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Abstract

Considering an associated and strictly stationary sequence of random variables we intro-
duce an histogram estimator for the covariances between indicator functions of those random
variables. We find conditions on the covariance structure of the original random variables for
the almost sure convergence of the estimator and for the convergence in distribution of the
finite dimensional distributions. Finally we characterize the usual error criteria finding their
convergence rates under assumptions on the convergence rate of the covariances.

1 Introduction

Let X,, n > 1, be identically distributed random variables with common distribution function F'
The study of the asymptotic behaviour of the empirical process

20) = 5= X (o0 = F1).
=1

where I4 represents the characteristic function of the set A, has attracted the interest of many
statisticians as this function plays a central role in many statistical applications, whether directly
or after some transformation. For example, Watson [19] proposed a ”goodness of fit” test for
distributions on the circle based on W2 = 3 f[0,1]2 (Z,(t) — Z,(s))? dsdt. Another ”goodness of fit”

problem was considered by Anderson, Darling [1] based on the statistic A2 = fol Zn, (t)(t) dt for
some suitably chosen weight function 1. Other examples, where the asymptotic behaviour of Z,
is of interest include the Cramer-von Mises w? test, some von Mises functionals or, more generally,
functionals of the form [ G(t, Z,,(t)) dt. Notice that, from a theoretical point of view it is enough to
consider the empirical process based on random variables uniformly distributed on [0, 1]. In fact, if
this is not the case, define the quantile function Q(y) = inf{z : F(z) > y} on [0,1]. Then Z,(Q(?))
has the same distribution as the empirical process constructed from uniform [0, 1] variables. So this
is in fact the only theoretically relevant case, as general convergence conditions may be derived via
this distribution characterization. So, throughout this article unless otherwise stated, the random
variables X,,, n > 1, are supposed to be uniformly distributed on [0, 1], so the empirical process
becomes

20 = 9= 3 (Tog(X)—1). tefon) (1)
=1
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The first results characterizing the limit behaviour of the this sequence where obtained under the
assumption of independence of the variables X,,, n > 1, dating back to Donsker [4], where the
convergence in distribution of Z,, is proved with a gaussian limiting process Z such that E(Z) =0
and covariance function I'(s,t) = E(Z(s)Z(t)) = s At — st, the so called brownian bridge. The
convergence is taken in the sense of convergence in distribution in the Skorohod space D[0, 1],
the natural space where the sequence Z,, lives. Extensions to nonindependent variables where
eventually studied. Assuming the sequence X,, n > 1, to be strictly stationary Billingsley [2] and
later Sen [14] proved the convergence under some convergence rate on the ¢-mixing coefficients,
which where further replaced by the strong mixing coefficients «,. For these coefficients Yoshihara
[17] proved the convergence under the convergence rate o, = O(n™"), with r > 3 (together with
the strict stationarity of the sequence), later extended by Shao [15], who required only that r > 2.
This rate on the strong mixing coefficients is, to the best knowledge of the authors, the slowest
known convergence rate giving the convergence in distribution of Z,, to a limiting centered gaussian
process Z which now has covariance function

o o0
T(s,t)=sAt—st+Y (P(X1<s,Xp<t)—st)+ > (P(X1<t,X,<s)—st). (2
k=2 k=2

The use of other mixing coefficients lead to some other recent results, as in Shao, Yu [16] with
p-mixing coefficients and in Doukhan, Massart, Rio [5] which considered the 5-mixing coefficients.

Another way of controlling dependence is the so called association introduced by Esary, Proschan,
Walkup [6], which we recall here: the random variables X,,, n > 1, are associated if

Cov (f (X1, Xn) s g (X1, Xn)) > 0

for any n € IN and real coordinatewise increasing functions f and ¢ for which the covariance
above exists. As follows from Newman’s inequality (see Theorem 10 in Newman [10]) for associ-
ated variables, the covariances Cov(X;, X;) completely determine convergence in distribution, so
it is natural to impose conditions in the rate of decrease of Cov(Xy,X,) (supposing the strict
stationarity of the sequence). Convergence results where first obtained by Yu [18] under the as-
sumption Cov(Xy, X,) = O(n™ ") with r > 7.5, later improved by Shao, Yu [16] requiring only that
r> (3+/33)/2 ~ 4.373.

All the above mentioned results are with respect to convergence in distribution in the Skorohod
space D[0, 1]. Looking back at the examples presented, we notice that the topology on this space is
to strong, so it is possible to derive the same convergence results under weaker conditions stating the
problem in a weaker space. A natural choice of the space is L?[0,1]. This problem was considered
in Oliveira, Suquet [11] where the convergence was proved under one of the following hypotheses
(always supposing the strict stationarity of the sequence)

. Z an < 00 in the strong mixing case;
n

o Z Cov'/3(X1, X,,) < oo in the associated case.
n

These results where later extended by Oliveira, Suquet [12] replacing the space by LP[0,1], with
p > 2, which may be a more convenient space depending on the use of a weight function. Again
under the stationarity of the sequence, the convergence follows from one of the hypotheses

e ap, = O(n™") with r > p/2, in the strong mixing case;



e Cov(X1,X,) =0(n"") with r > 3p/2, in the associated case.

The appearance of the extra factor 3 in the convergence rate for associated variables is explained
by the inequality (see Lemma 4.5 in Yu [18])

3 1/3
Cov (I[o,s}(Xl)aI[o,t}(Xz)) < <§> Cov!/? (X1, X)), s,t €[0,1], (3)

where X, Xy are associated and uniformly distributed in [0, 1].

The limiting process is always centered gaussian with covariance function I'(s,t) given by (2).
The characterizations just described are of theoretical nature. In view of some statistical application
one does not know the covariances that are summed in the expression (2). Our aim is to study the
properties of an estimator for the terms

or(s,t) =P (X <5, Xpq1 < t) — st = Cov (I[O,s](Xl)aI[O,t](Xk—I—l)) ,

with k& € N fixed, under the assumption of association. As the underlying variables X,,, n > 1, are
supposed stationary a natural estimator of this covariance is the following histogram type estimator

1 n—k

Pun(ert) = o2 3 (T0(X0): Do (Xiew) = st). (4
It is easily checked that, for each s,t € [0,1], E (@k,n(s,t)) = @r(s,1).

Estimation under association, or more generally, under positive dependence has been studied
by Roussas [13] and Cai, Roussas [3], although the problem under consideration in these references
was stated differently. In fact, the interest in [13] and [3] is on estimating the distribution function
of the variables X,,, n > 1, (obviously not supposed to be uniform [0, 1]). It is worth noticing that,
in what regards convergence in distribution of the finite dimensional distributions of the estimator
we are lead to the same condition on the covariance structure as the one found by Roussas (see
Theorem 1.1 in [13]), namely that

oo
Z Cov'/3 (X1, Xj) < o0.
j=1

In the sequel, unless otherwise stated, the variables X,,, n > 1, are strictly stationary associated
and uniformly distributed on [0, 1].

2 Convergence of the estimator

In this section we will look at the convergence of the estimator (4). The first result gives a condition
for the pointwise almost sure convergence of the estimator.

Theorem 1 If the sequence X,,, n > 1, is such that

then, for each fized k € N,



Proof: For each k,n € IN and s, € [0, 1] define the random variables Yy, ,, = Ijg 4 (Xy)Ij0,4(Xn1k)-
Since the sequence X,, n > 1, is associated and strictly stationary and the Y} , are decreasing
functions of the X,,, the sequence Y} ,,, n > 1, is also associated and strictly stationary.

Our statement follows from the strong law of large numbers for the sequence Y} ,, n > 1. In
fact, letting Sy, = >i=; Yk, then

Ska—k — E(Skn-t) _
n—=k

1 n—k

=—2 [(I[U,s}(Xi)I[O,t]XiJrk)) —P (X1 <8, X1 < t)] =
=1

= @k,n(svt) - (pk(sat)'

According to Theorem 7 in Newman [10] the almost sure convergence to zero of this last ex-
pression follows from

L
Jim 21 Cov (Y1, Yk,5) = 0. (6)
]:
To prove (6) we will find an upper bound to Cov (Y} 1,Y) ;). Applying a classical inequality by
Lebowitz [8] and (3) we find
0 < Cov (Yp,1,Ys;) <

3 1/3
< <§> [Covl/?’(Xl,Xj) + Cov'/3(Xy, Xpyj)+ (7)
+ COVI/?’(X](H_I, X]) + COVI/?’(X](H_I, Xk+])] .
So (6) follows from (5) which completes the proof of the theorem. [ |

It is worth noticing that the exponent 1/3 in (5) is not relevant. In fact, this condition is
equivalent to
1
Jim - ]231 Cov (X1, X;) = 0. (8)
This follows from an application of Holder inequality and the fact that the covariances between each
pair of variables of the sequence X,,, n > 1, are always between zero and one, since the variables
are associated and uniformly distributed on [0, 1].

We note also that condition (5) is weaker than any of the conditions for the convergence of the
empirical process mentioned in the Introduction. That (5) is weaker than Shao, Yu’s condition
follows immediately from the equivalence between (5) and (8). On the other side (5) is obviously
weaker than Oliveira, Suquet’s condition.

The next theorem establishes that (5) is still a sufficient condition for the almost sure conver-
gence of the estimator even if the variables of the sequence X, n > 1, are not uniformly distributed.
Proving this result reduces to applying the following generalization of Hoeffding’s equality, which
is contained in Theorem 2.3 of Yu [18], and is valid for any random variables X; and X,

Cov (f1(X1), f2(X2)) = /IR2 fi(z1) f3(x2)Cov (I[O,xﬂ(Xl)vI[O,:EQ](XZ)) dzy dzo (9)

where f; and fy are absolutely continuous functions in any finite interval of IR.



Theorem 2 Let X,,, n > 1, be a strictly stationary associated sequence of random variables having
a bounded density function f and with distribution function F. If (5) holds then, for each fized
k € N,

n—k
dim —— > (I[O,s](Xi)I[O,t} (Xitk) — F(S)F(t)) = Cov (I[O,s](Xl)aI[O,t](XkJrl)) a.s.
=1

Proof: Note first that due to the fact that F' is a continuous and non decreasing function,
F(X,),n > 1, is an associated strictly stationary sequence of random variables with uniform
distribution on [0,1]. By means of (9) and since f is a bounded function we obtain,

Cov (P(X1),F(X;) = [ | Flef(@))Cov (Touy(X¥1). T (X,)) dor da <
< (sup | /(@) ) [, Cov (o (X0). Lo, (X)) doy d; =

= (sup 1 7 (@) |)2 Cov (X1, X;).

As mentioned before the sequence F(X,), n > 1, is associated, so from the last inequality and (5)
it follows that

lim — Z Cov!'/3 (F(X)), F(X;)) = 0.

n—)oon.

At this point we have seen that the sequence F(X,,), n > 1, satisfies all conditions of Theorem 1
from which so, almost surely

) 1 n—k
B ; (I[O,F(s)](F(Xi))aI[O,F(t)](F(Xi-i-k)) - F(S)F(t)) =
= Cov (I[O,F(s)](F(Xl))a I[O,F(t)](F(X1+k)))
which is equivalent to
Jim —— Z (Lo.pe (F(Xi), Lo,y (F(Xisn)) = P (F(X1) < F(s), F(Xp 1) S F(1)  aus,

Now, the sets {w: F(X;(w)) < F(s) A F(Xj1k(w)) < F(t)} and {w: X;(w) < sA Xjpx(w) <t} are
equal almost everywhere and consequently, I[O,F(s)}(F(X ))I[ F(t)] (F(Xjyk)) = I[O,s] (Xz')I[O,t] (Xitk)
almost everywhere, so the last convergence leads to

1 n—k

Jim — 2; (T (X Toy(Xisk)) =P (X1 <5, X1 <) as.
1=
from which the result follows. [ |

The uniform strong consistency of the estimator is established in the next theorem whose proof
follows the same steps as the proof of the classical Glivenko-Cantelli Theorem.



Theorem 3 If the sequence X, n > 1, satisfies (5) then, for each fized k € NN,

lim sup |@pn(s,t) —r(s,t)) =0 a.s.
=0 ¢ tef0,1] "

Proof: In order to simplify the expressions in the course of the proof we define
Vi (s,t) = P (X1 < 8, X1 <) = (s, t) + st
and
1 n—k
Aea(5:8) = —— 3 (Tog (KX)o (Xik)) = Brns,t) + st.
i=1

Hence we may write

D, = sup |@k,n(57t) - (Pk(sat)| = Ssup |:}\Ik,n(37t) - ’Yk(sat)| :
5,t€[0,1] 8,t€[0,1]

Let M > 1 be fixed. For any 0 <i,57 < M, we have from Theorem 1 that,

lim 3 o7\ 1 g
o Ykn MM =Yk MM a.s.

and consequently,

i, D = § (Grr) = (57 37)
im = lim m — L) = — )= s
Mmn = e 0<z,?§M Ve M M Tk M’ M @5
Also, since the variables X; are uniformly distributed on [0, 1], it is easy to check that
i i—1 -1 2
S )< 2 1

For % <s< ﬁ and Jﬁl <t< 7\% we have, by monotonicity, that,
. ] i) )
< — L) = —. L <
>_'7k,n<MaM> 7k<M7M>‘+7k<M M)

) ] 2 7—1 9—1
< Dur + Yk M,]'\j/_,> DMn+M+'Yk<M ’]M

<l

b

SR

Ao (5:1) < T (

2
) < DM,n + M +7k(37t)7
taking account of (10). Proceeding in a similar way we obtain

- 2
Vi (8,t) > —Dary — u Vi (s,1).

Thus, combining the last two inequalities, we have

~ 2
sup  [Yrn(s,t) — (s, t)] < Dy + M
s5,t€[0,1]
Since M is arbitrary and lim, o, Ds, = 0 almost surely, it follows that lim, .., D, = 0 almost
surely. [

The following two theorems are concerned with the convergence in distribution of the finite
dimensional distributions of the estimator.



Theorem 4 If the sequence X,, n > 1, is such that
o0
3 Cov'/? (X1, X;) < oo, (11)
=1

then, for each fized k € N and s,t € [0,1], vVn —k (Prn(s,t) — pr(s,t)) converges in distribution
to a gaussian random variable Z with E(Z) =0 and Var(Z) = 0% where

oo
O’2 = Var (I[O,s} (XI)I[O,t} (ch-i-l)) +2 Z Cov (I[O,s] (XI)I[O,t] (Xk-l-l)aI[O,s] (Xj)I[O,t] (Xk+j)) < o0.
j=2
Proof: Considering the variables Y ,, n > 1, defined in the proof of Theorem 1 we may rewrite
oo
0® = Var (Yy,1) + 2 Cov (Yi1, Vi) -
i=2
Letting Sk.n = > iy Yk, we have

Skn—k — E(Skn—k)
vn—k
and consequently the result follows from a Central Limit Theorem for associated variables. Ac-

cording to Theorem 10 in Newman [9] it suffices to verify that the variables Y}, ; have finite variance
and that 02 < co. The first of these two conditions is easily verified

=Vn—k (Prn(s:t) — or(s,1))

Var (Yk,i) = Var (Yk,l) =P (X1 < S,Xk+1 < t) — (P (X1 < S,Xk+1 < t))2 < 0.

According to inequality (7), it follows from (11) that

00
Z Cov (Yk,laYk,j) < 00
Jj=1

and consequently the second condition is also satisfied, that is 02 < oo. |

Theorem 5 If the random wvariables X,,, n > 1, satisfy (11) then, for each choice of r € IN,
SlyeeeySpytly... tp €[0,1] and k € N, the random wvector

vn —k (@k,n(slatl) - (Pk(slatl)a v 7(1/5k,n(51“7t7‘) - ‘Pk(sratr)) (12)

converges in distribution to a centered gaussian random vector (Z1,...,Z,) with covariance matriz
with entries o;; defined by

oij = Cov (Z;, Z;) = Cov (I[O,si] (XI)I[O,ti}(XkJrl)aI[O,Sj](XI)I[O,tj](XkJrI)) +

+2 Z Cov (I[O,si] (Xl)I[O,ti](XkH),I[o,sj}(Xp)I[o,tj}(Xker)) < 00.
p=2



Proof: Let r € IN,sq,..., S, t1,...,t € [0,1] and k € IN be fixed. In order to simplify the notation
we will drop the k& and so, without loss of generality, we will always use n instead of n — k.

For each j € IN and i € 1,...,r, define the random variables Yff = Ijo,6;1x[0,t: (X5 Xg15) and
let e; = E(Y{) = E(Y)) = P (X1 <s;,Xy+1 <t;). Note that the variables Y with j € IN and
i =1,...,r, being decreasing functions of the X,,, are associated and also,

Cov (Y}, Y}') = Cov (Y}, Vi) (13)

for each 4,7, h € IN and 7,7 = 1,...,7 due to the stationarity of the sequence X,, n > 1.
The i*" element of the random vector (12) can be written as

( Z ( 0,51 (Xi) [0, (Xk+5) — Siti) — [P(X1 < 84, Xppy1 < i) — Siti]) =

=ﬂ(%iw‘—m) LS

Let a1,...,a, € IR be fixed and define, for each n € IN, the random variables

Obviously, the sequences W,,, n > 1, and W, n > 1, are strictly stationary and the second one is
also associated since the coefficients |a;| are non negative. Note also that S,, n > 1, is the linear
combination of coordinates of (12), needed to use the Cramer-Wold Theorem.

Proceeding as in the proof of Theorem 4 when verifying that the limit covariance is finite,
condition (11) yields, by means of (7), that for each 7,5 = 1,...,r,

oo
3" Cov (Yf,ij) < 0, (14)
p=2
and consequently,
o
o;; = Cov (Yf,YIj) + 2 Z Cov (Yf,Y;,)j) < 00
p=2

By the Cramer-Wold Theorem the result follows from, the convergence in distribution of S, to
some gaussian centered random variable with finite variance given by

r r
02 = Var (Z aiZi> = Z aiajaij =

i=1 ij=1

Z azG]COV( ez,YI - )+2Z Z a,aJCov( — e, 157—@]') =

5,j=1 p=2 i,j=1



r

Z a; (Yf — ei)

=1

+ 2

Vs )

= Var(Wy) +2 Y Cov(W;,W,) <

p=2

r

o0
Z Cov

5o

=1

Q.

Zai(Yf—ei),Z ai(

r

vi-a)) -

=1

The rest of the proof, consisting in establishing this convergence in distribution, will be accom-
plished in 4 steps. The main idea is to decompose the sum S, in blocks with the same fixed width
[ and show that we may treat them as if they were independent.

For a fixed width [ € IN, denote by m the number of blocks (m is the largest integer less or

equal than n/l).

Step 1: Let [ € IN be fixed. We begin by approximating the characteristic function of S,, by the

characteristic function of ;.

0< ‘E (eitSn) _E (eitSml)

< B2 (S0 = Sm)?) = |H]11S0 — S

(-

vml  vV/ml

= [¢]

)2

itSn _ gitSmi

IN

Ele <

ml||2

ZWJF\F

j=ml+1

1t

(2 - )| L

Vil V/n

ZW

+

Jn

Since W, n > 1, is strictly stationary we have

ZW

|t|E |Sn - Sml| <

<

n

>

j=ml+1

Wil

0 < ‘E (eitsn) —_E (eitsml) <
ml R It] Lo
<t l1=y =] ll—= Y W,|| + =(n—mi)Var’2(W)
( ) ml i J ) NLD
ml 1o I
<ltll1=y/— | |l——=S W = Var 12(Wy).

We now prove that this sum converges to zero. The second term of the sum obviously converges
to zero so we will concentrate only on the first term. For this we have,

| - ( S ) (é

1 ml r
= l Z Z akaerov
M2 k=1

k,

.

Z akak/— Z Cov

k'=1 1,7=1

ml
> Cov(W;, W;
1,j=1

1/2
(Yi’“»Yj’“’))

1/2
(Y’c vF )) .

1/2
) -



But, taking account of (13) and (14) we find that

1
nlg%o - Zl Cov (YP,Y;]) = 0ij, (15)
’p
and consequently,
1 ml r 1/2
lim T Z_:IWj = k%; Gl Ol =o,
J= 2 v —

so the first term also converges to zero.
We have thus established that,

lim ‘E (eits”) —E (eitsml)

n— 00

=0.

Step 2: We now deal with the blocks of width [ into which the sum S,,,; is decomposed:

Accordingly, for S,,; we have,

j=(i—1)I+1

Thus, we can rewrite S,,; and S,,;, respectively as

m g B 1 m —
2:: and m[—\/—mgvl

ml—

ﬂ\

We note that, since W,,, n > 1, are strictly stationary, the variables Vil have the same distribution
for 7 € IN.

In order to approximate the characteristic function of S,,; by what we would obtain if the
variables Vil were independent we will apply Theorem 16 of Newman [10]. For this purpose define,
for each ¢ € IN, the functions

il
fi(y%,y%,--.,y{,y%,y%,---,yg,---)Z% zz: zr:ak(y;‘c_ek)

j=(i—1)I+1 k=1

and
1

Tz(yiay%a7y{7y%7y%77y57)zﬁ Z Z|ak|( _ek))
j=0GE-1)I+1 k=1
Then, the functions (f; + f;) and (f; — fi) are both coordinatewise non decreasing since their
coefficients, |ag| + ax and |ag| — ak, are non-negative. As

= fi (VYR Y YY)

and L
V' = fz (Y117 127"'7YIT7Y217Y227"'7Y2r7"')7

10



and since the random variables Y1, Y2, ... Y YL Y2 .. VT
orem 16 of Newman [10] that

\E<eit5mf>—Em<e%Vf>\=\E<f ) - HE<

. are associated it follows by The-

zt Vl>

Expanding the last sum we find,

m L m 1 kl L 1 k'l L
3 Cov (V5 Vi) = Cov | — Wi, — W, | =
iyl ( k k) Ic,%:l \/Z _ Z J \/Z _ e

kAk! KAk

=1 j=(k—1)I+1 i=(k'—1)i+1

which is the product of 1/ by the sum of all elements in the covariance matrix of (Wl, . ,Wml)
except those elements in the m diagonal squares of side [, that is,

> Cov (VhTh) =1 (flj Cov (W T7,) ~m 3" Gox (W,.,Wj)> _
k,k' =1 i,j=1 i,7=1
kK

Writing @2 = Var (?n), we finally get,

I (¢sm) B (e951)| < 2 & (52— 37) =222 (0~ 7).

Step 3 From the classical Central Limit Theorem for independent and identically distributed
variables we obtain,

lim
m—0o0

. 2.2
_it_y/1 ot
E™ (emvl> —e T2

where o7 = Var (Vl)

11



Step 4: To finish the proof we write,

_ ‘E (¢50) =B (c#5nt) + B (&5 ) — B™ ( 4L w) .

. 2,2 2,2
it l> 7o'lt 7a'lt 1252

+ E™ (e\/_mvl

2 2

‘E (eits”) e

From Step 2 the last inequality becomes,

2,2

‘E (eitS”) — eJ 2

_it_ ! "12t2
+|E™(evm L) —em T2

< B (¢%) - () 2 (7o) 4

(16)

242 2 2

_ t"o”

e 2 —e 2

o

For a fixed [ € IN, the first and the third term in this upper bound converge to zero when n — oo
according to Step 1 and Step 3, respectively.
On account of (14) we get

r

Z Cov (Wl, ) i": |ak| |ag| Cov (Ylk,ijl) < 00

7j=2

and, since the sequence W, n > 1, is strictly stationary, it follows that

nll)rgo O' hm Var (S ) —nll)rgo E Z Cov (WZ,W)
i

where
[R— e [— J—
72 = Var (Wl) +23" Cov (Wl, Wj) < .
i=2
Thus, when n — oo, the second term in the last member of (16) converges to 2t (52 — 77).
So, for each [ € IN, we have,

2,2

lim sup ‘E (eitSn) _e | < 22 (o’ - UZQ) +

n—00

Note that,

l
of = Var (Vf) = Var (% ]2:1 ) Z akar 5 Z Cov (Y’f Yk)

k,k'=1 1,j=1

12



which, from (15), when [ — o0, converges to,

r

Z ApAE' Okl — 0'2.
k,k'=1

So, letting | — 0o, we get from (17)

. 2 2
lim ‘E (e”S”) —e 5

n—00

thus proving the convergence in distribution of (12). [

3 Error criteria

The discrepancy of the estimator ¢y, from the true ¢y, at a single point, is naturally measured by
the mean square error (MSE)

MSE {@r.n(5,8)} = E(Brn(s,t) — or(s, 1) =

Var (Y1) 2 .
= n—k +(n—k)2 ZZ;(n_k_z"i_l) COV(Yk,laYk,i)

where the variables Y} ;, k,¢ € IN, are defined as in the proof of Theorem 1.
For the evaluation of the global accuracy of ¢ , as an estimator of ¢, we consider the mean
integrated square error (MISE)

12 (@k,n(sat) —(,Ok(s,t))Z ds dt) =

MISE {$,.} = E ( /[
0

= o MSE {@k n(s,t)} ds dt.

We will see that, if the sequence X,,, n > 1, satisfies (5) then, for each fixed k € IN,

nlg%o MSE {@g n(s,t)} =0 and nlg%o MISE {@kn} = 0.

In fact, condition (5) implies condition (6), as seen in the proof of Theorem 1 and since,

1 n—k 1 n—k
0< —— > (n—k—i+1)Cov (Yi1,Yk;) < > Cov (Yi1,Yei)
(’I’L — ]{7) i n—k =
it follows
) 2 n—k -
lim 3 Z (n —k—14+ I)COV (Yk,la Yk,i) = 0,

which yields
nll)rgo MSE {@g n(s,t)} = 0.
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On the other side, by means of (7) and remembering that 0 < Cov (X;, X;) <1, for each 4,5 € NN,
since the variables involved are associated and uniformly distributed on [0, 1], it follows that, for
every j € N and s,t € [0,1],

1/3
0 < Cov (Yk,laYk,j) < (g) [C0V1/3(X1,Xj) + COV1/3(X1,Xk+j)+

+Cov1/3(Xk+1,Xj) + COVI/B(XHI,XHJ')] <

3 1/3 ) 3 1/3
° Bl (3)" _
§<2> [4><1 ]_4<2> =C,

and consequently,

Var (Yk,l) 2 ok .
Ok ; (n—k —i+1)Cov (Yi,1, Vi) <

MSE {@k n(s,t)} =

2 n—k
<C+—— Cov (Yi1,Yr:) <C
>~ + n—Fk ZZ; OV( k,1s k),l) = +

2
k(n—k)C:?)C'

n—
Since the MSE {@, ,(s,t)} is uniformly bounded, the Lebesgue convergence theorem applies and
gives

Jim MISE {@ »} = 0.

For the study of the convergence rate suppose that Cov1/3(X1, X,) =0 (n*(HE)) for some ¢ >

0. Then from (7) it follows that Cov (Y1, Vi) = O (n*(1+€>), which implies 2, Cov (Y1, Yy j) <
00, and consequently

n
Z Cov (Yk,la Yk,j) =0 (’nfl) .
=1
Thus, we obtain the best convergence rate for the MSE {@y, (s, 1)},
MSE {Ge,0(s,8)} = O (n 1),
and with similar arguments we find the same convergence rate for the MISE {@y, , },
MISE {0} = O (n—l) .

In a similar way it can be shown that the weaker condition COV1/3(X1, X,) =0 (n1) leads to
MSE {@k n(s,t)} = O (n_(l_E)) and MISE {@¢yn} = O (n_(l_a)) for every ¢ > 0, thus we do not
lose much when compared with the previous case.

References

[1] Anderson, T. W., Darling, D. A. (1952). Asymptotic theory of certain ”goodness of fit” criteria
based on stochastic processes, Ann. Math. Statist. 23, 193-212.

[2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

14



3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Cai, Z., Roussas, G. G. (1998). Efficient Estimation of a Distribution Function under Quadrant
Dependence. Scand. J. Statis. 25, 211-224.

Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Mem.
Amer. Math. Soc. 6.

Doukhan, P., Massart, P., Rio, E. (1995). Invariance principles for the empirical measure of a
weakly dependent process. Ann. Inst. H. Poincaré 31, 393-427.

Esary, J. D., Proschan, F., Walkup, D. W. (1967). Association of random variables, with
applications. Ann. Math. Statist. 38, 1466-1474.

Henriques, C. M., Oliveira, P. E.(1997). Estimacao de covariéncias para varidveis associadas.
Actas do V Congresso Anual da SPE, 483-488.

Lebowitz, J.(1972). Bounds on the correlations and analycity properties of ferroma gnetic Ising
spin systems. Comm. Math. Phys. 28, 313-321.

Newman, C. M. (1980). Normal fluctuations and the FKG inequalities. Comm. Math Phys.
75, 119-128.

Newman, C. M. (1984). Asymptotic independence and limit theorems for positively and neg-
atively dependent random variables. Inequalities in Statistics and Probability, IMS Lecture
Notes - Monograph Series 5, 127-140.

Oliveira, P. E., Suquet, C. (1995). L?[0,1] weak convergence of the empirical process for
dependent variables. Actes des XV Rencontres Franco-Belges de Statisticiens (Ondelettes et
Statistique), Lecture Notes in Statistics 103, Wavelets and Statistics, Ed. A. Antoniadis, G.
Oppenheim, 331-344.

Oliveira, P. E., Suquet, C. (1998). Weak convergence in LP[0, 1] of the uniform empirical process
under dependence. Statist. Probab. Letters 39, 363-370.

Roussas, G. G. (1995). Asymptotic normality of a smooth estimate of a random field distribu-
tion function under association. Statist. Probab. Letters 24, 77-90.

Sen, P. K. (1971). A note on weak convergence of empirical processes for sequences of ¢-mixing
random variables. Ann. Math. Statist. 42, 2131-2133.

Shao, Q. M. (1986). Weak convergence of multidimensional weighted empirical processes for
strong mixing sequences. Chinese Ann. Math. Ser. A 7, 547-552.

Shao, Q. M. e Yu, H. (1996). Weak convergence for weighted empirical process of dependent
sequences. Ann. Probab. 24, 2098-2127.

Yoshihara, K. (1975). Billingsley’s theorems on empirical processes of strong mixing sequences.
Yokohama Math. J. 23, 1-7.

Yu, H. (1993). A Glivenko-Cantelli lemma and weak convergence for empirical processes of
associated sequences. Probability Theory and Related Fields 95, 357-370.

Watson, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika 48, 109-114.

15



