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Queen’s University of Belfast, Belfast, UK; bCentre for Informatics and Systems of the University of 
Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

ABSTRACT
The lifecycle of COVID-19 pandemic curves requires timely 
decisions to protect public health while minimizing the impact 
to global economy. New models are necessary to predict the 
effect of mobility suppression/reactivation decisions at 
a global scale. This research presents an approach to under-
stand such tensions by modeling air travel restrictions during 
the new coronavirus outbreak. The paper begins with an 
updated review on the impact of air mobility in infectious 
disease progression, followed by the adoption of complex 
networks based on semi-supervised statistical learning. The 
model can be used to (1) determine the early identification of 
infectious disease spread via air travel and (2) align the need to 
keep the economy working with open connections and the 
different dynamic of national pandemic curves. The approach 
takes advantage of open data and machine self-supervised 
statistical learning to develop knowledge networks visualiza-
tion. Test cases using Hong Kong and Wuhan aerial mobility 
are discussed in the decisions to (1) restrict and (2) increase 
mobility. The approach may also be of governments use in 
their international cooperation policy and commercial compa-
nies that need to choose how to prioritize the re-opening of 
international trade routes.

Introduction

The new coronavirus SARS-COV-2 and its associated disease (COVID-19) 
have increasingly become one of the most important research topics in 
intelligent systems. The pandemic officially declared on 30th January 2020 is 
not comparable to any other event in the previous decades, mobilizing acad-
emy and industry in search of new solutions.

The growing body of knowledge started in medicine and public 
health, for example, by identifying the association of mortality and 
national healthcare systems (Ji et al. 2020), the preparation of countries 
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to deal with the phenomena (Gilbert et al. 2020), or the significant under 
detection that affected existing models and statistics worldwide (Rene 
Niehus, De Salazar, and Taylor 2020). Another line of research aimed to 
identify the origins of the pandemic propagation in each location. For 
example, associating the two initial cases in Italy with Chinese tourists 
(Giovanetti et al. 2020) and proving the impact of air travels on viral 
propagation.

It is now clear that understanding and dealing with COVID-19 pandemic 
goes beyond the clinical practice and healthcare resources, in fact, the 
“impact of pandemics is beyond imagination and not limited to the loss of 
human lives but can threaten the economic stability and existence of affected 
countries” (Bobdey and Ray 2020). It is now crucial to create decision 
support models to prevent or control the evolution of virus propagation 
and, simultaneously, provide evidence on the significant interdependence 
between economic mobility and pandemic control. New models are needed 
to deal with hypermobility and its notable effect on disease spread and 
management during a pandemic (Musselwhite, Avineri, and Susilo 2020). 
Artificial intelligence (AI) is a very powerful tool to include in the toolbox 
and the examples are vast, including predicting the location of future out-
breaks, generating new molecules, “understanding of transmissibility and risk 
populations; establishing the natural history of infection, including incubation 
period and mortality rate; identifying and characterizing the causative organ-
ism; and, in some instances, epidemiological modeling to suggest effective 
prevention and control measures” (McCall 2020).

How can open data related to air mobility be used to semantically evaluate 
virus propagation and assist with economic decisions? This is the fundamental 
question upon which this paper has written – one that leads us to reevaluate 
existing literature on the topic and propose a complex network assessment on 
air mobility using open-access data. User-friendliness to non-experts and the 
capacity to provide quick results with few amounts of data are essential 
ingredients for success.

The remaining structure of this paper is presented as follows: The subse-
quent section presents background literature related to the link between air 
travel and virus spread. The review includes AI models already proposed to 
deal with the phenomena and the existing opportunities to extend existing 
work. Next, the design science research method is explained (Hevner et al. 
2004; Peffers et al. 2007), followed by the model design and development. 
Afterward, the results are evaluated using open data of airline travel within 
Wuhan and Hong Kong followed by design guidelines for future model 
developments. In closing, notable conclusions, limitations, and opportunities 
for future research are discussed.
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Background

Pandemic Progression: Establishing the Air Mobility Link

Travelers Give Wings to Novel Coronavirus (2019-nCoV) is the title of the 
paper authored by Wilson and Chen (2020) revealing a deadly combination of 
intense air traffic and high infectious disease vulnerability index (IDVI). 
Therefore, heavy air travel restrictions have been imposed to mitigate virus 
transmission, as presented in Figure 1.

Air travel data provides evidence of the significance interdependence of 
political and corporate decisions. At the same time, aggregating this source of 
data “can help refine interventions by providing near real time information 
about changes in patterns of human movement” (Buckee et al. 2020). For 
example, Bogoch et al. (2020) analyzed data obtained from the International 
Air Transport Association (IATA) and found a high number of passengers 
traveling from top Chinese airports to Taipei (1 359 253), Bangkok (1 232 
307), or Tokyo (1 086) showing a interdependence between air travel from 
China to several neighboring countries with a high IDVI, such as Thailand and 
Japan. Both, import and export cases of infected travelers must be taken into 
consideration in travel restrictions, as illustrated in Figure 2.

Figure 2 shows a steady decrease in departures from Europe’s top 10 busiest 
airports to China. The chart also reveals a turning point, which must be 
carefully managed to avoid a secondary wave of COVID-19 infections. 
Applied artificial intelligence models can assist decision-making when 
a reduction or cancellation of flights are necessary and when a recovery is 
essential to the survival of the global economy during the management of 
a pandemic (depending on region), whilst also maintaining sufficient health 
care (Ji et al. 2020) and limiting economic damage. Balancing health-care 
resources (e.g., beds available for intensive care) and economic sustainability 

Figure 1. Global Impact of travel restrictions (27Jan-25 April, source: Flightradar).
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(reopening the economy with acceptable levels of virus propagation over time) 
is the intelligent systems fundamental question, until a safe and effective vaccine 
or treatment appears. Moreover, a new virus will surely appear in the future, 
making AI-based models a necessity for the present and future of global 
economies.

What We Should Know Already

The first SARS (severe acute respiratory syndrome) was discovered in China 
(Guangdong) by late 2002. The virus revealed a longer incubation period when 
compared to the well-known influenza virus (sometimes 14 days) and symp-
toms that last for 10 to 15 days. Several tests have shown a relation between the 
virus and weather variations (temperature) (Tan et al. 2005), later confirmed 
by the work of Brenner, Marwan, and Hoffmann (2017) using network 
structures, and Rees et al. (2019) for risk assessment strategies. These results 
are not yet conclusive for the recent SARS-COV2, but there are also other 
similar aspects, for example, Low and McGeer (2003) stated that “the disease is 
milder in children than in adults, and the viral load and the degree of infectivity 
in children also appear to be lower.” The authors pointed to many cases of 
transmissions in hospitals and the challenge of early detection in case of 
reoccurring, since “it may be easy to transport this virus from a wild animal 
sold in a market in one country to humans in another country” (Low and 
McGeer 2003).

Figure 2. Impact of travel restrictions to China (30Dec-23 March, source: Flightradar).
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The first cases of SARS in France are reported in Desenclos, J-C. et al. 
(2004.) demonstrating the relation with an Hanoi-Paris flight in March 2003. 
Consequently, a close collaboration between health entities and airline com-
panies was suggested over 15 years ago (Breugelmans et al. 2004).

Other types of viruses are also candidates for air transmission, for example, 
Dengue and the most common H1N1. Artificial intelligence was also applied 
in these cases, as happened with Salami (2020) using machine learning to 
predict an importation of Dengue cases to Europe, while Chang et al. (2010) 
found that “a solid relationship between H1N1 and air travel exists, and 
predictions could be made based on these findings.” A model for H1N1 spread-
ing using three data inputs (demographic, air mobility, and epidemic) was also 
proposed, supporting its feasibility to forecast and perform scenario analysis of 
major outbreaks (Tizzoni et al. 2012). Recently, population dynamics have 
played an important role in disease intervention strategies (Wang and Li 
2014). However, studies have also found partial mobility restrictions to be of 
limited effect when considering the time necessary to develop a vaccine, with 
a delay of only a few weeks in the virus propagation (Chang et al. 2010).

Airline traffic data was used in the past SARS pandemic. For example, 
Bowen and Laroe (2006) concluded “that airline network accessibility was an 
especially influential variable but also that the importance of this variable 
diminished in the latter weeks of the outbreak.” Interestingly, Marcelino and 
Kaiser (2009) suggest that flight cancelation can be more efficient than shut-
ting down an entire airport, therefore, new models are necessary to identify 
priorities for balancing air traffic and pandemic progressions, according to the 
characteristics of each connection. Moreover, long-range traffic is responsible 
for global spreading of infectious diseases but there are also local conditions 
that need a detailed level of analysis, namely, the case of subpopulations near 
the main hubs (Balcan et al. 2009).

Some regions may exhibit a delayed reaction, warned since 2003 that “the 
diffusion of SARS into the interior of China was less rapid than its spread 
overseas . . . [and that] the propensity for infected persons to exhibit symptoms 
only some days after infection, made even infrared thermal screening at airports 
relatively ineffective” (Bowen and Laroe 2006). Nevertheless, the most impor-
tant is to learn from the errors of the past and improve decision-making in 
real-life complex problems.

Airports and Air Travel in Pandemic Management

The impact of disruptions in airport operation vary in different regions of the 
globe. The recent study presented by Sun, Wandelt, and Zhang (2020) shows 
precisely those differences using network science in open access data. In some 
cases, closing an airport has less effect if the passengers are able to use tools 
(online or otherwise) to identify alternative airports, particularly in the United 
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States, China, and European countries more affected by the new coronavirus. 
Understanding its importance in mitigating virus spread, many airports inte-
grated screening technologies, however, “46% (95% confidence interval: 36 to 
58) of infected travellers would not be detected, depending on incubation period, 
sensitivity of exit and entry screening, and proportion of asymptomatic cases” 
(Quilty, Clifford, and Eggo 2020). Moreover, these authors concluded that the 
world “was ill-prepared to mitigate the diffusion of SARS via international air 
transport.” Information evolves side by side with mobility strategies to contain 
epidemic spreading (Wang, Han, and Tanaka 2017).

Several studies addressed the spreading of infectious diseases and air travel 
in the 2 years preceding COVID-19 (between 2018 and 2019), five are high-
lighted. Two reviews, one presented by Findlater and Bogoch (2018) illustrat-
ing how rapid movement around the globe facilitate epidemics in different 
viruses (e.g., Zika, SARS, Dengue) and the other by Desai et al. (2019) 
evidencing the role of forecasting methodologies and the importance of data 
in outbreak events. Unfortunately, most of the aviation data is not public, 
having implications in reproducibility and extension of the use of these models 
in global disasters faced today (Li and Ryerson 2019; Meslé et al. 2019).

Aggregating data about human mobility can help in this fight but it is also 
necessary to ensure the protection of individual rights and balance the differ-
ent interests involved (Buckee et al. 2020). Moreover, strengthening air routes 
to locations with higher levels of infection, lower healthcare resource avail-
ability, and high vulnerability indexes of infectious diseases, must be avoided 
(Gilbert et al. 2020; Ji et al. 2020).

Mobility in the COVID-19 Era: A Review of Recent Contributions

Several recent studies addressed the virus spread via air (Craig, Heywood, and 
Hall 2020; Gilbert et al. 2020; Li et al. 2020) and the most unanimous conclu-
sion is that “the virus can fly” with the wings provided by human travelers 
(Wilson and Chen 2020). The risk of the novel coronavirus transmission from 
China “was highest to neighbouring countries in Asia (Thailand, Cambodia, 
Malaysia), followed by Europe (UK, France, Russia and Germany), Oceania 
(Australia and New Zealand) and North America (USA and Canada)” (Haider 
et al. 2020).

Travel restrictions are important but are not the only solution and must be 
carefully managed over time (Aleta et al. 2020). For example, the model 
presented by Chinazzi et al. (2020) reveals that travel restrictions have more 
effect in the initial weeks. Therefore, the “decision to control travel volume 
through restrictions on freedom of movement should be balanced between the 
resulting estimated epidemiological impact and predicted economic fallout“ 
(Anzai et al. 2020). Considering the undetected cases that may reach two- 
thirds of the cases imported from China (Bhatia et al. 2020) and the 

46 J. SOUSA AND J. BARATA



undetected travelers (Chinazzi et al. 2020), it is also possible that the import/ 
export scenarios identified in recent studies do not consider these variables. 
Therefore, restrictions on international flights should be combined with other 
measures (Chinazzi et al. 2020) such as the testing and isolation of cases, “and 
social distancing with at least 80%–90% compliance and a duration of 91 days 
(13 weeks)” (S. L. Chang et al. 2020).

Recent models have been proposed to identify the risk of spreading the 
COVID-19 disease. For example, Craig, Heywood, and Hall (2020) to the 
pacific islands; the high risk in the United States based on Wuhan direct flights 
(Li et al. 2020); and the prevision of lower risks in Africa and South America 
regions (Haider et al. 2020). The work of Lai et al. (2020) proposes 
a comprehensive model to identify risks of importing the virus from Wuhan 
and other main cities in China. Using inter-city mobility data from 2019, Wu, 
Leung, and Leung (2020) also presents a model to evaluate the current and 
future evolution of the disease. The methodology used by Nikolaou and 
Dimitriou (2020) to identify critical European airports for controlling the 
spread of infectious diseases adopts several centrality metrics (e.g., between-
ness and closeness) and stress-test scenarios, strengthening the evidence about 
the crucial role of air mobility in pandemic control.

There are important studies using mathematical models to predict virus 
transmission patterns based on air mobility, uncovering the potential of social 
sensing of transport data to deal with disruptive events (Yu et al. 2020). 
However, most of these models require a significant amount of data to predict 
the development of the pandemics (Bai et al. 2020).

More recently, Prasse et al. (2020) used a complex network approach to 
model the epidemic in Hubei province using traffic data, suggesting, at a local 
scale, “that network-based modelling is beneficial for an accurate forecast of the 
epidemic outbreak.” A different example of using complex networks (not 
related with mobility data but revealing the potential of the approach) is 
presented by Luczak-Roesch (2020) to identify clusters of viral genetic spread.

However, few models reveal the possibility to evolve and learn with new data 
to assist decision makers when trying to limit virus transmission (imposing 
chirurgical restrictions as situation evolves) or reopening crucial trade routes to 
ensure economic survival. Machine learning techniques are included in the vast 
portfolio of AI solutions that do not require specific instructions to perform 
a task, as shown in the context of outbreak response by Rees et al. (2019) or 
Salami (2020) addressing Dengue. Moreover, there is an opportunity and a vital 
necessity to test simplified methods for initial assessment of COVID-19 related 
decisions using reliable, but unfortunately, sometimes limited open access data.
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Methods

Design science research (DSR) is the selected approach. Having its foundations 
in the work of Simon (1996), the research evolves according to seven key 
guidelines with the purpose to create a viable artifact (a model in this research) 
that is both relevant and rigorously created (Peffers et al. 2007) suggests specific 
activities for DSR starting with the problem definition and the complete under-
standing of the context, followed by the definition of solution objectives.

Afterward, researchers must design and develop the proposed solutions, 
demonstrate results, whilst also evaluating and communicating any findings 
(Hevner et al. 2004; Peffers et al. 2007). DSR was considered suitable for our 
purpose to use complex network toolbox in machine learning algorithms that 
use air traffic (open) data to identify patterns and support the decisions about 
restricted mobility. The next subsection presents the foundations of complex 
networks and self-supervised statistical learning used in the design and devel-
opment stages of DSR (Peffers et al. 2007).

Machine Self-supervised Statistical Learning for Knowledge Model Generation

There is an interdependence between technology, work, and organizations – 
this is something uniquely visible today with the “work from home” adoption 
in response to the COVID-19 lockdown. The study of interdependence 
grounds on socio-technical complex adaptive systems (CAS) (Vespignani 
2009) and describes systems acting together as an entanglement acquiring its 
form and attributes only from the evolving interdependence. CAS are complex 
systems where criticality lies not with the number of its parts but on the 
capabilities to develop adaptability. This adaptability happens in an emergent 
and self-organizing behavior within a self-supervised learning process 
(Sermanet et al. 2017). Modeling such a sociometrical complex system com-
prises of the capability to learn from data within the same system (self data) 
and to model and visualize its significant interdependences. Networks are 
a key part of the solution to address this problem (Mitchell 2006). 
A complex network is a system of connected (linked) elements (nodes) that 
allows “true predictive power of the behaviour of techno-social systems” 
(Vespignani 2009).

Machine learning is the tool of choice to learn from data (Ghahramani 
2015). However, socio-technical CAS has characteristics that are difficult to 
handle with a machine learning normalized approach of training and valida-
tion, as happens with the case of deep learning (Chen and Liu 2016). Hence, 
we introduce a machine self-supervised statistical learning algorithm to 
approach the use of system own data, to perform statistical learning relying 
on data abstractions and its visualization as models of semantic knowledge.
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Modeling COVID-19 Wings with Open Data

The approach that we used in this research develops in three stages repre-
sented in Figure 3.

The machine self-supervised statistical learning stage addresses the 
learning uncertainty and reasoning using statistical learning. Also, within 
this stage, abstract semantic knowledge representation and inference to 
develop a profiling model of the mobility context. This approach extends 
the capability of features selection used in deep learning (Lecun, Bengio, 
and Hinton 2015). The statistical learning stage starts with the data ETL to 
develop data abstractions as pair of connected nodes (adjacency list). The 
adjacency list is then modeled through complex network tool in an abstract 
knowledge representation at the next stage, resulting in a semantic network 
representing the self-data emergent and self-organized knowledge. The 
node significance is determined through betweenness (the bigger the 
node more significant it is) (Albert, Jeong, and Barabási 1999; Newman 
2001; Newman, Barabási, and Watts 2006; Pincus 1991) and communities – 
the colors represented in the semantic networks represent different com-
munities, defining nodes with more commonalities. The interdependence is 
modeled by measuring the weight of each connected (linked) pair of nodes 
(the thicker the line more significant it is) and the node size determines its 
significance as a measure of betweenness (the bigger the node, more 
interdependent it is). The communities’ aggregate nodes are part of the 
same pattern.

Finally, on the last stage, it produces inference by measuring entropy 
(Pincus 1991) to determine the level of system change. Information entropy 

Figure 3. The machine self-supervised statistical learning architecture.
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can be used to measure real-world complex data, with the advantage of low 
computational necessities and the possibility to adopt the algorithms in large 
networks (Guo et al. 2020).

The data used in the self-supervised learning process were collected from 
public data sources – namely, Wikipedia and research data available from 
scientific papers. The data sources that will be referenced when discussing the 
models and results are publicly available .

The semantic network shows the nodes that are more significant to develop 
Hubei connectivity, revealing more interdependence (thickness of the line 
between the two nodes) with China Southern Airlines (see Figure 4 – 
Hubei). Figure 4 – Shanghai, points to a prevalent significance on China 
Eastern Airlines node and also the higher interdependence. These initial 
models were used to test the proposed approach and are useful to identify 
the companies with higher impact in pandemic management in each of the 
regions. However, DSR requires a deeper evaluation of the approach with 
other sources of data, as we present in the next section.

Evaluation of the Model

We adopted the guidelines suggested by the FEDS framework to evaluate 
design science research projects (Venable, Pries-Heje, and Baskerville 2016), 
requiring to identify the goals of the evaluation, the strategy, and the proper-
ties to evaluate. The main goals are to test the approach using data available in 
other sources, contrasting the findings with the authors conclusions (e.g., the 
work of Zhao et al. (2020)) and with the public available data of pandemic 
evolution over time (e.g., Hong Kong). The selected strategy is the technical 
risk and efficacy (Venable, Pries-Heje, and Baskerville 2016), relevant to 
understand “whether a specific technology may work as perceived in the design” 
(Venable, Pries-Heje, and Baskerville 2016).

Finally, the properties selected for evaluation were the mobility index 
(World Economic Forum 2020) and the mobility patterns in pandemic pro-
gression (Figure 6). The data used in the models of Figure 5 was published by 
Zhao et al. (2020).

The measures adopted to constrain the flights reduced the mobility index 
mode value by more than 50% (Figure 5) with an effect on the node signifi-
cance quantified in Figures 6–1 and 6–2. Figure 6 quantifies the effect of flights 
constrains on the interdependence and significance of the semantic models of 
Figure 5.

Before a reduction in airline travel, the node Mobility.Index_D (0.51) 
(Figure 6–1) was the most significant but, after the introduction of travel 
constrains it changed to Mobility.Index_U (0.467) (Figure 6–2). These 
constrains changed the mobility index of cities – something that was 
expected as the constrain goal was to change it and that is visible on 
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different labels on Figures 6–1 and 6–2. The quantification of the nodes 
allows us to identify that a reduction in flights had a higher effect on less 

Figure 4. Aerial connectivity modeled from data collected from Wikipedia on 21st March 2020 .
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Figure 5. Modeling China mobility index.
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connected nodes, while Beijing, Ha’erbin and Shanghai proportionally 
maintained the same level of mobility. Harbin (Ha’erbin) arose in 
March 2020 as a new focus of the disease, although it is not possible to 
conclude a causality effect. The main conclusion is the effectiveness of air 
mobility restrictions and patterns of mobility that deserve more attention 
from the public authorities.

Figure 6–3 quantifies the effect of the air travel constrains by measuring the 
entropy on the semantic knowledge network – here we can observe an increase 
of 0,003. In the second evaluation case, Hong Kong data was selected due to 
the high connectivity with Beijing and Shanghai – cities with prevalent mobi-
lity index in previous models (Figure 7).

Hong Kong connectiveness is described by closeness centrality. The emer-
gent nodes are known places of early disease outbreaks, namely Shanghai, 
Beijing, Perth (Australia). However, closeness and betweenness are not 

Figure 6. Measurements of betweenness and entropy to model the significance and interdepen-
dence of change. The labels on 1 and 2 represent the mobility index and the associated cities.
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sufficient to provide a comprehensive vision of airline mobility because there 
are multiple hubs and connection points between two cities. This effect is 
visible in Table 1 describing the interdependence for the 10 pairs of nodes with 
the highest connectivity (interdependence – measured as the weight of each 
connectivity).

The results presented in Table 1 are complementary to the previous model 
and consistent with what is currently known about the disease spreading. 
London emerges with the higher level of interdependence (22).

Discussion

Managing COVID-19 progression relies on the capability to understand 
human connectivity. Forecasting and modeling connectivity becomes an 
essential risk assessment model that is useful to mitigate the effect of 
new outbreaks (quick warnings and traveling restrictions to the most 
relevant nodes, particularly those with lower margin to absorb the 
impact of more transmissions in its pandemic curve) and evaluate 
indirect transmissions chains (Table 1). For example, we can observe 
in Table 1 that closing all connections between Wuhan and Europe 
would not be sufficient to contain the transmission and could even 
provide a false sense of security.

Implementing machine self-supervised statistical learning provided us 
with a way to develop models from different types of data. This capability 
led us to produce semantic knowledge, representing emerging and self- 
organizing complex adaptive systems, further allowing the development 
and inference of intelligent systems. Lastly, during evaluation, a correla-
tion was found between the model connections showing locations of 
major possible COVID-19 hotspots and emergent outbreaks in the world.

Our results suggest that this approach can support learning from different 
data sets and may be used as a tool to make better informed decisions related 
to travel restrictions during a pandemic scenario.

Table 1. The interdependence results for the Hong Kong 
node (source: (https://www.chp.gov.hk/files/misc/).

From To Interdependence

Hong Kong London 22
Hong Kong Manila 9
Hong Kong Dubai 9
Singapore Hong Kong 9
Hong Kong Frankfurt 8
Hong Kong New York 7
Hong Kong Vancouver 6
Hong Kong Zurich 6
Hong Kong Bangkok 6
Hong Kong Kuala Lumpur 6
Hong Kong Madrid 4
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Figure 4 reveals connectivity and viral propagation risk through flights from 
Hubei and Shanghai, which supports previous research in this area (Zhao et al. 
2020). The results from models in Figure 5 and quantified in Figure 6 define 
the understanding of mobility and its central role in any decisions made 
during lockdowns discussed by Kraemer et al. (2020) and provide evidence 
for the implantation of any travel restrictions. Figure 6 can provide more 
details to understand possible new focus of infection in China.

Figure 7 shows the flow for the progression of the disease and is consistent 
with the knowledge described in Wilson and Chen (2020), Rodríguez-Morales 
et al. (2020), and Li et al. (2020), supporting the timeline of the outbreaks 
occurring in Canada, US, and UK where the coronavirus had arrived earlier 
than detected and propagated without control as much of the carriers were 
asymptomatic.

Existing lockdown strategies are temporary measures to prevent health-care 
systems from being overwhelmed and flatten pandemic curves. Lockdowns are 
constantly reviewed, and our model provides evidence and learning to support 
these important strategic decisions.

Once restrictions start to ease and movement of people increases, it would 
be beneficial if relevant compiled information was released, such as informa-
tion from mobile networks. This information could then be overlaid with 
models of symptom progression and intensive care capacity, to assist with risk 
assessment planning for future health-care needs. Our modeling technics have 
a similar background to those used by other researchers working on the 
identification of virus biological dynamics. Common self-supervised machine 
learning relies on previous classified knowledge and a modeling distributed by 
training and validation even when using advanced tools as deep learning 
networks (Lecun, Bengio, and Hinton 2015). Our proposed approach to 
machine learning expands the self-supervising machine learning capability 
by developing a statistical learning approach from the systems data through 
the use of complex networks as a semantic knowledge network capable to be 
measured by entropy. It follows the path of creating self-supervising learning 
approach that is efficient for generalizing (Zhang et al. 2016).

Study Limitations

The development of new models to address the challenges of pandemic events 
is a societal priority. However, several limitations must be considered.

First, our approach uses open data, which is an advantage for availability 
but also raises more concerns about its quality. The proposed models must be 
interpreted as a rough calculation to assist in the early evaluation of travel 
decisions.

Second, the models only consider the dimension of mobility using direct 
flight data from China. In this case, the advantage of model simplicity must be 
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Figure 7. Hong Kong air connectivity modeled considering the closeness and the betweenness 
(Node “1” refers to Hong Kong; strong connectivity identified to London; source dataset: 
Department of Health (2020).
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balanced with other factors that we did not include, for example, social 
proximity, and other local initiatives.

Third, air mobility is particularly relevant for the initial stages of an out-
break (or to the later stages of reopening the economy). Therefore, the 
proposed approach is not a complete solution to the problem and must be 
complemented with other techniques to provide more robust insights for 
decision-making.

Fourth, the visualization of complex networks is more appealing to the 
global population, as showed by the direct connections presented in 
Figure 7, providing an immediate notion of the risks. However, the details 
of all calculations are not evident, as happens in usual mathematical 
models.

Lastly, there are still many uncertainties around 2019-nCOV. For example, 
we used data from researchers that also identified limitations in their findings. 
The paper published by Zhao et al. (2020) pointed to the insufficient data 
available. Therefore, all models that aim to assist in governmental (e.g., 
balance the economy needs and the particular pandemic curve of the country 
and its external connections) or companies’ decisions (e.g., limit, close, or 
reopen airline routes) must be constantly updated and are part of a society- 
wide learning process.

Conclusion

This paper presented a self-supervised machine learning approach to model 
mobility based on open access data. The results are promising to evaluate the 
impact of airline routes in pandemic progression, assisting in the economic 
decisions that must balance two crucial values: human health and economic 
health. Both are essential to the progress of the society. The main contribu-
tions can be summarized as (1) an updated review of the airline connection 
impact in the new coronavirus progression, (2) the identification of recent 
trends in artificial intelligence to support intelligent mobility that adhere to the 
needs of health-care systems and the economy, and (3) a complex network 
approach supported in open data that uses statistical learning techniques to 
inform public and private entities about any adverse effect of air travel. The 
decisions to reopen airline connections must carefully evaluate both, direct 
and indirect mobility channels made possible by a global economy. 
Combining measures of centrality and entropy can provide more robust 
results in the predictions.

Important future work opportunities are identified. First, training the 
model with more data recently collected in different locations and including 
additional parameters, namely, the high infectious disease vulnerability index 
and the efficacy of local measures to control the pandemic. Second, comparing 
the model with other proposals that use raw data, strengthening our 
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conviction that the approximation proposed in this paper can inform compa-
nies and public health organizations to make better global-wide movement 
decisions.
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