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Abstract

Considering an associated and strictly stationary sequence of random variables we intro�

duce an histogram estimator for the covariances between indicator functions of those random

variables� We �nd conditions on the covariance structure of the original random variables for

the almost sure convergence of the estimator and for the convergence in distribution of the

�nite dimensional distributions� Finally we characterize the usual error criteria �nding their

convergence rates under assumptions on the convergence rate of the covariances�

� Introduction

Let Xn� n � �� be identically distributed random variables with common distribution function F �
The study of the asymptotic behaviour of the empirical process

Zn�t� �
�p
n

nX
i��

�
I���t��Xi�� F �t�

�
�

where IA represents the characteristic function of the set A� has attracted the interest of many
statisticians as this function plays a central role in many statistical applications� whether directly
or after some transformation� For example� Watson ��	
 proposed a �goodness of �t� test for
distributions on the circle based on W �

n � �
�

R
������ �Zn�t��Zn�s��

� ds dt� Another �goodness of �t�

problem was considered by Anderson� Darling ��
 based on the statistic A�
n �

R �
� Zn�t���t� dt for

some suitably chosen weight function �� Other examples� where the asymptotic behaviour of Zn

is of interest include the Cramer
von Mises �� test� some von Mises functionals or� more generally�
functionals of the form

R
G�t� Zn�t�� dt� Notice that� from a theoretical point of view it is enough to

consider the empirical process based on random variables uniformly distributed on ��� �
� In fact� if
this is not the case� de�ne the quantile function Q�y� � inf fx � F �x� � yg on ��� �
� Then Zn�Q�t��
has the same distribution as the empirical process constructed from uniform ��� �
 variables� So this
is in fact the only theoretically relevant case� as general convergence conditions may be derived via
this distribution characterization� So� throughout this article unless otherwise stated� the random
variables Xn� n � �� are supposed to be uniformly distributed on ��� �
� so the empirical process
becomes

Zn�t� �
�p
n

nX
i��

�
I���t��Xi�� t

�
� t � ��� �
� ���
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The �rst results characterizing the limit behaviour of the this sequence where obtained under the
assumption of independence of the variables Xn� n � �� dating back to Donsker ��
� where the
convergence in distribution of Zn is proved with a gaussian limiting process Z such that E�Z� � �
and covariance function ��s� t� � E�Z�s�Z�t�� � s � t � st� the so called brownian bridge� The
convergence is taken in the sense of convergence in distribution in the Skorohod space D��� �
�
the natural space where the sequence Zn lives� Extensions to nonindependent variables where
eventually studied� Assuming the sequence Xn� n � �� to be strictly stationary Billingsley ��
 and
later Sen ���
 proved the convergence under some convergence rate on the �
mixing coe�cients�
which where further replaced by the strong mixing coe�cients �n� For these coe�cients Yoshihara
���
 proved the convergence under the convergence rate �n � O�n�r�� with r � � �together with
the strict stationarity of the sequence�� later extended by Shao ���
� who required only that r � ��
This rate on the strong mixing coe�cients is� to the best knowledge of the authors� the slowest
known convergence rate giving the convergence in distribution of Zn to a limiting centered gaussian
process Z which now has covariance function

��s� t� � s � t� st�
�X
k��

�P �X� � s�Xk � t�� st� �
�X
k��

�P �X� � t�Xk � s�� st� � ���

The use of other mixing coe�cients lead to some other recent results� as in Shao� Yu ���
 with
	
mixing coe�cients and in Doukhan� Massart� Rio ��
 which considered the 

mixing coe�cients�

Another way of controlling dependence is the so called association introduced by Esary� Proschan�
Walkup ��
� which we recall here� the random variables Xn� n � �� are associated if

Cov �f �X�� ���� Xn� � g �X�� ����Xn�� � �

for any n � IN and real coordinatewise increasing functions f and g for which the covariance
above exists� As follows from Newman�s inequality �see Theorem �� in Newman ���
� for associ

ated variables� the covariances Cov�Xi�Xj� completely determine convergence in distribution� so
it is natural to impose conditions in the rate of decrease of Cov�X�� Xn� �supposing the strict
stationarity of the sequence�� Convergence results where �rst obtained by Yu ���
 under the as

sumption Cov�X��Xn� � O�n�r� with r � ���� later improved by Shao� Yu ���
 requiring only that
r � �� �

p
����� � ������

All the above mentioned results are with respect to convergence in distribution in the Skorohod
space D��� �
� Looking back at the examples presented� we notice that the topology on this space is
to strong� so it is possible to derive the same convergence results under weaker conditions stating the
problem in a weaker space� A natural choice of the space is L���� �
� This problem was considered
in Oliveira� Suquet ���
 where the convergence was proved under one of the following hypotheses
�always supposing the strict stationarity of the sequence�

�
X
n

�n �� in the strong mixing case�

�
X
n

Cov����X�� Xn� �� in the associated case�

These results where later extended by Oliveira� Suquet ���
 replacing the space by Lp��� �
� with
p � �� which may be a more convenient space depending on the use of a weight function� Again
under the stationarity of the sequence� the convergence follows from one of the hypotheses

� �n � O�n�r� with r � p��� in the strong mixing case�

�



� Cov�X��Xn� � O�n�r� with r � �p��� in the associated case�

The appearance of the extra factor � in the convergence rate for associated variables is explained
by the inequality �see Lemma ��� in Yu ���
�

Cov
�
I���s��X��� I���t��X��

�
�
�
�

�

����

Cov��� �X��X�� � s� t � ��� �
� ���

where X�� X� are associated and uniformly distributed in ��� �
�
The limiting process is always centered gaussian with covariance function ��s� t� given by ����

The characterizations just described are of theoretical nature� In view of some statistical application
one does not know the covariances that are summed in the expression ���� Our aim is to study the
properties of an estimator for the terms


k�s� t� � P �X� � s�Xk�� � t�� st � Cov
�
I���s��X��� I���t��Xk���

�
�

with k � IN �xed� under the assumption of association� As the underlying variables Xn� n � �� are
supposed stationary a natural estimator of this covariance is the following histogram type estimator

b
k�n�s� t� � �

n� k

n�kX
i��

�
I���s��Xi�� I���t��Xi�k�� st

�
� ���

It is easily checked that� for each s� t � ��� �
� E � b
k�n�s� t�� � 
k�s� t��
Estimation under association� or more generally� under positive dependence has been studied

by Roussas ���
 and Cai� Roussas ��
� although the problem under consideration in these references
was stated di�erently� In fact� the interest in ���
 and ��
 is on estimating the distribution function
of the variables Xn� n � �� �obviously not supposed to be uniform ��� �
�� It is worth noticing that�
in what regards convergence in distribution of the �nite dimensional distributions of the estimator
we are lead to the same condition on the covariance structure as the one found by Roussas �see
Theorem ��� in ���
�� namely that

�X
j��

Cov��� �X��Xj� ���

In the sequel� unless otherwise stated� the variables Xn� n � �� are strictly stationary associated
and uniformly distributed on ��� �
�

� Convergence of the estimator

In this section we will look at the convergence of the estimator ���� The �rst result gives a condition
for the pointwise almost sure convergence of the estimator�

Theorem � If the sequence Xn� n � �� is such that

lim
n��

�

n

nX
j��

Cov��� �X��Xj� � �� ���

then� for each �xed k � IN�

lim
n��

b
k�n�s� t� � 
k�s� t� a�s�

�



Proof� For each k� n � IN and s� t � ��� �
 de�ne the random variables Yk�n � I���s��Xn�I���t��Xn�k��
Since the sequence Xn� n � �� is associated and strictly stationary and the Yk�n are decreasing
functions of the Xn� the sequence Yk�n� n � �� is also associated and strictly stationary�

Our statement follows from the strong law of large numbers for the sequence Yk�n� n � �� In
fact� letting Sk�n �

Pn
i�� Yk�i then

Sk�n�k � E�Sk�n�k�

n� k
�

�
�

n� k

n�kX
i��

h�
I���s��Xi�I���t�Xi�k�

�
� P �X� � s�Xk�� � t�

i
�

� b
k�n�s� t�� 
k�s� t��

According to Theorem � in Newman ���
 the almost sure convergence to zero of this last ex

pression follows from

lim
n��

�

n

nX
j��

Cov �Yk��� Yk�j� � �� ���

To prove ��� we will �nd an upper bound to Cov �Yk��� Yk�j�� Applying a classical inequality by
Lebowitz ��
 and ��� we �nd

� � Cov �Yk��� Yk�j� �

�
�
�

�

���� h
Cov����X��Xj� � Cov����X�� Xk�j�� ���

� Cov����Xk��� Xj� � Cov����Xk���Xk�j�
i
�

So ��� follows from ��� which completes the proof of the theorem�

It is worth noticing that the exponent ��� in ��� is not relevant� In fact� this condition is
equivalent to

lim
n��

�

n

nX
j��

Cov �X��Xj� � �� ���

This follows from an application of H�older inequality and the fact that the covariances between each
pair of variables of the sequence Xn� n � �� are always between zero and one� since the variables
are associated and uniformly distributed on ��� �
�

We note also that condition ��� is weaker than any of the conditions for the convergence of the
empirical process mentioned in the Introduction� That ��� is weaker than Shao� Yu�s condition
follows immediately from the equivalence between ��� and ���� On the other side ��� is obviously
weaker than Oliveira� Suquet�s condition�

The next theorem establishes that ��� is still a su�cient condition for the almost sure conver

gence of the estimator even if the variables of the sequence Xn� n � �� are not uniformly distributed�
Proving this result reduces to applying the following generalization of Hoe�ding�s equality� which
is contained in Theorem ��� of Yu ���
� and is valid for any random variables X� and X��

Cov �f��X��� f��X��� �

Z
IR�

f ���x��f
�
��x��Cov

�
I���x���X��� I���x���X��

�
dx� dx� �	�

where f� and f� are absolutely continuous functions in any �nite interval of IR�

�



Theorem � Let Xn� n � �� be a strictly stationary associated sequence of random variables having

a bounded density function f and with distribution function F � If ��� holds then� for each �xed

k � IN�

lim
n��

�

n� k

n�kX
i��

�
I���s��Xi�I���t��Xi�k�� F �s�F �t�

�
� Cov

�
I���s��X��� I���t��Xk���

�
a�s�

Proof� Note �rst that due to the fact that F is a continuous and non decreasing function�
F �Xn�� n � �� is an associated strictly stationary sequence of random variables with uniform
distribution on ����
� By means of �	� and since f is a bounded function we obtain�

Cov �F �X��� F �Xj�� �

Z
IR�

f�x��f�xj�Cov
�
I���x���X��� I���xj ��Xj�

�
dx� dxj �

�
�
sup
x
j f�x� j

�� Z
IR�

Cov
�
I���x���X��� I���xj ��Xj�

�
dx� dxj �

�

�
sup
x
j f�x� j

��

Cov�X��Xj��

As mentioned before the sequence F �Xn�� n � �� is associated� so from the last inequality and ���
it follows that

lim
n��

�

n

nX
i��

Cov��� �F �X��� F �Xi�� � ��

At this point we have seen that the sequence F �Xn�� n � �� satis�es all conditions of Theorem �
from which so� almost surely

lim
n��

�

n� k

n�kX
i��

�
I���F 	s
��F �Xi��� I���F 	t
��F �Xi�k��� F �s�F �t�

�
�

� Cov
�
I���F 	s
��F �X���� I���F 	t
��F �X��k��

�
which is equivalent to

lim
n��

�

n� k

n�kX
i��

�
I���F 	s
��F �Xi�� I���F 	t
��F �Xi�k�

�
� P�F �X�� � F �s�� F �Xk��� � F �t�� a�s�

Now� the sets f� � F �Xi���� � F �s��F �Xi�k���� � F �t�g and f� � Xi��� � s�Xi�k��� � tg are
equal almost everywhere and consequently� I���F 	s
��F �Xi��I���F 	t
��F �Xi�k�� � I���s��Xi�I���t��Xi�k�
almost everywhere� so the last convergence leads to

lim
n��

�

n� k

n�kX
i��

�
I���s��Xi�I���t��Xi�k�

�
� P�X� � s�Xk�� � t� a�s�

from which the result follows�

The uniform strong consistency of the estimator is established in the next theorem whose proof
follows the same steps as the proof of the classical Glivenko
Cantelli Theorem�

�



Theorem � If the sequence Xn� n � �� satis�es ��� then� for each �xed k � IN�

lim
n��

sup
s�t������

j b
k�n�s� t�� 
k�s� t�j � � a�s�

Proof� In order to simplify the expressions in the course of the proof we de�ne

�k�s� t� � P �X� � s�Xk�� � t� � 
k�s� t� � st

and

b�k�n�s� t� � �

n� k

n�kX
i��

�
I���s��Xi�I���t��Xi�k�

�
� b
k�n�s� t� � st�

Hence we may write

Dn � sup
s�t������

j b
k�n�s� t�� 
k�s� t�j � sup
s�t������

jb�k�n�s� t�� �k�s� t�j �

Let M � � be �xed� For any � � i� j �M � we have from Theorem � that�

lim
n��

b�k�n � i

M
�
j

M

�
� �k

�
i

M
�
j

M

�
a�s�

and consequently�

lim
n��

DM�n � lim
n��

max
��i�j�M

����b�k�n� i

M
�
j

M

�
� �k

�
i

M
�
j

M

����� � � a�s�

Also� since the variables Xi are uniformly distributed on ��� �
� it is easy to check that

�k

�
i

M
�
j

M

�
� �k

�
i� �

M
�
j � �

M

�
� �

M
� ����

For i��
M � s � i

M and j��
M � t � j

M we have� by monotonicity� that�

b�k�n�s� t� � b�k�n� i

M
�
j

M

�
�
����b�k�n� i

M
�
j

M

�
� �k

�
i

M
�
j

M

������ �k

�
i

M
�
j

M

�
�

� DM�n � �k

�
i

M
�
j

M

�
� DM�n �

�

M
� �k

�
i� �

M
�
j � �

M

�
� DM�n �

�

M
� �k�s� t��

taking account of ����� Proceeding in a similar way we obtain

b�k�n�s� t� � �DM�n � �

M
� �k�s� t��

Thus� combining the last two inequalities� we have

sup
s�t������

jb�k�n�s� t�� �k�s� t�j � DM�n �
�

M
�

Since M is arbitrary and limn�� DM�n � � almost surely� it follows that limn�� Dn � � almost
surely�

The following two theorems are concerned with the convergence in distribution of the �nite
dimensional distributions of the estimator�

�



Theorem � If the sequence Xn� n � �� is such that

�X
j��

Cov��� �X��Xj� ��� ����

then� for each �xed k � IN and s� t � ��� �
�
p
n� k � b
k�n�s� t�� 
k�s� t�� converges in distribution

to a gaussian random variable Z with E�Z� � � and Var�Z� � �� where

�� � Var
�
I���s��X��I���t��Xk���

�
� �

�X
j��

Cov
�
I���s��X��I���t��Xk���� I���s��Xj�I���t��Xk�j�

�
���

Proof� Considering the variables Yk�n� n � �� de�ned in the proof of Theorem � we may rewrite

�� � Var �Yk��� � �
�X
j��

Cov �Yk��� Yk�j� �

Letting Sk�n �
Pn

i�� Yk�i� we have

Sk�n�k � E�Sk�n�k�p
n� k

�
p
n� k � b
k�n�s� t�� 
k�s� t��

and consequently the result follows from a Central Limit Theorem for associated variables� Ac

cording to Theorem �� in Newman �	
 it su�ces to verify that the variables Yk�i have �nite variance
and that �� ��� The �rst of these two conditions is easily veri�ed

Var �Yk�i� � Var �Yk��� � P �X� � s�Xk�� � t�� �P �X� � s�Xk�� � t��� ���

According to inequality ���� it follows from ���� that

�X
j��

Cov �Yk��� Yk�j� ��

and consequently the second condition is also satis�ed� that is �� ���

Theorem � If the random variables Xn� n � �� satisfy ���� then� for each choice of r � IN�

s�� � � � � sr� t�� � � � � tr � ��� �
 and k � IN� the random vector

p
n� k

�b
k�n�s�� t��� 
k�s�� t��� � � � � b
k�n�sr� tr�� 
k�sr� tr�
�

����

converges in distribution to a centered gaussian random vector �Z�� � � � � Zr� with covariance matrix

with entries �ij de�ned by

�ij � Cov �Zi� Zj� � Cov
�
I���si��X��I���ti��Xk���� I���sj ��X��I���tj ��Xk���

�
�

��
�X
p��

Cov
�
I���si��X��I���ti��Xk���� I���sj ��Xp�I���tj ��Xk�p�

�
���

�



Proof� Let r � IN� s�� � � � � sr� t�� � � � � tr � ��� �
 and k � IN be �xed� In order to simplify the notation
we will drop the k and so� without loss of generality� we will always use n instead of n� k�

For each j � IN and i � �� � � � � r� de�ne the random variables Y i
j � I���si�����ti��Xj �Xk�j� and

let ei � E�Y i
� � � E�Y i

j � � P �X� � si�Xk�� � ti�� Note that the variables Y i
j with j � IN and

i � �� � � � � r� being decreasing functions of the Xn� are associated and also�

Cov
�
Y i
j � Y

i�
j�
�
� Cov

�
Y i
j�h� Y

i�
j��h

�
����

for each j� j�� h � IN and i� i� � �� ���� r due to the stationarity of the sequence Xn� n � ��
The ith element of the random vector ���� can be written as

p
n

�� �

n

nX
j��

�
I���si��Xj�I���ti��Xk�j�� siti

�
� �P�X� � si� Xk�� � ti�� siti


	A �

�
p
n

�� �

n

nX
j��

Y i
j � E�Y i

� �

	A �
�p
n

nX
j��

�Y i
j � ei��

Let a�� � � � � ar � IR be �xed and de�ne� for each n � IN� the random variables

Wn �
rX

i��

ai
�
Y i
n � ei

�
� W n �

rX
i��

jaij
�
Y i
n � ei

�
�

Sn �
�p
n

nX
j��

Wj � Sn �
�p
n

nX
j��

W j �

Obviously� the sequences Wn� n � �� and W n� n � �� are strictly stationary and the second one is
also associated since the coe�cients jaij are non negative� Note also that Sn� n � �� is the linear
combination of coordinates of ����� needed to use the Cramer
Wold Theorem�

Proceeding as in the proof of Theorem � when verifying that the limit covariance is �nite�
condition ���� yields� by means of ���� that for each i� j � �� ���� r�

�X
p��

Cov
�
Y i
� � Y

j
p

�
��� ����

and consequently�

�ij � Cov
�
Y i
� � Y

j
�

�
� �

�X
p��

Cov
�
Y i
� � Y

j
p

�
���

By the Cramer
Wold Theorem the result follows from� the convergence in distribution of Sn to
some gaussian centered random variable with �nite variance given by

�� � Var



rX

i��

aiZi

�
�

rX
i�j��

aiaj�ij �

�
rX

i�j��

aiajCov
�
Y i
� � ei� Y

j
� � ej

�
� �

�X
p��

rX
i�j��

aiajCov
�
Y i
� � ei� Y

j
p � ej

�
�

�



� Var



rX

i��

ai
�
Y i
� � ei

��
� �

�X
p��

Cov



rX

i��

ai
�
Y i
� � ei

�
�

rX
i��

ai
�
Y i
p � ei

��
�

� Var�W�� � �
�X
p��

Cov�W��Wp� ���

The rest of the proof� consisting in establishing this convergence in distribution� will be accom

plished in � steps� The main idea is to decompose the sum Sn in blocks with the same �xed width
l and show that we may treat them as if they were independent�

For a �xed width l � IN� denote by m the number of blocks �m is the largest integer less or
equal than n�l��

Step �� Let l � IN be �xed� We begin by approximating the characteristic function of Sn by the
characteristic function of Sml�

� �
���E�eitSn�� E

�
eitSml

���� � E
���eitSn � eitSml

��� � jtjE jSn � Smlj �

� jtjE���
�
�Sn � Sml�

�
�
� jtj jjSn � Smljj�

� jtj
������
������
�

�p
n
� �p

ml

� mlX
j��

Wj �
�p
n

nX
j�ml��

Wj

������
������
�

�

� jtj

p

mlp
ml

�
p
mlp
n

� ������
������ �p

ml

mlX
j��

Wj

������
������
�

�
jtjp
n

nX
j�ml��

jjWjjj�

Since Wn� n � �� is strictly stationary we have

� �
���E�eitSn�� E

�
eitSml

���� �
� jtj

����
s
ml

n

	A������
������ �p

ml

mlX
j��

Wj

������
������
�

�
jtjp
n
�n�ml�Var����W��

� jtj
����

s
ml

n

	A������
������ �p

ml

mlX
j��

Wj

������
������
�

�
jtj lp
n
Var����W���

We now prove that this sum converges to zero� The second term of the sum obviously converges
to zero so we will concentrate only on the �rst term� For this we have�������
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But� taking account of ���� and ���� we �nd that
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so the �rst term also converges to zero�
We have thus established that�
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Step 	� We now deal with the blocks of width l into which the sum Sml is decomposed�
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We note that� since Wn� n � �� are strictly stationary� the variables V l
i have the same distribution

for i � IN�
In order to approximate the characteristic function of Sml by what we would obtain if the

variables V l
i were independent we will apply Theorem �� of Newman ���
� For this purpose de�ne�
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Then� the functions �f i � fi� and �f i � fi� are both coordinatewise non decreasing since their
coe�cients� jakj� ak and jakj � ak� are non
negative� As
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Step 
� From the classical Central Limit Theorem for independent and identically distributed
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For a �xed l � IN� the �rst and the third term in this upper bound converge to zero when n �	�
according to Step � and Step 
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� Error criteria

The discrepancy of the estimator b
k�n from the true 
k� at a single point� is naturally measured by
the mean square error �MSE�
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For the evaluation of the global accuracy of b
k�n as an estimator of 
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integrated square error �MISE�

MISE f b
k�ng � E


Z
������

� b
k�n�s� t�� 
k�s� t��
� ds dt

�
�

�

Z
������

MSE f b
k�n�s� t�g ds dt�

We will see that� if the sequence Xn� n � �� satis�es ��� then� for each �xed k � IN�

lim
n��

MSE f b
k�n�s� t�g � � and lim
n��

MISE f b
k�ng � ��

In fact� condition ��� implies condition ���� as seen in the proof of Theorem � and since�

� � �

�n� k��

n�kX
i��

�n� k � i� ��Cov �Yk��� Yk�i� � �

n� k

n�kX
i��

Cov �Yk��� Yk�i� �

it follows

lim
n��

�

�n� k��

n�kX
i��

�n� k � i� ��Cov �Yk��� Yk�i� � ��

which yields
lim
n��

MSE f b
k�n�s� t�g � ��

��



On the other side� by means of ��� and remembering that � � Cov �Xi� Xj� � �� for each i� j � IN�
since the variables involved are associated and uniformly distributed on ��� �
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Since the MSE f b
k�n�s� t�g is uniformly bounded� the Lebesgue convergence theorem applies and
gives
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Thus� we obtain the best convergence rate for the MSE f b
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for every � � �� thus we do not

lose much when compared with the previous case�
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