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Abstract

It is shown that the descent constructions of �nite preorders provide a simple motivation for

those of topological spaces� and new counter�examples to open problems in Topological descent

theory are constructed�
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� Introduction

Let Top be the category of topological spaces� For a given continuous map p � E � B� it might

be possible to describe the category �Top � B� of bundles over B in terms of �Top � E� using the

pullback functor

p� � �Top � B�� �Top � E�� �����

in which case p is called an e�ective descent morphism� There are various ways to make this precise

�see 	
�� 	���
 one of them is described in Section � below�

More generally� the same notion can still be considered when ����� is replaced by

p� � AB � AE �����

where A is any Top�indexed category� or even also the category Top replaced by an arbitrary

category C
 it is still useful to think of the objects of AB as a kind of bundles over B� possibly

with additional structure�

There is also an �intermediate� level of generality� where each AB is a full subcategory in

�Top � B� determined by a class IE of morphisms in Top� The corresponding e�ective descent

morphisms are called the e�ective IE�descent morphisms�

The main problem studied in Topological descent theory is to �nd out� for given classes ID and

IE of continuous maps� if every p � ID is an e�ective IE�descent morphism�

Let us recall the main known results of this type �in chronological order��

� A continuous map p � E � B is said to be locally sectionable if every point in B has an open

neigbourhood U such that the map p���U� � U induced by p has a continuous section� Every

locally sectionable map is an e�ective descent morphism �	����
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� Every open map is an e�ective descent morphism �Sobral� see 	���
 as observed in 	�� it can

also be easely deduced from Moerdijk�s axioms 	�� � just like it is deduced there for locales��

� Every proper map is an e�ective descent morphism �Moerdijk� Vermeulen 	�
�
 see also 	�����

� Reiterman and Tholen �	���� �nally solved the problem of characterizing the e�ective descent

morphisms in Top and gave a �rst example of non�e�ective descent morphism�

� Every e�ective descent morphism is also an e�ective �etale�descent morphism �	
��� �As T�

Plewe observed later� there is a simple purely�categorical proof of this fact��

� Every triquotient map is an e�ective descent morphism �T�Plewe 	����� but there are counter�

examples for the converse
 yet� the class of triquotient maps contains all locally sectionable� all

open surjections and all proper maps�

� E�ective descent morphisms are stable under pullback in categories with pullbacks and

coequalizers of certain naturally arising equivalence relations �	����� This result was generalized to

e�ective IE�descent morphisms in 	����

� A morphism is an e�ective descent morphism if and only if every pullback of it is an e�ective

bijective�descent map �	�����

� There are simple examples of non�e�ective descent morphisms �	�����

Analysing the �nite counter�examples of 	��� and 	��� we arrived to the conclusion that most

of the phenomena which occur in di�cult problems and proofs of Topological descent are easely

detectable and easely understandable already on the level of �nite topological spaces � and since

those are just �nite preorders� a lot of standard arguments can be used�

Accordingly� in this paper we develop the very simple descent theory of ��nite� preorders� and

then explain that Topological descent theory is just an in�nite extension of it� We also construct

new �nite counter�examples to some problems of Topological descent theory�

In order to convince the readers interested in topological descent that �they must immediatly

interrupt their work and read our paper� let us point out the following�

The Reiterman � Tholen�s characterization of e�ective descent topological maps mentioned

above says�

Theorem ��� The map p � E � B is an e�ective descent morphism if and only if every crest of

ultra�lters in B has a lifting along p �see ���� for details	


In the case of �nite topological spaces� which are exactly the �nite preorders� it reduces to

Theorem ��� The map p � E � B is an e�ective descent morphism if and only if for every for

every chain b� � b� � b� in B there exists e� � e� � e� in E with p�ei� � bi� for i � �� �� �


The paper is organized as follows�

�� Introduction

�� Finite topological spaces

�� Quotient and Day � Kelly maps

�� E�ective descent morphisms

�� Generalized descent


� Bijective descent

�� �Etale descent

�� Triquotient maps
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�� Counter�examples

�� Remarks on in�nite topological spaces

Note that the results of Sections � and � in some sense go back to J� Giraud 	��� and are closely

related to the similar results for categories �although they are not straightforward consequences

of those�� A general approach to descent constructions for internal category�like structures is

developed by M� Gran 	�� ��Maltsev case�� and I� Le Creurer 	�� ��lextensive� case�� Since the

category of sets is lextensive� the results of 	�� could be used here
 however we give independent

proofs in order to make the paper self�contained�

� Finite topological spaces

Finite topological spaces have the �open closure operator�� That is� for every subset X of a �nite

topological space A� there is a smallest open set �X containing X� Moreover�

�X � �x�X �x� �����

where �x � �fxg�

We write

y � x� y ��x
 �����

in classical notation our y � x would be just y� y� � � � � x�

Proposition ��� If A is a �nite topological space� then � is a preorder� i
e
 it is re�exive and

transitive


x� x �����

z � y � x	 z � x �����

for every x� y� z � A
 This determines an isomorphism

FinTop 
� FinPreord ���
�

between the category of �nite topological spaces and the category of �nite preordered sets


It is also well�known that ��
 extends to an isomorphism between Preord and the category of

topological spaces for which the set of open subsets is closed under intersection�

Since

�x � fy � Ajy � xg �����

we also introduce

�x � fy � Ajx� yg �����

and we have �x � fxg� the closure of fxg�

Proposition ��� Let A and A� be topological spaces with the same underlying set
 The following

conditions are equivalent


�a	 a subset X is open in A if and only if it is closed in A��

�b	 the preorders in A and A� are opposite to each other� i
e
 y � x in A if and only if x� y

in A�
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According to ���
�� a map � � A� B of �nite topological spaces is continuous if and only if it

is a monotone map �i�e� y � x	 ��y� � ��x�� of the corresponding preordered sets�

For such a map � we also have

Proposition ��� The following conditions are equivalent


�a	 � is a proper map�

�b	 � is a closed map�

�c	 �� �x� is closed in B for every x � A�

�d	 �� �x� � ���x� for every x � A�

�e	 for every x � A and ��x� � b in B there exists a � A with x� a and ��a� � b


Proposition ��� The following conditions are equivalent


�a	 � is an open map�

�b	 �� �x� is open in B for every x � A�

�c	 �� �x� � ���x� for every x � A�

�d	 for every x � A and b� ��x� in B there exists a � A with a� x and ��a� � b


Proposition ��� The following conditions are equivalent


�a	 � is an �etale map �i
e
 a local homeomorphism	�

�b	 � is an open map and its restriction to �x is injective for every x � A�

�c	 the map �x����x� induced by � is bijective for every x � A�

�d	 for every x � A and b� ��x� in B there exists a unique a � A with a� x and ��a� � b


� Quotient and Day � Kelly maps

Let Rel be the category of pairs A � �A�RA�� where RA � A 
 A is an arbitrary binary relation

on A� The �quotient maps� in this category have a simple description�

Proposition ��� For a morphism � � A � B with ��A� � B� the following conditions are

equivalent


�a	 � is a regular epimorphism� i
e


A
B A A B�
��

��
�

��
�����

is a coequalizer diagram in Rel�

�b	 RB is the smallest relation on B which makes � � A� B a morphism in Rel�

�c	 RB � �� 
 ���RA�� the image of RA � A
A under the map �
 � � A
A� B 
B�

�d	 b�RBb if and only if there exist a�� a � A with ��a�� � b�� ��a� � b and a�RAa


Exactly the same is true in the category ReflRel of sets equipped with a re�exive relation�

but not in Preord � since transitivity of RA in ����� does not imply transitivity of RB � However�

given such a coequalizer diagram in ReflRel with transitive RA� we obtain a coequalizer diagram

in Preord just by taking the transitive closure of RB � Therefore we have

�



Proposition ��� For a morphism � � A � B in Preord �or in FinPreord	 with ��A� � B� the

following conditions are equivalent


�a	 � is a regular epimorphism�

�b	 RB is the smallest relation on B which makes � � A� B a morphism in Preord�

�c	 RB is the transitive closure of ��
 ���RA��

�d	 b�RBb if and only if there exists a ��nite	 sequence �a��� a��� � � � � �a
�
n� an� � RA with

b� � ��a���� ��ai� � ��a�i���� for i � �� � � � � n� �� and ��an� � b


The fact that regular epimorphisms in Rel and ReflRel are �better� than in Preord can also

be expressed categorically�

Proposition ��� �a	 The regular epimorphisms in Rel and ReflRel are pullback stable� i
e
 if

E

A

B

E 
B A

�
p

�
�

�
��

�
��

�����

is a pullback �in one of these categories	 and p is a regular epimorphism� then so is ���

�b	 a morphism p � E � B in Preord is a pullback stable regular epimorphism if and only if it

is a regular epimorphism in Rel �or� equivalently� in ReflRel	


Proof� �a� follows from ����a� � �c� and the fact that the regular epimorphisms in Sets are

pullback stable�

Since every morphism in Preord� which is a regular epimorphism in Rel� must be a regular

epimorphism in Preord� the �if� part of �b� follows from �a��

In order to prove the �only if� part of �b� we take�

� an arbitrary pair �b�� b� � RB 


� A � fb� b�g with the induced preorder


� � � A� B the inclusion map�

Since �� � E 
B A� A is a regular epimorphism� there exists a sequence

�x��� x��� � � � � �x
�
n� xn� � RE�BA

with b� � ���x
�
��� ���xi� � ���x

�
i���� for i � �� � � � � n� �� and ���xn� � b� However� since there are

no elements in A di�erent from b and b�� this means that b� � ���x
�
k� and ���xk� � b for some k

�� � k � n�� Therefore� the pair ����x
�
k�� ���xk�� � RE has p����x

�
k�� � b� and p����xk�� � b as

desired� �

Remark ��� According to topological terminology� we say that p � E � B is a hereditary quotient

map if� for every B� � B with the induced preorder� the map p���B�� � B� induced by p is a

quotient map �i�e� a regular epimorphism�� Since in the proof of the �only if� part of ����b� the

morphism � � A � B was an inclusion map with the induced order in A� we conclude that the

pullback stable regular epimorphisms in Preord are the same as the hereditary quotient maps�






Now we return to �nite topological spaces�

A continuous map p � E � B is said to be a Day � Kelly map if for every b � B and every open

covering family �Ei�i�I of p���b� in E� there exists a �nite set fi�� � � � � ing with

b � Int�p�Ei�� � � � � � p�Ein�� �����

In the �nite case this simpli�es in the obvious way� we can just take I to be a one element set�

Since the Day � Kelly maps are known to be precisely the pullback stable regular epimorphisms

of topological spaces �see 	�� and 	��� � or directly from the results above � we obtain�

Proposition ��� For a morphism p � E � B in FinTop the following conditions are equivalent


�a	 p is a pullback stable regular epimorphism �in FinTop� or equivalently in FinPreord	�

�b	 for every b� � b in B there exists e� � e in E with p�e�� � b� and p�e� � b�

�c	 p is a Day � Kelly map�

�d	 p is a hereditary quotient map�

�e	 for every b � B and open set E� � E containing p���b�� we have b � Int�p�E���


� E�ective descent morphisms

Various de�nitions of e�ective descent morphism are compared in 	
� and 	��
 one of them says that

a morphism p � E � B in a category C is an e�ective descent morphism if the pullback functor

p� � �C � B� � �C �E� �����

is monadic�

However� we will only need to know that the class of e�ective descent morphisms satis�es the

following �see 	
� for details��

Proposition ��� �a	 If C has pullbacks and coequalizers �of equivalence relations	� then every

e�ective descent morphism in C is a pullback stable regular epimorphism


�b	 If C is exact then the class of e�ective descent morphisms in C coincides with the class of

regular epimorphisms


Proposition ��� Let C and C� be categories satisfying

�a	 C� has pullbacks and coequalizers�

�b	 every regular epimorphism in C� is an e�ective descent morphism�

�c	 C is a full subcategory of C� closed under pullback�

�d	 every pullback stable regular epimorphism in C is a regular epimorphism in C�


Then a pullback stable regular epimorphism p � E � B in C is an e�ective descent morphism if

and only if

E�B�E 
B A � C 	 A � C �����

for every pullback ��
�	 in C�


�



Using these two propositions� it is easy to characterize the e�ective descent morphisms in Rel�

ReflRel� and Preord�

Proposition ��� Every regular epimorphism in Rel is an e�ective descent morphism� and the

same is true for ReflRel


Proof� An object �A�RA� in Rel can be considered as a graph

RA A
�
�

�����

and we take C � Rel and C� to be the category of graphs� The conditions ����a���d� obviously

hold �just note that ����b� follows from ����b� since now C is a topos�� Since the implication �����

obviously holds as soon as p is an epimorphism in C�� we conclude that every pullback stable regular

epimorphism in Rel is an e�ective descent morphism � and then we apply ����a��

The same arguments� but with re�exive graphs instead of graphs� can be used for re�exive

relations� �

Proposition ��� For a morphism p � E � B in Preord �or in FinPreord	 the following condi�

tions are equivalent


�a	 p is an e�ective descent morphism�

�b	 p is a pullback stable regular epimorphism and� for every pullback ��
�	 in Rel �or in

ReflRel	 with E�B�E 
B A preorders� A also is a preorder�

�c	 for every b� � b� � b� in B there exists e� � e� � e� in E with p�ei� � bi� for i � �� �� �


Proof� �a� � �b� follows from the previous results� More precisely� we can apply Proposition ���

to C � Preord� C�� Rel �or ReflRel� since in that case�

� ����a� and ����c� are obvious


� ����b� follows from Proposition ���


� ����d� follows from ����b��

�c� 	 �b�� Suppose p satis�es �c�� Then p is a pullback stable regular epimorphism by

��
�b� � �a�� and we only need to show that� for every pullback ����� with transitiveRE� RB � RE�BA�

the relation RA is also transitive� However this is clear� given a� � a� � a� in A� there exists

e� � e� � e� in E with p�e�� � ��a��� p�e�� � ��a��� p�e�� � ��a�� and hence

�e�� a�� � �e�� a�� � �e�� a��� Therefore �e�� a�� � �e�� a��� since RE�BA is transitive� which

gives a� � a� since �� � E 
B A� A is a morphism in Rel�

�b� 	 �c�� Suppose p satis�es �b� and take�

� an arbitrary b� � b� � b� in B


� A � fa�� a�� a�g any three element set with RA � �A � f�a�� a��� �a�� a��g


� � � A� B with ��a�� � b�� ��a�� � b� and ��a�� � b� �note that � need not be an injection���

�



Since E and B are preorders� but A is not� E 
B A must not be a preorder� That is� there exist

x�� x�� x� � E 
B A with �x�� x��� �x�� x�� � RE�BA but �x�� x�� �� RE�BA�

We have

E 
B A � �p���b��
 fa�g� � �p���b��
 fa�g� � �p���b��
 fa�g� �����

and since �� � E 
B A � A must be a regular epimorphism in Rel� it is easy to see that we

must have xi � p���bi� 
 faig� for i � �� �� �� After that� we take e� � ���x��� e� � ���x�� and

e� � ���x��� �

� Generalized descent

Let C be a category� Recall that a C�indexed category A consists of

� categories AB � de�ned for all objects B in C�

� functors p� � AB � AE� for all morphisms p � E � B in C� and

� natural isomorphisms �p�q � q�p� � �pq�� and �B � ��B�
� � �AB � for all q � F � E and

p � E � B in C� with the standard coherence conditions�

For a given morphism p � E � B in a category C with pullbacks and a C�indexed category A� the

category DesA�p� of A�descent data for p is de�ned as a suitable ��equalizer

DesA�p� AE AE�BE AE�BE�BE� �
�� ���

�����

�described in 	�� in the language of internal actions�� The functor p� has a canonical factorization

AB AE

DesA�p�

�
p�

�
�
�
��R

Kp
A

�
�
�
���

Up
A

�����

and p is said to be an e�ective A�descent morphism if Kp is a category equivalence�

In particular� any pullback stable class IE of morphisms in C can be regarded as a C�indexed

category� we take

� IEB � IE�B� to be the full subcategory in �C � B� with objects all �A��� with � � A� B in

IE


� p� � IEB � IEE the pullback functor �A��� �� �E 
B A� ��� along p � E � B


� �p�q and �B the canonical isomorphisms F 
E �E 
B ���� 
� F 
B ��� and B 
B ��� 
� ���

respectively�

�



The category DesIE�p� can be described as the category of triples �C� �� 	� �

E 
B C C E�
	

�
�

�����

such that � � IE and the diagram

E 
B E 
B C

E 
B C

E

C

E 
B C C

�

 ��� �� �

�
��

�
�E 
 	

�

 �� �C �

�
	 �

	

��������
�

�������� �C

�����

commutes �we use the standard notation� writing �i � here i� �� � or � � for all kinds of pullback

projections
 note also that the commutativity of the bottom triangle is already used in the square

to make �E 
 	 well de�ned��

If C � Rel or C is any other concrete category considered in the previous sections� then we

write

	�e� c� � e � c� ���
�

and the commutativity of ����� translates as

e � �e� � c� � e � c

��c� � c � c

��e � c� � e� �����

The functor Kp
IE � IE�B� � DesIE�p� is de�ned by

Kp
IE�A��� � �E 
B A� ��� 
 ��� �� ��
 �����

using the elements� 
 ��� �� �� E 
B �E 
B A� � E 
B A would be written as

e � �e�� a� � �e� a� �����

If every � � D � E in IE gives p � � � E � B in IE� then the diagram ����� �for A � IE� can be

identi�ed with the standard diagram

IE�B� IE�E�

IE�E�T

�
p�

�
�
�
��R

comparison
�
�
�
���

forgetful

�����

for the monad T of the adjunction p� a p��

And� of course� if IE is the class of all morphisms in C then an e�ective IE�descent morphism is

the same as an e�ective descent morphism� as de�ned in the previous section�

�



	 Bijective descent

In this section IE denotes the class of morphisms in Preord which are bijections�

Proposition ��� For a morphism p � E � B in Preord� the following conditions are equivalent


�a	 p is a regular epimorphism in Rel�

�b	 for every pullback ��
�	 with � � IE� the projection �� � E
BA� A is a regular epimorphism

in Preord


Proof� �a� 	 �b� follows from ����b��

�b� 	 �a� can be proved with the same arguments as the �only if� part of ����b�� but the

� � A � B from ����b� now has to be a bijection � and we just take A � B as a set� with RA the

smallest preorder under which fb� b�g has the preorder induced by RB � �

Proposition ��� For a morphism p � E � B in Preord� the following conditions are equivalent


�a	 p is an e�ective IE�descent morphism�

�b	 p satis�es the equivalent conditions of Proposition �
�� and for every pullback ��
�	 in Rel

�or in ReflRel	 with � � IE and E�B�E 
B A preorders� A also is a preorder�

�c	 p is surjective� and for every b� � b� � b� in B with b� �� b� there exists e� � e� � e� in

E with p�ei� � bi� for i � �� �� �


Proof� �a� � �b� can be easily proved similarly to �a� � �b� of Proposition ���� with suitable

generalizations of ��� and ����

We can also repeat the proof of �c� 	 �b� from ���� since we do not need to consider the case

��a�� � ��a�� � if ��a�� � ��a�� then a� � a�� and then a� � a� since RA� being the image of

RE�BA� is re�exive�

And �nally� in order to use the proof of ��� �b� 	 �c�� we just modify it as we did for ����b� in

order to prove 
���b� 	 �a�� That is� we take A � B as a set �so now � � �B is a bijection� with

RA � �B � f�b�� b��� �b�� b��g� �
���

excluding the trivial cases b� � b� and b� � b�
 since b� �� b�� the set fb�� b�� b�g has exactly three

elements as needed in the proof of ����b� 	 �c�� �

Note that the same results are true in FinPreord or if IE is the class of all injections�


 �Etale descent

As follows from Proposition ��
� a continuous map � � A � B of �nite topological spaces is �etale

if and only if it is a discrete �bration of the corresponding preorders �considered as categories��

Accordingly� in order to investigate the �etale descent� we will take IE to be the class of discrete

�brations of preorders�

On the other hand� the discrete �brations A� B correspond to the functors Bop � Sets� and�

moreover� the standard equivalence

IE�B� 
 SetsB
op

�����

is in fact an equivalence of Preord�indexed categories�

��



Using the equivalence ����� and the ��equalizer ����� we can describe DesIE�p� �for a given

p � E � B in Preord� as the ��equalizer

DesIE�p� SetsE
op

Sets�E�BE�op Sets�E�BE�BE�op� �
�� ��� �����

and then a straightforward calculation gives

Proposition 	�� Let X be the category of pairs �X� 	�� where X � Eop � Sets is a functor� and

	 � �	e�e���e�e���E�BE

a family of maps 	e�e� � X�e��� X�e� such that

	e�e�	e��e� � 	e��e�� 	e�e � �X�e� �����

and� for every �e�� e
�
�� � �e�� e

�
�� in E 
B E� the diagram

X�e��
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X�e��

X�e���

�
X�e�� e��

�
	e��e��
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X�e��� e

�
��

�
	e��e�

�����

commutes


Let 
 � SetsB
op

� X be the functor de�ned by A �� �popA� ��� where � is the family of identity

morphisms

�e�e� � �A�p�e�� � A�p�e��� � A�p�e��� ���
�

Then there exists a category equivalence DesIE�p� 
 X making the diagram

SetsB
op

DesIE�p�

X

IE�B�

�



�



�
Kp

IE

�



�����

commute� up to isomorphism


Corollary 	�� A morphism p � E � B in Preord is an e�ective IE�descent morphism if and only

if the functor 
 described in Proposition �
� is a category equivalence


We point out that Corollary ��� should be used to obtain an elementary characterization of

e�ective �etale�descent morphisms of �nite topological spaces� which itself should suggest such a

characterization for all spaces �although this project does not seem to be straightforward���

Note also that the category X of Proposition ��� can be described as the category of �double

functors� Eq�p� � Sets�� where Eq�p� is the equivalence relation

��



E 
B E E
�
� �����

�� kernel pair of p� considered as a double category� and Sets� the double category of Sets� maps

and commutative squares� Accordingly� there is a natural description of the functor


 � SetsB
op

� X �

� Triquotient maps

A continuous map p � E � B of topological spaces is said to be a triquotient map if there exists

a map q � Open�E� � Open�B� of the sets of open subsets in E and in B respectively� satisfying

the following conditions�

� q�U� � p�U�� for every U � Open�E�


� q�E� � B


� q is monotone� i�e� U � V 	 q�U� � q�V �


� for every U � Open�E�� b � q�U�� and covering family �Ei�i�I of p���b� � U � there exists a

�nite set fi�� � � � ing � I with

b � q�Ei� � � � � �Ein�� �����

The q above is called a triquotiency�assignement for p�

In the �nite case� just like for the Day � Kelly maps� we could take I to be a one element set�

That is� in the �nite case� the last condition above is equivalent to

� If U and V are open subsets in E and b is an element in B� then

b � q�U�� p���b� � U � V 	 b � q�V �� �����

However� even in the �nite case we are very far from being able to �nd a nice characterization of

the triquotient maps� A surprising result is �compare with �c� � �b� in Proposition ��
���

Proposition 
�� If p � E � B is a triquotient map of topological spaces� then for every natural

number n and every bn � bn�� � � � � � b� � b� in B there exists en � en�� � � � � � e� � e� in

E with p�ei� � bi� for each i � �� � � � � n


Proof� For a �xed bn � bn�� � � � � � b� � b� in B we introduce� for i � �� � � � � n� the sets Ei

de�ned by

Ei � fe � Ej there exists e � ei � ei�� � � � � � e� in E with p�ei��� � bi��� � � � � p�e�� � b�g

�����

and we are going to prove that each Ei is open and

bi � q�Ei� �����

for each i� This will give bn � p�En�� and therefore there exists en � � � � � e� � e� with the

required property�

��



The fact that each Ei is open follows from the obvious equalities

E� � E� Ei � ��p���bi��� �Ei��� �i � ��� ���
�

In order to prove ����� we use the induction by i � �� � � � � n�

For i � � we have b� � B � q�E� � q�E���

Suppose bi�� � q�Ei���� Since bi ��bi�� and q�Ei� is open� in order to prove that bi � q�Ei� it

su�ces to prove that bi�� � q�Ei�� However this follows from Condition ��� applied to U � Ei���

V � Ei� and b � bi��� since p
���bi��� �Ei�� � Ei by ���
�� �

Now it is easy to construct e�ective descent morphisms of �nite topological spaces which are

not triquotient maps� Thus� the fact that the class of triquotient maps in Top is a proper subclass

of the one of e�ective descent morphisms already appears for the �nite spaces�


 Counter�examples

So far we have never mentioned the �non�e�ective� IE�descent morphisms� They are those which

have the comparison functor of ����� full and faithfull� If IE �of ������ is the class of all morphisms

in the ground category C� and C has �pullbacks and� coequalizers of equivalence relations� then they

are the same as the pullback stable regular epimorphisms� In particular� the descent morphisms in

Top are the same as the Day � Kelly maps � which brings the following

Problem ��� Is every Day � Kelly map an e�ective descent morphism in Top�

The �rst counter�example was described in 	���
 it uses ultra�lters� and the proof uses pseudotopo�

logical spaces� However� as shown in 	���� there is even a �nite counter�example
 it can be displayed

as
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�

�

�

�
p

�����

where�

��



� B has the codiscrete topology


� the nontrivial open sets in E are fe��� e��g� fe��� e��g and their union


� p is de�ned by p�eij� � bi�

The preorder approach of the present paper makes the whole story trivial� the Day � Kelly

maps which are not e�ective descent morphisms are those maps p � E � B which satisfy ��
�b�

but not ����c�� Brie�y� they are those which are surjective on arrows� but not on composable pairs

of arrows�

The preorder translation of ����� is

e�� � e��
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�����

where the identity arrows are omitted� It is easy to see here that p is surjective on arrows but

there is no e� � e� � e in E whose image in B is b� � b� � b� and so p is not surjective on

composable pairs�

Note also that the preorder approach suggests to consider the following two �counter ��examples�

the �rst of which is more straightforward� and the second gives the smallest possible spaces�

Example ��� Take

��
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� in fact this is exactly the �nite version of the original counter�example from ����


Example ��� Take
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�����

� there is no e� � e� � e whose image in B is b� � b� � b�

Remark ��� As we see from 
�� �a� � �c� we have

�a� p � E � B of Example ��� is not even an e�ective bijective�descent morphism �as well as

the one from 	��� mentioned above � see ������


�b� p � E � B of Example ��� is an e�ective bijective�descent morphism�

Consider a further problem� which is suggested by the fact that every e�ective descent morphism

in Top is an e�ective �etale�descent morphism�

Problem ��� Does one of the following two classes of maps contain the other


� Day � Kelly maps�

� e�ective �etale�descent morphisms �

�




Using p � E � B of Example ���� consider the pullback in ReflRel�
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where again the display shows all arrows except the identities� Clearly E 
B A is a preorder� and

using ��
 �a� � �c� it is easy to see that �� � E 
B A � E is �etale� Therefore� �E 
B A� ���


 ��� �� �� constructed as in ����� belongs to DesIE�p�� where IE is the class of �etale maps in the

category of topological spaces� Since p is an e�ective descent morphism in ReflRel� and A is not a

preorder� there is no object in IE�B� corresponding to �E 
B A� ��� 
 ��� �� ��� That is we obtain

Proposition ��	 The Day � Kelly map p � E � B described in Example �
� is not an e�ective

�etale�descent morphism


Finally� let us consider

��
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� clearly this is not a Day � Kelly map� but a simple calculation using Corollary �
� �or directly�

using the fact that B is a codiscrete space and E is a coproduct of two codiscrete spaces	 shows that

it is an e�ective �etale�descent morphism


Together with Proposition ��� this gives the negative answer to Problem ��
�

� Remarks on in�nite spaces

In this section we list the questions and results of Topological descent theory� which became much

more clear to us as soon as we understood their �nite versions using the preorder approach�

����� Our simple characterization of the e�ective descent morphisms of preorders� which A�

Grothendieck and J� Giraud would probably consider as an obvious fact already �
 years ago

�see 	���� can however be considered as a basic result whose �in�nite �lter generalization� is the J�

Reiterman � W� Tholen�s complete characterization of the e�ective descent morphisms of topological

spaces �see Theorem ����� Just observe that�

�a� The preorder on a �nite topological space corresponds to the convergency structure on an

in�nite one
 we will write F � x when F is a �lter converging to a point x� In a �nite space

F � x if and only if y � x for every y which belongs to the intersection of the elements of F �

Moreover� the passage from the topologies to the corresponding convergency structures determines

a category isomorphism which extends the isomorphism ���
��

�b� Since ultra�lters on a �nite set are principal �lters generated by the one point subsets� the

�relevant part� of a crest of ultra�lters ��Fi � bi�i�I �U � b� �in the sense of 	���� is the composable

pair b� � b� � b in which b� � bi and b� have i generating U and fb�g generating the corresponding

Fi�

��



�c� Recall that the isomorphism FinTop 
� FinPreord extends to an isomorphism FinPsTop 
�

FinReflRel� where FinPsTop is the category of �nite pseudotopological spaces� And the results

of 	��� use the embedding Top� PsTop exactly in the same way as we use Prord� ReflRel�

����� The three classes of morphisms in Top which were known to be classes of e�ective descent

morphisms before 	���� are

�� �locally� sectionable maps�

�� open surjections�

�� proper surjections�

Why In the �nite case �although �proper� reduces to �closed�� these three classes naturally

occur as the three simple cases� Indeed� in order to �nd e� � e� � e� for a given b� � b� � b� as

in ����c�� one could either

� use a section B � E �or a local section�


� or �rst �nd e� with p�e�� � b�� then e� using e� and b� � b� via ����d� �which is equivalent

to openness�� and then e� using b� � b� via ����d� again


� or �rst �nd e� with p�e�� � b�� then e� using e� and b� � b� via ����e� �which is equivalent

to closeness�� and then e� using e� and b� � b� via ����e� again�

����� See Problem ��

 the negative answer is provided by �nite counter�examples �see ���
�

and �������

����� Proposition 
�� clearly shows the di�erence between the �ordinary� e�ective descent mor�

phisms and the e�ective bijective�descent morphisms� compare 
���c� with ����c�� Note also that

our proof of 
�� is in fact the �nite version of the proof of Theorem ��� in 	����
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