ON INDICATRICES

F. J. Craveiro de Carvalho

1. Introduction

We start by considering the space H of half-lines in R"™! which can be iden-
tified with S™ x R"*! in a natural way. Let f : M — R""! be a smooth, bounded
map and assume that ¢ : M — H is a smooth map such that, for x € M, g(x)
is a half-line starting at f(z). Now surround f(M) by a round n-sphere S and
define F' : M — S by taking F'(x) to be the intersection point of g(x) with S.
We will say that F' is a Spherical Indicatriz. The purpose of the present note is
to study the map F' in some particular cases. Maps of this type have cropped up
in some of our work [3],[4].

2. Normal Indicatrices of a Codimension 1 Immersion

In what follows M will denote a boundaryless, compact, connected, oriented,
n-dimensional manifold. Let f : M — R™"! be a smooth immersion, smooth here
meaning C* . Assume that S is a round n-sphere surrounding f(M). For what
follows there is no loss of generality in assuming that the sphere is centred at the
origin. Let now g : M — S™ x R"™! be of the form (U, f). The Indicatriz Fy is
defined as follows. For € M, consider the half-line f(z) + aU(z),« > 0 . Then
Fy(x) is the intersection of the half-line with S. We can write Fyy = f + AU,
where A is a positive, smooth map.

Let us now denote by N : M — R"*! the normal unit vector field determined
in the following way. If, for x € M, 0, is the orientation for the tangent space
T,M, then [f..(6,), N(x)] is the usual orientation of R"*!. Here f., denotes the
induced linear map and the tangent space to R"*! at x will be identified with
R™!itself. The maps Fy and F_y are the Normal Indicatrices.
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Maps of the type fe : M — R with fe(z) = f(z)+&(x), were € is a parallel
normal field where studied by Carter and Sentiirk [1] among other people.

If M is not diffeomorphic to S™ then any indicatrix will have critical points.
We shall see next what happens for S™ and the normal indicatrices.

Proposition 1: Let f : S® — R"! be a smooth immersion such that its
Gaussian curvature does not vanish. Then one of the maps Fy,F_y is an im-
mersion. Moreover, if the radius of S is sufficiently large then both maps are

immersions.

Proof: Let Fy = f+ AN. Then Fy., = fiux + A2)Nip + N(2)A,y, where
fees Nug : TpS™ = fop(T,.S™) are linear isomorphisms and f,, "' oN,, is symmetric.

Let a;,2 = 1...,n, be continuous maps such that at every point they give the
principal curvatures of f with respect to /N. Since we are assuming nonvanishing
Gaussian curvature they are all positive or all negative maps. For x € S",
let (e1,...,e,) be a basis for T,S™ formed by eigenvectors. Then Fy..(e;) =
(14 A(2);(2)) few(€i) + Az(ei) N(z),i = 1,...,n. If the o;’s are positive then Fy
is an immersion. If they are negative then F_y is an immersion.

Let now, for each 7, m; be a positive real number such that m; <| a;(x) |, for

1
x € S". Take a = max —. If the radius R of the surrounding sphere S is such
i=1,..,n My

that R > a+r, with r = max | f(z) ||. Then Fy, F_y are immersions. In fact in
xT n

that case we have d(f(S"),S) > —— > m,i =1,...,n, and consequently the

scalars 1 + A(z)ay(x),i =1,...,n, are different from zero. D

It is important to observe from the proof above that, for every immersion
f: M — R"' if Fy(z) (respectively F_y(z)) is not a focal point of f with z as
base point then x is not a critical point of Fyy (respectively F_y).

2. Degree of an Indicatrix

Let us have the same assumptions and notations as in §2.
We start with a result on mod2 degrees.

Proposition 1: Let f : M — R"™! be an immersion. Then degree, Fy +
degrees F_n = e(M) mod2, where e(M) stands for the Euler number of M.

Proof: Choose p € S such that p is a regular value for both Fy and F_y.
Consider L, : M — R given by L,(z) =|| f(z) —p ||*. The result follows easily
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from the fact that L, is a Morse function and the number of its critical points is
congruent with e(M) mod2. D]

Proposition 2: Let M be even-dimensional. If F}; is an indicatrix such that,
for x € M, /(U(z), N(z)) < Z then degree Fy = L e(M).

Proof: This follows from an old result of Heinz Hopf [5] and the fact that there
is a homotopy between Fyr and the map r N, where r is the radius of S. In fact,
for t € [0,1],x € M, H(x,t) = rN(z) + t(Fy(r) — rN(x)) is different from zero.
If, for some t # 0,1,z € M, H(t,z) were zero we would have Fy(xz) = —rN(x)
and consequently f(x) = —A(x)U(z) — rN(z). This would imply || f(x) ||> .
We can then use H to define a homotopy between Fy; and the map rN. D

If M is odd-dimensional there is still a homotopy but the result is no longer
true. For instance, for M = S™, odd n, we can have arbitrary odd degree. We
refer the reader to the results in [5].

Assume now that M = S*.

Proposition 3 : Let Fy; : S' — S be an indicatrix such that, for s € S*,
/(U(s), N(s)) < m. Then Fy is homotopic to Fly.

: 7. 7 — U(s)+t(N(s)=U(s))
Pr~oof. Let T : S* x [0,1] — S* be such that T'(s,t) = [HOICIOEAOE Use
now 7 to obtain H : S* x[0,1] — S given by H(s,t) = f(s)+pu(s,t)T(s,t), where
11(s, t) is obtained after finding the intersection of the half-line f(s)+aT (s, ), a >

We see that the Tangential Indicatriz, Fr, with T(x) the tangent vector to
the curve at X, is homotopic to Fy. Using a rotation of angle 7t in R? we can
show that Fr and F are homotopic to F_; and F_y respectively. That does
not necessarily happen in higher dimensions.

Proposition 4: Let f : S — R? be such that no tangent line passes through
0. Then, for U as in proposition 2, degree Fy is the winding number of f with
respect to O.

Proof: Tt is enough to consider the case U = T'. Now define H : S'x[0,1] — S

— . S(@)+tM2)T(x) : :
by H(z,t) = Ty i@ Where ris the radius of S. D>

Proposition 5: Let f : S — R? be such that its curvature does not vanish.
Then, for U as in proposition 2, 27 degree Fy = rot f, where rot f stands for
the rotation number of f.



Proof: Again we consider he case U = T. From Fr = f + AT it is clear
that f and Fp are regularly homotopic and consequently rot f = rot Fr. Since
rot Fr = 2w degree Fr the result follows. >

3. Applications

There is no reason to consider just immersions with codimension 1. An inter-

esting situation occurs with curves in 3-space.
A. Curves with Small Total Torsion

In[2] it was convenient at some stage to indicate how curves with small total
torsion could be obtained. There we used a convenient non-degenerate homotopy
as suggested by [6]. Here we will use another type of homotopy for a similar
purpose.

Let f : S' — R3? be a closed curve with nonvanishing torsion. Consider
Fr:S' — S given by Fr(z) = f(z) + AMx)T(x), where T'(z) is the unit tangent
vector at x. For 0 <t <1, g, = f+tAT gives rise to a non-degenerate homotopy,
that is one that at every stage ¢ the corresponding curve g; has curvature which
vanishes nowhere. Since under a non-degenerate deformation the total torsion
varies continuously and the total torsion of a spherical curve is zero it follows
that curves with very small, nonzero total torsion can be obtained.

B. Linking Numbers

Proposition 1: Let f,g: S' — R3 be curves such that the image of one of
them does not intersect any tangent line to the other. Then the linking number
L(f, g) is zero.

Proof: Assume that no tangent line to f meets g(St). Consider Fr = f + \T.
Then f is homotopic to Fr and the homotopy induces a homotopy between

¢: St x St — S given by ¢(x,y) = % and 1 : St x St — S2, given by
W(x,y) = A& 9 Therefore L(f,g) = L(Fr,g). If we choose the 2-sphere S

— IPr(@) =9Il
for the definition of Fr sufficiently big it follows that L(Fr,g) = 0.

>

Athwart curves [4] are examples of curves in the conditions of Proposition 1.
It is known [4] that there are curves which cannot be athwart to any other curve.



We are going to show that on the other hand given a curve we can always find
another one such that the conditions of Proposition 1 are satisfied.

Proposition 2: Let f : S! — R? be a curve. Then there is g : S — R3 such
that no tangent line to f meets g(S*).

Proof: We follow [3] where we showed that the tangent lines to f do not
fill R®. Consider Fr, F_y. Then X = Fr(S') U F_p(S') is a set of which the
complement in S? is open and nonempty. Any curve ¢ : S* — R? with image in
2\ X will do. >

Obviously similar results can be obtained replacing tangent by principal nor-

mal or binormal if the extra assumption of nonvanishing curvature is imposed on

f.
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