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Abstract

Nonparametric inference for point processes is discussed by way histograms, which provide a
nice tool for the analysis of on-line data. The construction of histograms depends on a sequence
of partitions, which we take to be nonembedded to allow partitions with sets of equal measure.
This presents some theoretical problems, which are addressed with an assumption on the de-
composition of second order moments. In another direction, we drop the usual independence
assumption on the sample, replacing it by a strong mixing assumption. Under this setting, we
study the convergence of the histogram in probability, which depends on approximation condi-
tions between the distributions of random pairs and the product of their marginal distributions,
and almost completely, which is based on the decomposition of the second order moments. This
last convergence is stated on two versions according to the assumption of Laplace transforms
or the Cramer moment conditions. These are somewhat stronger, bet enable us to recover the
usual condition on the decrease rate of sets on each partition. In the final section we prove that
the finite dimensional distributions converge in distribution to a gaussian centered vector with
a specified covariance.

AMS Classification: 62G05, 62G20

1 Introduction

The use of point processes or random measures to address estimation problems, besides the inter-
esting mathematical questions it raises by its own nature, provides a general setting that is able to
include several classical functional estimation problems, such as density or regression estimation.
These particular models have attracted the attention of a large number of statisticians producing a
wide literature. An account of this literature and available results may be found in Bosq, Lecoutre
[6] for a more classical approach to these questions, or more recently in Bosq [4], Bosq, Nguyen [5] or
Karr [24] for a point process or stochastic process point of view. Other estimation problems, more
directly concerned with point processes, include estimation of Palm distributions, Karr [24, 25, 26],
Niéré [28] or Crétois [9], mean local distributions of composed random measures, Mendes Lopes
[27] or Saleh [36, 37], or thinning functions, Bensaid [2], to give some references where a framework
similar to ours was used, that is, two integrable point processes were considered such that their
mean measures satisfy an absolute continuity relation and we are interested in estimating the there-
fore existing Radon-Nikodym derivative. Later in this section, we will briefly show some examples
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of how the derivative may be conveniently interpreted. The method for construction estimators
divides essentially between two types: histograms, used by Crétois [9], Karr [25, 26], Jacob, Oliveira
[19, 21, 22] or Oliveira [29], or kernel used by Bensaid, Fabre [3], Ellis [12], Ferrieux [14, 15], Jacob,
Mendes Lopes [17], Jacob, Oliveira [20] or Roussas [31, 32, 33]. In some of these references some
particular properties on the point processes or random measures were supposed, namely, supposing
one of the random measures to be deterministic, as in [12, 31, 32, 33], or supposing that both the
random measures are absolutely continuous with respect to some reference measure as in [17]. The
kernel approach has become quite popular as it produces smoother approximations and provides
better convergence rates. Histograms are, nevertheless, more suitable to real time data although
the convergence rates are slower. In this article we will study the above mentioned approximations
based on histograms, following the work in Jacob, Oliveira [19, 20, 22]. This family of estimators
requires the introduction of a suitable sequence of partitions of the base space or, at least, of some
convenient fixed subset. For the theoretical treatment the simplest is to require that the this se-
quence of partitions is embedded, that is, to pass from one partition to the next one we divide
some of the sets. This requirement was adopted, for example, in Jacob, Oliveira [19] and gives
access to martingale characterizations which are very convenient for the asymptotic treatment. On
another hand, for a more practical point of view, it is quite natural to impose that the sets in each
partition are of same size (with respect to some fixed measure). These two requirements together
produce partitions with sets that decrease to fast, preventing the known convergence conditions to
be accomplished in some cases. Some solutions to this problem link the size of the sets to moments
of the unknown distribution as is done in Karr [24], for example. Other approaches were proposed,
among others, by Abou-Jaoudé [1] or Grenander [16]. In Jacob, Oliveira [21, 22] another approach
to this question was proposed. To our view the last approach seems better suited for point processes
and keeps conditions on the sets and conditions on the moments of the unknown distributions quite
well separated, which we believe is advantageous.

The behaviour of the estimator under dependence assumptions on the sample is another matter
of interest. For independent sampling this study of the convergence was carried out in Jacob,
Oliveira [19] with the convergence rates studied in Oliveira [29] for histograms and in Ellis [12],
Jacob, Mendes Lopes [17] or Jacob, Oliveira [20] for kernels. The treatment of dependent samples
was addressed to in Bensald [2], Bensaid, Fabre [3] , Cai, Roussas [8] for strong mixing samples
and by Ferrieux [14, 15] and Roussas [31, 32, 33] for associated samples with kernels. Histograms
were studied under associated sampling by Jacob, Oliveira [22]. Here we will be interested in
investigating the behaviour of histograms under strong mixing sampling, establishing conditions for
the convergence in probability and almost completely of the estimator and also for the convergence
in distribution of its finite dimensional distributions.

We now define our framework more precisely. Let S be a complete separable and locally compact
metric space, B the ring of relatively compact Borel subsets of S, and M the space of nonnegative
Radon measures on S. A random measure is any function defined on some probability space with
values in M measurable with respect to the o-algebra induced by the vague topology (see Daley,
Vere-Jones [10], Kallenberg [23] or Karr [24] for basic properties on random measures and char-
acterizations of vague convergence). A point process is, as usual, a random measure that, almost
surely, takes values in the subspace of M of the integer valued measures. In what follows ¢ and
1 are random measures or, in most cases, point processes, that are supposed integrable, that is,
v(B) = E[¢(B)] and p(B) = E[n(B)] are nonnegative Radon measures on S, and such that their
mean measures pu = E(n), v = E(£) satisfy the absolute continuity assumption y < v. We will be
interested in estimating a version of the Radon-Nikodym derivative %’5. Throughout this article we
will denote by 14 the indicator function of the set A.



For sake of completeness we mention some examples of the interpretation of the Radon-Nikodym
derivative %.

e Density estimation: let ¥ be a measure on S and take £ = v a.s., n = dx, where X is a
random variable with absolutely continuous distribution with respect to v. Then 3—’; is the

density of X with respect to v.

e Regression: suppose Y is an almost surely nonnegative real random variable and X a random
variable on S. Then, if { = dx and n = Ydx, the conditional expectation E(Y|X = s) is a
version of ‘;—5.

e Thinning: suppose £ = ZZ-]L 0x;, where the X;,, n € IN, are random variables on S, a,, n €
IN, are Bernoulli variables, conditionally independent given the sequence X,, n € IN, with
parameters p(X,), and put n = 31, a;dx,. Then p = % is the thinning function giving the
probability of suppressing each point.

e Marked point processes: let { = Zi]\; d(x;,r;) be a point process on S x T such that the
margin £ = Ei]\il dx, is itself a point process. If B C T is measurable, choosing a,, = 1p(T7,),
and n = Efil a;dx;, we have

FC(A x B) = /A 2—5(3) F¢(ds x R),

thus 3—’; is the marking function.

e Cluster point processes: suppose ( = Efil Z;-V:il (5(Xi,yi,j) is a point process on SxS such
that Efil Z;-V:il dy; ; is also a point process (for which it suffices that, for example, N and
the N,, n € IN are almost surely finite). The process ¢ = Ei]\; 0x,; identifies the cluster
centers and the processes (x, = EZN:H dy; ; identify the points. The distribution of ¢ may be
characterized by a markovian kernel of distributions (7, 2 € S) with means (u;, © € S) such
that, conditionally on & = Zfil dz;5 (Czys-- -5 Ca,) has distribution 7, ® --- ® m,,. Defining
n(A) = ((A x B), with B € B fixed, we have %(m) = uz(B) v-almost everywhere.

e Markovian shifts: this is a special case of the previous example, when N; = 1 a.s., 1 > 1.
Looking at the previous example, the conclusion is that (Y7,...,Y,,) has distribution p,, ®
-+ ® g, (we replaced the double index of the Y variables by a single one as, for each i fixed,
there is only one such variable). Then it would follow that %(:1:) =uz(B) =P(Y € B|X ==z).

As suggested by the examples above, we are interested in estimating a version of ?1_5 based on

a sample ((51, M)y--s (Ens nn)) of the random pair (¢, 7).

2 Assumptions and auxiliary results

In order to define the histograms we need a sequence of partitions II;, £k € IN. As we do not use
embedded partitions it will not possible to construct approximations on the whole space S but only
on some fixed compact set B C S, as it will be justified below. We make the following assumptions
on the partitions:

(P1) for each k € IN, I}, C B;



(P2) for each k € IN, IIj, is finite;

(P3) 6y =sup{diam(I): I € Iy} — 0;
(P4) for each k € IN and I € Iy, v(I) > 0;
(P5) maxsem, v(I) — 0.

When including in our conditions (P4) or (P5) we may specify the measure to which these con-
ditions are to be satisfied, meaning that v is to be replaced by some other measure. When we do
not state any such reference we mean (P4) and (P5) with the current statement.

Given s € B we denote by Ij(s), or only Iy if there is no confusion about the point s, the unique
set of 1l containing the point s, and define, for each k € IN, the function

x (1) 1(Ik(s))
Ji(s) = — A r(s) = ————=.
2 o) v T(5))
It is well known that, if there exists a continuous version f of the Radon-Nikodym derivative ‘;—5,
and if the sequence of partitions I, k£ € IN, satisfies (P1)-(P4), then

lim sup |f(s) — fi(s)| = 0. (1)
k—+o00 5B

The fact that we take the supremum on a compact set is essential for this convergence and justifies

our choice on partitioning only a fixed compact set. Also due to this property, we suppose on the

sequel that there exists a continuous version f of %.

We now set our first assumptions on the point processes. Throughout this article we will
consider the sequence (&, n,), n € IN, of point processes to be strictly stationary and strong
mixing with coefficients denoted, as usual, by «,, (see Doukhan [11] for details on strong mixing
and other types of mixing). We will be interested in constructing an estimator of f based on

the elements (&, ﬂl)v ..oy (&ny Mn) of the above mentioned sequence. For this purpose, define the
random measures &, = 1 3% | & and 7, = 1 37| n;. The histogram estimator of f is then defined
by
7, (I T Tk (n) ()
fue) = Y Ity = Tkt ) )

En(Ik(n) (3)) ’

defining, as usual, f,(s) as zero whenever the denominator vanishes. The convergence of f, to f
follows from the convergence to zero of f, — fk(n) if the sequence of partitions satisfies (P1)-(P4).
When considering embedded partitions this convergence reduces to a martingale argument which is
no longer available in the present framework. This argument is replaced by convenient assumptions
on second order moment measures which we describe next.

We will say that a measure m on SxS satisfies condition (M) with respect to v if

I€y, () gn( )

m = my + my where mg is a measure on A, the diagonal of SxS, and m;y
a measure on SxS '\ A;

dmp
dv®Rv’

(M) mq < v ® v and there exists a bounded version of
me < v*, where v* is the measure on A defined by lifting v, that is, given
A* C A we have A* = {(s,s) : s € A} and v*(A*) = v(A) and there exits

a bounded and continuous version of d’;’f.




Note that the absolute continuity is with respect to measures that depend on v. As it will be
apparent later it is important that this is the same measure appearing in (P4) and (P5).

This condition (M) was first used in Jacob, Oliveira [20] for the treatment of the kernel estimator
for independent sampling and later in Oliveira [29] for the histogram under independence, Ferrieux
[14, 15] for the kernel estimator, Jacob, Oliveira [22] for the histogram for associated samples for
these three last references. A 3-dimensional variation of this type of conditions was considered in
Bensaid, Fabre [3] for the study of the kernel estimator under strong mixing sampling.

In order to control Var(¢,,(I(,))) and Var(7, (I(,)) we introduce a further assumption on the
sequence (&, M), n € IN (recall that we have supposed this sequence to be strictly stationary).

Let Ci,1 € {&, m} and (o = & for every k € N or (o = 7 for every
ke IN;

Each measure E((1,1 ® (2;) satisfies (M) with respect to v with Radon-
Nikodym derivatives gél o and ggl ok for the nondiagonal and diagonal

components, respectively;
(M1)

Py ‘gél L eon — fcia ® f¢,,,| converges uniformly on B x B to a bounded
function Gél,@, where fc, , is the function identically equal to 1 if ;5 €

{&1,&2,...} or is the function f if Gik € {ni,m2, ...}

o0 2 . . . 2
Y o 9¢11,Co,, CODVETZES uniformly on B x B to a continuous function G¢, ., .

This condition has been used in Bensaid, Fabre [3] for the study of the kernel estimator under
present framework. Conditions similar to (M1) appear also in Bosq [4] or in Roussas [33, 35]. In
Jacob, Oliveira [22] the treatment of the histogram estimator for associated sampling is carried
under assumption (M) only. The reason we need the extra condition (M1) is due to the fact
that, under our present framework, the measures Cov((y, (2) are, in general, signed measures. This
makes the decomposition (M) not the most natural to control these covariance measures.

The assumptions being presented we now proceed with some auxiliary results. To separate the
variables in (2) we use the following lemma.

Lemma 2.1 ([18]) Let X andY be non-negative integrable random variables then, for e > 0 small
enough,

[ -3451>3 <l > £ oy - 158

Using this Lemma, it follows that, for € > 0 small enough,

T (Len)(8) k() (3)) >6}

&Ly () V() (8)
Enly) () = V(g ()| >

{

fn(s) - fk(n)(s)‘ > 5} = {

(3)
e V2 (I(n) () }
4 p(Ipmy(s)) |-

There are several versions of the Bernstein inequality. We will use in this article the following
version which, up to a constant change, is contained in Theorem 2.1.5 of Fabre [13].

C {‘ﬁn(Ik(n)(S)) - N(Ik(n)(s))‘ > ZV(Ik(n)(S))} U {



Lemma 2.2 Let Xk, k € 7L, a strong mizing sequence of real random wvariables and, for each
neNN, S, = 1 [Xi — E(X;)]. Suppose that the sequence of Laplace transforms of Xy, k € Z, is
uniformly bounded in some interval [—0, 6]. Then, for every n,y > 2, e >0 and p € [1,n/2], w
have

—nte n (10M R
P (S, 2 ne) < 6 exp (o) + 65 (S 1) 7 (4)
. i—2 ;
where My = supy 7z, || X ||, t = mln(%, 3.) and c =4 sup, 77 >, 61‘! E(|Xk]").

Next, we quote the following lemma, which is a modification, by Rhomari [30] (see Lemma 1.2
in [4]), of the well known coupling lemma due to Bradley [7].

Lemma 2.3 ([7, 30]) Let (X,Y) be a R? x IR valued random vector such that Y € L7 for some
q € [1, +oo]. Let ¢ € R be such that | Y +c |, > 0 andu € (0, [| Y +c||,]. Then there ezists a
random variable Y* such that

a) Y* has the same distribution as 'Y and is independent of X ;

2q

)™ fato0, )] 7

u

) PV —Y|>u) <11 (“

where a(o(X), o(Y)) =sup {|IP(ANB) —P(A)P(B)|, A€ o(X), Beo(Y)}.

The next two results concern the use of our conditions on the decomposition of moment measures
(M) and (M1). For the use of (M) we have the following convergence.

Lemma 2.4 ([21, 22]) Suppose m is a measure on SXS that satisfies condition (M) with respect
to v and the sequence of partitions 11y, k € N, satisfies (P1)-(P5). Then, denoting by g*> a bounded

and continuous version of ‘333 ,

> XD g 2 s.s)

jem, Y0
uniformly on B.
From (M1) we may characterize the convergence of convenient sums of covariances.

Lemma 2.5 (Bensaid, Fabre [3]) Suppose that (M1) are satisfied with respect to v and the
sequence of partitions Iy, k € IN, satisfies (P1)-(P5). Then,

Ik ;g ov (¢ Tuim): G2 (Tew)) = 2 T

7j=1
3 Convergence of the estimator

As (1) states the uniform convergence on B of ka to f, it suffices, in order to prove the convergence
of the estimator, to check that f, — fk(n) converges to zero. Now, taking account of (3), this will
follow from the convergence to zero of both En(Ik(n)) — V(I(ny) and 7, (I () — (I(r))- With this
in mind, we first look at the convergence in probability of the histogram.



Theorem 3.1 Let (£, my), n € N, be a strictly stationary strong mizing sequence of integrable
random measures satisfying (M1). Suppose the sequence of partitions Iy, k € IN, satisfies (P1)-
(P5) and
n min v(I) — +oo. (5)
€1 ()

Then fy(s) converges in probability to f(s) for every s € B.

Proof : We will only look at the term corresponding to £ appearing from (3), the other being
treated analogously. Applying Chebyshev’s inequality we find the upper bound

P( € VQ(Ik(n))> - 16 MQ(IIc(n)) 1 nVar(En(Ik(n))).

& (Tnim) — V(I | > — <

O ))‘ 4 (i) e2 v (L)) nvim)) v(Lk(n))
Uz(lk(n))

v (I(n))

converges according to (1) it suffices to check that the last quotient is convergent. Now

n

Var(fn(fk(n)))z % > i: COV(fl(Ik(n)), fj(fk(n))) - %Var(ﬁ(fk(n))),

i=1 j=1
so it follows from Lemmas 2.4 and 2.5 that

n
v(Tk(n))

oo
Var (&, (Im) ) — 02,6, (5,5) 2> 62 ¢, (5,9).

j=2
Finally, taking account of (5) the theorem is proved. B

We now state two versions of the almost complete convergence, one supposing the existence

of the Laplace transforms and another supposing a variation of the Cramer moment conditions.
These, of course, imply the existence of the Laplace transforms, but enable the proof under the
usual convergence rate on the sizes of the sets in each partition, which seems out of reach under
the simple existence of Laplace transforms.

Theorem 3.2 Suppose the sequence (&n, Mn), n € IN, is strictly stationary strong mizing with
coefficients a,, = a p”, for some a > 0 and p € (0,1), and such that the Laplace transforms of £(B)
and n(B) are finite on some interval [—0,0]. Suppose the sequence of partitions Iy, k € IN, satisfies
(P1)-(P5) and that

_ logn
€Ny, - Vnen

where e, — 0. Then f,,(s) converges almost completely to f(s) for every s € B.

(6)

Proof : Let us prove that
- — €
> P (‘nn(Ik(n)) - M(Ik(n))‘ > ZV(I’“(”))> < o0. (7)
n=1

The corresponding term relative to £, according to (3), is afterwards treated analogously. Applying
Lemma 2.2 to each term in (7) we have

_ 9
P ([ Tin) = (0| > 5 (Ta) <

7
b rim)\ o n (O] 0B) L, \FFE s
<6 _ 6— [ ————~ 7 41 27+1 27 +1 P
= eXp( 120 p,, - Pn \ ev(Iym) - crT

7



2

where p, € [1,n/2], t, = min(d/2, e v(Ii))/(12¢,)) and ¢; = 43772 ‘Vck—_!E(nk(B)), so that, for

n large enough, ¢, = W Choosing now p,, = \/n hy,, it follows

15}
P ([ Tiw) = lTagu)| > 5 (T <

2 L
< 6 exp Ve vl +6 v (4012(5) |, +1 o a%p%\/ﬁl/(mn)) <
1440 ¢, v(Ipmy) \ evLk(n))

-
—e2\/nhn vn (40 n(B) | 2 2y mh
< vV 0 yoy 2RV Y 1 2941 2 +1f n
—GGXP< e, ) On, h “e

Now (6) ensures this last upper bound defines a convergent series, thus implying (7). B

Notice that the usual convergence rate require that ﬁ)g% — +o00 which is weaker than (6). We

may prove a result under this convergence rate strengthening a little some conditions.

Corollary 3.3 Suppose the sequence (&, nn), n € IN, is strictly stationary strong mizing with
coefficients a, = a p™, for some a >0 and p € (0,1), and there exists a constant M > 0 such that,
for every I C B, k > 2 and ¢ € {¢, n},

B[c"(D)] < M*2HE [¢(1)] (®)

Suppose the sequence of partitions Iy, k € IN, satisfies (P1)-(P5), the moment measures E({ ® &)
and E(n ® n) both satisfy (M) and that

logZn

(9)

h, = min v(I)=
" IGHk(n) ( ) nep

where €, —> 0. Then f,(s) converges almost completely to f(s) for every s € B.

Proof : From (8) it follows that the Laplace transform of £(B) and n(B) are finite in some
interval [—d, §] where we may choose ¢ such that Md§ < 1. Thus we apply (4) to the random
variables 7;(Ij(n)), 7 = 1,...,n, to find

P

— 9
Tallim) = 1(Ti)| > 5 vl ) <

L
— 4 B 27 +1
<6 oxp (M) e (MH> T

120 py, Dn ev(Ii(n))
where t, = mln(% %kn("n))) and ¢, = 272, 53._!2 E[1? (Iyn))]. Using (8), it follows easily that
Cny < w < 0, 80
ev(Iimy) S e(1 = Mo)v(Iimy)
12¢n; = 12E[n?(Ix(n))]
2
Now E[Z( I(;ffrf;)))] = ("®WV((II'Z((2)))XI’“(”)) has a finite limit according to Lemma 2.4, thus
ev(l
wy = lim inf M > 0. (10)

n—too  12¢py



Choosing p, = nl/?h}/2 and 6, = min(%, W—Q"), we obtain, for n large enough,

e

_ [}
Mn(Lk(n)) — N(Ik(n))‘ > V(Ik(n))> <

)

12 —a
—e 6y nt/2 b, ) nt/2 (40 | n(B) ||7 n 1> v+t a%p 2y p1/2p1/2

< Iy +1
<6 exXp < 120 h}L/Q €hn Y

and we may conclude the proof as in the preceding case taking account of (9). H

4 Finite dimensional distributions

On this section we suppose that the measure v is absolutely continuous with respect to some fixed
nonatomic measure A on S, with Radon-Nikodym derivative f, which is supposed continuous on the
compact set B. Obviously, it follows that u < A and we denote by f, a continuous (on B) version
of ‘fi—ﬁ. We also suppose that f, and f, are bounded away from zero on B. Let sq,...,s, € B be
fixed throughout this section and denote I, 1, ..., In, the sets in IIj(,) containing each one of the
given points. Further suppose that the sets in each partition are of same measure with respect to
A and denote by hy, the A measure of each set in IIj,).

We will first prove a general convergence theorem concerning a random vector with coordinates
of the form ¢(I,, ;) — E(¢(I,;)), ¢ € {&, n}. Finally we prove a version for S = R? for the vector
with coordinates of the form ((I,, ;) — fr(¢)(s5), ¢ € {&, n}-

Theorem 4.1 Let (&,, n,), n € IN, be a strictly stationary strong mizing sequence satisfying (IM1)
with respect to \. Suppose there exist a constant R > 0 such that, for every I C B and ¢ € {£,n},

E[¢*(D] < RE [¢(1)] . (11)

Suppose further that the sequence of partitions Iy, k € IN satisfy (P1)-(P5) with respect to A,
there exists a > 1 such that

nhl — +oo (12)
and the strong mizing coefficients of the sequence (£,, n,), n € IN, are such that a, = O(n=?) for
some

3a
B> 1 (13)
Then the random vector
20 2 (7, (L) = pTn)s - T (Tnm) = (T m), 10
EIny) = v(In1), - EuInm) = v(Inm))
converges in distribution to a centered gaussian random vector with covariance matriz
[ Yn(s1) - 0 Ygpls) -+ 0]
r = 0 'Yn,n(sm) 0 ’yﬁ,ﬂ(sm) (15)
Yem(s1) - 0 gels) oo 0
L0 densm) 0 ge(sm)

where ¢, ¢, (s) = ggl,lycm(s, s)+2 352, ggl,hcu(s, s).

9



Proof : Let ay,...,am,b1,...,b, € IR be fixed and define, for each n € IN, k = 1,...,n, the
random variables

m

X = hy'? 37 €k (Tng) = v(Ia)) + b (nk(Ing) — p(Ln )]

=1
and

n
Sn = Z Xk,na
k=1

the linear combination of the coordinates of (14) needed to use the Cramer-Wold Theorem. The
method of proof consists on defining large and small blocks, of sizes p, and g¢,, respectively, of
variables and couple them using Lemma 2.3. On what follows we will drop the subscript n on p,
and ¢, to avoid a heavy notation. Let r € IN be such that r(p +¢q) < n < r(p+q+1) (again we
should denote r,, which we do nor for the same reason as before) and define

Vl,n:Xl,n+"'+Xp,na Vln: p+1n+"'+Xp+q,n

Vr,n = X(r—l)(p—i—q)—i—l,n +ee+ er-l—(r—l)q,nv Vrl,n = er-l—(r—l)q—i—l,n + e+ Xr(p-i—q),n

Suppose that r = O(n¢), p = O(n'~¢), ¢ = O(n?), with c,d € (0, 1) suitably choosen, as it will be
explained in course of proof.

Using Lemma 2.3, there exist independent variables Wy p, ..., W, , with distributions Py, =
Py~ and such that

J»

Vin . 2/5
(Vi Wal > ) < 11 (Lm0 la) e (16)

Uy, q

where u,, € (0, || Vjn + cu [|,]. Now
s 1 &
| X1l = h_ Z [ajaj Cov(&i(Inz), &1 (Lnj1)) + ajbj Cov(&r(In,;), m(Lnj1))

+bjaj Cov(ni(In,j),81(In,j)) + bjbyr Cov(ni(Ln,), m (In,j1))],

so that, recalling that \(I, ;) = A(I, /) = h, and using Lemma 2.4, converges to
m
A= Z [a? gg,ﬁ(sjv Sj) + 2aj bj gg,n(Sj, Sj) + b? g%,n(sj-, Sj)] .
j=1
Choosing in (16) ¢, = 3p A'/? it follows that, for n large enough,
pAY < Vin+en |, < 5p AV,

so that, for n large enough,

P (|V],’I’L - W‘a

2/5 4/5
Py

10



If we consider now

A, =
\/% VTP
it follows from (17)
,
P(|Ap|>€)=P Z(Vj,n Win)| >erp| <
=1

< Z ( in— Winl > ep'/? r_1/2) -0 (7’6/5;01/5 a;;/5) .

Taking account of the convergence rate supposed for the strong mixing coefficients, it follows that
P (|An| > &?) -0 (n(5c+174ﬁd)/5)

which converges to zero provided that
oc+1

4d
We prove now the asymptotic normality of (rp)~1/2 >i—1 Wjn verifying the Lyapounov condi-
tion. For this we will verify that

B> (18)

=1 E(W;nl)
]—1 5T
0= — 0. 19
# (r Var(Wy ,,))r/? (19)
Using Lemma, 2.5, it is easily verified that
m
_ 2 2
Var(Wi,,) = Var(Vi,) ~p Z [aj'yg,g(sj) + 2a;b;v¢ n(s5) + bj'ynm(sj)] .
j=1

We shall control the numerator in (19) by using Yokoyama’s inequality [38]. First we need to
control the third moment of the X}, ,, conveniently normalized.

BB X ) < 4 3 |6 B (etrng) — (50| +
b 3 [y [(6(Tns) — (L) 2elTng) — wlTi))] | +
n =1
(20)
b 30 B [(6Eng) — v e 1) — L)) | +
"=t
b 3 BB [ — ()|
noj—1
The first term on the right of (20) is a sum of terms of the form
i [B (66000 = 83))"]| = 5 B ag) — - BT Tg) + - T (@D

11



Now, using (11) the first term is bounded above by a convergent term, according to (M), so it is
bounded. The remaining terms in (21) converge to zero as a consequence of (M). That is, the first
term in (20) is bounded. Evidently, so is the last term in the right side of (20). The remaining two
terms in (20) are also bounded as, using Holder’s inequality, we may reduce their control to the
third order moments of each factor. Collecting this information, we have verified that

W 2E(Xpnl’) <00,  k=1,...,n

In order to apply Yokoyama‘s inequality we verify that there exists p € (2,3) such that

S, (n+ 1)/ 2*1a£{°’_p )3 « 5. Given the assumptions made on the mixing coefficients, the conver-
gence of the series follows from

3p
B>% (22)

3—-p)

Now, we may apply Yokoyama’s inequality to derive E((hﬁ/ 6 |Wj,n|”) = O(pp/ 2), so that

p/2 c—cp/2
DY B N CilA Y (23)
Tp/pr/2 hﬁ/G hﬁ/G

This converges to zero, taking account of (12), provided that ¢ > WP—Q)' As we want to choose
6a

g7 Using this on (22) we need to impose (13). This proves

the asymptotic normality of (rp)~'/? i=1 Wjn from which follows the asymptotic normality of

(rp)il/Z ;’:1 V',n-

To finish our proof write

¢ € (0,1), we impose that p >

T r
Sn=> Vin+Y_ V], +Ru.
j=1 j=1
It is easy to check that

< V! i1
Var | == 2 ) = O(pt~11c)
VTP >

and

Rn _ nc—l
Var <\/7“_p> = O( )

Thus (rp)~'/2 R, converges in probability to zero. The term (rp)~1/2 Y71 Vi, also converges to
zero if d < 1 — ¢. Using this on (18), we derive 8 > (5 + a)/(4(a — 1)) which follows from (13), so
the theorem is proved.

Remark that in many situations h,, is chosen to behave like some power of n, that is h, = O(n~%)
with @ < 1. In this case (13) is replaced by

3
1—a

G >

as follows from the proof of the theorem.

Finally we prove a more precise version of the convergence in distribution adapted to case
S = IR? for some d € IN, with the reference measure A being the Lebesgue measure on IR?. For
this case we put, to be coherent with the traditional notations, hg =XI), I€ Hg(n)- It is known
that, for independent sampling, the optimal choice of hy, is h, = O(n~1/(@+2)) (see Oliveira [29] for
a proof in the present framework) so we will state a result based on this choice of h,.

12



Theorem 4.2 Let (&,, n,), n € N, be a strictly stationary strong mizing sequence satisfying (M1)
with respect to X the sequence of partitions Iy, k € IN, satisfy (P1)-(P5) with respect to A and
(11) holds. Suppose there exist versions f, and f, of the Radon-Nikodym derivatives 3—‘; and g—;,
respectively, that, besides being bounded away from zero, are continuously differentiable on B. If

hyp = en~ V(@2 (24)
with ¢ > 0, e, — 0 and a, = O(n=P) with

3d+6

B>,

then
_TL In _n In,m
nl/Qh;d/2<n (hd,l) _fﬂ(sl)a"'alrl ( ) _fu(sm)a

n hil
gn(‘[n,l)
hil

Inm
é%?l—ﬂ@m>

converges in distribution to a centered gaussian random vector with covariance matriz (15).

= fuls1)-- s

Proof : The convergence to the required gaussian vector of

nl/zhr_bd/Q (ﬁn(In,l) - M(In,l)a e aﬁn(In,m) - M(In,m)a
EIng) = v(In), - EuInm) = v(Inm) )

follows the same arguments as in the proof of Theorem 4.1.
Now, from the differentiability assumptions, it follows that (see [29])

nl/th/Q(M(;Z’j) _ fﬂ(si)) _ nl/th/Q O(hn) = O (6gld+2)/2)

n

which converges to zero. The terms corresponding to v are treated analogously, so the theorem is
proved. H
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