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Abstract. This paper presents an overview of a unified framework for finite element and spectral element
methods in 1D, 2D and 3D in C++ called FEEL++. The article is divided in two parts. The first part pro-
vides a digression through the design of the library as well as the main abstractions handled by it, namely,
meshes, function spaces, operators, linear and bilinear forms and an embedded variational language. In
every case, the closeness between the language developed in FEEL++ and the equivalent mathematical ob-
jects is highlighted. In the second part, examples using the mortar, Schwartz (non)overlapping, three fields
and two fictitious domain-like methods (the Fat Boundary Method and the Penalty Method) are presented
and numerically solved in the scope of the library.

1. INTRODUCTION

Libraries to solve problems arising from partial differential equations (PDEs) through generalized Galerkin
methods are a common tool among mathematicians and engineers. However, most libraries end up specializing
in a type of equation, e.g. Navier-Stokes or linear elasticity models, or a specific type of numerical method, e.g.
finite elements. The increasing complexity of differential models and the implementation of state of the art robust
numerical methods, demand from scientific computing platforms general and clear enough languages to express
such problems and provide a wealth of solution algorithms available in a minimal amount of code but maximum
mathematical control. There are many freely available libraries which offer the capabilities described previously
to a certain extent. To name a few: the Freefem software family [24, 44], the Fenics project [36, 37], Getdp [19],
DUNE [15] or Getfem++ [49], or libraries or frameworks such as deal.II (C++) [6], Sundance (C++) [38], Analysa
(Scheme) [2]. Either they rely on a domain specific language (Python, the freefem language, ...) when it comes
to describe the PDE to solve, or they are geometry or dimension dependent, or they are not so expressive with
respect to the mathematics, i.e. the mathematics are hidden by programming details.

The library we present in this paper, called FEEL++, Finite Element Embedded Language in C++ , see [45,46]
for the initial papers, provides also a clear and easy to use interface to solve complex PDE systems. It aims
at bringing the scientific community a tool for the implementation of advanced numerical methods and high
performance computing. Some recent applications of FEEL++ to multiphysics problems can be found in the
literature, see [13, 17, 41–43].

Two main aspects in the design of the library are to (i) have the syntax, semantics and pragmatics of the library
very close to the mathematics, and (ii) have a small manageable library that makes use wherever possible of
established libraries (for linear system solves, for instance). While the first aims at creating a high level language
powerful enough to describe solution strategies in a simple way, the second helps with the maintenance of the
code delegating some procedures to frequently maintained third party libraries.

FEEL++ relies on a so-called domain specific embedded language (DSEL) designed to closely match the
Galerkin mathematical framework. In computer science, DS(E)Ls are used to partition complexity and in our

1 Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble 1, BP53 38041 Grenoble Cedex 9, France, Tel.: +33476635497, Fax:
+33476631263, e-mail: christophe.prudhomme@ujf-grenoble.fr vincent.chabannes@imag.fr abdoulaye.samake@imag.fr
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case the DSEL splits low level mathematics and computer science on one side leaving the FEEL++ developer to
enhance them and high level mathematics as well as physical applications to the other side which are left to the
FEEL++ user. This enables using FEEL++ for teaching purposes, solving complex problems with multiple physics
and scales or rapid prototyping of new methods, schemes or algorithms. The goal is always to hide (ideally all)
technical details behind software layers, provide only the relevant components required by the user or program-
mer and enforce the mathematical language computationally between the users be they physicists, mathematicians,
computer scientists, engineers or students. The DSEL approach has advantages over generating a specific external
language: (i) interpreter/compiler construction complexities can be ignored, (ii) libraries can concurrently be used
which is often not the case of specific languages which would have to also develop their own libraries and library
system, (iii) DSELs inherit the capabilities of the host language (e.g.C++).

The DSEL on FEEL++ provides access to powerful, yet with a simple and seamless interface, tools such as
interpolation or the clear translation of a wide range of variational formulations into the variational embedded
language. Combined with this robust engine, lie also state of the art arbitrary order finite elements — including
handling high order geometrical approximations, — high order quadrature formulas and robust nodal configuration
sets. The tools at the user’s disposal grant the flexibility to implement numerical methods that cover a large
combination of choices from meshes, function spaces or quadrature points using the same integrated language and
control at each stage of the solution process the numerical approximations.

Finally FEEL++ uses advanced C++ (e.g. template meta-programming) and in particular the latest standard
C++ 11 that provides very useful additions such as type inference — auto and decltype keywords which are
used throughout the paper. — FEEL++ also uses the essential Boost C++ libraries [1]: in this paper most scripts
displayed use explicitly the Boost Parameter library1 enabling a very powerful programming interface namely
named parameters (required and optional) given in a random order to a class — template parameters —, a class
member function or a free function. This library enhances tremendously readability, expressivity and ease of use
of the code. Many other Boost libraries are used in FEEL++, some are listed in this document.

The paper is organized in two parts. The first part describes an overview of the main abstractions and interfaces
handled by the library. In section 2 we describe the basic ideas behind the construction of the reference element,
finite elements defined therein and the geometrical transformation. Section 3 shows how to handle and define
meshes, function spaces, forms, functionals and operators. The variational embedded language is presented in
section 4, with particular emphasis in the projection and integration procedures. The second part introduces
several examples using the mortar, Schwartz (non)overlapping, three fields, see section 5, and fictitious domain-
like methods, see section 6, to illustrate the flexibility of the language. These methods are being developed
within FEEL++ to be used, possibly concurrently, to solve multiphysics and/or multiscale problems within high
performance computing environments.

2. POLYNOMIAL LIBRARY

The polynomial library is composed of various bricks: (i) the geometrical entities or convexes (ii) the prime
basis in which we express subsequently the polynomials, (iii) the definition and construction of point sets in
convexes (such as quadrature point sets) and finally (iv) polynomials and finite elements.

2.1. Convexes

The supported convexes are simplices and hypercubes of topological dimension n, n = 1,2,3 lying in Rd such
that n 6 d 6 3. The convexes are described geometrically in a standard way in terms of their subentities (vertices,
edges, faces, volumes), see for example [32], and provide the ability to iterate over the entities of a convex or of
the same topological dimension inside a convex, e.g. iterate over the edges of a tetrahedron.

2.2. Prime basis: L2 Orthonormal Polynomials

In order to express polynomials in the convexes defined previously, we need to choose a prime basis, i.e., a
basis in which all polynomial families are expressed. Often, the choice falls on the canonical basis (also known
as the moment or monomial basis). However, recent work by R.C. Kirby [33–35] proposed to use the Dubiner
polynomials as a prime basis on the simplex. We extended these ideas on the hypercubes using the Legendre
polynomials. Other interesting examples of prime basis being used are the Bernstein polynomials. Our framework
uses the Dubiner or Legendre basis as the default prime basis. This choice simplifies the construction of finite
elements due to the hierarchical and L2 orthogonality properties these basis functions share. The choice of basis
polynomials that are hierarchical allows for an easy extraction of a basis spanning a subspace of the polynomial

1http://www.boost.org/doc/libs/1_48_0/libs/parameter/doc/html/index.html
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space (which corresponds to extract a range of coefficients), whereas L2 orthogonality simplifies some operations
like numerical integration or the L2 projection (which is explicit in this case). The use of these basis functions
proved to provide much better numerical stability, see [41].

Details on the construction of the Dubiner polynomials can be found in [32] page 101. In practice, the prime
basis is normalized.

2.3. Point Sets on Convexes

Now we turn to the construction of point sets P defined on a convex K. Point sets are represented alge-
braically by a matrix (rows are indexed by the coordinates while columns are indexed by the points) and they are
parametrized by the associated convex and the numerical type. We recall that the convex is decomposed in vertices,
edges, faces, volumes. A similar decomposition is done for the point sets: points are constructed and associated
to their respective entities on which they reside. This is crucial when considering continuous and discontinuous
Galerkin formulations.

The type of point sets supported are (i) the Equidistributed point set, (ii) the Warpblend point sets on simplices
see [51], (iii) Fekete points in simplices, see [32], (iv) standard quadrature rules in simplices and finally (v) Gauss,
Gauss-Radau and Gauss-Lobatto and combinations in simplices and hypercubes. It should be noted that the
last family is constructed from the computation of the zeros of the Legendre polynomials on [−1,1] including
eventually the boundary vertices −1, 1 for the Radau and Lobatto flavors.

Warpblend and Fekete points are used with nodal basis on simplices which, when constructed at these points,
present much better interpolation properties (lower Lebesgue constant, see [32]). Note that the Gauss-Lobatto
points are the Fekete points in hypercubes.

2.4. Polynomial Set

After introducing in the previous sections the necessary bricks to the construction of polynomials on simplices
and hypercubes, we now focus on the polynomial abstraction.

A polynomial set P is a template class parametrized by the prime basis in which it is expressed and the field
type in which it has its values: scalar, vectorial or matricial. Its interface provides a number of operations such
as evaluation and derivation at a set of points, extraction of polynomials or components (when the FieldType is
Vectorial or Matricial) of a polynomial from a polynomial set .

One critical operation is the construction of the gradient of a polynomial (or a polynomial set) expressed in the
prime basis. This usually requires solving a linear system where the matrix entries are given by the evaluation
of the prime basis and its derivatives at a set of points. Again the choice of set of points is crucial here to avoid
ill-conditioning and loss of accuracy. We choose Gauss-Lobatto points for hypercubes and Warpblend or Fekete
points for simplices as they provide a much better conditioning for the underlying system matrix (a generalized
Vandermonde matrix, see [41]).

2.5. Finite Elements and Other Polynomial Basis

FEEL++ supports modal basis, e.g. Legendre or Dubiner, see [12,32], as well as finite elements (FE) following
the standard definition, set in [14], as a triplet (K,P,Σ) where K is a convex, P the polynomial space and Σ the
dual space. We describe now some features of the finite element framework. The description of K and P has been
presented previously and it remains to describe Σ. Σ is a set of functionals (which can be identified as degrees of
freedom) defined in P with values in R, Rd or Rd×d . Several types of functionals can then be instantiated which
merely require basic operations like evaluation at a set of points, derivation at a set of points, exact integration
or numerical integration. Some examples of functionals satisfying such requirements are (1) evaluation at a point
x ∈ K, `x : p→ p(x), (2) derivation at a point x ∈ K in the direction i, `x,i : p→ ∂ p

∂xi
(x), (3) moment integration

associated with a polynomial q ∈ P(K), `q : p→ ∫
K pq.

A functional is represented algebraically by a vector whose entries result from the application of the functional
to the prime basis in which we express the polynomials thanks to the bijection between L (P,R) and Rdim(P).
Then applying the functional to a polynomial is just a scalar product between the coefficient of this polynomial in
the prime basis by the vector representing the functional. For example the Lagrange element is the finite element
(K,P,Σ = {`xi ,xi ∈ X ⊂ K}) such that `xi(p j) = δi j where p j is a Lagrange polynomial and X = {xi} is a set of
points defined in the convex K, for example the Equidistributed, Warpblend or Fekete point sets. Other FE such
as P1,2-bubble, RTk or Nk polynomials are constructed likewise though they require a more involved description.
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2.6. Geometry

To conclude this section, one important object that is constructed with the help of the polynomial library is the
geometric transformation. Indeed all polynomial set constructions are done on a reference convex, denoted K̂, and
the geometrical transformation maps it to a convex in the physical space which we denote K. This map, denoted
φ

geo
K , is the C1−diffeomorphism defined on K̂ ⊂ Rp, p = 1,2,3 such that the image is K ⊂ Rd , i.e. φ

geo
K : K̂ −→ K

for p 6 d 6 3. This map is constructed and associated to each convex K in a computational mesh Th, see section 3.
Notice that this last condition over p and d covers a large spectrum of geometrical profiles. For instance, we handle
lines or surfaces in R3. We refer the reader to section 5.4 for an example where this flexibility is exploited.

x̂

ŷ

•
x̂1

•
x̂2

•x̂3

•
x̂4

• x̂5•x̂6

K̂

x

y

•x1

•x2

•x3

•x4

•x5•x6
K

φ
geo
K (x̂)

(φ
geo
K )−1 (x)

The geometric transformation is constructed as a suitable linear combination of Lagrange polynomials and
therefore it can be a polynomial of arbitrary degree, allowing thus meshes with elements that have curved edges/-
faces, see [42, 43]. Another consequence of φ

geo
K being a polynomial of a degree the user can choose, is the

possibility to define isoparametric (or subparametric or surparametric) finite elements, see [41, 43]. Lets denote
kgeo the polynomial order of the Lagrange basis in which φ

geo
K is expanded. If there is no ambiguity, we keep the

notation φ
geo
K , otherwise we use the notation φ

geo
K,kgeo

.
The class that implements the definition and evaluation of the geometrical transformation also provides a func-

tion to evaluate its gradient, automatic consequence of φ
geo
K being an element belonging to a polynomial set.

Another important transformation associated with φ
geo
K is its inverse, (φ geo

K )−1. In the case of an affine transforma-
tion, the inverse is calculated explicitly. However, if φ

geo
K is nonlinear, the evaluation/differentiation of (φ geo

K )−1

at a set of points is performed with the help of a nonlinear solver (we have used the nonlinear solver available in
PETSc for these calculations, see section 3.2). The inverse transformation plays an essential role in providing an
interpolation tool, all the advanced numerical methods presented in sections 5 and 6 use this tool and hence the
inverse geometrical transformation.

3. MESHES, FUNCTION SPACES AND OPERATORS

In the previous section, we have described roughly the monodomain construction of polynomials. Now we
turn to the ingredients for the multidomain construction and we start with the mesh mathematical description and
associated data structures.

3.1. Mesh Data Structures

Let Ω⊂ Rd , d ≥ 1, denote a bounded connected domain. We first need to introduce a suitable discretization of
Ω, Ωh ⊂Ω. Note that if Ω is a polyhedral domain then Ωh = Ω. We denote by Th a finite collection of nonempty,
disjoint open simplices or hypercubes Th = {K = φ

geo
K (K̂)} forming a partition of Ωh such that h = maxK∈Th hK ,

with hK denoting the diameter of the element K ∈ Th. We say that a hyperplanar closed subset F of Ω is a mesh
face if it has positive (d−1)-dimensional measure and if either there exist K1, K2 ∈ Th such that F = ∂K1∩∂K2
(and F is called an internal face) or there exists K ∈ Th such that F = ∂K ∩ ∂Ωh (and F is called a boundary
face). Internal faces are collected in the set F i

h, boundary faces in F b
h and we let Fh : =F i

h∪F b
h . For all F ∈Fh,

we define TF : ={K ∈ Th | F ⊂ ∂K}. For every interface F ∈F i
h we introduce two associated normals to the

elements in TF and we have nK1,F =−nK2,F , where nKi,F , i ∈ {1,2}, denotes the unit normal to F pointing out of
Ki ∈ TF . On a boundary face F ∈F b

h , nF = nK,F denotes the unit normal pointing out of Ωh. We also introduce
(i) the set of boundary elements T b

h = {K ∈ Th | ∂K ∩∂Ω 6= /0}, (ii) the set of internal elements T i
h = Th\T b

h ,
(iii) the set Nh which collects the nodes of the mesh, (iv) when d = 3, Eh which collects the edges of the mesh.
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The collections Th,Fh,Eh,Nh, as well as the internal and boundary collections, are provided by our mesh
data structure and stored using the the Boost.Multi index library2. The mesh entities (elements, faces, edges,
nodes) are indexed either by their ids, the process id (i.e. the id given by MPI in a parallel context, by default
the current process id) to which they belong, their markers (material properties, boundary ids. . . ) or their location
(whether the entity is internal or lies on the boundary of the domain). Other indices could certainly be defined,
however those previous four already allow a wide range of applications. Thanks to Boost.Multi index, it is trivial
to retrieve pairs of iterators over the entity’s containers depending on the usage context. The pairs of iterators are
then turned into a range, see Boost.Range3, to be manipulated by the integration, see section 4.1, and projection,
see section 4.2, tools. Table 1 summarizes some of the available ranges in the library.

Range iterators Description

elements(<mesh>) range iterator over Th
faces(<mesh>) range iterator over Fh
edges(<mesh>) range iterator over Eh
points(<mesh>) range iterator over Nh

markedelements(<mesh>,<marker (id|string)>) element range iterator over Th marked by marker

markedfaces(<mesh>,<marker (id|string)>) face range iterator over Th marked by marker

boundaryelements(<mesh>) element range iterator over T b
h

internalelements(<mesh>) element range iterator over T i
h

boundaryfaces(<mesh>) face range iterator over F b
h

internalfaces(<mesh>) face range iterator over F i
h

Table 1. Some mesh range iterators

In C++ the mesh data structure is defined through the type of geometrical entities (simplex or hypercube) and
the geometrical transformation associated, see the listing below.

// Th is a collection of simplices s.t. φ
geo
K,kgeo

: K̂ ⊂ Rp −→ K ⊂ Rd

Mesh <Simplex <p, kgeo, d> > mesh;

// same as above except that we deal with a set of hypercubes

Mesh <Hypercube <p, kgeo, d> > mesh;

FEEL++ uses GMSH, see [20], to generate meshes in all 3 dimensions with 1 6 kgeo 6 5 for d = 2 and 1 6
kgeo 6 4 for d = 3. The listing below and the resulting Figure 1 for kgeo = 1,2,3,4 illustrate the flexibility of
FEEL++ regarding mesh handling.

typedef Mesh <Simplex <3,kgeo ,3> > mesh_type;

// generate the mesh of the sphere using Gmsh

auto mesh = createGMshMesh( _mesh=new mesh_type ,

_desc=domain(_shape="ellipsoid",_dim =3));

// generate a functionspace , see next section

FunctionSpace <mesh_type ,bases <Lagrange <kgeo> > > Xh_type;

auto Xh = Xh_type ::New( mesh );

// build the Lagrange interpolant u of degree kgeo of cos(5x)sin(5y)
auto u = project( _space=Xh, _range=elements(mesh), _expr=cos(5x)sin(5y) );

// export function to gmsh the mesh and u for high order visualisation

// gmsh requires that we use isoparametric elements

exporter( _format=gmsh ,

_mesh=mesh ,

_name="ho_sphere" ).add( _data=u, _name="u" );

Finally the mesh data structure of topological dimension d allows to easily extract submeshes of topological
dimension d and d− 1. For example, the methods exposed in section 5 use the extraction of trace meshes as
follows:

// Trace mesh composed of all boundary faces from ’mesh’

auto trace_mesh = mesh ->trace(boundaryfaces(mesh ));

2http://www.boost.org/libs/multi_index/doc/index.html
3http://www.boost.org/libs/range/index.html
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// mesh of faces marked Gamma in ’mesh’

auto Gamma_mesh = mesh ->trace(markedfaces(mesh ,"Gamma"));

Figure 1. Sphere discretized with 31 elements. Visualization of a function in Gmsh using
tetrahedral elements of order N = 1,2,3,4.

3.2. Algebraic representations

Algebraic representations are handled using a so-called backend which is a wrapper class that encapsulates
several linear, nonlinear and eigenvalue algorithms as well as data structures like vectors and matrices. It provides
all the algebraic data structure behind function spaces, operators and forms (see the following sections). In the
case of linear functionals (also called linear forms or 1-forms), the representation is a vector and, in the case of
linear operators and bilinear forms, the representation is a matrix.

The backend abstraction allows to write code that is independent of the libraries used in the assembly process
or to solve the linear systems involved, thus hiding all the details of that algebraic part under the hood of the
backend. Once a backend is set, the user can create in a transparent way vectors and matrices to be used during
the assembly process, as is it shown is the following listing.

// allocates a sparse matrix based on the degrees of freedom of the

// trial functions space Xh and the test functions space Vh
auto A = backend ->newMatrix( _trial=Xh, _test=Vh );

// allocates a vector based on the degrees of freedom of the

// test functions space Vh
auto b = backend ->newVector( _test=Vh );

There are two available backends that provide an interface to PETSc/SLEPc, see [3–5, 25], and Trilinos, see
[26–29]. The user can choose any of them, bearing in mind the tools and features available in each, such as
parallelism, direct or iterative linear system solvers or preconditioners for these systems. Once a backend is
defined, say Backend<Trilinos>, the user is free to manipulate objects such as vectors and matrices (from the
Epetra class, in this case), using most of the algebraic operations attainable from the original library. The backend
also provides interfaces to linear system solvers (direct or iterative, with or without a preconditioner). The syntax
for this function is illustrated in the next listing. Similar interfaces exist for non-linear and standard/generalized
eigenvalue solvers.

// solve the linear system Au = F

backend -> solve( _matrix=A , _solution=u , _rhs=F );

3.3. Function Spaces and Functions

We now turn to the next crucial mathematical ingredient: the function space, whose definition depends on Ωh
— or more precisely its partitioning Th — and the choice of basis function. Function spaces in FEEL++ follow the
same definition, see listing 1, and FEEL++ provides support for continuous and discontinuous Galerkin methods
and in particular approximations in L2, H1-conforming and H1-nonconforming, H2, H(div) and H(curl)4.

Listing 1. FunctionSpace
// space of continuous piecewise

// P3 functions defined on a mesh

4At the time of writing, H2, H(div) and H(curl) approximations are in experimental support.
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// of order 2 triangles in 3D

FunctionSpace <Mesh <Simplex <2,2,3>,

bases <Lagrange <3> > > Xh;

The FunctionSpace class (i) constructs the table of degrees of freedom which maps local (elementwise) degrees
of freedom to the global ones with respect to the geometrical entities, (ii) embeds the definition of the elements
of the function space allowing for a tight coupling between the elements and their function spaces, (iii) stores an
interpolation data structure (e.g. region tree) for rapid localisation of point sets (determining in which element
they reside).

We introduce the following spaces

Wh = {vh ∈ L2(Ωh) : ∀K ∈Th,vh|K ∈ PK},
Vh =Wh∩C0(Ωh) = {vh ∈Wh : ∀F ∈F i

h {{vh}}F = 0}
Hh =Wh∩C1(Ωh) = {vh ∈Wh : ∀F ∈F i

h {{vh}}F = {{∇vh}}F = 0}

CRh = {vh ∈ L2(Ωh) : ∀K ∈Th,vh|K ∈ P1;∀F ∈F i
h

∫
F
{{vh}}= 0}

RaTuh = {vh ∈ L2(Ωh) : ∀K ∈Th,vh|K ∈ span
{

1,x,y,x2− y2} ;∀F ∈F i
h

∫
F
{{vh}}= 0}

RTh = {vh ∈ [L2(Ωh)]
d : ∀K ∈Th,vh|K ∈ RTk;∀F ∈F i

h {{vh ·n}}F = 0}
Nh = {vh ∈ [L2(Ωh)]

d : ∀K ∈Th,vh|K ∈ Nk;∀F ∈F i
h {{vh×n}}F = 0}

(1)

where RTk and Nk are respectively the Raviart-Thomas and Nédélec finite elements of degree k. The table 2
summarizes the supported approximation spaces.

Continuous Solution Space Discrete Approximation Space Basis Order Dimension

L2 Wh

Lagrange
any 1,2,3Legendre

Dubiner

H1-conforming Vh

Lagrange
any 1,2,3Legendre boundary adapted

Dubiner boundary adapted

H1-nonconforming
CRh Crouzeix-Raviart 1 2,3
RaTuh Rannacher-Turek 2 2

H(div)-conforming RTh Raviart-Thomas any 2,3

H(curl)-conforming Nh Nédélec first kind any 2,3

H2-conforming Hh Hermite > 2 1,2,3

Table 2. FEEL++ approximations spaces

The Legendre and Dubiner basis yield implicitly discontinuous approximations, the Legendre and Dubiner
boundary adapted basis, see [32], were designed to handle continuous approximations whereas the Lagrange basis
can yield either discontinuous or continuous (default behavior) approximations. RTh and Nh are implicitly spaces
of vectorial functions f s.t. f : Ωh ⊂ Rd 7→ Rd . As to the other basis functions, i.e. Lagrange, Legrendre, Dubiner,
etc., they are parametrized by their values namely Scalar, Vectorial or Matricial. Note that FunctionSpace
handles also products of function spaces. This is very powerful to describe complex multiphysics problems when
coupled with operators, functionals and forms described in the next section. Extracting subspaces or component
spaces are part of the interface.

// continuous piecewise P3

// approximations

FunctionSpace <Mesh <Simplex <2> >,

bases <Lagrange <3,Scalar ,

Continuous > > > P3ch;

// discontinuous piecewise P3
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// approximations

FunctionSpace <Mesh <Simplex <2> >,

bases <Lagrange <3,Scalar ,

Discontinuous > > > P3dh;

// mixed (P2 vectorial , P1 scalar ,

// P1 Scalar) approximation

FunctionSpace <Mesh <Simplex <2>>,

bases <Lagrange <2,Vectorial >,

Lagrange <1,Scalar >,

Lagrange <1,Scalar>>> P2P1P1;

The most important feature in FunctionSpace is that it embeds the definition of element which allows for the
strict definition of an Element of a FunctionSpace and thus ensures the correctness of the code. An element
has its representation as a vector — also in the case of product of multiple spaces. — The vector representation
is parametrized by one of the linear algebra backends presented in section 3.2. Other supported operations are
interpolation and extraction of components — be it a product of function spaces element or a vectorial/matricial
element, — see listing 3.3.

FunctionSpace <Mesh <Simplex <2> >,

bases <Lagrange <3,Scalar , Continuous > > > P3ch;

// get an element from P3ch

auto u = P3ch.element ();

FunctionSpace <Mesh <Simplex <2> >,

bases <Lagrange <2,Vectorial >, Lagrange <1,Scalar >,

Lagrange <1,Scalar > > > P2P1P1;

auto U = P2P1P1.element ();

// Views: changing a view changes U and vice versa

// view on element associated to P2

auto u = U.element <0 >();

// extract view of first component

auto ux = u.comp(X);

// view on element associated to 1st P1

auto p = U.element <1 >();

// view on element associated to 2nd P1

auto q = U.element <2 >();

Finally FEEL++ provides the Lagrange, I LAG
c,h ,I LAG

d,h , Crouzeix-Raviart, I CR
h , Raviart-Thomas, I RT

h and
Nédélec, I N

h global interpolation operators. In abstract form, they read

I : X 3 v 7→
dimX

∑
i=1

`i(v)φi (2)

where X is the infinite dimensional space, (`i)i=1,...,dimX are the linear forms and (φi)i=1...dimX the basis function
associated with the various approximations in table 2.

3.4. Functionals, Operators and Forms

We now introduce the necessary functional vocabulary, namely (i) functionals, ` : X 7→ R, (ii) operators, A :
X 7→ Y and (iii) bilinear forms, a : X×Y 7→ R. Note that for a bilinear form a : X×Y 7→ R there exists a unique
operator A : X 7→ Y′ s.t. a(x,y) = 〈A x,y〉 where 〈 · , · 〉 denotes the duality product. The C++ counterpart of these
mathematical objects follows closely their mathematical analog: they are template classes with arguments being
the space (or product of spaces) they take as input and provide an interface to apply them on elements of the
domain space. For operators, we can also apply their inverse to the elements of the image space. In the linear
case, we provide also an algebraic representation : a vector for linear functionals or forms and a matrix for linear
operators and bilinear forms — matrix- and vector-free representations are possible too. — The listing below
exercises

auto Xh = Xh_type::New(mesh); Vh = Vh_type ::New(mesh);

auto u = Xh->element (); auto v = Vh->element ();

// operator T : Xh→V ′h
auto T = opLinear( _domainSpace=Xh, _imageSpace=dual(Vh) [,_backend=backend] );

// definition of T, see eg section 4

T = integrate(_range=elements(mesh),_expr=gradt(u)* trans(grad(v)));
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// linear functional f : Vh→ R

// f is a linear form

auto f = T.apply( u ); f.apply( v );

//or equivalently

auto f = funLinear( _domainSpace=Vh [, _backend=backend] );

f = T.apply(u); f.apply( v ) ;

// a is a bilinear form ,

auto A=backend ->newMatrix( _test=Xh, _trial=Xh );

auto a = form2( _test=Xh, _trial=Xh, _matrix=A );

// definition of a, see e.g. section 4

a = integrate(_range=elements(mesh),_expr=idt(u)*id(v));

// b is a linear form ,

auto B=backend ->newVector( _test=Xh );

auto b = form1( _test=Xh, _vector=B );

// definition of b, see e.g. section 4

b = integrate(_range=elements(mesh),_expr=id(v));

FEEL++ implements currently the following operators (i) interpolation operator, (ii) the lift and trace operators,
and (iii) the projection operators (L2, H1, H(div), H(curl),...). We describe briefly the interpolation operator which
is used later in this text. Note that the lift and trace operators are used also in some examples in section 5.

The interpolation operator, I : X −→ Y where Y is a nodal basis and I (v), v ∈ X is the interpolant of v ∈ Y ,
defined in the previous section. It is based on two fundamental tools: a localisation tool using a kd-tree data
structure for fast localisation and the inverse geometrical transformation. This is a crucial tool for all advanced
numerical methods presented later in this paper in sections 5 and 6.

Listing 2. Interpolation operator
auto Xh = Xh_type::New(mesh); Vh = Vh_type ::New(mesh);

auto u = Xh->element (); auto v = Vh->element ();

// operator I : Xh→Vh
auto I = opInterpolation( _domainSpace=Xh, _imageSpace=Vh [,_backend=backend] );

// compute v the interpolant of u in Vh
v = I(u);

4. A VARIATIONAL FORMULATION LANGUAGE EMBEDDED IN C++

The language has a variety of keywords — see appendix A for an exhaustive list — that implement (i) access to
geometrical data structure, e.g. exterior normal to the face of an element, (ii) standard mathematical functions and
logical relations, (iii) operations related with the function spaces, such as element evaluation or differentiation,
(iv) numerical integration. These keywords, with the help of algebraic operations such as sum, multiplication,
division, etc, allow to build expressions which are used to define mathematical expressions then used by various
objects such as forms or operators.

Some keywords show a common pattern in their nomenclature: for instance, the basic expressions id(p),
grad(p), jump(p) or div(p) represent the evaluation, gradient, jump across a face or divergence of a test function,
while the addition of t at the end of such expressions (idt(p), gradt(p), jumpt(p) or divt(p)) represents the
same operators, but now concerning trial functions. Therefore, if p and q belong to the same function space, the
construction of a bilinear form associated with the expression idt(p)*id(q) will result in the assembly of the
associated mass matrix. However, adding a v at the end of the keywords, allows to perform evaluation of the
operator applied to the argument, ie, idv(p), gradv(p), jumpv(p) or divv(p) evaluate respectively the gradient of
p, the jump of p across faces or the divergence of p.

Finally FEEL++ supports scalar, vectorial and matricial operations in expressions. Indeed the C++ operators
follow the same rank semantics of their mathematical counterparts, see appendix A. Listing 3 displays a C++ code
solving the linear elasticity equations, notice how the vectorial notations make it easy to express the variational
formulation.

Often it is the case that we must integrate function space elements or basis functions (trial or test functions) that
are defined on a mesh which is different from the integration mesh, see e.g. the mortar method in section 5.2 or the
Fat Boundary Method in section 6. Such a case is detected automatically and the interpolation procedure is called
in the background of the integration or projection processes automatically to handle the necessary information
transfer. All possible cases are actually handled by FEEL++.
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4.1. Integration

Integration is of course a fundamental tool in FEEL++. It is handled through the keyword integrate and is
used to define forms, functionals and operators or just to compute integrals. It provides an extremely flexible and
versatile interface in all these contexts:

integrate( _range=<mesh range iterators >, // integration domain

_expr=<expression to integrate >, // integrand

_quad=_Q<polynomial order to integrate exactly >(), // quadrature

... // other parameters are available but not necessary here);

The parameters _range (domain of integration) and _expr (integrand) are required while _quad is optional. In-
deed, by default, the DSEL computes an approximation of the polynomial order of the integrand and selects the
quadrature that integrates it exactly (if the integrand is polynomial then the integration is exact). If this is not
satisfactory then the user selects his own quadrature. Multiple integrate keywords can be accumulated using
the + operator and returns an object which is handled automatically by forms, functionals and operators. There
are two particular flavors: (i) integral evaluation which requires to use the evaluate() member function of the
object returned by integrate() (ii) elementwise integral evaluation which requires to use of the broken(<space>)

member function to return an element of <space> (typically a space of piecewise constant functions) containing
the resulting integral computations.

typedef FunctionSpace <Mesh <Simplex <3>,

bases <Lagrange <0,Scalar ,Discontinuous > > > P0h_type;

auto P0h = P0h_type ::New( mesh )

// evaluate
∫

Ωh
sinx = ∑K∈Th

∫
K sinx

auto v = integrate( _range=elements(mesh), _expr=sin( Px()) ). evaluate ();

// store for all K ∈Th,
∫

K sinx in p0[ιK] where ιK is the

// index of element K

auto p0 = integrate( _range=elements(mesh), _expr=sin( Px()) ). broken( P0h );

for( auto ιK : mesh.elements () ) {

// print the element wise integrals

std::cout << "p0["<< ιK << "]=" << p[ιK] << "\n";

}

Note that there is a special keyword in the context of bilinear forms and linear operators used conjointly with
integrate, it is on which allows to eliminate Dirichlet “degrees of freedom”.

4.2. Projection

Another important keyword is project which allows to compute the interpolant of an expression with respect
to a nodal function space over a part of the mesh or the whole mesh. The interface is as follows

project( _space=<nodal function space in which the interpolant lives >

_range=<domain range iterators >,

_expr=<expression to be interpolated >, .... )

Here are some examples

typedef FunctionSpace <Mesh <Simplex <d>,
bases <Lagrange <1,Vectorial > > > Xhv_type;

auto Xhv = Xhv_type ::New( mesh );

// build a piecewise P1 vectorial function in Xhv containing the

// coordinates of the vertices the mesh.

auto coord = project( _space=Xhv , _range=elements(mesh), _expr=P() );

// compute the x derivative of the coord function

auto dx_coord = project( _space=Xhv , _range=elements(mesh), _expr=dxv(coord) );

auto dy_coord = project( _space=Xhv , _range=elements(mesh), _expr=dyv(coord) );

4.3. A wrap up example

To finish, we present an example in linear elasticity which is dimension independent and takes only few lines
of code to express.

Listing 3. Solving a linear elasticity problem on a campled beam
FunctionSpace <mesh_type ,bases <Lagrange <1,Vectorial>>> space_type;

auto Xh = space_type ::New(mesh);
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auto u = Xh->element (); v = Xh->element ();

// strain tensor 0.5∗ (∇u+∇uT )
auto F = backend ->newVector( Xh );

auto force=project( _space=Xh, _range=markedface(mesh ,"forceZ"),

_expr=vec(0,0,-1) );

form1( _test=Xh , _vector=F ) = integrate( markedfaces(mesh ,"ForceZ"),

trans(idv(force ))*id(v) );

auto deft = sym(gradt(u));

auto def = sym(grad(u));

auto lambda =..., mu =....; // Lame coefficients

auto D = backend ->newMatrix( Xh, Xh );

form2( _test=Xh , _trial=Xh , _matrix=D ) = integrate( elements(mesh),

lambda*divt(u)*div(v) +

2*mu*trace(trans(deft)*def ))+

on( markedfaces(mesh ,"clamped"), u, F, 0*one ());

// solve

backend ->solve( _matrix=D, _solution=u, _rhs=F );

// apply displacement to the mesh

movemesh( mesh , u );

5. DOMAIN DECOMPOSITION METHODS

We now turn to advanced numerical methods to exercise our framework and show that the embedding language
(C++) goes little in the way of the expressivity and closeness to the mathematical language. We first investigate
domain decomposition methods such as overlapping and nonoverlapping Schwartz methods, mortar and three
fields methods. Domain decomposition methods provide techniques to find the solution of problems defined over
domain from the solution of related problems defined on subdomains. They are also used in coupling discretisation
methods or models and are suited for parallel computing.

Throughout this section we denote Ω a domain of Rd , d = 1,2,3, and ∂Ω its boundary. We look for u the
solution of the problem: {Lu = f in Ω

u = g on ∂Ω
(3)

where L is a partial differential operator, and the functions f and g are given. For the sake of exposition we
refer to the case of a domain Ω partitioned into two subdomains Ω1 and Ω2 such that Ω = Ω1 ∪Ω2. We denote
Γ1 := ∂Ω1∩Ω2 and Γ2 := ∂Ω2∩Ω1, in the case of two overlapping subdomains, and Γ := ∂Ω1∩∂Ω2, in the case
of two nonoverlapping subdomains. The norm of H1(Φ) will be denoted by ‖·‖1,Φ, while ‖·‖0,Φ will indicate the
norm of L2(Φ) for all nonempty subset Φ⊆Ω.

5.1. Overlapping and nonoverlapping Schwartz methods

First we are interested in the overlapping and nonoverlapping Schwartz methods [47]. The overlapping mul-
tiplicative Schwartz algorithm with Dirichlet interface conditions at (k + 1)th iteration, k ≥ 0, is given by (4)
where u0

2 is known on Γ1. The additive version of this algorithm is obtained by changing the interface condition
uk+1

2 = uk+1
1 on the second subdomain Ω2 to uk+1

2 = uk
1 in the second system of (4).

Luk+1
1 = f in Ω1

uk+1
1 = g on ∂Ω1 \Γ1

uk+1
1 = uk

2 on Γ1


Luk+1

2 = f in Ω2

uk+1
2 = g on ∂Ω2 \Γ2

uk+1
2 = uk+1

1 on Γ2

(4)

The nonoverlapping Schwartz algorithm with Dirichlet and Neumann interface conditions at (k+ 1)th iteration,
k ≥ 0, are given by


Luk+1

1 = f in Ω1

uk+1
1 = g on ∂Ω1 \Γ

uk+1
1 = λ

k on Γ


Luk+1

2 = f in Ω2

uk+1
2 = g on ∂Ω2 \Γ

∂uk+1
2

∂n
=

∂uk+1
1

∂n
on Γ

(5)
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Listing 4 Fixed point algorithm using Aitken acceleration for (4) and (5)

enum DDMethod { DD = 0,/*Dirichlet -Dirichlet */

DN = 1 /*Dirichlet -Neumann */ };

auto accel = aitken( _space=Xh2 );

accel.initialize( _residual=residual ,_currentElt=lambda );

double maxIteration = 20;

while( !accel.isFinished () &&

accel.nIterations () < maxIteration)

{

// call the localProblem on the first subdomain Ω1
localProblem(u1 , idv(u2), DDMethod ::DD);

lambda = u2;

// call the localProblem on the first subdomain Ω2
if( ddmethod = DDMethod ::DD )

localProblem(u2 , idv(u1), DDMethod ::DD);

else

localProblem(u2 , gradv(u1)*N(), DDMethod ::DN);

residual = u2-lambda;

u2 = accel.apply( _residual=residual ,_currentElt=u2);

++accel;

}

where λ k+1 := θuk+1
2|Γ +(1−θ)λ k, θ being a positive acceleration parameter which can be computed for example

by an Aitken procedure, see listing 5, and λ 0 is given on Γ. The additive Schwartz method requires generally more
iterations than the multiplicative method and is naturally parallelizable. The generalization of these algorithms to
many subdomains is immediate.

The numerical solutions in Figures 2(b)-2(d) correspond to the partition of Ω into two subdomains Ω1 and Ω2
and the following configuration: (i) g(x,y) = sin(πx)cos(πy) is the exact solution (ii) f (x,y) = 2π2g is the right
hand side of the equation (iii) we use P2 Lagrange approximation (iv) we use the maximal number of iteration
equal to 10. Table 3 summarizes The L2 and H1 errors for both problems studied. Finally we present a 3D
nonoverlapping Schwartz example using the same code in Figure 3.

‖u1−g‖0,Ω1
‖u2−g‖0,Ω2

‖u1−g‖1,Ω1
‖u2−g‖1,Ω2

With overlap 2.52e-8 2.16e-8 4.07e-6 3.89e-6
Without overlap 1.37e-9 2.04e-8 1.32e-6 6.71e-6

Table 3. Numerical results for Schwartz methods

Ω1

Ω2

Ω
1 ∩

Ω
2

(a) Geometry (b) Solution


1 
2�
(c) Geometry (d) Solution

Figure 2. Overlapping and nonoverlapping cases in 2D

5.2. Mortar domain decomposition method

Consider the problem (3) where L :=−∆ and homogeneous Dirichlet boundary conditions. We assume that Ω

is partitioned into two nonoverlapping subdomains and it is a d-dimensional domain (d = 2,3), with a Lipschitz
boundary ∂Ω. We also assume that f belongs to L2(Ω). The main idea of this method is to enforce the weak
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Listing 5 Local problems for (4) and (5)
template <Expr > void localProblem(element_type& u, Expr expr , DDMethod ddmethod)

{

auto Xh=u.functionSpace ();

auto mesh=Xh->mesh ();

auto v=Xh->element ();

auto F = M_backend ->newVector(Xh);

auto A = M_backend ->newMatrix( Xh, Xh );

// Assembly of the right hand side

∫
Ω

f v

form1( _test=Xh ,_vector=F ) = integrate( elements(mesh), f*id(v) );

// Assembly of the left hand side

∫
Ω

∇u ·∇v

form2( _test=Xh , _trial=Xh , _matrix=A ) =

integrate( elements(mesh), gradt(u)* trans(grad(v)) );

// Add Neumann contribution

if ( ddmethod == DDMethod ::DN )

form1( _test=Xh ,_vector=F ) += integrate( markedfaces(mesh ,"Interface"),

_expr=expr*id(v));

else if( ddmethod == DDMethod ::DD )

form2( Xh, Xh, A ) += on( markedfaces(mesh ,"Interface") , u,F,expr);

// Apply the Dirichlet boundary conditions

form2( Xh , Xh , A ) += on( markedfaces(mesh , "Dirichlet"), u,F,g);

// Apply the Dirichlet interface conditions

// solve the linear system Au = F
M_backend ->solve(_matrix=A,_solution=u,_rhs=F );

}

(a) Geometry (b) Solution

Figure 3. An example of nonoverlapping Schwartz method in 3D

continuity between the solutions on each subdomain. This is achieved by introducing a Lagrange multiplier
corresponding to this connection constraint [7]. Problem (3) is equivalent to finding u ∈ H1

0 (Ω) such that

J(u) = min
v∈H1

0 (Ω)
J(v), J(v) =

1
2

∫
Ω

|∇v|2−
∫

Ω

f v. We denote by Ji(v) :=
1
2

∫
Ωi

|∇vi|2−
∫

Ω

f vi i = 1,2.

The problem is now equivalent to find (u1,u2) ∈ H such as

J1(u1)+J2(u2) = min
(v1,v2)∈H

J1(v1)+J2(v2), H =
{
(v1,v2)∈H1(Ω1)×H1(Ω2) : vi = 0 on ∂Ωi \Γ, v1 = v2 on Γ

}
.

We define the Lagrangian by L (v1,v2; µ) := J1(v1)+ J2(v2)+
∫

Γ

µ(v1− v2) and we search for the saddle point

solution (u1,u2,λ ) such that

L (u1,u2; µ)≤L (u1,u2;λ )≤L (v1,v2;λ ), ∀ (v1,v2) ∈V1h×V2h ∀ µ ∈Wh. (6)
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Let us denote by Vih the finite element approximation space on Ωi, of basis (ψi, j) j=1,···Ni , i = 1,2, and by Wh that
of Γ, of basis (φk)k=1,···K .
Then the saddle point (u1,u2,λ ) can be approximated by the solution of the following discrete system


A1U1,h +Bt

1Lh = f1

A2U2,h−Bt
2Lh = f2

B1U1,h−B2U2,h = 0

where



(Ai) jl =
∫

Ωi

∇ψi j ·∇ψil j, l = 1, · · · ,Ni

(Bi)k j =
∫

Γ

ψi jφk k = 1, · · · ,K, j = 1, · · · ,Ni

(fi) j =
∫

Ωi

f ψi j j = 1, · · · ,Ni

(7)

and U1,h,U2,h and Lh collect the degrees of freedom of u1,h,u2,h and λh, approximations to u1,u2 and λ .
In Listing 6 we display the terms corresponding to the jump matrices B1 and B2 in equation (7).

Listing 6 Jump terms in the global matrix
// function spaces and some associated elements(functions) for Ω1 and Ω2
auto Xh1 = space1_type ::New( mesh1 );

auto u1 = Xh1 ->element ();

auto Xh2 = space2_type ::New( mesh2 );

auto u2 = Xh2 ->element ();

// trace mesh and Lagrange multiplier space and associated function for Γ

auto Lh = lagmult_space_type ::New(mesh1 ->trace( markedfaces(mesh1 ,gamma) ));

auto mu = Lh->element ();

// assembly of jump matrices B1 and B2

auto B1 = M_backend ->newMatrix( _trial=Xh1 , _test=Lh );

form2( _trial=Xh1 , _test=Lh , _matrix=B1 ) =

integrate( elements(Lh ->mesh()), idt(u1)*id(mu) );

auto B2 = M_backend ->newMatrix( _trial=Xh2 , _test=Lh );

form2( _trial=Xh2 , _test=Lh , _matrix=B2) =

integrate( elements(Lh ->mesh()), idt(u2)*id(mu) );

Figures 4(b) and 4(d) correspond to the solution of (7) when Ω is partitioned into two nonoverlapping sub-
domains Ω1 and Ω2 and the following configurations are set: (i) g(x,y) = sin(πx)cos(πy) is the exact solution
(ii) f (x,y) = 2π2g is the right hand side of the equation (iii) we use P2 and P3 approximations, respectively, in Ω1
and Ω2 (iv) hΩ1 = 0.015 and hΩ2 = 0.04 in 2D (v) hΩ1 = 0.075 and hΩ2 = 0.05 in 3D.

(a) Exact solution (b) Numerical solution (c) Exact solution (d) Numerical solution

Figure 4. Exact and Numerical solutions in 2D and 3D for mortar method

The numerical solutions 5(b) and 5(d) correspond to the same configuration used previously but we change
the polynomial orders and mesh sizes as (i) P7 and P6 approximations, respectively, in Ω1 and Ω2, hΩ1 = 0.1 and
hΩ2 = 0.15 in 2D (ii) P3 and P4 approximations, respectively, in Ω1 and Ω2, hΩ1 = 0.75 and hΩ2 = 0.5 in 3D.
Table 4 summarizes several error quantities for both problems studied and the global solution uh defined on Ω as
uh = u1,h on Ω1 and uh = u2,h on Ω2.
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(a) Exact solution (b) Numerical solution (c) Exact solution (d) Numerical solution

Figure 5. Exact and Numerical solutions in 2D and 3D for mortar method using higher order
approximations

P-orders ‖u1,h−g‖0,Ω1
‖u2,h−g‖0,Ω2

‖u1,h−g‖1,Ω1
‖u2,h−g‖1,Ω2

‖λh−g‖0,Γ ‖uh−g‖1,Ω
2D case P2−P3 3.39695e-08 1.88289e-08 8.67241e-06 2.2959e-06 6.69075e-09 8.97116e-06

P7−P6 1.13996e-09 7.35774e-10 2.92219e-07 1.15223e-07 2.29634e-11 3.14115e-07
3D case P2−P3 8.74556e-06 8.40938e-06 1.17e-04 9.72e-05 1.52e-05 2.17e-04

P3−P4 9.28974e-07 8.97491e-07 3.55e-05 3.50e-05 1.03e-07 4.99e-05
Table 4. Numerical results for mortar methods in 2D and 3D

5.3. Three fields domain decomposition method

The weak formulation of (3) reads: find u∈H1
0 (Ω) such that

∫
Ω

∇u ·∇v =
∫

Ω
f v, ∀v ∈ H1

0 (Ω). Denoting by ui
the restriction of the solution u to Ωi, i= 1,2, the interface conditions on Γ are ∂u1/∂n= ∂u2/∂n and u1 = u2 on Γ.

The three fields formulation [11] rewrites the original problem by relaxing the continuity requirements on both
u and ∂u/∂n, at the expense of introducing two Lagrange multipliers for each subdomain. The new weak formu-
lation allows independent approximations within the subdomains, including the possibility of using different meth-
ods and different meshes on both subdomains. First for all, let us define Λ :=

{
η ∈ H1/2(Γ) | η = v|Γ for a suitable v ∈ H1(Ω)

}
the trace space and Λ′ its dual. The finite dimensional approximation of (8) can be devised by selecting suitable
subspaces Vi,h of Vi := H1(Ωi), Ξi,h of Λ′ and Λh of Λ. We denote by (ψi, j) j=1,···Ni a basis of Vi,h, (χi,k)k=1,···Ki that
of Λ′ and (φk)k=1,···K that of Λ. In the following formulation, σi is the Lagrange multiplier that is used to ‘glue’
the value of ui and λ on Γ, i = 1,2. As a matter of fact, the following equivalence result holds between the weak
form of the unsplit problem (3) and the problem with Lagrange multipliers. The three fields formulation is given
by: for i = 1,2 find ui ∈Vi := H1(Ωi), σi ∈ Λ′, λ ∈ Λ such that



∫
Ω1

∇u1 ·∇v1−
∫

Γ

σ1v1 =
∫

Ω1

f v1 ∀ v1 ∈ H1(Ω1)∫
Γ

ρ1(λ −u1) = 0 ∀ ρ1 ∈ Λ
′∫

Γ

(σ1 +σ2)µ = 0 ∀ µ ∈ Λ∫
Γ

ρ2(λ −u2) = 0 ∀ ρ2 ∈ Λ
′∫

Ω2

∇u2 ·∇v2−
∫

Γ

σ2v2 =
∫

Ω2

f v2 ∀ v2 ∈ H1(Ω2).

(8)
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Problem (8) can be stated in algebraic form as



A1U1,h−Bt
1S1,h = f1

−B1U1,h +Ct
1Lh = 0

C1S1,h +C2S2,h = 0
−B2U2,h +Ct

2Lh = 0
A2U2,h−Bt

2S2,h = f2

where



(Ai) jl =
∫

Ωi

∇ψi j∇ψil j, l = 1, · · · ,Ni

(Bi)k j =
∫

Γ

ψi jχi,k k = 1, · · · ,Ki, j = 1, · · · ,Ni

(Ci)k j =
∫

Γ

χi, jφk j = 1, · · · ,Ki, k = 1, · · · ,K

(fi) j =
∫

Ωi

f ψi j j = 1, · · · ,Ni

(9)

and Ui,h,Si,h, Lh collect the degrees of freedom of ui,h,σσσ i,h and λh, approximations to ui,σσσ i and λ . In Listing 7 we
display the terms corresponding to the jump matrices B1,C1,B2 and C2 in equation (9).

Listing 7 Jump terms in the global matrix
// function spaces and some associated elements(functions) for Ω1 and Ω2
auto Xh1 = space1_type ::New( mesh1 );

auto u1 = Xh1 ->element ();

auto Xh2 = space2_type ::New( mesh2 );

auto u2 = Xh2 ->element ();

// trace meshes and Lagrange multiplier spaces and associated elements

auto Lh1 = lagmult_space1_type ::New( mesh1 ->trace( markedfaces(mesh1 ,gamma )));

auto mu1 = Lh1 ->element ();

auto Lh2 = lagmult_space2_type ::New( mesh2 ->trace( markedfaces(mesh2 ,gamma )));

auto mu2 = Lh2 ->element ();

auto Lh = interface_space_type ::New( interface_mesh );

auto mu = Lh->element ();

// assembly of jump matrices B1 and B2

auto B1 = M_backend ->newMatrix( _trial=Xh1 , _test=Lh1 );

form2( _trial=Xh1 , _test=Lh1 , _matrix=B1) =

integrate( elements(Lh1 ->mesh()), idt(u1)*id(mu1) );

auto C1 = M_backend ->newMatrix( Lh, Lh1 );

form2( _trial=Lh , _test=Lh1 , _matrix=C1) +=

integrate( elements(Lh ->mesh()), idt(mu)*id(mu1) );

auto B2 = M_backend ->newMatrix( _trial=Xh2 , _test=Lh2 );

form2( _trial=Xh2 , _test=Lh2 , _matrix=B2) =

integrate( elements(Lh2 ->mesh()), idt(u2)*id(mu2) );

auto C2 = M_backend ->newMatrix( Lh, Lh2 );

form2( _trial=Lh , _test=Lh2 , _matrix=C2) +=

integrate( elements(Lh ->mesh()), idt(mu)*id(mu2) );

The following numerical solutions 6(b) and 6(d) correspond to partition of Ω into two nonoverlapping subdo-
mains Ω1 and Ω2 and the following configurations (i) g(x,y) = sin(πx)cos(πy) is the exact solution (ii) f (x,y) =
2π2g is the right hand side of the equation (iii) P2, P1 and P3 approximations respectively in Ω1, Ω2 and Γ (iv) we
set hΩ1 = 0.03, hΩ2 = 0.02 and hΓ = 0.01 in 2D (v) we set hΩ1 = 0.05, hΩ2 = 0.07 and hΓ = 0.02 in 3D. Table 5
summarizes several error quantities for both problems studied and the global solution uh defined on Ω as uh = u1,h
on Ω1 and uh = u2,h on Ω2.

P-orders ‖u1,h−g‖0,Ω1
‖u2,h−g‖0,Ω2

‖u1,h−g‖1,Ω1
‖u2,h−g‖1,Ω2

‖λh−g‖0,Γ ‖uh−g‖1,Ω
2D case P2−P1−P3 6.22203e-11 6.24881e-11 1.15144e-08 1.61313e-08 4.87515e-12 1.98192e-08
3D case P2−P1−P3 2.65027e-07 2.24883e-07 2.21354e-05 1.39782e-05 2.45257e-08 2.61795e-05

Table 5. Numerical results in 2D and 3D using the three fields method
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(a) Exact solution (b) Numerical solution (c) Exact solution (d) Numerical solution

Figure 6. Exact and Numerical solutions in 2D and 3D using the three fields method

5.4. Tools in Feel++: trace of trace and lift of lift

Trace of trace and lift of lift operations are needed in the construction of a substructuring preconditioner e.g.
for the mortar method [10] which we are currently developing in 2D and 3D. Let Ω be a domain of R3, Σ ⊂ ∂Ω

an open and nonempty subset and Γ := ∂Σ. We also recall that the trace space of V := H1(Ω) on Σ is denoted by
H1/2(Σ) and the trace space of W := H1/2(Σ) on Γ is indicated by Λ := H1/2

Σ
(Γ) that is the trace space of trace

space of V on Γ. It is necessary in this part to be able to manipulate the objects of real dimension equal to d and
topological dimension ranging from 1 to d back and forth. Let u ∈ V , first we compute v = u|Σ ∈W the trace of
u and then w = v|Γ ∈ Λ the trace of v that is also the trace of trace of u. Reciprocally let w ∈ Λ. The extension of

w by its mean c :=
1
|Γ|
∫

Γ

w in W is given by v ∈W such that v = w on Γ and v = c in Σ. Now we compute the

harmonic extension of v in V that is given by u ∈V such that −∆u = 0 in Ω and u = v on Σ.

Listing 8 trace of trace and lift and lift implementation
auto Xh = space_type ::New( mesh );

// trace function space associated to trace(mesh)

auto TXh = trace_space_type ::New( mesh ->trace(markedfaces(mesh ,marker )) );

// trace function space associated to trace(trace(mesh))

auto TTXh = trace_trace_space_type ::New( TXh ->mesh()->trace(boundaryfaces(TXh ->mesh ())));

// Let g be an function given on 3D mesh

auto g = sin(pi*(2*Px()+Py ()+1./4))* cos(pi*(Py() -1./4));

/* trace and trace of trace of g */

// trace of g on the 2D trace_mesh

auto trace_g = vf:: project( TXh , elements(TXh ->mesh()), g );

// trace of g on the 1D trace_trace_mesh

auto trace_trace_g = vf:: project( TTXh , elements(TTXh ->mesh()), g );

/* lift and lift of lift of trace_trace_g */

// extension of trace_trace_g by zero on 2D trace_mesh

auto zero_extension = vf:: project( TXh ,boundaryfaces(TXh ->mesh()),idv(trace_trace_g) );

// extension of trace_trace_g by the mean of trace_trace_g on trace_mesh

auto const_extension = vf:: project( TXh , boundaryfaces(TTXh ->mesh()),

idv(trace_trace_g)-mean );

const_extension += vf:: project( TXh , elements(TXh ->mesh()), cst(mean) );

// harmonic extension of const_extension on 3D mesh

auto op_lift = operatorLift(Xh);

auto glift = op_lift ->lift(_range=markedfaces(mesh ,marker),_expr=idv(const_extension ));

6. SOME FICTITIOUS DOMAIN-LIKE METHODS

Fictitious domain methods (FDM) are a class of numerical methods widely used in the literature. The basic idea
behind this class of methods is to use a computational domain which is generally larger than the real one and has a
simple shape (hypercubes for example). This gives, in particular, the possibility to handle computations in complex
geometries using a regular mesh thus making it possible to use fast solvers and/or efficient preconditioners. In
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(a) volume and the function g (b) trace mesh and trace of g (c) wirebasket and trace trace of g (d) warp with respect the function

Figure 7. volume and wirebasket and the function g

recent years we have seen the emergence of many varieties of this class of methods based on this principle.
See [21, 23] which are some of the first papers introducing and analyzing the Fictitious Domain Methods.

The efficiency of FDM has been proved in several papers and we can find in the literature many different
simulations based on it. However, the main drawback of FDM is the loss of optimal convergence order when it
is used with the finite element method. Indeed, if we replace the real domain by a simpler one containing it, the
corresponding mesh does not match the real boundaries. Consequently, it leads naturally to the loss of optimal
convergence order, see e.g. [21, 22, 48, 50].

We choose to present in this work two types of FDM-like methods : (i) the penalty method which is probably the
oldest and the simplest one (from the point of view of implementation) in this category (see [22, 40] for example)
and (ii) the Fat Boundary Method (FBM) which is more technical but has the great advantage to conserve the
optimal order in the sense of classical finite element, and this, by adding an auxiliary local problem around the
real boundaries [8, 9, 30, 39].

6.1. The Fat Boundary method

The Fat Boundary Method was introduced in [39] to solve elliptic problems in perforated domains and extended
to complex fluid simulations in [9,30]. As far as we know, it is known to be the only fictitious domain-like method
that conserves the optimal order (see [8, 9]).

To fix ideas let us introduce this method in a simple case. Assume that we want to solve the Poisson equation
with homogeneous Dirichlet boundary conditions in a perforated domain. To do this, we introduce a Lipschitz
bounded domain ΩGlob ⊂ Rd containing a collection of Nb smooth sub-domains B = ∪Nb

i=1Bi. The boundaries of
ΩGlob and B are respectively denoted by Γ and γ = ∪Nb

i=1∂Bi. The domain of interest is then the perforated one
given by ΩPer f = Ω\ B̄ and its boundary is ∂ΩPer f = Γ∪ γ . A typical example of this domain is given by figure 8.

B1

B2

B3

B4
B5

B6

Ω

Γ

|ω1|

Ωω1B1

γ1 γ1′

Figure 8. An example of a perforated domain.

Assume that we would like to solve the following problem : Given f ∈ L2(ΩPer f ), Find u ∈ H1
0 (ΩPer f ) such

that
−∆u = f in ΩPer f . (10)
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Obviously the associated variational formulation reads : find u ∈ H1
0 (ΩPer f ) such that∫

ΩPer f

∇u ·∇v =
∫

ΩPer f

f v, ∀v ∈ H1
0 (ΩPer f ). (11)

Solving this problem by FBM consists in splitting it into two new ones : (i) a local one in a neighborhood of
B, where we can use a fine mesh (in a thin layer around the holes), and a global one covering the whole domain
ΩGlob. The link between the global and the local problems is based on the interpolation of a globally defined field
on an artificial boundary which delimits the local sub-domains, and the prescription of the jump of the normal
derivative across the boundary of B. More precisely, we introduce a smooth artificial boundary γ ′ around B, and
we denote by ω the (narrow) domain delimited by γ and γ ′ (∂ω = γ ∪ γ ′). A typical example of these different
domains is given by figure 8.

In the case of the Poisson equation, we prove (see [39]) that problem (10) is equivalent to the following couple
of problems : find (uglob,uloc) ∈ H1

0 (ΩGlob)×H1
γ (ω), such that

(L) :
{
−∆uloc = f in ω,

uloc = uglob on γ ′,

(G) : −∆uglob = f +
∂uloc

∂n
δγ in ΩGlob,

(12)

where f is the extension of f by 0 in B and H1
γ (ω) is the set of functions in H1(ω) with vanishing traces on γ .

The main advantage of the global problem (G) is to be set in a domain with a simple shape that makes it
possible the use of fast solver. Concerning the local problem (L), its role is mainly to correct the solution in the
neighborhood of the connected components of B and thus keep the optimal order. As the local domains are thin,
the cost of the local computations should be negligible compared to the global one. Moreover, the structure of the
local problems makes it easy to solve them in parallel.

As the problems (L) and (G) are coupled, one can solve them using a fix point strategy. We use the one given
by the following three steps where Uh and Lh stand for the corresponding discrete finite element spaces and θ is a
relaxation parameter in [0,1[.

In the following we present a sketch of the fix point algorithm and the corresponding FEEL++ codes. This
shows the flexibility of the library and in particular its ability to handle nonstandard numerical methods even if it
contains some unusual terms like the integral involving two different meshes ( like the red term in equation 15).
This is done in a transparent way for the user.

Loop (indexed by i).
Step 1 : Relaxation.

Ki = θKi−1 +(1−θ)ui−1
glob |γ ′ (13)

auto gamma0 = vf : : p r o j e c t ( s p a c e =Xh loc ,
r a n g e = m a r k e d f a c e s ( ΩLoc ,γ ′ ) ,
e x p r = i d v ( uloc ) ) ;

gamma . add ( t h e t a , gamma0 ) ;
auto Ih = o p I n t e r p o l a t i o n ( domainSpace =Uh , imageSpace =Lh ,

r a n g e = m a r k e d f a c e s ( ΩLoc ,γ ′ ) ;
Ih−>a p p l y ( uglob , gamma0 ) ;
gamma . add ( 1− t h e t a , gamma0 ) ;

Step 2 : Local problem.

Find ui
loc ∈ Lh such that ∀vloc ∈ Lh :

∫
ΩLoc

∇ui
loc ·∇vloc =

∫
ΩLoc

f vloc

ui
loc = Ki on γ ′

ui
loc = 0 on γ

(14)

form2 ( t e s t =Lh , t r i a l =Lh , m a t r i x =MLoc )
= i n t e g r a t e ( r a n g e = e l e m e n t s ( ΩLoc ) ,

e x p r = g r a d t ( uloc )∗ t r a n s ( g r ad ( vloc ) ) ) ;
form1 ( t e s t =Lh , v e c t o r =FLoc )

= i n t e g r a t e ( r a n g e = e l e m e n t s ( ΩLoc ) ,
e x p r = f∗ i d ( vloc ) ) ;

form2 ( t e s t =Lh , t r i a l =Lh , m a t r i x =MLoc)
+= on ( r a n g e = m a r k e d f a c e s ( ΩLoc ,γ ′ ) ,

e l e m e n t =uloc , r h s =FLoc ,
e x p r = i d v (K ) ) ;

+= on ( r a n g e = m a r k e d f a c e s ( ΩLoc ,γ ) ,
e l e m e n t =uloc , r h s =FLoc ,
e x p r = c s t ( 0 . ) ) ;

Step 3: Global problem.

Find ui
glob ∈Uh such that ∀v ∈Uh :

∫
ΩGlob

∇ui
glob ·∇v =

∫
γ

∂ui
loc

∂n
v+

∫
ΩGlob

f̄ v

ui
glob = 0 on ∂ΩGlob

(15)
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form2 ( t e s t =Uh , t r i a l =Uh , m a t r i x =MGlob )
= i n t e g r a t e ( r a n g e = e l e m e n t s ( ΩGlob ) ,

e x p r = g r a d t ( uglob )∗ t r a n s ( g r ad ( vglob ) ) ) ;
form1 ( t e s t =Uh , v e c t o r =FGlob )

= i n t e g r a t e ( r a n g e = e l e m e n t s ( ΩGlob ) ,
e x p r = f∗ i d ( vglob ) ) ;

form1 ( t e s t =Uh , v e c t o r =FGlob )

+= i n t e g r a t e ( r a n g e = m a r k e d f a c e s ( ΩLoc , γ ) ,
e x p r =( g radv ( uloc )∗N( ) )∗ i d ( vglob ) ) ;

form2 ( t e s t =Uh , t r i a l =Uh , m a t r i x =MGlob )
+= on ( r a n g e = b o u n d a r y f a c e s ( ΩGlob ) ,

e l e m e n t =uglob , r h s =FGlob ,
e x p r = c s t ( 0 . ) ) ;

In figure 9 we show an example of a global and local meshes used to solve the above scheme (13)-(14)-(15)
with f = 1 in ΩPer f . Recall that the two type of meshes (global and local ones) are generated independently and of
course there is no constraint that they match. Figure 10 presents the iso-values of uglob in the case of 2D simulation
with Nb = 20 while figure 11 shows the iso-values of the 3D solutions uglob in the case of one hole. Note that the
values of uglob inside the holes are not relevant (only the restriction of uglob to ΩPer f are of interest).

Figure
9. Global and
Local Meshes in

2D.

Figure 10. 2D-
Problem with 20

holes.

Figure 11. 3D-
Problem with 1

hole.

6.2. Penalty method to simulate particle flow in capillaries

All the methods presented in this paper showed a complexity in implementation and thus are still under active
research and mostly used in the mathematical field. We now turn to a somewhat simpler numerical method albeit
used conjointly with physical experiments to understand particle flows in capillaries. Studies of flows in micro
channels have been multiplied since several years because of the goal to create cheap and efficient lab-on-chips.
An application that would like to achieve many groups with a good quality is the sorting of particles on lab-on-
chips. For example sorting healthy / sick red blood cells. One of the building blocs of such microfluidic system
is the splitting of a channel into two daughters channels. All the mechanisms involving the spreading of particles
in such a system are not completely understood. It has been seen for example that, when a suspension of particles
pass through a bifurcation having different flow rates at outlet, the branch having the higher flow rate see its volume
fraction (concentration of particles) increase. This phenomenon is known as the Zweifach - Fung effect [52].

In [18], the authors used FreeFem++ to run a 2D simulation of a microfluidic bifurcation in which a rigid and
circular particle is put in the inlet channel and goes to one of the outlet channels. The choice of the particle to go to
the higher or the lower flow rate channel depends on many parameters which have been studied in the paper such
as the flow rate ratio between the two branches, the size of the particle, the size of the outlet channels or even the
angle between the inlet and the outlet channels. The simulations were compared with experiments and showed a
good agreement. These simulations and experiments shown an attracting hydrodynamical force toward the lower
flow rate channel which was unknown until there. Moreover the increase in concentration in the highest flow rate
branch has been explained by a geometrical effect of the distribution of particles in the inlet channel which was a
good step forward in the understanding of the Zweifach - Fung effect.

We propose to implement the method used in [18] and have both 2D and 3D setups which is readily the case
using FEEL++. Moreover, Feel++ allows us to run the same simulation in 3D without re-coding.

The size of the channel is very small (typically 60 µm), so that we can assume that we are in a low Reynolds
number regime (Re = 10−1 in [18]). The particles are rigid and spherical (circular in 2D) and for the sake of
simplicity, we consider only one particle in the bifurcation. The extension to many particles can be done with no
special care since the particles do not touch. This assumption is valid since we are interested in dilute suspension
and in this case the hydrodynamic force is generally sufficient to prevent contacts.

Let’s call Ω f the fluid domain, B the particle domain and Ω = Ω f ∪B the whole domain. As explained above,
the fluid is assumed to be governed by Stokes equations

−2ν∇ ·D(u)+∇p = 0 in Ω f , (16)
∇ ·u = 0 in Ω f , (17)

u = f on ∂Ω f \∂B, (18)
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where : u is the velocity of the fluid, D(u) =
∇u+∇uT

2
the deformation tensor, p is the pressure of the fluid

and f is a given function related to the boundary conditions on ∂Ω (those on ∂B will be treated later by penalty).
Moreover, we impose that the mean of the pressure is zero by adding a Lagrange multiplier λ . This approach
allows us to use direct solvers such as UMFPack, MUMPS or PASTIX otherwise only iterative solvers would
have been accessible. Thus, the variational formulation reads :

Find (u, p,λ ) ∈ H1(Ω f )
2 × L2

0(Ω f ) × R such that
∀(v,q,µ) ∈ H1(Ω f )

2×L2
0(Ω f )×R :

2ν

∫
Ω f

D(u) : D(v)−
∫

Ω f

p∇ ·v

+
∫

Ω f

λq = 0, (19)∫
Ω f

q∇ ·u = 0, (20)∫
Ω f

µ p = 0, (21)

u = f on ∂Ω.

and the corresponding FEEL++ code is given by the
listing 9.

The particle is taken into account following [31] in
which, one imposes a rigid-body constraint by a penalty
method. From the physics point of view, this method
consists to consider the particle as a part of the fluid
with a “huge viscosity” and constrained to have a rigid-
body motion. Thus, instead of integrating in the fluid
domain Ω f , we rewrite our variational formulation in
the whole domain Ω while taking into account the fol-
lowing constraint

D(u)= 0, in B. (22)

Listing 9. Stokes equations
// define polynomial orders for fluid and pressure

c o n s t i n t VELOCITY ORDER = 2 ;
c o n s t i n t PRESSURE ORDER = 1 ;

//define basis

t y p e d e f Lagrange<VELOCITY ORDER , V e c t o r i a l> b a s i s v e l o c t y p e ;
t y p e d e f Lagrange<PRESSURE ORDER , S c a l a r> b a s i s p r e s s u r e t y p e ;
t y p e d e f Lagrange <0, S c a l a r> b a s i s l a g t y p e ;
t y p e d e f bases<b a s i s v e l o c t y p e , b a s i s p r e s s u r e t y p e ,

b a s i s l a g t y p e> b a s i s t y p e ;
// space type for (u, p,λ )
t y p e d e f Func t ionSpace<mesh type , b a s i s t y p e> s p a c e t y p e ;

t y p e d e f typename s p a c e t y p e : : e l e m e n t t y p e e l e m e n t t y p e ;
e l e m e n t t y p e U;

// velocity and its test function

auto u = U. t emplate e lement <0>();
auto v = V. t emplate e lement <0>();

// pressure and its test function

auto p= U. t empla te e lement <1>();
auto q= V. t empla te e lement <1>();

// Lagrange multiplier and its test function

auto lambda= U. t empla te e lement <2>();
auto mu= U. t emplate e lement <2>();

// define D(u)
auto d e f t = sym ( g r a d t ( u ) ) ;
// define D(v)
auto d e f = sym ( g rad ( v ) ) ;

form2 ( Xh , Xh , D)= i n t e g r a t e ( e l e m e n t s ( mesh ) ,
2 ∗ nu ∗ t r a c e ( d e f t ∗ t r a n s ( d e f ) ) ) ;

form2 ( Xh , Xh , D)+= i n t e g r a t e ( e l e m e n t s ( mesh ) ,
− d i v ( v ) ∗ i d t ( p ) + i d ( q ) ∗ d i v t ( u ) ) ;

// add Lagrange multiplier to impose vanishing mean pressure

form2 ( Xh , Xh , D)+= i n t e g r a t e ( e l e m e n t s ( mesh ) ,
i d t ( lambda ) ∗ i d ( q ) + i d (mu) ∗ i d t ( p ) ) ;

// boundary conditions

// on walls u= 0
form2 ( Xh , Xh , D)+= on ( m a r k e d f a c e s ( mesh , ” Wal l s ” ) ,

u , F , c s t ( 0 . ) ∗ N( ) ) ;
// parabolic profile on inlet

auto i n f l o w = ( Py ( ) +H/ 2 )∗ ( Py()−H / 2 ) ;
form2 ( Xh , Xh , D)+= on ( m a r k e d f a c e s ( mesh , ” I n f l o w ” ) ,

u , F , i n f l o w ∗ N ( ) ) ;
// parabolic profile on outlet with Rq the flow rate ration

auto o u t f l o w t o p = Rq ∗ ( Px ( ) + L / 2 )∗ ( Px ()− (L / 2 ) ) ;
form2 ( Xh , Xh , D)+= on ( m a r k e d f a c e s ( mesh , ” O u t f l o w t o p ” ) ,

u , F , − o u t f l o w t o p ∗ N( ) ) ;

This rigid-body constraint (22) is added to equation (19) using a small enough penalty coefficient ε . Finally
the new variational formulation reads

Find (u, p,λ ) ∈ H1(Ω)2 × L2
0(Ω) × R such that

∀(v,q,µ) ∈ H1(Ω)2×L2
0(Ω)×R :

2ν

∫
Ω

D(u) : D(v)−
∫

Ω

p∇ ·v

+
∫

Ω

λq+
2
ε

∫
B

χ(D(u) : D(v)) = 0, (23)∫
Ω

q∇ ·u = 0, (24)∫
Ω

µ p = 0, (25)

u = f on ∂Ω.

Listing 10. Add penalty term
// caracteristic function χ

// a circle of radius R and center X = (xp,yp,zp)

auto c a r a c = vf : : p r o j e c t ( Yh , e l e m e n t s ( mesh ) ,
c h i ( R ∗ R >

( Px()−xp )∗ ( Px()−xp ) +
( Py()−yp )∗ ( Py()−yp ) +
( Pz ()− zp )∗ ( Pz ()− zp ) ) ;

// calculate the integral of χ on each element

auto p0 = i n t e g r a t e ( r a n g e = e l e m e n t s ( mesh ) ,
e x p r = i d v ( c a r a c ) ) . b roken ( P0h ) ;

// for all the elements

f o r ( auto i t =p0 . b e g i n ( ) , en=p0 . end ( ) ; i t != en ; ++ i t )
// if χ pass through the element, mark the element as 1

{ i f ( abs (∗ i t ) > 1e−10 ) ∗ i t = 1 ; e l s e ∗ i t = 0 ; }

// store the marker

mesh−>upda teMarke r3 ( p0 ) ;
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C=backend−>newMatr ix ( Xh , Xh ) ;
// add penalty contribution only on the marked elements

form2 ( Xh , Xh , C)=
i n t e g r a t e ( marked3e lemen t s ( mesh , 1 ) ,

2∗ i d v ( c a r a c )∗nu∗ t r a c e ( d e f∗ t r a n s ( d e f t ) ) / e p s i l o n ) ;

// add the penalty contribution to the whole problem

C−>addMat r ix ( D ) ;

Note that the integral over B is performed by integrating over Ω while multiplying by the characteristic function
χ (see listing 10). In practice, only the penalty term changes during time and has to be reassembled (e.g. the last
term in equation (23)). Thus, only the penalty term is added to the whole problem at each iteration. Moreover, this
term does vanishes on most elements of the mesh and instead of integrating the penalty term over all the elements
and multiplying by χ , we only integrate on those crossed by χ using a special feature broken() of integrate()
to localize these elements, see section 4.1.

Finally, we introduce the time step ∆t and we denote by (un, pn,λn) the solution of the system (23)-(24)-(25)
at time tn = n∆t. The velocity of the particle denoted by Vn is then calculated by the relation (26) and its position
Xn by the relation (27).

Vn =
1∫

Ω
χ

∫
Ω

χ un, (26)

Xn+1 = Xn +∆tVn, (27)

Figure 12 shows a 2D simulation of a particle entering in the low flow rate branch while figures 13 and 14
display the results of the 3D simulation.

(a) t = 0.01 (b) t = 1.20 (c) t = 2.60

Figure 12. 2D simulation of a particle entering in the low flow rate channel.

7. CONCLUSIONS

In this paper, we presented a versatile framework that allows to solve numerically a wide range of problems
arising from PDE with an expressivity close to the mathematics. There remain however many challenges to
overcome for example (i) the seamless parallelisation of FEEL++— using both global computing resources thanks
to MPI and local (compute node) available computing ressources thanks either to Intel TBB or CUDA/OpenCL,
(ii) automatic differentiation of variational forms, (iii) integration of multiscale methods, (iv) a full framework for
domain decomposition including a preconditioner framework and some preconditioners implementation, (v) the
implementation of finite volume variational methods, see [16], (vi) or integration model order reduction (e.g.
certified reduced basis) into our framework. These are just a few of the challenges we are facing and for some
of them we have made already good inroads. So far the framework has very nicely scaled with complexity — in
terms of physical models, numerical methods or discretisation, solver and computer science — and retained very
good properties of maintainability, code size and reproductibility.
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Figure 13. 3D simulation of the bifurcation problem. The velocity vectors are plotted and
colored by the velocity magnitude.

(a) t = 0.01 (b) t = 1.20 (c) t = 2.60

Figure 14. 3D simulation of a particle entering in the high flow rate channel. Streamlines are
represented and colored by the velocity magnitude.

à Investigação. Finally the authors wish to thank the Cemracs 2011 and its organizers which allowed us to develop within
FEEL++ the numerical methods exposed in this paper.

A. FEEL++ LANGUAGE REFERENCE

Keyword Math object Description Rank M×N
P()

−→
P current point coordinates (Px,Py,Pz)

T 1 d×1
Px() Px x coordinate of

−→
P 0 1×1

Py() Py y coordinate of
−→
P 0 1×1

(value is 0 in 1D)
Pz() Pz z coordinate of

−→
P 0 1×1

(value is 0 in 1D and 2D)

N()
−→
N normal at current point (Nx,Ny,Nz)

T 1 d×1
Nx() Nx x coordinate of

−→
N at current point 0 1×1
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Keyword Math object Description Rank M×N
Ny() Ny y coordinate of

−→
N at current point 0 1×1

(value is 0 in 1D)
Nz() Nz z coordinate of

−→
N at current point 0 1×1

(value is 0 in 1D and 2D)

J() ∇φ
geo
K geometric mapping gradient associated with current K 2 d×n

invJT() (∇φ
geo
K )−T geometric mapping inverse gradient transposed 2 d×n

detJ() det∇φ
geo
K geometric mapping inverse gradient transposed 0 1×1

eid() e index of Ωe 0 1×1
emarker() m(e) marker of Ωe 0 1×1

h() he size of Ωe 0 1×1
hFace() he

Γ
size of face Γ of Ωe 0 1×1

mat<M,N>(m_11,

m11 m12 ...
m21 m22 ...

...

 M×N matrix 2 M×N

m_12,...) entries being expressions
vec<M>(v_1, (v1,v2, ...)

T column vector with M rows 1 M×1
v_2,...) entries being expressions

trace(expr) tr( f (−→x )) trace of f (−→x ) 0 1×1
sym(A) 1

2 (A+AT ) symmetric part of A 0 1×1
antisym(A) 1

2 (A−AT ) anti symmetric part of A 0 1×1

abs(expr) | f (−→x )| element wise absolute value of f rank( f (−→x )) m× p
cos(expr) cos( f (−→x )) element wise cosinus value of f rank( f (−→x )) m× p
sin(expr) sin( f (−→x )) element wise sinus value of f rank( f (−→x )) m× p
tan(expr) tan( f (−→x )) element wise tangent value of f rank( f (−→x )) m× p

id(f) f test function rank( f (−→x )) m× p
idt(f) f trial function rank( f (−→x )) m× p
idv(f) f evaluation function rank( f (−→x )) m× p

grad(f) ∇ f gradient of test function rank( f (−→x ))+1 p = 1, m×n5

gradt(f) ∇ f gradient of trial function rank( f (−→x ))+1 p = 1, m×n
gradv(f) ∇ f evaluation function gradient rank( f (−→x ))+1 p = 1, m×n

div(f) ∇ ·−→f divergence of test function rank( f (−→x ))−1 1×16

divt(f) ∇ ·−→f divergence of trial function rank( f (−→x ))−1 1×1
divv(f) ∇ ·−→f evaluation of function divergence rank( f (−→x ))−1 1×1
curl(f) ∇×−→f curl of test function 1 n = m,n×1
curlt(f) ∇×−→f curl of trial function 1 m = n,n×1
curlv(f) ∇×−→f evaluation of function curl 1 m = n,n×1
hess(f) ∇2 f hessian of test function 2 m = p = 1,n×n

jump(f) [ f ] = f0
−→
N0 + f1

−→
N1 jump of test function 1 m = 1,n×1

jump(f) [
−→
f ] =

−→
f0 ·
−→
N0 +

−→
f1 ·
−→
N1 jump of test function 0 m = 2,1×1

jumpt(f) [ f ] = f0
−→
N0 + f1

−→
N1 jump of trial function 1 m = 1,n×1

jumpt(f) [
−→
f ] =

−→
f0 ·
−→
N0 +

−→
f1 ·
−→
N1 jump of trial function 0 m = 2,1×1

jumpv(f) [ f ] = f0
−→
N0 + f1

−→
N1 jump of function evaluation 1 m = 1,n×1

jumpv(f) [
−→
f ] =

−→
f0 ·
−→
N0 +

−→
f1 ·
−→
N1 jump of function evaluation 0 m = 2,1×1

average(f) f = 1
2 ( f0 + f1) average of test function rank( f (−→x )) m = n,n×n

averaget(f) f = 1
2 ( f0 + f1) average of trial function rank( f (−→x )) m = n,n×n

averagev(f) f = 1
2 ( f0 + f1) average of function evaluation rank( f (−→x )) m = n,n×n

5Gradient of matrix value functions is not implemented, hence p = 1
6Divergence of matrix value functions is not implemented, hence p = 1
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Keyword Math object Description Rank M×N
leftface(f) f0 left test function rank( f (−→x )) m = n,n×n
leftfacet(f) f0 left trial function rank( f (−→x )) m = n,n×n
leftfacev(f) f0 left function evaluation rank( f (−→x )) m = n,n×n
rightface(f) f1 right test function rank( f (−→x )) m = n,n×n
rightfacet(f) f1 right trial function rank( f (−→x )) m = n,n×n
rightfacev(f) f1 right function evaluation rank( f (−→x )) m = n,n×n

maxface(f) max( f0, f1) maximum of right and left rank( f (−→x )) m× p
test function

maxfacet(f) max( f0, f1) maximum of right and left rank( f (−→x )) m× p
trial function

maxfacev(f) max( f0, f1) maximum of right and left rank( f (−→x )) m× p
function evaluation

minface(f) min( f0, f1) minimum of right and left rank( f (−→x )) m× p
test function

minfacet(f) min( f0, f1) minimum of right and left rank( f (−→x )) m× p
trial function

minfacev(f) min( f0, f1) minimum of right and left rank( f (−→x )) m× p
function evaluation

- −g element wise unary minus
- !g element wise logical not

+ f +g tensor sum
- f −g tensor substraction
* f ∗g tensor product
/ f/g tensor division (g scalar field)

< f < g element wise less
<= f ≤ g element wise less or equal
> f > g element wise greater
>= f ≥ g element wise greater or equal
== f = g element wise equal
!= f 6= g element wise not equal
&& f and g element wise logical and
|| f or g element wise logical or
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[31] João Janela, Aline Lefebvre, and Bertrand Maury. A penalty method for the simulation of fluid - rigid body interaction. ESAIM: Proc.,
14:115–123, 2005.

[32] George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element methods for CFD. Numerical Mathematics and Scientific Compu-
tation. Oxford University Press, New York, 2005.

[33] Robert C. Kirby. Algorithm 839: Fiat, a new paradigm for computing finite element basis functions. ACM Trans. Math. Softw., 30(4):502–
516, 2004.

[34] Robert C. Kirby. Optimizing fiat with level 3 blas. ACM Trans. Math. Softw., 32(2):223–235, 2006.
[35] Robert C. Kirby. Singularity-free evaluation of collapsed-coordinate orthogonal polynomials. ACM Trans. Math. Softw., 37(1):1–16,

2010.
[36] Robert C. Kirby and Anders Logg. A compiler for variational forms. ACM Trans. Math. Softw., 32(3):417–444, 2006.
[37] Robert C. Kirby and Anders Logg. Efficient compilation of a class of variational forms. ACM Trans. Math. Softw., 33(3):17, 2007.
[38] Kevin Long. Sundance: Rapid development of high-performance parallel finite-element solutions of partial differential equations.

http://software.sandia.gov/sundance/.
[39] B. Maury. A fat boundary method for the poisson problem in a domain with holes. Journal of scientific computing, 16(3):319–339, 2001.
[40] B. Maury. Numerical analysis of a finite element/volume penalty method. Partial Differential Equations, pages 167–185, 2008.
[41] G. Pena. Spectral Element Approximation of the incompressible Navier-Stokes equations evolving in a moving domain and applications.
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