ON INDICATRICES

F. J. Craveiro de Carvalho

1. Introduction

We start by considering the space H of half-lines in \mathbb{R}^{n+1} which can be identified with $S^n \times \mathbb{R}^{n+1}$ in a natural way. Let $f: M \to \mathbb{R}^{n+1}$ be a smooth, bounded map and assume that $g: M \to H$ is a smooth map such that, for $x \in M$, g(x)is a half-line starting at f(x). Now surround f(M) by a round *n*-sphere S and define $F: M \to S$ by taking F(x) to be the intersection point of g(x) with S. We will say that F is a *Spherical Indicatrix*. The purpose of the present note is to study the map F in some particular cases. Maps of this type have cropped up in some of our work [3],[4].

2. Normal Indicatrices of a Codimension 1 Immersion

In what follows M will denote a boundaryless, compact, connected, oriented, n-dimensional manifold. Let $f: M \to R^{n+1}$ be a smooth immersion, smooth here meaning C^{∞} . Assume that S is a round n-sphere surrounding f(M). For what follows there is no loss of generality in assuming that the sphere is centred at the origin. Let now $g: M \to S^n \times R^{n+1}$ be of the form (U, f). The Indicatrix F_U is defined as follows. For $x \in M$, consider the half-line $f(x) + \alpha U(x), \alpha \geq 0$. Then $F_U(x)$ is the intersection of the half-line with S. We can write $F_U = f + \lambda U$, where λ is a positive, smooth map.

Let us now denote by $N: M \to \mathbb{R}^{n+1}$ the normal unit vector field determined in the following way. If, for $x \in M$, θ_x is the orientation for the tangent space $T_x M$, then $[f_{*x}(\theta_x), N(x)]$ is the usual orientation of \mathbb{R}^{n+1} . Here f_{*x} denotes the induced linear map and the tangent space to \mathbb{R}^{n+1} at x will be identified with \mathbb{R}^{n+1} itself. The maps F_N and F_{-N} are the Normal Indicatrices. Maps of the type $f_{\xi} : M \to \mathbb{R}^{n+k}$, with $f_{\xi}(x) = f(x) + \xi(x)$, were ξ is a parallel normal field where studied by Carter and Sentürk [1] among other people.

If M is not diffeomorphic to S^n then any indicatrix will have critical points. We shall see next what happens for S^n and the normal indicatrices.

Proposition 1: Let $f : S^n \to R^{n+1}$ be a smooth immersion such that its Gaussian curvature does not vanish. Then one of the maps F_N, F_{-N} is an immersion. Moreover, if the radius of S is sufficiently large then both maps are immersions.

Proof: Let $F_N = f + \lambda N$. Then $F_{N*x} = f_{*x} + \lambda(x)N_{*x} + N(x)\lambda_{*x}$, where $f_{*x}, N_{*x} : T_x S^n \to f_{*x}(T_x S^n)$ are linear isomorphisms and $f_{*x}^{-1} \circ N_{*x}$ is symmetric.

Let $\alpha_i, i = 1..., n$, be continuous maps such that at every point they give the principal curvatures of f with respect to N. Since we are assuming nonvanishing Gaussian curvature they are all positive or all negative maps. For $x \in S^n$, let (e_1, \ldots, e_n) be a basis for $T_x S^n$ formed by eigenvectors. Then $F_{N*x}(e_i) = (1 + \lambda(x)\alpha_i(x))f_{*x}(e_i) + \lambda_{*x}(e_i)N(x), i = 1, \ldots, n$. If the α_i 's are positive then F_N is an immersion.

Let now, for each i, m_i be a positive real number such that $m_i < |\alpha_i(x)|$, for $x \in S^n$. Take $a = \max_{i=1,\dots,n} \frac{1}{m_i}$. If the radius R of the surrounding sphere S is such that $R \ge a+r$, with $r = \max_{x \in S^n} ||f(x)||$. Then F_N, F_{-N} are immersions. In fact in that case we have $d(f(S^n), S) \ge \frac{1}{m_i} > \frac{1}{|\alpha_i(x)|}, i = 1, \dots, n$, and consequently the scalars $1 + \lambda(x)\alpha_i(x), i = 1, \dots, n$, are different from zero.

It is important to observe from the proof above that, for every immersion $f: M \to \mathbb{R}^{n+1}$, if $F_N(x)$ (respectively $F_{-N}(x)$) is not a focal point of f with x as base point then x is not a critical point of F_N (respectively F_{-N}).

2. Degree of an Indicatrix

Let us have the same assumptions and notations as in $\S2$. We start with a result on mod2 degrees.

Proposition 1: Let $f : M \to R^{n+1}$ be an immersion. Then $degree_2 F_N + degree_2 F_{-N} \equiv e(M) \mod 2$, where e(M) stands for the Euler number of M.

Proof: Choose $p \in S$ such that p is a regular value for both F_N and F_{-N} . Consider $L_p : M \to R$ given by $L_p(x) = || f(x) - p ||^2$. The result follows easily from the fact that L_p is a Morse function and the number of its critical points is congruent with $e(M) \mod 2$.

Proposition 2: Let M be even-dimensional. If F_U is an indicatrix such that, for $x \in M$, $\angle (U(x), N(x)) \leq \frac{\pi}{2}$ then degree $F_U = \frac{1}{2} e(M)$.

Proof: This follows from an old result of Heinz Hopf [5] and the fact that there is a homotopy between F_U and the map rN, where r is the radius of S. In fact, for $t \in [0, 1], x \in M, H(x, t) = rN(x) + t(F_U(x) - rN(x))$ is different from zero. If, for some $t \neq 0, 1, x \in M, H(t, x)$ were zero we would have $F_U(x) = -rN(x)$ and consequently $f(x) = -\lambda(x)U(x) - rN(x)$. This would imply || f(x) || > r. We can then use H to define a homotopy between F_U and the map rN.

If M is odd-dimensional there is still a homotopy but the result is no longer true. For instance, for $M = S^n$, odd n, we can have arbitrary odd degree. We refer the reader to the results in [5].

Assume now that $M = S^1$.

Proposition 3: Let $F_U : S^1 \to S$ be an indicatrix such that, for $s \in S^1$, $\angle (U(s), N(s)) < \pi$. Then F_U is homotopic to F_N .

Proof: Let $\tilde{T}: S^1 \times [0,1] \to S^1$ be such that $\tilde{T}(s,t) = \frac{U(s)+t(N(s)-U(s))}{||U(s)+t(N(s)-U(s))||}$. Use now \tilde{T} to obtain $H: S^1 \times [0,1] \to S$ given by $H(s,t) = f(s) + \mu(s,t)\tilde{T}(s,t)$, where $\mu(s,t)$ is obtained after finding the intersection of the half-line $f(s) + \alpha \tilde{T}(s,t), \alpha \ge 0$, with S.

We see that the Tangential Indicatrix, F_T , with T(x) the tangent vector to the curve at X, is homotopic to F_N . Using a rotation of angle πt in \mathbb{R}^2 we can show that F_T and F_N are homotopic to F_{-T} and F_{-N} respectively. That does not necessarily happen in higher dimensions.

Proposition 4: Let $f: S^1 \to R^2$ be such that no tangent line passes through 0. Then, for U as in proposition 2, degree F_U is the winding number of f with respect to O.

Proof: It is enough to consider the case U = T. Now define $H: S^1 \times [0, 1] \to S$ by $H(x, t) = r \frac{f(x) + t\lambda(x)T(x)}{\|f(x) + t\lambda(x)T(x)\|}$, where r is the radius of S.

Proposition 5: Let $f: S^1 \to R^2$ be such that its curvature does not vanish. Then, for U as in proposition 2, 2π degree $F_U = rot f$, where rot f stands for the rotation number of f. Proof: Again we consider he case U = T. From $F_T = f + \lambda T$ it is clear that f and F_T are regularly homotopic and consequently rot $f = rot F_T$. Since rot $F_T = 2\pi$ degree F_T the result follows.

3. Applications

There is no reason to consider just immersions with codimension 1. An interesting situation occurs with curves in 3-space.

A. Curves with Small Total Torsion

In[2] it was convenient at some stage to indicate how curves with small total torsion could be obtained. There we used a convenient non-degenerate homotopy as suggested by [6]. Here we will use another type of homotopy for a similar purpose.

Let $f : S^1 \to R^3$ be a closed curve with nonvanishing torsion. Consider $F_T : S^1 \to S$ given by $F_T(x) = f(x) + \lambda(x)T(x)$, where T(x) is the unit tangent vector at x. For $0 \le t \le 1$, $g_t = f + t\lambda T$ gives rise to a non-degenerate homotopy, that is one that at every stage t the corresponding curve g_t has curvature which vanishes nowhere. Since under a non-degenerate deformation the total torsion varies continuously and the total torsion of a spherical curve is zero it follows that curves with very small, nonzero total torsion can be obtained.

B. Linking Numbers

Proposition 1: Let $f, g: S^1 \to R^3$ be curves such that the image of one of them does not intersect any tangent line to the other. Then the linking number L(f,g) is zero.

Proof: Assume that no tangent line to f meets $g(S^1)$. Consider $F_T = f + \lambda T$. Then f is homotopic to F_T and the homotopy induces a homotopy between $\phi: S^1 \times S^1 \to S^2$, given by $\phi(x, y) = \frac{f(x) - g(y)}{\||f(x) - g(y)\||}$ and $\psi: S^1 \times S^1 \to S^2$, given by $\psi(x, y) = \frac{F_T(x) - g(y)}{\||F_T(x) - g(y)\||}$. Therefore $L(f, g) = L(F_T, g)$. If we choose the 2-sphere Sfor the definition of F_T sufficiently big it follows that $L(F_T, g) = 0$.

 \bowtie

Athwart curves [4] are examples of curves in the conditions of Proposition 1. It is known [4] that there are curves which cannot be athwart to any other curve. We are going to show that on the other hand given a curve we can always find another one such that the conditions of Proposition 1 are satisfied.

Proposition 2: Let $f: S^1 \to R^3$ be a curve. Then there is $g: S^1 \to R^3$ such that no tangent line to f meets $g(S^1)$.

Proof: We follow [3] where we showed that the tangent lines to f do not fill R^3 . Consider F_T, F_{-T} . Then $X = F_T(S^1) \cup F_{-T}(S^1)$ is a set of which the complement in S^2 is open and nonempty. Any curve $g: S^1 \to R^3$ with image in $S^2 \setminus X$ will do.

Obviously similar results can be obtained replacing tangent by principal normal or binormal if the extra assumption of nonvanishing curvature is imposed on f.

References

- 1- Sheila Carter and Zerrin Şentürk, The space of immersions parallel to a given immersion, J. London Math. Soc. 50, 1994.
- 2- F. J. Craveiro de Carvalho and S. A. Robertson, Self parallel curves, Math. Scand. 65, 1989.
- 3- F. J. Craveiro de Carvalho and S. A. Robertson, A remark on cylindrical curves and induced curves in RP², Note di Matematica, vol. 16, nº1, 1996.
- 4- F. J. Craveiro de Carvalho and Alan West, Athwart curves in R³, J. Geometry 26, 1986.
- 5- John Milnor, On the immersion of *n*-manifolds in (n+1) space, Comment. Math. Helv. 30, 1956.
- 6- W. Pohl, The self-linking number of a closed space curve, J. Mathematics and Mechanics 10, 1968.

Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, PORTUGAL. *e-mail* : fjcc@mat.uc.pt