale TBR. In comparison to the VOF 

model, the Eulerian CFD framework is envisaged as a valuable tool to accelerate the industrial 

implementation of trickle-bed reactors in advanced wastewater treatment plants. Furthermore, the 

commercial catalyst N140 has exhibited promising results in continuous operation for the TOC 

removal of high-strength phenolic wastewaters. 

 

 XV.2. Suggestions for Forthcoming Work  

The results of the present work showed that CFD tools are able to predict reasonably well the 

hydrodynamic and reaction variables of multiphase reactors operating in trickling flow regime. 

Both experimental research and numerical predictions should continue in order to contribute to an 

improved understanding and numerical predictability of trickle-bed reactors hydrodynamic and 

reaction parameters over a wide range of operating flow regimes that characterize the trickle-bed 

reactor operation including the trickle flow, spray flow, pulse and bubbly flow.  

Steady and unsteady state modelling should be then accomplished for different hydrodynamic 

regimes. Most of the research currently taking place in the field of multiphase reactors concerns 

the study of turbulent flows. The present work showed that different turbulence frameworks 

should be taken into account even for lower values of Reynolds number defined in terms of 

interstitial velocity. If one operates at Rei > 300, the flow is highly unsteady, chaotic and 

qualitatively resembling turbulent flow. The three major types of turbulence methodologies to be 

tested for different hydrodynamic regimes are Direct Numerical Simulation and Large Eddy 

Simulation apart from Reynolds Averaged Navier-Stokes modelling.  Whereas under certain 

conditions this method can be very accurate, it is not always suitable for transient pulsing and 

bubbling flows because the averaging process attempts to model the turbulence by performing 

time or space averaging. Direct Numerical Simulation, on the other hand, attempts to solve all time 

and spatial scales. Unfortunately, Direct Numerical Simulation is unrealistic for the majority of 

multiphase systems mainly because it is computationally unrealistic.  Therefore, the numerical 

study should begin with the compromise offered between these two methods that is Large Eddy 

Simulation. The resulting methodology is a hybrid framework between these those methods, which 

involves the filtering of the Navier-Stokes equations to separate those scales to be modelled from 

those which will be solved as in the Direct Numerical Simulation.  
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The CFD models, Euler-Euler and Volume-of-Fluid, have to be verified and validated for different 

flow regimes encompassing a wide range of operating Reynolds numbers. Why should one verify 

and validate those multiphase frameworks. Mainly because validation has to do with whether or 

not the correct equations have been chosen for the task at hand. Thus, the Eulerian and other 

multiphase models should be tested with the momentum exchange forms presented in this thesis 

for other hydrodynamic conditions. Verification, on the other hand, has to do with whether or not 

the chosen equations are being solved correctly. Verification procedures address whether the grid 

resolution is sufficient, whether a solution is converging, and whether the algorithm has been 

coded correctly. After all, modern and sophisticated techniques including Laser Dopler 

Anemometry and Particle Image Velocimetry should be regarded for the CFD validation. 

The interaction of hydrodynamics of the trickle-bed reactor with chemical reaction can be further 

investigated by using the Probability Density Function methods for different flow regimes. Further 

research on Mn-Ce-O catalytic stability and activity in trickle-bed reactors are suggested in the 

near future to move forward the industrial implementation and, mainly, to improve the 

environmental performance of catalytic wet oxidation. This can dictate the success of continuous 

CWAO technology in wastewater treatment. Finally, any advance in TBR technology will 

represent substantial savings, which stimulates the continued research efforts aimed at improving 

TBR operation and performance. 

 329



CHAPTER XV. CONCLUSIONS AND FORTHCOMING WORK 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T h i s   p a g e   i n t e n t i o n a l l y  l e f t   b l a n k 

 330 



APPENDIX A 

 

 
 
 
 
 

APPENDIX A. FLUENT SOLVER  

 
 

 

 

 

 

 

 
This Appendix describes the FLUENT solver methodologies. Details about the 

solver algorithms used by FLUENT are provided after a brief overview of flow 

solvers for the solution of the general scalar transport equation. Afterwards, 

pressure-velocity coupling and time-advancement algorithm are presented for the 

numerical solution of the general scalar transport equation. Finally, discretization 

schemes for spatial and temporal derivatives are described along the evaluation 

methods of gradients and derivatives. 
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A.1 Approaches to Multiphase Modelling  

Advances in computational fluid dynamics have provided the basis for further insight into the 

dynamics of multiphase flows. Currently there are three approaches for the numerical calculation 

of multiphase flows: the Euler-Euler, the Euler-Lagrange and the VOF models. 

Euler-Euler Model  

In the Euler-Euler approach, the different phases are treated mathematically as interpenetrating 

continua. Since the volume of a phase cannot be occupied by the other phases, the concept of 

phasic volume fraction is introduced. These volume fractions are assumed to be continuous 

functions of space and time and their sum is equal to one. Conservation equations for each phase 

are derived to obtain a set of equations, which have similar structure for all phases. These 

equations are closed by providing constitutive relations that are obtained from empirical 

information, or, in the case of granular flows, by application of kinetic theory.  

In the Eulerian model a set of n momentum and continuity equations is derived by ensemble 

averaging the local instantaneous balance for each phase. Coupling is achieved through the 

pressure and interphase exchange coefficients. The manner in which this coupling is handled 

depends upon the type of phases involved; granular (fluid-solid) flows are handled differently than 

nongranular (fluid-fluid) flows. Momentum exchange between the phases is also dependent upon 

the type of mixture being modelled. FLUENT's user-defined functions are used for the momentum 

exchange calculations.  

Euler-Lagrange Model 

In this approach, the fluid phase is treated as a continuum by solving the time averaged Navier-

Stokes equations in the same manner as for a single-phase system, while the dispersed phase is 

solved by tracking a large number of particles, bubbles or droplets through the calculated flow 

field using Newtonian equation of motion. 

VOF Model  

The VOF model is a surface-tracking technique applied to a fixed Eulerian mesh. It is designed for 

two or more immiscible fluids where the position of the interface between the fluids is of interest. 

In the VOF model, a single set of momentum equations is shared by the fluids, and the volume 

fraction of each of the fluids in each computational cell is tracked throughout the domain. 

Applications of the VOF model include stratified flows, free-surface flows, filling, sloshing, the 
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motion of large bubbles in a liquid, the motion of liquid after a dam break,  the prediction of jet 

breakup (surface tension), and the steady or transient tracking of any liquid-gas interface. 

 

A.2 Overview of Flow Solvers1   

FLUENT allows one of the two numerical methods: pressure- and density-based solver. Whereas 

the pressure-based approach was developed for low-speed incompressible flows, the density-based 

approach was mainly used for high-speed compressible flows. However, recently both methods 

have been extended and reformulated to solve and operate for a wide range of flow conditions 

beyond their traditional or original intent.  

For both methods the velocity field is obtained from the momentum equations. In the density-

based approach, the continuity equation is used to obtain the density field while the pressure field 

is determined from the equation of state. On the other hand, in the pressure-based approach, the 

pressure field is extracted by solving a pressure or pressure correction equation which is obtained 

by manipulating continuity and momentum equations. Using either method, FLUENT solves the 

governing integral equations for the conservation of mass and momentum, and (when appropriate) 

for energy and other scalars such as turbulence and chemical species. In both cases a control-

volume-based technique is used that consists of:  

• Division of the domain into discrete control volumes using a computational grid.  

• Integration of the governing equations on the individual control volumes to construct 

algebraic equations for the discrete dependent variables such as velocities, pressure, 

temperature, and conserved scalars.  

• Linearization of the discretized equations and solution of the resultant linear equation 

system to yield updated values of the dependent variables.  

Taking into account that both numerical methods employ a similar discretization process (finite-

volume), the mathematical approach used to linearize and solve the discretized equations is only 

given for the pressure-based solver.  

The pressure-based solver employs an algorithm which belongs to a general class of methods 

called the projection method. In the projection method, the constraint of mass and momentum 

conservation is achieved by solving a pressure (or pressure correction) equation. The pressure 

equation is derived from the continuity and the momentum equations in such a way that the 

velocity field, corrected by the pressure, satisfies the continuity. Since the governing equations are 

                                                 
1 Adapted from FLUENT 6 User’s Manual, Fluent Inc. Centrera Resource Park, 10 Cavendish 
Court, Lebanon, USA 
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nonlinear and coupled to one another, the solution process involves iterations wherein the entire 

set of governing equations is solved repeatedly until the solution converges. Two pressure-based 

solver algorithms are available in FLUENT: a segregated algorithm, and a coupled algorithm. 

These two approaches are discussed in the sections below.  

 

The Pressure-Based Segregated Algorithm

According this methodoly, the pressure-based solver uses a solution algorithm where the 

governing equations are solved sequentially (i.e., segregated from one another). Because the 

governing equations are non-linear and coupled, the solution loop must be carried out iteratively in 

order to obtain a converged numerical solution.  

In the segregated algorithm, the individual governing equations for the solution variables (e.g., u, 

p, T, k, ε) are solved one after another. Each governing equation, while being solved, is 

"decoupled" or "segregated" from other equations, hence its name. The segregated algorithm is 

memory-efficient, since the discretized equations need only to be stored in the memory one at a 

time. However, the solution convergence is relatively slow, inasmuch as the equations are solved 

in a decoupled manner. With the segregated algorithm, each iteration consists of the steps 

illustrated in Figure A.1, where the coupled algorithm is also represented, and outlined below:  

 

1. Update fluid properties (e,g, density, viscosity, specific heat) including turbulent 

viscosity (diffusivity) based on the current solution.  

2. Solve the momentum equations, one after another, using the recently updated values of 

pressure and face mass fluxes.  

3. Solve the pressure correction equation using the recently obtained velocity field and the 

mass-flux.  

4. Correct face mass fluxes, pressure, and the velocity field using the pressure correction 

obtained from Step 3.  

5. Solve the equations for additional scalars, if any, such as turbulent quantities, energy and 

chemical species concentration using the current values of the solution variables.  

6. Update the source terms arising from the interactions among different phases (e.g., 

source term for the carrier phase due to discrete phase).  

7. Check for the convergence of the equations.  

 

These steps are continued until the convergence criteria are met. 
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 Pressure-Based Segregated Algorithm Pressure-Based Coupled Algorithm 

 
Figure A.1 Overview of the Pressure-based solution methods 

 

The Pressure-Based Coupled Algorithm 

Unlike the segregated algorithm described above, the pressure-based coupled algorithm solves a 

coupled system of equations comprising the momentum equations and the pressure-based 

continuity equation. Thus, in the coupled algorithm, Steps 2 and 3 in the segregated solution 

algorithm are replaced by a single step in which the coupled system of equations are solved. The 

remaining equations are solved in a decoupled fashion as in the segregated algorithm.  

Since the momentum and continuity equations are solved in a closely coupled manner, the rate of 

solution convergence significantly improves when compared to the segregated algorithm. 

However, the memory requirement increases by 1.5 - 2 times that of the segregated algorithm 

since the discrete system of all momentum and pressure-based continuity equations need to be 

stored in the memory when solving for the velocity and pressure fields (rather than just a single 

equation, as is the case with the segregated algorithm).  
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A.3 General Scalar Transport Equation: Discretization and 

Solution2  

FLUENT uses a control-volume-based technique to convert a general scalar transport equation to 

an algebraic equation that can be solved numerically. This control volume technique consists of 

integrating the transport equation about each control volume, yielding a discrete equation that 

expresses the conservation law on a control-volume basis. Discretization of the governing 

equations can be illustrated most easily by considering the unsteady conservation equation for 

transport of a scalar quantityφ . This is demonstrated by the following equation written in integral 

form for an arbitrary control volume V as follows:  

dVSAdAdudV
t VV ∫ ∫∫∫ +⋅∇Γ=⋅+
∂
∂

φφ φρφρφ rrr
     (A.1) 

where ρ is density, ur  is the velocity vector, A
r

 is the surface area vector,  is the diffusion 

coefficient for 

φΓ

φ , φ∇  is the gradient of φ  and  is the source of φS φ  per unit volume. Equation 

(A.1) is applied to each control volume, or cell, in the computational domain. The two-

dimensional, triangular cell shown in Figure A.2 is an example of such a control volume. 

Discretization of Equation (A.1) on a given cell yields: 

VSAAuV
t f

facesN

f

facesN

f
fffff φφ φφρρφ

+⋅∇Γ=⋅+
∂
∂ ∑ ∑

rrr
     (A.2) 

where Nfaces is the number of faces enclosing cell, fφ  is the value of φ convected through face f, 

fA
r

is the area of face f, fφ∇  is the gradient of φ  at face f and V is the cell volume. The equations 

solved by FLUENT take the same general form as the one given above and apply readily to multi-

dimensional, unstructured meshes composed of arbitrary polyhedra. 

 
Figure A.2 Control volume used to illustrate discretization of a scalar transport equation 

                                                 
2 Adapted from FLUENT 6 User’s Manual, Fluent Inc. Centrera Resource Park, 10 Cavendish 
Court, Lebanon, USA 
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A.3.1 Solving the Linear System  

The discretized scalar transport Equation (Equation (A.2)) contains the unknown scalar variable φ  

at the cell center as well as the unknown values in surrounding neighbor cells. This equation will, 

in general, be non-linear with respect to these variables. A linearized form of Equation (A.2) can 

be written as: 

∑ +=
nb

nbnbP baa φφ           (A.3) 

where the subscript nb refers to neighbor cells, and aP and anb are the linearized coefficients for φ  

and nbφ . The number of neighbors for each cell depends on the grid topology, but will typically 

equal the number of faces enclosing the cell. Similar equations can be written for each cell in the 

grid. This results in a set of algebraic equations with a sparse coefficient matrix. For scalar 

equations, FLUENT solves this linear system using a point implicit (Gauss-Seidel) linear equation 

solver in conjunction with an algebraic multigrid method.  

 

A.3.2 Discretization of the Momentum Equation  

In this section, special practices related to the discretization of the momentum and continuity 

equations and their solution by means of the pressure-based solver are addressed. These practices 

are most easily described by considering the steady-state continuity and momentum equations in 

integral form:  

∫ =⋅ 0Adu
rrρ           (A.4) 

∫∫ ∫ ∫ +⋅+⋅−=⋅
V

dVFAdAdpIAduu
rrrrrr τρ       (A.5) 

where I is the identity matrix, τ  is the stress tensor, and F
r

is the force vector. The discretization 

scheme for a scalar transport equation is also used to discretize the momentum equations. For 

example, the x-momentum equation can be obtained by setting u=φ :  

∑ ∑ +⋅+=
nb

fnbnbP SiApuaua ˆ        (A.6) 

If the pressure field and face mass fluxes are known, Equation (A.6) can be solved directly and a 

velocity field obtained. However, the pressure field and face mass fluxes are not known a priori 

and must be obtained as a part of the solution. There are important issues with respect to the 

storage of pressure and the discretization of the pressure gradient term; these are addressed next. 

FLUENT uses a co-located scheme, whereby pressure and velocity are both stored at cell centers. 
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However, Equation (A.6) requires the value of the pressure at the face between cells c0 and c1, 

shown in Figure A.2. Therefore, an interpolation scheme is required to compute the face values of 

pressure from the cell values.  

 

Pressure Interpolation Schemes 

The default scheme in FLUENT interpolates the pressure values at the faces using momentum 

equation coefficients:  

1,0,

1,

1

0,

0

11

cpcp
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c

cp

c

f

aa

a
P

a
P

P
+

+

=          (A.7) 

This procedure works well as long as the pressure variation between cell centers is smooth. When 

there are jumps or large gradients in the momentum source terms between control volumes, the 

pressure profile has a high gradient at the cell face, and cannot be interpolated using this scheme. 

If this scheme is used, the discrepancy shows up in overshoots/undershoots of cell velocity.  

Several alternate methods are available for cases in which the standard pressure interpolation 

scheme is not valid:  

• The linear scheme computes the face pressure as the average of the pressure values in the 

adjacent cells.  

• The second-order scheme reconstructs the face pressure in the manner used for second-

order accurate convection terms. This scheme may provide some improvement over the 

standard and linear schemes, but it may have some trouble if it is used at the start of a 

calculation and/or with a bad mesh. The second-order scheme is not applicable for flows 

with discontinuous pressure gradients imposed by the presence of a porous medium in the 

domain or the use of the VOF or mixture model for multiphase flow.  

• The body-force-weighted scheme computes the face pressure by assuming that the normal 

gradient of the difference between pressure and body forces is constant. This works well if 

the body forces are known a priori in the momentum equations (e.g., buoyancy and 

axisymmetric swirl calculations).  

• The PRESTO (PREssure STaggering Option) scheme uses the discrete continuity balance 

for a "staggered'' control volume about the face to compute the "staggered'' (i.e., face) 

pressure. This procedure is similar in spirit to the staggered-grid schemes used with 

structured meshes. Note that for triangular, tetrahedral, hybrid, and polyhedral meshes, 

comparable accuracy is obtained using a similar algorithm. The PRESTO scheme is 

available for all meshes.  
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A.3.3 Discretization of the Continuity Equation  

Equation (A.4) may be integrated over the control volume in Figure A.2 to yield the following 

discrete equation: 

0=∑
facesN

f
ff AJ           (A.8) 

where Jf is the mass flux through face f, ρun.  

In order to proceed further, it is necessary to relate the face values of velocity, , to the stored 

values of velocity at the cell centers. Linear interpolation of cell-centered velocities to the face 

results in unphysical checker-boarding of pressure. The face value of velocity is not averaged 

linearly; instead, momentum-weighted averaging, using weighting factors based on the a

nur

P 

coefficient from Equation (A.6), is performed. Using this procedure, the face flux, Jf, may be 

written as: 
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rrρ
  (A.9) 

 

where pc0, pc1 and un,c0, un,c1 are the pressures and normal velocities, respectively, within the two 

cells on either side of the face, and  contains the influence of velocities in these cells (see 

Figure  A.2). The term d

fĴ

f is a function of pa , the average of the momentum equation aP 

coefficients for the cells on either side of face f.  

For incompressible flows, FLUENT uses arithmetic averaging for density. For compressible flow 

calculations (i.e., calculations that use the ideal gas law for density), FLUENT applies upwind 

interpolation of density at cell faces. Several interpolation schemes are available for the density 

upwinding at cell faces: first-order upwind (default), second-order-upwind, QUICK, MUSCL, and 

when applicable, central differencing and bounded central differencing. The first-order upwind 

scheme sets the density at the cell face to be the upstream cell-center value. This scheme provides 

stability for the discretization of the pressure-correction equation, and gives good results for most 

classes of flows. The first-order scheme is the default scheme for compressible flows. Although 

this scheme provides the best stability for compressible flow calculations, it gives very diffusive 

representations of shocks. The second-order upwind scheme provides stability for supersonic 
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flows and captures shocks better than the first-order upwind scheme. The QUICK scheme for 

density is similar to the QUICK scheme used for other variables.  

 

A.3.4 Pressure-Velocity Coupling  

Pressure-velocity coupling is achieved by using Equation (A.9) to derive an additional condition 

for pressure by reformatting the continuity equation (Equation (A.8)). The pressure-based solver 

allows solving a flow problem in either a segregated or coupled manner. FLUENT provides the 

option to choose among five pressure-velocity coupling algorithms: SIMPLE, SIMPLEC, PISO 

and Coupled. All the aforementioned schemes, except the "coupled" scheme, are based on the 

predictor-corrector approach. Note that SIMPLE, SIMPLEC, PISO, and Fractional Step use the 

pressure-based segregated algorithm, while Coupled uses the pressure-based coupled solver.  

 

Segregated Algorithms 

SIMPLE  

The SIMPLE algorithm uses a relationship between velocity and pressure corrections to enforce 

mass conservation and to obtain the pressure field. If the momentum equation is solved with a 

guessed pressure field p*, the resulting face flux, J*
f, computed from Equation (A.10): 

( 10 ***ˆ* ccfff ppdJJ −+= )       (A.10) 

does not satisfy the continuity equation. Consequently, a correction J’
f is added to the face flux J*

f 

so that the corrected face flux, Jf: 

Jf= J*
f+ J’

f          (A.11) 

satisfies the continuity equation. The SIMPLE algorithm postulates that J’
f be written as  

J’
f=df ( )10 '' cc pp −          (A.12) 

where p’ is the cell pressure correction. The SIMPLE algorithm substitutes the flux correction 

equations (Equations (A.11) and (A.12)) into the discrete continuity equation (Equation (A.8)) to 

obtain a discrete equation for the pressure correction p’ in the cell:  

bpapa nbnbP += ∑ ''          (A.13) 

where the source term b is the net flow rate into the cell:  

f

facesN

f
f AJb ∑= *          (A.14) 

The pressure-correction equation (Equation (A.13)) may be solved using the algebraic multigrid 

(AMG) method. Once a solution is obtained, the cell pressure and the face flux are corrected 

using: 
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'* ppp pα+=          (A.15) 

( 10 ''* ccfff ppdJJ )−+=         (A.16) 

Here αp is the under-relaxation factor for pressure. The corrected face flux, Jf, satisfies the discrete 

continuity equation identically during each iteration.  

 

SIMPLEC  

A number of variants of the basic SIMPLE algorithm are available in the literature. In addition to 

SIMPLE, FLUENT offers the SIMPLEC (SIMPLE-Consistent) algorithm. SIMPLE is the default, 

but many problems will benefit from the use of SIMPLEC. The SIMPLEC procedure is similar to 

the SIMPLE procedure outlined above. The only difference lies in the expression used for the face 

flux correction, J’f. As in SIMPLE, the correction equation may be written as shown in Equation 

(A.16): 

( )10 ''* ccfff ppdJJ −+=  

However, the coefficient df is redefined as a function of ( )∑− nb nbP aa . The use of this modified 

correction equation has been shown to accelerate convergence in problems where pressure-

velocity coupling is the main deterrent to obtaining a solution. For meshes with some degree of 

skewness, the approximate relationship between the correction of mass flux at the cell face and the 

difference of the pressure corrections at the adjacent cells is very rough. Since the components of 

the pressure-correction gradient along the cell faces are not known in advance, an iterative process 

similar to the PISO neighbor correction described below is desirable. After the initial solution of 

the pressure-correction equation, the pressure-correction gradient is recalculated and used to 

update the mass flux corrections. This process, which is referred to as "skewness correction'', 

significantly reduces convergence difficulties associated with highly distorted meshes. The 

SIMPLEC skewness correction allows FLUENT to obtain a solution on a highly skewed mesh in 

approximately the same number of iterations as required for a more orthogonal mesh.  

 

PISO  

The Pressure-Implicit with Splitting of Operators (PISO) pressure-velocity coupling scheme, part 

of the SIMPLE family of algorithms, is based on the higher degree of the approximate relation 

between the corrections for pressure and velocity. One of the limitations of the SIMPLE and 

SIMPLEC algorithms is that new velocities and corresponding fluxes do not satisfy the 

momentum balance after the pressure-correction equation is solved. As a result, the calculation 

must be repeated until the balance is satisfied. To improve the efficiency of this calculation, the 

PISO algorithm performs two additional corrections: neighbor correction and skewness correction.  
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The main idea of the PISO algorithm is to move the repeated calculations required by SIMPLE 

and SIMPLEC inside the solution stage of the pressure-correction equation. After one or more 

additional PISO loops, the corrected velocities satisfy the continuity and momentum equations 

more closely. This iterative process is called a momentum correction or "neighbor correction''. The 

PISO algorithm takes a little more CPU time per solver iteration, but it can dramatically decrease 

the number of iterations required for convergence, especially for transient problems.  

For meshes with some degree of skewness, the approximate relationship between the correction of 

mass flux at the cell face and the difference of the pressure corrections at the adjacent cells is very 

rough. Since the components of the pressure-correction gradient along the cell faces are not known 

in advance, an iterative process similar to the PISO neighbor correction described above is 

desirable. After the initial solution of the pressure-correction equation, the pressure-correction 

gradient is recalculated and used to update the mass flux corrections. This process, which is 

referred to as "skewness correction'', significantly reduces convergence difficulties associated with 

highly distorted meshes. The PISO skewness correction allows FLUENT to obtain a solution on a 

highly skewed mesh in approximately the same number of iterations as required for a more 

orthogonal mesh. For meshes with a high degree of skewness, the simultaneous coupling of the 

neighbor and skewness corrections at the same pressure correction equation source may cause 

divergence or a lack of robustness. An alternate, although more expensive, method for handling 

the neighbor and skewness corrections inside the PISO algorithm is to apply one or more iterations 

of skewness correction for each separate iteration of neighbor correction. For each individual 

iteration of the classical PISO algorithm form, this technique allows a more accurate adjustment of 

the face mass flux correction according to the normal pressure correction gradient.  

 

Coupled Algorithm 

As previously mentioned, the pressure-based solver computes the solution in either a segregated or 

coupled manner. Using the coupled approach offers some advantages over the non-coupled or 

segregated approach. The coupled scheme obtains a robust and efficient single phase 

implementation for steady-state flows, with superior performance compared to the segregated 

solution schemes. This pressure-based coupled algorithm offers an alternative to the density-based 

and pressure-based segregated algorithm with SIMPLE-type pressure-velocity coupling. For 

transient flows, using the coupled algorithm is necessary when the quality of the mesh is poor, or 

if large time steps are used.  

The pressure-based segregated algorithm solves the momentum equation and pressure correction 

equations separately. This semi-implicit solution method results in slow convergence. The coupled 
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algorithm solves the momentum and pressure-based continuity equations together. The full 

implicit coupling is achieved through an implicit discretization of pressure gradient terms in the 

momentum equations, and an implicit discretization of the face mass flux.  

In the momentum equations (A.6), the pressure gradient for component k is of the form: 
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f j

j
pu

kf paAp k         (A.17) 

Where  is the coefficient derived from the Gauss divergence theorem and coefficients of the 

pressure interpolation schemes (Equation (A.7)). Finally, for any i

puka
th cell, the discretized form of 

the momentum equation for component uk is defined as: 
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In the continuity equation, Equation (A.8), the balance of fluxes is replaced using the flux 

expression in Equation (A.9), resulting in the discretized form: 
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As a result, the overall system of Equations (A.18) and (A.19), after being transformed to the δ-

form, is presented as: 
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where the influence of a cell i on a cell j has the form: 
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and the unknown and residual vectors have the form: 
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A.3.5 Solution Method in FLUENT for Multiphase Flows  

For Eulerian multiphase calculations, FLUENT uses the phase coupled SIMPLE (PC-SIMPLE) 

algorithm for the pressure-velocity coupling. PC-SIMPLE is an extension of the SIMPLE 

algorithm to multiphase flows. The velocities are solved coupled by phases, but in a segregated 
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fashion. The block algebraic multigrid scheme is used to solve a vector equation formed by the 

velocity components of all phases simultaneously. Pressure and velocities are then corrected so as 

to satisfy the continuity constraint.  

 

The Pressure-Correction Equation 

For incompressible multiphase flow, the pressure-correction equation takes the form: 
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where ρrq is the phase reference density for the qth phase (defined as the total volume average 

density of phase q),  is the velocity correction for the q'
qur th phase, and *

qur  is the value of at the 

current iteration. The velocity corrections are themselves expressed as functions of the pressure 

corrections.  

qur

 

Volume Fractions 

The volume fractions are obtained from the phase continuity equations. In discretized form, the qth 

volume fraction is given by Equation (A.25). 
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These equations satisfy the condition that all volume fractions sum to one as expressed in Equation 

(A.26).  
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A.3.6 Steady-State Iterative Algorithm  

If performing a steady-state calculation, the governing equations for the pressure-based solver do 

not contain time-dependent terms. For steady-state flows, the following section describes control-

volume-based discretization of the steady-state transport equation.  

 

Under-Relaxation of Variables 

The under-relaxation of variables is used in all cases for some material properties and in the 

pressure-based coupled algorithm where this explicit under-relaxation is used for momentum and 

pressure. Because of the nonlinearity of the equation set being solved by FLUENT, it is necessary 

to control the change ofφ . This is typically achieved by under-relaxation of variables (also 
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referred to as explicit relaxation), which reduces the change of φ  produced during each iteration. 

In a simple form, the new value of the variable φ  within a cell depends upon the old value, oldφ , 

the computed change in φ , φΔ , and the under-relaxation factor, α, as follows:  

φαφφ Δ+= old          (A.27) 

 

Under-Relaxation of Equations 

The under-relaxation of equations, also known as implicit relaxation, is used in the pressure-based 

solver to stabilize the convergence behavior of the outer nonlinear iterations by introducing 

selective amounts of φ  in the system of discretized equations. This is equivalent to the location-

specific time step. 
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The Courant-Friedrichs-Lewy (CFL) number is a solution parameter in the pressure-based coupled 

algorithm and can be written in terms of α:  
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          (A.29) 

 

A.3.7 Time-Advancement Algorithm  

The temporal discretization of the transient derivative in the Equation (A.2) is accomplished using 

first-order and second-order schemes in time. The pressure-based solver in FLUENT uses an 

implicit discretization of the transport equation. As a standard default approach, all convective, 

diffusive, and source terms are evaluated from the fields for time level n+1.  

dVSAdAdudV
t V

nnnnnn

V ∫ ∫∫∫ ++++++ +⋅∇Γ=⋅+
∂
∂ 111111

φφ φφρρφ rrr
   (A.30) 

In the pressure-based solver, the overall time-discretization error is determined by both the choice 

of temporal discretization (e.g., first-order, second-order) and the manner in which the solutions 

are advanced to the next time step (time-advancement scheme). Temporal discretization introduces 

the corresponding truncation error; O(∆t), O[(∆t)2], for first-order and second-order, respectively. 

The segregated solution process by which the equations are solved one by one introduces splitting 

error. There are two approaches to the time-advancement scheme depending on how we want to 

control the splitting error.  
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Iterative Time-Advancement Scheme 

In the iterative scheme, all the equations are solved iteratively, for a given time-step, until the 

convergence criteria are met. Thus, advancing the solutions by one time-step normally requires a 

number of outer iterations as shown in Figure A.3 and Figure A.4. With this iterative scheme, non-

linearity of the individual equations and inter-equation couplings are fully accounted for, 

eliminating the splitting error. The iterative scheme is the default in FLUENT.  

 
Figure A.3 Overview of the iterative time advancement solution method for the segregate solver 

 

The standard fully-implicit discretization of the convective part of Equation (A.30) produces non-

linear terms in the resulting equations. In addition, solving these equations generally requires 

numerous iterations per time step. As an alternative, FLUENT provides an optional way to 

discretize the convective part of Equation (A.2) using the mass flux at the cell faces from the 

previous time level n.  

∫ ∫ ⋅=⋅ + AduAdu nnn
rrrr 1φρρφ         (A.31) 

The solution still has the same order of accuracy but the non-linear character of the discretized 

transport equation is essentially reduced and the convergence within each time step is improved.  

 

 

 346 



APPENDIX A 

 

Non-Iterative Time-Advancement Scheme 

The iterative time-advancement scheme requires a considerable amount of computational effort 

due to a large number of outer iterations performed for each time-step. The idea underlying the 

non-iterative time-advancement (NITA) scheme is that, in order to preserve overall time accuracy, 

one does not really need to reduce the splitting error to zero, but only have to make it the same 

order as the truncation error. The NITA scheme, as seen in Figure A.4, thus does not need the 

outer iterations, performing only a single outer iteration per time-step, which significantly speeds 

up transient simulations. However, the NITA scheme still allows for an inner iteration to solve the 

individual set of equations.  

 

 
Figure A.4 Overview of the non-iterative time advancement solution method 
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A.4 Discretization3  

A.4.1 Spatial Discretization  

By default, FLUENT stores discrete values of the scalar φ  at the cell centers. However, face 

values fφ  are required for the convection terms in Equation (A.2) and must be interpolated from 

the cell center values. This is accomplished using an upwind scheme.  

Upwinding means that the face value fφ is derived from quantities in the cell upstream, or 

"upwind,'' relative to the direction of the normal velocity un in Equation  (A.2). FLUENT has 

several upwind schemes: first-order upwind, second-order upwind, power law, and QUICK. The 

diffusion terms in Equation (A.2) are central-differenced and are always second-order accurate.  

 

First-Order Upwind Scheme 

When first-order accuracy is desired, quantities at cell faces are determined by assuming that the 

cell-center values of any field variable represent a cell-average value and hold throughout the 

entire cell; the face quantities are identical to the cell quantities. Thus when first-order upwinding 

is selected, the face value fφ is set equal to the cell-center value of φ  in the upstream cell.  

 

Power-Law Scheme 

The power-law discretization scheme interpolates the face value of a variable,φ , using the exact 

solution to a one-dimensional convection-diffusion equation: 

( )
xx

u
x ∂

∂
Γ

∂
∂

=
∂
∂ φφρ          (A.32) 

where  and ρu are constant across the interval Γ x∂ . Equation (A.32) can be integrated to yield the 

following solution describing how φ  varies with x:  
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where  
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and Pe is the Peclet number:  

                                                 
3 Adapted from FLUENT 6 User’s Manual, Fluent Inc. Centrera Resource Park, 10 Cavendish 
Court, Lebanon, USA 
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Γ
=

uLPe ρ
          (A.34) 

Second-Order Upwind Scheme 

When second-order accuracy is desired, quantities at cell faces are computed using a 

multidimensional linear reconstruction approach. In this approach, higher-order accuracy is 

achieved at cell faces through a Taylor series expansion of the cell-centered solution about the cell 

centroid. Thus when second-order upwinding is selected, the face value fφ is computed using the 

following expression:  

rSOUf
r
⋅∇+= φφφ ,          (A.35) 

where φ  and φ∇  are the cell-centered value and its gradient in the upstream cell, and rr is the 

displacement vector from the upstream cell centroid to the face centroid. This formulation requires 

the determination of the gradient φ∇  in each cell. Finally, the gradient φ∇  is limited so that no 

new maxima or minima are introduced.  

 

Central-Differencing Scheme 

The second-order central-differencing scheme calculates the face value for a variable ( fφ ) as 

follows:  

( ) ( 110010, 2
1

2
1 rrCDf

rr
⋅∇+⋅∇++= φφφφφ )      (A.36) 

where the indices 0 and 1 refer to the cells that share face f and rr is the vector directed from the 

cell centroid toward the face centroid. It is well known that central-differencing schemes can 

produce unbounded solutions and non-physical wiggles, which can lead to stability problems for 

the numerical procedure. These stability problems can often be avoided if a deferred approach is 

used for the central-differencing scheme. In this approach, the face value is calculated as follows:  

{
( )

4434421
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UPfCDf
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exp

,,, φφφφ −+=  

where UP stands for upwind. As indicated, the upwind part is treated implicitly while the 

difference between the central-difference and upwind values is treated explicitly. Provided that the 

numerical solution converges, this approach leads to pure second-order differencing.  

 

QUICK Scheme 

FLUENT also provides the QUICK scheme for computing a higher-order value of the convected 

variable φ  at a face. QUICK-type schemes are based on a weighted average of second-order-
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upwind and central interpolations of the variable. For the face e in Figure A.5, if the flow is from 

left to right, such a value can be written as: 
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Figure A.5 One-dimensional control volume 

 

θ=1 in the above equation results in a central second-order interpolation while θ=0 yields a 

second-order upwind value. The traditional QUICK scheme is obtained by setting θ=1/8. The 

implementation in FLUENT uses a variable, solution-dependent value of θ=1, chosen so as to 

avoid introducing new solution extrema.  

 

Third-Order MUSCL Scheme 

This third-order convection scheme was conceived from the original MUSCL (Monotone 

Upstream-Centered Schemes for Conservation Laws) by blending a central differencing scheme 

and second-order upwind scheme as: 

SOUfCDff ,, )1( φθθφφ −+=  

where CDf ,φ is defined in Equation (A.36), and SOUf ,φ  is computed using the second-order 

upwind scheme as described above in Equation (A.35). Compared to the second-order upwind 

scheme, the third-order MUSCL has a potential to improve spatial accuracy for all types of meshes 

by reducing numerical diffusion, most significantly for complex three-dimensional flows, and it is 

available for all transport equations.  

 

Modified HRIC Scheme 

For simulations using the VOF multiphase model, upwind schemes are generally unsuitable for 

interface tracking because of their overly diffusive nature. Central differencing schemes, while 

generally able to retain the sharpness of the interface, are unbounded and often give unphysical 

results. In order to overcome these deficiencies, FLUENT uses a modified version of the High 

Resolution Interface Capturing (HRIC) scheme. The modified HRIC scheme is a composite 
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Normalised Variable Diagram (NVD) scheme that consists of a non-linear blend of upwind and 

downwind differencing.  

First, the normalized cell value of volume fraction, , is computed and is used to find the 

normalized face value, 

cφ
~

fφ
~

, as follows:  
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Figure A.6 Cell representation for modified HRIC scheme 

 

where A is the acceptor cell, D is the donor cell, and U is the upwind cell, and  
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Here, if the upwind cell is not available, an extrapolated value is used for Uφ . Directly using this 

value of fφ
~

causes wrinkles in the interface, if the flow is parallel to the interface. So, FLUENT 

switches to ULTIMATE QUICKEST scheme (the one-dimensional bounded version of the 

QUICK scheme) based on the angle between the face normal and interface normal:  
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This leads to a corrected version of the face volume fraction, 
*~
fφ :  
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and d  is a vector connecting cell centers adjacent to the face  f.  
r

The face volume fraction is now obtained from the normalized value computed above as expressed 

in Equation (A.43): 

( ) UUAff φφφφφ +−= *~~
        (A.43) 

 

Geometric Reconstruction Scheme  

In the VOF geometric reconstruction approach, the standard interpolation schemes that are used in 

FLUENT are applied to obtain the face fluxes whenever a cell is completely filled with one phase 

or another. When the cell is near the interface between two phases, the geometric reconstruction 

scheme is used. The geometric reconstruction scheme represents the interface between fluids using 

a piecewise-linear approach. It assumes that the interface between two fluids has a linear slope 

within each cell, and uses this linear shape for calculation of the advection of fluid through the cell 

faces. The first step in this reconstruction scheme is calculating the position of the linear interface 

relative to the centre of each partially-filled cell, based on information about the volume fraction 

and its derivatives in the cell. The second step is calculating the advecting amount of fluid through 

each face using the computed linear interface representation and information about the normal and 

tangential velocity distribution on the face. The third step is calculating the volume fraction in 

each cell using the balance of fluxes calculated during the previous step.  

 

Donor-Acceptor Scheme  

In the donor-acceptor approach, the standard interpolation schemes that are used in FLUENT are 

used to obtain the face fluxes whenever a cell is completely filled with one phase or another. When 

the cell is near the interface between two phases, a "donor-acceptor'' scheme is used to determine 

the amount of fluid advected through the face. This scheme identifies one cell as a donor of an 

amount of fluid from one phase and another (neighbour) cell as the acceptor of that same amount 

of fluid, and is used to prevent numerical diffusion at the interface. The amount of fluid from one 

phase that can be convected across a cell boundary is limited by the minimum of two values: the 

filled volume in the donor cell or the free volume in the acceptor cell. The orientation of the 

interface is also used in determining the face fluxes. The interface orientation is either horizontal 

or vertical, depending on the direction of the volume fraction gradient of the qth phase within the 

cell, and that of the neighbour cell that shares the face in question. Depending on the interface's 

orientation as well as its motion, flux values are obtained by pure upwinding, pure downwinding, 

or some combination of the two.  
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Compressive Interface Capturing Scheme for Arbitrary Meshes Scheme 

The compressive interface capturing scheme for arbitrary meshes (CICSAM), based on the 

Ubbink's work, is a high resolution differencing scheme. The CICSAM scheme is particularly 

suitable for flows with high ratios of viscosities between the phases. CICSAM is implemented in 

FLUENT as an explicit scheme and offers the advantage of producing an interface that is almost as 

sharp as the geometric reconstruction scheme. 

 

A.4.2 Temporal Discretization  

For transient simulations, the governing equations must be discretized in both space and time. The 

spatial discretization for the time-dependent equations is identical to the steady-state case. 

Temporal discretization involves the integration of every term in the differential equations over a 

time step ∆t. The integration of the transient terms is straightforward, as shown below.  

A generic expression for the time evolution of a variable φ  is given by: 

( )φφ F
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          (A.44) 

where the function F incorporates any spatial discretization. If the time derivative is discretized 

using backward differences, the first-order accurate temporal discretization is given by: 
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and the second-order discretization is given by: 

( )φφφφ F
t

nnn

=
Δ

+− −+

2
43 11

        (A.46) 

where φ  is a scalar quantity, n+1 is the value at the next time level, t+∆t, n is the value at the 

current time level, t, and n-1 is the value at the previous time level, t-∆t.  

Once the time derivative has been discretized, a choice remains for evaluating ( )φF , in particular, 

which time level values of φ  should be used in evaluating F: the implicit or explicit time 

integration method. 

 

Implicit Time Integration 

One method is to evaluate ( )φF at the future time level:  
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This is referred to as "implicit'' integration since  in a given cell is related to  in 

neighbouring cells through

1+nφ 1+nφ

( )1+nF φ :  

( )11 ++ Δ+= nnn tF φφφ          (A.48) 

This implicit equation can be solved iteratively at each time level before moving to the next time 

step. The advantage of the fully implicit scheme is that it is unconditionally stable with respect to 

time step size.  

 

Explicit Time Integration 

This method evaluates ( )φF at the current time level:  

( n
nn

F
t

φφφ
=

Δ
−+1

)          (A.49) 

and is referred to as "explicit'' integration since can be expressed explicitly in terms of the 

existing solution values, :  

1+nφ
nφ

( )nnn tF φφφ Δ+=+1          (A.50) 

Here, the time step ∆t is restricted to the stability limit of the underlying solver (i.e., a time step is 

limited by the Courant-Friedrich-Lewy condition). In order to be time-accurate, all cells in the 

domain must use the same time step. For stability, this time step must be the minimum of all the 

local time steps in the domain.  

 

Time Schemes in Multiphase Flow  

In many multiphase applications, the process can vary spatially as well as temporally. In order to 

accurately model multiphase flow, both higher-order spatial and time discretization schemes are 

necessary. In addition to the first-order time scheme in FLUENT, the second-order time scheme is 

available in the Eulerian multiphase model and with the VOF Implicit Scheme.  

In multiphase flow, a general transport equation (Equation (A.44)  may be written as: 

( ) ( ) φτφαραρφ Su
t

+⋅∇=⋅∇+
∂

∂ r
       (A.51) 

where φ  is either a mixture or a phase variable, α is the phase volume fraction (unity for the 

mixture equation), ρ is the mixture phase density, ur  is the mixture or phase velocity (depending 

on the equations), τ  is the diffusion term, and is the source term. As a fully implicit scheme, 

this second-order time-accurate scheme achieves its accuracy by using an Euler backward 

approximation in time (see Equation (A.46)). The general transport equation, Equation (A.51) is 

discretized as: 

φS
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Equation (A.52) can be written in simpler form:  
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where: 
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This scheme is unconditionally stable; however, the negative coefficient at the time level tn-1, of 

the three-time level method, may produce oscillatory solutions if the time steps are large. This 

problem can be eliminated if a bounded second-order scheme is introduced. However, oscillating 

solutions are most likely seen in compressible liquid flows. Therefore, a bounded second-order 

time scheme has been implemented in FLUENT for compressible liquid flows only. For single 

phase and multiphase compressible liquid flows, the second-order time scheme is, by default, the 

bounded scheme.  

 

Volume-of-Fluid Model Time Schemes 

In the Volume-of-Fluid model, the volume fraction equation may be solved either through implicit 

or explicit time discretization.  

When the implicit scheme is used for time discretization, FLUENT's standard finite-difference 

interpolation schemes, QUICK, Second Order Upwind and First Order Upwind, and the Modified 

HRIC schemes, are used to obtain the face fluxes for all cells, including those near the interface.  
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where n+1 and n represents the index for the new and previous time step, respectively. αq,f  is the 

face value of the qth volume fraction, computed from the first- or second-order upwind, Quadratic 

Upwind Interpolation for Convective Kinematics (QUICK), Compressive Interface Capturing 

Scheme for Arbitrary Meshes (CICSAM) and High Resolution Interface Capturing (HRIC) 

schemes. V is the volume of cell and Uf is the volume flux through the face, based on normal 

velocity. The face fluxes were interpolated either using interface reconstruction or using a finite 

volume discretization scheme. The reconstruction based scheme investigated was Geometric 

Reconstruction (GR) method given by Donor-Acceptor scheme can be used only with quadrilateral 
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or hexahedral meshes. For the computations of interpolation near the interface, the control-volume 

formulation required that convection and diffusion fluxes through the control volume faces be 

computed and balanced with source terms within the control volume itself. In the geometric 

reconstruction and donor-acceptor schemes, it was applied an interpolation treatment to the cells 

that lie near the interface between two phases.  

Since Equation (A.54) requires the volume fraction values at the current time step (rather than at 

the previous step, as for the explicit scheme), a standard scalar transport equation is solved 

iteratively for each of the secondary-phase volume fractions at each time step.  

The implicit scheme can be used for both time-dependent and steady-state calculations. In the 

explicit approach, FLUENT's standard finite-difference interpolation schemes are applied to the 

volume fraction values that were computed at the previous time step.  
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This formulation does not require iterative solution of the transport equation during each time step, 

as is needed for the implicit scheme. When the explicit scheme is used for time discretization, the 

face fluxes can be interpolated either using interface reconstruction or using a finite volume 

discretization scheme. The reconstruction based schemes available in FLUENT are Geo-

Reconstruct and Donor-Acceptor. The discretization schemes available with explicit scheme for 

VOF are First Order Upwind, Second Order Upwind, CICSAM, Modified HRIC, and QUICK.  

 

A.4.3 Evaluation of Gradients and Derivatives  

Gradients are needed not only for constructing values of a scalar at the cell faces, but also for 

computing secondary diffusion terms and velocity derivatives. The gradient φ∇  of a given 

variable φ  is used to discretize the convection and diffusion terms in the flow conservation 

equations. The gradients are computed in FLUENT according to the following methods: Green-

Gauss Cell-, Green-Gauss Node- or Least Squares Cell-based methods. 

 

Green-Gauss Theorem 

When the Green-Gauss theorem is used to compute the gradient of the scalar φ  at the cell center 

c0 , the following discrete form is written as: 

( ) ∑=∇
f

ffc A
r

φ
ν

φ 1
0          (A.56) 
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where fφ  is the value of φ  at the cell face centroid, computed as shown in the sections below. 

The summation is over all the faces enclosing the cell.  
 

Green-Gauss Cell-Based Gradient Evaluation 

By default, the face value, fφ , in Equation  (A.56) is taken from the arithmetic average of the 

values at the neighboring cell centers, i.e.,  

2
10 cc

f
φφ

φ
+

=           (A.57) 

 

Green-Gauss Node-Based Gradient Evaluation 

Alternatively, fφ can be computed by the arithmetic average of the nodal values on the face: 

∑=
Nf

n
n

f
f N

φφ 1          (A.58) 

where Nf is the number of nodes on the face.  

The nodal values, nφ in Equation (A.58), are constructed from the weighted average of the cell 

values surrounding the nodes. This scheme reconstructs exact values of a linear function at a node 

from surrounding cell-centered values on arbitrary unstructured meshes by solving a constrained 

minimization problem, preserving a second-order spatial accuracy. The node-based averaging 

scheme is known to be more accurate than the default cell-based scheme for unstructured meshes. 
 

Least Squares Cell-Based Gradient Evaluation 

In this method the solution is assumed to vary linearly. In Figure A.7, the change in cell values 

between cell c0 and ci along the vector irδ  from the centroid of cell c0 to cell ci, can be expressed 

as: 

( ) ( 00 cciic r )φφφ −=Δ⋅∇         (A.59)  

 
 

Figure A.7 Cell centroid evaluation  
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If we write similar equations for each cell surrounding the cell c0, we obtain the following system 

written in compact form:  

[ ]( ) φφ Δ=∇ 0cJ          (A.60) 

where [J] is the coefficient matrix which is purely a function of geometry.  The objective here is to 

determine the cell gradient, , by solving the minimization problem for the 

system of the non-square coefficient matrix in a least-squares sense. The above linear-system of 

equation is over-determined and can be solved by decomposing the coefficient matrix using the 

Gram-Schmidt process. This decomposition yields a matrix of weights for each cell. Thus for our 

cell-centered scheme this means that the three components of the weights (W

kji zyx
ˆˆˆ

0 φφφφ ++=∇

x
i0, Wy

i0, Wz
i0) are 

produced for each of the faces of cell c0.  

Therefore, the gradient at the cell center can then be computed by multiplying the weight factors 

by the difference vector ( )01 cc φφφ −=Δ : 
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