

1

© <2016>. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This is a pre-copyedited version of an article published in European

Journal of Operational Research. The final version of this article is available
online at: https://doi.org/10.1016/j.ejor.2015.06.072

https://doi.org/10.1016/j.ejor.2015.06.072

2

Graphical exploration of the weight space in three-objective mixed integer

linear programs

Maria João Alves and João Paulo Costa

Faculty of Economics of University of Coimbra / INESC - Coimbra, Portugal

Abstract

In this paper we address the computation of indifference regions in the weight space for

multiobjective integer and mixed-integer linear programming problems and the graphical

exploration of this type of information for three-objective problems. We present a

procedure to compute a subset of the indifference region associated with a supported

nondominated solution obtained by the weighted-sum scalarization. Based on the

properties of these regions and their graphical representation for problems with up to three

objective functions, we propose an algorithm to compute all extreme supported

nondominated solutions adjacent to a given solution and another one to compute all

extreme supported nondominated solutions to a three-objective problem. The latter is

suitable to characterize solutions in delimited nondominated areas or to be used as a final

exploration phase. A computer implementation is also presented.

Keywords: Multiple objective programming, mixed integer linear programming,

weighted-sum scalarization, weight space, extreme supported nondominated solutions.

1. Introduction

A multiobjective integer or mixed-integer linear programming (MOMILP) problem with

p ≥ 2 objective functions can be written as:

Cxxfz

xcxfz

xcxfz

p
pp

==







==

==

)(Max

)(max

...

)(max 1
11

s.t. x  X ={x ℝn : Ax = b, x ≥ 0, xj  ℕ0, j I}

 Corresponding author. Tel. +351 239 790 558

 Email address: mjalves@fe.uc.pt

mailto:mjalves@fe.uc.pt

3

where A is the mn technological coefficients matrix, being all constraints transformed

into equations by introducing appropriate slack or surplus variables, and bℝm is the

right-hand-side vector. I {1,...,n}, I is the set of indices of the integer variables, with

n the total number of variables (decision variables plus slack/surplus variables). It is

assumed that X is bounded and non-empty. C is the pn objective matrix whose rows are

the vectors ckℝn, k=1,...,p.

If all decision variables are integer, then the multiobjective problem is pure integer

(MOILP), which is a special case of the multiobjective mixed-integer case. In what

follows we will denote by MOMILP the general case, in which integrality constraints are

imposed on all or a subset of the decision variables.

A feasible solution x' X is efficient if and only if there is no other solution x ∈ X such

that fk(x) ≥ fk(x') for all k =1,...,p and fk(x) > fk(x') for at least one k. Let XE denote the set

of all efficient solutions.

Let Z  ℝp be the image of the feasible region X in the objective space such that

Z = {zℝp: z = Cx, x  X}. If x' X is efficient, ')'(' Cxxfz == is a nondominated

criterion point. Let ZND be the set of all nondominated points, ZND =

 EXxCxzZz = ','':' .

An important concept in MOMILP is the distinction between supported and unsupported

nondominated/efficient solutions.

A nondominated point z' ZND is supported if it is located on the boundary of the convex

hull of Z (conv Z). An unsupported nondominated point is located in the interior of conv Z

(it is dominated by some convex combination of supported nondominated points). A

supported (unsupported) nondominated point corresponds to a supported (unsupported)

efficient solution.

We can further distinguish two types of supported nondominated points:

a) extreme supported nondominated points z ZND, which are vertices of conv Z; we

will denote these nondominated points /efficient solutions as ESND solutions;

b) non-extreme supported nondominated points, which are located in the relative

interior of a face of conv Z.

4

Let ZESND denote the set of all ESND points/solutions in the objective space and XESND

the corresponding set in the decision space.

Supported nondominated solutions are optimal solutions to the weighted-sum

scalarization program (P) for some weight vector    =  ℝp: k > 0, k =1,...,p,

 =
=

p

k k1
1}:

 max Cxxf
p

k

kk == 
=



1

)(z (P)

 s.t. x  X

 is usually called the weight space and the set of weight vectors that lead to the same

nondominated solution is referred to as an indifference region in the weight space. The

weights of the objective functions are the parameters in the (P) scalarization program

and the variation of parameters enables to attain different supported nondominated

solutions. However, there are multiple parameter values that lead to the same solution,

i.e. an indifference set on the parameter’s space (weight space) can be defined for each

supported nondominated solution.

The set  can be decomposed into subsets (z'), z'ZND such that z' is supported, where

(z') denotes the indifference region of z' in the weight space. It represents the set of

weight vectors  that lead to z' through the optimization of (P), i.e., (z') = {:

z' ≥ z, zZND}. Indifference regions in the weight space are convex polytopes

(Przybylski et al., 2010).

The optimization of (P) using the branch-and-bound method yields (at least) an ESND

solution. If there are alternative optima, a further exploration of the branch-and-bound

tree allows for computing non-extreme supported nondominated solutions. However,

unsupported nondominated solutions are never obtained through (P) even if a complete

parameterization is attempted and all alternative solutions for a given    are analysed.

The ESND points allow for the whole decomposition of the weight space into subsets

(z'), z'  ZESND, because these, and only these points z'  ZESND, correspond to

indifference regions (z') of dimension p−1 (the dimension of ) of a MOMILP problem.

Therefore, =
ESNDZz

z



'

)'(. Non-extreme supported nondominated points are associated

with indifference regions of lower dimension resulting from the intersection of the regions

of ESND points (these properties can be found in Przybylski et al., 2010).

5

Although the supported nondominated solutions (or even only the ESND solutions)

constitute a subset of all nondominated solutions of the problem, they can provide

important insights about the whole nondominated set because they are on the boundary

(and the ESND are the vertices) of the convex hull of all nondominated points (Özpeynirci

and Köksalan, 2010). Indifference regions in the weight space also constitute useful

information for the decision maker. He/she may be indifferent to all weight combinations

inside one region because they give rise to the same nondominated point.

An interactive graphical exploration of the weight space in multiobjective linear

programming (MOLP) problems with three objective functions has been proposed in the

TRIMAP method by Clímaco and Antunes (1987). The use of the weight space as a

valuable means to gather information obtained from different interactive methods, and its

graphical representation to present the information to the decision maker, has likewise

been considered in other interactive MOLP computational tools (Antunes et al., 1992;

Alves et al., 2015). Also considering MOLP problems, Benson and Sun (2002) proposed

a weight set decomposition algorithm to generate all extreme nondominated points.

The computation of indifference regions in other parameter spaces has also been

addressed. Costa and Clímaco (1999) related reference points (using achievement

scalarizing functions) and weights in MOLP and defined indifference regions on the

reference point space. Alves and Clímaco (2001) analysed the shape of indifference

regions in the reference point space (in general, non-convex regions) for all-integer

MOILP problems and proposed an approach to define indifference sets of reference points

as long as a directional search procedure (Alves and Clímaco, 2000) is performed.

Concerning MOMILP problems, Przybylski et al. (2010) and Özpeynirci and Köksalan

(2010) have exploited the weight space to design algorithms intended to generate all

ESND points. These two approaches are reviewed in the next section.

In the present work we focus on ESND solutions of MOMILP problems and the

exploration of their indifference regions in the weight space. We propose an approach

that is able to compute a subset of an indifference region using the branch-and-bound tree

that solved the weighted-sum scalarizing program (P) for a given weight vector   .

Acting alone, this approach rarely calculates the entire indifference region for the

corresponding ESND solution, and the obtained sub-region may be much smaller than

the full region. However, indifference regions can be iteratively enlarged using some

6

properties, namely convexity. Accordingly, we have developed a procedure that merges

and expands sub-regions by building the convex hull of joined or disjoined sub-regions

of the same solution. An indifference region can be enlarged not only from a merging

process but also as a result of properties that relate adjacent regions of different solutions.

We explore these properties for three objective problems, proposing an algorithm to

compute all ESND solutions adjacent (in the weight space sense) to a known ESND

solution or even to compute all ESND solutions of a three-objective problem. These

features can naturally be applied to problems with two objective functions, but we will

omit this case herein as it is straightforward. We also present a computer implementation

in which the indifference regions are graphically depicted.

The rest of the paper is organized as follows. In section 2 the related work is reviewed.

Section 3 introduces the technique to compute an indifference sub-region for an ESND

solution and an illustrative example is shown. Section 4 gives the main principles to

explore the weight space in MOMILP problems with three objective functions and

describes the algorithms to compute the ESND solutions adjacent to a given solution and

to compute all ESND solutions. Section 5 presents an overview of the computational

implementation, illustrating the previous features using two examples, and presents

computational experiments. The paper ends with some concluding remarks and future

work in section 6.

2. Related work

Przybylski et al. (2010) proposed a recursive algorithm for finding ZESND which is based

on the following idea: in each iteration, the weight space is completely decomposed with

the solutions computed so far and the common facets of the regions are explored in order

to compute new solutions and update the weight space decomposition. Let S  ZESND

denote the set of ESND points known at a given iteration. For each z'S a super-region

+(z') is defined such that +(z') ={: z' ≥ z, zS}. Then, the algorithm searches

for new nondominated points at the boundaries of +(z'). For instance in three-objective

problems, if z', z" S are adjacent in the current weight space decomposition, then +(z')

 +(z") is a line segment; suppose that 1 and 2 are the extreme points of this edge; the

algorithm investigates the edge by computing all the ESND points of the following bi-

objective problem: () .:),()(),(max 21'
2

'
1 XxCxCxxfxf = Thus, a recursive

7

algorithm is developed. As new ESND points are added to S, the weight space

decomposition is updated until all elements of ZESND have been found. At the end of the

algorithm, the regions +(z') are the real ones, i.e. +(z') = (z'). The authors have further

proved that a suitable initialization of the algorithm must contain the nondominated

extreme points that optimize individually each objective function. This initialization

enables to only explore the facets of each +(z') that are not located on the boundary of

.

Özpeynirci and Köksalan (2010) proposed another algorithm with the same purpose of

finding all points of ZESND. This algorithm does not use recursion, but it has a strong

combinatorial component. The basic idea consists in introducing p dummy points in the

objective space, Zm = {mk = Mek, k =1,…,p} where M is a large positive constant and ek

is the kth unit vector. These points are infeasible and nondominated with respect to all

points of ZESND. They have such characteristics that their indifference regions in the

weight space touch all the boundary of  (where one of the weights is close to zero). The

points mk are incorporated into the search, which turns to be on ZESNDm = ZESND  Zm.

The authors prove that each point z'ZESND is adjacent (in the weight space) to at least p

points of ZESNDm. Denoting, as before, by S the set of ESND points identified so far, the

algorithm successively selects different subsets of p points from S  Zm and, for each

subset, defines the vector λ normal to the hyperplane that passes through these points. If

all components of λ are positive, then the respective weighted-sum of the objectives (Pλ)

is optimized in order to try to find a new ESND point or to conclude that the selected

points define a facet of conv ZESND. The algorithm finishes when no more points or facets

can be identified.

In both algorithms previously described, indifference regions in the weight space are not

known during the intermediate stages of the algorithm since the weight space is

decomposed using the current set of ESND points. This information is only available at

the end, when all ESND solutions have been computed. Actually, the goal of these

algorithms is not to compute indifference regions but rather to use this type of information

as an instrumental means to generate all ESND solutions.

Indifference regions in the weight space are useful for an interactive search for new

nondominated solutions. The decision maker may bypass all weight combinations within

each region as all of them yield the same solution. With the purpose of obtaining this type

8

of information, we have developed an approach that is able to define a subset of an

indifference region whenever an ESND solution is computed through the optimization of

(Pλ). Although this is only a sub-region, it has the advantage that all the weight vectors

included therein actually result in the same solution. This approach is described in the

next section.

3. An approach to compute indifference sub-regions in the weight space for

MOMILP problems

The approach we propose herein to compute indifference sub-regions in the weight space

for MOMILP problems uses information provided by the branch-and-bound tree that

solved (P) combined with sensitivity analysis on the weighted-sum objective function.

This analysis is performed in the terminal nodes (leaves) of the tree.

In MOLP, the indifference region corresponding to a basic efficient solution x' can be

computed as follows (in, e.g., Yu and Zeleny, 1976): let x'B be the basic variables and x'N

the non-basic variables of x'; let B and N be the sub-matrices of A corresponding to x'B

and x'N, respectively; let CB and CN be the respective sub-matrices of C; the indifference

region in the weight space associated with x' is defined by  0)(: 1 − −
NB CNBC

=  0:  W with NB CNBCW −= −1 being the reduced cost matrix.

Consider now a MOMILP problem for which a weighted-sum program (P) with =o

has been optimized using the branch-and-bound method, yielding the efficient solution

xo. Let zo be the corresponding non-dominated point: zo = Cxo. An indifference sub-region

associated with this solution, say  (zo), can be computed by inspecting the feasible

terminal nodes of the branch-and-bound tree. The procedure is as follows:

Step 1. For each terminal node i of the branch-and-bound tree whose linear problem is

feasible an indifference region Ri is computed as in MOLP. Let T denote the set

of indices of the feasible terminal nodes. An intersection region of the Ri, for all

iT, is considered: R= Ti

iR


Step 2. Add to R the constraints resulting from the comparison of the weighted-sum value

in the optimal node (node o) with respect to the other feasible terminal nodes of

the tree (nodes i T\{o}). Thus,  (zo) = R { zo ≥  zi, i T\{o}}, where

zi = C xi is the objective point for the solution xi obtained in the node i.

9

Proposition 1. The set  (zo) obtained by Steps 1 and 2 above is an indifference sub-

region in the weight space for the nondominated point zo = Cxo corresponding to the

efficient solution xo of the MOMILP problem.

Proof. The integer/mixed-integer linear program (P) with  = o, say)(oP
 , has been

solved using the branch-and-bound method, yielding the solution xo. Let the node o be

the optimal node of the branch-and-bound tree. Each node i of the tree is associated with

a linear sub-problem of)(oP
 , say :)(i

oLP


 i
LP

o XxCx  :max , where i
LPX denotes the

linear feasible region in the node i. Let T be the set of indices {i} of the terminal nodes

(leaves) of the tree for which i
LPX . By the principles of the branch-and-bound

method, none feasible solution x  X is excluded from .
Ti

i
LPX



 Let xi be the current

optimal solution of)(i
oLP


 for iT. The MOLP indifference region of xi is Ri= {  :

Wi ≥ 0}, with Wi being the reduced cost matrix of node i. This means that xi optimizes

)(iLP : i
LPXxCx  :max for all  Ri. Thus, R=  Ti

iR


 is the set of the weight vectors

 that do not change any basic solution associated with the feasible terminal nodes of the

current tree, i.e., for all iT, the corresponding xi optimizes)(iLP for all  R.

In addition, if, for a given  R, the value of the objective function of)(oLP
 (node o,

with solution xo) is better than the value of the objective function of any other)(iLP , iT,

then the branch-and-bound tree remains unchanged with xo optimal to (P). This is valid

for any  R such that Cxo ≥ Cxi, i T\{o}. Hence, xo is an optimal solution of (P)

for all )(oz = R { zo ≥  zi, i T\{o}}, with zi = Cxi, which means that)(oz is

an indifference sub-region in the weight space for (xo, zo). ◼

In sum, Step 1 ensures that the included -vectors do not change the basic solutions

associated with each feasible terminal node of the current tree. Step 2 restricts  (zo) to

-vectors for which the node o remains the optimal one for (P), i.e. provides a weighted-

sum value larger or equal to the values of all the other terminal nodes.

Due to the normalization 1+2+…+p =1, the weight space can be represented in a p−1

dimensional diagram. The following example illustrates the procedure described above

using a small integer problem with 3 objective functions. The indifference sub-regions

10

are shown in the two-dimensional projection (1, 2) in which the origin (1, 2) = (0,0)

represents the point where 3=1.

Example:

max z1 = x1 – x2

max z2 = x1 + 2x2

max z3 = – x1 + 2x2

s.t: x1 + 6x2 ≤ 21

 14x1 + 6x2 ≤ 63

 x1 , x2 ≥ 0 and integer

The problem’s decision space is depicted in fig. 1, where all efficient solutions are marked

with a larger dot and their variable values are shown. Solutions xA, xB, xC and xD are the

extreme supported efficient solutions. Solutions x = (3, 1) and x = (3, 2) are unsupported,

and x = (1, 3) and x = (2, 3) are non-extreme supported solutions.

z3 z2

x2

x1

3.5

4.5 • •

•

•

•(1,3)

•

•

•(0,3) •(2,3) •(3,3)

•

•

•

•(3,1)

•

•(4,1)

•

•(3,2)

z1

(4,0)
xA

xB

xC xD

Fig. 1 – Representation of the Example problem in the decision space.

Firstly, consider that the weight vectors 1 = (0.99, 0.005, 0.005), 2 = (0.005, 0.99,

0.005) and 3= (0.005, 0.005, 0.99) are chosen in order to compute efficient solutions that

optimize individually each objective function. These are solutions xA, xC and xD,

respectively. The respective indifference sub-regions in the weight space calculated by

the procedure described above are the polygons A1, C1 and D1 shown in fig. 2(a).

Let us now consider that other weight vectors are selected from the unfilled areas of the

weight diagram. If 3 = (0.57, 0.28, 0.14) is chosen, the point indicated by the arrow in

fig. 2(b), then solution xB is computed and the indifference sub-region B1 is obtained (see

11

fig.2(b)). Next, 4 = (0.52, 0.4, 0.08) is chosen and, after that, 5 = (0.13, 0.44, 0.43),

which are indicated by arrows in fig. 2(c), respectively on the right and on the left of C1.

Both weight vectors lead to solution xC and the resulting indifference sub-regions are C2

(which contains C1) and C3, represented in fig. 2(c). As we can observe in fig. 2(c), the

weight space is now completely filled, so {xA, xB, xC, xD} constitutes the set of all ESND

solutions of the problem. The whole indifference regions in the weight space of these

solutions are, respectively, A1, B1, C1C2C3= C2C3 and D1.

(a)

(b)

(c)

Fig. 2 - Indifference (sub)-regions in the weight space computed for the problem of the Example.

Three indifference sub-regions were computed for solution xC because this solution was

obtained from different branch-and-bound trees. In order to better illustrate the procedure

described above to compute the indifference sub-regions and, in particular, the case of

solution xC, we show in fig.3(a) and fig.3(b) the branch-and-bound trees that produced

regions C2 and C3, respectively.

Consider the construction of C2. Let o
aR and 1

aR be the MOLP indifference regions

corresponding to the nodes o and 1 of the tree in fig. 3(a), which have been computed

according to step 1 of the procedure. In addition, step 2 defines the constraint 1zzo 

321321 263390 −+++ .0533 321 ++−

Thus, }0533{2C 321
1 ++−= a

o
a RR .

o
bR=3C , where

o
bR is the MOLP indifference region of the node o of the tree in fig. 3(b)

– step 1. No other feasible terminal node exists, so the step 2 is not applied.

12

x =(3.23 , 2.962)

x =(3 , 3)

node o

optimal

x =(4 , 1.167)

x =(4.071 , 1)

x =(4 , 1)
node 1

infeasible

infeasible

zo=(0, 9, 3)

z1=(3, 6, -2)

x =(0 , 3.5)

x =(3 , 3)

node o

optimal

infeasible

zo=(0, 9, 3)

(a) (b)

Fig. 3 – Branch-and-bound trees that (a) solved (P) with 4 =(0.52, 0.4, 0.08) producing region C2 and

(b) solved (P) with 5=(0.13, 0.44, 0.43) producing region C3.

4. Exploring the weight space in three-objective problems

The approach described above is able to compute a subset of an indifference region using

information from the branch-and-bound tree that solved the weighted-sum scalarizing

program (P) for a given weight vector   . This approach may compute a small region

when compared with the complete indifference region of the ESND solution. Fortunately,

some properties enable to enlarge sub-regions when other (P) are solved leading to the

same solution or to neighbouring solutions. We will now present these properties.

Firstly, indifference regions in the weight space are always convex. This property enables

to merge sub-regions computed for the same solution by defining the convex hull of their

union. We have implemented a QuickHull algorithm for ℝ2 (Bykat, 1978; Eddy, 1977)

to perform this merging task for three-objective problems, in which the indifference

regions are polygons. Figure 4 illustrates the merging process. We omit herein the bi-

objective case as it is straightforward.

13

Fig. 4 – Merging indifference sub-regions for the same solution.

Secondly, suppose that we want to explore the surrounding area of an already known

ESND solution. Let z1 be its nondominated criterion point and)(1z the indifference

sub-region currently known for z1. If we choose a weight vector outside the region, but

close to its limits, and optimize the respective weighted-sum, one of two situations may

occur: z1 is obtained again and the indifference sub-regions can be merged, redefining

)(1z ; or another ESND solution is computed, say z2, and the respective indifference

sub-region)(2z is defined. If a weight vector for each edge of the current)(1z is

investigated and no other property is used, the undesirable situation as the one illustrated

in fig. 5(a) can arise: the polygon labelled with 1,)(1z , has 6 edges; apart from the one

that touches the boundary of the weight space, all the other 5 edges were explored by

choosing a weight vector close to the midpoint of the edge and optimizing the respective

weighted-sum; 5 different ESND solutions were obtained whose indifference sub-regions

are shown in fig. 5(a); the figure seems to show that there are adjacencies to)(1z that

have not been explored. Fortunately, the next proposition enables us to conclude that all

ESND solutions adjacent to z1 have already been found and their indifference regions can

be enlarged as shown in fig. 5(b).

Proposition 2. Let 0, 1, 2   be three weight vectors that are located on the same line

segment. Let the nondominated criterion points za and zb optimize (P) for both 0 and 1.

Let za also optimize (P) for 2. Then zb also optimizes (P) for 2.

Proof. To prove that zb optimizes (P) for 2, it is sufficient to prove that zb provides the

same weighted-sum value as za, i.e. 2zb =2za.

The equation of the line passing through 0, 1, 2 can be defined as  = 0 + t(1 − 0)

with t a parameter. Thus, 2 = 0 + t2(1 − 0).

14

2 zb = [0 + t2(1 − 0)] zb = 0 zb + t21 zb − t20 zb = 0 za + t21 za − t20 za = [0 +

t2(1 − 0)]za = 2 za. So, zb is an alternative optimal solution to za when (P) is optimized

for 2. ◼

Proposition 2 enables to conclude that, if an indifference polygon intersects another

polygon in part of an edge, then the whole line segment that defines the edge belongs to

both indifference regions (as illustrated in fig. 5, from (a) to (b)). Although formalized in

a different way, Przybylski et al. (2010) proved a related result, showing that two adjacent

indifference regions intersect in a maximal dimensional face.

(a) (b)

Fig. 5 – Using Proposition 2 to obtain (b) from (a).

Hence, when adjacencies are being explored, different situations may result in expanded

indifference sub-regions. Consider that moving out from an edge of)(1z leads to

solution z2 with indifference sub-region)(2z . Either)(2z ,)(1z or both may be

enlarged as illustrated in fig. 6. In addition, if the same solution is found,)(1z grows by

merging the two sub-regions and the adjacent regions may also be expanded, as illustrated

in fig. 7: moving out from edge [AB] of)(1z , we obtain again z1 and a new indifference

sub-region)(' 1z is defined; then,)(' 1z and)(1z are merged and, by Proposition 2,

)(2z can be enlarged too.

15

(z2)

(z1) (z1)

(z2)









(a)

(z2)

(z1)

(z2)

(z1)





 '

A'

B'

A'

(b)

(z2)

(z1)





A'

B'

(z2)

(z1)



B'

(c) – a combination of (a) and (b)

Fig. 6 – Examples of enlarging indifference sub-regions when the investigation of an edge leads to a

different solution.

(z1)

(z2)

'(z1) (z1)

(z2)

(z1)

(z2)




Fig. 7 – Example of enlarging indifference sub-regions when the investigation of an edge leads to the same

solution.

The Merge & Expand iterative procedure to handle the merging of regions and the

expansion impacts on the adjacent regions can be summarized as follows. Note that the

expansion process repeats in a recursive way, because an enlarged region may produce a

change in an adjacent region, which in turn changes another region adjacent to the latter,

and so on:

Case I) If an edge of)(1z is investigated and a new solution z2 is found (as in fig. 6),

the edge of)(1z under analysis ([AB] in fig. 6) is added to)(2z and these are

merged to form the convex hull.)(2z may be enlarged (fig. 6(a) and (c)) or not

(fig. 6(b)). In any case, all the regions adjacent to)(2z are analysed to check

whether they can be expanded (e.g. the expansion of)(1z in fig. 6(b) and (c)).

Whenever a region is expanded, the other regions that intersect it in a modified

16

edge are then analysed. An iterative process occurs, which ends when no more

region is modified.

Case II) If an edge of)(1z is investigated and the same solution is found (as in fig. 7),

then the process starts by merging the indifference sub-regions of z1. The

expanding procedure continues by analysing the regions adjacent to the new

joined)(1z following a similar scheme as in case I.

In the following we propose an algorithm for three-objective problems that computes the

ESND solutions adjacent to a given ESND solution z1 according to the following

definition.

Definition 1 (Przybylski et al., 2010): Two ESND points z1 and z2 are adjacent if and only

if (z1) (z2) is a polytope of dimension p−2.

The algorithm to find the ESND solutions adjacent to z1 explores iteratively all non-

explored edges of a sub-region)(1z . This sub-region has been obtained from the branch-

and-bound tree that optimized (P) with a given  (e.g. chosen by the user) that yielded

z1 (as described in Section 3). For each edge, a weight vector outside)(1z , near and

central to that edge, is selected. If the edge is not on the boundary of the weight space and

the picked weight vector is unknown, the corresponding weighted-sum program (P) is

optimized and either a new solution (z2) or the same one (z1) is obtained. A weight vector

is known if it belongs to the indifference region of another known solution, say z3. The

Merge & Expand procedure is then run, starting with z2 (Case I above) if a new solution

has been computed, z1 (Case II) if the same solution has been obtained or z3 (Case I) if

the adjacent solution to z1 on that edge is already known. The edge analysed is marked as

explored and labelled with the index of the adjacent solution if a different solution has

been found (the label is 0 in case of an edge on the boundary of the weight space). New

edges defined by the Merge & Expand procedure are marked as non-explored. The steps

of the algorithm to find all ESND solutions adjacent to z1 are formalized in Algorithm 1,

where Adj denotes the set of ESND criteria points found by the algorithm. Algorithm 1

and its subroutines are presented in a sufficiently general form so that they can also be

used by Algorithm 2, presented afterwards, which computes all ESND solutions to the

problem.

17

Initialize: Mark all edges of)(1z as non-explored.

Algorithm 1: Adjacent-ESND (z1)

Adj  

While there is some non-explored edge of)(1z do

Step 1: Select a non-explored edge i of)(1z , say)(1zi

 If)(1zi is on the boundary of  then

 mark)(1zi as explored with label 0

 Else go to Step 2

 End If

Step 2: Define a i outside),(1z central and close to)(1zi – call Define_i ()(1zi)

Step 3: If i   (zk), k then // unknown weight vector

Optimize (P) with =i. Let (x*, z*) be the optimal solution and  (z*) the

respective indifference sub-region. Mark all edges of  (z*) as non-explored.

If z* = z1 then // Step 3.1: the same solution was obtained

)(1z )(1z   (z*)

 Merge & Expand ()(1z)

Else //Step 3.2: another solution was computed

Let k+1 be the index of the (new) obtained solution:

(xk+1, zk+1) = (x*, z*)

If Confirm_Adjacency (z1, zk+1) then

 Adj  Adj  {zk+1}

  (zk+1)   (z*) )(1zi

 Mark)(1zi in)(1z as explored with label k+1

 Mark)(1zi in  (zk+1) as explored with label 1

 Merge & Expand ( (zk+1))

Else go to Step 2

End If

End If

Else // Step 3.3: the weight vector i belongs to a known indifference region

 Let k
~

 be the solution index such that i )(
~
kz

 If Confirm_Adjacency (z1, kz
~

) then

Adj  Adj  { kz
~

}

)(
~
kz )(

~
kz )(1zi

Mark)(1zi in)(1z as explored with label k
~

Mark)(1zi in)(
~
kz as explored with label 1

 Merge & Expand ()(
~
kz)

 Else go to Step 2

 End If

End If

End While

Output: Adj, their indifference sub-regions { }:)(Adjzz aa  and the complete indifference

region of z1,)(1z =)(1z .

Now, let us detail how i is defined in Step 2 of the Algorithm 1 – procedure Define_i –

and its validation in Confirm_Adjacency.

18

The region)(1z is a polygon defined by a list of vertices (V0, V1,…,Vv) in anticlockwise

order. The edges of the region)(1z are: [V0V1], [V1V2],…, [Vv-1Vv], [VvV0]. Let the

edge under investigation)(1zi be represented by [Vi0Vi1].

Procedure Define_i ([Vi0Vi1])

Considering the representation of the weight space in a projection (1, 2), the vertex points

Vi0 and Vi1 are: Vi0 = ()0
2

0
1
, ii  and Vi1 = ()1

2
1
1
, ii  .

A point P' = ()
21
','  outside)(1z and close to the midpoint P of)(1zi is defined as:

P' = P +  ()1
1

0
1

0
2

1
2

, iiii −− with P = () ()()2/,2/ 1
2

0
2

1
1

0
1

iiii ++ and  a small positive value.

P' corresponds to i = ()
2121
''1,',' −− .

Output: i

Since the vertices are in anticlockwise order, the expression above defines a point outside

)(1z . Besides that, an accurate value of  must be used. Initially,  is set to a predefined

small positive value (e.g. 0.01). If a solution different from z1, say z', is obtained for i in

Algorithm 1, either by optimizing the respective weighted-sum (Step 3.2) or because i

has been found to belong to)'(z already known (Step 3.3), then it is checked whether

z' is really adjacent to z1 in the Confirm_Adjacency test. In negative case, the algorithm

decreases  and returns to Step 2, calling again Define_i. This process ensures that no

gaps remain between indifference regions and the solutions yielded are surely adjacent to

z1.

Procedure Confirm_Adjacency (z1, z')

Let 0i , 1i be the weight vectors corresponding to the vertices Vi0 and Vi1, respectively, that

define the edge)(1zi under exploration.

If '010 zz ii = and '111 zz ii = then

 Confirm_Adjacency  true

Else

 Confirm_Adjacency  false

End If

Output: Confirm_Adjacency

The Merge & Expand procedure starts with a region)(z and then propagates the

changes to the adjacent regions of)(z , continuing to the adjacent regions of the latter,

and so on, in a recursive manner that stops when no more change has to be propagated.

Therefore, the parameter)(z of the routine Merge & Expand in Algorithm 1 just

indicates the starting region. In order to provide a more formalized description of this

procedure, let us first introduce some notation:

19

For each ESND point z' already known, the current definition of)'(z may include

several subsets that have to be merged to form the respective convex hull. Let us denote

by)'(zh , h =1,…,H' each subset of)'(z before de merging process.

Procedure Merge & Expand

Step 1: Select a region  )'(),...,'()'(
'1

zzz
H

= such that H' > 1.

 If H' = 1 for all known z' then Stop.

Step 2: Apply the QuickHull procedure to  )'(),...,'(
'1

zz
H

 which joins the subsets and form

its convex hull, obtaining)'(znew with newH ' =1.)'(znew is a polygon defined by a

sequence of vertices (V0, V1,…, Vv) in anticlockwise order. Each edge of)'(znew

without correspondence in any)'(z
h

 , h =1,…, H' is marked as non-explored; any edge

of)'(znew existing in some)'(zh keeps its status and the label (if it is marked as

explored). Let L be the list of solution indexes l0, zl  z' that were labels of explored

edges in)'(z
h

 , h =1,…,H' but do not figure as labels of edges of)'(znew because the

edges have changed. These zl are adjacent solutions to z' not yet assigned to)'(znew .

Step 3: For each l  L do

 Search for an edge of)'(znew that intersects)(lz by inspecting two consecutive

vertices of),'(znew say Vi0, Vi1, for which lii zz 00 ' = and lii zz 11 ' = . Let this edge

be denoted by)'(zinew .

- Mark)'(zinew as explored with label l

- If)'(zinew does not coincide with any edge of)(lz then

)(lz )(lz )'(zinew

Hl  Hl +1

 End If

- Mark)'(zinew in)(lz as explored with label ' (the index of z')

 End For

 Return to Step 1.

When the Merge & Expand procedure is called from Algorithm 1, the first selection of a

region)'(z such that H' > 1 is provided as parameter. This procedure can also be used

alone to merge indifference regions for the same solution obtained from independent

optimizations of weighted-sums.

Proposition 3. Algorithm 1 computes all different ESND criteria points adjacent to the

ESND z1 for a three-objective MOMILP problem.

Proof. Any point z found by the Algorithm 1 is adjacent to z1 because the condition of

Definition 1 is ensured by the Confirm_Adjacency test.

Suppose that there exists an ESND point zb adjacent to z1 that was not found by the

Algorithm 1. By definition, (z1)  (zb) is a polytope of dimension p−2, i.e., an edge.

20

Let us denote this edge of (z1) by i(z1). Since the algorithm only finishes after all edges

of (z1) have been explored, suppose that i(z1) has been marked as explored with label

a, which means that za was the adjacent solution found from the investigation of this edge.

So, either (zb) = i(z1) of dimension p-2 instead of p-1, and thus zb is not an ESND point

(Przybylski et al., 2010 – Proposition 4), or (zb) includes i(z1) and, at least, another

weight vector, say 3i(z1), belonging to the interior of either (z1) or (za). Consider

1, 2 two different weight vectors of i(z1). Assume that 3  (za). So, 1, 2 and 3

belong to the indifference region of za. Consider the following system of linear equations

with variables z:








=

=

=

a

a

a

zz

zz

zz

33

22

11

. Since the matrix of the system is full rank, then the system

has only one solution: z = za. Thus, there is no other solution whose indifference region

shares three weight vectors with (za). Hence, zb = za. Analogously, if 3  (z1) it can

be concluded that zb = z1. This contradicts the hypothesis that zb was not found. ◼

The algorithm to find all ESND criteria points (ZESND) of a three-objective MOMILP

problem is a straightforward extension of Algorithm 1, in which adjacent solutions for all

ESND points are explored. This is formalized in Algorithm 2.

Algorithm 2

// Find ZESND starting with an empty set

Choose an arbitrary 1 .

Optimize (P) with  = 1. Let (x1, z1) be its optimal solution and)(1z the obtained

indifference sub-region.

Mark all edges of)(1z as non-explored.

ZESND = {z1}

NA = {z1} // set of solutions not yet analysed

While NA   do

 Select a z'  NA

 NA  NA \ { z'}

 Adj  Adjacent-ESND (z')

 For each za  Adj such that za  ZESND do

 NA  NA  {za}

 End For

 ZESND  ZESND  Adj

End While

Output: All solutions of ZESND and their complete indifference regions in the weight space, (z)

for z  ZESND.

This work has been mainly developed for three-objective problems. We have also

implemented analogous algorithms for two-objective problems, although they are omitted

21

herein because they are much simpler. Some of these features can also be extended to

more than three objective functions. The way indifference sub-regions are computed

(presented in Section 3) is valid for any number of objective functions. The Quickhull

procedure (Bykat, 1978, Eddy, 1977) used in the Merge & Expand procedure is specific

for ℝ2 but an extension to higher dimensions could be implemented, e.g. using the

algorithm of Barber et al. (1996). Other instructions in this procedure would need to be

adapted for higher dimensions in order to deal with faces of dimension p−2 (instead of

edges) of (p−1)-dimensional polytopes. Also, faces of dimension p−2 would be iteratively

explored in Algorithm 1 (requiring a suitable definition of i in Define_i) and the

Confirm_Adjacency procedure would need to test the equality of the weighted-sum value

of the two candidate solutions for p−1 linearly independent weight vectors. However, the

major purpose of these features is to allow the decision maker to perform a graphical

exploration of the weight space and this would hardly be achieved in problems with more

than three objective functions.

5. Computational implementation

The procedures described in Sections 3 and 4 were implemented in Delphi XE5 for

Windows. The graphical representation of the indifference regions in the weight space is

available for problems with two or three objective functions, as well as the algorithms to

compute the ESND solutions adjacent to a previously computed solution or to compute

all ESND solutions of the problem. We will denote these algorithms by Adjacent-ESND

and All-ESND, respectively. In case of the All-ESND algorithm, the user can run it after

computing one or several ESND solutions or from the beginning when no solution has

been computed (as in Algorithm 2). In the latter situation, the implemented algorithm

starts by computing a solution that optimizes the weighted-sum (P) with equal weights:

k =1/p, k = 1,…,p.

Note that, in a computer implementation with floating-point arithmetic, roundoff errors

may introduce small differences between 1I z and 'I z for two adjacent criterion points

z1 and z' and I a weight vector common to both indifference regions of z1 and z'.

Therefore, for numerical reasons, the Confirm_Adjacency procedure, which checks if

'I1I zz = , I = i0, i1, considers a tolerance  (a positive number close to 0), i.e.

− 'I1I zz , I = i0, i1, where i0 and i1 are the weight vectors corresponding to the

22

vertices of the edge)(1zi whose analysis led to z'. Even considering a small value for ,

in problems with a large number of ESND points it may exist some solution between z1

and z' with a very narrow indifference region. So, we can state that the implemented

algorithm calculates all adjacent solutions with a tolerance . In the results reported herein

we have considered a relative tolerance given by 1I510 z= − when − 'I1I zz is

checked.

As noticed before, the main purpose of these tools is to provide a graphical exploration

of the weight space in an interactive decision process, namely exploring neighbourhoods

of solutions (using the Adjacent-ESND). This process may culminate with the All-ESND

algorithm after computing several ESND solutions (either by isolated optimizations of

weighted-sums or by the Adjacent-ESND) in problems with a small or moderate number

of ESND solutions.

To illustrate these features, we present two examples, the first one using an integer

problem and the second one using a mixed-integer problem. Next, we provide some

insight into the evolution of the performance of the algorithm when the number of

variables (integer and/or continuous) or the number of constraints is increased. The

experiments were done in a computer with an Intel Core i7-2600K CPU@3.4GHz and 8

GB RAM. The weight space pictures were taken directly from the software.

5.1. Example 1

Consider the following three-objective integer problem with 10 binary variables and 6

constraints:

10,...,1,}1,0{

..

Max

=



=

jx

bAxts

Cxz

j

with













=

935115314986251730
3978720485027331166
72962918730001960

C ,





















=

4644134323710444711
432122173811104328

46136362102601649
1502002341160023
46234935160220158
32660123522007

A and





















=

250
248
152
108
144
386

b .

23

Suppose that some weighted-sums with different weight vectors are firstly optimized and

the corresponding sub-indifference regions are computed: considering the weight vector

1 = (1/3,
1/3,

1/3), the nondominated solution z1 = (301, 314, 296) is obtained; next,

2 = (0.1, 0.1, 0.8) is chosen, which leads to z2 = (259, 275, 352). The corresponding

indifference sub-regions are shown in fig. 8(a) (polygons labelled as 1 and 2,

respectively).

The user is offered the possibility of inputting the weight values through a dialog box or

selecting weights by clicking on a point in the unfilled area of the weight-space graph.

Let us suppose that, using the latter option, the user points the weight vector given by the

arrowhead in fig. 8(a), which corresponds to 3 = (0.229, 0.234, 0.537). The optimization

of this weighted-sum returns the already known solution z2 and another indifference sub-

region for this solution is computed - fig. 8(b). The two sub-regions known for solution 2

are merged, building the one presented in fig. 8(c).

(a) (b) (c)

Fig. 8 – Example 1: (a) computing solutions 1 and 2; (b) another indifference sub-region of solution 2;

(c) merging the indifference sub-regions of solution 2.

24

(a) (b)

Fig. 9 – Example 1: (a) computing the ESND solutions adjacent to sol. 2 and (b) computing all extreme

supported nondominated solutions through All-ESND.

Now, suppose that the decision maker wants to explore the neighbourhood of solution z2.

The Adjacent-ESND algorithm is called and the new solutions z3 = (320, 292, 282) and

z4 = (270, 320, 311) are produced. The corresponding sub-regions are shown in fig. 9(a).

At this stage, if All-ESND is executed, then three additional nondominated solutions are

obtained whose objective points are z5 = (330, 336, 225), z6 = (276, 349, 265) and

z7 = (277, 358, 221). The weight-space becomes completely filled, as can be seen in fig.

9(b). Hence, this problem has 7 extreme supported nondominated solutions.

5.2. Example 2

Let us now consider a multiobjective mixed-integer problem with 3 objective functions,

20 variables (10 binary and 10 continuous variables) and 10 constraints. The data of the

problem is provided in the Appendix.

Suppose that the decision maker wishes to start the search by computing the

nondominated solutions that optimize individually each objective function and explore

their neighbourhood by looking for the ESND solutions adjacent to each of these

solutions. In order to ensure that nondominated solutions are generated from the

individual optimizations, zero weights are replaced with small positive weights. Thus, the

weight vector 1= (0.99, 0.005, 0.005) is firstly considered and solution 1 is obtained,

which has one adjacent solution: solution 2 (fig. 10(a)). Then, 2= (0.005, 0.99, 0.005) is

considered and solution 3 is obtained; its adjacent solutions are solutions 4 and 5 (fig.

10(a)). 3= (0.005, 0.005, 0.99) leads to solution 6, which has one adjacent solution:

solution 7 (fig. 10(a)).

25

Assuming that, next, the decision maker wants to know the adjacent solutions to solution

4, the Adjacent-ESND algorithm is called for this solution. It returns solutions 8, 9, 10

and 11 and the corresponding indifference sub-regions shown in fig. 10(b). It is worth

noting that, when all adjacent solutions are computed to a given solution, we get to know

the complete indifference region for that solution. Therefore, we can see in fig. 10(b) the

complete indifference regions for solutions 1, 3, 4 and 6.

Finally, if the decision maker wants to know all ESND solutions of the problem and calls

the All-ESND algorithm, a total of 49 nondominated solutions become known whose

objective values are presented in the Appendix. Fig. 11 shows the resulting decomposition

of the weight space.

(a) (b)

Fig. 10 - Example 2: (a) computing the solutions that optimize individually each objective function and

their neighbours; (b) computing the ESND solutions adjacent to solution 4.

26

Fig. 11 – Example 2: Indifference regions in the weight space for all ESND solutions of the problem.

5.3. Computational experiments

Preliminary results have shown that the computational effort to compute the adjacent

solutions of a given solution may vary substantially from one solution to another, even

within the same problem. Therefore, in order to provide some general indications on the

evolution of the computational effort with the increase of the number of variables and/or

constraints, we have opted to show results of computing all ESND solutions of each

problem (using Algorithm 2), although this is not the main purpose of this work. All

computational times reported herein include the time spent not only in the search but also

in graphical and display routines, including showing solution values, drawing

indifference regions and updating other bar/scatter charts concerning the objective space.

For these computational experiments we used mixed-integer problems with continuous

and binary variables. We considered the problem of Example 2 (in Appendix) without

bounds on the continuous variables as a basis to generate other instances. This problem

(with 10 binary, 10 continuous variables and 10 constraints) is denoted by Prob0.

Firstly, we considered the Group 1 of problems in which the number of binary variables

(B) was increased to 20, 30 and 50, keeping the data of Prob0 for the existent variables,

number of constraints and their right-hand-sides. These are Prob1.1, Prob1.2 and

Prob1.3, respectively. Prob1.1 was created from Prob0 by generating coefficients for the

new ten binary variables, Prob1.2 was created from Prob1.1, and so on. The coefficients

in the objective functions (cij) and in the constraints (aij) are integer numbers that were

27

randomly generated in the following ranges (where P means probability):





=

==

8.01001

2.00

Pc

Pc

ij

ij
 ,





=

==

8.0501

2.00

Pa

Pa

ij

ij
. These rules had already been observed

in Prob0 and were also used in the problems of the next groups.

In Group 2 the number of continuous variables (C) of Prob0 was increased to 20, 30 and

50, while keeping the number of binary variables equal to 10. These instances are

Prob2.1, Prob2.2 and Prob2.3, respectively. Prob2.1 was created from Prob0 and each

of the following ones was created from its predecessor.

Group 3 increased simultaneously the number of binary and continuous variables, joining

the data of problems in Groups 1 and 2 to form three instances with 20B+20C, 30B+30C

and 50B+50C variables (Prob3.1, Prob3.2 and Prob3.3 respectively). As before, the

number of constraints and their right-hand-sides remained the same.

In order to test problems with different feasible ranges, Group 4 changed the right-hand-

sides (RHS) of the constraints of the problems in Group 3. The RHS were randomly

generated between 10n and 90n (n being the number of decision variables): n = 40 in

Prob4.1, n = 60 in Prob4.2 and n = 100 in Prob4.3. Problems in Group 5 increased the

number of constraints to 20, 30, 50, respectively to each problem of Group 4. The RHS

were generated as in Group 4 and the same rules of the other groups were applied to

generate the aij coefficients. All the constraints are of the type “≤”. Finally, for illustrative

purposes, we also report a few results for problems with 2 objective functions. We

considered the problems of Group 3 without the third objective function. This is Group

3_2.

In the Examples 1 and 2 presented above, we considered  = 0.01 as the basic (predefined)

step for setting i in the procedure Define_i (called in Step 2 of Algorithm 1). If a higher

value for  is used, positive and negative effects may exist in the number of iterations: on

one hand, the number of times that the algorithm finds the same solution (Step 3.1) may

decrease; on the other hand, more often the reduction of  may be required in order to

verify adjacency of different solutions (Steps 3.2 and 3.3), which may increase the number

of iterations. For the computational experiments we considered two values of : 0.01 and

0.05. The results are shown in Table 1, which include the number of ESND solutions of

each problem (|ZESND|), the total number of weighted-sum optimizations (TOpt), the time

28

(in seconds) spent to compute all solutions and the average number of optimizations per

solution (Opt) given by the ratio TOpt/ |ZESND|.

Table 1. – Results of the computational experiments

  = 0.05  = 0.01

Group

Prob.

n

m

|ZESND|

TOpt

time [s] Opt

TOpt

time [s] Opt (B) (C)

 Prob0 10 10 10 57 134 1.4 2.4 149 1.6 2.6

G 1 Prob1.1 20 10 10 98 827 15.5 8.4 894 17.3 9.1

 Prob1.2 30 10 10 96 1190 25.6 12.4 1352 29.8 14.1

 Prob1.3 50 10 10 81 2850 74.3 35.2 3629 94.1 44.8

G 2 Prob2.1 10 20 10 68 93 0.9 1.4 99 1.0 1.5

 Prob2.2 10 30 10 96 149 1.9 1.6 150 1.7 1.6

 Prob2.3 10 50 10 142 197 2.2 1.4 204 2.2 1.4

G 3 Prob3.1 20 20 10 132 274 5.9 2.1 293 6.3 2.2

 Prob3.2 30 30 10 205 1379 49.7 6.7 1552 54.4 7.6

 Prob3.3 50 50 10 312 2282 98.3 7.3 2756 98.7 8.8

G 4 Prob4.1 20 20 10 105 159 1.8 1.5 167 1.8 1.6

 Prob4.2 30 30 10 181 204 1.6 1.1 206 1.7 1.1

 Prob4.3 50 50 10 217 378 7.8 1.7 397 8.9 1.8

G 5 Prob5.1 20 20 10 399 795 27.2 2.0 826 28.3 2.1

 Prob5.2 30 30 30 292 629 29.4 2.2 679 30.6 2.3

 Prob5.3 50 50 50 598 1666 142.3 2.8 1846 156.3 3.1

G 3_2 Prob3.1_2 20 20 10 14 16 0.1 1.1 15 0.1 1.1

(p=2) Prob3.2_2 30 30 10 21 43 0.2 2.0 43 0.2 2.0

 Prob3.3_2 50 50 10 25 36 0.2 1.4 37 0.2 1.5

In Group 1 we observe that the increase of the number of binary variables (keeping the

right-hand-sides of the constraints, which make them tight to many variables) does not

reflect a growing trend of the number of ESND solutions. However, the number of

optimizations increases significantly and a similar trend is observed in the computational

effort. On the other side, the increase of the number of continuous variables in Group 2

slightly increases the number of ESND solutions with a small increment in the

computational effort. The number of optimizations keeps almost proportional to the

number of solutions (about 1.5). The computational time is short, e.g. 2.2 seconds for

computing and depicting 142 solutions in Prob2.3. In problems of Group 3, where binary

and continuous variables increase simultaneously, the number of ESND solutions

increases to about twice the respective number in Group 2. The computational effort is

comparable to Group 1 but with a lower ratio of the number of optimizations per solution.

These results clearly show that the computational effort grows very quickly with the

increase of the number of integer variables but not with the number of continuous

variables.

29

Groups 4 and 5 analyse the impact of changing the constraints. In Group 4, only the RHS

of the constraints have been changed with respect to Group 3. They are, in general, larger

than the previous ones, thus defining less restrictive constraints. As can be observed in

Table 1, the number of ESND solutions is only slightly smaller than in Group 3, but the

computational effort has been drastically reduced, being comparable to Group 2. Hence,

we observe that constraints have a significant impact on the performance of the algorithm.

The increase of the number of constraints in Group 5 considerably raises the number of

solutions. The number of optimizations per solution increases steadily; each optimization

requires more time.

Concerning the setting of , the computational effort to compute all ESND solutions was

lower with  = 0.05 than with  = 0.01 in all three-objective problems.

Finally, the problems with two objective functions of Group 3_2 present a very small

number of ESND points (about 10% of the respective number in the problems with three

objective functions). The computational effort is also highly reduced. The average time

per ESND solution in the larger problem is 0.008 seconds against 0.3 seconds in the

corresponding three-objective problem (Prob3.3).

6. Conclusions

In this paper we have proposed a procedure to compute subsets of indifference regions in

the weight space for MOMILP problems. We have also proposed algorithms to compute

all extreme supported nondominated solutions (ESND) adjacent to a given solution or

even all ESND solutions to problems with up to three objective functions. These

algorithms are based on a graphical exploration of the weight space. A computational

implementation has been developed to take the most of these procedures. Two examples

have been shown to illustrate the proposed features. Computational experiments have also

been presented.

Indifference regions give useful information to the decision maker allowing him/her to

be indifferent to all weight combinations inside one region as those combinations give

rise to the same nondominated solution. The graphical visualization of these regions

supports the decision maker in the interactive exploration of the weight space, in

particular for the exploration of neighbourhoods of solutions. Although the main aim is

not to generate all solutions to the problem, an algorithm to compute all ESND solutions

30

is also available, which is still based on the graphical exploration of the weight space. It

is suitable to characterize solutions in delimited nondominated areas or to be used as a

final exploration phase in problems with a moderate number of extreme nondominated

solutions.

As future work, we intend to study other approaches with the purpose of defining larger

subsets of the indifference regions within the weighted-sum optimization step. We also

aim to address the exploration of unsupported efficient solutions in the “neighbourhood”

of supported efficient solutions.

Acknowledgements

This work has been partially supported by project EMSURE-Energy and Mobility for

Sustainable Regions (CENTRO-07-0224-FEDER-002004) and by Fundação para a

Ciência e a Tecnologia under project grant UID/MULTI/00308/2013.

References

Alves, M.J., & Clímaco, J. (2000). An interactive reference point approach for

multiobjective mixed-integer programming using branch-and-bound. European Journal

of Operational Research, 124(3), 478-494.

Alves, M.J., & Clímaco, J. (2001). Indifference sets of reference points in multiobjective

integer linear programming. Journal of Multi-Criteria Decision Analysis, 10(4), 177-189.

Alves, M.J., Antunes, C.H., & Clímaco J. (2015). Interactive MOLP Explorer - a

graphical-based computational tool for teaching and decision support in multi-objective

linear programming models. Computer Applications in Engineering Education 23(2),

314-326.

Antunes, C.H., Alves, M.J., Silva, A.L., & Clímaco J. (1992). An integrated MOLP

method base package - a guided tour of TOMMIX. Computers and Operations Research,

19(7), 609-625.

Barber, C. B., Dabkin, D. P. & Huhdanpa, H. (1996). The Quickhull algorithm for convex

hulls. ACM Transactions on Mathematical Software (TOMS), 22(4), 469-483.

31

Benson, H.P., & Sun, E. (2002). A weight decomposition algorithm for finding all

efficient extreme points in the outcome set of a multiple objective linear program.

European Journal of Operational Research, 139(1), 26-41.

Bykat, A. (1978). Convex hull of a finite set of points in two dimensions. Information

Processing Letters, 7(6), 296-298.

Clímaco, J., & Antunes, C.H. (1987). TRIMAP - an interactive tricriteria linear

programming package. Foundations of Control Engineering, 12, 101-119.

Costa, J.P., & Clímaco, J. (1999). Relating reference points and weights in MOLP.

Journal of Multi-Criteria Decision Analysis, 8(5), 281-290.

Eddy, W. F. (1977). A new convex hull algorithm for planar sets. ACM Transactions on

Mathematical Software (TOMS), 3(4), 398-403.

Özpeynirci, O., & Köksalan, M. (2010). An exact algorithm for finding extreme

supported nondominated points of multiobjective mixed integer problems. Management

Science, 56(12), 2302-2315.

Przybylski, A., Gandibleux, X., & Ehrgott, M. (2010). A recursive algorithm for finding

all nondominated extreme points in the outcome set of a multiobjective integer

programme. INFORMS Journal on Computing, 22(3), 371-386.

Yu, P.L., & Zeleny, M. (1976). Linear multiparametric programming by multicriteria

simplex method. Management Science, 23(2), 159-170.

Appendix

Problem of the Example2, with 3 objective functions, 20 variables (10 binary and 10

continuous) and 10 constraints:

20,...,11,10

10,...,1,}1,0{

..

Max

=

=



=

jx

jx

bAxts

Cxz

j

j

with














=

647108974046500889351153150701730

00890242937239520397872048500661133

294831040028047900291873102706560

C ,

32

































=

44400260

1738263742

47444138

000015

28043406

501329436

02248018

46035041

3824262326

3927271649

4603320

0341704

142633449

241644020

11004947

3547242113

23804924

4400231

43015350

00123814

74243040

21205045

40203198

25052043

1122700

350442649

30451028

3033412920

194853828

24430042

04524033

52412401

2415464433

030444042

252382327

22350213

231193729

14334429

0030250

37062519

A

































=

425

644

605

635

375

215

483

478

481

285

b .

Objective values of the 49 ESND solutions of the problem:

solution # z1 z2 z3 solution # z1 z2 z3

solution 1 417.308 384.462 352.231 solution 25 372.347 548.633 307.548

solution 2 415.231 418.846 424.923 solution 26 297.260 578.225 350.411

solution 3 226 589 388 solution 27 388.069 362.069 502

solution 4 263.463 579.276 422.276 solution 28 401.5 336 484

solution 5 291 579.875 347.250 solution 29 400 446.083 466.833

solution 6 172.191 173.574 648.957 solution 30 402 509.458 393.083

solution 7 230.420 205 645.720 solution 31 398.693 526.608 269.402

solution 8 264 539 477.628 solution 32 394.555 528.533 294.633

solution 9 269.362 546.085 467.809 solution 33 376.665 544.171 311.985

solution 10 279.362 575.002 421.975 solution 34 315.140 311 597.240

solution 11 294.512 578.963 350.463 solution 35 233.320 378 608.120

solution 12 413.724 412.724 452 solution 36 235.276 390.276 603.000

solution 13 409.745 507.234 378.723 solution 37 329.383 403.149 558.915

solution 14 413.106 442.319 442.532 solution 38 323.793 468.793 517.000

solution 15 283.240 216 621.840 solution 39 357.787 474.362 483.936

solution 16 280.383 219.149 622.915 solution 40 366 503.792 441.417

solution 17 286.952 234.095 619 solution 41 391.965 533.560 262.489

solution 18 262.383 303.149 619.915 solution 42 387 359 504.070

solution 19 198.5 283 635 solution 43 387.580 359 503.280

solution 20 262 467 551.256 solution 44 397.862 441.862 471.000

solution 21 327 475.125 510.750 solution 45 318.060 311 594.960

solution 22 329 538.5 437 solution 46 329.320 400 560.120

solution 23 348.532 534.596 426.660 solution 47 233.383 381.149 606.915

solution 24 351.766 546.131 379.163 solution 48 369 359 526.884

 solution 49 321.483 332.483 586

