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Abstract

Classical finite-difference operators on uniform meshes are not appropriate for
solving singularly perturbed differential equations due to the effect of the boundary
layers.If we want uniformly convergent difference schemes (with respect to some
discrete norm), we need to adequate the numerical operator or the mesh, or both,
the operator and the mesh. We summarize some recent results about uniform
convergent methods for a general linear two point boundary value problem and
present two algorithms related with the numerical method, which give indication
about the transition points of the solution in the given domain. They are transition
point indicators.
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1 Introduction

Differential equations ( ordinary or partial ) with a small paramater ¢ multiplying the
highest derivative , as

—eu"(x) + b(z)u' + c(z)u(z) = f(z), x € (0,1) (1)

u(0)=u(l)=0, 0 <e<1,

are models for physical processes in fluid flows like pollution, convective heat or mass
transport problems and others. Solution u(x;€) of (1) and its derivatives approach a
discontinuous limit as € approches zero. These problems are characterized by the property
that the solution has different asymptotic expansions in distinguished subdomains of the
entire given domain. They present layers where the solution changes abruptly. See the
references [4, 6, 8],etc.
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Let us take the example of J. Kevorkian (1990), pg. 478,

e +u' =172, 0<z <1, 0<e<<l1 (2)

The exact solution is:

1 —exp ¢ T
U($§f):—xp1+—

2(1 —exp¢) 2
From that, for any fixed z € (0,1) and taking ¢ — 0, we see that

1+
lim u(x;e) = = up(T), 3
5_)Ozfized7é0 ( ) 2 0( ) ( )
and wug(z) does not satisfy the boundary condition at z = 0.
The problem comes because we ignored exp~< when we obtained (3), but this term is

important if z is small, x = O(e). In a thin boundary layer over the interval
0<z<en

(n an arbitrary finite positive Ct.) the term exp~¢ equals exp™? = O(1).

Other kind of layers may appear,not only boundary layers, see Miller(1996). The con-
struction of asymptotic expansions must be appropriated to the behaviour of the solution
which means that we need to localize transition points of such solution, in the domain,
or transition regions,and then to obtain one asymptotic expansion for each subdomain or
subregion. It may be not an easy task. For the example above, with one layer at x = 0,
we must divide the domain as

[07 1] = [07 U] U[U7 1]

and to choose o according to the problem.

So, if we do’nt know the exact solution of the problem, how can we find the transition
point o7 In section 5 we present two ways of getting ” transition point indicators”. In
section 2 we give a summary of the main difficulties and anomalies that appear when
solving this kind of problems with finite-difference methods and in sections 3 and 4 we
present, recent results obtained with fitted meshes, called Shishkin meshes.

2 Numerical Approximations

Numerical approximations for Singularly Perturbed Problems (SP) are often the only op-
tion we have. Many methods have been proposed in the literature and the most frequent
discretization methods are the "upwind finite-differences and the finite-element meth-
ods”. A survey about difference schemes is given in Farrell (1987).More recently, two
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excellent books appear: J. Miller, O’Riordan and Shishkin(1996) and Roos,Stynes and
Tobiska(1996).

Classical convergence theory for finite-difference methods is based on the complemen-
tary concepts of consistency and stability

consistency + stability = convergence,

but for (SP) problems, if any discretization technique is applied, we need to analyse
carefully the dependence on the parameter € of those constants that arise in consistency,
stability and error estimates. Truncation error may depend on e.

The most common anomalous behaviour that appear when finite-difference schemes
are used are:

1. Central-difference operators on uniform meshes (h=const.) applied to (SP) of the
type (1) can produce approximate solutions presenting oscillations that are un-
bounded when ¢ — 0;

2. Upwind difference operators on uniform meshes does not necessarily give satisfactory
numerical solutions. Usually the pointwise error of such solutions increases as the
mesh is refined, to a stage where the mesh paramater (h) is of the same order of
magnitude as the singular perturbation paramater e.

One obvious requirement for a numerical method being applied to these kind of prob-
lems, is that the pointwise errors of its solutions be bounded independently of € and that
they decrease as the mesh is refined, at the rate which should also be independent of e.

Such requirements are not special,and for problem (1) we know some results about
the analytical behaviour of the solution, that justify such requirements.

The maximum principle provides a simple proof of the stability inequality, showing
that the solution is bounded

It o< C Il S loos (4)

C independent of € , with problem (1) satisfying b(x) > by > 0.
Also the maximum principle with some techniques help us to prove that u(z;e€), solu-
tion of (1), satisfies

[0 (@)] £ CL+ € exp (~by—>)),0 < < 1

i=1,2,.... From (4) we have an estimate for the exact solution that tell us that u is
bounded uniformly with respect to ¢, in the maximum norm. See Tobiska[7] for the above
results.

Such results for problem (1) and for others, lead to the concept of e- uniform conver-
gence.



3 e-uniform finite-difference methods

A numerical method is said € — uniform if

sup || u(z;e) —u|[< CR?,
0<e<<1
where C,h,p are independent of €. Obviously the following question appear:-Is it
possible to construct numerical methods that behave uniformly well for all values of €7
The book of Miller, O’'Riordan and Shishkin analyse and give affirmative answer for some
(SP), not for all.

Considering finite-difference methods, two approaches have been taken, in order to
construct € — uniform numerical schemes:

(A) - FITTED OPERATORS - they replace the standard finite-difference operator by
a different finite-difference operator which reflects the singular perturbation nature
of the differential operator;

(B) - FITTED MESHES-they adapt meshes to the nature of the differential operator.

(A)- For linear problems, such operators may be obtained by choosing the coefficients
of the difference operator so that some or all the exponential functions in the null-space
of the differential operator, are also in the null space of the finite-difference operator. See
Miller [1996].

Such fitted operators have been developed by many authors and usually work with
uniform meshes. An important class of such methods is the class of 7 exponentially fitted
methods ”. The implementation of these methods is not straighforward and usually they
introduce artifitial diffusion.

(B)-In this group of numerical schemes, meshes are taken such that are not uniform:
highly nonequidistant grids, logarithmic grids as that of Bakhvalov. The convergence
analyses for these schemes, is not well clarified, at the moment.

We may say that some problems are solved accuratly with numerical methods of the
group (A), some with the methods of the group (B) and other problems (even linear ones)
need both approaches.

We must remark: to know the localization and the width of the layers is a crucial
question for asymptotic methods and for discretization methods.

For a general linear problem

—eu"(x) + b(z)u' + c(z)u(z) = f(z), = € (0,1) (5)



uw(0)=u(l)=0, 0 <e<k1,

where b, ¢, f are sufficiently smooth functions, we know that the boundary layer exist
at z =1 (z = 0) according to b(z) > 0, (b(x) < 0) and its width is of order Pe™!, where
b(x)(average)

Pe =~
€

is the P eclet number.See Tobiska (1996).

4 Piecewise Uniform Meshes

As the solution of a (SP) is expressed by different asymptotic expansions on different
subdomains of the entire domain, Shishkin (1990) raised the question: is it possible to
prove nodal uniform convergence with a mesh that is uniform by sections? Such meshes
are called Shishkin-meshes. For a problem with one boundary layer at x = 0, a mesh
with N nodal points is as follows: % grid points, equidistantly, in each of the subintervals
(0,0) and (o, 1).

For a problem with two boundary layers, one at = 0 and other at x = 1, a mesh with
N nodal points is organized with % equidistant points on (0, 0); % equidistant points on
(0,1 —0) and again & points on (1 — 0, 1).

The parameter o is chosen according to the problem and Shishkin gives some infor-
mation about that question.For the first case ( one boundary layer at x =0 ), o is given
by

1
o= min{i,Kelog(N)}

and for the second case ( two boundary layers, one at x = 0 and other at x =1 ) by

0 = min {i, Celog(N)},

where Kand C' are constants independent of . The meshes go from fine to coarse and
for the first case we have the stepsizes h; and hy given from:
20

hy = N onl0, o]

2(1—o0)
N
For the second case we will have 3 stepsizes hq, he and h3 as follows: h; = %" on [0, 0];

hy = 2129) o1 [5,1 — 0] and hs =3 on [1—o0,1].

N
A piecewise uniform mesh Q* is then constructed and the following results have been

proved by Shishkin:

h2:

onlo, 1]



Theorem 1 -The standard upwind difference scheme together with the piecewise Shishkin
mesh Q% is e-uniformly convergent and satisfies

lu = 2|[ < MN"'log N,
where M 1s independent of €.
Here we denoted by u the exact solution and by z the approximated solution.

Theorem 2 -A necessary condition for the standard upwind difference scheme on the *
mesh be e-uniformly convergent is that

o =min{m,I'(¢, N)}, 0<m<1

['(e, N) = eT(N) with T(N) — o0 whenN — oo.

These results are from Shishkin and Miller.
Unfortunatly Shishkin piecewise uniform meshes together with classical finite-difference
or finite- element operators do not solve all kind of layers. Again, is important to have

1. layers indicators
2. width layer indicators

3. rate of increase or decrease of such width.

Theorem 2 gives a noncomplete answer to these questions. It would be very useful to
have some kind of indicators of the local irregularity of the solution of the problem. In
the next section we present two algorithms that give an approach for the analysis of such
local irregularities.

5 Indicators of Local Irregularities of the Solution

In order to solve numerically (SP) different strategies can be taken within the two main
ideas: fitted operators or fitted meshes. For all of them it will be important to designe an
algorithm such that the localization of the transition points of the solution be easy. Such
indicators may be associated with the numerical method being used. Here we assume
that we will use a finite-difference method.

1-FIRST INDICATOR

It takes information from the local truncation error associated with the numerical
method at each nodal point z;, assuming that we use a uniform mesh (h=conts.).

Then, the local truncation error 7/ at the nodal point z; satisfies

|Tih| = |Lyu(z;) — f(z3)]



where Lj, is the finite-difference operator. For example, if L, is the upwind operator,
we know for the problem (1) some bounds as

h Titl " "
< [ el 4 )t (6)
Ti—1

Other bounds will be useful.
With N =2", r > 2 and hy, hy > €: take

B 1 B 1
_y’ 2_2r+1'

h

From L, — f and from L;, — f it is easy to prove that in (z; 5, x;12) we have

1
7|~ O(§|Tihl|)' (7)

Assuming that we are solving problem (1) with the standard upwind difference scheme
on a uniform mesh, we propose the following algorithm for getting information about
irregularities of the solution:

1. Compute the numerical solutions U and U!"?;

2. With such solutions approximate the second member of (6), obtaining approxima-
tions for |Tih1| and for |7'ih2|;

3. If |7/*| and |7/*| do not satisfy relation (7) we have an indication of an irregular
point for the solution u(x;¢€) of problem (1) in (z;_2, Z;42)-

2- SECOND INDICATOR
With the same assumptions as before we also assume that u(z;€) is smooth enough in
I; = [xj_2,x;]. Then there is a ¢ > 0 such that

\U; —2U;_1 + Uj_o| < 8K, (8)

where U is the numerical approximation of u(z;;€) given by the finite difference
method. By the mean value theorem we have for u(x;e)

u(wj;€) = u(j1) +u'(@)h, o€ (vj1,x))

u(wj;€) = u(wj_g) + 2u'(B)h, B € (1j-2,;)
Multiplying the first by two and subtracting to the second equation we have (8).
The local regularity of u(z;€) can be studied by the indicators s; defined as:

80:U0—2U1—|—U2, 81:U1—2U2—|—U3
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Sj = Uj — 2Uj,1 + Uj,Q.

Let = O(h?) . If |s;| > 0 and s, < 0, k=7 — 1,7 + 2 then u(x;€) has a transition

point in (z;_1,x;). This is an adaptation of the results of C. Cunha and S. Gomes [1997].

Both algorithms are very simple and easy to be implemented toghether with the nu-

merical method proposed.
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